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ABSTRACT

The problem of exhibiting graphs whose group is some given
permutation group is examined, and the known answers for certain
classes of groups are detailed. In the case of cyclic groups,
the (negative) answer has been demonstrated by using a class of graphs
here called circulants. This same class has also been shown to
contain all graphs with transitive groups of prime degree. Here, by
introducing a new class of graphs called 2~circulants, a partial
characterization is made of graphs whose groups are
transitive permutation groups of degree 2p for any prime p. Cayley
graphs are also investigated and some aspects of this type of con-
struction are related to the problem at hand. Included in this work
is a corrected version of the published result limiting the exist~-
ence of graphs with transitive abelian groups, and some additional
information relevant to the cases already mentioned. Finally, a
summary of the status of the problem is presented, including a

-

statement of some relevant theorems not here proven in detail.
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CHAPTER 1

INTRODUCTION

The study of the theory of graphs, both as a mathematical
discipline, and as an important aid to many other fields, dates
to Euler's well~known 1736 generalization of the problem of the
bridges of Konigsberg. Nineteenth century investigators included
Kirchoff and Cayley who studied them in connection with electrical
networks and chemical isomers, respectively. Modern students of
the theory have also been concerned with applications to Psychology,
Economics, Sociology, Computer Design, and Neurology.

Consonant with the position of graph theory at the (historical)
foundation of Topology, much of the work in the field has been
concerned with such topological properties as connectivity, trans-
versibility, colourability, and the existence of various kinds of
subgraphs. Comparatively less information has been derived concerning
algebraic properties, among them the relationship between graphs
and groups.

In examining this latter question, this paper will follow the

terminology of Harary [17] in graph theory and of Wielandt [45] for
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permutation groups. Details of this notation are given in Appendix I.
Thus the word "graph" is here limited to loopless, undirected
structures of points and lines having no multiple lines between any
two given points. As a starting point to the discussion, the group
of a graph is defined.

Definition 1.1 The (automorphism) group of a graph X,
denoted d(X) is the group of permutations on the vertices of X which
preserve the incidence relation.

The object of this thesis is to examine various results obtained
to date which are pertinent to a question raised by Konig [24] in
1936: "When can a given abstract group be represented as the group
of a graph, and if possible how can the graph be constructed?"

As stated, this question was first answered by Frucht [15], who later
[14] gave the answer in the form:‘ "To any abstract group of order

h > 1 belongs a cubical graph with at most [2h (2 + log h) log 2]
vertices."

Frucht's result was further extended by Sabidussi [32] and
Izbicki [28] who showed that one could also stipulate for the required
graph any one of: arbitrary connectivity and/or chromatic number,
regularity for an arbitrary degree, or the posession of a spanning
subgraph homeomorphic to an arbitrary graph. 1Indeed, the constructions
employed produced an infinite class of graphs in each category.

As stated then, it is evident that Konig's question was not

very restrictive. However, if one modifies the statement so that it



requires a permutation group to be given and isomorphism as per-
mutation groups (rather than abstractly) between this and the auto-
morphism group of the constructed graph, then the problem is very
restrictive indeed and as Kagno [23] and,Imrich [20,21] have shown,
the answer in this case is often negative.

If a permutation group is intransitive, it can be regarded as
a subgroup of the direct product (subdirect product)} of its transitive
constituents. (Hall [16] p.63) Several researchers have thus
restricted their examination to vertex-transitive or point symmetric
graphs, among them Sabidussi [33,34], Nowitz [28], Chao [11], Turner
[38], and others.

Harary [17] thus poses the related problem of enumerating the
(point) -symmetric graphs. Turner [38] solved this problem for
point-symmetric graphs on p points, p a prime, and part of
this work, together with some consequential results forms Chapter 2
df this thesis. Some of this work is extended in chapter 3; the
results on 2p points being examined in particular. Chapter 4
extends these results by examining Cayley graphs and an important
theorem of Sabidussi is giveﬁ together with some consequences relative
to chapters 2 and 3. Chapter 5 deals with abelian groups and mentions
some other results derived from ﬁhe work of chapter 4. Finally,
chapter 6 summarizes the status of Konig's question and provides a
review of some additional related work without going into great

detail. As already mentioned, Appendix I is concerned with notation;



Appendix II contains the statements of several group-theoretic

theorems used in the text of this thesis.



CHAPTER 2

CIRCULANTS

The results of this section are derived from the work of

' Elspas' group at the Stanford Research - Institute [13]. Their concern
was with cellular interconnection patterns in the organization and
fabrication of logical networks for EOmputer systems. They examined

a class of graphs which they termed "Star Polygon Graphs" in con-
nection with this work, and these became the vehicle whereby the
point-symmetric graphs on a prime number of points were characterized.
As in their work, for convenience, these graphs will be referred to

as PPS graphs.

These results on PPS graphs were first reported by Turner [38], ~
and these characterize the corresponding passive, or undirected
switching systems. Alspach [2], working independently, published
the corresponding result for tournaments, and it is in the form of
directed graphs that the work has found application tb active
switching system design. (cf Stone [36]) Here a few changes in
terminology are made:

Definition 2.1 A graph X on n points is said to be a circulant



if the points of X may be numbered VO'Vl""'Vn 1 such that

[vy Vj] €X iff [vi+k Vj+k] eX for k =1,2,...,n-1. Here, as
in all subsequent similar situations, the subscript addition
is taken modulo the order of X.

The fact that, under this definition, the adjacency set of any

point is determined by that of Yo gives rise to the following:

Definition 2.2 The symbol of a circulant X is the set
S = {]:[VO Vj] ex}.
It is possible to characterize circulants by a particular sub-

group of their automorphism group.

Theorem 2.1 A graph X on m points is a circulant iff Zm = q(x).

)

Proof: If X is a circulant, then the cycle p=(v0 vl... Vm_l

is an automorphism of X for [vi vj]ex iff [v +l]ex since

i+l V3
X is a circulant. The latter line equals [p(vi) p(vj)].

On the other hand if Zm < d(X), number the points of X so that
p=(v_ Vv, ... v. _JEZ . Now [v, v, ]exX iff [pk(v ) pk(v )] = [v v Jex
01 m-1’"“m i’ i 3 itk j+k
(for each k) since pedX). But this last statement is just the definition

of a circulant, which completes the proof.

Corollary 2.1.1 If X is a graph on m points (m>2) and

Zm = (X) then Dm = X} where Dm denotes the dihedral

group of degree m.

Proof: By the theorem, Z, = «X) implies X is a circulant.



Now the permutation 0 on X defined by O(Vi) =v_; is an

automorphism of X for [v, v, ]ex iff [v_ v, .]ex iff
ij ‘ o j-i

[v . V—i] = [G(Vj) o(vi)]ex. Also, 0 has order 2 and if p is

as in the theorem, then Op(vi) = G(Vi+ Yy = v

1

-1
—j-1 = P T0(vy) and

so <p,0> = Dm.
We are now in a position to give a class of groups for which

Konig's question must be answered in the negative.

Corollary 2.1.2 (Kagno [23]) There is no graph on m points

with d(X) = Zm for m > 2.

Proof: This is immediate from the previous corollary, for once

D = &X) we have that «X) is at least not regular.

Indeed we have even more, if Zm < d(X) where ]X] =m> 2, then
d(X) is nonabelian. We could then ask if there are graph with
specified transitive abelian groups. The solution to this question is
given in chapter 5; suffice it to say for now that generally the
answer is no! We return to our characterization of PPS graphs.

Theorem 2.2 A graph X on a prime number of points is PPS

iff it is a circulant.

Proof: If X is a p-point circulant, we have already observed

that 2 = d(X) and so X is point-symmetric for if vi,vjex

and 0 is as in Theorem 1 then pj_l(vi) = vj.



On the other hand, if X is PPS then since «(X) is transitive,
it contains a p-cycle p. (Appendix II-1} Now <p> = ZP < d(X)
and by Theorem 1 X is a circulant.
In order to enumerate the PPS graphs, it is necessary to have
some way of knowing when two such graphs are isomorphic. Although
the question of enumeration will not be persued here,the latter
problem is interesting in itself, for in general it is a very difficult
one but here the symbol is the device which makes a decision possible.

Definition 2.3 If X and X° are p-point circulants with cor-

responding symbols S and S7, we say S is equivalent to
» -~ 0 . s _1
S (5~") if there exists an integer d, l <=qg-= P'--i—-.,such that

g*s = {qsi : sies} = 87, with the indicated multiplication done

VA

{1, p-l}‘

It is obvious what theorem we wish to prove at this point; how-

within H
p

ever, the route to that proof is somewhat indirect.

Definition 2.4 If X 1is any graph with points Vg Vq e V-1

we define the adjacency matrix A= (aij) of X by aij =1

if ]Jex and ‘aij = 0 otherwise.

[vioy V51
Lemma 2.3.1 Two PPS graphs X and X~ are isomoréhic iff their
respective adjacency matrices A and A" have the same eigenvalues.
Proof: If X =X  then A = PA’P " where P is a permutation

matrix [10] and consequently A and A~ have the same eigenvalues.



Conversely, we already know that X and X~ are circulants.
The adjacency matrix of such a graph is of the form

a a A« <« . &

11 12 13 Im

a a . . .

11 12 21 m-1

12 213 P1g v - g

in which each row is a cyclic shift of the previous one. Under

the name of circulant matrices, these have been investigated by

Ablow and Brenner [1] and their eigenvalues are explicitly given by

O =a. +a . w4 ...+a wk(m_l)

k 11 12 1m where w is a primitive m-th

root of unity and k = 0,1,...,m-1.

. _ 2 -1
Here, we are assuming that al = alzw + a13w . alpwP

is an eigenvalue of A" as well as of A. Hence there is an

. . -k -, 2k - _k (p—l)
< < — =
integer k, 1 <k = p-1, with al alzw + al3w + ... + a; \JJ .

Since the primitive roots of unity are linearly independent over
the rationals (van der Waerden [41]) we have, equating coefficients

that a_, Now, if we map x~ to X by

13 %1 [(-L)k + 1]

v; * v, , we have that [v’ vi]ex iff =1 iff
ik o J '

3 41 (3+1)

- : a X xx”.
21 (4k+1) 1 iff [v0 vjk]ex and so

The next theorem is the one earlier hinted at, and which allows

the enumeration of the PPS graphs.

Theorem 2.3 Two circulants X and x~ are isomorphic iff their

respective symbols S and s” are equivalent.



Proof: If S ~ S then there is an integer q, 1 = gq = Eéi

with g*S = § " As in the lemma, the mapping defined by

vi’+ viq is an isomorphism of X “with X.

If S # s and A, A~ are the adjacency matrices of X and
X with w a primitive p-th root of unity, then

: -1 .
o = a12w + s.. + alpwP is an eigenvalue of A. Those of A'

are (o4 = a' Wk + ... + a' W(P—l)k
lp

X 12 for 1 =k = p-1. Since the

k N .
w are all the primitive p-th roots of unity and are linearly

independent over the rationals, an eigenvalue ak of B could

-
.

o i = ]
equal only if al:J a,; [ (5-1)k+1]

Moreover, since

for s = 2, ..., >

a and similarly for the

1s -~ 21 (p+2-s)

- . +
we have that a 2 £3 < EEL .

a’ 15 21 (3-1)k+1]

13

This latter equation holds iff we have that [v]

o vj]ex iff

Iv, vjk]ex which holds iff §” = kS. Since we have assumed
S # S° however, we have that X and X~ are not isomorphic.
Further light will be thrown on the ideas of this section in

Chapter 4. In the meantime, we pursue a similar course for graphs

on 2p points.
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CHAPTER 3

2 CIRCULANTS

The observation made in the previous chapter that the automorphism
group of a circulant contains the dihedral group Dm prompts the

search for graphs having dihedral groups (isomorphic to Dm) as

regular automorphism groups. This is approached by examining graphs
consisting of two isomorphic m-point subcirculants joined together in
a circulant. fashion.

Definition 3.1 A 2-circulant X jis a graph on 2m points, where

these can be labeled v and v css V

0,0 Yo, ° ° * Vo,m-1 1,0 V1,1 1,m-1

in such a way that

. =A . =‘ . s » » t
1) WO {VO,l} and Wl {Vl,j} are isomorphic subcirculants

of X with symbols R0 and Rl respectively.

2). [vo’i Vl,j]EX iff [VO,i+t vl,j+t]€X Yt and

3). there exists an automorphism O on X mapping Wl to WO.
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The labelling of X can always be chosen in such a way that

olvy 0) = V4 o+ From this point on, unless otherwise stated, ¢
[4 14

will be assumed to have this property. It is worth noting that O

is not necessarily uniqué. Moreover, since Wb?% Wl we have that

X is completely determined when the adjacency set of v0 0 and the
r

automorphism O are known. This prompts the following:

Definition 3.2 The symbol S = {r, o, F} of a 2-circulant X

on 2m points consists of the inner symbol R, which is the symbol

of, say, the subcirculant W the automorphism O and

ol
the outer symbol F = {j : [VO’0 vl,j]ex}.
It is important to note that even if R0 = Rl whence W0 = Wl

(read W0 and Wl are congruent) O does not necessarily act like the

identity on the second coordinates of the subscripts. If it did

we would have [v v, .lex iff [v ]Jex which
0,0 1,3

.,V
o, 1,0
says JjeFr iff -jeF, a condition for which there is as yet no

guarantee. However, when RO = Rl we will say that X is of

type 1. If X cannot be represented as a type 1 2-circulant we

will say that it has type 2.

Example 3.1 If F =¢, then X is disconnected and W0 and Wl

are components. (If in addition R = ¢, X is trivial)
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v
VO,O 1,0
R =. {l}l F = ¢l.
X 1is of type 1.
v V.
v0'2 Voll 1,2 1
Figure 3.1

Example 3.2 If R=¢, X is bipartite

R=¢ F ={0 -1} and

X 1is of type 1.

0,2

Figure 3.2
This example demonstrates more, namely that 2m-cycles are
bipartite 2~circulants, hence obviously of type 1. A later
theorem will show that 2m-point circulants are all type 1

2-circulants. The converse is false,
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Example 3.3 Not all type 1 2-circulants are circulants.

v
V0,0 a,1

R = {1} F = {0} and

X is of type 1.

Figure 3.3

- This graph is not a circulant because of the two degree three
circulants on eight points, one has girth 3 and the other is

not planar.

Example 3.4 The 6-point graph with the same symbol as the

graph of example 3.3 is a circulant, contrary to the statement of

Turner [38].

R = {1} F = {0}

X is of type 1.

v

a,l

Figure 3.4
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If X is renumbered according to v_ , > e
g 0,i Ya2i r V1,0 V3
> > :
Vl,l v5 and vl,2 1 we obtain
v
o
V5 Vl
and X 1is a circulant with
v2 _
Va symbol s = {2,3}.
V3
Figure 3.5

Before proceding, two more observations are in order.

since each of WO’Wl

any point of Wl

then 0 € F, i.e. Vv

1,0

or X is disconnected.

is point-symmetric we may choose v

First,

1,0 to be

we wish, so we may always assume that if F # ¢

is chosen so that [VO,O vl'o]ex

Secondly, if X 1is of type 1l and not disconnected then X

has girth three or four.

for any i € R]

Petersen's

Example 3.5

have type 1 since it has girth 5 and is also not a circulant b

(The four~cycle [v

0,0 V0,1 V1,i Y1,0l¢¥

graph is a 2-circulant which does not

ecause

all the degree three circulants on 10 points have girth 4.
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0,0

0,4 VO,l

R = {1} X is not of type 1

F = {0}

Figure 3.6

We now state the precise relationship between 2-circulants and
circulants.

Theorem 3.1 Every circulant oﬂ 2m points is a type 1 2-circulant.

Proof: Suppose X 1is a circulant with sylmbol S and points

‘ '... . i i v,
vo vl V2m—l Renumber the points according to v 0,i

21

and v_, -+ v i=20,1,...,m=1l. Then we have €X

2i+1  V1,i [v9,0 Vo,i!

LEf [v0 vzi]ex/iff Iv kJeX Vk iff [v

2k V2i+2 0,k Vo,i+

j]EX iff [vl V2j+l]€X iff [v Jex vk iff

[vy,0 V3, 142k ' 2§+2k+1

[vl x V1 j+k]€X Yk. Hence X has two congruent m-point
I’ 1

subcirculants with symbol R = {i: 2ies}.

Next, [VO,O Yl'j]ex Iff [vO v2j+1]€X iff [v2k v2j+2k+1]€X Yk

i . X 1is a type 1 2-circulant with
iff [VO,k vl,j+k]€x Yk. Hence yp

éymbol s”={R,F} where F = {j: 2j+1 es}.

k]eX Yk and similarly
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As shown in example 3.3, the converse is false. However,
there is a partial converse which specifies exactly how much symmetry
in F is necessary to allow us to rewrite a type 1l 2-circulant as
a circulant.
Theorem 3.2 A type 1 2-circulant X on 2m points is a
circulant iff it can be written with symbol s” = {R,0,F} where
JEF iff - (j+1)€F.
Proof: Let X be a type 1 2-circulant written so as to have
symbol S7°={R,0,F} such that jeF iff -(j+1)eF. Renumber the

points of X according to vO,i—>v2i and vl'j—>v2j+l and let

s={2i: ier} U {2i+1:ieF}

Case I [vo v2i]€x iff [VO,0 VO,i]EX iff [v0,t v0,i+t]ex
iff [v2t V2i+2t]€X Yt. Likewise, [vl V2j+l]€x iff
[vl'0 vl,j]ex iff [Vl,t vl,j+t]€X iff [v2t+l V2j+2t+l]€X Vt.

So, when renumbered, vertices having subscripts of the same

parity are joined in circulant fashion.

Case IT [VO v2j+l]€x iff [VO'O Vl,jlex iff [VO't Vl,j+t]€X

iff [v2t V2j+2t+l]€x Yt. Moreover [VO,O vl'j]sx iff jeF

iff =(j+1)€F by hypothesis. This takes place iff [VO,O vl,—(j+l)]€X
iff [VO,j vl'_l]ex iff [VO,j+t VI,—1+t]€x iff

Jex Yt iff 2t_l]ex Vt.

v
[V2j+2t V2(t-1)+1 [V2j+1+(2t—l)
Case II gives the result for verticesof opposite subscript parity.

It has now become evident that the set S defined above is the

symbol for X written as a circulant.
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On the other hand, if X 1is a typel 2-circulant with symbol

s#{R,O,F} whose points may be renumbered so as to rewrite X

as a circulant with symbol S, we renumber X again from this

circulant numbering by Theorem 3.1 and obtain it once more as

a 2-circulant with symbol 8" ='{Rf,Q',F'}.
jeEF” i .Jex iff . i
Now JjeF~ iff [VO,O Vl,J] X i [vo V23+1]€X iff
[v0 v_(2j+l)]ex (since X 1is a circulant) iff [VO,O Vl,-(j+l)]€x

iff -(j+1)eF” as asserted.

In view of the above, one might question example 3.4 where
¥ = {0}. It would seem that Theorem 3.2 requires that =-1l€F also,
whereas we have shown the graph of that example to be a circulant.
However, if the graph of that example as written in circulant not-
ation were renumbered by Theorem 3.1 we would obtain it once more
in 2-circulant fashion; this time with F={1} so that j=—(j+1)

{(modulo 3).

The graph of example 3.4

rewritten to show compliance

with Theorem 3.2.

Figure 3.7
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The above discussion makes the following result obvious, and
in view of examples 3.4 and 3.3 it is stated without proof.

Corollary 3.2.1 If X 1is a 2m~point type 1 2-circulant with

symbol § = { {l},C,{O} } then X is also a circulant iff

m is odd.

The time has now come to return to the main stream of the
discussion and show the analogous result to that of Theorem 2.1,
characterizing 2-circulants in terms of a particular subgroup of
d(X). Unfortunately, in the generxal case, the characterization
is not as neat as one would like.

Lemma 3.3.1 If X is a 2m-point graph and @(X) contains

a regular group D generated by elements s and t with

s =t =1, then X 1is a 2-circulant.

Proof: t is a regular permutation of order m and degree

2m, so is necessarily a product of exactly two disjoint

m-cycles. If we number the points of X so that

t = (v v cee V ) (v v cee V ), we

0,0 0,1 0,m-1 1,0 1,1 1,m-1

obtain that X has two m-point subcirculants WO and Wl'

Now <t> has index 2 in D and so is normal, though intransitive.
Hence, D 1is imprimitive and the orbits of <t> form a
complete block system for D (see Appendix II-2) That is,

WO and Wl are blocks of D and since D is transitive,

s must interchange WO and Wl so those are isomorphic.
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Indeed, it is clearly possible to specify that numbering so

that s(v )y = v and it is now evident that X is a

2-circulant.

If X is of type 1 and we define s: X*X by s(v_  .) =v )
0,3 l,-j

and s(v )

1,3 for O

"IA

=y ) 3 =m-1, then since 52 =1
0,-] ’

and Dm 5j(wo) we see that s 1is acting as an automorphism on the

second coordinates as it interchanges W0 and Wl. In addition,

[VO'O vl,j]ex iff [Vl,0 vo'_j]ex " since X is a 2-circulant.

Therefore, . s 1is in fact an automorphism of X.

This discussion, together with the lemma inplies the following:

Theorem 3.3 X is a type 1 2m-point 2-circulant iff Z(X)

contains a regular dihedral subgroup DaéDm.

Proof: If X is as given, we know immediately that @(X)

contains the automorphism t = (v v cee V )

(v v cee VYoo ) and the automorphism s of the

\ . 2
discussion above. Clearly s = " = 1. Moreover, we have

Y =V5,i-1 7

for example that sts(voli) = St(vl,-i) = S(Vl,dil
t-l(vo .} so that D = <s,t> is dihedral.

1
On the other hand, if in Lemma 3.3.1 we know that sts = t_l,

then ts(v_ ,) = st (v. .) and if we write for convenience
0,1 0,i
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Wo,1) T Va,sqay BPES PECOMES VY sy T Vs ti-1)

which
is to say s (i) = 4(i-1}-1. We have at once 4(1) = -1, and
by recursion 4(i) = -i so that the element s has in fact

the definition S(Vo,i) =Yy, and likewise s(vl,i) = Vo,-i-

It is obvious then that X is of type 1.
We give a slight generalization of Theorem 3.3 in the event
that m = p a prime.

Corollary 3.3.1 A 2p point graph X is a type 1 2-circulant

iff (AX) contains a regular subgroup.

Proof: The only groups of order 2p are cyclic and dihedral
(see Appendix II-3). In either case, by Theorems 2.1 and 3.1
or by Theorem 3.3, X 1is a type 1 2-circulant. The converse
follows from Theorem 3.3.

Example 3.6 (Watkins) Let X be the type 1 2m—poin£

2-circulant defined by s={ {1}, s,{0,-1,2} } for m=6 and s as in

Theorem 3. 3.

The graph X of

example 3.6 for m=6

0,2

Figure 3.8
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Figure 3.9

The subgraph of X on v and its' neighbours

0,0

The set H of neighbours of v contains only the lines

0,0

[Vo,l Vl,O]’ [Vl,o Vl,—l] and [vl,0 Vl,—1]° If ¢ed(X) fixes

v and is not the identity, it must interchange v

0,0 1,0 \‘]lth
Vl,—l and Vo,l WLth_yO'el fixing V1,2' Now Vl,l is adjacent to Vl,O
but not to vl,-l SO must move; say ¢(Vl,l) = Z. Since Vl,l

is adjacent to the fixed point vl o so is Z. Moreover, Z 1is
I

. The

also adjacent to v since v is adjacent to v
1'_1 1'0

}

adjacency sets of Vv and v are {v

1,2 1,-1 1,1 V1,3 Yo,2 Vo,3 V0,0

and {vl,O vl'_2 0,0 VO’_1 VO,-3} and since m>6 3¢ v

v, 1,-2

and V0'2 # vo'_3 ¢ 2= VO,O which is impossible.

Hence ¢ fixes the entire adjacency set of V5.0 and so
?
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since the graph is a 2-circulant ¢ fixes all of X. We canclude

that d(X) is regular and hence actually equals the group D%?Dm

of Theorem 3.3.1. If me{3,4,5} the result does not hold, a fact
which will be proven later. In the meantime, it is possible to

prove the analogues of several results of the previous chapter.

Theorem 3.4 X 1is a type 2 2p-point 2-circulant iff the

automorphism ¢ of Defintion 3.1 is of the form (1) o(v, .,) =

0,i V1,qi

and (2) Oo(v, .) =v . where cannot be 1 or -1.
(2} o 1,3) 0,93 q

Proof: Let X be a type 2 2p-point 2-circulant. We can

assume that the subcirculants of X are neither complete nor
trivial since each of these cases results in the graph having
type 1. Hence by our Theorem 2.3 and Theorem 7.3 of [29] the

automorphism 0 of definition 3.1 must have the form

Oo(v, .} =v ., and O(v, .) =v . for r € H,. We now
( OIJ) 1,r] ( llj) 0,qj 4 HP
show that q = r. Now [V0,0 vl'j]ex
iff 0) g = .
[ Vg o) (vl,j)] vy o vo,qj]sx Hence [v . vl'j_l_k]ex

iff [Vl ]Jex Vk. (as k runs through 1,2,3,...p-1

v .
gk 0,gj+gk

so does k). H = 1
qk) encé [O(Volk) O(Vl,j+k)] [Vl,rk Vo,qj+qk]€x

iff [vl,qk VO,qj+qk]€X Yk = 1,2,...,p-1. Hence, if g-r # 0

either [F| = p-1 or |F] =p. In fhéﬂfofmer‘case, we may

assume .]¢X for each 1i. Hence '[O(Vo,i) O(Vl,i)] =

[VO,i Vl,l
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1l

[vy,ri Vo,qi]#¥ contradicting |F| = p=1. 1In the latter,

X may be rewritten as a type 1 2-circulant by the mapping

> > ) hi . s,
Vl,j Vl,qj vO,i VO,l which is contrary to hypothesis

Hence there exists a g satisfiying (1)} and (2). Certainly

q # *1 for then X would have type 1.

On the other hand, if O has the indicated form on the 2p-point
2-circulant X, then X cannot have type 1 by the proof of
Theorem 3.3.

Corollary 3.4.1 If X is a type 2 2p point 2-circulant then

@ (X) contains a subgroup C isomorphic to the dihedral grou;>Dp.
Proof: Let O be the automorphism on X discussed in Theorem

n = n =
3.4. For every odd n 0 (v, .) = Vi,qri and O (v 3) =V oong

we have by the preceding theorem that qn # *1 for any odd n.

m
Hence there exists an even m such that 0 (v, .) = v

0,1 0'-i
m m
and O (v, .}y =v .. Let T =0 and form C = <T,t>
1,3 1,-j
where t = (VO’0 vO,l"'VO,p—l)(Vl,O vl,l"vl,p-l)' Clearly
T2 =tP =1 anda tTtr = (v v eeoV ) (v v ceoV ) =
0,0 0,-1 0,1 1,0 1,-1 1,1
=t =~ so that C is dihedral.

We have now shown that every 2p-point 2-circulant X has a
dihedral subgroup in 7 (X). Types 1l and 2 are distinguished by the
fact that in the former case this subgroup ies regular and in the

latter it is not. 1In addition, in the type 2-case F is invariant
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under multiplication by -1.

Corollary 3.4.2 If X is a type 2 2p-point 2-circulant

then jeF iff ~jeF.

Proof: JjeF Liff [VO,O vl’j]ex iff [T(VO,O) T(vl j)] =

4

= [VO,O vl'_j]EX iff -jeF.

Example 3.7 Petersents Graph (Figure 3.6) could be written with

symbol s={{1}, 2, {0}} and here 0 is s.t.o(v, ,) =v

1,3 0,2
o(v., .) =v as asserted above.
¢ 0.3) 1,2
V1,0
v
1,3 V1,2
\'2
V1,1 1,4

Figure 3-10
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0, 0,4

V1,2

v
0,2 Ya,3

Figure 3~11 02(X)
The figures show the compliance of Petersen's graph with

Theorem 3.4 and Corollary 3.4.1. Clearly 04 = 1.

Definition 3.3 If X, X~ are 2p-point 2-circulants with

symbols S = {R,0,F} and s’ = {R",0,F°'} we say that 8 is

equivalent to S~ (S ~ S”) in case there are integers qsz;

and xszp such that q°'s” = {qr”,0,qgF "+x} = S where
qR” = {qr: r"eR’}, qF+x = {qF™+x : £7eF"} and the indicated

nultiplication is within Zp.

Notice that the definition requires that the same 0 be found in
each of {X) and (X“). In the following we will assume, that in
the type 1 case O is the involution of Theorem 3.3 or has the form
given in Theorem 3.4 for k the smallest possible g for which
the Theorem holds. We obtain the following analogue of Turner's

theorem.
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Theorem 3.5 Two 2p-point 2-circulant X and X° are
isomorphic iff they have equivalent symbols.
Proof: If S~ S ° where S and S” are the symbols of

X and X~ respectively, then there are integers<1ﬂ€Z§

such that S ='{qR’,G,qF'+x}. Define f: X + x by:

£( ) = v and f(vi ) o=V

v, ) o
0,1 0,qi )3 1,qi+x In the proof of

lemma 2.3.1 we showed that such an f wil map W, to W

0 0
and W, to W as an isomorphism. Moreover - s,
1 1 P ’ [VO,O vllj]ex

iff jer” iff qj + x € P iff [VO’0 Vl,qj+x] =

[f(va’o) f(vi,j)]ex and hence f is an isomorphism of X
with x7.

On the other hand, if X and X~ are isomorphic 2-circulants
with symbols s = {R,0,F} and s = {R",07,F’} on 2p points
then 7(X) = &QX'). In particular the dihedral subgroup

(D of Theorem 3.3 or C of Theorem 3.4) of Z(X”) is mapped

to a dihedral subgroup of &£ (X) having the same properties.
Hence X and X~ have the same type and in the type 2 case
the constant k of Theorem 3.4 relating R to R, and

0 1

Ra to Ri must be the same number. In either case, this

implies that 0 = ¢° as required if the symbols are to be
equivalent.

Moveover, the blocks of <o%t’> < « (X"} are mapped to blocks
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of such a subgroup of A(X)} and since Wa, Wi, and W, and

Wi are the only p-point blocks involved, we can assume that

the isomorphism on X~ maps Wa to W, and Wi to W,.

Hence, since R”, R, R and Rl are the symbols of the sub-

circulants Wa, i, W, and Wy respectively, we have that

there are integers gq, 97 € Z§ with gR” =R and q’Ri = Rl

(by Theorem 2.3). We have already mentioned that for some

kez; kRi = R” and kR, = R and these equations give the

relationship q’k = k q. (When X has type 1l use k = -1)

R «—
?‘ k R1
q q’
. k
R™ — RS
Figure 3-12

Since multiplication modulo p is commutative kqR” = gkR”

so that g, can be chosen to equal q and the respective
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subcirculants are related by the same constant gq. ILf the

isomorphism we are examining sends [va o vi O] to
¥} ’

.8/' i f - - » .
[VO,O Vl,OI we have J€F iff [VO,O vl'j]ex iff

[VO,O Vl,qj]ex iff gjer. If [vO,0 vl'o] goes to any

other [v v, _] then merely re-label X with symbol
0,0 1,x

Sl = {R,0,F-x} after applying q and the theorem now follows.
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CHAPTER 4

CAYLEY GRAPHS

The time has come to examine more general aspects of the relation-
ship between groups and graphs in order to provide needed tools to
consider classes of groups other than those of the first two chapters.
The basic machinery was provided by Sabidussi [33] and forms this
chapter through Theorem 4.2. A number of important consequences are
also detailed.

The constructions of Frucht'[l4,15] produced graphs with semi-
regular automorphism groups. The purpose here is to show that the
latter fact implies that the graph is of the given construction.

We begin with a lemma on disconnected graphs.
Lemma 4.1.1 Let X be a graph with &(X) semi-regular.
Then if X 1is disconnected it has exactly two isomorphic com-—

ponents Xl and X2 such that d(Xl) =4(X2) = {1}.

Proof: Let the components of X be Xi i=1,2,...,n. At least
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two of the Xi must be isomorphic. Otherwise, ¢|X.€&WX.)

i i
for every ¢ed(X), 1i=1,2,...,m, and Sin_ce d(x)x=l VxeX,
a x)y#{1}, at least one of the & (X )#{1} for 1 =k =m.
Let ¢Oea(xk) for a ¢0¢1. Define ¢: X * X by ¢x = ¢0x if
xeX,  and ¢x = x otherwise. Clearly ¢e7(X) but violates the

semi-regularity. So, we can assume that Xl > x2.

If X has more than two components and Vis an isomorphism

of X onto X

1 o then ¢‘ﬁ X =+ X given by ¢ﬁx = ¢x for

xeXl ¢ = drlx for x E:XZ, and ¢ x = x otherwise also

provides an automorphism of X which violates semireqularity.

1R

Finally if (X)) 2 Z(X)) # {1}, let ¢,edx,) for ¢,#1,

and define ¢": X > X by ¢"x = ¢lx if xeX., and ¢"x=x

1

if x€x2. The same contradiction is reached and this establishes

the lemma.

We next establish two results related to the degrees of the points
of graphs having @(X) semi;regular.

Lemma 4.1.2 Let X be a graph with /AX) semi-regular and

choose any x€X. There exist at most two lIines of X which‘

are similar and incident with x.

Proof: Let e; = [x,xi]ex for i=0,1,2,...,m be similar. Then

3¢i€ (X) with e; = ¢ieo for i = 1,2. By semi-regularity
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(1) ¢;x = x, and (2) ¢,x = x for i =1,2. Now by (2)

¢,=¢, and so by (1) x,=x, so that e,=e,.

Lemma 4.1.3 ©Let X be a line-symmetric graph with more than
one line and 7 (X) semij-regular. Then X is cyclically
connected.
Proof: Suppose the contrary and let x be a cutpoint of X.
Now line-symmetric graphs must either be point-syﬁmetric or
bipartite. (Harary [17] 14.12)
In the first case, by point-symmetry, every point is a cutpoint
which is obviously impossible. 1In the second, every line is
incident with a cutpoint. If there is more than one cutpoint
and a line joining two, we are back to the first case. Assume
then that a pair of cutpoints is joined by a 2-path. By line
symmetry, each endpoint that is not a cutpoint is on such a
path, and a complete bipartite graph having no cutpoints results,
a contradiction. Hence there is only one such cutpoint and
every line is incident with it so X 1is a star, which does
not have #(X) sémi-regular, and we again reach a contradiction.
As a consequence of these lemmas, it is now possible to show
that the possible line-symmetric graphs having 7 (X) semi-regular
are severely restricted.
Theorem 4.1 Let X be a nontrivial line-symmetric graph
having 7(X) semi-regular. Then X is a l-path.

Proof: If. X has the given properties and more than one 1iine
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then by Lemma 4.1.1 it is connected, for otherwise a(Xl)’EC(Xz)={l}

contradicts the assumption that X is line-symmetric. Lemma
4.1.3 then implies that X is cyclically connected so that
deg x Z 2 Vx€X. However, Lemma 4.l.2 states that deg x < 2.
It follows that X is then a cycle, which as we have observed
in Corollary 2.1.1 does not have semi-reqular automorphism
group. Hence, X has only one line, so is a l-path.
The next step is to introduce the tool whereby graphs with
certain properties have been constructed:

Definition 4.1 Given a group G with H € ¢ - {1}, the

Cayley graph (group-graph) of G with respect to H is the

graph X such that: V(XG } =G and E(XG ) =
’

G,H +H H

{[a,ab]: aeG beH}.

Now if the graph so formed is connected, then for any g, g~

there is a path g 9, g2 g3...gn g’ from g to g”. Now since

gl = ghl, g2 = ghlhz,..., we have g~ = ghlhz...hn or

g_lg“ = h1h2"'hn' Since every product g—lg' can be written

as a product of the hi' we have that H dgenerates G. On

the other hand, if <H>=G then clearly every such path exists

and XG H is connected. We have proven the following:
’
Lemma 4.2.1 XG H is connected iff <H>=G.
r

We are leading up to a characterization of all graphs X with
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regular subgroups contained in ((X), a property which appeared in
both Chapters 2 and 3. The following lemma provides most of the

information:

Lemma 4.2.2 Given a graph X, a necessary and sufficient
condition for the existence of a group G and an H ©G with

X =X is that 7Z(X) contain a regular subgroup G

G,H . In

0]

that case G = GO'

. = . . > : » )‘
Proof: If X XG,H define n: G QIXG,H) by (ng)g ag

Clearly n is 1:1 and so lIm nl = lG|. Also, it is quite

apparent that Im N acts transitively on V(X)) = V(XG ) = G.
r

H
On the other hand, if G0 < d(X) 1is regular, we choose an
acX, numbering it's adjacency set A={ai i=1,2,...,n} and
the unique automorphisms H={al i=1,...,n} so that di(a) = a
For any =xe£X, let ¢x be the automorphism s.t. ¢xa=x. By

reqularity, every element of G is a ¢x. Form X and

0 GO'H

defi : > =x.
efine the map EXGO,H X by €¢x X

Nou [4, 0,0;1ex; . impries that [e(4) etd,a)] = [x ¢_a.]

= [¢xa ¢xai]€x since [a ai]ex. Hence € preserves incidence.

-1 -1
Conversely, if [x Y]eX, then ¢_ [x v] [a ¢x y]eX and so

-1
= = <ji <n. H X = € '
¢x y=a =aa for 1 <i=<n ence [x y] [¢x ¢£lil
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and [¢x ¢x0i] XGO,H so that € is onto. Since € is

obviously 1:1, it is an isomorphism of XG H and X.
ol

Theorem 4.2 (Sabidussi [33]) If X is a graph having & (X)
regular, X is either trivial of order 2 or X is
isomorphic to the Cayley graph of <7(X) with respect to a
set H of generators of *X).

Proof: If X is disconnected Lemma 4.l.1 applies. In this
case, the point-symmetry of X is incompatible with

d(xl) o 6&X2) = {1} unless X is trivial with two points.

If X 1is connected, the theorem follows immediately by
Lemmas 4.2.1 and 4.2.2.
There are several application to the work of Chapters 2 and 3.

Corollary 4.2.1 If X 1is a connected graph on a prime number

of points, then X 1is a PPS graph iff it is a Cayley graph.
Proof: By Theorem 2.2 X is PPS iff it is a circulant. By

Theorem 2.1 X is a circulant iff Zp <d(X). Since Z

is regular, by Lemma 4.2.2 this is iff X is a Cayley graph.

Corollary 4.2.2 If X 1is a connected graph on 2p points,

then X 1is a 2-circulant iff it is a Cayley graph.

Proof: As above, this is a consequence of Lemma 4.2.2 together
with Theorem 3.3.2.

It is also possible to settle the question raised in example

3.6, namely the nonexistence of any graph X having a regular
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dihedral group D =D equalling ((X) for m=3,4,0r5. By

Sabidussi's theorem we may assume such an X would be connected

and a Cayley graph with respect to a set H of generators of Z(X).
We may as well note here that H can always be taken to

satisfy: uceH = u—leH since [x xh] and [xh_(xh)h_l] denote the

same edge of XG,H'

Suppose then, that H(=H—1)S_D generates D. Then H must
contain some element not in <t>, If there is exactly one such
element, in our notation we may assume X is a type 1 2-circulant

with F={0}. The mapping ¢: X ~ X given by ¢v, ) =v. .
i'J i )

is clearly in X) but fixes both VO’O and Vl,O' violating
regularity. If there are two, say j and k and j-k is odd,

X can be renumbered so as to have ¥={i,-i} in which case the
same mapping ¢ as above is also in 4(X) violating regularity.
If j-k is even, X .can be renumbered so that F={-(i+l1),i} and
in that case X is a circulant by Theorem 3.2 and @ (X) is not
regular. We have then that IF' > 3; thds eliminates D_ at once

3

for here we must have k whence @ (X) = S, which is not regular.

6'
If m=4 or 5 we can apply the above argument to the complement
of F. The following theorem has now been established:

Theorem 4.3 To every dihedral group D of degree 2m m > 6

where D %éDm there corresponds a (Cayley) graph XG " whose
14

group equals D. For m < 6 no such graphs exist.
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By making use of the ideas of this chapter we may also return
to Chapter 2 and extend those results to graphs which are both
point and line-symmetric or just "symmetric". In Theorem 4.4,
sufficiency was demonstrated by Turner [38] who also conjectured
necessity. The theorem was first proven by Chao [11] using methods
developed in [10]. The proof given here is a much simpler one
provided by Berggren [6] and is more algebraic in nature.

Theorem 4.4 (Chao, Berggren) A regular graph X of degree n

on p points is symmetric iff n 1is an even divisor of p-1

ard X = XZ H where H 1is the unique subgroup of Z; of
(4
p

order n.

Proof: If H is the subgroup of Z; of order n (containing «l)

and we form X = XZP,H’ indentifing the points as vo,vl,..., p-1

where [vi vj]ex iff j-ieH, then clearly H is the symbol

for X written as a circulant. Moreover, the transformations

{Th,ag aezp, heH} given by Th,a(vi) =V im form a subgroup

of d(X) which is tranéitive on the lines of X, so that 7(X)
is also line-symmetric, hence symmetric. Clearly n must be
an even divisor of p-l.

On the other hand if X is as given and @(X) is doubly

transitive then X=kp and X = XZ q with |H| = p-l. If
PI

d(X) is not doubly transitive, then by Burnside's Theorem



38

(see 7.3 of [29]) we may suppose that the poiﬂts of X are

the elements of ZP and that d(x) < {Ta : aez; bez } = s
: P

/b

where (x) = axtb. As usual, we identify 0,1,2,...,p-1

Ta,b

with v v

o' Vyreer p-1°

Since @{X) 1is transitive on the vertices of X, we have

p|l@x)|a; since K={'I‘l bezp} is the subgroup of order p

/b

in S, we have K =< (X). Now certainly H#{aEZS: T, Oe&Qx)} < g%
’ p

that X) = 7T : acH beZ .
so that ¢X) { abt @ P}

Now for each 1i,j ezp we have (X) so [Vi v.]ex
J

T s
l,—l—]€

iff [v_i v_j]€X whence £G so that -leH and IHI is

T
-1,0

even. Now CXX)O = {Ta o acH} so that the adjacency set A
14

of 0 is given by A=Hc1+...+Hcr.

If r =2 2 then there is a T € (AX with T =
e ere i a,b AX) a,b (Cl) 0

and Ta (0) =C, for 1<k =r. This implies b = C

/b k X
= + = - - = -
and O© acl b so acl Cy or acl ck. But 1,acH
so =at€tH and Hcl = Hck_ showing that r =1 and n = ]HI,

an even divisor of p-l.

We have shown that the lines of X are {[v_ v
a a+hcl

1} so

if we map a > acy

we induce a map of X teo x’ where

the points of the latter are identified with those of 2
P
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and the lines are {]a a+hJ} for asZP and heH. Certainly

AXY = AX) for AX) =2 dX) and since X =X, AX") ¢ gE).
A generalization of Theorem 4.4 to graphs of a composite order
is not available since the theorem of Burnside is specific to per-
mutation groups of prime degree.
In concluding this chapter it should be noted that while in
general a point-symmetric graph X is not a Cayley graph, there is
a sense in which some "integral multiple" of X is a Cayley graph.
The following provides a summary {without any procfs) of the paper
of Sapidussi [34] which introduced the concept.

Definition 4.2 ILet X be a graph and N a set of order n,

a cardinal. The graph nX is given by VnX) = V(X) X N and
Emx) = {[(x,0) (y,B)]: o,BeN, [x,y]eE(X)}.

Theorem 4.5 Let X be a connected point-symmetric graph, G
a transitive subgroup of ¢(X). Then there is a cardinal n
s.t. nX 1is a Cayley graph of G. If G is finite, n can
be chosen. as a factor of the order of G.

Definition 4.3 Let X be a connected point-symmetric graph.

By the deviation of X is meant the smallest cardinal n

s.t. nX 1is a Cayley graph.

He then went on to give a number of results concerning deviation.
In general, it is a difficult functionto calculate and Sabidussi was

content to prove that there are graphs with arbitrarily large



finite deviation. The next chapter provides a very important

application of Cayley graplis to the case of Abelian groups.



41

CHAPTER 5

ABELIAN GROUPS

The existence or nonexistence of graphs corresponding to cyclic
and dihedral groups has now been completely detailed, and the time
has come to turn attention to other classes of groups, first the
abelian ones.

Basing their work on that of Chapter 4, both Chao [9], and
Sabidussi [34] thought they had proven the nonexistence of transitive

abelian automorphism groups as the groups of graphs for IXI > 2.
What they did prove forms Theorem 5.1. The proofs contained a
similar error, first pointed out by McAndrew [26] who stated the
limit ]X| > 5, The first proof of the result was
published by Imrich who established it for |X| = 8 [20] and later
[21] completed it to the form presented here. The complete result
is here presented in full under one title for the first time, and

a gap in Imrich's proof when IXI=5 is pointed out.
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Theorem 5.1 (Chao, Sahidussi) If X is a nontrivial graph
with transitive abelian automorphism group, then & (X} is

the direct product of cyclic groups of order 2.

Proof: Such a group is necessarily regular. (see Appendix II-10)
By Theorem 4.2 we may assume X 1is connected and using the

same notation as in the proof of Lemma 4.2.2, we take up from
the point where we observed that every element of (X)) is a

¢ -

Since by Theorem 4.2 the o, generate d(X), a line [x,y]

= [¢x(a) ¢y(a)]€X iff 3av St . av¢x = ¢y and this is the

-1 -1

case exactly when ¢x = av¢y , that is when [¢;la ¢;la]ex.

Hence the function Y: X > X defined by w¢x(a) = ¢;1(a) V¢X€<XX)
is an automorphism of X. From Y(a) = a, it then follows by
the regularity of «{X) that ¢x2 =i V¢x€ d(X). So, in the

abelian group &(X) every nonidentity element has order 2
and the stated result follows by Prufers first theorem (see
Appendix II-11).

Corollary 5.1.1 There is no graph with more than two vertices

and having regular primitive automorphism grbup.

Proof: Every such group is cyclic. (see Appendix II-6)

The Corollary now follows immediately from either of Theorems
5.1 or 2.1.

Reconsidering the group «{X) of Theorem 4.2, it is possible
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to obtain yet another restriction on graphs having abelian transitive
automorphism groups. The set A={av: vel} was a generating system
for d(X). It therefore contains a maximal independent subsystem

B, which is still a generating system of &(X]. That is, every

element of (AX) can be written in the form Y=0_ o o ...q (*)
Vi V2 V3w

where uv €B.
i

If IBI =m, it is clearly possible to represent each 1 as a
vector of length m in which the components vl,...,vk appearing

in the form (*) are one and the others are zero.

Moreover since the mapping wx + X 1is clearly invertible, we

may view these (0,1) -vectors of length m as unique representations
of the vertices of X. Also, as noted in the proof of Theorem 4.2

[2,v]€X exactly when 3ai €A s.t. ai(x) = y so that the

o €B € A determine a subgraph Y of X acording to the rule:
v

i
There is a line (x,y]eY iff the vectors for the points differ

in exactly one component.

Such a graph is known as a m~-dimensional cube Kh and since
B generates w(X), 'En spans the points of X. Also t7(§n) for
m > 2 1is not regular so Kinc X. The following result is now

established:

Theorem 8.2 To every graph X having transitive abelian
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automorphism group, there corresponds an m-diminsional cube

which is a proper spanning subgraph of X.

The above result may now be used to prove the main theorem
of this section;

Theorem 5.3 For every natural number n different from 2,3

or 4 there exists a graph X of order 2" with transitive

n

abelian (X) isomorphic to the direct product iElCZ' For

n = 2,3,4 no such graphs exist.
Proof: The result is immediate for n = 1,2. If X is a graph

n n
i d = =)
with «(X) iglcz' then also @=X) iElCZ so that by Theorem

5.2 both X and -X contain a proper spanning m-dimensional
subcube. Since X can have at most half of all possible
lines, attention may be restricted in the case n = 3 .to
graphs with at most 14 lines and in the case n = 4 to graphs
with at most 60 lines.

In the case that n = 3 the requirement that X have a proper

spanning 3-subcube (which has twelve lines) together with the
transitivity of @(X) implies that X is regular of degree

3 + k> 14 for some Xk, which is impossible.

In the case that n = 4, one must introduce at most 28 lines
into the 4 cube to obtain X, or at most 3 lines At every point
of the cube. As in the theorem of Sabidussi, select a part-

icular point a€X and let the neighbours of a in k4 be &=

{al, a., a, and a4}. The ¢x: ¢xa = x are identified with the

2 3
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x€X by Sé@bidussi's Theorem. Now, at most three new lines of the

form [a, ziJ 1 <4i <3 are introduced in K4, where the z .
i
are products of two or more of the a, s ai(al = a,, again by the

above, for since the cube spans X and is connected, the points
adjacent to a in K4 generate all of «X].

Now an automorphism ¢ of A(X) mapping H to itself can be
considered as an automorphism of X fixing a so that «&(X)
is not regular if there exists a nontrivial ¢ leaving H invariant.
For any ¢egdq(X)) then, let ¢I{denote the induced permutation
on H and let a factor of an element ged{X) denote an element

a; in the unique representation of g, with the a; of course
identified with the ai.

If only one edge is introduced, we can assume that it connects

i aaaag s e
a with aja,s ajasa; or 33449, but in any case the transposition

(a a2) generates the desired.npntrivial automorphism of «(X).

1

In the two-edge case, if one of the Zi is ala2a3a4 we reduce

to the one~edge case. If neither is of this form we consider several

cases:
Case I z and z 5 each have two factors. If they have a
common factor, say z. = a.a and z . = a,a the the desired

1 12 2 273

¢ 1is generated by (ala3); if they do not, and say z = a,a,

and z., = aja, we can take ¢H = (alaz).
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Case 2 2y has two factors, ZZ three. If they have two

D b4 = 2 = =
factors in common, say 2, al_ag 2 = 33,3, take ¢H (al a2)
. 3 tak z = 4 =
if they have one in common take 1= 213, 5 a2a3a4 and
Oy = (a53,)

1 b4 = b4 = =
Case 3 if L = 23,25 F, a2a3a_14 then ¢H (a2 a3)

In the three edge case, again if z3=ala2a3a4 we reduce to the

two edge case. Otherwise there are four more possibilities.

Case 4 All the Zi have two factors. If a, does not appear

as a factor Zl = a,a, Zz = a,a, 23 = a,a, and ¢H = (al a2).
If all four of the a; appear there are essentially two
possibilities: Z = a.a Z_ = a,a %2, = a,a, when
¢H = (ala4)(a2a3) or 2, = a.a Z = a.a Z = a.a
whence ¢H = (a3 a4).

2'3

Case 5 Zl = alaza3 and 2_,%2_  have two factors. The table

gives the possible choices for 2_,%  and the ¢Hwhich.may be used

2"'3
ajyr 35337 (3 ag) aayr 33y (34 32y
a.a,, a,a,; (a, a,) a.a,, a,a,; (a, a,.)
172" 7374 172 174" 7274 172
Case 6 Zl and Zz have three factors, 213 has 2. Again

assume zi = alaza3 and tabulate the other possibilities

(

aja,3,r aja,i (a1 a2) aja,3,r ajas; (8, ala2a4)
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3182847 3337 (a3a,)
7 If all the 'z, have three fact Z =
Case a 5 ors, say 1 ala2a3,
Z = = . =
5 = aj353, and Z, = a,8,3,; take ¢H (a2a3a4)

n
In order to show existence of graphs with &(X) Eiﬁl(cz)_
= i

for n 2 5, we consider the product of n such cyclic groups

of order 2 with the generators a; 1 <i=n and a subset

H of G defined as follows:
= - - < 4
B=Aa;, aa y,e028 3 5s 238 42 :15isn, 1sk<nal

Now for any @G€G the mapping ¢u: x + ax for xEV(XG H) =G
14

is an automorphism of XG u We follow our usual procedure
[

and identify each ¢x with x and view G as GKXG H). It
. [4

remains to be shown that G is regular, i.e. that there are

no nontrivial automorphisms ¢ of G fixing H.

Figure 5.1
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the degree four points adjacent to
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only a 13-
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has unique degree and so is fixed. Of

has a

single degree two point in it's adjacency set and so is fixed. This

rces;
fo ala2an—lan—2

a2 and anan—l'

a_a and a and hence a
2 3 n

n-1

>
a3 # a _, or n 5. Hence a
also al,an, alazanan_l and a
triangles joining a, to an_2
proof whenever h > 5,
However if n = 5, take ¢

and ¢H

to be fixed.

and

2

n-1

Suppose some ¢

Then ¢H interchanges a

1

and

H

ala

interchanges

2%n%n-1"

a., which is impossible when

3

and a a
nn

-1

are fixed. Now

are fixed, forcing the n-4

to be fixed, which completes the

H

¢

3y 4%

Y (a

121

a

2%4

a5) (a3 a4)(a2a

can be extended to a nontrivial automorphism of G fixing

H, contrary to the claim of Imrich whose proof contains errors

through this section.

A large number of possibilities remain however, for here only

6 points have been added to H whereas up to 10 could be added.

3 25)
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CHAPTER 6

Non-Abelian Case, a Summary. Conclusions

In order to complete this paper, an examination of the known
results for non-abelian groups in general is necessary. The available
information has been provided by Watkins and Nowitz [28,42,43,44],
and what is given here is only a summary of their work (with the
proofs omitted) since little would be gained by repeating all their
arguments here. 'Also unlike the approach of Chapters 2 and 3 in which
classes of graphs were constructed to completely categorize some
classes of groups, here only the existence or nonexistence of graphs
with certain regular non-abelian groups is considered. In general
then we wish to know whether a group G belongs to

Class I: there exists a graph X with & (X) = G and acts
regularly, or to

Class II: for each H(=H_l) with <H> = G there exists a nontrival

group automorphism ¢ of G with ¢(H) = Hand ¢ # 1.
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As remarked previously, such ¢edG) which fix H have a

natural interpretation as automorphisms of XG iy which fix the
14

vertex identified with the identity. Hence, we immediately have the
following:
Theorem 6.1 Class I and Class II are disjoint.
The next result, and several more like it are similar in spirit
to some of the material of Chapter 3, classifying groups as they
do by their generators.
Theorem 6.2 If G is a non-abelian group, the following are
equivalent:
A. There exists a non-identity automorphism ¢ of G with
$p(x) = x or ¢(x) = x--l ¥YxeG

B. G is generated by a ,...,ar,b where

1

(i) b_la.b = a.—1 l<ic=<r
i i

(ii) A = <ai> is abelian

(iii) ak2 #1 for some k= 1l,...,r

(iv) a1 is of order 2m for some m
2 m

(v) b = al

Clearly then, groups satisfying B are in class II, and we note
that if A is cyclic, G is dicyclic of order 4m and if

n . : . .
also m= 2", G is a generalized quaternion group, each of

which must then be in class II, a fact first shown by Nowitz [28].
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The next theorem completely disposes of the case of the non-abelian
groups of order p3 for an odd prime p. (The fact that the

two given sets of generating relations provide all such groups

is proven for example by Hall [16, pp 50 ~ 52])

Theorem 6.3 If p is an odd prime and qp is generated by
elements a,b, and ¢ where either

2
(1) a¥ = = 1; b—lab ap+l or '

~
e
]
o)
It
o
o’
I
Q
e
I
=

ab = bac; ac = ca; bc = c¢b; p = 5,

3, G_ is in class

then GP is in class I. If in case (2) p b

II.
In his initial paper on the subject, Watkins [42] also showed
Class I is closed under direct product.

Theorem 6.4 If G, and G, are in Class I and neither equals

% ..
C2, then Gl G2 is in Class I.

The remaining results of this section were the product of joint
effort by Watkins and Nowitz [43,44].

Theorem 6.5 If the group G is given by G = <a,b: a =b =1;

b "ab = ak> where this gives the entire multiplication table
for G (so that |G|= rs, (r,k)=1l and ksEl(mod r)) then G is

in class II under each of the following conditions:

(1) k= 1 (mod r) (abelian groups)
(2) s=2,r=3,4,5and k = -1(mod r) (dihedral groups)
(3) s=4and k = -1(mod r) (generalized dicyclic group)
(4) G = <a,b: a8 = b2 = 1, bab = a5>
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Otherwise, G is in class T.
It is typical of the intricacy of Kanig's question that
although (1) through'(3) have already been demonstrated, the proof
of the last two assertions alone is quite lengthy, this being the
main reason that these results are presented here without proof.
These same authors present two more general results:
Theorem 6.6 Let the non-abelian group Gl be a cyclic extension

of a group G with [Gl:G] = 5. If G is in class I, so is

Gl.

Theorem 6.7 Let G be a non-abelian cyclic extension of an
abelian group L, and suppose (IGI, 6) = 1. Then G is in
class T.

In the language of this chapter we note that in‘chapter 2 we

showed that <. is always in Class II, in Theorm 4.3 that the
dihedral groups D eéDm are in Class II for m < 5 and in Class I

otherwise. Tt is also clear that the imprimitive subgroup E of
Theorem 3.4 is not in class I, because it is not regular. The work
of chapter 5 demonstrated that abelian groups are in Class I if they

n
are a direct product igl(cz)i i 2 5 and in Class II otherwise.

This is essentially where Konig's question stands today,
although there are some extensions to the work done here which have
not yet been mentioned. For instance, with suitable modifications,

the results of chapter 2 can be shown also to hold for directed
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graphs (see Heamminger [18,19]) and in particular for tournaments.
(see Alspach [2,3] Astie [4], Berggren [7], and Moon [27].) An
important exception is that the dihedral group is not contained in
the automorphism group of a tournament so that in general the results
of Chapter 3 will not be available in this case. However it does
seem that by modifying the definition of a 2~circulant, the work of
Chapter 3 could be extended to consider "k-circulants", with the
caveat that less is known about groups of degree np for n > 2.

Finally, we mention two conjectures which if correct would plug
a few "gaps" in the characterizations presented here. The first is
due to Watkins [42] and arises in connection with the material
summarized in this chapter.

Conjecture 1 Every finite group is either in Class I or in

Class II.
The second asserts that the characterization begun in chapter
3 can be completed in the same manner as that ~of chapter 2.

Conjecture 2 A graph X on 2p points is 2PPS iff it is a

2-circulant.
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APPENDIX I (Notation)

The order of a group, graph or set.

The automorphism group of a graph X.

A line or edge in a graph X Jjoining v
and w. We write [v w]e€X when this is
not ambiguous or [v,w]€E(X) if additional
clarification is necessary.

A cyclic permutation group generated by an
m-cycle. (not used abstractly)

The group of symmetries of the m-gon.
(not used abstractly)

A 1is a subgroup of B.
A 1is a normal subgroup of B.

The group of the nonzero elements of Zp
under multiplication.

z; / {1,p-1}

The two graphs are congruent, i.e. one is
a copy of the other.

The group generated by al,...,an.

a divides b

The complete graph on n points.

S is equivalent to S”.

A is isomorphic to B. (Used for groups
or graphs)

An automorphism of X restricted to a

subgraph Xk.
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XG,H The Cayley graph of G with respect to §.
Imn The image of a function n.

Sn The symmetric group on n points,

Ta,b A function defined by Ta,b(x) = ax + b
{(a,b) The greatest common divisor of a and b.
d’(X)x The subgroup & (X) which fixes the point x .

(-X) The complement of X.



APPENDIX II

Definitions From Graph Theory The term graph was implicitly defined
in the introduction. The following refer to certain characteristics,
types and properties of, or associated with, graphs.

Order The number of points in a graph.
Degree (of a point) The number of lines incident with a point.

Girth The length of a shortest cycle in a graph.

Regular of degree n Every point has degree n. When n=3 X is cubic.

Connected Between any two points of a graph, there exists a path
in the graph. '

Connectivity The least number of points whose removal results in
a disconnected graph.

Cyclically connected - of connectivity two.

Component A maximal connected subgraph of a graph.

Cutpoint A point whose removal increases the number of components
in a graph.

~

Trivial Graph Has one or more points but no lines.

Bipartite Graph The points of the graph may be seperated into two
sets so that each set induces a trivial subgraph of the graph.

Star A bipartite graph with all lines incident with one point.
Line Graph Has points representing the lines of an original graph
with lines joining the points which represent incident lines of the

original graph.

Spanning Subgraph A subgraph containing all the points of the graph.

Similar Lines There exists a ¢€ ¢X) mapping one line to the other.

The definition of a graph may be modified so as to give

direction to the lines. The resultant structure is a directed graph
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and its' lines are called arcs. If every pair of points is joined by
exactly one arc we call the graph a tournament.

Definitions and Theorems on Permutation Groups_and Abstract Groups.

The automorphism group of a graph is defined in the introduction.
The following terms and results are used freely in the text of this
thesis and are provided here for reference.

Order The number of elements in a group. The least power of a
permutation which yields the identity.

Degree The size of the object set on which a particular permuation
group acts (nontrivially)

Orbit Set of all points to which some fixed point can be mapped by G.

Transitive A group G is transitive on a set §} if for every
pair of points a,befl ¢eG¢ with ¢(a} = b.

Theorem AII-1 (Wielandt [45] p.8) 1In each permutation group

whose order is divisible by a given prime number p, there are
elements whose cycle decomposition contains a p-cycle.

Semireqular Group For every kel the subgroup of G which fixes
k is trivial.

Regular Group Any transitive semiregular group. Equivalently, a
transitive group whose order and degree are the same.

Regular Permutation All cycles have the same length.

Block A subset Y of the object set of G having the property that
YoeG ¢ (¥) eguals Yy or is disjoint with Y.

Primitive Group Has only one-point and 'QI—point blocks.

Imprimitive Group Has nontrivial blocks, the totality of those
conjugate to one particular block being referred to as a complete
block system.

Theorem AII-2 (Wielandt [45] p.13) If the transitive permutation

group G contains an intransitive permutation subgroup different



58

from 1, then G is imprimitive and the orbits of N form a

complete block system for G.

2 m -
Dihedral Group Any grouwp G = <s,t> where s =t =1 and sts =t

It is important to note that here dihedral groups are defined

abstractly and the groups Dm are included but refer to certain

specific dihedral groups.

Theorem AII-3 (Rotman [30] p. 92) Any group of order 2p is

either cyclic or dihedral.

Theorem AII-4 (Wielandt [45] p. 12) The length of a block of

a transitive group G divides the degree of G.

Theorem AII-5 (Wielandt [45] p. 8) In each transitive group

of degree n > 1 there is an element of degree n.

Theorem AII~6 Every regular primitive permutation group is

cyclic.

Proof: By AII-5 G contains an element t of degree n = |Q|
which must be regular, so of order n also. Now |<t>| =n
and <t> =G but IGI = n by reqularity so <t> =G and
G is cyclic.

Theorem AII-7 (Wielandt [45] p. 94) A primitive group of degree

n =2p (p prime) is singly transitive only if n is of the

form n = a2 + 1 for an odd positive integer a.

Theorem AII-8 (Scott [35]) In the above theorem, if a > 3,

a is not a prime.
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AII-9 Wielandt's construction [45 p.94] of a uniprimitive
group of degree 10.

"Let G = SSz be the symetric group on § ={1,2,...,5}. 1In
addition, let ! be the set of the 10 unordered pairs {a,b}
with a,bel and a # b. To each ge€G we assign in a one-to-one
manner a permutation E. on by~‘{a,b}§K= {ag,bg}. In this
way we have represented G faithfully as a permutation group
G or Q. G is not doubly transitive for there is no Eéa

which fixes {1,2} and takes {1,3} into {4,5}. On the other

hand, G is primitive since E&l 2} is maximal in G."
I’

Theorem AII-10 (Wielandt [45] p. 9} Every Abelian group
G transitive on { is regular.

Theorem ATI-11 (Kurosh [25] V.l p. 173) Every primary group

in which the orders of the group elements are bounded is a

direct sum of cyclic groups.

Direct Product of two groups A and B has elements (ai,bi)

where (al,bl)(az,bz) = (alaz, blbz)'
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