
CONSTRUCTING CAMIN-SOKAL PHYLOGENIES VIA

ANSWER SET PROGRAMMING

Jonathan Kavanagh

B.Sc. (Honours), Memorial University of Newfoundland, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Jonathan Kavanagh 2006

SIMON FRASER UNIVERSITY

Summer 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title o f thesis:

Jonathan Kavanagh

Master of Science

Constructing Camin-Soh1 Phylogenies Via Answer Set P r e

gramming

Examining Committee: Dr. Veronica Dahl

Chair

Date Approved:

Dr. Arvind Gupta, Senior Supervisor

Dr. David Mitchell, CeSenior Supervisor

Dr. Eugenia Ternovsh, Supervisor

Dr. Andrei Bulatov, Examiner

SIMON FRASER V "Nlv~R~lnlibrary &3&4

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to 'Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Summer 2006

Abstract

The problem of constructing a most parsimonious phylogenetic tree from species data, the

maximum parsimony problem, is central to phylogenetics and has diverse applications else-

where. Most natural variations of the problem, including the cladistic Camin-Sokal (CCS)

version studied here, are NP-complete. The usual approach to solving these problems is

branch-and-bound (BNB); packages using BNB often find approximate solutions quickly,

but can establish optimality only for small instances.

We present a new approach to solving the CCS problem based on Answer Set Program-

ming (ASP), a declarative approach based on stable model semantics of logic programming.

ASP proves useful in tackling hard, combinatorial search problems. Along with our base

model, we describe several variations which significantly affect performance. We compare

our best versions with a commonly used BNB-based approach (PHYLIP's PENNY package),

and conclude that ASP offers a viable approach to solving phylogeny problems, especially

when optimality is relevant.

Keywords: phylogeny; maximum parsimony; Camin-Sokal; answer set programming; logic

For my mother.

Acknowledgments

The work contained in this thesis was very much a collaborative effort, and I would like

to thank all of the individuals involved. First and foremost, I would like to thank my

supervisors: senior supervisor Dr. Arvind Gupta, cesenior supervisor Dr. David Mitchell,

and supervisor Dr. Eugenia Ternovska. Their teaching and guidance during weekly meetings

helped keep me on the right track, and their extra help editing and revising during paper

submissions and thesis writing made such events worthwhile endeavors. I would also like

to extend thanks to the two other members of our research team, Dr. Jan Manuch and

Xiaohong Zhao, for their dedication and efforts in this project. They provided large amounts

of their time to this project, and their help is greatly appreciated. I would also like to thank

Dr. Nikolay Pelov for his preliminary work, for providing his initial ASP programs and

tools, and for helping me make a smooth transition into this project. I would also like to

thank Dr. Andrei Bulatov for volunteering to be the examiner for my thesis defense. As

well, I would like to thank the three groups who supplied their data to us: Hellman et al.,

Pacak et al., and Edwards-Ingram et al. Their generosity enabled us to compare our variant

models with existing techniques on actual biological data.

I would also like to acknowledge my family for their constant love and support. I would

especially like to thank my parents, John and Geraldine, for teaching me the joy of learning

and for providing the environment in which I grew.

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1

1.1 General Introduction . 1

1.2 Overview . 4

2 Phylogenetics 5

2.1 Overview . 5

2.2 Character-based Cladistics . 7

2.3 Maximum Parsimony Problem . 8

2.4 Cladistic Camin-Sokal Problem . 9

2.4.1 Example. 10

2.5 Conflict Graphs . 10

2.6 Branch and Bound . 11

3 Answer Set Programming 14

3.1 ASP for Normal Logic Programs . 14

3.2 Constants. Variables. and Grounding . 16

3.3 Example . 18

3.4 Cardinality constraints . 20

3.5 Tight Logic Programs . 21

3.6 Notation . 24

4 Models 25

4.1 Model Overview . 25

4.2 Perfect Phylogeny Model . 26

4.3 General Model . 28

4.4 Basic Model Variations . 30

4.4.1 Model A - Redundant constraints . 30

4.4.2 Model B . Rephrase constraints . 30

4.4.3 Model C . Make program tight . 31

4.4.4 Model D . Use preprocessing to reduce search space 32

4.5 Variations on Model A . 32

4.5.1 Model E . 32

4.5.2 Model A+ . 33

4.5.3 Model MC . 34

5 Experimental Results 36

5.1 Implementation . 36

5.2 General Preprocessing . 37

5.3 Perfect Phylogeny Model Results . 38

5.4 General ModelResults . 39

5.5 Discussion . 42

6 Related Work and Conclusions 45

6.1 Related Work . 45

6.2 Conclusions . 46

A Answer Set Programs 48

. A . l Program for perfect binary CCS problem 48

. A.2 Program for general binary CCS problem 50

B Helper scripts for Binary CCS Model 53

. B . l 'findnpp.pl' 53

Bibliography 59

...
Vl l l

List of Tables

Time in seconds to construct phylogenies using the perfect phylogeny model.

The row labeled "Sp" is the number of species in the data set. The next three

rows give the running times for the solver on the three data sets.
Running times (in seconds) as the number of extra vertices (#EV) is in-

creased, for the basic model on the '24s,24c' and '27s,24c' data sets. The

optimal solution in both cases has 4 extra vertices.
Model comparsion on 'fb65' data. Column 'Data' shows the largest data sets

for which we could find solutions. Column '#EV' shows the optimal number

of extra vertices needed. The remaining columns give the running times, in

seconds, for each model on each data set.
Comparison of performance of Model A+ and PENNY on three data sets.

Running times are given in seconds. An 'X' in the table represents failure to

return a solution within the two hour cutoff period: (a) fb65 - 37 species, 65

characters; (b) gen - 8 species, 26 characters (c) pin - 20 species, 75 characters. 41

List of Figures

Example of a binary CCS phylogenetic tree with minimum number of extra

vertices. Vertices for species are marked with black dots. 10

The conflict graph for example from Section 2.4.1. 11

Species s maps to vertex v, and vertex v l maps to character c. Vertex v l is

somewhere above v. Note that v l could equal v. 29

The conflict graph for the 21 species, 21 characters subset of 'fb65' data. This

data and corresponding results will be discussed in Chapter 5. 35

A phylogeny for the species "1000", "Olll", and "1111". Characters 2, 3,

and 4 are identical. 38

Frontier for PENNY and Models A+, MC. 42

Chapter 1

Introduction

1.1 General Introduction

Phylogenetics is the taxonomical classification of organisms based on their evolutionary

distance. The central problem is that of constructing phylogenies (evolutionary trees)

which postulate the most likely evolution of a set of extant species. This problem, and

its variations, are widely applicable. For example, they play an important role in homology

determination, the process of determining if biological structures are alike due to shared

ancestry [57], and haplotyping, the process of separating haplotypes from genotypes [32].

They can even be applied to the evolution of natural languages [17]. These variations are,

for the most part, NP-complete. However, their wide applicability requires the development

of tools that help to solve instances occurring in practice, in spite of this intractability.

One of the most general and widely used forms of the problem is the maximum par-

simony problem, where the goal is to find the smallest evolutionary tree (called the most

parsimonious tree) that accounts for the diversity of the given species. The problem is

specified as follows: A set of characters, each of which can take on a number of possible

states, characterizes a group of species. The input is a set of species, given as character

vectors. The goal is to construct a tree, with nodes labeled as character vectors, such that

the node labels include all species, and the total number of character changes along edges is

minimized. Variations of the problem arise from different restrictions on character changes

and different metrics on the minimization.

One traditional approach to solving maximum parsimony phylogeny problems, proposed

CHAPTER 1. INTRODUCTION 2

by Hendy and Penny [37], is branch-and-bound (BNB). The BNB method involves construct-

ing candidate trees in a depth-first manner, keeping track of the best trees found so far.

The method benefits from heuristics which direct the search toward promising trees, and

often finds optimal or near-optimal trees quickly. However, in the worst case, finding opti-

mal phylogenies requires enumerating all trees. For data sets with many species, this is a

daunting task since the number of trees grows exponentially in the number of species.

Due to the success of BNB, most present day software packages for phylogeny construc-

tion use this approach. The two most common packages, PHYLIP [19] and PAUP [64], use

BNB to solve several variations of the phylogeny construction problem. For a given phy-

logeny problem, each software package is likely to return different trees. Analysis of these

trees is required to determine which solution best describes the input data. Many of these

packages sacrifice optimality in an effort to improve running times and it can be difficult

to know if and when optimality has been reached. Other methods are needed, especially

when optimality is required. In particular, we would like to develop a tool which can quickly

compute optimal phylogenies for the maximum parsimony problem.

One strategy for dealing with NP-complete problems is to specify a solution's properties

declaratively, and solve the declarative model with a general-purpose solver. This contrasts

with the step-by-step procedural approach used in software packages such as PHYLJP and

other traditional imperative programs. In recent years, Answer Set Programming (ASP),

a declarative approach, has gained increasing attention in tackling combinatorial search

problems. Based on the stable model semantics of logic programming [27], it was identified

as a new programming paradigm in 1999 [52, 491. Problems are modeled in extended

logic programming notation, which looks similar to a Prolog program. The main difference

between the two is that Prolog is used to answer queries (for program P and atom q, does

P + q?) while ASP generates models which satisfy the program. The syntax is simple and

easy to use, and programs can often be written compactly using variables and recursion.

Answer sets for the logic program correspond to problem solutions. After modeling, an

answer set solver such as smodels [53], Cmodels [44], or dlv [43] is used to compute the

stable models of the program and hence problem solutions. As faster solvers are developed,

this method will continue to see performance improvements.

Phylogeny problems, with their combinatorially large search spaces, seem ideal candi-

dates for ASP formulation. ASP algorithms can be viewed as a form of branch-and-bound,

with the branching on truth values of ground atoms. However, the truth values of many

CHAPTER 1. INTRODUCTION 3

atoms are pre-computed efficiently by computing the well-founded model of the program;

branch-and-bound is applied only where the truth values are still undefined. Moreover,

solvers such as Cmodels are based on clauselearning SAT solvers, which recall derived in-

formation during the search to reduce the portion of the search space which is explicitly

examined. A number of authors have suggested using ASP to construct character-based

phylogenies. ASP-based approaches have been used for the construction of maximum com-

patibility phylogenies [6] and perfect phylogenetic networks [17]. In this thesis, we take the

first steps towards finding maximum parsimony phylogenies within an ASP framework.

In attempting to solve the maximum parsimony problem using ASP, we must choose

a metric space in which to work. Many metrics have been proposed and are currently in

use. The ultimate goal is to use the Wagner metric [14], the most general metric, in which

arbitrary mutations are allowed. In general, this metric yields extremely large search spaces

and it is difficult to find ASP models which perform satisfactorily on substantial data sets.

Another well-established metric for the maximum parsimony problem is the cladistic

Camin-Sokal (CCS) metric [7]. Though other models are more common, the CCS version is

in use for specific applications (see [15, 54, 551). In this version, the states of each character

are ordered and all changes are to the next state in the order. These changes are irreversible;

a character cannot mutate back to a previous state in the order. In the binary version, each

character has two states. The CCS problem, even in the binary case, is NP-complete [lo].

As a first step towards modeling this problem, we construct a model for the so-called perfect

phylogeny problem. So long as the number of characters or character states is constant,

perfect phylogenies can be constructed in polynomial-time [50, 11.

Our model to construct perfect binary CCS phylogenies performs well and we base our

general CCS model on it. A straightforward implementation gives a model with unsatis-

factory running time. This is not uncommon in modeling NP-hard problems (for example,

integer programming formulations also exhibit similar behaviour [66]). To achieve a speed-

up, we experimented with a considerable number of variations of the basic model, of which

the seven most interesting are reported in Chapter 4. Indeed, one of our major contributions

is a deeper understanding of how ASP models can be modified to potentially reduce running

times. In particular, we develop the notion of slightly t ighter models (see Section 4.5), and

show that a slightly tighter model can obtain better performance where a completely tight

program fails to do so.

All of our experiments were performed on actual biologically significant data. In practice,

CHAPTER I . INTRODUCTION 4

such data sets are quite large and, to the best of our knowledge, this is the first attempt

to use ASP in finding any phylogenies for such data. We compare the performance of

our ASP-based approach with PENNY [21], the BNB-based program from the PHYLIP

package which constructs CCS phylogenies. The results show that the BNB method can

quickly construct phylogenies with a low number of species and a high number of characters.

This approach falters for larger numbers of species, even with relatively few characters. Our

method does not perform as well for instances with a low number of species, but finds

optimal trees for data with high numbers of species for which PENNY cannot establish

optimality.

1.2 Overview

a In Chapter 2, we introduce the biological field of phylogenetics and the central problem

of phylogeny construction. We formally define the binary CCS problem and give a

survey of the BNB approach to the maximum parsimony problem.

a In Chapter 3, we introduce the key notions of answer set programming.

0 In Chapter 4, we present our basic models and several of our most interesting varia-

tions.

a In Chapter 5, we give our experimental results and discuss their significance versus

existing methods.

a In Chapter 6, we discuss related work and finish with some concluding remarks.

Chapter 2

P hylogenet ics

2.1 Overview

In biology, phylogenetics is the study of the evolutionary relationships between a group

of organisms, such as a set of species or populations of the same species. A phylogeny is a

representation of the evolution of some set of organisms based on some mathematical model,

often depicted by a tree. Aside from its central role in (evolutionary) biology, phylogenetic

applications have been found in such fields as ecology [61], linguistics [22], and forensic

studies [2].

There are many different approaches to phylogenetic tree construction, which arise from

varying metrics of what a "good" phylogeny should look like. For example, should the

phylogeny reinforce what is already believed by biologists, should it make use of all the

properties of evolutionary history, or should it just be simple? Hence, the mathematical

models used to construct phylogenies vary with one's needs. The most common approaches

used today are cladistics, phenetics, and maximum likelihood. Cladistics, which makes use

of shared traits to infer relationships amongst species, is the topic of Section 2.2. Phenet-

ics [63], or numerical taxonomy, uses overall similarity, rather than evolutionary relations,

to classify organisms. The most important algorithm to come from phenetics is neighbor-

joining: a polynomial-time greedy algorithm which joins closely related species into clusters

in a step-by-step fashion [59]. This method optimizes locally at each step and there is no

guarantee that the fully constructed trees will be optimal. Although phenetics has been

somewhat replaced by cladistics in recent years, neighbor-joining is still commonly used as

it is a fast algorithm which often produces near-optimal results. Maximum likelihood is a

CHAPTER 2. PHYLOGENETICS 6

general statistical method which uses a pre-specified likelihood function and the probability

distribution of the given data set to make inferences about the unknown parameters. The

values of these parameters which maximize the likelihood are called Maximum Likelihood

Estimates (MLEs). This purely analytic maximization procedure was first developed by

Fisher between 1912 and 1922 [3]. The phylogeny construction problem can be worded as

a maximum likelihood problem as follows: Given a model of sequence evolution and a tree,

what is the likelihood that this tree accounts for the given species data? This approach to

phylogenetic estimation has been extensively studied in recent years (eg. [20, 26, 391).

When dealing with molecular data, the binary characters are often the most impor-

tant [29]. Binary characters in genetic data are called Single Nucleotide Polymorphisms

(SNPs). An SNP is a variation between members of the same species which occurs in a

single nucleotide (A, C, T , or G) in a DNA sequence. SNPs make up approximately 90% of

all human genetic variations and thus are often the focus of data analysis. In some situa-

tions, biologists remove characters which are not SNPs from their data before constructing

phylogenies.

The first widely used software package for phylogeny construction was PHYLIP (PHY-

Logeny Inference Package) [19]. PHYLIP was first distributed in 1980 and features various

programs for different problems and different algorithmic techniques. PENNY, one such

program from the PHYLIP package, finds all most parsimonious trees for binary char-

acter data, using Camin-Sokal, Wagner, or mixed parsimony criteria. In Chapter 5, we

will compare our results to PENNY. PHYLIP remains popular today due to the fact that

it is freely distributed, can run on many different kinds of computer systems, and com-

petes with PAUP* as the package responsible for the largest number of published trees.

PAUP* (Phylogenetic Analysis Using Parsimony (and Other Methods)) [64] is a comrner-

cial software package which continues to use research advances to improve its performance.

Version 4.0 introduced maximum likelihood and distance methods alongside its standard

maximum parsimony approaches. MacClade, a Mac-based tool for phylogenetic analysis,

provides elaborate visual representations of character-based phylogenies and allows for man-

ual manipulation of the trees [47]. There are many other phylogenetic software packages

in existence: The PHYLIP website provides a list of 265 known packages which solve some

sort of phylogeny problem.

CHAPTER 2. PHYLOGENETICS 7

2.2 Character-based Cladistics

One of the most commonly used approaches to infer phylogenies is cladistics. Developed

by Hennig [38], cladistics uses derived similarities, or shared traits, to infer evolutionary

relationships amongst species (or taxa). These relations can be represented by a tree (called

a phylogenetic tree or simply a phylogeny), where parent nodes denote ancestors of their child

nodes, and edges denote genetic relationships. Edges often represent a genetic mutation

which accounts for the difference in species. The standard convention is to place all species

at the leaves of the tree with internal nodes denoting common (possibly extinct) ancestors.

The most common way to represent species' traits is with characters. In character-based

cladistics, a set of characters is used to describe the similarities and differences between

species. Each character has a set of possible states, and each species assumes some state

for each character. For example, to construct a phylogeny of different species of birds, one

of the characters could be feather-color with possible states red, blue, white, etc. Another

character could represent the ability to fly. This is considered a binary character, as it has

only two possible states: yes (for most birds) and no (for penguins). Each input species

is defined by its particular states for each characteristic. From a set of input species, we

must construct phylogenies. If the characters are chosen well, we may be able to deduce

meaningful partial evolutionary trees [31]. In character-based cladistics, the characters

change states on the edges of the tree.

With the set of taxa described in terms of character states, there are two main ap-

proaches for constructing meaningful phylogenies: the maximum parsimony criterion and

the maximum compatibility criterion. The problem is NP-hard, even when the characters

are binary, for either criterion [23, 111. Our focus will be on the maximum parsimony ap-

proach, which attempts to construct a phylogeny with the minimum number of character

state changes. This will be discussed in detail in the next section. The goal when using the

maximum compatibility criterion is to construct a phylogeny with the maximum number of

"compatible" characters. A character with k states is compatible if it changes state exactly

k - 1 times. Equivalently, a character is compatible if, for each state, each vertex labeled

by that state forms a connected subtree. The score for a particular tree is the number of

compatible characters it contains, and an optimal solution would be a tree with the high-

est possible score. An ASP-based method for the maximum compatibility problem was

presented in [6].

CHAPTER 2. PHYLOGENETICS 8

2.3 Maximum Parsimony Problem

As mentioned in the previous section, the aim of the maximum parsimony approach is to

construct a phylogeny with the minimum number of character state changes. The score for

a candidate tree is the total number of character state changes that occur in the tree, and

an optimal solution would be a phylogeny which accounts for the data and has the fewest

possible number of state changes (called a most parsimonious tree). Viable mutations are

a low probability event. Getting the same mutation twice independently is rare, especially

in eukaryotic organisms (organisms in which the genetic material is located in the nuclei of

its cells). However, on the time scales for which the problem is considered, mutations are

quite possible (especially for molecular data). So the maximum parsimony assumption has

a reasonable basis.

In the general maximum parsimony problem, the trees are unrooted, with the extant

taxa labeled at the leaves. Each vertex is labeled by a set of character states, one for each

character. The score of the tree is obtained by considering each adjacent pair of vertices,

and scoring one for each character where the states differ. Let us assume we have a set of

n taxa with m different characters {cl, . . . , c,). Each character has ki 1 2 states, all of

which must be represented in the taxa. A lower bound on the score of any candidate tree is

Czl(ki - 1). This score corresponds to the situation where each character takes on each

state value exactly once. If a phylogeny exists with such a score, we call it a perfect phylogeny,

and the problem of constructing a perfect phylogeny, if one exists, from a set of species is

known as the perfect phylogeny problem. If the number of characters [50] or character

states [I] is constant, than the perfect phylogeny problem can be solved in polynomial-time.

However, in the general sense, the perfect phylogeny problem is NP-complete [5].

Variations in the maximum parsimony problem can arise when different restrictions are

placed on the allowable state changes. For example, each character could be assigned an

ancestral state; a state this character must have in the common ancestor to all input taxa.

This condition would force a root node, labeled by each character's ancestral state, and

imply a direction on the edges, emanating from this root. A further restriction could be

added so that a character cannot change back to a state it has previously visited (called a

back mutation). Each variation in criteria can severely alter the resulting phylogenies, and

many different versions have been used for different tasks.

CHAPTER 2. PHYLOGENETICS 9

2.4 Cladistic Camin-Sokal Problem

The cladistic Camin-Sokal (CCS) problem is one such variation of the general maximum

parsimony problem, and is the version we will be focused on in this work. In the CCS

version, every character has an ordering on its states (we can assume each character has

states ordered 0 < 1 < - < ki), and changes are only permitted to the next state in the

order. Hence, we require a directed tree, rooted at Om, the vector where each character is

in state 0. Due to the ordering, each change is irreversible. A character cannot change from

state 1 to state 0, for example. In the binary version of the CCS problem, each character has

exactly two possible state values, 0 (the ancestral state) and 1 (the derived state). The CCS

problem, even in the binary case, is NP-complete [lo]. Several packages, including PENNY,

PAUP*, and MacClade, discussed earlier, can be used to construct CCS phylogenies.

As mentioned, the usual convention for phylogenetic tree construction is to place all

species at the leaves of the tree. If a species has the same states for each character as

an internal node, they are linked by an unlabeled edge. For our purposes, it is easier to

model phylogenetic trees without such changeless edges (we will see why in Chapter 4). We

will construct trees with exactly one character state change along each edge. To guarantee

equivalence of this definition to the common definition of phylogenetic trees, we drop the

assumption that species appear only in leaves of the tree; every leaf will be labeled by a

species, but not necessarily vice versa. By standard conventions, any number of characters

can change along a single edge. Assume we have an edge where j characters change. Since

we limit ourselves to one change per edge, we must represent this original single edge by a

non-branching path with j nodes and j edges. This can be done in j x (j - 1) x . . . x 1 = j !

ways. Hence there are more phylogenies possible with our convention, although each of our

phylogenies maps to a unique phylogeny in the standard convention, and each phylogeny

in the standard convention can be mapped to a group of isomorphic phylogenies in our

convent ion.

Definition 1. The binary cladistic Camin-Sokal (binary CCS) problem is:

Instance: A set S of n distinct species vectors from (0, l)m, and natural number

B.

Question: Is there a directed tree T = (V, E), such that: T is rooted at Om;

S C V E (0, l)m; every leaf in T is in S; if (vl, v2) E E, vl and v2 differ in

CHAPTER 2. PHYLOGENETICS 10

exactly one character; V(vl, v2) E E, if vl has character state 1 for character

c, then v2 has state 1 for c (irreversibility); and IVI < B.

In a perfect phylogeny, each character mutation occurs only once in the tree. For binary

CCS, this is equivalent to setting B = m, provided both states of each character occur in

S.

2.4.1 Example

Consider the small 6 species, 5 character example in Figure 2.1. Notice that exactly one

character changes on each edge (labeled by Q to denote the i-th character has changed) and

that species '01000' occurs at an internal node. Both of these properties differ from the

standard phylogenies produced by most software packages (such as PHYLIP), but it is easy

to convert trees from one format to the other.

Species:
00010
01000

00010 01001
01010
10100

11000 10100 01010 01001 11000

Figure 2.1: Example of a binary CCS phylogenetic tree with minimum number of extra
vertices. Vertices for species are marked with black dots.

2.5 Conflict Graphs

An important concept in maximum parsimony phylogeny construction is that of character

conflicts. Two binary characters are in conflict if there are four distinct species in which

they take the state pairs '0-O', '0-l', '1-O', and '1-1'. When the tree is rooted with ancestral

states, as in the binary CCS problem, only the three state pairs '0-l', '1-O', and '1-1' are

required to cause a conflict. For example, cl and c2, from the example in Section 2.4.1,

are in conflict since they contain the pair '0-1' in species 2, the pair '1-0' in species 5, and

the pair '1-1' in species 6. Since both cl and c2 start in state 0 at the root, they both

must mutate to 1 along different paths to reach the states of '1-0' and '0-l', respectively.

CHAPTER 2. PHYLOGENETICS 11

At least one of cl and c2 must mutate again to reach the '1-1' state pair. Thus, when two

characters are in conflict, at least one of them must mutate twice. The only other conflict

in the example is between c2 and c4.

The conflicts between characters can be represented visually with a conflict graph. In a

conflict graph, each character is denoted by a vertex, and an edge between distinct characters

denotes a conflict. Figure 2.2 presents the conflict graph for the example in Section 2.4.1.

Figure 2.2: The conflict graph for example hom Section 2.4.1.

Since a perfect phylogeny only allows a particular character to mutate to a particular

state once, a perfect phylogeny cannot be constructed if any of the input characters are in

conflict. Hence, for a particular set of input data, a perfect phylogeny can be constructed if,

and only if, there are no edges in the conflict graph. This is one formulation of the Perfect

Phylogeny Theorem [30, 311.

2.6 Branch and Bound

The branch-and-bound (BNB) problem solving method was first proposed by Land and

Doig in 1960 for the linear programming problem [40]. Since then, it has become a very

popular algorithmic method for finding solutions to combinatorial optimization problems.

It has been applied to several NP-hard problems, including the knapsack problem [60], the

travelling salesman problem (341, and, more recently, the maximum parsimony phylogeny

problem [21]. The BNB method implicitly enumerates every point in the search space.

The aim of BNB is to prune subspaces of the search space using bounds, so that not every

candidate solution need be considered. The term 'branch' refers to the notion of splitting the

search space into smaller subspaces, and recursively searching these smaller subspaces. The

term 'bound' is used to denote the idea of finding upper and/or lower bounds on the costs

of possible solutions within each subregion. For example, if the upper bound on the score of

CHAPTER 2. PHYLOGENETICS 12

some subregion A is less than the score of an already computed subregion in a maximization

problem, we can disregard A. This idea, called pruning, is key to the success of the BNB

method. If no branches get pruned, we will have effectively performed an exhaustive search.

BNB has been, and remains, a very popular approach to phylogeny construction prob

lems. Several phylogenetic software packages, including the most widely used PHYLIP and

PAUP* packages, use BNB to construct phylogenetic trees. PENNY uses BNB to solve the

CCS problem.

Branch-and-bound can be applied to (rooted) phylogeny construction as follows: Take

the first two species in the input set (say, S1 and S2) and construct a tree with them. The

tree will have a root, two leaves, and (possibly) one internal node D. The internal node will

contain all the character states common to both species, and the edges from D to the leaves

will contain the changes unique to each respective species. There are three possibilities as

to where to place the third species S3: Add an internal node between D and S1 and branch

S3 off of that; add an internal node between D and S2 and branch S3 off of that; or just

simply branch S3 from D. For simplicity, we add S3 to the first possible place. Each new

species added will have several possibilities, but we keep adding to the first such possibility

until all species are placed, in a depth-first manner. The number of character state changes

which have occurred in the tree represents the minimal score, m. We remove the last species

from its first location and attach it to its second possible location. If we have reduced the

score, we update m. We continue recursively, constructing candidate trees and checking

their score against the best score found thus far. We keep track of the cost of each tree as

we are building it. As soon as a species is added which increases the score of the partial tree

to more than m, we can eliminate all possible trees which can be built from that state on,

thus pruning a part of the search space. If we fully construct a tree with score m, we add

it to the list of our candidate optimal trees. If we construct a tree with cost less than m,

we update m and begin a new list of optimal trees. We continue until all trees have been

constructed or discarded.

Obviously, this is the most simple way to traverse through the search space. An al-

gorithm can use smarter heuristics to improve the performance, both for deciding which

species to place next, as well as where to place it. Performance can be improved through

branching (eliminating large regions of the search space) or bounding (lowering m as quickly

as possible). The PENNY algorithm uses a heuristic based on the 'apparent promise' of

each possibility [21]. When adding to a partial tree, PENNY tries adding each remaining

CHAPTER 2. PHYLOGENETICS 13

species to each possible place, and chooses the species which adds (at a minimum) the most

to the current score and places it to cause the least increase in the score.

The BNB method gives a general approach for tackling combinatorial optimization prob

lems, however there is no universal algorithm which can be used to efficiently branch in any

such search space. Each particular problem requires its own branching and bounding alge

rithms to perform efficiently. As the maximum parsimony problem is widely studied, there

has been much active research in the development of better BNB algorithms for constructing

these phylogenies. The traditional approach, as used in PENNY, is to assign a cost equal

to the minimum number of changes, or discrepancy, of each partial phylogenetic tree as it is

being constructed. One recent approach involves using a single column discrepancy heuris-

tic, which increases the cost by predicting the minimal additional cost needed to attach the

species yet to be added to the partial tree [56]. That work also involved using a "dynamic

Max-mini order of sequence addition" to allow for quick pruning of suboptimal subspaces,

hence improving on both the branching and bounding. Since the scores of partial trees

must be calculated many times during a single phylogeny construction, improving the speed

at which these scores are computed could substantially improve the performance of BNB

algorithms. In 2003, Yan and Bader proposed such an algorithm for fast, exact computation

of tree cost [67].

Chapter 3

Answer Set Programming

3.1 ASP for Normal Logic Programs

Answer Set Programming (ASP) is a form of declarative programming oriented towards

combinatorial search problems.

We begin our formal look1 at ASP by first restricting our attention to normal logic

programs, which consist only of rules of the form

where n 2 m 2 0, and each pi (0 5 i 5 n) is an atom. An atom consists of a predicate

symbol followed by a parenthesized list of terms. A term is a constant, variable, or a function

f (t l , . . . , t,) where f is a function symbol and tl , . . . , t, are terms (the standard convention

is for variables to begin with a capital letter, and constants to begin with a lower case

letter). For example, the atom color(bal1, red) could mean that the object "ball" has the

color "red". The atom color(V, red) could mean that some variable V is red. An atom

with no variables is known as a ground atom. Atoms have two possible values, "True" and

"False".

Given (3.1) as rule r , we let head(r) denote the head, po, of r and body(r) denote the

body, {pl, . . . ,pm, not prn+l,. . . ,not p,), of r . The body can be broken into body+(r) =

{pl, . . . ,pm) and bodyP(r) = {not prn+l,. . . ,not p,). Consider a set of atoms X. We can

intuitively read rule r as: If all atoms in body+(r) are in X, and no atoms in bodyP(r) are in

'This discussion is based largely on [4] and 1651.

CHAPTER 3. ANSWER SET PROGRAMMING 15

X, then head(r) must be included in X. If the body of a rule is empty, such as in "po t ",
the rule is called a fact, and is interpreted as LLpo t True". A rule is called a constraint if

it has no head, as in

t PI,. . . ,pm, not pm+l,. . . , not pn . (3.2)

This rule r implicitly has head(r) = False. It is actually shorthand notation for the rule

f t not f , pl, . . . , pm, not pm+l, . . . , not p,, where f is a new atom distinct fi-om each pi.

A logic program is called basic if body-(r) = 0 for all its rules. For example, the program

l l 1 = { p t ; r t p ; r t q ; s t q)

is basic. A set of atoms X is closed under a basic program ll if for any r E ll, head(r) E X

whenever body+(r) C X. The answer set of a basic program ll, denoted by Cn(II), is the

smallest set of atoms which is closed under ll. So Cn(lll) = {p,r). Note that {p,r, s) is

also closed under 111, but is not an answer set since it is not the smallest such set.

Things are a little more complicated in the general case, so we introduce the concept of

a reduct. The reduct of a program Il relative to a set of atoms X is

llX = {head(r) t body+(r) I r E ll, body-(r) n X = 0).

Hence, the reduct of a program is formed by removing all rules which contain a not pi for

some pi E X and removing body-(r) fi-om all remaining rules. This reduct is obviously

basic. A set X of atoms is an answer set (or stable model) of a program ll if Cn(llX) = X.

Using reducts gives an intuitive meaning to the answer sets of a program. We would like an

answer set X to satisfy a program II, and for all atoms in X to be justifiable. For an atom

p E X, we can remove all rules with "not p" in the body, since they cannot be satisfied. For

any "not q" in the remaining rules, we know q $! X , and hence it can be dropped fi-om the

body. Hence we can reduce II to the basic program IIX. An answer set for IIX will satisfy

n, so if Cn(IIx) = X, then we can conclude that X satisfies n, and contains only justifiable

atoms. The heads of all fact rules (or just simply facts) of a program must appear in any

answer set.

We illustrate the concept of reduct and answer set with an example (fi-om [4]). Consider

the program llz = ip t p; q t not p). There are four candidate sets for X, which we

consider here:

CHAPTER 3. ANSWER SET PROGRAMMING

There is only one set X for which X = Cn(n f) , namely X = {q), and this is our only

answer set for this program. In general, a program can have many answer sets. It is also

possible for a program to have no answer sets. Such is the case for n3 = {P t not P):

We are now able to clarify why we call rules of form (3.2) "constraints". We know that

{f t not f) has no answer sets, so if a set X contains all of the atoms in p l , . . . ,pm and

none of the atoms in not pm+l,. . . , not pn, it cannot possibly satisfy the rule

Hence constraint rules are used to eliminate sets of atoms which violate some property of

our desired solutions.

3.2 Constants, Variables, and Grounding

As mentioned earlier, an atom is an n-ary predicate containing constants and/or variables.

Variables allow programs to be written compactly and clearly. For example, we could

have a large number of fact rules defining relationships between people and their parents,

i.e. "parent(frank, tom) t ", "parent(frank, Luke) t ", etc. If we want to establish a

connection between siblings, we can do so using a single rule with variables, rather than

writing a series of rules with constants:

sibLing(X, Y) t parent(2, X) , parent(2, Y), X # Y

CHAPTER 3. ANSWER SET PROGRAMMING 17

This can be read as "X and Y are siblings if they both have the same parent, 2".

Variables make it easier to write programs, as a single rule with variables can be used to

replace a set of rules with the same form but different constants. ASP solvers first replace

variables in rules by the appropriate constants. This procedure is known as grounding. A

grounding transforms a normal logic program into a ground logic program (a program with

no variables) such that both programs have the same answer sets.

The Herbrand universe of a logic program is the set of all ground terms which can be

constructed using the constants and function symbols of that program. The Herbrand base

of a program is the set of all ground atoms which can be constructed using the predicates of

the program and terms in the Herbrand universe. The set of ground instances of the rules of

a program, which is produced by taking all terms in the Herbrand universe and substituting

them into the variables in the rules, is called the Herbrand instantiation. Consider our

parent-sibling program example:

parent(f rank, tom) t

parent(f rank, Luke) t

sibling(X, Y) t parent(Z, X),parent(Z, Y), X # Y

The Herbrand universe of this program is {frank, tom, Luke), since these are the only

constants of the program. The Herbrand base contains 18 elements: 9 elements are com-

prised of the parent predicate, usingeach of the three constants in each of the two positions of

the predicate (parent(f rank, f rank),parent(f rank, tom),parent(f rank, Luke), etc.), and

similarly 9 elements for the sibling predicate. The Herbrand instantiation of this program

is the first two rules of the program (since they are already ground), and the 33 = 27 ground

instances of the third rule (formed by choosing one of f rank, tom, and luke for each of the

variables X , Y, and 2). For example, binding Luke to X , tom to Y, and Luke to Z gives

the rule "sibLing(Luke, tom) t parent(Luke, Luke),parent(Luke, tom), luke # tom".

The answer sets of a logic program are equivalent to the answer sets of the Herbrand

instantiation of the program. Hence each answer set of a program is a subset of its Her-

brand base. It would appear that the simplest approach to computing answer sets of a logic

program would be to construct the Herbrand instantiation of the program and then find

its answer sets. This is not possible in practice, however, since the size of the Herbrand

instantiation is often exponential in the size of the original program. Thankfully, many rules

in the Herbrand instantiation have unsatisfied bodies, and hence can be discarded without

CHAPTER 3. A N S W E R S E T PROGRAMMING 18

affecting the set of answer sets. Consider our parent-sibling example once again. Any of

the grounded rules with, say, the atom parent(tom, tom) in the body, will be unsatisfiable

since there is no way to deduce parent(tom, tom). As another example, say we add three

facts which give the ages of the three people, say "age(f rank, 52) c ; age(tom, 20) t ;

age(luke, 17) t " . Then the constants 17, 20, and 52 would be added to the Herbrand uni-

verse and hence rules such as 11sibling(17, luke) t parent(20,17), parent(20, luke)" would

appear in the Herbrand instantiation. Obviously rules such as these will be unsatisfied.

To take advantage of this fact, Lparse [65], a program which is used to ground logic

programs before a solver is used on the ground instantiation, divides predicates into two

categories: domain and non-domain predicates. Domain predicates are essentially used to

define the domain of a particular instance of a problem, while non-domain predicates are

usually the interesting predicates which must be deduced or eliminated to give us solutions to

our initial problem. In our example, parent and age are domain predicates, as they specify

the possible values a variable can take (technically, sibling is also a domain predicate,

because it can easily be deduced from parent). Only applicable domain predicates are used

to ground each rule, and hence the size of the actual grounding is usually much smaller than

the Herbrand instantiation.

To precisely define the notion of a domain predicate, we first need the concept of a

dependency graph. The dependency graph of a program is a directed graph with signed

edges: The nodes are the predicates of the program; there is an edge from p to q if p is the

head and q is in the body of some rule in the program; this edge is negative if q is preceded

by a not, and positive otherwise. A domain predicate p of a program is a predicate for which

there are no cycles in the dependency graph which include p and contain a negative edge.

Domain predicates are those which are defined either without recursion or through positive

recursion, while non-domain predicates are those defined using negative recursion.

3.3 Example

Let us consider a practical example of writing a program in ASP: the graph 3-colorability

problem (from [65]). For this problem we are given a graph as input, and must determine

if it is possible to color each node of the graph, using one of three colors, so that no two

adjacent nodes have the same color. This example will illustrate the standard "generate-

and-test" approach used in writing ASP programs. In this approach, two sets of rules are

CHAPTER 3. ANSWER SET PROGRAMMING 19

constructed. The first set of rules is used to generate all possible candidate solutions, and

the second set, which usually consists of constraint rules, is used to eliminate the candidates

which violate the conditions of the problem. The remaining candidates will be answer sets

of the program and hence solutions to the problem.

To "generate" candidate solutions we write rules which define the domain. In the case of

the 3-colorability problem (we can easily extend to the n-colorability problem), the domain

is the input graph, given as a set of node and edge domain predicates, and the colors to be

used:

The first two rows of rules define the nodes and edges of the input graph. The last three

fact rules define c, the unary predicate which denotes color. The possible values for c here

are red, blue, and green. These facts vary with respect to the input. Also used as generators

are the rules which assign a color to each node:

color (X, red) t node(X), not color(X, blue), not color(X, green)

wlor(X, blue) t node(X), not color(X, red), not color(X, green)

color (X, green) t node(X), not color (X, red), not color (X, blue)

These three rules are used to ensure each node is colored. The rule "wlor(X,red) t

node(X),not color(X, blue),not color(X,green)" says that if X is a node, and it is not

colored blue and not colored green, then it is colored red. These three rules ensure that

for each node X in the candidate set, exactly one of color(X,red), color(X, blue), and

wlor(X,green) will be in the set.

We have now generated all possible colorings. What remains is to eliminate those candi-

date colorings which have colored adjacent nodes the same color. For this we define a single

constraint rule, in the "test" group of the program:

t edge(X, Y), c(C), color(X, C) , color(Y, C)

This constraint rule disallows the situation in which two nodes are connected by an edge

and colored by the same color. Any candidate solution which satisfies all of these rules is

an answer set to the program and a solution to the 3-colorability problem, for the graph

defined by the node and edge predicates.

CHAPTER 3. ANSWER SET PROGRAMMING

3.4 Cardinality constraints

ASP solvers such as smodels and Cmodels allow the use of cardinality constraints, an ex-

tension of normal logic programs, which allow for more succinct programs. They are of the

form

1 {ql, . . . ,qr) U,

where r 1 1, ql, . . . , q, are atoms, and I and u are lower and upper bounds on the cardinality

of subsets of {ql, . . . , q,) which are to be satisfied in any corresponding answer sets. By

default, I = 0 and u = oo. Cardinality constraints can appear in the head or body of a rule.

When a cardinality constraint appears in the head of a rule, it is called a choice rule. It is

possible to abbreviate cardinality constraints using domain predicates. So, for example, we

could use the expression

1 {coach(X) : parent (X, Y)) 2

to mean "choose one or two coaches from all possible parents", rather than enumerating

each parent as a possibility for coach:

1 {coach(f rank), coach(bob), . . . , coach(joe)) 2.

The first predicate must be satisfied between I and u times, and the predicate(s) after the

first colon are used to define the set of choices. When multiple predicates are used, each is

separated by a colon. For example, the expression

means "match some number, other than 6, with some letter". A satisfying model must have

exactly one pair of atoms for which the match predicate is true.

Recall our 3-colorability program from Section 3.3. In it, we used three rules to ensure

that each node was colored exactly one color. Using a cardinality constraint, we can enforce

this requirement with a single choice rule:

Here, if X is a node, then exactly one value of C must satisfy color(X, C), where the possible

values of C are defined by the domain predicate c. In general, the choice rule

can be rewritten as the following normal logic program rules:

CHAPTER 3. ANSWER SET PROGRAMMING

The "at most one" choice rule

can be rewritten as these normal logic program rules (where f is a unique atom):

3.5 Tight Logic Programs

Let ll be a finite normal logic program and a be an atom. We use Comp(ll,a) to denote

the propositional formula2

where the disjunction extends over all rules ri in ll where a is the head ("a t body(ri)").

If the body of any of these rules is empty, then a = True. If a does not appear in the

head of any rule in ll, then Comp(ll,a) is a = False or l a . The completion of ll is the

set of all formulas {Comp(ll, a)la is an atom in ll) 116, 461. We can extend the definition

of completion to programs with constraint rules by adding ibody(ri) to Comp(ll) for each

constraint rule ri (where body(ri) has been converted to a propositional formula) 1451. For

example, if program ll contains these three rules:

 he body of a rule can be considered propositional if we interpret the commas as conjunctions and
"1~)t''s as "-"s. So body(r i) = PI, pz, not p3 becomes body(r i) G pl A pz 7p3.

CHAPTER 3. ANSWER SET PROGRAMMING

p c q, r, not s

p c q, not s

c q,not r ,

then Comp(II) = {p = (q A r A i s) V (q A i s) , i q , i r , i s , i (q A T)). The completion of

a program is written in standard propositional logic, and hence negative literals can be

derived using standard rules and the completion can be computed using a SAT^ solver.

The completion concept is one way of dealing with inferring negative information in a

program 1331. It is one way of making explicit the Negation as Failure rule [8]: -A succeeds

iff A fails. This is performed by turning the "if's of the program into "if and only if's, as

described in the definition. The completion semantics, along with answer set semantics, are

two of the most widely used interpretations of the meaning of negation as failure. Clark

showed that every answer set of a logic program is also a model of the completion of the

program [8]. The converse is not true, in general. However, if a program is tight, then every

model of its completion is also an answer set.

To define the tightness property, we will first need the concept of a parent. Let X be a

set of atoms and pl,p2 E X. We call pl a parent of p2 relative to program II and set X if

there is a rule r in II such that

Consider, for instance, the program II = {p e not q; q c not p; p c p, s). The parents

of p relative to II and the set X = {p, q, s) are p and s (all three conditions are satisfied for

the third rule, for both p and s). However, p has no parents relative to II and {p, q).

A program II is tight4 on a set of atoms X if there is no infinite sequence pl,p2,. . . of

elements of X such that, for every i, pi+l is a parent of pi relative to II and X. In other

words, a (finite) program is tight on a set of atoms X if its parent relation on elements

of X contains no cycles. We say a program is tight if it is tight on the set of all atoms

3The propositional satisfiability problem (SAT) is to decide whether a given propositional formula can be
satisfied by some assignment of the boolean variables in the formula. It was the f ist known NP-complete
problem [9] and still receives much research attention.

4The concept of tightness was originally called positive-order-consistent when first defined by Fages[l8].

CHAPTER 3. ANSWER SET PROGRAMMING 23

contained in the program. For instance, in the program 111 = {p t q; q t p), p is a parent

of q and q is a parent of p (relative to {p, 9)). This cycle prevents the program from being

tight. The completion of 111 is {p = q,q = p), which has two models (p E q = True and

p = q = False), but the only answer set of 111 is {) (i.e. p and q are false).

When a program is tight, any set of atoms which satisfies the program's completion will

also be an answer set of the program (181. Hence, one way to compute the answer sets for

a tight program is to form the completion of the given program, and use a SAT solver to

compute the models of this completion. These models will correspond to the answer sets

of the original program. In fact, this is the approach used by Cmodels when computing

answer sets of tight programs.

If a program II is not tight, the completion of II can be modified with a set of loop

formulas (LF) so that the models of Comp(II) U L F correspond to the answer sets of II

(45, 421. We saw above that program 111 had a cycle, or "loop", containing p and q. In

propositional logic, one can make any assumptions about the truth values of the atoms in

the loop so long as the constraints are still satisfied. We can assign both p and q to "True"

or both to "False". In answer set semantics, one cannot assume an atom is true without

justification. If we added the rule "(p V q) > Fa1 sew to the completion, then we could no

longer assign p and q to "True", and the only remaining model would correspond with the

single answer set: both p and q are false. This added rule is known as a loop formula. In

general, if pl, . . . ,p, are in a loop, then ll(pl V . . V p,) > False" is the corresponding loop

formula. If we add a loop formula for each loop in the parent relation to the set LF, we

can construct a set of propositional formulas, Comp(II) U LF, for which the models are in

one-to-one correspondence with the answer sets.

It would appear that we can take any non-tight program, compute its completion and

loop formulas, and use these to find models which correspond to answer sets. However,

this may be impractical as there are potentially an exponential number of loops in a logic

program (451. SAT-based ASP solvers like Cmodels and ASSAT use iterative procedures to

handle non-tight programs. The basic procedure is to set the completion of the program

to set T and find a model, X , for T. If there is no such model, terminate with failure.

Otherwise, check if the model is an answer set, and halt if so. If not, selectively add one or

more loop formulas to T and start again. Determining which loop formulas to add is the

main difference between ASSAT and Cmodels. ASSAT chooses to add a single loop formula

which is not satisfied by X. Cmodels determines which set of atoms, X-, in X are not

CHAPTER 3. ANSWER SET PROGRAMMING 24

derivable from the reduct IIX. It adds loop formulas for each of the maximal (under subset

inclusion) loops in X-. Eventually, a model for T will be obtained which corresponds to an

answer set.

Since a tight program requires just one call to a SAT solver, it potentially can perform

better than a non-tight program which has the same answer sets. Converting a non-tight

program into a tight program, without changing the answer sets, is a common technique

employed when trying to improve the performance of an ASP model. We discuss the appli-

cation of this technique to our problem in Section 4.4.

3.6 Notation

For the remainder of this work, we will use the notation of the standard ASP solving tools

(Lparse, smodels, Cmodels, dlv, etc.) when discussing logic programs. The main differences

are that ":-" is used instead of "t" , and a period is used to denote the end of a rule. So

the rule

color(X, blue) t node(X), not color(X, red), not color(X, green)

will now be written in the form

color(X,blue) :- node(>(), not color(X,red), not color(X,green).

For facts, we drop the arrow altogether. So, for example, liparent(frank, tom) t "

becomes llparent(frank,tom)." . The solvers we used allow for other convenient notations which

appear in our programs, including "N < M" and "N <= M", to represent the mathematical

inequalities N < M and N 5 M, respectively, and "N != M" to represent N # M.

Chapter 4

Models

4.1 Model Overview

Due to the pervasive need to solve NP-hard problems, a number of modeling frameworks have

been developed. One of the best known and most widely used is integer linear programming

(ILP). More recently, constraint satisfaction problem (CSP) solvers and now, ASP solvers,

have been developed. There is extensive on-going research in determining the scope of their

performance.

It is often challenging to find a model, within any of these frameworks, which performs

well. Often, the most straightforward formulation can lead to excessive computation time,

and "good" reformulations could potentially have negative affects on run times [66] . The

ILP community has developed many techniques, including relaxation and mixed integer

linear programming (MILP), to improve the performance of their models. A similar effort

is underway for CSP and ASP, and some general techniques, such as adding redundant

constraints, have already been explored.

Our strategy was to first add a further restriction to the binary CCS problem (recall the

formal definition from Section 2.4); one where each character can mutate only once. This

version, known as the perfect phylogeny problem, can be solved in polynomial time provided

the number of character states is constant [I]. After formulating and some reformulating,

we arrived at the model presented next in Section 4.2. This model will help us illustrate our

general model, given in Section 4.3, since we constructed the general model by extending

the perfect phylogeny model to allow for individual characters to mutate multiple times.

CHAPTER 4. MODELS 26

We found that our initial model for the binary CCS problem did not exhibit great per-

formance. A major thrust of our work is experimenting with model variations to reduce

running times. Initially, we were guided by techniques that are commonly employed in CSP.

We also explored models which exploited tightness, a technique unique to ASP. While these

models were also unsatisfactory, they led to the development of a new technique: the con-

struction of slightly tighter models. The most interesting model variations are highlighted

in Sections 4.4 and 4.5.

4.2 Perfect Phylogeny Model

Our ASP model (program), for the perfect binary CCS phylogeny problem, takes as input

a set of domain predicate facts:

a(P, C, S).

where P is the species number ranging from 1 to n, C is the character number ranging from

1 to m, and S is the state, either 0 or 1, of that character.

Let predicate c(C) be true if C is a character:

We name each vertex, other than the root, by the character that has just changed from

0 to 1. (Recall that changes from 1 to 0 are not allowed):

This identifies each vertex, other than the root, with a character. Since the root has

only character states of 0, and no characterlvertex associated with it, we ignore it in our

model. Hence, the answer sets of our program will correspond to forests. Connecting the

root of each tree in the forest to our actual root in post-processing produces the solution to

the original problem. TO enforce this forest structure, we define relation edge on vertices so

that each vertex has at most one incoming edge:

CHAPTER 4. MODELS 2 7

It remains to ensure that each species is represented by a vertex in the tree. We do

not have an explicit mapping between species and vertices, but rather ensure that exactly

those characters with state 1 in a species appear as vertices along the path to it from the

root. For this, we introduce two new relations: above and comparable. Relation above is the

transitive closure of edge:

above(V,Vl) :- v(V), v (V l) , V != V l , edge(V,Vl).

above(V,V2) :- v(V), v(Vl) , v(V2), V != V1, V != V2, V 1 != V2, above(V,Vl), edge(Vl,V2).

Two vertices (characters) are comparable if one is above the other:

We say two characters are shared if, for some species, they both take the value 1. We

require that each pair of shared characters is comparable:

:- a(P,C,l), a(P,C1,1), C != C1, not comparable(C,Cl).

The constraint ensures that, for each species, all characters with state value 1 must

appear along a single path in the forest. However, this path should not contain characters

which take value 0 for this species. For any species, we must prevent a character with state

0 being above a character with state 1:

Since we want a forest, we add a constraint to prevent any two different characters being

above each other:

This constraint removes cycles. This completes the model. The entire code for this

model is given in Appendix A.1.

CHAPTER 4. MODELS 28

4.3 General Model

To handle the general problem, we modify our simple model for the perfect version. Pred-

icates c(C) and sp(P) indicate that C is a character and P is a species. In this model, c(C)

no longer represents vertices. Since characters can change states multiple times, there is

no longer a one-to-one correspondence between vertices and characters. We let v(V) denote

that V is a vertex. For m characters, we have m + k vertices, where k is a number of extra

vertices1 :

v(C) :- c(C).

v (m + 2) . (for 1 5 i 5 k)

We create a mapping m(V,C) from vertices to characters. Since each character must

change to state 1 at least once, the first m vertices are mapped identically to the characters.

The k extra vertices are free to be mapped to any character:

As before, we create a forest by allowing each vertex to have at most one incoming edge

and by forbidding cycles. We again use relation above to define paths amongst directed

edges, but we modify it to be reflexive (i.e., the reflexive transitive closure of edge):

This will simplify the remaining specification that each species is properly mapped to a

vertex in the tree. In the general case, it is not enough to insist that each pair of characters

which take the value 1 for a particular species are comparable, as multiple vertices can be

mapped to the same character. For each species, we need a path from a root to a particular

vertex such that the vertices in the path map exclusively to all of the characters which take

value 1 for that species. To do this, we first introduce a mapping p(P,V) from species to

vertices:

'~hrou~hout this chapter, italicized letters, such as rn, k and i , are used to denote numeric variables which
change for each problem instance. These values are instantiated with numeric constants during preprocessing,
before each call to the ASP solver.

CHAPTER 4. MODELS 29

Suppose that species s is mapped to vertex v (i.e., p(s,v) holds). If character c has state

1 for species s, we require some vertex above v to map to c (above is now reflexive, so v itself

could map to c). Similarly, if character c has state 0 for species s, we require that no vertex

above v maps to c. To model these requirements, we introduce relation g(P,C), which is true

of all characters C which have changed along the path to species P. For example, suppose

that species s maps to some vertex v. Then, if c is a character, g(s,c) holds if there is a

vertex v l , above v, which maps to c:

Figure 4.1 shows the situation in which g(s,c) is true:

Figure 4.1: Species s maps to vertex v, and vertex v l maps to character c. Vertex v l is
somewhere above v. Note that v l could equal v.

For each species P, we require that all characters which take state 1 to be exactly those

satisfying g(P,C):

:- a(P,C,l), not g(P.C).

:- a(P,C,O), g(P,C).

This completes the model. The complete code for this program is given in Appendix A.2.

To solve an instance of this problem, we consider a sequence of instances of the model.

In the first instance, we have no extra vertices (i.e., require a perfect phylogeny). In each

successive instance, we increase the number of extra vertices by one. We continue until a

solution, which must be optimal, is found.

CHAPTER 4. MODELS 30

4.4 Basic Model Variations

In an attempt to improve the performance of our method, we tried a number of variations

of the basic model from the previous section. Our variations were based on the following

four strategies: adding redundant constraints; rephrasing constraints; adding preprocessing

steps to reduce the size of the search space; and tightening the program. The first three

of these are common in the constraint satisfaction field and the last applies only to ASP.

Each variation was tested extensively, using our test data, to determine if any performance

improvements had been obtained.

4.4.1 Model A - Redundant constraints.

A common strategy to improve performance of declarative models is to add redundant

constraints. Adding redundant constraints to a logic program does not change the resulting

answer sets, but can reduce the running time of the solver to find these solutions as candidate

solutions can possibly be discarded more quickly. To add a redundant constraint to a

program, one must find a property which is implicitly true in the rules and add a constraint

rule which explicitly states it.

Notice that, in our model, it is impossible for a species to be mapped to a vertex which

maps to a character for which the species has state 0. This property is implicitly prevented

by predicates g and above and the constraint ':- a(P,C,O), g(P,C).'. While the solver would never

return a solution with such an occurrence, making this property explicit can potentially help

the solver catch and discard these bad mappings sooner.

Hence, in this variation, we add a constraint which explicitly prevents a species from

being mapped to a vertex which maps to a character that has state 0 for this species:

Note that this constraint does not change the requirements for a candidate tree to be a

solution.

4.4.2 Model B - Rephrase constraints.

At times, performance can be improved by changing the way properties are formulated in

a program. Our basic model from Section 4.3 makes use of the fact that above is reflexive.

This allows for a more concise definition of predicate g. However, we could have kept above

CHAPTER 4. MODELS 31

reflexive. This would reduce the number of atoms derived from the above predicate, but

would require a slightly more complicated definition of g. We tested whether making above

irreflexive and altering the program to account for this would improve performance.

We remove the reflexive constraint from our basic model, and replace the rule to remove

cycles with our new irreflexive constraint (this will also serve to prevent cycles):

To modify relation g(P,C) so that reflexivity is not needed, we introduce a new predicate,

ch-above(C,V):

ch-above(c,v) is true if vertex v maps to character c or there is a vertex v l above v which

maps to c. Predicate g can now be simply defined as:

4.4.3 Model C - Make program tight.

Recall from Section 3.5 that, if a logic program satisfies the syntactic condition called

"tightness", then its answer sets can be characterized as the models of its completion.

When Cmodels is run on a tight program, it need only call the SAT solver once[44]. This

could potentially improve the overall run time.

Our basic model is not tight since the above predicate, the transitive closure of edge,

causes cycles in the parent relation. This happens despite the fact that we have a constraint

which removes cycles from our forest. Edges can connect any pair of nodes, since there is no

ordering on our set of vertices. For two vertices v l and v2, above(vLv2) will be a parent for

above(v2,vl) and vice versa. In fact, any set of distinct vertices {vl , v2,. . . , vn) causes a loop,

{above(vl,v2), above(v2,v3), . . . , above(vn,vl)). To remove these loops and make our program

tight, we create an ordering on the vertices. First, we replace our identity mapping rule

with a general mapping rule so each vertex can map to any character:

Then we modify the edge selection rule so that only edges from smaller vertices to greater

vertices are allowed:

CHAPTER 4. MODELS

The conversion to a tight program comes at a cost. Previously, the only non-trivial part

of our vertex-character mapping was the extra vertices, as they were free to be mapped

to any character. By allowing each vertex to map freely to any character, we are greatly

increasing the possible number of mappings and hence greatly increasing the size of the

search space.

4.4.4 Model D - Use preprocessing to reduce search space.

By reducing the number of rules we pass to the solver, we can potentially reduce the amount

of work the solver must do to find answer sets. Our first attempt at this was, in a prepre

cessing stage, to determine characters which are in conflict by constructing a conflict graph

(as defined in Section 2.5). If two characters are in conflict, at least one of them will require

an extra vertex in any phylogeny. In this variation, we attempt to restrict the possible

characters to which the extra vertices can be mapped. We only allow each extra vertex to

be mapped to a character which is in conflict, although any number of extra vertices can

map to a particular character.

We define a predicate con(C) to mean character C is in conflict. When adding extra

vertices, we only choose among the characters in conflict:

4.5 Variations on Model A

Surprisingly, of the four variations mentioned above, only Model A showed improvements

in running time on our data sets. We take Model A as our base model for these further

improvements:

4.5.1 Model E

Our attempt to make the program completely tight resulted in significantly worse perfor-

mance. Using a similar but less extreme idea, we made a "slightly tighter" variation by

creating an ordering on the extra vertices only. In this model, there can be edges from the

first m vertices to any other vertices, but for each extra vertex numbered k > m, there can

CHAPTER 4. MODELS 33

only be edges to vertices numbered greater than k. This model is slightly tighter than our

base model since it has fewer loops. In the basic model, loops can be formed with above,

and any set of vertices. Only the m base vertices can cause loops in Model E. The cost of

this slight tightening is a slightly larger search space.

To implement this idea, we create a predicate I which defines which pairs of vertices are

allowed to have an edge between them. So I(vl ,v) is true if v l 5 m or m < v l < v:

With I so defined, we redefine our edge relation as:

4.5.2 Model A+

Another property implicit in our model is that a character cannot change to state 1 more

than once along any given path. If two comparable vertices did map to the same character,

we would need one more than the optimal number of extra vertices to account for this

redundant change. Hence, the solver will not be able to violate this property unless more

than the optimal number of extra vertices are added to the model. In an attempt to help

the solver notice these violations sooner, we make this property explicit.

In this variation, we add another redundant constraint which explicitly prevents com-

parable vertices from mapping to the same character. Since the first m characters map to

unique characters, we only need to check a pair of vertices for this condition if at least one

of the two vertices is an extra vertex. Since m, the number of characters, varies, we add

these rules in the preprocessing phase:

We again note that these constraints are redundant, and do not alter the resulting answer

sets.

CHAPTER 4. MODELS 34

4.5.3 Model MC

For each pair of conflicting characters, at least one needs an extra vertex. Hence, the extra

vertices must form a vertex cover of the conflict graph. We can modify our model to find a

phylogeny using this idea, in the following way: First, we find a vertex cover of the conflict

graph. Assume the cover contains j vertices. We then take the first j extra vertices in

our model and explicitly map them to these j characters represented by the vertex cover.

We now perform our iterative procedure as before: we attempt to construct a phylogeny

with these j extra vertices; if one does not exist, we add one more extra vertex, which is

fiee to map to any character, and use the solver to attempt to find a solution, and so on.

Eventually, the solver will find a phylogeny with the j explicit extra vertices and, say, q

more. Since a number of the extra vertices are mapped explicitly to particular characters,

this procedure tends to construct a phylogeny much quicker than the variations discussed

previously. However, though this procedure is guaranteed to find a phylogeny, the solution

will not necessarily be optimal.

To ensure we find an optimal phylogeny, we must (potentially) perform the above proce

dure multiple times. Since the extra vertices must form a vertex cover on the conflict graph,

we will need at least as many extra vertices as the size of a minimum vertex cover of the

conflict graph. Assume the minimum vertex cover is of size w. If we take a minimum vertex

cover and find a phylogeny using the above procedure which only uses the base w extra

vertices, we know we have found an optimal solution. If we use each minimum vertex cover

as a starting point, and all of the returned phylogenies have more than w extra vertices, then

we take the phylogeny with the smallest number of extra vertices amongst them, say w + i,
as our potential optimal solution. If i = 1, the solution is optimal since any non-minimal

vertex cover that we start with will have at least w + 1 extra vertices. If i > 1, then we

must try all other vertex covers with size less than w + i as starting sets, as one of these

could potentially produce a smaller solution.

Consider the conflict graph in Figure 4.2. It has two different minimum vertex covers:

{13,18) and {13,20). Taking the first cover and explicitly mapping the first two extra

vertices to characters 13 and 18, our procedure constructs a phylogeny with three extra

vertices, 13, 18, and 20. Starting with the second cover, our procedure again constructs a

phylogeny which uses the same three extra vertices. Since any other vertex cover for this

graph (such as {16,18,20)) has at least three vertices, we know our phylogenies with three

CHAPTER 4. MODELS

extra vertices are optimal.

Figure 4.2: The conflict graph for the 21 species, 21 characters subset of 'fb65' data. This
data and corresponding results will be discussed in Chapter 5.

Though we potentially have to construct many phylogenies to prove optimality with

this method, each individual phylogeny construction tends to occur much quicker since we

have reduced the number of possible mappings. If the conflict graph has a small number

of vertices or edges, as is the case with most of our real world data, this method proves

to be a very viable approach (as will be shown in the next chapter). However, in general,

the problem of finding all vertex covers of a graph is very difficult. The problem of finding

the smallest vertex cover, the vertex cover problem, alone, is NP-complete. Currently, we

manually find all relevant vertex covers in the conflict graph, so this method is impractical

for very large examples, or when automation is necessary.

As mentioned, Models B, C, and D did not improve the performance of our basic model.

The results of tests with the remaining variations are given in Section 5.4.

Chapter 5

Experimental Results

5.1 Implementation

We present experimental results based on three sets of species data. Our first set, 'fb65',

is haplotype information for guppy fish, Poecilia reticulata, containing 37 species and 468

characters with 5 states [35]. Specifically, the sequences control long-wave sensitive opsins,

which control the visual sensitivity of the fish to different wave lengths of light. Of these 468

characters, 449 are binary. To apply our binary model, we delete the nineteen non-binary

characters. This is scientifically justified by the observation that, as discussed in Section 2.1,

molecular biologists often limit their consideration to binary characters (or SNPs). The 'gen'

data set was used for taxonomic studies of the liverworts genus, Pellia epiphylla-complex

[55]. The results support the distinction of recently discovered sibling species. It contains

8 species and 150 binary characters. The final set, 'pin', is from a taxonomic study of the

Saccharomyces sensu strict0 complex of yeast species [15], consisting of 20 species and 274

binary characters. It is based on all of the protein-encoding genes revealed by the complete

genome sequence of the paradigmatic species, S. cerevisiae, and the results are used to give

a detailed explanation of evolutionary events underlying the phylogeny.

Our ASP solver, in all reported results, was Cmodels-2 with SAT solver zchafF. Initial

tests were performed using smodels and Cmodels, and Cmodels regularly performed much

better than smodels on our data. Our model, along with the input, was grounded using

Lparse [65]. This is always fast and is not included in the timing. Times shown are durations

output by Cmodels. In the case of the general program, multiple runs of Cmodels-2 must be

performed for each input: One run for each value of k , the number of extra vertices in the

CHAPTER 5. EXPERTMENTAL RESULTS

required solution, must be carried out until a solution is found. The time given is the sum

of durations for each run in the sequence of models. All runs were on a Sun Fire V20z, with

Opteron 250 (2.4 GHz) CPU, and 4GB DDRl RAM, running 64-bit Suse Linux Enterprise

Server 9.

The general procedure for constructing phylogenies for a set of species is handled using

a Per1 script, 'findnpp.pl'. The program takes as input the species-character-state data of

the given instance, as well as the solver to use, the model variation to use, and the number

of solutions to return. It reads the input and determines the value of m. It then begins

by adding no extra vertices to the model and uses Lparse and Cmodels to determine if

a phylogeny exists. It stores the time taken to return (with or without an answer). If a

phylogeny exists, it is output, along with the total number of vertices needed to construct

the phylogeny and the total time taken. If no phylogeny exists for the input data with the

specified number of vertices, an extra vertex is added to the model and the solver is run

again. This script also handles the specific alterations to the model which are required by

each variation. The complete code for 'findnpp.pl' is given in Appendix B.1.

5.2 General Preprocessing

We can reduce the number of characters we have to deal with for a particular problem

instance if we use the technique of trimming identical characters. Identical characters form

non-branching paths in phylogenies. If a set of characters is identical (i.e. each character

takes the same state for each species), they will appear along a path with no branching

points in any valid phylogeny. The order of the character changes does not matter, and any

permutation of characters along the path will produce an equally valid phylogeny. Consider

a small phylogeny example with three species and four characters, represented by the strings

"1000", "0111" , and "llll", as shown in Figure 5.1. Notice that characters 2, 3, and 4 are

identical (they each have value 0 for species 1 and value 1 for species 2 and 3), and form a

non-branching path in the phylogeny. This will be true of any phylogeny constructed with

these identical characters. Hence, all but one copy of the identical character can be removed

in preprocessing. Removed characters can easily be added back to resulting trees in post

processing to form these non-branching paths.

By applying this procedure to our input data, we significantly reduce the size of the

problem to be handled by the ASP solver, without changing the core of the problem. In

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.1: A phylogeny for the species "1000", " O l l l " , and "1111". Characters 2, 3, and
4 are identical.

doing so, the 'fb65' data set is left with 65 characters, 'gen' is left with 26 characters, and

'pin' is left with 75.

5.3 Perfect Phylogeny Model Results

To test the performance of our model, we derived subsets of 'fb65' which must have perfect

phylogenies. We compared each pair of characters to find conflicting character pairs. For

'fbppl', the first character in each codicting pair was removed before continuing, and in

'fbpp2' the second character from each conflicting pair was removed. Both data sets are left

with 38 characters. In 'fbppr', a random character from each pair was removed. This data

set has 39 characters. For each, we solved subsets with 12, 18, 24, 30, 36, and 37 species

(see Table 5.1). These results verified the correctness of the model and we found solutions

to our full test data sets quickly, as hoped.

Table 5.1: Time in seconds to construct phylogenies using the perfect phylogeny model.
The row labeled "Sp" is the number of species in the data set. The next three rows give the
running times for the solver on the three data sets.

Sp
fbppl
fbpp2
fbppr

12 18 24 30 36 37
0.01 0.03 0.09 0.15 0.25 0.27
0.01 0.03 0.06 0.13 0.26 0.30
0.01 0.04 0.07 0.14 0.28 0.29

CHAPTER 5. EXPERIMENTAL RESULTS 39

5.4 General Model Results

To test the performance of our CCS model, and its variations, we again used the 'fb65' data.

The 37-species 65-character data set is too large for any solver we tested, so we considered a

number of subsets by varying both the number of characters and the number of species (in

multiples of 3). Our notation for these subsets is of the form '15s,39c', for example, which

represents the data set comprised of the first 39 characters from each of the first 15 species

in our data.

To obtain the minimum number of extra vertices needed to produce a solution, we

proceed incrementally, adding a vertex whenever the solver returns false. We do not use

binary search since the most time consuming computation, in every tested instance, occurs

when the number of extra vertices is one less than optimal (see, for example, Table 5.2). To

prove a solution is optimal, we must show that no trees can be constructed with one less

than the optimal number of vertices, so this time consuming step must always be performed.

As was also observed during testing, adding more than the optimal number of extra vertices

causes an increase in the running time of the solver, compared to the running time when

the optimal number is used. The search space of the problem grows as the number of

extra vertices increases, since each extra vertex can be mapped freely to any character.

Hence the solver is usually very fast when the number of extra vertices is very small. As

a particular example, our algorithm requires just 28 seconds to reach three extra vertices

when proceeding linearly for the '24s,24c' data set, which has optimal solutions at four extra

vertices. Solving even one instance with more than four vertices would be less efficient.

Table 5.2: Running times (in seconds) as the number of extra vertices (#EV) is increased,
for the basic model on the '24s,24c' and '27s,24c' data sets. The optimal solution in both
cases has 4 extra vertices.

Table 5.3 summarizes the results of our attempts to construct phylogenies on subsets

of the 'fb65' data. To determine the frontier of the size of the problems we could solve in

reasonable amounts of time, we took each value of n (the number of species) and, starting

from 3 characters, ran the solver with our basic model on data sets with incrementally more

CHAPTER 5. EXPERIMENTAL RESULTS 40

characters until we did not obtain a solution within a two hour cutoff period. The table

lists the largest data sets for which we could find solutions, together with run times for our

various models. These represent a frontier for the size of problems we are able to solve. We

then used each of our variant models to construct phylogenies for these frontier data sets.

Data
3s,63c
6s,51c
9s,39c
12s,39c
15s,39c
18s,39c
21s,21c
24s,24c
27s,24c
30s,18c
33s,18c
36s,18c

Basic A D E A+ MC
0 0 0 0 0 0

3159 2503 3708 1701 2398 2503
3191 4099 4856 4850 1996 1500
670 579 881 496 863 131
1107 755 1088 797 4093 73
1077 947 1284 1050 3787 191
23 5 33 5 4 10

16803 10784 14620 8634 1916 440
1990 1180 1581 913 239 6

4 3 4 3 3 2
5 4 5 4 3 2
6 5 6 5 4 4

Table 5.3: Model comparsion on 'fb65' data. Column 'Data' shows the largest data sets for
which we could find solutions. Column '#EV' shows the optimal number of extra vertices
needed. The remaining columns give the running times, in seconds, for each model on each
data set.

Since Model A+ generally has the best performance (Model MC performs best, but

we exclude it as it requires manual steps), we used it to compare the performance of our

ASP-based approach along our frontier to that of PENNY, the program which computes

Camin-Sokal phylogenies from the commonly used PHYLIP package. Table 5.4 gives run

times for the two methods on three separate data sets. For each data set, we construct

several subsets, as before. The tables list the largest data sets for which a solution was

found with our method (Data), the optimal number of extra vertices (#EV), the total

length of time, rounded to the nearest second, to find a solution with Model A+, and

the time it takes PENNY to halt with optimal solutions, in seconds (PENNY). Times for

PENNY are wall-clock times, as this package does not provide a timing function. An 'X' in

the table denotes that PENNY did not halt within the two hour cutoff period.

The best performance we have obtained is with our Model MC which, in pre-processing,

modifies the ASP program to reduce the search space, based on properties of the data. This

CHAPTER 5. EXPERIMENTAL RESULTS

Data
3s,63c
6s,51c
9s,39c
12s,39c
15s,39c
18s,39c
21s,21c
24s, 24c
27s,24c
30s,18c
33s,18c
36s,18c

Data
3s,21c
4s,21c
5s,15c
6s,12c
7s,9c
8s,9c

Ex. V
0
0
1
1
3
3

PENNY

PENNY
0
0
0

46
1350

X
X

Table 5.4: Comparison of performance of Model A+ and PENNY on three data sets. Run-
ning times are given in seconds. An 'X' in the table represents failure to return a solution
within the two hour cutoff period: (a) fb65 - 37 species, 65 characters; (b) gen - 8 species,
26 characters (c) pin - 20 species, 75 characters.

CHAPTER 5. EXPERIMENTAL RESULTS 42

approach drastically reduced running times, enabling us to solve larger problems within

reasonable amounts of time. Figure 5.2 shows the frontier of largest subsets of our 'fb65'

data solvable within two hours, for PENNY and Models A+ and MC.

Model A+ 0 -
Model M C x - - - - -

PENNY - - - -

w
10 20 30 40 50 60 characters

Figure 5.2: Frontier for PENNY and Models A+, MC.

5.5 Discussion

We presented ASP models for the binary CCS phylogeny problem, and for the restriction to

the perfect phylogeny case. We examined the performance of a method using these models

on experimentally obtained biological data, using the Cmodels-2 ASP solver.

As we would hope, solutions for the polytime perfect phylogeny case were found very

quickly. The general problem is much harder, and we know of no method, including ours,

that can determine optimal phylogenies for the full data sets we use. We tried several

ideas for improving the performance of our model. The best of our model variants can

determine optimal phylogenies for larger fragments of the data (measured by number of

species included) than can PENNY, one of most widely used branch-and-bound programs

for this problem.

For data with n species, PENNY essentially enumerates all phylogenetic trees on n

nodes, keeping track of the most parsimonious ones found so far (measured by total number

of character changes on the tree). PENNY relies on good heuristics which direct the search

toward the most promising trees. This approach has three main effects: it is very effective at

finding good trees quickly, at least on small data sets; its performance is largely unaffected

CHAPTER 5. EXPERIMENTAL RESULTS 43

by the number of characters in the data; and it can establish optimality only for data sets

with few species, since a large number of species implies too many trees to search.

Our ASP models fix a limit on the number of mutations in the tree to be found. Our

method solves a series of models, beginning with the one which requires a perfect phylogeny,

and then adding extra vertices until a phylogeny is found, which must be optimal. In contrast

with PENNY: Our general method relies on no domain-specific heuristics, and searches for

a "perfect" tree, rather than enumerating trees; Our model involves mappings between both

vertices and species, and vertices and characters, so performance is significantly affected by

number of characters as well as number of species; The first phylogeny we find is optimal,

and since we do not have to enumerate all trees, we can prove optimality for cases involving

larger numbers of species.

Based on our experimental results and our understanding of the performance of the two

methods, we conclude that declarative methods, and ASP in particular, are promising for

solving hard phylogeny problems, especially when optimality is relevant. We understand

that advances have been made in BNB algorithms since PENNY was developed, and that

commercial software such as PAUP* 4.0 make use of these more advanced approaches.

However, we also feel that time will permit advances in the declarative approach, both

through the development of better models (perhaps with non-declarative components) and

the development of faster ASP solvers.

Among our model variations, a few deserve attention. Model C was obtained by looking

for a straightforward way to make the ASP program tight. Models for a tight program coin-

cide with models for its completion, so some solvers could perform better on an equivalent

(in terms of the corresponding answer sets) tight program. Our change involved ordering

the vertices. However, off-setting any benefit of tightness is the fact that the solver must

attempt to find the proper mapping from vertices to characters. This significantly enlarges

the search space. The resulting performance was very poor. However, Model E, a model

which involved ordering the extra vertices only, exhibited good performance in general, and

the best performance for some particular data sets. We have simultaneously increased the

search space slightly and made the program slightly tighter. In doing so, we have exhibited

better performance than a purely tight model or a model with a smaller search space.

The second best model in general, A+, was the result of adding two sets of redundant

constraints to the model. This is a standard technique in constraint satisfaction (CSP)

practice, for example, but less often used in ASP.

CHAPTER 5. EXPERIMENTAL RESULTS 44

The best performance we obtained was with Model MC. This model was based on

pre-processing the data to obtain information which was used to revise the model, on an

instance-by-instance basis, to reduce the search space. The fact that the performance of this

version was significantly better than the others highlights a general problem for declarative

approaches. Namely, can we always solve problems with a purely declarative approach,

or will we always need to consider such non-declarative components when tackling hard

problems? Put another way, can we find a way to capture ideas such as the one used in

version MC declaratively, or not; if so, how, and if not, under what conditions should we

look beyond declarative methods?

Chapter 6

Related Work and Conclusions

6.1 Related Work

Recent biological uses of binary cladistic Camin-Sokal (CCS) include finding phylogenetic

trees of Saccharomyces sensu strict0 complex of yeast 1151. The model was also applied to

DNA fragment data for individuals from Pellia genus, where state 1 represents the presence

of the particular DNA fragment and state 0 represents its absence 1551. In both cases, the

CCS method which was used was a simple, general parsimony method for binary character

data. The CCS model is also commonly used when the irreversibility constraint is essential.

Nozaki et al. utilized the irreversibility in the CCS model because they observed that

regaining of plastid genes is generally impossible during evolution 1541.

As mentioned in Section 2.6, branch-and-bound (BNB) is the most common method

used in the "maximum parsimony" approach. In recent years, advances have been made

to the basic BNB procedure, such as developing tighter lower bounds and better branching

heuristics, e.g. 156, 67, 511. These advances have helped improve the speed of BNB alge

rithms for finding the most parsimonious evolutionary trees. We are not aware of any recent

developments in BNB techniques which are tailored directly to the CCS version.

ASP has been used for phylogenetic problems before, although not for the maximum

parsimony problem. In 161, they construct "maximum compatibility" phylogenies (see Sec-

tion 2.2) with answer set programs. ASP solvers have also been used to construct "perfect

phylogenetic networks", from phylogenetic trees, to explain the evolution of Indo-European

languages [17]. These networks extend given phylogenetic trees with extra edges to account

CHAPTER 6. RELATED WORK AND CONCLUSIONS 46

for characteristics which are shared or borrowed rather than inherited from ancestors. An-

other approach to phylogeny construction which has appeared recently is the Maximum

Quartet Consistency (MQC) problem. In this version of the problem, local phylogenies are

built for every subset of four species. The goal is then to build a complete phylogeny which

satisfies a maximum number of these predicted quartets. In [24], an equivalent representa-

tion of the MQC problem is given and is formulated in ASP. Computational experiments

are conducted to confirm the efficiency of this approach.

As answer set programming is still a very young paradigm in computer science, and one

filled with much promise, we can expect to see more robust, advanced, and faster solvers

in the years to come. Cmodels has recently been upgraded to version 3.0, and new solvers

appear regularly, including ASSAT [45], another solver which uses underlying SAT solvers,

and aspps [13], a solver based on propositional schemata. Since some ASP solvers are SAT-

based, new advances in SAT solving methods would potentially give improved performance

to ASP solvers for free. Since 2002, yearly competitions have been held to promote the de-

velopment of new state-of-the-art SAT solvers [62, 411. From these competitions, promising

new SAT solvers have been developed, including siege [58] and ZchafnOO4 [48].

6.2 Conclusions

The main motivation of this work is to find optimal solutions for the maximum parsimony

problem under commonly used metrics. In this thesis, we have presented an ASP-based

approach to phylogeny inference using the binary cladistic Camin-Sokal metric. This is a

logical first step towards phylogeny construction using the less restrictive Wagner metric. By

using the expressive ASP language, we were able to present concise declarative models which

clearly specify the requirements and constraints on desired solutions. The variations pre-

sented are motivated either by common procedures used to improve the performance of logic

programs or through new ideas. Experimental results provide an interesting comparison of

the benefits of each method considered. By testing our best models against the benchmark

PENNY, a branch-and-bound technique from the commonly used PHYLIP package, we give

evidence that our ASP-based approach can be a viable option in the phylogeny construction

field. We feel that newer, faster ASP solvers and grounders will emerge, due to the high

interest level in this new research area, and this will only help to improve our methods and

strengthen our argument.

CHAPTER 6. RELATED WORK AND CONCLUSIONS 47

This thesis provides the basis for several logical next steps. Extensions to this work

include exploring more ways to improve the performance of our binary CCS models. These

include further at tempts at rephrasing the constraints and adding redundant constraints,

as well as incorporating more recent, faster SAT solvers into Cmodels. Hybrid techniques

which combine the standard BNB and declarative approaches could also be explored. The

generation of minimal vertex covers for Model MC could be automated, perhaps by using

another ASP program. Our CCS model could be extended to the non-binary case. We

have made some initial explorations in this direction, but the straightforward model we

constructed yields unsatisfactory performance and considerable work remains.

As outlined in Chapter 2, the CCS problem is a specific instance of the more general

maximum parsimony problem, and modeling solutions for it has given us just a taste of the

larger task at hand. Continuing to remove restrictions, such as the irreversibility property,

until we reach the more general Wagner version of the problem, would make this technique

applicable to a wider range of applications.

In the future, we also wish to explore other possible declarative approaches to the max-

imum parsimony problem. Aside from ASP, another similar declarative language, called

Inductive Definition Logic (ID-Logic) [12], has recently generated a lot of research interest.

ID-Logic extends first-order logic with inductive definitions, and early solvers have already

been developed. As ID-Logic becomes a more viable technique, it would be an interesting

project to attempt these same phylogeny problems with it and compare its results with

those of ASP and the common procedural approaches.

Appendix A

Answer Set Programs

A. l Program for perfect binary CCS problem

%
% Include species da t a from a separate f i l e

% Input must only include binary s t a t e s , 0 and 1.

% c represents the s e t of a l l non- t r iv ia l characters . This s e t

% i s a l so t he s e t of ve r t i c e s , one f o r each character

% For every vertex (char) V , t he re can be a t most 1 incoming

% edge and it should be from a vertex d i f f e r en t than V .

APPENDIX A. ANSWER SET PROGRAMS

% The edge-above relationship: C is above C1 if there is an

% edge from C to C1

% Transitivity of above

%
above(C,C2) :- c(C), c(C1), c(C2), C != C1, C != C2,

C1 != C2, above(C,CI), edge(Cl9C2).

% For each species, each pair of characters with value 1 must

% be comparable to each other.

%
comparable(C,CI) :- c(C), c(CI), C != C1, above(C,CI).

comparable(C,Cl) :- c(C), c(C1), C != CIS above(C1,C).

:- a(P,C,1), a(P,C1,1), C != C1, not comparable(C,Cl).

% For a particular species, we can't have a character with

% value 0 above a character with value 1

% To remove cycles

%
:- c(C), c(C1), above(C,Cl), above(C1 ,C) .

#hide.

#show edge (V1 ,V2) .

APPENDIX A. ANSWER SET PROGRAMS

A.2 Program for general binary CCS problem

% phylogeny-np . lp
%
% Include species data from a separate file

% Input must only include binary states, 0 and 1.

% Lines for extra vertices go here (using findnpp.pl).

% mapping from vertices to characters

m(C,C) :- c(C).

% mapping from species to vertices

1 (p(P,V) : v(V)) I :- sp(P).

% c represents the set of all non-trivial characters. m is the

% mapping from vertex number to character number. v is the

% set of vertices.

% For every vertex V, there can be at most 1 incoming edge

% and it should be from a vertex different than V.

APPENDIX A. ANSWER SET PROGRAMS

% The edge-above re la t ionship: Vertex V i s above V1 i f the re i s

% an edge from V t o V1.

% Make above re f lex ive

%
above(V,V) :- v(V).

% Checking t he species mapping

% For each species , each character with value 1 must have a

% ver tex which i s above t he speciesJ ver tex which maps t o

% t h a t character .

%

g(p,c> :- sp(P) , c(C), v(V1), ~ (v) , p(p ,v) ,

m(V1 ,C) , above(V1 ,V) .

:- a(P,C,1), not g(P,C).

APPENDIX A. ANSWER SET PROGRAMS

%---------------

% Remove cycles

%
:- v(V), v(Vl), V != Vl, above(V,Vl), above(V1,V)

Appendix B

Helper scripts for Binary CCS

Model

This script is written in the Per1 programming language.

findnpp.pl

written by: Jonathan Kavanagh

To be used, in conjunction with phylogeny-np.lp or one of its

variants, for finding optimal phylogenies for CCS problem.

Input is given with 3 arguments : data-f ile , the instance to
be solved; solver, which solver to use; var, which variation

of the model to use; number, the number of solutions to

return (0 for all solutions).

Command line: findnpp.pl data-file solver var number

APPENDIX B. HELPER SCRIPTS FOR BINARY CCS MODEL

i f ($#ARGV < 3)

x
print ("Proper usage : f indnpp . p l data-f i l e solver" .

War number\nl') ;

e x i t (0) ;

1
e l s e

x
$input = $ARGV [O] ;

$solver = $ARGV [I] ;

$var = $ARGV [2] ;

$num = $ARGV C31;

1

i f ($solver =" m/'cmodels$/) # Adjust solver for cmodels

x
$solver = ~8cmodels-2/cmodels -zc" ;

1
i f ($nun == 0)

x
$solver = "$solver 0";

1

print "Using model: $model\n8I;

while (<INFILE>)

APPENDIX 33. HELPER SCRIPTS FOR BINARY CCS MODEL

1 # Parse input to get num of chars

chomp ;

if (/a\ (([a-zO-9]+) , ? ([a-zO-9]+) , ? ([a-zO-9]+) \) \ . /)
{

if (!$initfound) # We assign first species to $spl

{

$initfound = 1;

$spl = $1;

1

if ($1 == $spl)

{

if ($2 > $m) # Obtaining $m, the nun of chars

{

$m = $2;

1

1
1

1
close (INFILE) ;

$solf ound = 0;

$totaldur = 0.0;

$k = $m;

while (!$solfound)

{ # Increment $k until solution is found

open(PHYLF1LE , "<$model") ;
open(TEMPFILE, ">temp. lp") ;

APPENDIX B. HELPER SCRIPTS FOR BINARY CCS MODEL

chomp ;

p r i n t TEMPFILE $- , "\n" ;

i f (/Lines f o r ex t r a ve r t i c e s go here/)

C # Add $k - $m ex t r a ve r t i c e s

f o r ($ i = $m + I ; $ i <= $k; $i++)

C
p r i n t TEMPFILE v ($ i) . \nI1 ;

>

i f ($var =- m/-c$/)

C
For t h i s va r ia t ion , each vertex ge t s mapped

t o any character and t h i s l i n e i s found i n

the phylogeny-np-c.lp f i l e

>
e l s i f ($k > $m)

C
p r i n t TEMPFILE " 1 C m(V,C) : c (C) 1 I " .

I t : - v(V), V > $m.\nM;

>
>

i f (/Lines f o r var ia t ion e go here/)

C
p r i n t TEMPFILE 1 (Vl ,V) : - v(V1) , v(V) , " .

" V l <= $m. \nl' ;

p r in t TEMPFILE I t l(V1,V) :- v(Vl), v(V) , " .
"Vl > $m, V l < V.\nu;

p r i n t TEMPFILE " C edge(V1,V): v(V1): V l != V >"
. I t I :- v(V), V <= $m.\nt';

p r i n t TEMPFILE" C edge(V1,V): v(V1): l(V1,V) >"

APPENDIX B. HELPER SCRIPTS FOR BINARY CCS MODEL

i f (/Lines f o r v a r i a t i o n a+ go here/ && $k > $m)

1
p r i n t TEMPFILE " :- v(V), v(Vl), V > $m, " .

"VI <= $m, c(C), " ;

p r i n t TEMPFILE "m(V,C), m(VI,C), above(V,Vl) . \nn ;

p r i n t TEMPFILE " :- v(V), v(VI), V <= $m, " .
l l V l > $m, c(C), ";

p r i n t TEMPFILE I1m(V,C), m(VI,C), above(V,Vi) . \n";

p r i n t TEMPFILE " :- v(V), v(Vl), V > $m, .
"Vl > $m, V != V l , c(C), ";

p r i n t TEMPFILE I1m(V,C), m(V1 ,C) , above(V,Vl) .\n1I;

1

close (PHYLFILE) ;

close (TEMPFILE) ;

p r i n t "For k = $k: \ntl ;

$ r e s = ' l pa r se t e m p . 1 ~ $input I $ s o l v e r t ;

i f ($res =- m/Answer/)

1
p r i n t $ res ;

p r i n t "Total Duration: $ to ta ldur \nW;

APPENDIX B. HELPER SCRIPTS FOR BINARY CCS MODEL

$solfound = 1;

1
e l s e

print "False. \n" ;

print "Duration: $dur\nU ;

$k++ ;

1
1

print "The end. \n" ;

Bibliography

[I] R. Agarwala and D. Fernandez-Baca. A polynomial-time algorithm for the perfect
phylogeny problem when the number of character states is fixed. SIAM Journal on
Computing, pages 1216-1224, 1994.

[2] S. Agrawal and F. Khan. Reconstructing recent human phylogenies with forensic STR
loci: A statistical approach. BMC Genetics, 6(47), 2005.

[3] J. Aldrich. R.A.Fisher and the making of maximum likelihood 1912-1922. Statistical
Science, 12(3):162-176, 1997.

[4] C. Anger, K. Konczak, T. Linke, and T. Schaub. A glimpse of answer set programming.
Kunstliche Intelligenz, 19(1):12-17.

[5] H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phylogeny.
In Proceedings of the 19th International Colloquium on Automata, Languages, and
Programming, pages 273-283. Springer Verlag, 1992.

[6] D.R. Brooks, E. Erdem, J.W. Minett, and D. Rings. Character-based cladistics and
answer set programming. PADL, pages 37-51, 2005.

[7] J.H. Camin and R.R. Sokal. A method for deducing branching sequences in phylogeny.
Evolution, 19(3):311-326, 1965.

[a] K. Clark. Negation as Failure. Plenum Press, 1978.

[9] S.A. Cook. The complexity of theorm-proving procedures. In Proceedings of the third
annual ACM Symposium on Theory of computing, pages 151-158, 1971.

[lo] W .H.E. Day, D.S. Johnson, and D. Sankoff. The computational complexity of inferring
rooted phylogenies by parsimony. Mathematical Biosciences, 81:33-42, 1986.

[ll] W.H.E. Day and D. Sankoff. Computational complexity of inferring phylogenies by
compatibility. Systematic Zoology, 35(2):224-229, 1986.

[12] M. Denecker. Extending classical logic with inductive definitions. In Proceedings of the
1st International Conference on Computational Logic, pages 703-717. Springer, 2000.

BIBLIOGRAPHY 60

[13] D. East and Truszczyriski. Asp solver aspps, 2001. http://www.cs.uky.edu/aspps/.

[14] R.V. Eck and M.O. Dayhoff. Atlas of protein sequence and structure. National Biomed-
ical Research Foundation, 1966.

[15] L.C. Edwards-Ingram, M.E. Gent, D.C Hoyle, A. Hayes, L.I. Stateva, and S.G. Oliver.
Comparative genomic hybridization provides new insights into the molecular taxonomy
of the saccharomyces sensu strict0 complex. Genome Research, 14:1043-1051, 2004.

[16] E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic Pro-
gramming, 3:499-518, 2003.

[17] E. Erdem, V. Lifschitz, L. Nakhleh, and D. Ringe. Reconstructing the evolutionary
history of indo-european languages using answer set programming. Proc., Practical
Aspects of Declarative Languages: 5th Int'l Symposium, pages 160-176, January 2003.

[18] F. Fages. Consistency of clark's completion and existence of stable models. Journal of
Methods of Logic in Computer Science, 1:51-60, 1994.

[19] J. Felsenstein. Phylip home page, 1980. http://evolution.genetics.washington.edu/
phylip.

[20] J . Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood ap-
proach. Journal of Molecular Evolution, l7(6) :368-376, 1981.

[21] J. Felsenstein. Penny - branch and bound to find all most parsimonious trees, 1986.
http://evolution.genetics.washington.edu/phylip/doc/penny.html.

[22] P. Forster and A. Toth. Toward a phylogenetic chronology of ancient gaulish, celtic, and
indo-european. Proceedings of the National Academy of Sciences, 100(15):9079-9084,
2003.

[23] L.R. Foulds and R.L. Graham. The steiner tree problem in phylogeny is NP-complete.
Advanced Applied Mathematics, 3:43-49, 1982.

[24] W. Gang, L. Guohui, and Y. Jia-Huai. Quartet based phylogeny reconstruction with
answer set programming. In Proceedings of the 16th IEEE International Conference on
Tools with Artificial Intelligence, pages 612-619, 2004.

[25] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete problems.
In Proceedings of the skth annual ACM symposium on Theory of computing, pages 47-
63, 1974.

[26] B.S. Gaut and P.O. Lewis. Success of maximum likelihood phylogeny inference in the
four-taxon case. Molecular Biology and Evolution, 12:152-162, 1995.

[27] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. Proc.,
Int'l Logic Programming Conference and Symposium, pages 1070-1080, 1988.

BIBLIOGRAPHY 61

[28] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proceedings
of the 7th International Conference on Logic Programming, pages 579-597. The MIT
Press, 1990.

[29] Genome Management Information System (GMIS) . SNP fact sheet, 2006.
http://www.ornl.gov/sci/techresources/Human_Genome/faq/snps.shtml.

[30] D. Gusfield. Efficient algorithms for inferring evolutionary history. Networks, 21:19-28,
1991.

[31] D. Gusfield. Algorithms on Strings, iPrees, and Sequencesr; Computer Science and
Computational Biology. Cambridge University Press, 1997.

[32] D. Gusfield. Haplotyping as perfect phylogeny: conceptual framework and efficient
solutions. In RECOMB '02: Proceedings of the 6th annual international conference on
Computational biology, pages 166-175, 2002.

[33] J . Harland. A clausal form for the completion of logic programs. In Proceedings of the
International Conference on Logic Programming, number 8, pages 711-725, 1991.

[34] M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning trees.
Operations Research, 18(6):1138-1162, 1970.

[35] M. Hellrnan, N. Tripathi, S.R. Henz, A. Lindholm, D. Weigel, F. Breden, and C. Dreyer.
Unpublished data. 2006.

[36] L. Helmuth. Genome research: Map of the human genome 3.0. Science, 293(5530):583-
585, 2001.

[37] M.D. Hendy and D. Penny. Branch and bound algorithms to determine minimal evo-
lutionary trees. Mathematical Biosciences, 59(2):277-290, 1982.

[38] W. Hennig. Grundzuege einer Theorie der Phylogenetischen Systematik. Deutscher
Zentralverlag, 1950.

[39] J.P. Huelsenbeck and K.A. Crandall. Phylogeny estimation and hypothesis testing
using maximum likelihood. Annual Review of Ecology and Systematics, 28:437-466,
1997.

[40] A.H. Land and A.G. Doig. An automatic method for solving discrete programming
problems. Econometrica, 28:497-520, 1960.

[41] D. Le Berre and L. Simon. Fifty-five solvers in Vancouver: The SAT 2004 competition.
Lecture Notes in Computer Science, 3542:321-344, 2005.

[42] J . Lee and V. Lifschitz. Loop Formulas for Disjunctive Logic Programs, volume 2916,
pages 451-465. 2003.

BIBLIOGRAPHY 62

[43] N. Leone, W. Pfeifer, W. Faber, F. Calimeri, T. Dell'Armi, T. Eiter, G. Gottlob,
G. Ianni, G. Ielpa, C. Koch, S. Perri, and A. Polleres. The dlv system. In Proceedings
of the 8th European Conference on Artificial Intelligence, pages 537-540. Springer,
2002.

[44] Y. Lierler and M. Maratea. Cmodels-2: SAT-based answer set solver enhanced to non-
tight programs. In Logic Programming and Nonmonotonic Reasoning, 7th International
Conference, volume 2923 of LNCS, pages 346-350, 2004.

[45] F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115-137, 2004.

[46] J. Lloyd and R. Topor. Making Prolog more expressive. Journal of Logic Programming,
3:225-240, 1984.

[47] D.R. Maddison and W.P. Maddison. Macclade 4.08, 2005.
http://macclade.org/macclade. html.

[48] Y.S. Mahajan, F. Zhaohui, and S. Malik. Zchafl2004: An efficient sat solver. In
Proceedings of the Seventh International Conference on Theory and Applications of
Satisfiability Testing (SAT2004), pages 36Ck375, 2004.

[49] V.W. Marek and M. Truszczynski. Stable logic programming - an alternative logic
programming paradigm. Springer-Verlag, 1999.

[50] F.R. McMorris, T. Warnow, and T. Wimer. Triangulating vertex colored graphs. In
Proceedings of the 4th Annual Symposium on Discrete Algorithms, 1993.

[51] B.M.E. Moret, J. Tang, L.S. Wang, and T. Warnow. Steps toward accurate recon-
struction of phylogenies from gene-order data. Journal of Compututational Systems
Sciemces, 65(3) :508-525, 2002.

[52] I. Niemela. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25:241-273, 1999.

[53] I. Niemela, P. Simons, and T. Syrjanen. Smodels: A system for answer set program-
ming. In Proceedings of the 8th International Workshop on Non-Monotonic Reasoning,
2000.

[54] H. Nozaki, N. Ohta, M. Matsuzaki, 0. Misumi, and T. Kuroiwa. Phylogeny of plastids
based on cladistic analysis of gene loss inferred from complete plastid genome sequences.
J. Molecular Evolution, 57:377-382, 2003.

[55] A. Pacak, P. Fiedorow, J. Dabert, and Z. Szweykowska-Kuliliska. RAPD technique
for taxonomic studies of pellia epiphylla-complex (hepaticae, metzgeriales). Genetica,
104:179-187, 1998.

BIBLIOGRAPHY 63

[56] W. Purdom, Jr., P.G. Bradford, K. Tamura, and S. Kurnar. Single column discrep-
ancy and dynamic max-mini optimization for quickly finding the most parsimonious
evolutionary trees. Bioinformatics, 2(16):140-151, 2000.

[57] D. Roderic, M. Page, and E.C. Holmes. Molecular Evolution: A Phylogenetic Approach.
Blackwell Science, Oxford, UK, 1998.

[58] L. Ryan. Siege satisfiability solver, 2004. http://www.cs.sfu.ca/ loryan/personal/.

[59] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4(4):406-425, 1987.

[60] W. Shih. A branch and bound method for the multiconstraint zero-one knapsack
problem. The Journal of the Operational Research Society, 30:369-378, 1979.

[61] J. Silvertown, M. Franco, and J.L. Harper. Plant Life Histories: Ecology, Phylogeny
and Evolution. Cambridge University Press, 1997.

[62] L. Simon, D. Le Berre, and E.A. Hirsch. The SAT2002 competition report. Annals of
Mathematics and Artificial Intelligence, 43(1-4):307-342, 2005.

[63] P. H. A. Sneath and R.R. Sokal. Numerical taxonomy The principles and practice of
numerical classification. W.H. Freeman, 1973.

[64] D.L. Swofford. Paup* 4.0, 2001. Phylogenetic Analysis Using Parsimony (*and Other
Methods).

[65] T. Syrjhen. Lparse user's manual, 1998. http://www.tcs.hut.fi/Software/smodels/.

[66] M. Trick. Formulations and reformulations in integer programming. Lecture Notes in
Computer Science, 3524:366-379, 2005.

[67] M. Yan and D.A. Bader. Fast character optimization in parsimony phylogeny recon-
struction. Technical report, 2003.

