
CARDINALITY CONSTRAINED FACILITY LOCATION

PROBLEMS IN TREES

Robert Radu Benkoczi

B.A.Sc., "Politehnica" University of Timigoara, Romania, 1995

M.A.Sc., "Politehnica" University of Timigoara, Romania, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE O F

DOCTOR OF PHILOSOPHY

in the Sdioo:

of

Computing Science

@ Robert Radu Benkoczi 2004

SIMON FRASER UNIVERSITY

May 2004

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL ,

Name: Robert Radu Benkoczi

Degree: Doctor of Philosophy

Title of thesis: Cardinality constrained facility location problems in trees

Examining Committee: Dr. Ramesh Krishnamurti

Chair

Date Approved:

Dr. Binay Bhattacharya, Senior Supervisor

Dr. Pavol Hell, Supervisor

-

Dr. Tom Shermer, SFU Examiner

Dr. Arie Tamir, External Examiner

Department of Operations Research

School of Mathematical Sciences

Tel-Aviv University,

Rarnat Aviv, Tel-Aviv 69978, Israel

Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has

granted to Simon Fraser University the right to lend this thesis, project or

extended essay to users of the Simon Fraser University Library, and to

make partial or single copies only for such users or in response to a

request from the library of any other university, or other educational

institution, on its own behalf or for one of its users.

The author has further agreed that permission for multiple copying of this

work for scholarly purposes may be granted by either the author or the

Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain

shall not be allowed without the author's written permission.

The original Partial Copyright Licence attesting to these terms, and signed

by this author, may be found in the original bound copy of this work,

retained in the Simon Fraser University Archive.

Bennett Library
Simon Fraser University

Bwnaby, BC, Canada

Abstract

Operations Research is the application of scientific methods, especially mathematical and

statistical ones, to problems of making decisions. From the huge variety of real life applica-

tions, this thesis focuses on a particular class of problems for which the placement of certain

resources is in question. These tasks are referred collectively as facility location problems.

This dissertation is about algorithms to solve a fundamental problem in facility location,

the k-median problem.

The mathematical object used here in modeling the resources and their interactions

with the environment is a tree. Many other formulations are used in practice with the

k-median problem, but the case of trees is special because, (i) the formulation is very simple,

(ii) problems can be solved efficiently, (iii) efficient algorithms for problems in trees can be

used to derive approximate solutions for general networks (Tamir [102]), (iv) and efficient

algorithms for k-median problems in trees could lead to specific k-median algorithms for

classes of graphs less studied, such as the graphs with bounded tree-width. Using simple

techniques from computational geometry, we give the first k-median algorithm sub-quadratic

in the size of the tree when k is fixed, for arbitrary trees.

In the introduction, we give an overview of the main results known about the k-median

problem in general. The main ideas behind our approach are also illustrated. In Chapter 2

we present a decomposition of trees that is central to our methods. In Chapter 3 we describe

our approach for solving the k-median problem in trees and we give simplified algorithms

for three particular cases, the 3-median problem, the k-median problem in directed trees,

and the k-median problem in balanced binary trees. The following two chapters discuss two

generalizations of the k-median problem, the k-median problem with positive and negative

weights and the collection depots problem.

iii

For Carmen who waited so long

"When would you use it? pray, sir, tell me that."

-The Two Gentlemen of Verona, W. SHAKESPEARE

Acknowledgments

This thesis wouldn't have existed if it weren't for the help and support of those around

me. I would like to thank first my family and most of all, my beautiful, kind, and wise

Carmen who has helped my in every imaginable way. Only I know how vital is her love, her

friendship, her unmistakable laughter.

I am indebted to Sara and Peter, our special friends who welcomed me in their house

for such a long time. They have touched the lives of many international students with their

kindness and care, and they definitely have touched ours. To Moonmoon who has always

fed us good food and has surrounded us with warmth and affection. To Dada who believed

that I can write a thesis in one month and a half even when I doubted that.

I am thankful for David's friendship, David, the big one from QuBbec. For Ben's infinite

bag of linux and emacs tips, for Riz's jokes, for Qiaosheng's ideas, for Snezana. For all my

friends that I played squash with, I went to the movies with, I ate lunch and dinner with.

For Jenifer who proof-read my thesis, for Jane and Ian who always encouraged me.

I must thank Professor Tom Shermer from whom I took the Graph Drawing course in

my first year at SFU and from whom I learned how to read a paper effectively; for his

guidance and suggestions in my thesis proposal and defence. Professor Pavol Hell for his

wonderful graduate course on perfect graphs. Professor Arie Tamir who came for my defence

all the way from Israel at a time when he was most busy with teaching and exams; for his

ideas, observations, and corrections that have improved the quality of this thesis and opened

numerous directions for future research.

Finally, thanks are due to my advisor, Professor Binay Bhattacharya without whom I

would not be where I am today. Through his guidance and later on through his friendship,

he made the years I spent in graduate school be some of my best ones. Thank you all, for

adding to my strength and confidence as I continue on the road ahead.

Contents

Approval

Abstract

Dedication

Quotation

Acknowledgments

iii

List of Tables x

List of Figures xi

List of Programs xiv

1 Introduction 1

. 1.1 Definition of problems covered 2

1.1.1 Generalizations of the classical facility location problems 7

. 1.2 Brief characterization of the problems 9

. 1.2.1 Complexity of k-median and k-center 9

. 1.2.2 Vertex optimality of k-median 11

. 1.2.3 Approximation results 12

. 1.2.4 Final remarks 13

. 1.3 Thesis motivation 13

vii

. 1.4 Our collection of techniques 15

. 1.4.1 Dynamic programming 16

2 T h e spine decomposition of trees 2 1

. 2.1 The structure of the SD 23

. 2.1.1 SD binary search trees 25

2.1.2 Other tree decompositions used in the literature 29

. 2.2 Properties of the SD 30

. 2.3 Computation of the SD 34

. 2.4 Conclusion 38

3 T h e k-median problem in trees: algorithm UKM 39

. 3.1 The dynamic programming cost functions 39

. 3.2 Computation of the cost functions 43

3.2.1 Calculating functions OSCR() and OSCL () 44

. 3.2.2 Calculating function O B U ~ () 46

. 3.2.3 Calculating function IBUR () 48

3.2.4 Implementation of the recursive equations for the cost functions . . . 50

. 3.3 The compiexity of cost functions 53

. 3.4 The complexity of the dynamic programming algorithm 56

3.5 Solving special instances of the k-median problem 59

. 3.5.1 Directed trees 59

. 3.5.2 Balanced trees 61

. 3.5.3 Arbitrary trees for case k = 3 63

. 3.6 Solving the general instance of the k-median problem 71

. 3.6.1 Computing Copt(T(vi), j + 1) for any constant j 72

3.6.2 Analysis of the UKM algorithm for the k-median problem 74

3.6.3 Overview of the entire algorithm and implementation issues 76

. 3.7 Conclusion 81

4 T h e 2-median wi th positive/negative weights 83

. 4.1 Background 84

. 4.2 The MWD 2-median problem in trees 85

4.2.1 Computing the 2-median cost given a split edge 86

viii

4.2.2 Computing function IBUL () . 91

4.2.3 Improving the running time . 93

4.3 Solving problem WMD . 94

4.3.1 General algorithm . 96

4.3.2 Implementation of Case 1 . 98

4.3.3 Implementation of cases 2 and 3 . 100

4.3.4 Preprocessing phase . 104

4.3.5 Analysis of the WMD algorithm . 105

4.4 Conclusion . 107

5 The collection depots facility location problem 109

5.1 Notation and characterizations of the optimal solution 111

5.2 1-median collection depots problem . 114

5.2.1 Preprocessing . 118

5.3 lc-median collection depots problem . 119

5.4 Conclusion . 121

6 Conclusion 122

Bibliography 127

Index 135

List of Tables

1.1 Constant factor approximation algorithms for the metric kmedian problem . 13

6.1 Summary of problems solved and algorithm complexity for tree T and for

constant k . 123

List of Figures

1.1 Example of optimal solution for locating two facilities in a tree with unit

vertex weights and unit edge lengths; the facilities are shown as dark dots.

Case (a) 2-median. Case (b) 2-center . 6

1.2 Proving the NP-completeness of the continuous k-center problem 11

1.3 Concavity of the network distance from a moving point on an edge to any

givenlocationonG . 12

1.4 Recursive computation of a classic dynamic programming cost function . . . 17

2.1 Part of a tree (a) and its centroid decomposition (b) 21
2.2 T-----"-- / I \ 1 .

u l r r ~-;ulr;;rlt6 ~f & @ki6 tree d~coiiipCktkii. (&) ~ilpei-uodc?~ \ L,,I i l . OI I 1a.1.y

search tree. 25

2.3 A typical spine decomposition; spines are shown in thick lines, search trees as

thin lines and components are outlined by dashed lines; the numbers beside

spine vertices at the top-most spine give the number of leaves of T for the

corresponding SD component . 26

2.4 Illustration of variables from Program 2.1 . 28

2.5 Proof of height bound in the spine decomposition 30

2.6 Making a binary tree from an arbitrary rooted one 34

3.1 Subtrees of the input tree for which cost functions are defined; (a) big trees

(b) small trees . 40

3.2 (a) A spine vertex of degree one (a leaf of T), and (b) a spine vertex of degree

two . 44

3.3 A spine vertex of degree three . 45

3.4 An internal search tree node . 46

3.5 Part of a spine decomposition and the various subtrees and vertices used . . . 48

3.6 Evaluating term FoBu . 51

3.7 Computing cost functions in a balanced binary tree 62

3.8 Function IBUR() represented as a set of points in two dimensional space,

and an interpretation of the cover function . 65

3.9 Solving the 2-median subproblem when the split edge is towards the root . . 66

3.10 (a) Representation of function I B U ~ () as a point in distance-cost space . (b)

Updating the lower convex hull after adding function OSCL() 72

3.11 Computing the generalized cover function when jh-l split edges are chosen

inT,,-, . 73

3.12 (a) Computing the generalized cover functions from function I B U ~ (X) . (b)

The data structure that stores generalized cover functions in distance-cost

space; points eliminated from C appear black 75

3.13 Three lists of generalized cover functions Kh-l (). Kh-2 (). and K h 4 () 78

4.1 Case illustrating the vertex optimality of MWD 2-median problem 85

4.2 Computing the 2-median MWD cost for a given split edge 87

4.3 Spine nodes that determine subtree TCfv;) . 88

4.4 Computation of the 1-median cost when x* E Tlj 89

4.5 An internal search tree node . 91

4.6 Computing function I B U ~ () for nodes on the spine 92

4.7 Optimal 2-median WMD solution on an edge of the path 95

4.8 Illustration of cost functions IBR() , I B ~ (), and IS() 98

4.9 Computing the cost for the second median for Case 1 99

4.10 Computing the cost of the two medians for Case 3 101

4.11 Finding the minimum of the sum between a piecewise linear function and a

linear function over an interval A, . 102

4.12 An OL tree . The nodes contain lists of convex hull points and indices in

the complete convex hull list that identify the bridge . Bridges are shown by

double lines, drawn differently if they belong to different levels in the OL tree 103

4.13 Representation of interval A, in a segment tree 103

5.1 Example of trips from facilities yl and ya to client ci 111

5.2 Vertex optimality for the k-median collection depots problem 113

xii

I

5.3 An optimal 2-median that split the clients into three connected sets. each

served by one facility . 114

. 5.4 Computing the cost of the 1-median when v is the facility 115

. . . . 5.5 Obtaining the sorted trip distances for all vertices in total 0(n2) time 119

...
Xlll

List of Programs

. A typical SD traversal 29

Recursive procedure to construct a balanced binary search tree over a given

spine . 36

Construction algorithm for the spine decomposition S D (T) 37

Main steps of the dynamic programming algorithm for solving the k-median

problem in trees . 43

. Main steps of the improved k-median algorithm 58

Algorithm for computing the optimal 3-median of an arbitrary tree 70

. Computing the generalized cover functions 74

'l'he dynamic programming algorithm that solves the k-median problem in

trees . 80

. Main steps of the 2-median MWD algorithm 91

Algorithm for solving the 2-median MWD problem with positive/negative

. weights 95

Main algorithm for solving the WMD 2-median problem 97

. Implementation of Case 1 100

. Implementation of cases 2 and 3 104

. A modified algorithm for cases 2 and 3 106

Algorithm to solve the 1-median collection depots problem in trees 117

xiv

Chapter 1

Introduction

To organize an economic process so as to maximize efficiency is a fundamental problem that

industrial engineers and economists face every day across the world. Many different types of

problems exist depending on the activities being optimized. There are the so called facility

location problems where the goal is to compute an optimal placement for certain objects,

production plants or other facilities, relative to the position of a set of existing objects,

warehouses or clients of some sort, with which the former must interact. The interaction

comes at a price which depends on the distance between objects. Other problems seek an

optimal scheduling of resources given a set of constraints like in crew rostering for airline

companies. A large number of optimization problems arise in inventory and production

management, quality assurance, etc., or even in activities indirectly linked to production
I

such as optimal routing of data in computer networks, communication protocols, and so on.

The methods used in solving all these problems are diverse, spanning different fields from

computer science, applied mathematics, biology, and physics. In this thesis we focus on a

specific facility location problem called the k-median problem in trees. We propose a set

of simple techniques inspired from computational geometry which are quite powerful in the

setting of optimization problems in trees. For the k-median problem, we have designed the

first algorithm in almost ten years which is different from the usual dynamic programming

approach by Kariv and Hakimi [67] and Tamir 1991. The 1996 paper of Tamir 1991 considers

a more general k-median objective function which accommodates set-up costs, and proves a

tighter bound on the running time, but the algorithm is essentially similar to that of Kariv

and Hakimi. Results similar to ours were described in the Ph.D. thesis of Rahul Shah 1921,

for several optimisation problems related to k-median. The problems solved by Shah use a

CHAPTER 1. INTRODUCTION 2

more general cost function than our k-median problem, but they are not constrained by the

cardinality of the set of facilities as in our case. In general, cardinality constraints are more

difficult to handle.

We argue that our techniques can be used on other optimization problems with success.

As example, we have studied two generalizations of the k-median problem that were recently

proposed to the operational research community, the mixed obnoxious facility location prob-

lem and the collection depots problem. In both cases, we obtain algorithms with improved

running time.

In the following sections, we will discuss the importance of the results obtained and

the ideas that have motivated our present work. We will start by defining the k-median

problem and the two generalizations studied, then we will introduce part of the notation used

throughout the thesis. We will briefly review some of the properties of the k-median problem

that illustrate its hardness, and we will conclude, in Section 1.4, with an overview of the

techniques used to obtain our results. Among these, an important feature is preprocessing

the input tree into a data structure called the spine decomposition which is then used to

guide the computation of several relevant functions associated with subtrees of the given tree.

The structure of the spine decomposition, its properties, and the construction algorithms

Ere Ci_Pf2ilPd ~ z h ~ ~ t ~ ~ 2.

1.1 Definition of problems covered

Facility location problems deal with the placement of one or more facilities with respect

to a set of clients so that certain economic criteria are satisfied. In most situations, the

ntention is to minimize the cost associated with the service flow between facilities and

:lients, the cost being dependent on distance. Sometimes this cost is viewed as profit, in

vhich case the goal is to maximize it. In practice, such problems occur in urban planning,

ndustrial and computer engineering, data mining, vehicle routing, financial planning, etc.

I few examples of location problems are the optimal placement of emergency stations in

?arse rural areas, location of toxic waste recycling depots in dense urban areas, location

F plants in a transportation system to minimize production costs, VLSI design, clustering

3plications in data mining, etc.

The k-median problem is a particular type of facility location problem among several

,riants. Depending on the function used as cost, we have:

CHAPTER 1. INTRODUCTION

L

k-median (or min-sum) problems. The goal is to place k facilities to minimize the

total service cost for all clients.

k-center (or min-max) problems. The goal is to locate k facilities to minimize the

service cost of the most expensive client.

k-cover problem: One needs to select k facilities to maximize the total profit, where

each client can only be served by a facility placed within a certain service radius.

k-facility pcentrum problem. This is a generalization of median and center problems

in which the optimum set of k facilities is to minimize the sum of the p largest service

distances.

uncapacitated facility location (UFL) problem. The question is to find the location of

an appropriate number of facilities that minimize the total service cost and the total

cost of opening facilities.

capacitated facility location (CFL) problem. It is the same as UFL except that each

facility can serve only a given number of clients.

A!! thzse -cxiar,ts kit the 1 s t ? i < ~ impose a c o n s t r a i ~ t o n t he x m b e r o f facilities t ha t &re

allowed to be located. In the case of UFL and CFL, a cost is paid to locate a facility at any

given location, and thus one cannot chose to open an arbitrarily large number of facilities

in the optimal solution.

The setting in which these problems are formulated is also important. There are prob-

lems defined in the plane where the clients are modeled as points or other geometric objects

and the cost depends on various distance metrics which may also consider obstacles. Other

instances are defined in graphs where vertices represent clients and potential facility loca-

tions. In a more general setting, the edges of a graph can be viewed as an infinite set of

locations where facilities and sometimes clients can be placed. This model is called network,

to distinguish it from a graph. The service cost depends on the length of the shortest path

between locations in the network. The following paragraphs introduce the basic concepts

used in this thesis.

Our notation follows the style of Reinhard Diestel's book on graphs [35]. A directed

graph G = (V, E) consists of two sets, V called the set of vertices of G, and a set of ordered

pairs of elements from V, E c V x V, called the set of edges of G. We denote the cardinality

CHAPTER 1. INTRODUCTION 4

I

of V by n. The set of vertices and edges of a graph G is referred to as V(G) and E(G)

respectively. We may not always distinguish between a graph and its set of vertices or edges.

For example we might speak of a vertex v E G and an edge e E G. Given an edge uv E E,

we call u its source and v its sink. An undirected graph G = (V, E) is a graph where the

elements of E are unordered, i.e. uv E E 3 vu E E. In this case u and v are called adjacent

vertices or neighbors. A vertex v E e is called incident to edge e; then e is an edge at v.

A path n(vl, vn) is the graph

~ (~ 1 , v n) =({v1,~2,. . . vn), {v1v2,'Wv37 . . .vn-~vn))

={vl, up, . . . vn) (to relax the notation, we may omit the edge set),

where vl, 712, ... vn are distinct. A cycle on the same set of vertices is graph

where "U" denotes the union of two graphs as the union of their vertex and edge sets. Here,

only the edge set of the second graph is relevant. A tree is a connected, undirected graph

that has no cycle as subgraph. A rooted tree is a tree T = (V, E) with a special vertex r~

called the root and a function p : V -t V called the parent f i ~ n c t i o n so that,

- Vuv E E, u = p(v) or v = p(u) but not both, and

- p(rT) is undefined.

Vertex v is also called the child of p(v). A tree is called a binary tree if every vertex has at

most two children. A vertex that has no children is called a leaf. If u, v E V are such that

u = p o . . . o p(v), then u is an ancestor of v and v is a descendant of u. Here, operation o

denotes the composition of two functions. In particular, r~ is an ancestor for all vertices in

the tree. Consider all paths that start at root r~ and end at a leaf. The number of vertices

of the longest path (the path with the largest number of vertices) defines the height of the

tree.

In our problems, graphs are augmented with two functions that associate a weight with

each vertex and a length with each edge,

w :V -t R+, and 1 :E -t R+.

The length 1 (n) of a path n is the total length of all the edges in the path. The length

function defines a distance in the graph as the length of the shortest path between two

CHAPTER 1. INTRODUCTION 5

,

vertices. If P(u, v) = { ~ (u . . . v) ~T(u, v) C G) is the set of all paths in G between vertices u

and v, then the distance d(u, v) between u and v is

d(u,v) = min Z(n).
~ € P (u , v)

We define the network NG of graph G as an extension of G where every edge uv E G

corresponds to a closed interval [uv] E NG. A point (or location) x can be chosen on edge

[uv] in which case we can refer to the edges [ux] and [xu]. We can extend the edge length

function on the network too, such that l(uv) = 1 ([uv]) = l([ux]) + 1 ([xu]). Between any

two locations x and y in the network, we define as distance the length of the shortest path

between x and y. In the remainder of this thesis we might not distinguish between a graph

and its associated network. It will generally be clear from the context which object we are

referring to.

Before we formulate the k-median and k-center problems in graphs, we define two sets

S and D of points from NG, informally the set of supply respectively demand locations.

Set S contains all locations in NG where a facility can be placed, and D is the set of client

locations. Most frequently D = V. Using the supply and demand sets above, the k-median

and k-center problems are defined as to compute the following values,

for k-median: min { x w (v) min d(v, I))
fits 2€Fk
IFkI=k

for k-center: FkCS min {maxw(v) V E D min d(v,x)).
x€Fk

IFkI=k

The k-median problem is also referred to as the min-sum problem and the k-center as the

min-max. Set Fk contains the locations at which the k facilities are placed and the cost of

providing service from a facility to a client is modeled by the weighted distance between the

two locations.

Sets S and D allow us to treat the k-median and k-center problems in a more general

fashion by substituting S and D with either V (we restrict the supply or demand set to

the vertices of the graph) or NG (we allow supply or demand locations to sit on the edges

of the network). We can use the positional notation of Tamir and Zemel [I031 to refer to

various versions of the k-median and k-center problems. The notation consists of a triple of

symbols, for example V / V lk, which identifies the supply set, demand set, and number of
(S) (D)

facilities.

CHAPTER 1. INTRODUCTION

L

Figure 1.1: Example of optimal solution for locating two facilities in a tree with unit vertex
weights and unit edge lengths; the facilities are shown as dark dots. Case (a) 2-median.
Case (b) 2-center

It should be noted that for the kmedian problem, versions V / V /k and NG/ V /k are
(S) (Dl (S) (Dl

equivalent. An optimal k-median solution always exists in which all facilities are located at

the vertices of the network even if they are allowed to sit on edges. This property, referred

to as the vertex optimality of the k-median, was shown by Hakimi [51] and is reviewed in

Section 1.2. Evidently, this is no longer true for the k-center problem (consider k = 1 and

the simple graph ({u, v), {uv))).

This thesis describes new algorithms for the k-median problem in rooted trees [l l] .

Three special cases are also considered, namely the 3-median problem in trees, the k-median

problem in balanced binary trees, and the k-median problem in directed trees [13]. In these
. 1 . Z ~ C C ~ ~ C G C S , FiB PTGPGSe siiX&r dg ix i t h i s ~ i t h & ti&t~;i. iiDpBT b6"iid "11 the I 111111111~ IAIK

than our general k-median algorithm. The class of balanced binary trees consists of trees

with height logarithmic in the size of the tree as n tends to infinity. In directed trees, any

facility is allowed to serve only clients for which it is an ancestor. The k-median problem

for directed trees was introduced by Li et al. [74] as a mathematical model for optimizing

the placement of web proxies to minimize average latency. These results are described in

Chapter 3.

As mentioned earlier, we can use similar techniques to solve other facility location prob-

lems in trees. In this thesis we choose two generalizations of the k-median and k-center

problem in trees, the mixed obnoxious median problem and the collection depots median

location problems. In the following section we define these two types of problems rigorously

and identify the instances solved by our approach.

CHAPTER 1. INTRODUCTION

1.1.1 Generalizations of the classical facility locat ion problems

The mixed obnoxious median problem is a combination between the classic median location

problem and the so called obnoxious facility location problem. As the name suggests, obnox-

ious facility location deals with the placement of a set of facilities that have an undesirable

effect on clients and that should be placed as far away as possible. One can view such a

problem as a usual k-median instance in which all clients are assigned a negative weight.

The mixed obnoxious k-median facility location problem is then a k-median problem where

some clients have positive weight while others have negative weight. The idea of mixing

clients with positive and negative weight appeared in the work of Burkard et al. [22] and it

reflects more accurately the practical situations encountered in real life. For example, the

location of an industrial waste collection center is obnoxious for the residents in the area

but desirable for the industries using it. In this case, one can assign negative weights to

the locations containing residential complexes and positive weights to those with industrial

designation.

The presence of vertices with negative weight adds to the complexity of the k-median

problem. In fact, there are two possible interpretations of the objective function to be

minimized,

min { x w (v) min d(v, x) } and
F k z s 2EFk
IF+k "ED

min { x min w (v)d(u, x)
FkCs S E F ~
IFkI=k vED

In the first version, every client in the demand set is served by the closest facility, irrespective

of the sign of its weight. We refer to this problem as the WMD k-median because of the

order in which w(v), min, and d(v, x) appear in (1.1). In the second version of the objective

function, called for obvious reasons MWD, a client is served by the farthest facility if it

has a negative weight. At a first glance it seems that problem WMD is identical to the

classic k-median with positive weights, but in fact it is much more difficult. Burkard et

al. [21] showed that if problem NG/ V /k is considered, the optimal median set might not
(S) (D)

be a subset of the vertices of the tree. In contrast, problem MWD is easier, and the vertex

optimality property holds. Burkard et al. solved the 1-median problem for trees and cacti in

linear time [22]. A cactus is a graph that can have cycles, but any two cycles have at most

one vertex in common. In a following paper [21], Burkard et al. considered the 2-median

CHAPTER 1. INTRODUCTION 8

problem in trees for both WMD and MWD variants, for which they proposed algorithms

respectively cubic and quadratic in the size of the tree.

In this thesis, we improve the known results on the 2-median WMD [lo] and 2-median

MWD problems [12]. For the general case when k > 2, no algorithms have been proposed

to date. It is very likely that a similar dynamic programming approach gives a polynomial

algorithm in the general case too, however we do not tackle this problem here. The com-

ponents that are served by the same facility interact in a more complex way than in the

case of positive weights, and solving all issues is not straightforward. Details are given in

Chapter 4.

The second generalization of the k-median and k-center problems has a vehicle routing

flavor. We are given a set of locations where one of two types of objects are already placed,

clients or collection depots. The facilities house a number of vehicles used for serving clients.

We are asked to find a placement for one or more such facilities so that the following scenario

is optimized.

To serve a client, a vehicle starts at the facility, visits the client (to collect garbage, for

example), then stops at a collection depot (to dump the garbage), and finally returns

to the originating facility.

All clients must be served.

The objective function to optimize is:

- Center problem: to minimize the cost (weighted distance) of the most expensive

tour.

- Median problem: to minimize the total cost (weighted distance) of all tours.

Consider tree T whose vertices are now given as the union of two sets not necessarily dis-

joint, C the set of client locations, and D the set of collection depots. Let C = {cl, ca . . . c,,}
and D = {hl, 62 . . . 6,,), and n = JC U Dl. Every client is associated with a positive weight

w(ci). Given the location y of a facility in NT, we denote by r(y, ci) the weighted distance

of the route serving client cil

r(y7 ci) = ~ (c i) (d(y. ci) + min be D {d(ci, 6) + d(6, y))) .

CHAPTER 1. INTRODUCTION

Thcn, the k-median and k-center collection depots problems are expressed by

min { $;r(y,c)} and min { max min r (9, c) } respectively
Fk GNT F ~ C N T ciEC @ ? k
1pkl=k ciEC 191=k

This problem is the round-trip collection depots problem from [I041 in which the set of

depots is available to all clients.

Most of the results published regarding the collection depots problems characterize the

optimal solution in planar settings, graphs, or trees [37, 16, 151. A few heuristics for the

median problem in general graphs also exist. For the center problem, Tamir and Halman

[104] give several approximation algorithms for the metric problem, and exact algorithms for

1-center in graphs and k-center in trees. In this thesis, we look at 1-median and k-median

problems in trees. Our results are discussed in Chapter 5.

1.2 Brief characterization of the problems

This section describes in a condensed format a few results that are indicative of the hardness

of k-median and k-center problems in graphs. Since the classical k-median and k-center

facility location ~ r n h l ~ m s Rre ~ p y j a ! cay^ of rnlleqtifin r l _ ~ p t ~ . ~ i ~ d ~ h f i ~ i f i l ~ Ir\&in~?

problems, one can conclude that the complexity of the later problems is at least as that of

the former.

1.2.1 Complexity of k-median and k-center

This section reviews the complexity results for two important problems in facility location.

Notions regarding complexity theory are not summarized, but can be found in the books by

Meyr et al. [81], Bovet and Crescenzi [19], Garey and Johnson [42], or Papadimitrou [85].

Formulating the k-median as a decision problem, Kariv and Hakimi [67] showed that

it is NP-complete even when the input graph is planar with unit edge lengths and with a

maximum degree equal to 3. The proof uses a simple transformation from the dominating

set problem which was shown to be NP-complete by Garey and Johnson in [42]. For the

geometric version where clients are points in the plane and facilities are to be located

anywhere so that to minimize the total Euclidean or rectilinear distance, the kmedian and

k-center are still NP-complete. This was shown by Megiddo and Supowit in [go].

CHAPTER 1. INTRODUCTION 10

Definition 1.1 (k-median (k-center) decision problem). Given a graph G = (V, E), a

positive integer k, and a real value c, does there exist a set of vertices Vk c V with IVkI 5 k

such that the cost of the k-median (Kcenter) problem with Vk as facilities is no more than

c?

It is obvious that both Ic-median and k-center are in the class NP of problems because

for a set of facilities given as a certificate, it is easy to compute in polynomial time the cost

of the k-median or k-center and compare it with c. We consider this fact established and

we will not mention it again in our following discussion about computational complexity.

Definition 1.2 (dominating set problem). Given a graph G = (V, E) and a positive

integer k, does there exist a set Vk c V with IVkI 5 k such that each vertex of G is either

in Vk or is adjacent to a vertex in Vk? IF the answer is "yes", Vk is called a dominating set.

Theorem 1.1 (Kariv and Hakimi [67]). The k-median problem is NP-hard even i n the

case of a planar graph of maximum vertex degree 3, whose edges have unit length.

Proof idea. Assume all edges of the graph have unit length. A dominating set for G of

cardinality k exists if and only if the cost of the optimal k-median of G is n - k, where
,- -, -

r? -- I !/ ;. ~ r , t h t c s e , the sst sf me$:acs :s alss a dcm:r,at:cg set k r C'. L1

A similar result can be established for the center problem, the reduction being done

again from the dominating set. Both types of center problems, V / V /k called the discrete
(S) (Dl

k-center and NG/ V /Ic known as the absolute problem, are NP-complete.
(S) (Dl

Theorem 1.2 (Kariv and Hakimi [66]). The discrete k-center problem is NP-hard even

i n the case of a planar graph of maximum vertex degree 3 with unit edge length and vertex

weight.

Proof idea. The proof follows immediately from the observation that a dominating set of

size less than k exists if and only if the radius of the optimal k-center solution is at most

1. 0

Theorem 1.3 (Megiddo and Tamir [79]). The NG/NG/k center problem is NP-hard
(S) (D)

even in the case of a planar graph of maximum vertex degree 4 with unit edge length and

vertex weight.

CHAPTER 1. INTRODUCTION

Figure 1.2: Proving the NP-completeness of the continuous k-center problem

Proof idea. Consider graph G = (V, E) for which the dominating set problem must be

answered. From G construct graph G' = (V', El) by adding a vertex v' for every vertex

v E V and making v' adjacent only to v (see Figure 1.2). Every edge in G' has length 1.

Then, one has to show that a dominating set of size k exists in G if and only if the optimal

k-center for G' has a cost of at most 2. Clearly, a dominating set of size k in G determines

directly in G' a k-center of cost exactly 2. For the converse, consider a set of k centers whose

radius is at most 2. Then, the longest path that must be covered by any center is only of

type (u'uvv'). Therefore, moving centers to their closest vertex from V will not increase the

k-center cost over 2 and would directly give a dominating set of size k for G. 0

Both k-median and k-center problems are no longer NP-hard when either k is considered
m n n f o n f nr ;$ tho innr.+ nrn trnnm :-tnr-,nl mrnrrLn nr n:-n..ln, ,,n-Ln TP 1.. :, ---,C,.-L
,,,-UVW-AY, LA VI*V U&L_ICIV ULV YLUUU, I I I V U I V W L ~ + L U ~ _ I I I U , "I ~ I I ~ U I L I I I cub ~\1a~lILo. I1 I% lo bUl1ullallll. - -

a polynomial brute-force algorithm can look at all possible subsets Vk of cardinality k of

vertices (there are (k) E O(n9 possibilities), can compute the objective function for each

placement, and can retain the one with minimum cost. For the special types of graphs

mentioned above, the distance function has specific properties that yield polynomial time

algorithms for most location problems. In the following section some of these properties are

reviewed.

1.2.2 Vertex optimality of k-median

An important property of the optimal solution for k-median is that the facilities may be

placed only at the vertices of the network, even if locating facilities on edges is allowed.

This was proved by Hakimi [51].

The argument comes from the way distance to a vertex varies from a point moving

continuously on an edge. Consider network edge e = [uv] and a function f, : [0, l(e)] -t [uv]

that defines the moving point on e such that d(u, f,(a)) = a. Let x be an arbitrary vertex

of G. Then the distance from x to the moving point d(x, f,(a)) is a concave function of a

CHAPTER 1. INTRODUCTION

I

Figure 1.3: Concavity of the network distance from a moving point on an edge to any given
location on G

(see also [70] for a good exposition of the properties of network distance in general graphs

and trees). Concavity of the distance is caused by the presence of two possible routes that

could be taken by the shortest path from f,(a) to reach x, one through u, the other through

v (see Figure 1.3). Since the objective function of the k-median problem is a summation

of weighted distances with positive weights, facilities located at the vertices of the network

can achieve the minimum median cost.

1.2.3 Approximation results

Because of the NP-completeness of k-median and k-center problems in general graphs, a

significant part of the research has been focused on finding good approximation algorithms.

Unfortunately, Lin and Vitter [75, 761 showed that approximating k-median is as hard as

approximating dominating set and set cover, and therefore, it is unlikely that there exist

constant factor approximation algorithms for both problems. More details regarding the

approximability of set cover can be found in the work of Feige [38] and Meyr et al. [81].

When the service cost between pairs of locations satisfies the triangle inequality, constant

factor approximations are possible. Several constant approximation algorithms were recently

published. Table 1.1 gathers some of these results. There, n represents the number of

vertices, m the number of edges, L the value of the largest number from input, and p I k

is a positive integer chosen by the user.

For the k-center problem, the situation is similar. If the pairwise service cost does not

satisfy the triangle inequality, Hochbaum [59] showed that constant factor approximations

are not possible. When the triangle inequality is satisfied, an approximation factor of 2 is

the best one can hope for both in unweighted [46, 60, 63, 861 and weighted [87, 861 cases.

CHAPTER 1. INTRODUCTION

Approx. factor Run. time Reference

6 0 (n 2 log(n(L + log n))) Jain, Vazirani [64]
4 0(n3> Charikar, Guha [23]
12 + o(1) O(m> Thorup [I061

2
3 + , o(np) Arya et al. [6]
E > 0 (planar) 0(~0('+;) 1 Arora et al. [5]

Table 1.1: Constant factor approximation algorithms for the metric k-median problem

1.2.4 Final remarks

The previous paragraphs give an overview of k-median and k-center problems in general. It is

interesting to notice that in terms of their complexity, both problems are the same. However

k-median seems to be easier to solve because the candidate set of optimal facilities for

k-median is just the vertex set, whereas for k-center, this set is more complex. Surprisingly,

the algorithmic results, including the performance of the approximation algorithms, seem

to indicate otherwise. Perhaps this is due to the duality between center and cover problems

which is exploited in many algorithms for the center problem. A similar duality between

cover and median problems can be formulated too, but at the expense of increasing the

size of the cover problem quadratically 1681. Recently, Demaine et al. [34] proved that

the unweighted k-center problem on planar graphs is fixed parameter tractable [36] when

parameterized by the number of facilities k and the cost (radius) of the solution. This means

that there is an algorithm with a running time that depends on two factors. One factor is

polynomial in the size of the input graph and the other is exponential in k and the value of

the radius. As a result, the k-center problem can be solved efficiently on large planar graphs

provided the number of facilities and the value of the radius are small. It is not known yet

whether the k-median problem has a similar behaviours or not.

1.3 Thesis motivation

At the beginning of this thesis we mentioned that our results relate to the k-median facility

location problem for trees and two generalizations, the collection depots and the mixed

obnoxious facility location problems. Our choice of problems is motivated both by practical

and theoretical concerns.

From a theoretical point of view, we were are able to design a different algorithm for

CHAPTER 1. INTRODUCTION 14

I

a fundamental problem in optimization, the kmedian problem in trees. As mentioned by

Tamir et a1.[102], k-median algorithms for tree networks are useful in deriving approxima-

tions for k-median problems in general graphs. In addition, we believe that our result also

advances the research towards finding ways to exploit the special structure present in graphs

that have not yet been considered for the k-median and other facility location problems.

An example are graphs with bounded tree-width (partial q-trees) [89] which have a con-

figuration that resembles a tree to some extent. Many optimization problems have been

successfully solved on such graphs by exploiting this resemblance, however few results in

the same direction are known for the k-median problem. Some contributions concern opti-

mization problems in partial q-trees that are related to k-median. These might be used as

starting points for research on median problems in such special graphs. We mention here

the work of Gurevich and Stockmeyer [49] who designed an algorithm for the continuous

minimum cover problem whose running time is proportional to the number of edges of the

graph and exponential in the value of a parameter that measures how different is the given

graph from a tree. In partial 2-trees, Hassin and Tamir [55] give an 0(n4) algorithm to

solve the uncapacitated facility location problem and an O(n log3 n) for selecting the k-th

longest path. The later procedure can be used in an algorithm to solve the k-center prob-

b m c r n n n ~ ------ - --+- nnri Sinrin-'ic'ap* ------A- --- qp,;,:a 2: ,tur,czpc:t~t,tce inci!;,tjr locstion i;rob:ems

and propose an 0(nq+2) algorithm for partial q-trees. They also study a more general dis-

tance function in a graph called p-cable distance determined by the total length of p vertex

disjoint paths between two vertices. Chaudhuri and Zaroliagis [25] consider shortest path

queries in partial q-trees, and give an algorithm that answers any query in a(n) time af-

ter linear-time pre-processing (a(n) is the inverse Ackermann function). Designing efficient

k-median algorithms for partial q-trees might also reveal information regarding the param-

eterized complexity of the k-median problem, an issue neglected until now. Parameterized

complexity was pioneered by Downey and Fellows [36] to supplement the results of classi-

cal complexity theory. The motivation behind parameterized complexity comes from the

observation that certain problems deemed hard by classical complexity theory can actually

be efficiently solved, even for large instances, as long as some other parameters are small

in size. An example of such a situation is given by Integer Programming, which can be

solved in polynomial time if the number of variables is fixed (see Lenstra [72]), or by Linear

Programming solved in linear-time if the dimension is fixed (see Megiddo [78]).

Our algorithm is also suitable in practice. It is not too difficult to implement since it

CHAPTER 1. INTRODUCTION 15

deals mostly with the recursive computation of cost functions and the data structures used

are standard. In addition, our algorithm is flexible enough that it can also be implemented

with other decompositions of trees, even with the centroid decomposition although the

performance is affected in this case. Unfortunately, the bound on the running time of

our algorithm is exponential in k, whereas the classic k-median problem has a complexity

of 0(kn2) for variable k. However, a conjecture by Chrobak et al. [28] states that the

size of the cost functions handled by our algorithm is linear in the number of vertices of

the subtrees for which the functions are defined. If true, this might lead to designing a

sub-quadratic algorithm that is much more efficient, with a performance perhaps not even

exponential in k for weighted arbitrary trees. There is strong indication that the conjecture

is true. Tamir [loll mentioned an unpublished result by Rahul Shah who designed a sub-

quadratic k-median algorithm for un-weighted balanced binary trees with a running-time of

0(k2n log n) where k is variable.

1.4 Our collection of techniques

The k-median problem has been a subject of study for several decades. In general, it is NP-
L,...A f-,.,. C--+:-- I '3 I \ L.-A ---I- --- ~ 1 - - ! .----- L 1 . A

. . , .,1

I I a A u [nbb U c b u l u u I . Y . l ! . uub wlltj l l but I l l p u b ~ I C L ~ I I In uey i ~ c ~ ; y r ~ c ~ r r ~ r i i l Lrrr~r i i l ~ (l l ~ l l , l l l l l h

are possible. Kariv and Hakimi in their seminal paper on facility location [67] gave an

0(lc2n2) algorithm based on dynamic programming. Hsu proposed a different algorithm with

complexity 0(kn3) [62], but later on Tamir [99] explained that the dynamic programming

algorithm has a tighter bound of 0(lcn2) on the running time.

When k 5 2 more efficient algorithms exist. For the 1-median a linear time algorithm

was proposed by Goldman [44] in 1971. A characterization of the 1-median was given

independently by Sabidussi [91], Zelinka [110], Kang and Ault [65], and Kariv and Hakimi

[67]. They showed that the optimal 1-median of a vertex weighted tree coincides with the

w-centroid of the tree. The w-centroid is a vertex v E V such that the total weight of the

subtree rooted at any of the neighbors of v has no more than half the total weight of the

tree. This property turned out to be very important for the algorithms that tackled the

case k = 2 later on.

For the 2-median Gavish and Sridhar [43] designed a method with a running time of

O(n log n) based on a complex data structure of Sleator and Tarjan [97] for maintaining

a collection of disjoint trees. A simpler algorithm with the same complexity was recently

CHAPTER 1. INTRODUCTION 16

proposed by Breton [20]. It uses a tree decomposition data structure that allows updates of

the optimal 1-median solution of any subtree of the original tree in logarithmic time. Breton

[20] also showed that a linear time algorithm for the 2-median is possible if the tree edges

are of the same length or if the vertex weights are sorted. To achieve such a performance,

additional properties of the relative placement of the two optimal medians in a tree were

used. These properties had been studied by Sherali and Nordai [96], and Mirchandani and

Oudjit [83]. Auletta et al. [7] proposed a linear time algorithm for the 2-median problem

in a tree in general, but unfortunately their analysis was flawed. It seems that the quest to

find a linear time algorithm for the 2-median problem in general is very difficult so perhaps

a running time of O(n log n) is the best one can hope for. However, for any other values of

k, no specific algorithms are known.

In contrast, sub-quadratic algorithms for the uncapacitated facility location and for

the minimum cost coverage problems in trees were recently proposed by Shah and Farach-

Colton [93]. Their solution is based on a modified dynamic programming formulation called

undiscretized dynamic programming, which first appeared in a paper by Shah, Langerman,

and Lodha [94], for solving the problem of placing filters in a multi-cast tree. Unfortunately,

the authors of [93] were unable to extend their approach to solving the k-median problem

b p c s ~ e cc~Jid :h_~z& <& snr&r,ailty ccr,stra:r,t sr, fzc:!:t:cs. '15 :!!ustratc the

idea behind undiscretized dynamic programming, we will review the basics of the k-median

algorithm as formulated by Tamir [99]. Then we will describe how we avoided the difficulties

of Shah and Farach-Colton in our sub-quadratic algorithm for the k-median.

1.4.1 Dynamic programming

Before we proceed with our description of the algorithm, we need to introduce some termi-

nology used throughout the thesis. We always work with a binary tree T = (V, E) rooted

at vertex r~ and having positive vertex weights and edge lengths, as defined in Section 1.1.

If the tree is not binary, it can be transformed into a binary one by adding a linear number

of vertices and edges with zero weight as in Tamir [99].

Let M = {ml, mz, . . . mk) C V be a set of k medians in T. Every vertex v is closest

to one or more vertices from M. Let V, C V be the set of vertices closest to a particular

mi E M, ties being broken in such a way that V, stays connected,

= {v E V : d(v, mi) = min d(v, rnj)}. m j E M

CHAPTER 1. INTRODUCTION

Figure 1.4: Recursive computation of a classic dynamic programming cost function

We say that any vertex v E is covered, or served by mi. Sets V, partition the tree in k

connected components separated from each other by k- 1 edges called split edges. Moreover,

mi is the 1-median of the subtree induced by V,. Thus the problem of finding an optimal

set of k medians can also be formulated as the task to find an appropriate set of k - 1 split

edges.

The basic idea behind dynamic programming algorithms for optimization problems in

trees is to find an optimal solution by solving subproblems defined on subtrees of the in-

put tree. The subproblems have a trivial solution for inputs of small size (for example if

the subtree contains only one vertex) and a relatively simple solution based on the result
1 1 1 1 1 1

Y & W E C ~ Y ~ ~ ~ i % ~ V d ; f G i i ~iii&= ~ G i i i $ " 1 ~ t 3 ~ 1 k . E&C,LL ~ ~ L L J ; J I ~ I J I Y I I I 1 1 1 1 , h i { ' C I ~ I \ ~ I a i l l Y ~ l Cjy

global solution through some choice made outside the subtree. The collection of solution

values for the sub-problems can be viewed as a set of functions called "cost functions". Such

methods are efficient on trees because the interaction between a connected subtree and the

rest of the graph takes place only through an edge. For example, for the k-median algorithm

in Tamir [99], the influence of the global solution on the subproblem is determined by the

choice of the facility closest to the root of the subtree.

More precisely, Tamir defines two cost functions for each vertex v E T. Recall from

Section 1.1 that p(v) represents the parent of vertex v. We denote by T(v) the component

of T containing v obtained by removing edge vp(v). If v = r ~ , then T(rT) = T. T(v) is in

fact the subtree rooted at v induced by v and all descendants of v. The functions are:

0 Function G(v, a ,p) which returns the optimal cost in T(v) provided that at least one

facility is placed in T(v) at no more than distance a from reference vertex v, and at

most p facilities are placed in T(v).

0 Function F(v, u,p) which returns the optimal cost in T(v) if at most p facilities are

placed in T(v) and the closest facility in T \ T(v) is at vertex u.

CHAPTER 1. INTRODUCTION 18

Clearly, the optimal k-median solution is returned by G(rT, OO, k). The functions are com-

puted recursively from the value of F and G associated with the children of v,

G(v, a, p) = min G(v, a-, p), {

Equations (1.3) and (1.4) illustrate only one case of the computation. They are given here

as an example (see Figure 1.4).

In (1.3), we decide whether new vertex v is better served by facility u outside, in which

case we use functions F at vl and v2, or whether it should be served by some facility within

T(v), in which case we use function G at the children nodes. For reasons that are perhaps

not obvious now but will be explained at the beginning of Chapter 2, we should point out

that (1.3) is correct because reference vertex v in function G is the vertex of T(v) that is

closest to any vertex from T \ T(v).

For (1.4) we consider the distances from v to every vertex in T sorted in increasing order.
m. lnen a- is the iargest distance smaiier than a in this ordering, and w.1.o.g. x E Tjvlj is the

vertex corresponding to distance a. Equation (1.4) determines the location of the facility

closest to v within T(v). In this expression, we choose between placing a facility at x using

the cost of functions G and F at vl and v2, and placing it somewhere closer to v , by using

the value of function G at v.

With this choice of dynamic programming cost functions, there is little hope for getting

a sub-quadratic algorithm because for every parameter v there is a number linear in n of

functions F and G to be calculated. However, in computing the optimal cost returned by

function F in a subtree, we do not have to take into account the closest median outside

the subtree but only the distance to it. Hence, we can replace discrete parameter u from

F (v, u, p) with a continuous parameter a that represents the distance from v to u, the closest

external facility. In this way, we are working with a piecewise linear continuous function

whose complexity depends only on IT(v)l. This is the idea exploited by the undzscretized

dynamic programming algorithms. The term was used for the first time by Langerman et

al. [94] for a problem related to the k-median, the problem of placing filters in a multi-cast

tree, where the use of continuous cost functions allowed them an O(n log n) solution.

CHAPTER 1. INTRODUCTION 19

Other facility location problems on trees, such as the uncapacitated facility location

problem (UFL), were approached from the same angle by Shah et al. [93] who designed

O(n log n) algorithms for UFL and minimum cost coverage problems. They used the prop-

erties of the continuous cost functions which are either convex or concave and devised a data

structure to handle them efficiently. With their data structure, Shah et al. could implement

the recursive computation of cost functions in time linear in the size of the smallest function

involved in the procedure. This is the reason why the total running time for computing and

using cost functions is sub-quadratic in n. Unfortunately their approach could not solve

the k-median problem because cost functions use an additional parameter specifying the

number of facilities.

To avoid the difficulties of Shah et al., we propose a different way to obtain a sub-

quadratic algorithm. Let f (lT(v)l) denote the complexity (number of linear pieces) of

F(v, r,p). The total size of all functions F computed becomes O(k f (n)h), where h represents

the height of the tree1. If we can prove that f (n) is sub-quadratic and if we apply our

algorithm on the class of trees with logarithmic height, then the total size of all cost functions

computed is sub-quadratic. To accommodate the class of trees with linear height too, we

decompose the input tree into a family of nested subtrees called components, that partition

i he i_rrr reci2r.;iv~ly urirH l~gerirhmic depth. THp type ~ \ f & C T \ ~ P Q & ~ Q ~ : X Z J ~ emninxr A" no i i& UwuUU

spine decomposition and is described in detail in Chapter 2. Then, we associate the cost

functions with the components of the decomposition rather than with subtrees T(v). The

upper bound on the total size of cost functions becomes O(k f (n) log n) because the recursive

depth of the spine decomposition is O(1ogn). Key to our algorithm is to show that f (n) is

sub-quadratic in n. The same idea of using continuous functions allowed us to improve the

algorithms for positive/negative 2-median problem in the WMD formulation.

Working with continuous functions and decompositions of trees are not the only common

traits of our algorithms. The structure of our decomposition is such that it clearly represents

parts of the tree (paths called spines) through which different components interact. In the

same time, this structure restricts somewhat the type of information that can be efficiently

pre-computed. In order to make use of the data available, we need to carefully process it

during the computation phase too. We realized that by representing data in two dimensional

space (cost vs. distance), we can employ simple computational geometry algorithms to

'Assume f (a) + f (b) I f (a + b) .

CHAPTER 1. INTRODUCTION 20

achieve the desired outcome. The idea was previously used by Hassin and Tamir [56] to

solve facility location problems on the line, and independently by Auletta et al. [8] who

revisited Hassin and Tamir's k-median problem in a path. Auletta's algorithm is in essence

the same, except that their interpretation is not geometric and thus somewhat more difficult

to follow.

In Chapter 2 we describe and analyse the properties of the decomposition used in almost

all algorithms discussed in the thesis. Then, in Chapter 3, we start by presenting the

framework of our undiscretized dynamic programming algorithm for the k-median problem

in trees. We identify a sub-problem more difficult to address and solve it for (i) directed

trees, (ii) balanced trees, (iii) arbitrary trees but for k = 3, and (iv) arbitrary trees for any

fixed value of k. In Chapter 4, we study the 2-median problem in trees when vertices may

have negative weights as well. We give new algorithms for both MWD and WMD objective

functions. In Chapter 5 we consider another generalization of the k-median problem, the

collection depots median problems. We give an algorithm for solving the 1-median case in

a tree and show that it is possible to adapt Tamir's k-median algorithm to include costs

that depend not on weighted distance but on weighted round-trip trip distance. Finally, we

conclude in Chapter 6 with a summary of our results and directions for future research.

Chapter 2

The spine decomposition of trees

We argued in Section 1.4.1 that we need a decomposition that partitions input tree T into

recursive connected components such that the depth of the recursion is O(log n) where n is

the number of vertices in the tree. In this chapter we describe the decomposition used in

most of the algorithms presented here. The description is problem independent. The bounds

on storage space and running time from this chapter refer only to the data structures internal

to the decomposition and to their initialization procedures.

First, we define what we mean by a decomposition of a tree. Note that in this thesis,

we might refer to a decomposition of a tree calling it also a "tree decomposition". Unless

stated otherwise, the term tree decomposition has the semantics described by the definition

below and does not refer to the notion introduced by Robertson and Seymour [89] in the

context of tree decompositions of graphs. It is important to define the height or depth

of a decomposition which is a parameter that directly influences the running time of the

Figure 2.1: Part of a tree (a) and its centroid decomposition (b)

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

algorithms based on the decomposition.

Definition 2.1 (Decomposition of a tree). A decomposition of tree T is a set of subtrees

of T denoted D (T) that satisfies the following two properties:

P.l) T E D (T) , and

P.2) VTl, T2 E D (T) either Tl and Tz are disjoint, or one is strictly contained in the other.

An element of D (T) is called a component of the decomposition.

Definition 2.2 (Height of a decomposition). The height or depth of a decomposition

D (T) is the maximum cardinality of a subset of components H D (T) whose elements

strictly contain one another,

In the literature, there exist several types of decompositions of trees, perhaps the best

known being the centroid decomposition (CD) [30].

The set of components of a CD can be defined recursively as follows. Assume subtree

T, is in the decomposition. Then, a special vertex x, from T, is identified. This vertex is

called the centroid of T, (see Figure 2.1).

Definition 2.3 (Centroid). A centroid of subtree T, is a vertex x, E T, with neighbors

denoted yl, y2 ... yt such that the size of every component of T, obtained by removing x,

is no more than half the size of the subtree,

The entire set of components Ts(yi) is added to the centroid decomposition and the

procedure is applied recursively on each Ts(yi) until the components obtained reach size

one. Note that a centroid need not be unique, as for example in a tree with two vertices and

one edge, ({u , v) , {uv)) . If this occurs while the CD is built, one of the centroids is chosen

arbitrarily.

The CD can be represented as a rooted tree whose nodes correspond to subtrees of the

original tree, the components of CD. The root of the CD denoted sco maps to entire input

tree T . The children of CD node s that corresponds to component T, are nodes that map

to each of the components T,(yi) defined above. In this representation, the height of the

CD translates directly to the height of the binary tree that represents the CD.

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

I

From the definition of the centroid, it immediately follows that the height of the de-

composition is O(1ogn) and the requirement set forth in the previous chapter is satisfied.

Unfortunately, in the decomposition there is no control on, or representation of the path

between a centroid - for example x, in Figure 2.1 - and the centroids at the level below

and above - for example xq in the same figure. In our kmedian problem we need control

over such a path because of the interaction between vertices in a component and the outside

world. In addition, we need to make sure that whatever we compute at some lower level in

the decomposition remains valid at higher levels too.

Take for example the computation of function F(r, u, j) from function G(r, a, j') as

described in Section 1.4.1 by Equation (1.3). Recall that G(r, a, j') returns the cost of T,.

if there is at least one facility within distance a! from a special reference vertex of TT. We

notice that the reference vertex used in G(r, a, j') depends on the position of the external

vertex u that appears as parameter in function F(r, u, j) to be computed. More precisely,

the reference vertex is the vertex of Tr that is closest to u. But u E T \ T,. and because

of the structure of the CD there could be many different reference vertices that have to be

considered. In fact, one can show that there are O(1og n) possible reference vertices at any

given component of a centroid decomposition which means that O(1og n) different functions -
r?pp$ 1~ be czlcu12ted at e x , y y T r IC;LI c=&. zut this bec=mcs t== cum5crsorr;e. Idesl,:lj; -se

would like to have, if not a single version of function G, at least a constant number of them.

For this reason we use instead of the centroid decomposition, the spine decomposition

(SD) described in two of our previous papers [13, 91. The SD is applied on rooted binary

trees. It is built around tree paths called spines that connect the root with leaves of the

tree. Once a spine is identified, the decomposition is applied recursively on the components

obtained by removing the path from the tree. In this way, the interaction of the entire tree

with a component is localized; it takes place only through the spine. The main concern

remains now to insure that the depth of the decomposition is logarithmic. We can achieve

this by selecting the spines carefully. The following section contains a detailed exposition of

the structure of the SD.

2.1 The structure of the SD

Without loss of generality (w.l.o.g.), consider a rooted binary tree T with root r ~ . If the

tree is not rooted, we can root it at an arbitrary vertex. If it is not binary, we can transform

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES 24

it to a binary one by adding a linear number of new vertices and edges with zero weight as

in the paper of Tamir [99].

A simple way to select paths and to control the depth of the recursion is the following.

Recall that p(v) is the parent of v. Let Nl(v) be the number of leaves from the set of all

descendants of v in T. A path n(rT, 1) from r~ to a leaf 1 of T is first identified such that for

any two consecutive vertices vi and vi+l on the path, the following conditions are satisfied.

Cond. 1: vo = rT and p(vi+1) = vi, and

Cond. 2: if ui and vi+l are the two children of vi, then N l (~ i + ~) 2 N1(ui).

In this way, the path follows vertices from the root to a leaf such that the next vertex chosen

is always the child of the current vertex with the most number of leaf descendants. The

procedure is then applied recursively on each T(ui) obtained from T by removing vertex vi.

Path n(vo, v,) is called a spine, subtrees T(ui) are called spine components or components

of spine n(vo, v,), and vertices on the path are called spine vertices. Similar to the centroid

decomposition, spine components have at most half the number of leaves of the original

tree. Clearly, the total number of spines ever constructed for a tree equals the number of

leaves of the tree1 and therefore the recursive depth of this method is O(logl), where 1 is

the number of leaves of T.
.--
I I ~ ~ ~ T ~ ~ ~ ~ P ~ : T , 2 +r,e Has l ecmtL a"-- g(n) zEG thereisre GI; ' (~ ; SP:GC ~ ~ m p c ; ~ c ; ; t ~ ir,c!uding

spine vertices of degree two in T must be handled for every given spine. For our purpose,

this situation is not suitable. Consider as example a dynamic programming algorithm that

pre-processes the information bottom up. In this setting, it becomes quite complicated to

process and gather information that is distributed among O(n) entities in order to pass it

one level of recursion up. Ideally, we would like to combine functions stored for only two

subtrees as in the case of the classic dynamic programming algorithm of Tamir illustrated

in Section 1.4.1.

There are two ways to reduce the number of components found at the same recursive

level, (i) by collapsing successive spine vertices of degree two into a single component called

super-node (Figure 2.2 (a)), and/or (ii) by constructing a binary search tree on top of every

spine (Figure 2.2 (b)). The benefit of super-nodes is obvious. If they are included, the

number of components on any spine becomes 0(1), where 1 is the number of leaves of T.

However, using super-nodes alone is not enough. The following section describes the search

'We do not count the root vertex as leaf if it has degree one.

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

Figure 2.2: Ingredients of a spine tree decomposition: (a) a super-node; (b) a binary search
tree

trees of the spine decomposition in detail and explains how they are used.

2.1.1 SD binary search trees

Let IJ = {vO,. . . v,) be a given spine and '3' a total order relation on II determined by the

sequence of vertices on the spine,

T - L 1 - 1 1 1 P A ,

UCL, U: ut: I,M ~ , 1 1 1 1 ~ 1 01 r ~ o i , 1111 r_rlr spi~l?, BE^ T(?l.'l \ - & / *--- s p i ~ CC)=~T\E~E: ad jace~: to Q.

Based on total order relation 5, we construct a balanced binary search tree Sn with root

s n and whose set of leaves is II. For the first spine computed in the whole input tree, the

root of the search tree is denoted s s o and is called root of the spine decomposition (Figure

2.3). For every x E Sn, let L, 11 be the set of leaves descending from x in Sn. Similarly,

let T, be the subtree of T induced by L, and all spine components adjacent to some vi E L,

(see Figure 2.2 (b)),

L, = {Vi E : x is ancestor of Vi),

T, = T (Lx u U T(%)).
vi EL,

In particular, Tvi = T(vi U v(T(u())). We can now define the spine decomposition of tree

T.

Definition 2.4 (Spine decomposition (SD)). The spine decomposition SD(T) of tree

T is the decomposition (see Definition 2.1) generated by subtrees Tx of T defined for all

nodes x of all balanced binary search trees.

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

I

Figure 2.3: A typical spine decomposition; spines are shown in thick lines, search trees as
thin lines and components are outlined by dashed lines; the numbers beside spine vertices
at the top-most spine give the number of leaves of T for the corresponding SD component

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

I

It is more convenient to work with the balanced binary search trees because they illus-

trate the inclusion relationship that might exist between the components of a decomposition

(Property P2 from Definition 2.1). For example, if $0, XI, ... xi, ... are consecutive search

tree nodes on a path from leaf to root in a search tree, then

The inclusion relationship is exploited by our dynamic programming algorithms for the

computation of cost functions. Each cost function associated with component Tx of the

decomposition is recursively calculated from the value of the cost functions associated with

the two subtrees included by Tx. Therefore, the notion of path in a search tree is important,

and we denote it by a(x, y) where x and y are any two internal nodes or leaves of a search

tree. For our purposes, one of the nodes x and y will always be an ancestor of the other,

and thus the paths we work with are always oriented from root to leaf or vice versa. Given

now a spine vertex vi from spine II with a component T(ui) adjacent to it, we notice that

SD component T,, includes T(ui). Subtree T(ui) has its own spine F different from II and

its own search tree. To capture the inclusion relationship between TWi and T(ui), we can

extend the notion of path in a search tree so that it spans several search trees. We can

wnsider timi search tree root sn, of T jui j is connected to ieaf V i in the search tree over U.

In this way, we can work with paths a(x, y) even when search tree nodes x and y belong to

different search trees. Program 2.1 illustrates one usage scenario for our decomposition.

Now, the recursive computation of cost functions at node x involves only functions

computed at the two children of x. What remains to be done is to make sure that the

recursion depth using search trees is logarithmic in n. More precisely, we need to show that

the length of any path a(ssD,v) from the root of the SD s s ~ , to any tree vertex v sitting

on some spine, is O(1og n).

This requirement is not difficult to satisfy. We want to assign keys to the internal nodes

of Sn such that the root sn of the search tree is closer in Sn to a spine vertex vi E Il whose

component T(ui) has a large number of leaves in T , than to any other spine vertex vj E II

whose component has fewer tree leaves of T. Intuitively, the structure of the search tree

tries to compensate for the greater effort consumed during searching inside spine components

with a large number of leaves. Here is one way of doing this.

We assign each vertex vi E II a weight X(vi) equal to the number of leaves of tree T(ui),

and thus also to the number of spines of TuZ. If vi is of degree two (T(ui) = 8), then

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

Figure 2.4: Illustration of variables from Program 2.1

X(vi) = 1. Weight X(vi) is used in balancing the binary search tree. Observe that the total

weight over all vertices in tree T cannot exceed n, the number of vertices in the tree. We

also need to identify two special spine vertices for each subtree T,,

XL = max{vi E L,), (reference towards leaf)

XR = min{vi E Lz), (reference towards root),

where max and min are taken relative to the total order relation '5' (see Figure 2.3). Then,

given a search tree node x with children yl and ya where Ly, precedes Lyz on the spine, we

insure that

To impose a structure typical to search trees, we assign node x a key with value y l ~ . In

this way, all leaves stored below child y l precede the key of node x. For us, key assignment

is not important since we traverse the SD mostly bottom-up, and when we do start from

the root of the SD we do not generally search for a particular vertex but visit all vertices

in the input tree. A typical usage scenario is illustrated by Program 2.1 with the help of

Figure 2.4.

We conclude this section with a brief presentation of other tree decompositions that

have been proposed in the literature. Some of them are equally suitable for our algorithms.

Our predilection for the SD is partly motivated by the simplicity of the algorithms that

construct and use the structure, and it is partly a matter of personal preference. The

proofs on recursive depth and storage space are given in Section 2.2, and an algorithm for

constructing the SD is presented and analyzed in Section 2.3

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES 29

0 Let current SD search tree node x +- v, where v is some vertex of T , and
current search tree S t Sn where v E Sn.

0 repeat until x reaches s s ~ :
- Process information at x.
- If x has reached the root of the current search tree x = sn then,

* Denote by 11' the parent spine of II, i e . Tsn is a component of spine
IT1.

* Let vl E n' be a spine vertex of parent spine II' such that given
edge uivi $ 111, we have T(u:) = Tsn.

* Assign to current search tree S t Sn,, and to current search tree
node x t vi.

otherwise
* Assign x to the parent of x in current search tree S

Program 2.1: A typical SD traversal

2.1.2 Other tree decompositions used in the literature

Several tree decompositions were proposed to overcome the shortcomings of the centroid

decomposition. A tree decomposition very similar to our SD was proposed independently

by Boland [18] for solving the circular ray shooting problem. The input to the problem is a

simple polygon and a circular arc with one endpoint inside, and the goal is to find the first

point of intersection of the arc with the boundary of the polygon. The ray shooting query is

efficiently solved after processing the polygon into a special decomposition and constructing

a set of weighted binary trees on it. Apart from the above mentioned computational geom-

etry problem, Boland notes that the data structure is general and can be applied to many

problems outside the computational geometric domain.

Another decomposition based on identifying paths in the input tree was produced by

Cole et al. [29]. There, paths start from the root of the tree and end at a leaf in the same

way as our spines do, except that (i) a tree vertex is added to the path if it has the most

number of successors (and not leaf successors) among its siblings, and (ii) the components

remaining after the path is removed from the tree are not further processed with weighted

binary search trees. The data structure was named centroid path decomposition.

Holm et al. [61, 3, 21 take a different approach in surmounting the problems of the

Figure 2.5: Proof of height bound in the spine decomposition

centroid decomposition. Their data structure called top-trees encodes the input tree using

a hierarchy of coupling operations that connect two subtrees into one by joining them at

two vertices or less. Components at the lowest level in this hierarchy are the edges on the

input tree.

2.2 Properties of the SD

In this section, we are concerned to bound the length of the longest path through one or more

search trees which starts at the root of the SD, s s ~ , and ends at a tree vertex. This length

is the depth, sometimes also called height, of the tree decomposition. We also establish that

the storage space complexity of the SD structure alone is linear in n. Of course, when we

use the SD in our algorithms, we associate data with each node of the SD and this affects

the storage space complexity for those algorithms.

Recall that the path through one or several binary search trees of the spine decomposition

is denoted a(x , y), where x and y are the beginning respectively the end of the path and

can be search tree nodes or tree vertices of T. For example, the set of search tree nodes

and tree vertices visited by the bottom-up traversal illustrated by Program 2.1 is denoted

~ (v , SSD).

Based on two facts, (a) the way a root to leaf path is chosen to form a spine (see

Conditions 1 and 2 on page 24) and (b) the way binary search trees are balanced (see

Relation (2.1)), we show that the number of nodes and vertices on any SD path O(sSD, v)

for some vertex v E T is O(1ogn). If super-nodes are implemented, the bound becomes

O(1og 1) where 1 is the number of leaves of T.

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES 3 1

Consider spine II = r(vo, v,) with associated search tree Sn. Recall that X(vi) is the

weight of vertex vi used in balancing search tree Sn. We extend this weight on the internal

nodes of SJJ by letting X(x) = EVE-, X(v). For simplicity, we also denote by Xtot = X(SJJ),

the total weight of spine II. We can locally bound the search tree distance between the root

of the search tree and node x, i.e. the number of nodes in a(sn, x). Let depth(x) denote this

distance. For the proof, we consider another strategy to balance the search tree, a strategy

that generates search trees with larger height but that is easier to analyse. This strategy is

the following.

Consider Figure 2.5 for an illustration. Assume node x has children xl and x2 and

w.1.o.g. X(xl) 2 X(x2). Assume also that xl and 2 2 define an optimal (balanced) partition

of the weight X under x. Let vi E L,, be the spine vertex adjacent to L,,. Instead of

recursively partitioning the spine vertices below XI, we connect vi directly to XI , as in the

figure and create an additional node xi that becomes the other child of $1. The structure

of the search tree below nodes 2 2 and xi is then determined recursively. We are interested

in the depth of any search tree node whose children are determined recursively.

Lemma 2.1. The depth of node y E {xi, x2) satisfies the following inequality,

Proof. We assumed that leaves from L,, and L,, are partitioned in a balanced way, i.e.

X(xl) - X(x2) is minimized.

Similarly,

We now prove the lemma by induction. We focus only on the depth of node xi since the

depth of x2 is smaller and we are aiming for an upper bound on the depth. We can write,

Xtot depth(sn) = clog - = 0,
Xtot

CHAPTER 2. THE SPINE DECOMPOSITION O F TREES 32

and Relation (2.2) is satisfied. Now assume the relation is satisfied by node x and we need

to prove it for xi. We have the following,

Xtot 5 clog -
X(x) +

((.\tot)" (h o t) 2) -
5 log - -

X(xi Vx i)

Xtot
= clog -

X(xi '

Theorem 2.1. The height of the spine decomposition, i.e. the length of the search tree path

between the root of the decomposition and any vertex v E T, O(ssD,v), is O(1ogn). The
,,,,+,,+ t".,, ,,+,+;,, n ;, "4 -,,s A
b W r u O u W t u u l r v r r u r u v t r W u O W I 0 W 0 0 UID I l O V O (, f.

Proof. Consider a path CT(ssD,v) for some v E T and let S1, S2, ... St be the different

search trees visited along the path starting from s s ~ . From Condition 2 on page 24 it

follows immediately that the number of search trees t is at most log 1 where 1 represents

the number of leaves of T. If we consider now Figure 2.5 again, we notice that any path

CT(ssD,V) contains at most t 5 log1 groups of consecutive nodes of type x, XI , Vi. All the

other nodes from the path are of type x2 or xi. We can estimate the total length of path

CT(ssD,v) by separately counting the number of nodes in the sequence x, XI, vi and x2 or

- For the sequence of 2 2 or xi: Denote by sl = sso, s2, ... st the root nodes of search

trees S1, S2, ... St, and by vil, vi2, ... vit = v the leaves of the same search trees with

the property that vij is adjacent to the spine component used for the spine of search tree

Sj+l. The number of nodes of type x2 or xi in search tree Sj is equal to the depth of

leaf vij in search tree Sj plus one (the root of Sj must also be counted). Then, the total

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

number of nodes of type x2 or xi in path a (s s ~ , v) is

~ (S S D) < c log - + . . log x(s~)) + t , (from Lemma 2.1)
- (X(sz) + log - X(s3)

< clogn + logl. -

In the last expression above, we used the inequality X(ssD) 5 n. The inequality follows

immediately if one accounts first for the weight assigned on all vertices on the first spine

that are adjacent to spine components. This total weight cannot be larger than the

number of vertices with degree one in T. The remaining spine vertices receive a weight

of one, but the total number of such vertices is not larger than the total number of tree

vertices with degree two in T , and therefore, one can conclude that

- For the sequence x, XI , vi: There are at most t additional groups of nodes xl and ui

totalling no more that 2 t nodes.

Since t < log 1 5 log n, by adding the number of nodes on path a(ssD, v) in the two cases

established above, it follows that the length of the path is O(1og n). 0

It should be pointed out here that the bounds presented above do not consider the case

where super-nodes are used. If two or more vertices of degree two in T are collapsed into

super-nodes, then the bound on X(ssD) in the proof of Theorem 2.1 becomes

and the following result can be directly inferred.

Corollary 2.1. The height of the spine decomposition of a tree T when super-nodes are

constructed is O(1og 1) where 1 represents the number of leaves of T .

To estimate the storage complexity of the spine decomposition, we need to bound the

total number of search tree vertices. Since all search trees are full binary trees, i.e. any

node in such tree has either degree one (a leaf) or degree three except for the root which

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

4 to the parent of x 4

to the children of x

Figure 2.6: Making a binary tree from an arbitrary rooted one

has degree two, the total size of a search tree is twice the number of its leaves. The set of

leaves of any search tree is the set of spine vertices and any spine vertex is leaf in only one

search tree. From these observations, we can directly state the following theorem.

Theorem 2.2. The storage space complexity of the SD is O(n) whether or not super-nodes

are used.

2.3 Computation of the SD

In this section we describe and analyze a simple algorithm to construct the spine decompo-

sition of a tree. The steps involved follow the ideas described in the previous sections.

First, if the input tree is not rooted or binary, we chose an arbitrary vertex as root and

insert additional vertices and edges to make the tree binary. It is obvious how to transform

an arbitrary rooted tree into a binary one. Tamir 1991 describes rigorously such a process.

Intuitively, one needs to replace every tree vertex x with more than two children by a binary

tree of a certain configuration (Figure 2.6) that connects the parent of x with all its children.

Notice that this step takes time linear in the size of the original tree.

The next step involves the construction of spines. For this, we require to know the

number of leaf descendants for every vertex in the tree. This can be easily obtained in linear

time by traversing the tree in post-order. Once the number of leaves Nl(v) is recorded at

all vertices v, spines can be selected greedily as described in Section 2.1.

The final phase concerns building the balanced binary search trees on top of each of the

spines computed earlier. In order to obtain an efficient final algorithm, we must execute

this phase more carefully. First, we need to traverse all spines and compute weights X(v)

for all vertices in tree T. The weights are used in balancing the search trees and can be

easily computed in total linear time once Nl(v) and the spine configurations are known.

Consider now spine II = .rr(vo, v,). We can use the technique of Hershberger and Suri [57]

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES 35

I

to construct the search tree for this spine in time linear in the number of spine vertices.

Then it follows that the overall algorithm for all spines is also linear because spines are

disjoint. The algorithm of Hershberger and Suri is described in the following paragraphs.

We start building search tree Sn from root to leaf. The process is recursive. Assuming

that node x is already in the search tree, we want to construct its two children, xl and x2.

We use two pointers to visit II, one starting from XR and moving towards XL, the other

starting from XL and moving in the opposite direction. The goal is to find the right partition

of the spine vertices in L, into sets L,, and L,, that eventually will represent vertices xl

and x2. Recall that L, is the set of spine vertices that have x as common ancestor in search

tree Sn.

Consider that node x has pointers to spine vertices XL and XR,

weight X(x). In a pre-processing step we have also computed for all

as well as the value of

v E II the prefix sums

such that it is easy to compute for v E L,

To minimize IX(xl) - X(xz)J, we need to find spine vertex vi for which X(xR, vi) > y and

X(vi, xL) 2 y , basically vertex vi from Figure 2.5. Once vi is identified, it is easy to decide

whether vi E L,, or vi E L,, and thus we can completely determine nodes XI and x2 as

children of x.

Spine vertex vi is found via unbounded binary search from both ends of L, simulta-

neously. For this purpose, spine vertices vi need to be stored into an array such that we

can have random access to its entries. The search starts at one of the endpoints of L, and

checks prefix sums at distances 0, 1, 2, 22, ... 2i, ... away from the endpoint until the prefix

sum surpasses the value y. If this occurs the first time for entry at distance 2j from

one of the endpoints, vi is then found by regular binary search in the interval defined by

distances 2j-I and 2j. The process is illustrated by Program 2.2. Since we perform the

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

I

make-tree(x, L,)
Let q = (L,(and V[O.. . q - 11 be the array to store the vertices in L,.
Initialize iteration counter I t 0.
Increment I as long as X (V[0], v (2'1) AND x (v [~ - 1 - 2'1, V[q - 11) are

smaller than F.
Find partition vertex vi E L, through binary search in the appropriate in-
terval defined by 2'-' and 2'.
Determine the optimal L,, and L,,; construct nodes X I and xz
make-tree(xl , L,,).
make-tree(x2, L,,).
Assign $1 and 2 2 as children of x .

Program 2.2: Recursive procedure to construct a balanced binary search tree over a given
spine

search simultaneously from both ends and we stop immediately after vi is identified, the

recurrence relation for T(IL,I) which represents the running time of the procedure above is

Computing the search trees for every spine is the last step in the algorithm to construct

the spine decomposition of a tree. The entire algorithm is illustrated in Program 2.3. Its

complexity is established by the following theorem.

Theorem 2.3. The algorithm described by Program 2.3 constructs the spine decomposition

S D (T) of any input tree T i n time linear i n the size of T .

Proof. It is easy to observe that the overall running time and storage space used at all

phases of Program 2.3 is linear in n, except perhaps for computing the search trees. To

show that this phase is also linear, we need to bound T(q) from Relation (2.4). We can use

standard techniques to prove T (q) E O(q), see for example Cormen et al. [31].

We want to show that

T (x) 5 cx - d log x , (2.5)

where x > xo for a sufficiently large constant xo, c and d are constants, and the logarithm

is to the base 2. Assume (2.5) is true for all x < q, and consider w.1.o.g. that i 5 q - i. By

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

I

-- -

Root T at a vertex, if not rooted; make T binary, if not binary.
Traverse T in post-order and compute the number of descendant leaves Nl(v)
for all v E T.
Construct the first spine; recurse on each of the spine components.
Assign the weights X(v) for all v E T by traversing every spine.
For all spines II do:
- traverse II and compute prefix sums.
- make-tree(sn, II).

Program 2.3: Construction algorithm for the spine decomposition SD(T)

substitution into (2.4), we obtain the following inequality,

~ (q) 5 ci + c(q - i) - d(1og i + log(q - i)) + log i =

= cq- d (l ~ g i + l o ~ (~ - i)) +logi.

To prove that (2.5) is satisfied when x = q, it is enough to show now that

which, after arranging terms and simplifications, is equivalent to

d (log i + log(q - i) - log q) 2 log i

From our assumptions, we know that q - i 2 5 , so by substituting q - i into (2.6) we now

need to show the following inequality,

But (2.7) is satisfied for all i 2 3 if d 2 3, and the induction hypothesis is also satisfied.

Now we can chose constant xo and c sufficiently large so that the boundary condition x = xo

in (2.5) is also satisfied, and the theorem is proved. 0

CHAPTER 2. THE SPINE DECOMPOSITION OF TREES

2.4 Conclusion

This chapter presents a data structure called the spine decomposition (SD) that is used

in processing arbitrary trees into structures that mimic the properties of balanced binary

trees. In this way, many algorithms that are efficient on balanced trees can be generalized

for arbitrary trees. Other tree decompositions exist in the literature. Among them the

centroid decomposition is the most popular, however we discuss at the beginning of this

chapter that the centroid decomposition leads to more complicated algorithms for many of

the problems studied in this thesis.

Another advantage of the SD over the centroid decomposition is that the SD admits

a simple linear time construction algorithm, whereas the linear time algorithms for the

centroid decomposition are involved. For the linear time algorithms that are based on the

centroid decomposition, it might be better to use the SD instead. Finally, the height of the

SD is proportional to log 1, where 1 is the number of leaves in the input tree, and for certain

type of trees, this number can be significantly less than the total number of vertices in the

tree. For some optimization problems, using the SD instead of the centroid decomposition

can automatically give algorithms with complexity depending on the number of leaves in

the tree instead of the number of vertices [9]. There are other ?rohlems thoilgh where, in

order to fully exploit the versatility of the SD, one has to compromise on simplicity. For

example, the 2-median problem in trees can be easily solved in O(n log n) time using the SD.

However, it is possible to achieve a running time of O(n log 1)) but several passes through the

decomposition have to be made and a lot more information needs to be pre-processed. It is

debatable whether the added degree of intricacy justifies the gain in efficiency. Nevertheless,

the role of the SD for many of the algorithms presented in this thesis, and especially for the

solution to the k-median problem in trees discussed in the next chapter, is decisive.

Chapter 3

The k-median problem in trees:

algorithm UKM

In this chapter, we describe an undiscretized dynamic programming algorithm for the

k-median problem in trees with a running time sub-quadratic in n. We name this algo-

rithm UKM from Undiscretixed K-Median. The general approach of the algorithm, as well

as a brief literature review and the motivation for our research were already discussed in

Section 1.3. Since our approach is based on dynamic programming, we start by defining the

cost functions used. All cost functions are associated with nodes of the spine decomposition

(SD) and are computed recursively from nodes at the lower level.

3.1 The dynamic programming cost functions

Let x be an internal node of the search tree of the spine decomposition and let n[=

x(vO, urn) = (vo, vl, . . . vm) be the corresponding spine. Let also iR and iL be the indices for

spine nodes XR respectively XL. An illustration for these nodes is given by Figure 2.3. De-

note by T(xR) the tree component containing XR obtained after removing edge e = X R U ~ , - ~

from T. Since edge e connects XR to its parent in T, T(xR) is the subtree induced by all

successors of XR in T.

Our cost functions play roles similar to those of the classic dynamic programming algo-

rithm of Tamir [99] reviewed in Section 1.4.1. They return partial costs of the global solution

that only considers vertices from subtrees of the input tree. The subtrees are components

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 40

Figure 3.1: Subtrees of the input tree for which cost functions are defined; (a) big trees (b)
small trees

of the SD.

As in the algorithm of Tamir, we define two classes of cost functions. One class consists

of discrete functions for which one argument is a tree vertex representing the median that

covers a reference vertex of the subtree. The median is internal to the subtree, and therefore

this set of functions is similar to G(). The other class is formed by continuous functions

for which one parameter is a real value representing the distance from a median outside

the subtree that covers the reference vertex of the subtree. These functions are similar to

functions F () .
We further distinguish the functions by the type of subtree whose cost they return. We

h ~ ~ e E cheice ef t.vc) differ& zkhtreez tc zsssciztc ~ i t h thz hcztic; G* G gkec nsc?c s

of the SD: (i) subtree T, (informally, T, is referred as the small subtree), and (ii) subtree

T(xR) (informally referred as the big subtree). Recall that T, is a component of the SD

and consists of all the tree vertices whose path in the decomposition to root sso contains x,

and T(xR) is the subtree of T rooted at XR. Figure 3.1 displays the two subtrees associated

with a given SD node x.

A third feature of our cost functions concerns the restrictions imposed on the location of

split edges inside the subtrees. Split edges are introduced in Section 1.4.1. They represent

a set of edges whose removal defines Ic connected components such that the total cost of

the 1-median of these components is equal to the optimal Ic-median cost of the entire tree.

More precisely, two types of cost functions are defined, (a) for which the choice of split

edges is constrained to avoid the spine edges of T, or T(xR), and (b) for which split edges

are unconstrained. We chose to restrict the placement of split edges because this gives us

more control on the recursive computation of the cost functions and simplifies the equations.

Intuitively, for the computation of cost functions of the type F () mentioned earlier, which

account for an outside facility serving a reference vertex in the subtree, the presence of a

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 41

split edge on the spine separates a significant part of the subtree from the external facility.

This introduces an asymmetry in the recursive computation that is difficult to handle. To

avoid this, we choose to consider spine edges as candidates for splitting, separately.

Based on these observations, we decide to use letter codes to name each cost function.

The first letter (0) or (I) specifies whether the median covering the reference vertex is

outside or inside the subtree. The second letter (S) or (B) shows whether the cost function

is defined for Tx (small subtree) or T(xR) (big subtree). Finally, the third letter (U) or

(C) marks whether the choice of split edges is unconstrained or constrained to avoid the

spine. It is also important to be able to unambiguously identify the reference vertex for

each of the subtrees Tx or T(xR). We already discussed at the beginning of Chapter 2

about reference vertices and argued that the centroid decomposition is not suitable because

O(1ogn) different functions need to be maintained, one for each reference vertex that might

occur. With the spine decomposition, there are at most two reference vertices for a given

SD node x, XR and XL. For Tx for example, two different functions of the same class might

be needed, one where the reference vertex is XR, the other using XL as reference. To specify

which of these two functions are referred to, we add subscript (R) or (L) to the name of

all cost functions, even when such a distinction is not needed because it can be inferred by
m. piher meens ~_n_e ~ " 1 ~IJECT~QE' ~ 2 " &&eCi_ 2' fcnicyp,

1. IBU = Inside Big Unconstrained.

I B U ~ (X , ~ , z) returns the optimal cost of T(xR) if j + 1 facilities - or j split edges -

are selected in T(xR) possibly on the spine, and the facility covering XR is vertex z

chosen from T,. Note the asymmetry between where z is selected from (T,) and the

tree for which cost is returned (T(xR)). The cost of the optimal k-median solution for

T can be retrieved from

min IBUR(sSD, k - 1, 2).
zET

Hence, our goal is to evaluate I B U ~ () at the SD root node s s ~ .

2. OSC = Outside Small Constrained.

OSC~(X, j, a) returns the optimal cost of Tx if j split edges are chosen from T,, none

of them on the spine, and the closest external median is at distance a from XR and

covers XR. hnction OSCL (x, j, a) is the same except that the external median is at

distance a from XL, and covers XL.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 42

3. OBU = Outside Big Unconstrained.

Function OBUR (x, j, a) returns the cost of subtree T(xR) when there is no spine edge

restriction for split edges. If we wanted to make the definition of OBUR() parallel

with that of OSCR(), then we would force all split edges to lie in Tz. However, if

split edge e is on the spine, there is no point in continuing to force the remaining split

edges to lie in T,. The contribution of vertices separated from the external median by

e is returned by the optimal cost of the p-median (for some p 5 j) on the component

obtained by removing e. Thus, we do not care where in the separated component the

p - 1 split edges are. Formally, let Cwt(T, j) denote the optimal j-median of some

tree T. Let iR and iL be the indices of the spine vertices that correspond to XR

and XL. We consider all edges vi-lvi on the spine for iR + 1 5 i 5 iL + 1 and we

denote by T(vi) the component obtained by removing edge vi-lvi. We define now the

unrestricted cost function OBUR (x, j, a) as taking the best choice between splitting a

spine edge from r(xR, xL), or not splitting it. The latter choice simply uses the value

of the restricted cost function OSCR(x, j, a) (see Expression 3.2),

Above we abuse the notation and denote by OSCR(T(xR) \ T(vi),p, a) the value of

function OSCR () in tree T(xR) \ T(vi). Observe that tree T(xR) \ T(vi) does not

generally correspond to a particular SD node. In addition, we use in the expression

a function we did not yet define, OBCR(). From the name convention however, it

should be obvious that OBCR() returns the cost in T(xR) if j split edges are in T,

but not on the spine, and an external median is at distance a from XR and covers XR,

O B ~ R (X , j, a) = OSCR (x, j, a) + w(v) (d(v, XR) + a) . (3.2)
VET(XR)\T,

Properties of cost functions

Before we describe the computation of the cost functions, notice that the continuous func-

tions are piecewise linear and concave. Indeed, consider a fixed set of j split edges in tree

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 43

Construct the SD of tree T.
e Traverse the SD botom up. For each SD node x do

- if x is leaf, compute trivial value for IBUR(), OBUR(), OSCR(), and
OSCL() at x, otherwise use the functions stored at the two children of
x to obtain the functions at x.

- store the cost functions computed at node x.
For all z E T, retrieve IBUR(ssD, k - 1, z) and retain the minimum. Return
the minimum as solution.

Program 3.1: Main steps of the dynamic programming algorithm for solving the k-median
problem in trees

T,. The value of function O B U ~ (X , ~ , a) is determined by the 1-median costs of the j com-

ponents plus the cost of the (j + l)th component served by the external median. The later

term is an expression linear in a, while the former terms are constant for a fixed set of split

edges. By definition, OBUR(x, j, a) is the minimum over the linear cost functions for all

possible sets of j split edges, and thus it is piece-wise linear and concave in a. Exactly the
7 0 " -0- / \ nc..-. / \

sarr~v a r v ~ ~ r r ~ v n i (.a11 he I ~ I ~ C J ~ ~ (j r ~i~nc:&ns I-/>I-,T I I ~ n ; ~ l > c - ~ ~ y ~ 1
U \/ \ / -

The main dynamic programming algorithm

Cost function IBUR() is the only function used directly in the retrieval of the optimal

k-median solution in tree T. All other functions defined above just support the computation

of IBUR(). The main algorithm for the k-median problem in trees is simple. After the

construction of the SD, the nodes of the decomposition are populated bottom up with the

values of cost functions OBUR () , OSCL () , OSCR () , and IBUR () . The optimal solution

is obtained finally as the minimum value of function IBU~(). The process is outlined by

Program 3.1.

3.2 Computation of the cost functions

The actual dynamic programming algorithm that solves the k-median problem in trees is

straightforward, as shown the the previous section. What is important for us is to establish

the recurrence relations necessary in the computation of all cost functions defined earlier.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 44

Figure 3.2: (a) A spine vertex of degree one (a leaf of T), and (b)
two

a spine vertex of degree

Each function is associated with a particular SD node, but not all nodes in the decomposition

have two children. In the next paragraphs, we give the recursive formulae for each function

in three different circumstances: when the current SD node is a spine vertex of degree at

most two in T , when it is a spine vertex of degree three in T, and when it is an SD node

that is parent of two other nodes in some binary search tree. In all three sections to follow,

we denote by x the SD node for which the respective cost function is defined.

3.2.1 Calculating functions OSCR () and OSCL ()

Restricted cost functions OSCL() and OSCR() return, as specified at the beginning of

Section 3.1, the optimal cost in subtree T, when j split edges are chosen in T, but not

on the spine, and the reference vertex XL or XR is served by the outside median. These

functions have the simplest defining recursive formulae.

Node x is a spine vertex of degree at most two

Consider Figure 3.2 as reference. In both cases, x corresponds to a trivial component of

the spine decomposition, leaf vertex v, in case (a), respectively tree vertex vi in case (b).

Of course, on a component with exactly one vertex, it is quite easy to define cost functions

OSCL () and OSCR() since no extra facilities can be located inside. The single vertex must

be served by the outside median, and thus,

OSCL (x, 0, a) = OSCR (x, 0, a) = w(x) a,

OSCL (x, j, a) , OSCR (x, j, a) - undefined for j 2 1.
(3.3)

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 45

Figure 3.3: A spine vertex of degree three

Node x is a spine vertex of degree three

The situation is illustrated in Figure 3.3 and is no longer trivial. Node x corresponds to

spine vertex vi which in turn is adjacent to subtree T(ui) = Ts,, . As before, T(ui) denotes

the component of tree T that contains vertex ui and that is acquired by removing edge uiv,.

II is the spine containing x, and II' is the spine obtained recursively from T(ui).

Split edges, if any, can now be chosen within T(u,) or edge viui itself can be split. Note

that split edges inside T(u,) can be located on spine II', and therefore function OBUR() at

node snl should be used to account for the contribution of vertices in T(ui). Our recursive

h ~ ~ ~ ~ u l i t , slluuld illsu~t: iilai 'uoiil tile coniri'uution of vertex vi, as weii as the possibiiity to

split edge viui are not left out. We can write,

The first part of the equation considers that edge viui is not split, and as consequence it

simply adds the contribution of subtree T(ui) , pre-computed and stored at SD node sn,,

with the contribution of vertex vi. The second part views edge viui split, and thus the

remaining j - 1 edges form an optimal j-median in T(ui). Of course, for the second part

j 2 1. If j = 0, only the first part is present in the formula.

Node x is an internal search tree node

Let t and y be the two children of node x in search tree Sn such that the spine vertices

below t are towards the root, as shown by Figure 3.4. The computation of the cost function

O B U R (X , O , ~) = C w (v) (a + d (x ~ , v)) .
vET(xR)

Unlike the restricted cost function discussed in the previous section, the set of edges that

can be split is not empty when node x is a spine vertex of degree two. According to the

definition of the cost function (3.1), exactly one spine edge may be split. This edge has

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 46

I

Figure 3.4: An internal search tree node

at x is quite simple in this case. A total of j split edges must be placed in T,, which means

that an appropriate partition of the j split edges between subtrees Tt and Tg has to be

computed. Formally,

3.2.2 Calculating function OBUR ()

Unrestricted cost function OBUR() returns the cost of big subtree T(xR) if the outside

median serves reference vertex XR. The split edges may be chosen from the spine. From the

defining equation (3.1), we notice that the spine edges that are candidates for splitting are

those with the parent from set L,. We say that an edge e = uv has parent v if p(u) = v,

where p is the parent function introduced in Section 1.1. Set L, is the set of spine edges

(leaves of the search tree) that are below internal node x, therefore the set of spine edges

that are candidate for splitting are those below node x in Sn together with the spine edge

towards the leaf.

Node x is a spine vertex of degree at most two

We consider the same situation as depicted in Figure 3.2. When there is no split edge to be

located, all vertices in T(xR) are served by the external median and thus,

CHAPTER 3. THE K-I\lEDIAN PROBLEM IN TREES: ALGORITHM UKM 47

vertex vi = x as parent. Since the split edges separated from the external median by the

spine edge can lie anywhere in the separated component, cost function OBUR() is defined

for any value of j 2 1 as long as j < k - 1 and j < J T (v ~ + ~) J - 1. Thus, we have

w (v ~) a: + Copt (T (v ~ + ~) , j), when x = vi and 1 5 j 5 IT(vi+l)l - 1,
O B U R (X , ~ , a) =

undefined when x = v, a n d j 2 1.

(3.6)

Node x is a spine vertex of degree three

Assume we have already computed function OSCR(x, j, a) using (3.4). Refer to Figure 3.3,

where node x coincides with spine vertex via To account for the contribution of vertices

in T (v ~ + ~) , there are two possibilities. (1) Edge vivi+l is split, in which case the optimal

j-median of T(vi+1) is required for 1 5 j 5 I T (V ~ + ~) ~ - 1 as explained earlier, or (2) edge

vivi+l is not split, in which case no other median resides in T (v ~ + ~) which is served entirely

by the external median. We have,

Node x is an internal search tree node

Consider Figure 3.4. Because the set of candidate split edges for the cost function at node

x is simply the union of candidate split edges for the function at the children nodes t and y,

there is no additional edge that must be explicitly checked for splitting and the computation

is simpler. The j split edges must be partitioned between Ty and Tt. If it happens that one

of these edges is on the spine for the child node towards the root .rr(tR, yR), then the value

of the function at x is equal to OBUR(t, j, a) which is already computed. The only other

situation that has to be checked is when no spine edge is split in .rr(tR, yR). Then, function

OBUR(y, j, a + d(tR, yR)) does not include the contribution of Tt which may also contain

split edges, but none of these split edges are on the spine. Thus the value of OSCR(t, q, a)

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 48

Figure 3.5: Part of a spine decomposition and the various subtrees and vertices used

can be used to add this contribution. We have,

O B ~ R (X , j, a) = min (o B u ~ (~ , j, a),

min {oscR(t , q1 a) + OBUR (yl j - q, a + ~ (x R , 9 ~)))) . (3.8)
09lj

3.2.3 Calculating function I B U ~ ()

Function IBUR() is the discrete cost function in our undiscretized dynamic programming

algorithm. It receives as parameter a vertex z from the SD component it is defined for, and

returns the optimal (j + 1)-median cost in the larger subtree, given that z is the facility

covering the reference vertex XR of T,.

Node x is a spine vertex

Consider figures 3.2 and 3.3 where node x is shown as a spine vertex with degree one, two,

and three respectively. For reference, Figure 3.5 depicts some of the variables used in the

exposition that follows. Note that x = XR. Fix now a tree vertex z E Tx. The set of tree

vertices from T(xR) that contribute to the value of function IBUR() can be partitioned in

two:

* Vertices from Tx; recall that Tx = {v,) if x has degree one in T, T, = {vi) if x has degree

two in T, and T, = {vi) U T(ui) if x has degree three in T.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 49

* Vertices from T (x R) \ T,; recall that T (x R) \ T, = 0 if x has degree one in T and

T (x R) \ T, = T(vi+1) if x has degree two and three in T.

For lack of a better notation, denote the contribution of T (x R) \ T, by

We use subscript OBU to hint that this contribution is similar in nature to that of cost

function OBUR() . In fact, we show in Section 3.2.4 how to compute it from cost functions

OBUR() , OSCL () , and OSCR() stored at the nodes of the decomposition. It is important

to note that FoBu is not a function but a value since vertex z is fixed and d(z , is

available. It gives the optimal cost in subtree T(vi+1) if j split edges are placed anywhere

in T(vi+1) and root vi+l is covered by z , the outside median1. The contribution of vertices

from T, is obtained recursively from function I B U ~ () computed for spine component T (u i)

if T (u i) exists.

When x = urn is a tree leaf, then z = urn and we simply have

i f j = O
IBUR (x , j, urn) =

undefined, if j 2 1.

When x = vi has degree two in T , then z = vi and T (u i) = 0, therefore we directly have

When x = vi is a spine vertex of degree three in T , we have more complicated recurrence

relations. As shown in Figure 3.3, II' is the spine obtained in T (u i) whose binary search

tree has the root denoted snl. For z E T (u i) ,

I B U ~ (X , j, z) = min { min { I B U ~ (snl, q, z) +
O<&

 he assumption that z covers vi+l does not embrace all possible cases for the computation of I B U R () .
For now, we ignore that edge vivi+l might be split too, because we want to focus only on introducing Fosu.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 50

,

and for z = vi,

The first term in both equations assumes that edge vivi+l is not split and thus z does serve

some vertices from T(xR) \ Tx. As we do not know the optimal distribution of split edges

between Tx and T(xR) \ Tx, we need to verify all possible combinations. For the second

term, edge vivi+l is considered split, therefore the contribution of T(xR) \ Tx is returned

by the optimum (j - q)-median. For the case x = vi, the contribution of Tx is no longer

returned by function IBUR() because z 6 T(ui). Instead, we can use OSCR() which is

already computed for node x.

Node x is an internal search tree node

In this case, the computation of I B U ~ () is more simple. Figure 3.4 is again representative.

Vertex z can be either in Tt or in Ty. If it is in Tt, because node t is towards the root, we

have that IBUR (x, j, z) = IBUR (t, j, z) . If z E T,,, we need to evaluate the contribution of

T(xR) \ T(yR) which is not accounted for in the value of I B U ~ (~ , j, z). Clearly, according

to the definition, z must cover vertex XR, and therefore no split edges can be chosen on

the spine from y~ to XR = t ~ . Thus, we can evaluate the contribution of the unaccounted

vertices using the restricted cost function OSCL() stored at node t. Of course, we still need

to verify all possible assignments of the j split edges between T(yR) and Tt. Formally,

I B U R (~ , j, 2) if z E T~
IBUR(x, j, z) = (3.12)

min {IBU~(Y, q, z) + OSCL(~, j - q, d(z , t~))} , if z E Ty.
0 9 9

3.2.4 Implementation of the recursive equations for the cost functions

In the previous paragraphs, we describe formulae that allow the computation of all cost

functions associated with the nodes of the spine decomposition in a bottom up procedure.

However, two values are employed in several places and we haven't shown yet how to compute

them. One of them is Cwt(T1, j) which returns the optimal j-median on subtree TI of T.

The difficulty of computing CVt efficiently stems from the need to evaluate it on a linear

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 51

Figure 3.6: Evaluating term FoBu

number of subtrees of T. If we want a sub-quadratic k-median algorithm for T, we need

to evaluate Cqt in amortized sub-linear time per subtree. This is not a trivial task and is

discussed separately in Section 3.6. We also study three special instances of the k-median

problem in trees where the evaluation of Cqt is either not needed, or it is simpler than in

the general case. These special instances are discussed in Section 3.5

In this section, we concentrate on the computation of the second term, Fosu (T(vi), j, a) ,

where a is a given distance. FoBu is just a value and not a function, that is why we avoid
- - . - - -

i o I J . ; ~ ~hc. norarlen rv as parazeter. va!ue rs,-; is use$ 12 the csrr,put%or, P~r,ct:sr,

IBUR(x = v ~ - ~ , j, z) (see Section 3.2.3) and a is the distance from facility z E Tx to vie

Consider Figure 3.6 where II = 7r(vo,vm) is the current spine and sn is the root of the

binary search tree. Value F ~ ~ U (T (V ~) , j, a) represents the optimal cost in subtree T(vi) if

j split edges are to be located anywhere in the subtree but root vi of the subtree is served

by an external facility situated at exactly distance a from vie

Let XI , $2, ... xb be the SD nodes adjacent to the path in the search tree from vi to root

sn and sitting on the leaf side of the path. In a search tree, a node x is on the leaf side

of the path from some spine vertex vi to root sn if the spine vertices shadowed by x are

successors of v, on the spine, otherwise x is on the root side of the path. Denote vi by xo.

Observe that the set of vertices of T(v,) is the union of the vertices of Txc for 0 5 c 5 b. We

will use the cost functions stored at nodes x, to calculate the value of FoBU. What we need

to obtain is the optimal distribution of the j split edges in each of the components T,, and

among the spine edges between consecutive components T,, and T,,,, . Observe that in the

case when no split edges are chosen in the optimal solution from spine r(vi, v,), then Fosu

is simply the summation of functions OSCR() stored at each node x,. More precisely, if j,

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 52

represents the optimal number of split edges from Txc with ~ b , = ~ jc = j, then

However, it is possible that some spine edges are split in the optimal solution. Let h be the

smallest index for which spine r(xhR, x (~ + ~) ~) contains a split edge. Then, we can use cost

functions OSCR() from nodes xo, XI , ... xh-1, and O B U ~ () from xh to retrieve the value

for FoBu.

The algorithm proposed here follows the ideas outlined above. The value of FoBu can

be expressed as the summation of two terms, one that considers the contribution of vertices
h-1 from UcEo Txc, the other from T(xhR). Recall that T(xhR) is the subtree obtained by

removing edge x ~ R x (~ - ~) L from T. Denote the first contribution by Fosc(h - 1, j', a).

We use subscript OSC to hint that the values come from the evaluation of cost functions

OSCR() stored at nodes xo, XI , ... xh-1. Here j' represents the total number of split edges
h-1

in Uc=O Txc.
Fosc can be obtained recursively, by dynamic programming, as follows. When h = 1,

For 1 < h 5 c, we can write,

Finally, we obtain FoBu as the summation of the two terms mentioned earlier, for all

possible choices where the first spine edge may be split and for all possible distributions of

the j split edges between the two parts of subtree T(vi). Formally,

min { min. { ~ o s c (h - 1, q, a) + OBUR(X~, j - q, d(xhR,xo))})}. (3.14)
l < h l b O < q < j

Lemma 3.1. Term FoBv(~(vi) , j, a) can be evaluated, for a given number of split edges j

and a given distance to the external facility a, in 0(log2 n) time.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 53

Proof. We noticed that there are a total of O(1og n) SD nodes involved in the computation

of FoBu for which functions OSCR() and cst are queried. The computation uses another

term denoted Fosc which is associated with the index of a given node and a given number

of split edges, and is computed by dynamic programming. We count first the total time

spent in computing Fosc. For a fixed index and a given number of split edges, Fosc is

obtained by evaluating function OSCR() at most k- 1 times (see (3.13)). The evaluation of

OSCB () takes O(1og n) time, which gives O(k log n) time spent for one value Fosc. There

are O(k1ogn) different values Fosc, thus the total time required for all Fosc values is

0(k2 log2 n) which is 0(log2 n) for fixed k. FoBu is finally obtained from (3.14) after an

additional call to function O B U ~ () , but the time for this additional call does not dominate

the time for calculating Fosc. Therefore, Fosu can be evaluated in 0(log2 n) time.

3.3 The complexity of cost functions

In this section we provide an upper bound on the complexity of the continuous cost functions

employed in our algorithms. By the complexity of a continuous piece-wise linear function,

we understand the number of linear pieces that make up the function. As argued in Section

1.4.1; i k Cpper h i l 1 i d is eaac~li,ia,i [OI- i~r -ov i r~g i,i~e ~!&!lg tim-e ~f Qllr E&riikm- f E

k-median problem in trees. Any data structure that stores such a function takes space

proportional to its complexity and the time consumed in computing the function in its

entirety is also proportional to the complexity of the function. Note that discrete cost

function I B U ~ () is represented by the set of its values for each of its parameters z. By

definition, z is taken from the vertex set of the SD component for which the function is

defined. As a consequence, a trivial bound on the storage needed for function I B U ~ () is

the size of the SD component.

The continuous cost functions discussed here are OBUR () , OSCR () , and OSCL () . Our

proof for a bound on the size of these functions is based on two ideas, (a) that they are

piece-wise linear and concave, and (b) that the recursive equations used in their computation

can be used in deriving a recurrence relation on the size of the functions. It is known that

the complexity of the sum or minimum of two piecewise linear concave functions is at most

the sum of the complexities of the two functions. The recurrence relation is obtained from

the recursive formulae by adding the sizes of any functions involved in an addition or in a

minimum operation.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: A.LGORITHM UKM 54

Consider Figure 3.4, with SD node x having children y and t. Obviously ITx I = ITy 1 + ITt 1 .
Denote by fj(lTxI) an upper bound on the complexity of all three cost functions defined at

node x, OSCR (x, j, a) OSCL (x, j, a), and OBUR (x, j, a) . In other words,

From (3.5) one can directly express the following recurrence relation,

Similarly, from (3.8), one obtains,

Consider now the special case when x is a spine node. For nodes with one child, the

situation is very similar. From (3.4)) observe that the complexity of functions OSCR() and

OSCL () at parent x is only one more than that of the child node snt. For function OBUR (),
equation (3.7) can be interpreted as generating the same recurrence relation (3.15) where

ITy 1 = 0 and ITt 1 = ITx I. Moreover, we can safely assume that f j (1) = 1 for any positive

integer j .

Lemma 3.2. For any node x of SD(T),

where c and j are constant.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 55

Proof. When j = 0, evidently fo = 1 because both cost functions are simply linear functions.

For j = 1, there are exactly ITXI - 1 edges that can be considered as split candidates so

there are at most ITz[- 1 linear pieces in both cost functions. Note that we compute

O B U ~ (X , 1, a) differently, but we count the split edges only when they belong to the tree

induced by vertices from x.

For j = 2 we have,

f2(lTtJ) and f2(1Tyl) are recursively decomposed until we reach components of size one.

Since the depth of the decomposition is bounded by c'log ITx\, where c' is some constant,

the following inequality is satisfied,

f2(lTxI) I f2(1) + . . . + f2(1) + ~'ITxIlog ITxl I cITxIlog ITXI, -
ITxlx

where c = c' + 1, and thus relation (3.16) is satisfied for j = 2.

The proof proceeds by induction on j . Assume (3.16) is true for all values smaller or

equal to j. Then,

As before, fj+l (ITt 1) and fj+l (ITg 1) are recursively decomposed until we reach components

of size one. Since the depth of the decomposition from x is at most c' log ITx I and c = c' + 1,

we obtain

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 56

I

which concludes our proof. 0

Using the previous lemma, the following result follows immediately. Note that k repre-

sents the number of facilities and thus the number of split edges is k - 1.

Corollary 3.1. For any given value of k considered constant, the bound fk-l(n) on the size

of all continuous cost functions defined in Section 3.1 is O(nlogk--2 n).

Notice that if parameter k is considered part of the input, the bound from Corollary 3.1

must include c ~ - ~ as factor. From the proof of Lemma 3.2 we know that c = c' + 1, where

c' is the constant factor from the bound on the depth of the spine decomposition which was

established in Section 2.2 and is at most 4. Therefore c is not larger than 5.

3.4 The complexity of the dynamic programming algorithm

Once we have ascertained a bound on the size of the continuous cost functions used in our

dynamic programming algorithm, we can attempt to evaluate its running time performance

and storage space. The algorithm is outlined by Program 3.1 and as we already know, most

of its execution time is spent in the computation of the cost functions.

Storage space: Lemma 3.2 bounds the complexity of the cost functions stored at any

internal node of the SD, if we consider k to be constant. By adding the sizes of the cost

functions stored at all nodes from the same level in the decomposition, we obtain functions

of the same order irrespective of which level the nodes were selected from, i.e. the functions

have total size O (n l ~ ~ ~ - ~ n) . Since there are O(1ogn) different levels, it follows that the

total size of all data structures used in storing the cost functions at every node of the

decomposition is O(nlogk-I n). The storage space of the spine decomposition structure

itself was shown to be O(n) in Section 2.2. It follows that the space complexity of the

dynamic programming algorithm as outlined by Program 3.1 is O(n logk-' n).

However, not all cost functions are needed simultaneously to carry out the algorithm.

We can modify the bottom-up procedure such that to discard the functions stored at nodes

that are below some other node for which all cost functions are computed already. We are

allowed to do this because we are only interested to calculate the cost functions at root s so

of the spine decomposition.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 57

I

For example, consider that every spine n(vo, urn) is processed from its leaf v, toward

root vo. This is done by traversing the search tree of the spine in post order and always

selecting the child node toward the leaf first. Whenever the cost functions for the currently

visited search tree node are determined, those of the two children are not needed anymore

and the storage space can be freed. So, at any moment in the life cycle of the algorithm,

the only search tree nodes that store cost functions are those adjacent to the path in SD(T)

that starts at the current SD node and ends at the root of the decomposition. Since the

subtrees of T that correspond to these nodes are disjoint, it follows from Lemma 3.2 that

the total storage space used by the algorithm is O(n n). The steps of the algorithm

are sketched in Program 3.2.

The reason why we chose to process the child towards the leaf first, becomes obvious if

we look at the procedure to evaluate Fosu which is described in Section 3.2.4. There, we

need the value of functions OSCR() and OBUR() at nodes xi adjacent to the path from

the current SD node xo to the root, such that xi are on the leaf side.

Running time: We now analyse the running time of the merging steps for computing

cost functions recursively. Suppose we use a simple array to store the linear pieces of

the continuous cost, fimctions. T h e entrips of silch an ar ray RP? ndered prrnrdi~g t~ the

succession of intervals for distance a of each linear piece. Similarly, I B U ~ (X , j, z) is stored

in an array indexed by vertex x. With this data structure, given any fixed a, one can extract

the value of any continuous cost function by binary search in O(1og n) time. Given a fixed

vertex x, the value I B U ~ (X , ~ , 2) of a particular node x and number of split edges j can be

retrieved in O(1) time.

To estimate the total computation time, observe that we can sequentially traverse the

cost functions stored at the children and construct the parent function in constant time for

each linear piece of the parent. From here, it follows immediately that the time spent in

the computation of all continuous cost functions has the same asymptotic behaviour as the

total space of all cost functions at all SD nodes. If we denote by T&n) the fraction of the

running time used in the computation of the continuous cost functions, then,

We want to evaluate now the time consumed for the computation of discrete cost function

IBUR(). Consider first equations (3.10) and (3.11). Except for the evaluation of term Fosu,

CHAPTER 3. THE K-MEDIAN PR,OBLEM IN TREES: ALGORITHM UKlll 58

I

k-median(T) {
Compute SD(T).

0 Execute compute-cost(ssD).
For each vertex z in T do
- Evaluate IBUR(ssD, k - 1, x).

0 Return as solution the minimum value computed above.

}
compute-cost (x) {

0 If x is a spine node with degree at most 2 in T , i.e. it is not adjacent to a
spine component, then
- Compute OSCL () , OSCR () , OBUR () and IBUR () directly using (3.3),

(3.6), and (3.9).
0 If x = vi is a spine node with degree 3 in T, let s n ~ be the root of search tree

for component T(ui). Then,
- Execute compute-cost(snl).
- Compute vscL(j, O,SC~(), U B U ~ () and I B U ~ (~ using (3.41, (3.7),

(3.10), and (3.11).
- Free memory used for functions at snl.

0 If x is internal to some search tree, let y and t be the children of x with y
toward the leaf. Then,
- Execute compute-cost(y) .
- Execute compute-cost(t).
- Compute OSCL(), OsCR(), OBUR() and IBUR() using (3.5), (3.8),

and (3.12).
- Free memory used for functions at y and t.

1

Program 3.2: Main steps of the improved k-median algorithm

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 59

all other operations can be performed in constant time for any given z . Different values of

Fosu are needed O(k) times and thus cost I B U ~ () is acquired for a given parameter z

in 0(log2n) time for fixed k. Any parameter z can appear in at most O(1ogn) different

functions I B U ~ () , therefore the total time for the computation of discrete cost functions is

0 (n log3 n) .
Note that in our analysis above, we have assumed that the value Copt used in (3.7) and

(3.10) is available in constant time. However, we have not discussed yet how to compute

this value. Since there are at most k - n different values for Copt, if we denote by Tcopt (n)

the time needed for the computation of one value of Cqt, then the total computation time

for Copt is simply O(nTcopt(n)). We can state all our observations in the following theorem.

Theorem 3.1. The algorithm described by Program 3.2 for solving the k-median prob-

lem in trees has space complexity O(n logk-' n + Scopt (n)) and running time complexity

O(n logk-' n + n log3 n + nTcOpt (n)), where k 2 3 is a constant, Tcopt (n) is the time com-

plexity for solving the j-median problem on a particular subtree of T, and Scopt(n) is the

extra space required by the method that computes Copt.

The algorithm described earlier is not complete until we show how to compute the values

Copt that are needed in the recursive formulae for cost functions. In the present and following

section we concentrate on this problem. To simplify the explanations, for a given vi E T we

refer to the evaluation of Copt(T(vi), j) as the j-median subproblem. First, we consider the

k-median problem applied on two special classes of trees, the directed and balanced trees.

As it will become evident, these trees have a special structure for which the solution to the

j-median subproblem is trivial. The algorithm that results is more simple. In Section 3.5.3

we examine the case of arbitrary trees but for k = 3. For this case, we use the framework of

algorithm UKM and we provide an algorithm for the j-median subproblem where j E {1,2).

3.5.1 Directed trees

In directed rooted trees edges are directed towards the root and any facility serving a

particular vertex v must be an ancestor of v . The problem in this formulation has practical

applications in optimizing the placement of web proxies to minimize average latency, see for

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 60

I

example Li et al. [74].

In [74], the authors presented a 0(k2n3)-time algorithm for this problem. This was

later improved to 0(k2n2) by Vigneron et al. [107]. In [I071 the authors also noted that the

Kariv-Hakimi algorithm can be modified to find k-median in directed trees in time 0(k2n2).

In particular, it is also possible to adapt the algorithm of Tamir [99] for directed trees and

use the same analysis to prove a running time of 0(kn2). Chrobak et al. [28] gave algorithms

sub-quadratic in n for k = 2 with running time O(nlogn), and k = 3 with running time

0 (n log2 n) .
In the special case when the tree is a line, Li et al. [73] proposed an algorithm with

running time 0(kn2). This was subsequently improved by Woeginger [log] to O(kn). As

in the case of trees, the linear problem can also be solved in time O(kn) by adapting the

undirected k-median algorithm of Hassin and Tamir [56].

We can easily adapt the framework of algorithm UKM to model the restrictions of the

directed edges of trees, which for this problem are always oriented from children to the

root. For example, notice that discrete function IBUR(x, j, z) is defined only for z = XR.

Indeed, since a facility can only serve vertices in T that are descendants of the facility,

it is not possible to have a subtree T(xR) rooted at XR such that another vertex z E T,
T v ,. ...

srl vrs 'r.2 ant; 7 i ,rg v?rjp.u ~2 mfl5.L 2 r ~ ~ ~ ~ q r , :$~r&r~ y e S I I ~ ~ s e T.TZ& cf

FoBu(x, j, 0) instead of both I B U ~ (X , ~ , z) and Copt(T(xR), j + 1). Another cost function

that is undefined is OSCL(x, j, a) because again, no external facility towards the leaf can

serve any vertex from Tz.

Algorithm UKM in directed trees remains the same except for small differences that

simplify the computation of cost functions. When node x is on the spine, we can use (3.3)

and (3.4) substituting

Copt(Ts,,, j) O B ~ R (S ~ / , j - 1,0).

We can use here function OBUR (~ ~ 1 , j -. 1,0) and not FOBv (T,,, , j - 1 , O) because at root

s n ~ function OBUR() takes in consideration the optimal distribution of split edges in the

entire subtree. For an internal search tree node, equation (3.5) remains unmodified.

To compute OBUR(), when x is an internal search tree node, we can use (3.8) as is.

When x = vi is a spine node, we can use (3.6) and (3.7) replacing

Note that in the algorithm UKM described in Program 3.2, all cost functions at node vi+l

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 6 1

are known when vi is processed.

To estimate the running time of the algorithm for directed trees, observe that Cqt is

obtained from function FoBu evaluated for a = 0. FoBu is evaluated exactly as for the

general case. Then, from the discussion in Section 3.4 it follows that

By substituting this into Theorem 3.1 with the observation that the only value of function

I B U ~ () that is computed coincides with the value for CVt and, as consequence, term

O(n log3 n) is not present, we can state the following.

Theorem 3.2. The algorithm for computing the k-median problem on directed trees where

edges are oriented from the root toward the leaves and k 2 3 takes O(nlogk-I n) time and

O(n n) space.

3.5.2 Balanced trees

When tree T is balanced, there is no need for the spine tree decomposition as argued in

Section 1.4.1. We can simply use the undiscretized cost functions from algorithm UKM
n a c n ~ ~ o + a A n n n r rrrr.+h 0.- h C r r \ n n -+ y ' -.--A A
wuvuAwuuu .rvrv vvIYII UUVUIbbO I u u u e ~ at a vertex of the tree. Recall ~ I V I I L Seciiu11

1.1 that given x E T, T(x) denotes the subtree rooted at x, i.e. the subtree containing x

obtained by removing edge xp(x) from T.

Since there is no spine involved, restricted cost functions OSCL () and OSCR () are not

defined. We work only with OBUR () and IBUR () :
Function O B U ~ (X , ~ , a) is defined for every x E T and returns the cost in T(x) if an

external facility serves x and j split edges are located optimally in T(x).

0 Function IBUR(x, j, z) is defined for every x E T and x E T(x), and returns the cost

in T(x) if z is a facility covering x and j split edges are placed optimally in T(x).

Consider Figure 3.7 where x has children y and t. Function OBUR() is obtained from

the cost functions stored at the children vertices by considering the two new edges, xy and

xt, being either both, or exactly one, or none split. If we denote by A(j, a) the contribution

of vertices from {x) U T (y) if j split edges are chosen from x y U T (y), then we consider only

new edge xy as possible split candidate and we can write,

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 62

Figure 3.7: Computing cost functions in a balanced binary tree

Then, we can similarly incorporate the contribution of vertices from T(t) by checking new

edge xt for splitting, in other words,

To obtain the list I B U ~ () , we can proceed in a similar way. We split the value of

I B U ~ () in two, the first term A1(j, z) accounting for the contribution of {x} U T(y), and

the second accounting for the rest. In these expressions, we assume that z E {x} U T(y).
r n r 3 T X I x a q * % -

I r w c.;-lsr 7 g T(i) ~ ' ~ 1 1 r)? I ~ P ~ ~ o . I ~ o . :ymmeTvvILy LUQUT, we Ci_n gfit &ye t~ ~c~siCi_e~ f h ~

new edges as split candidates, because function OBUR() incorporates this choice. We can

simply write,

To add the contribution of the remaining vertices, we need to check whether to split edge

xt or not,

IBUR (x, j, z) = min (~ ' (j - q, 2) + min { O B U R (~ q, d(z, t)) , c O p t (~ (t) , q) J}.
0 l q l . i

For the computation of Copt (T(x), j), we can afford to spend time linear in IT(x)l and

use

Cqt(T(x), j) = min IBUR(x, j - 1, v).
v € T (x)

Indeed, any vertex v E T(x) can appear at most O(1ogn) times in a subtree of the type

T(x), and therefore, Copt is evaluated in O(1ogn) amortized time. The recurrence relation

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 63

for the complexity of cost function OBuR() obtained from these formulae is again (3.15),

so Theorem 3.1 can be used to state the following.

Theorem 3.3. The algorithm for computing the k-median problem in trees with O(1ogn)

height takes O(n logk-' n) time and O(n n) space for k > 3 constant.

Note here that the constant hidden in the big oh notation is again exponential in k, but

its value depends on constant c' that bounds the height of the input tree,

height(T) 5 c'logn.

3.5.3 Arbitrary trees for case k = 3

This case is the most involved. The spine tree decomposition is used and all cost functions

are computed as described in Section 3.2.

For a given spine vertex vi E T, we show in this section how to compute Copt(T(vi), 1)

and COpt(T(vi), 2). Consider Figure 3.6 as reference, where vi = xo and SD nodes XI , x2, ...
xb are adjacent to the path a(vi, sn) and xh is on the leaf side of the path. Spine II contains

vertex vi.

Computing CWt(T(vi), 1)

As shown by Kariv and Hakimi [67], the optimal solution of the 1-median problem in a tree

coincides with the weighted centroid of the tree. The weighted centroid is a vertex v, E T

such that the total weight of any of the three components of T obtained after the removal

of v, is smaller that $ of the total weight of T.

We can use the ideas of Breton [20] that allow us to compute in logarithmic time the

1-median of any subtree of T. Basically, we use the spine decomposition in which every node

x contains the value w(T,) = CVET, W(V) which can be pre-processed. Then, a traversal of

the decomposition from vi to the root of the current search tree sn reveals weight w(T(vi)),

after which one can traverse the decomposition from sn top down towards the weighted

centroid v,. The top-down traversal is easy to implement because at every SD node x for

which Tz E T(vi), we can determine in constant time the child y for which Ty contains the

weighted centroid.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 64

Computing Cqt,(T(vi), 2)

From Figure 3.6 we see immediately that subtree T(vi) is partitioned into subtrees T,, for

0 < h < b. We will determine the optimal 2-median of T(vi) by finding the facility that

covers root via Assume this facility is vertex z* from T,, for some 0 5 h < b. There are two

possibilities where the only split edge of the 2-median can sit inside T(vi). The split edge

can be (i) in one of T,, with a < h, or (ii) in T(xhR). Recall that T(xhR) represents the

subtree of T rooted at X ~ R .

Case (ii) is relatively easy to solve. The cost of 2-median solution is given by

The first term of (3.17) represents the cost of subtree T(xhR) when exactly one split edge is

chosen in the subtree. The second term denoted BhMl is the contribution of the remaining

vertices but only up to the root X ~ R of T(xhR). The final term equals the additional cost

spent by routing the service from X ~ R to the actual facility inside subtree T(xhR). Notice

that the value for Bh-1 above does not depend on z* but only on the choice of node xh. If

we consider node xh fixed, we can determine quickly which vertex z* E T,, optimizes (3.17)

using the techniques of Auletta et al. [8], and Hassin and Tamir [56]. Intuitively, the larger

Wh-1 is, the closer to root X ~ R the optimal facility z* must sit. The idea of Auletta is to

compute, in a pre-processing phase, a partition of the values for weight Wh-1 into intervals

such that every interval is associated with exactly one minimizing vertex z* E Tzh. This

partition can be built without knowledge of the position of vertex vi, and depends only on

node xh and on function I B U ~ () associated with it. Then given vi, we can compute query

weight Wh-1 and use it in binary search over the partition stored at node xh to retrieve z*

and the 2-median cost in logarithmic time.

In fact this process computes a function defined on the set of real numbers representing

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 65

Figure 3.8: Function IBUR() represented as a set of points in two dimensional space, and
an interpretation of the cover function

the values of weight Wh-l, and that returns a real number representing the optimal contri-

bution of vertices from T(xh) under the constraints of case (ii). We denote this function by

K (xh, 1, W) and call it the cover function. The second parameter represents the number

of split edges located in T(xhR). AS expected, there also exists cover function K (xh, 0, W)

which will be discussed shortly. Clearly, we obtain COpt(T(vi), 2) under case (ii) as

In the above relation, we write CAP, because the equation satisfies only one case of the two

possible.

The cover function can be computed in linear time on top of any cost function IBUR()

as follows. Consider the two dimensional Euclidean space where we have a set of IT,, I points

with y-coordinate lBUR(xh, 1, z) and x-coordinate d(z, xhR) as in Figure 3.8. From (3.17)

it follows immediately that the cover function returns the intercept of a line with slope -W

that passes through the optimal point z*. Since we are interested in the vertex minimizing

the cover function, the set of candidate vertices for the optimum facility is given by the lower

convex hull of the points from the two dimensional distance-cost space. The lower convex

hull can be pre-computed for a fixed xh in time linear in)T,,) if the vertices z E Tzh are

available sorted by the distance to X ~ R . Then, a Graham scan algorithm [88] computes the

lower convex hull in linear time and stores it as a sequence of slope values. This sequence

of slopes gives, in fact, the partition of the weight which defines the cover function. Note

that it is easy to pre-process the SD in O(n log n) time so that every node x contains a list

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 66

Figure 3.9: Solving the 2-median subproblem when the split edge is towards the root

of the tree vertices in Tx ordered by their distance to XR.

We can now sketch a procedure that finds the optimal vertex z* E Txh given that we

know the total weight Wh-1 of vertices in Up<h Txq. Our definition of the cover function

is independent on the number of split edges from subtree T(xhR). Here we use j' for this

number. Of course, for the 3-median problem, j' E { O , l) .

Step 1) Pre-process the lower convex hull C of the points defined by coordinates

C(L-..- C n rm-7,
DI,UL~: it as 8 ~ o ~ t ~ d arrw ul' siupes w,b jcailed the slope-sequence or I, [A I I) , where

za and zb are two vertices that determine consecutive points on the convex hull

(Figure 3.10 (a)).

Step 2) Given query weight Wh-1 for a11 vertices in Uq.,h Txq, find the tangent point z* to

the line with slope -Wh-1 using binary search over the sorted w,b array. Return

IBUR(X~, j', z*) + Wh-I+*, x ~ R) .

The result returned by Step 2 above is cover function K (x ~ , j', ~ h - 1) . AS already men-

tioned, a cover function can be evaluated in O(1ogn) time for a given Wh-1. The data

structure for storing the cover function is the data structure used to store the lower convex

hull C. To compute CWt(T(vi), j' + l), we only need to evaluate the cover function for each

Txh at Wh-1 = w(TXq). Parameter Wh-l can be easily precomputed so that it is

available in constant time. Here w(Txq) represents the total weight of vertices in Txq.

Case (i) is not so simple. For this case, we consider that vertex z* belongs to subtree Txh

fixed but the split edge is now located in subtree Tx, for a < h. Consider node x, fixed as in

Figure 3.9. For xh and x, fixed, we want now to quickly find the optimal median z* E Txh

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 67

and the optimal split edge eg E T,,. In the previous case, we used a cover function for node

xh to determine x*, but now, because of edge eg which is also unknown, we cannot compute

the query weight to be used in the cover function at xh. Indeed, edge eg, if split, determines

component denoted here T(eg) (see Figure 3.9) that is served by a separate 1-median and

not by x*.

However, if we were to estimate the cost of the 2-median optimal solution for T(vi),

the contribution of subtree T(xhR) is returned by cost function IBUR(xh, 0, z*), and the

contribution of T,, by OSCL (x,, 1, d(x*, xaL)). Every linear piece of the later function is

in fact determined by one particular edge of T,, and this edge is known. Thus, for every

linear piece of function OSCL (), the query weight W can be easily determined.

Intuitively, what happens when we solve the 2-median subproblem for subtrees T(v,)

for c < i? Clearly, the weight of all vertices that are to the right of T,, and T,, becomes

larger and larger, and therefore the optimal facility z* moves towards X ~ R to compensate

for the extra weight. Then the distance (I! between z* and the root x , ~ of T,, decreases,

and at some point, edge eg+l becomes the optimal split edge in T,,. Now, our strategy has

become to determine the amount of the extra weight W that causes the shift of the optimal

edge from eg to eg+l.
- -
I + 7176 rin. + h ~ n n n n r o f ~ n r , <nr n-7nr.r n o l r n+ nnr,clnn..+q.m "-I.+ n ~ r m n +rnm I IC ' I I - i- 1 n i -rm
A.L V V V uv Y U ~ U V ~ Y I W Y L V L L IVI UVCII J PULL VI C I V I I U ~ ~ U U I Y V u y u u ku6-u IIVIII V U V L \ & ~ , I) u), v V k

obtain another partition of weight W. This new partition can be used to obtain, by binary

search, the optimal split edge in T,, first. Then, we can determine the complete query

weight W' to be used with cover function K(xh, 0, W) which gives us the optimal facility

z* and the cost of the 2-median subproblem, for nodes xh and x, fixed. To calculate the

true optimal solution, we need to repeat this procedure for all pairs of nodes xh and x, for

which b > h > a > 0.

Computing the new weight partition: We now show how to compute the partition

of weights for the optimal split edge. This weight partition can be determined at the time

of computation of all cost functions (see Program 3.2). The weight partition needs to be

calculated for every relevant pair of SD nodes xh and x,.

Consider for the fixed pair xh - x, that vertex vi is mobile. Observe that vi must be one

of the leaves of node yawl in order for xh and x, to be relevant, where y,-1 is the sibling

of x, (see Figure 3.9). Denote by Wi the weight involved in determining the new partition,

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 68

I

i. e.
a- 1

w, = C w(T(xc))
c=o

We need a value wglg+l such that if Wi < wglg+l, then eg+l is a better candidate split

edge, otherwise eg is better. Instead of computing wg,g+l exactly, we can use the fact that

vi E Ly,-l and thus we have knowledge of the actual value of Wi as v, moves in the allowed

range. Let R be the set of values for Wi in increasing order as vi moves towards the root.

Using prefix sums, it is easy to pre-compute R for all spines in linear time globally.

To determine wg,,+l, our idea is to compute the Zmedian cost of T(vi) for a given vi in

the allowed range (ie . for a given Wi E R) in two versions, one in which edge eg is split, the

other in which eg+l is split. Then, by comparing the two values, we can determine in which

direction vi should be moved (2.e. whether Wi should be increased or decreased). Clearly,

if edge eg gives a smaller cost than eg+l, we have to increase Wi. As consequence, we can

use binary search on fl to find ~ ~ , ~ + l .

Denote by Copt(eg) the 2-median cost of T(vi) if eg is split, and by Copt(eg+l) the solution

of the same problem when eg+l is split. We have,

Y

cancels out

A similar expression exists for Copt(eg+l). Above, we denote by fg(a) and fg+l(a) the

linear functions that determine the linear pieces of OSCL (xa, 1, a) for edges eg respectively

eg+l. The first term in the right hand side of the equality computes the contribution of

vertices in subtree T(xhR). Using the cover function insures that the choice for the median

in Tzh is optimal given the total weight of vertices outside that it serves. The second term

is redundant because it is present in the expressions for all split edges in Txa. It gives the

cost of vertices in the subtrees between Txh and Txa up to the root x h ~ . The cost for the

extra distance between X ~ R and the facility inside Txh is present in the value of the cover

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 69

function. The third term equals the contribution of vertices in T,, that are served from the

median in T,, but only up to root X ~ R . This value is in fact given by the appropriate linear

function that makes up OSCL(xa, 1, a) for distance a = d(xaL, xhR). Finally, the last term

again cancels out. It represents the cost of vertices from the subtrees to the right of T,,

when the service is routed X ~ R .

All terms of the expressions above are known, and therefore they can be used in the

binary search algorithm for finding The next border value W ~ + I , ~ + ~ is found in the

same way. However, we must verify that wg+1,9+2 < W ~ , ~ + I , otherwise we cannot use the

partition later on. Basically, if the query weight Wi is such that wg+l,9+2 5 W 5 W ~ , ~ + I ,

then eg+l is the best split edge in T,, for the given vi. However, it is possible that, by

computing the weight partitions, the values obtained are in fact ~ ~ + l , ~ + 2 > ~ ~ , ~ + l . In this

case though, it can be argued that eg+l will never be a candidate for the best split edge, and

thus it can be eliminated from the picture. A new partition w9,9+2 must be then computed.

However, the total cost for the computation of this new boundary value does not exceed

the size of function OSCL() and thus cannot be the dominating step in the algorithm. The

entire algorithm for computing the optimal 3-median of input tree T is sketched by Program

3.3.

Analysis of the 3-median algorithm

In this section we analyse the complexity of the algorithm UKM for the case Ic = 3. The

main result is established in Theorem 3.1, here we only complete the analysis by providing

bounds on the total running time for computing all values CWt.

The query for 1-median on a subtree of T can be done easily in O(1ogn) time (see

the beginning of Section 3.5.3). For the Zmedian query, case (ii) is more simple. The

cover functions can be calculated whenever IBUR() functions are calculated in total time

0 (n log n) , and each query can be solved in time 0 (log n) . For a fixed vi, there are 0 (log n)

evaluations of the cover function, which means 0(log2 n) time per tree vertex, adding up to

a total of O(n log2 n) time for case (ii).

We now look at the time consumed for case (i). To compute one value wg,,+l of the

partition intervals for a given pair of nodes xh-x,, we perform binary search over set R of

weight values. This takes O(1og n) time. At each element of R, we evaluate Cqt(eg) and

Copt(eg+l). This time is dominated by the time to evaluate the cover function which is

O(1og n). All other values that are needed can be pre-computed in amortized constant time.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 70

I

0 Compute the SD and cost functions as described by Program 3.2.
0 for each x E SD(T) , do in addition:

- Maintain the vertices in T, sorted by distance to XR.
- Maintain ordered weights R.
- Compute cover functions K (x, 1, W) and K (x, 0, W) with Graham

scan.
- For all SD nodes xh adjacent to the path from x to the root of the curent

search tree, compute the split edge weight partition relative to xh.
If x = vi on some spine, compute Copt (T (vi), 1) and Copt (T(vi), 2) :
- Identify the weighted centroid;
- ; roan \ v w ~ u ::) FSr ail SD ns&es zi, sdJsceE$ t= path :yo;-=, c, t c the root

of the curent search tree, query cover K (xh, 1, W) with the appropriate
value W. Retain the minimum.

- (case i) For all SD pair nodes xh, x,, identify the optimal split edge using
split edge weight partition. Use K(xh, 0, W) with the W obtained from
previous step to calculate the cost.

- Return the smallest cost over all cases.

Program 3.3: Algorithm for computing the optimal 3-median of an arbitrary tree

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 71

Therefore, the time needed to compute one element of the partition is 0(log2 n).

We now evaluate the total number of consecutive edges eg and eg+l for which a wg,g+l

is needed. From Corollary 3.1, the total size of all functions OSCL (x, 1, a) is O(n log n),

and for each pair of adjacent linear pieces of these functions we use 0(log2 n) time. The

total time to compute the weight partitions for the split edge becomes 0(nlog3n). For a

fixed vi, to compute the 2-median cost of T(vi) under case (i), we look at 0(log2 n) pairs of

nodes adjacent to the path from vi to the root of the search tree. For each pair, we query

the weight partition for split edge, then we query the cover function to calculate the cost.

This amounts to 0(log3 n) for each vi, i.e. a total of 0(nlog3 n). We can gather all these

conclusions into the following theorem.

Theorem 3.4. The 3-median problem on an arbitrary undirected tree can be solved in

0 (n log3 n) time and 0 (n log n) space.

3.6 Solving the general instance of the k-median problem

The framework for solving the general k-median problem in sub-quadratic time is algorithm

UKM. We only show in this section how to compute Copt. Let xo = vi be a SD node on

some spine as in the previous section. We want to evaluate C',pt(T(vi), j + 1) where T(vi) is

the component obtained by removing edge (vi-1, vi). Consider the search tree path from xo

to the root of the search tree (Figure 3.6) and nodes XI , x2 . . . xb adjacent to the path and

defining T (vi).

The general idea for calculating Copt for an arbitrary number of facilities is somewhat

similar to the procedure used for the 3-median problem. We still determine the facility

that covers vertex vi by computing cover functions and, as long as the set of split edges is

accounted by function IBUR (), this is enough. But when split edges are outside the subtree

for which we use IBUR (), we proceed in a different manner. Recall that the cover functions

are interpreted as the lower convex hull of all points that correspond to the values of function

I B U ~ () in distance-cost space. If we want to see the effect of placing several split edges in

some subtree outside, we simply add cost function OSCL () of the subtree outside to the y

coordinate of all points in the distance-cost space and recompute the convex hull. In this

way we obtain the representation of another cover function (which we call generalized cover

function) that considers the influence of the split edges and that can be used directly to

retrieve the optimal facility covering vi. We describe this idea formally in the paragraphs

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 72

Figure 3.10: (a) Representation of function I B U ~ () as a point in distance-cost space. (b)
Updating the lower convex hull after adding function OSCL ()

to come.

3.6.1 Computing Copt (T (vi), j + 1) for any constant j

A ""..-,-. +I....+ + L - --A:-- ,.,.*.,... :-- ,.. :- & L a ,.-a :-..I /; I 1) -,.A:..- ,.ST/". \ :" ----A,.-- -* F T
I L U U U I I I b U I I W U U I I b L I I b U I C U I b U V b I III5 V1 111 U L I L V I I U L L L L W I [-I 7 I ! - l I L C U L L (I I 1 V L 1 ? V T L U V L I U L A 4 LI 1 T~~

and that we also know the distribution of the optimal j split edges in trees T,, for 0 5 q 5 b.

Let j, be the number of split edges in tree T,, (note that we are faithful to our convention

and consider the spine edge between T,, and T,,,, as associated with T,,). Denote by j'

the number of split edges from T,, and above, i .e. j' = jh + jh+1 + . . . + jb. The value

COpt(T(vi), j + 1) is determined by the contribution of vertices from T,, U . . . U T,, returned

by IBUR (xh, j', z*) , and that of vertices from T,, U . . . U Txh-, that contain j - j' split edges.

We now describe how we can find vertex z* in T,, quickly. Note that finding z* must take

time sub-linear in n, but we are allowed preprocessing in total time sub-quadratic in n.

If no split edge is chosen in any of the subtrees T,, for q < h (j' = j), then we have a

simple situation identical to case (ii) from Section 3.5.3, and cover function K (xh, j', w ~ - ~)
can be used as before to compute Copt (T (vi), j + 1).

We can show now how to accommodate an arbitrary number of split edges in trees T,,

for q < h. If jh-1 edges are split in Txh-,, the contribution of vertices from T,,-, to the

(j + 1)-median required is given by function O S C ~ (xh-1, jh-1, d(z*, x ~ - ~ , ~)) (see Figure

3.11). Hence, we need to add function OSCL (xh-1, jh-1, d(z, x ~ - ~ , ~)) to each of the points

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 73

Figure 3.11: Computing the generalized cover function when jh-1 split edges are chosen in

Txh-1

from Figure 3.10 (a) and update the lower convex hull for the given jh-1. The new convex

hull can then be used in a procedure identical to the one outlined before for computing the

(j + 1)-median. This updated convex hull encodes, in fact, a different cover function called

generalized cover function that accommodates jh-1 split edges in TZh-,. We denote this

generalized cover function by KhPl (xh, (jh-1, jr), w) and associate it with SD node xh-1.

In general, Kg (xh, (jq, . . . jh-l, jr) , w) for q < h denotes the optimal median cost in subtrees

u:=, T,, if the median covering vi is in Txh and jq, ... jh-1, j' are the number of split edges

selected in T,,, ... Txh-, and T(xhR) respectively. If we denote by J(h) the set of all tuples
I . . I \ . , r . ., . sf jXXitiVt3 ;iikSela \ j g 7 . . . jh 1; 3 ,I WIT" 30 + f ~ ~ b - 1 41

. f J l ' = J 4 7 +Lon

Generalized cover functions

We can compute generalized cover function K ~ (X ~ , (jq, jq+1,. . . jl), W) from the convex hull

corresponding to Kq+1 (xh, . . . jl), w) as portrayed in Figure 3.10 (b). Recall from

Section 3.1 that function OSCL() is piecewise linear and concave. Observe that if P from

Figure 3.10 (b) is a critical point for OSCL (), then Q is a reflex point, i.e. a point that

violates the convexity requirement. However, the convexity can be easily restored by visiting

the points on L adjacent to Q, S and R from Figure 3.10 (b) for example, and eliminating

them if needed until no other reflex points remain. The procedure is sketched by Program

3.4.

The updating of the convex hull must satisfy certain requirements in order to keep our

algorithm sub-quadratic in n. The time complexity of the procedure above is linear in the

size of cost function OSCL () and it is proportional to the number of reflex points eliminated

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 74

- For every critical point P of OSCL (xq, jq, a) do
* Find the corresponding point Q on Kq+1 (xh, (jq+1, . . . j'), W) by binary search.
* Traverse the neighbors of Q on Kg+' (xh, (jq+', . . . j'), W) sequentially, add

function OSCL () , and restore convexity by eliminating reflex points. Stop
when no reflex points are left.

Program 3.4: Computing the generalized cover functions

from Kq+i (xh, (jq+l, . . . j'), w) . Using these facts, we show in the following section that the

total time required for the computation of Copt(T(vi), j + 1) for all vi is still sub-quadratic

3.6.2 Analysis of the UKM algorithm for the k-median problem

In the previous section we describe our method to compute the (j + 1)-median subproblem

COpt(T(vi), j + 1) based on generalized cover functions. Before explaining how to store and

manage the generalized cover functions, we analyse the running time and storage space of

the algorithm. The final details of the algorithm are presented in Section 3.6.3.

In Theorem 3.1, we prove the complexity of the general UKM algorithm as a fmction of

the complexity of the algorithm for solving the (j + 1)-median subproblem. We show that

the space complexity is ~ (n n+Scopt (n)) and running time complexity ~ (n logk-' n+

n log3 n + nTcop, (n)), where k 2 3 is a constant, Tcop, (n) is the time complexity for solving

the j-median problem on a particular subtree of T, and Scopt (n) is the extra space required

by the method that computes Copt.

In this section we are concerned with proving the bounds on Tcopt (n) and Scopt (n). To

evaluate Tcopt(n), two facts must be established. First, because of (3.18) we need to bound

the number of generalized cover functions that have to be calculated in order to obtain the

result, i. e. the number of tuples (jo, . . . j') used as arguments for function KO (). There are

at most k - 1 split edges that must be distributed among O(1ogn) subtrees for constant k.

We can consider each split edge as a distinguishable object that is assigned a digit from 0 to

O(1ogn) identifying the subtree containing the edge. Therefore the total number of tuples

generated is at most the total count of k - 1 digit numbers that can be formed, i.e. it is

O(logk-' n) for constant k. If T'(n) is the time consumed by the evaluation of a generalized

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 75

Figure 3.12: (a) Computing the generalized cover functions from function IBUR(X). (b)
The data structure that stores generalized cover functions in distancecost space; points
eliminated from C appear black

cover function for a given parameter w, it follows immediately that computing the optimum

cost takes O(T'(n) logk-' n) once all cover functions are known.

Second, we need a bound on the time needed to compute the cover functions. Consider

a particular SD node x whose sibling SD node is y such that y is towards the root from

x (Figure 3.12 (a)). Function IBUR() stored at node x is used in the computation of the

generalized cover functions only if vertex vi E Ty and y is towards the root. Recall that vi is

the vertex for which we need to evaluate Cqpt(T(vi j, j+ i j . -We compute the generaiized cover

functions using the algorithm from Program 3.4. Denote by Tbi,(n) respectively Tref (n) the

fraction from the total computation time taken by the binary search procedure, respectively

the reflex point elimination procedure.

To evaluate Tref (n), consider yl, y2, ... yl to be the left child (towards the leaf) of y, yl,

.. . yl-1 respectively (Figure 3.12 (a)). If xi comes from Ty,-, \ Tya for some 2 5 a 5 1, any

convex hull vertex x E Tx can be eliminated in the process of computation of all generalized

cover functions at most Ic times, once for each function IBUR(x, j', x) with 0 5 j' 5 Ic - 1.

Since 1 is O(1og n), any vertex x E Tz can be visited at most O(1og n) times. Any vertex z

belongs to at most O(1og n) trees Tx where x is a node of the decomposition, and therefore

node z can be eliminated as reflex point for all generalized cover functions at most 0(log2 n)

times. Thus, the total number of times an elimination takes place is O(n log2 n). However,

it is possible that we visit a point without eliminating anything. In this case we stop the

convex hull updating procedure, and the time of this operation is dominated by the time of

the binary search operation which is estimated shortly.

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 76

If we ignore the cost of checking but not eliminating anything, we can state that

We now estimate Tbin(n). Consider now SD node x from Figure 3.12 (a) and nodes

XI , x2, ... xp above x that hang from the SD path a(x, ssD) towards the leaf. We want

to evaluate the number of binary search procedures for the algorithm in Program 3.4 that

involve the critical points of OSCL (x, j, a) for some j 5 k - 1. Clearly, there are O(1og n)

possibilities to chose one of the trees T,,, ... T,,, as containing the median covering t ~ i

wherever that vertex is. For one such possibility, there are O(1og n) trees that must receive

at most k-1- j split edges (j split edges are already in T,), which makes up for O(logk-l-i n)

cases, each involving O(IT,l logi-' n) critical points (from Lemma 3.2). Summing over all

O(1og n) possibilities, this amounts to O(IT, 1 logk-' n) binary search routines. Adding the

binary search operations over all SD nodes x, we obtain O(n logk n) search routines taking

a total time

Tbin (n) E 0 (nTK (n) logk+' n) .

From Theorem 3.1 and using the expressions above, we can state that the k-median

problem on an arbitrary undirected tree ca,n be snlv~d in O(n.Trc(n,) lngk+' n) time, whew

TK(n) is the time required to evaluate the generalized cover function. For a simple data

structure, TK(n) E o(log2 n). However, we can use fractional cascading and improve this

bound to O(1og n). Details are provided in the next section.

3.6.3 Overview of the entire algorithm and implementat ion issues

From the analysis in the previous section we assumed that to compute cover function

K,(x~, (j,, . . . jt), W) we afford to spend time linear in the complexity of the cost function

stored at x,, OSCL (x,, j,, a) . This suggests that we can store generalized cover function

Ko(xh, (jo,. . .jt), W) in a data structure distributed over nodes xo, XI , ... xh such that at

node xq (0 5 q < h) the data structure is linear in the size of the cost function.

Consider Figure 3.12 (b) where we illustrate the data structure. It is simply a linked

list of sorted slope-sequence values for the convex hull of the corresponding generalized

cover function. Each list element corresponds to a critical point from continuous cost

function OSCL (). It contains two pointers to some element of the discrete cost function

I B U ~ (X ~ , jt, .) that define the interval of reflex points eliminated because of OSCL(). In

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 77
I

between two consecutive list elements, for example A and B in the figure, we do not know

the exact shape of the convex hull, we only know the slopes at the extremities of A and B.

There are at most O(1og n) lists such as Ch-l in the figure, one list for each node xq with

0 5 q < h - 1. Thus list Cq stores cover function Kq(xh, (jq, . . . j'), w).

Perhaps the best way to think about these lists is to view them as layers of an onion.

Each layer maintains a list of fragments of the convex hull it represents (convex hull =

generalized cover function). Two adjacent fragments can contain gaps of points from the

original convex hull that were eliminated once the concave function was added. This makes

the onion layers look more like slices of Swiss cheese, punctured by holes. For each convex

hull fragment from a given layer, we know the actual linear functions at the extremities of

the fragment, but we do not know the exact shape of the fragment. We only know it must

be convex. If we need to traverse the fragment, we must visit layers at the lower level so

that we can correctly skip over any gaps that might exist there. Notice also that any gaps

from lower layers must be strictly contained in fragments at higher levels because of the

way these fragments are built. For instance, whenever we compute the boundary of a gap

at some level, we evaluate the generalized cover function by traversing all lower layers until

a point that exists in the function is found, so the boundary cannot fall inside the gap from

a hc-er lap-. Tlieref~i-e it is uot clicculi, wiih illis daia si~uciure, io sequerliiaiiy visit the

critical points of any generalized cover function Kq () in time proportional to IKq() I . TK(n)

(this is needed in Program 3.4).

More on the storage of generalized cover functions

Consider Figure 3.13 where we illustrate several layers of the lists Cq. To simplify the nota-

tion, we do not distinguish between a list, the convex hull it represents, and the generalized

cover function. It should be clear from the context which object we refer to. Before we

describe more precisely how the computation and the evaluation of the generalized cover

functions take place, we make a few observations.

Obsermation 3.1. Given a polygonal line in distance-cost space, by adding a linear function

to each point of the polygonal line, we obtain another polygonal line which is a rotated and

translated image of the original one. In particular, we do not modify convex hull C or Cq

(except for translation and rotation) if we add a linear function.

Observation 3.2. An element of a list Cq (for example, A in Figure 3.13) corresponds to a

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 78

Figure 3.13: Three lists of generalized cover functions Kh-l (), Kh-2 (), and K h 4 ()

critical point of function OSCL() and it stores two indices to points of the convex hull C.

These indices identify convex hull points that exist in C,. In between these two points, it is

possible that there are one or more points from C, however these points are not present in

C,. They were eliminated because they violated the convexity property for C,. We call the

eliminated points black. The remaining points are white.

Observation 3.3. It is possible that two critical points of OSCL() that determine C, fall

on the same edge of the convex hull of (for example, point A' in Figure 3.13). If this

happens, one of the critical points can be eliminated.

Observation 3.4. Two consecutive elements of a list Cq (for example, A and B from Figure

3.13), correspond to the convex hull of the white points between the pointers of A and

B. They also represent the convex hull fragment of Cqfl, the list below C,, rotated and

translated appropriately by the linear piece of function OSCL () that determines the critical

points A and B.

Observation 3.5. Any element of a list Cq (for example, A in Figure 3.13) stores the true

slope and y-coordinate of the two white points that are on the convex hull of C,. "True" here

means that the values for slope and y-coordinate are those of the line L,. Since we cannot

afford to touch any white points P' between those pointed by two consecutive elements of

C,, the white points P' have the slope and y-coordinate of the original convex hull C.

Observation 3.6. Any sequence of black points from different lists is either disjoint or the

sequence for the list at lower level Cp is contained by the sequence for the list at the higher

level C,, q < p. This will become more clear when we discuss the procedure to build the

lists. An example is provided in Figure 3.13 by the sequence of points from C colored half

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 79

I

white, half black.

The evaluation of the cover function is simple. Suppose we are given weight w and we

want to find the point on the convex hull Cq tangent to a line with slope -w. We first do

a binary search over the list Cq to find the interval that contains the tangent point. From

Observation 3.5, we know we can perform the search only on list Cq. Once the interval is

identified, we know that one white point in that interval is the tangent point. We do not

know which one, but we know that the interval we just found is a fragment of the convex

hull of Cq+1, stored by the list immediately below Cq, but which was rotated. The amount

of rotation is given by the linear function mentioned by Observation 3.4 which is known.

We can thus rotate our query line to account for this rotation, and we can proceed with a

new query on Cq+1, in the same way we did on Cq. Because of observations 3.6 and 3.5,

we know that whatever interval of white points we find in Cq+1, the interval is contained

by the one we found for C,. We proceed in this way, level by level, until we perform the

final search over C which gives us the answer. The tangent point also gives us the value of

the generalized cover function we queried. Note that this process takes 0(log2 n) time, but

since it involves a sequence of searches through lists whose elements can be associated easily

(the association is given by the amount of rotation necessary to hop from a list to the next

onej, we can use fractionai cascading 128, 27j to reduce the query time to Ojiog nj without

blowing up the storage space.

Observation 3.7. In an evaluation of a generalized cover function stored at C,, we have

identified also a sequence of h - q intervals (consecutive list elements) from Cq, Cq+1, ...
C = Ch.

We now describe the operations needed during the construction of list Cq-l. For this, we

need to traverse the white points of Cq as described by Program 3.4. First, we can identify

the convex hull edge of Cq that contains the critical point of OSCL() at node xq-1 and

that would determine an entry in CqWl. We can do this exactly as in the evaluation process

described above, but we do not guide our query by slope -w, we guide it by coordinate a of

the critical point. From Observation 3.7, we know that we have O(1ogn) intervals that we

can use to jump over any black point we might encounter if we traverse points sequentially

on C. From Observation 3.6 we know that, if we encounter a boundary white point, i e . if

we are visiting a point on C whose index appears in an element of the O(1og n) list intervals

identified during the first step, we can safely skip the strip of black points. What is the

CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 80

(i) Compute the SD of T
(ii) Traverse the search tree of top spine, bottom up and from the leaf of the

spine towards the root. For current search tree node x do:
* if x = vi is a spine vertex do: recursively process component Tui, then com-

pute CWt(T(vi), j) by querying the cover functions, and compute functions
OBUR () , OSCL () , OSCR (1, and IBUR () . Compute a new cover function
by incorporating OSCL() as in Program 3.4.

* if x has children t and y do: compute OBUR(), OSCL (), OSCR (), and
IBU~() . Compute a new cover function by incorporating OSCL () as in
Program 3.4. Discard all data stored at t and y.

(iii) Return the optimal solution by computing the minimum of IBUR(sSD, k -
1, z)

Program 3.5: The dynamic programming algorithm that solves the k-median problem in
trees

procedure for skipping? We know it is possible that a boundary white point is a boundary

point for more than just one list from the O(1ogn) lists we have traversed, but because of

~~~~~~~~t~~~ 3.5 ~ x m  c n n  cinn tn thn r ~ r r h t m n o t  kr\ . .mr(nr-r r \ r \ i m t  I I n + t m r \ n +  -A;-+ 7--n t-n-rn-nn , V V V  VIULI V L X L ~  Y V  YLLU L ~ ~ U U U ~ V U U  UVULIUWLJ r u u l u  \IC.IUIILUUU r u l u u  11 VVC. UIUIVGIUG 

C to the left). In this way, we are guaranteed that we never touch any black points. In 

consequence, the list of elements we build for Cq-' will also satisfy Observation 3.6. We 

thus have the following lemma. 

Lemma 3.3. W e  can traverse any convex hull Cq in t ime O ( t  .log n), where t is  the number 

of convex hull points of Cq visited. 

Lemma 3.4. The total storage space for maintaining generalized cover functions is  

S K ( ~ )  E O(nlogk n). (3.19) 

Proof. For a fixed xq and j,, the size of the cost function at xq (the number of critical points 

of OSCL() and thus the size of list C,) is O((Txq ( logiq-' n) according to Lemma 3.2. The 

remaining k - jq split edges can be distributed in O(logk-i n) ways, each case corresponding 

to a different list C,. This totals to O(IT,,l logk-' n) list elements, and since there are 

O(1og n) subtrees that assume the role of T,, , the total size of all lists involving xq does not 



CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 81 

exceed O(/T,, / logk n) elements. Adding this for all nodes xq maintained simultaneously, we 

obtain (3.19) immediately. 0 

Final remarks about  t h e  k-median algorithm 

To recapitulate, we list the entire dynamic programming algorithm that solves the k-median 

problem in trees, in Program 3.5. All the results established in the last two sections allow 

us to state the following theorem. 

Theorem 3.5. The  k-median problem in trees can be solved, for any constant k in time 

O(n logk+2 n) and space O(n logk n) . 

3.7 Conclusion 

In this chapter, we have presented several ideas that can be used with a dynamic program- 

ming algorithm to solve the k-median problem in trees in time sub-quadratic in n, the size 

of the tree. One of the requirements for this result is to consider parameter k as a constant 

and not as part of the input because the running time of our algorithms is exponential in 
1,. A..- mn+hnJ 17nnn o Jomvmnncitinn C?f i_n_pi?t: trpp in ren~miw components that has r u ,  v u r  A r L " " r * v u  uvvv w -""--* -r.,------- 

depth logarithmic in n and whose properties are discussed in Chapter 2. Because of the 

decomposition, a constant exponential in k is hidden by the 0 notation for the complexity 

of our algorithm, but it is not larger than 3.6. 

However, it is interesting to note a conjecture made by Chrobak et  al. [28] which states 

that the bound on the cost functions handled by our algorithms is in fact linear in n. If 

true, this would have a significant impact on the complexity of our algorithms. To date, we 

were not able either to prove or to disprove this conjecture. This is definitely an interesting 

topic for further research. 

We have also looked at two special classes of trees on which simplified versions of our 

UKM template work. One such class contains trees for which edges have a specific orien- 

tation, namely from the root towards the leaves, and service can only flow in the direction 

of the edges. Facilities have to be ancestors for the vertices they serve and no facility can 

route service to its parent in the tree. As a consequence, one of the cost functions from our 

template, function I B U ~ ( ) ,  can be discarded. Function IBUR() can be viewed as modeling 

service that flows towards the root. Naturally, one can ask about instances in which directed 



CHAPTER 3. THE K-MEDIAN PROBLEM IN TREES: ALGORITHM UKM 82 

I 

trees have an arbitrary orientation. In this case however, it is possible that service comes 

from a facility that is a descendant of the vertex in question. Thus, we cannot discard 

I B U ~ ( )  from the computation. Although service flow cannot traverse any edge in both 

directions, we believe that with UKM, one still has to use the generic algorithm to solve 

instances of directed trees with arbitrary orientation. 

For the 3-median problem, we give an algorithm with a running time of 0(nlog3 n). 

Note that the generic algorithm for k = 3 has a time complexity of 0(nlog5 n). A reason 

for this difference is that in the 3-median algorithm we use additional information which we 

do not know to exploit in the generic algorithm. When we compute the weight partition for 

determining the optimal split edge for the 3-median problem, we use our knowledge of the 

weights that determine the query for the best split edge. Because of this, we compute in 

fact an approximation of the weight partition, but an approximation that gives exact results 

for the instance we need. In contrast, for the general k-median algorithm, we compute 

generalized cover functions exactly. 

Concerning the k-median problem in arbitrary undirected trees, our result has signif- 

icance from both a practical and a theoretical point of view. From the theoretical point 

of view, our work offers a new algorithm for solving an important optimization problem, 
+La 6 m n A 7 o n  .n t m n o  Cnr .rrh-nh +nrrr o l r r n r . + h m . n  rno . r l+o  h n r r n  hnnn r \ . .h l ;nhnr l  ;- +hn In-+  Cn- 
u u u  ru rrrvu~cur~ LU v r v u u ,  r v r  r r ~ r ~ u ~ r  r u r r  c u g v r r u r r r r u b  r b u u r u u  u r u v b  uuuu p u u l l u r l b u  rr l  urrb 1-u U b L l  

years. It also advances the research towards finding better k-median algorithms for more 

general classes of graphs that have not been fully considered yet, such as the graphs with 

bounded tree-width [89]. 

In practice, our algorithm is not as involved as it may seem. The data structures used are 

standard, except perhaps if one desires to implement fractional cascading, and the algorithm 

is a mere implementation of the recursive expressions on cost functions. 



Chapter 4 

The 2-median problem in trees 

with positive and negative weights 

This chapter looks at one of the two generalizations of the k-median problem studied in this 

thesis, the mixed obnoxious facility location problem. As pointed out in the introduction, 

the mixed obnoxious facility location problem concerns the placement of facilities that are 

obnoxious for a subset of the clients but desirable for the remaining ones. This can be 

modelled by assigning negative weights to the clients that view the facilities as obnoxious 

and positive for the rest. It turns out that by allowing some vertices of the network to have 

negative weight, the problem becomes more difficult. In fact, there are two different inter- 

pretations for the objective function. One is denoted MWD (Minimum Weighted Distance) 

and assigns a client to the facility for which the weighted distance is smallest. For clients 

with negative weight the serving facility is the farthest one. The other is referred to as 

WMD (Weight times the Minimum Distance) and assigns the client to simply the closest 

facility. 

In the following sections, we study both problems for the case of locating 2 medians 

in arbitrary trees. In the next paragraphs, we give an overview of the results that exist 

in the literature for this problem. We then consider version WMD, for which we propose 

an algorithm with a running time of O ( n  log n) [12]. This is an improvement over the first 

algorithm proposed by Burkard et al. [21] which has a quadratic running time, and over the 

algorithm of Breton [20] whose solution runs in O ( n  log2 n) time. The last section presents 

an algorithm for the more difficult WMD version. 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 84 

4.1 Background 

Pure obnoxious facility location problems have been in the attention of researchers for a 

long time. These problems seek the placement of facilities as far as possible from the set of 

clients and therefore the goal is to maximize their objective function. A paper by Lozano and 

Mesa [77] contains a survey of recent results regarding obnoxious facility location problems. 

Not long ago, Burkard et al. [22] introduced the model in which clients have positive and 

negative weights, and the objective function is based on the weighted distance from clients 

to facilities. This seems to be a more natural model because in many real life applications, 

parties involved in a common contract have quite often conflicting interests. For example, 

the location of an industrial waste collection center is obnoxious for the residents in the area 

but desirable for the industries using it. 

The one median positive/negative weights problem was solved in linear time for trees and 

cacti1 by Burkard et al. [22]. In a different paper, Burkard et al. [21] considered the 2-median 

problem in trees proposing an 0(n2) algorithm for MWD in arbitrary trees, O(n log n) for 

MWD in stars, and O(n) for MWD in paths. The WMD problem is more difficult than 

MWD because the optimal solution can consist of a median located not on a vertex. The 

same paper [21! describes an 0(n3) algnrithm fnr t h e  2-m~rlian WMl3 ~mhlem in 

trees and an 0(n2) algorithm if we force the medians to be chosen from the vertices of 

the tree or if the tree is a path. A list of applications for the WMD and MWD k-median 

problem appears in [21]. 

In the second part of this chapter, we show that the 2-median WMD problem in an 

arbitrary tree can be solved in 0(nhlog2 n), where h is the height of the tree. In balanced 

trees (trees with logarithmic height), our algorithm runs in 0(nlog3 n) time. Our approach 

is to pre-compute partial one median costs for subtrees of the original tree and then use 

these precomputed values to extract the optimum 2-median cost. To avoid a running time 

cubic in the number of vertices of the tree, we use again the spine decomposition. 

'A cactus is defined as a graph with cycles such that any two cycles have at most one vertex in common. 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 85 

I 

Figure 4.1: Case illustrating the vertex optimality of MWD 2-median problem 

4.2 The MWD 2-median problem in trees 

The MWD problem can formally be defined as to compute value 

Burkard et al. [21] show that problem MWD has always an optimal set of medians that are 

vertices of T even when we allow medians to be located on the edges of the network. We 

give here an intuitive argument. 

Consider Figure 4.1 where ml and m2 are the optimal location of the two medians in 

the tree. Let T(u) U TI be the subtree closer in distance to ml, and assume that ml is on 

edge [uv] (we use notation [uv] to denote a network edge on which we can locate points). 

Here Tjuj is the component containing u obtained by deleting edge uv from 1'. Assume for 

now that there is a decrease in the total cost for the vertices served by ml if we move the 

median towards v. There are two possibilities, either (a) no vertex from T2, the subtree of 

vertices originally closer to ma, becomes closer to ml as a result of this move, or (b) at least 

one vertex from T2 is closer to ml than to ma after the move. In the first case since there 

is no change in assignment for any vertex in T ,  we can continue moving ml until it hits v 

and overall, we get a better solution than the original one. This contradicts the optimality 

assumption for the starting configuration. For the second case, assume that v2 is the vertex 

from T2 which becomes closer to ml. If v2 has positive weight, then it is now served by 

ml . Since ml moves towards v, the distance between ml and v2 starts to decrease reducing 

even more the overall cost. If v2 has negative weight, then v2 is originally served by ml 

and its contribution to the 2-median cost increases because the distance to ml decreases. 

However, the overall cost decreases by assumption. Once v2 is closer to ml, it becomes 

served by ma, but because ma is fixed, the contribution of vertex vz ceases to increase. 

But this contributes even more to the decrease of the overall cost, contradicting again the 

optimality of the original ml and m2. A similar line of thought can be followed if the cost 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 86 

I 

for ml decreases as the median moves towards u. 

The argument above suggests that problem MWD has nice properties. For example, if 

the allocation of client vertices to the medians is pre-determined, then the position of any 

median is the optimal 1-median solution for the subtree spanning the set of clients served 

by the median. In other words, we can thus use the split edge algorithm in the same way 

as for the kmedian problem with positive weights (see Section 1.4.1). 

The algorithm is simple. For every edge in the tree, we compute the 2-median cost if 

the edge is split. The optimal solution corresponds evidently to the edge with smallest cost. 

To compute the cost quickly given a split edge, the algorithm uses the spine decomposition 

of the input tree and extra information associated with the nodes of the decomposition 

and computed in a pre-processing phase. The ideas are very similar to those presented in 

Chapter 3. An obvious implementation leads to an algorithm with O(n log2 n) time, however 

by postponing certain computations and executing them in a particular order, we can save 

a logarithmic factor. 

4.2.1 Computing the 2-median cost given a split edge 

Consider we have a spine decomposition of tree T and a split edge vivi+l on spine II = 

x(vo, v,) (Figure 4.2). As usual, vo is the root of the spine, i. e. the vertex adjacent to the 

parent spine. We denote by T(vi) and T ( V ~ + ~ )  the components of T containing vi respectively 

vi+l obtained after deleting the split edge. In this chapter, we use quite frequently both 

components T(vi) and T(vi+1), and since in the previous discussions we considered T(vi) 

as the subtree of T rooted at vi (which was obtained by deleting edge vi-lvi from T),  we 

augment the notation introduced in Section 1.1 to avoid confusion. 

Notation (See Figure 4.2). Given edge e = vivi+l for splitting, 

denote by T(vi+1) the component containing vi+l obtained as usual by removing edge 

e. This type of notation indicates that all vertices from T(vi+1) have vi+l as common 

ancestor. 

Denote by TC(vi) = T \ T ( V ~ + ~ )  the complement of T(vi+1) relative to T. This notation 

indicates that TC(vi) is the component containing vi but which also contains root r~ 

of the tree, and therefore the edge that was removed must have been vivi+l. 

Let V+(vi) and V-(vi) be the set of vertices with positive respectively negative weight 

from T(vi). Alternatively, we use T+(vi) and T-(vi) to denote the same set of vertices. 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 87 

Figure 4.2: Computing the 2-median MWD cost for a given split edge 

Let VC+(vi) (or TC+(vi)) and VC-(vi) (or TC-(vi)) be the set of vertices with positive 

respectively negative weight from TC(vi) . 
Similarly, V$ (or T:) and V; (or T;) is the set of positive respectively negative 

vertices from Tz for some SD node x. 

The cost of the two median is given by the optimal cost of one median serving VC+(vi) U 

V - ( U ~ + ~ )  and one median serving VC-(vi) U V+(vi+l). 
--- We $escr<&e hc.y t o  c c x p u t e  +,he ~ ~ & A ~ ~  t=r \/ '-+ (0%) !J \/ - ( z ~ + ~ ) .  'l'hc &hcy c s c  car bc 

solved similarly. The best median for the case considered is located in TC(vi). Let a(vi, ssD) 

be the path in the spine decomposition from vi to the root of the decomposition, and let 

r h  respectively Z j  be the SD nodes adjacent to the path on the root side and leaf side of 

the path respectively. Let ro = vi, as in Figure 4.2. Let lo be the highest node in the 

search tree with lOR = vi+l (basically, the lowest node adjacent to the path from the leaf 

side). Denote by HsD and JsD the largest index of r h  and lj respectively, ie. h 5 HSD 

and j 5 JsD. Denote also by Hn (respectively Jn) the largest index h (respectively j) for 

which r h  (respectively lj) is a node in Sn, the search tree node of spine II (see Figure 4.3). 

Observe that the vertices of TC(vi) are partitioned among components T,, for 0 5 h 5 H s ~  

and TIJ for Jn < j 5 JsD. 

As in Chapter 3 for the problem with positive weights, we restrict the median to one of 

these components. Suppose the median lies in Tlj. Based on the pre-computed information 

stored at lj we then quickly find the best vertex in component T1, that minimizes the 

one median cost using cost function IBUR (lj, 0, z )  (Inside Big Unrestricted) and the cover 

function over I B U ~ ( ~ ~ ,  0, z )  for this purpose as in Section 3.1 (see Figure 4.4). 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 

Figure 4.3: Spine nodes that determine subtree TC(vi) 

If the median lies in TTh, we need a slightly different cost function than what has been 

used so far, one that measures the cost in the complement tree TC(vi). This function denoted 

I B U ~ ( ~ ~ ,  0, z) returns the cost of serving the positive weight vertices in subtree TC(rhL) by 

a facility located at z E TTh. TC(rhL) is the component of T obtained after removing edge 

rhL  r(h-l)R and it contains root r~ of the tree. For node I j ,  function IBUR(lj, 0, z) is the 

same as in the definition from Section 3.1, except that it accounts only for positive vertices. 

Consider node r h  with h 5 HII belonging to the search tree of the current spine (Figure 
A 9) Ann..,:mrr +Lo+ r r fr :" +hn +hn ,,no+ +h:n mnrl:nn Ln,,r\-," 
-r.u,. z ruuurlulq+ u u w u  w L r yL ~u urrv rrrvuu.url, urrv u v r  v ~ v v  u u u u  u z  u r u u  r r * u u z w u  v u u u r i r u u  

T 

minimized by K (rh, 0, w~+_,+w- (vi+l)) 

where ~ h + - - ,  = z:zi CvET,: w(v) and W-(V,+~) = w(T-(~ i+~) ) .  The first term returns the 

cost of the negative vertices from the other side of the split edge but only up to the root r h ~  

of T(rhL). The second term gives the cost of the positive vertices from the spine components 

between vi and rhL ,  again only to r h ~ .  In this way, these terms do not depend on the choice 

of the facility z. Finally, the third term returns the contribution of positive vertices inside 

TC(rhL) plus the difference of routing the total external weight from r h ~  to z. This last term 

has an expression very similar to the first and last term of the addition in (3.17) from page 

64. As explained in Section 3.5.3, the vertex that minimizes the expression can be obtained 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 

Figure 4.4: Computation of the 1-median cost when z* E Tlj 

by evaluating a cover function built on top of the discrete values of IBUL(rh,O, z ) .  The 

cover function is denoted K (rh, 0, w) . 
The cover functions can be constructed exactly as in Section 3.5.3, the only difference 

being that IBUL () functions have a slightly different meaning, they account for the positive 

vertices towards the root from rhl;. This does not influence the computation procedure at 

same way. We consider now the computation involving the median in Tlj.  

Consider spine II' such that the split edge vivi+l belongs to component T(u,), as in 

Figure 4.4. Let j, be the smallest index for which l j a  E Snt where Snt denotes the search 

tree of spine F. The cost of 1-median for TC(vi) when the median z is in qj is, 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 90 

Term A represents the contribution of negative vertices from the other side of split edge 

vivi+l and can be computed easily, for example with 

The first term can be pre-computed for any vi+l E T in total linear time. The second term 

is available in constant time once the total weight of T-(vi+i) is pre-computed. 

Term B from (4.2) can also be obtained in constant time using the same pre-computed 

information as in the case of A, 

Term C can be immediately obtained from 

Term Dj-l is computed recursively as we move on the SD path from va to s s ~ ,  in 

constant time per node l j  visited, 

Finally, the last two terms in (4.2) are minimized by the cover function, and the cover 

function can be computed in linear time using the discrete values of IBUR(l j ,  0, z ) .  

The main steps of the 2-median MWD algorithm are given in Program 4.1. 

We know from Section 3.5.3 that both K ( )  and I B U ~ ( )  functions for all nodes in the 

decomposition can be constructed in total time O ( n  log n). We also know that the evaluation 

of the cover function in (4.1) takes O(1og n) time, therefore the second step of the algorithm 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 9 1 

Compute first the SD of T and associated functions I B U ~ ( ) ,  I B U ~ ( )  and 
K () for each search tree node. 
For every edge in T, visit the SD nodes rh and l j  and evaluate the cover 
function as in (4.1), on both sides of the split edge. 
Return the solution with smallest cost. 

Program 4.1: Main steps of the 2-median MWD algorithm 

Figure 4.5: An internal search tree node 

(evaluating all cover functions) takes 0(log2 n) time for each edge. In Section 4.2.3 we show 

that it is possible to determine an order of the edges of T such that the query weight for 

a particular cover function comes in increasing order thus eliminating the need for binary 

search over the weight partition. Instead, we can traverse the partition sequentially, once 

for all queries, saving a logarithmic factor in the running time. Now, we have to describe 

the computation of the new cost function IBUL () . 

4.2.2 Computing function I B U ~  () 

The computation of IBUL() is similar to that of I B U ~ ( ) ,  except that we have to account 

for the contributions of the positive vertices from a more complicated looking subtree, one 

that contains the root r ~ .  We can add these contributions if we perform two traversals, first 

of the input tree along the spines top-down, and second of the spine decomposition bottom 

up. Both operations are executed after the regular IBUR() functions are computed by the 

usual procedure. 

Consider first the second traversal, the recursive part of computing IBUL().  Here, in 

the same way as for the cost functions discussed in Chapter 3, we compute IBUL () for an 

SD node x using the IBUL() functions already known at its children, y and t. Using Figure 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 92 

Figure 4.6: Computing function IBUL () for nodes on the spine 

4.5 as reference and for z E Tt, we have 

It is very easy to verify that value C(y) can also be computed bottom-up in total linear 

time for all y in the decomposition. Note that for z E Ty, we have 

I B U ~ ( X ,  0, Z) = I B U ~ ( ~ ,  0, 2). 

We describe now the first traversal which is used to start-up the recursive procedure of 

the second traversal. Consider Figure 4.6 where I2 is the current spine. We want to compute 

IBUL() for node vi and we have to add for each z E Tvi the contribution of vertices from 
rn\ m 
1 \1,, and from TVj for ail vj between vi-1 and vo, i- i 5 j 5 0. Assume that we recursiveiy 

know the contribution of T \ T,, up to vertex vo. For the top-level spine, this contribution 

is zero. The contribution of Tvj between vi-1 and vo can be easily calculated by traversing 

the spine from vo to vi. If we denote this contribution by C(0 : i - I) ,  then we have 

C(0 : i - 1) = C(0 : i - 2) + W(0 : i - 2) d ( ~ i - ~ ,  vi-1) + I B U ~ ( S ~ , ,  0, ui-1)+ 

+ w(T+(ui-1)) d ( ~ - 1 ,  vi-I), 

where W(0 : i - 1) is just the total weight of subtrees Tvj between vi-1 and vo, i - 1 L j 5 0. 

In this equation, the second term equals the additional cost of vertices between Tvi-2 and Tv, 

for the extra distance between vi-2 and vi-1. The third term computes the cost of vertices 

in T(ui-1) up to ui-1 and the last term updates this contribution so that it accounts for the 

distance between ui-1 and vi-1. With these values known, we obtain IBUL() at vi from 

function I B U ~ ( )  as follows, 

lBUL(vi, 0, 2) = I B U ~ ( U ~ ,  0 , ~ )  + w(T+(u~)) d(ui1 vi) + C(0 : i - 1)+ 

+ W(0 : i - 1) . d(vi-1,~) + C(T \ Tsn) + W(T \ Ts,) d(v0, z) + ~ ( v i )  d(vi, z). 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 93 

Above, C(T  \ Tsn) is the sum of weighted distances of positive vertices from the rest of the 

tree to vo and W(T \ Tsn) is the total weight of these vertices, therefore the last two terms 

amount to the cost of the rest of the tree when served by the facility z inside Tvi. The two 

values C(T \ Tsn) and W(T \ Tsn) need to be updated when we recursively process spines at 

lower levels. For example for spine II' in Figure 4.6, to calculate the new value of C(T\Tsn,), 

we need also the cost of vertices between spine leaf v, and via This value is returned by 

IBU~(V~,  0, vi). Then, the contribution of the entire spine up to ui-1 is obtained as 

In this way, we can compute all functions needed by our algorithm in total time O(n log n) 

because the additional effort spent during the two extra traversals of T and SD(T) is linear 

in n. Before we describe the entire algorithm, we need to show how to reduce the time for 

the computation of the 1-median solution on both sides of the split edge. 

4.2.3 Improving the running time 

As we already know, the dominating step in the obvious algorithm is to evaluate the cover 

function ~ ( r ~ ,  0, ~ h + - - ~  + ~ - ( ~ i + l ) )  from (4.1) at O(1ogn) SD nodes for every spine edge. 

The evaluation of the cover function requires binary search over the partition of weights 

(the slope sequence of the convex hull of points in cost-distance space). But if we make 

sure that the values of the query weight come in sorted order at any given SD node, we can 

replace the binary search operation by sequential search. Any time a new value of the cover 

function is required, we resume the search from the position we stopped at the previous 

evaluation. Since there are O(n log n) total weight intervals counted over all nodes in the 

spine decomposition and O(n1ogn) total queries for the value of cover functions, the total 

time required by the evaluation is also O(n log n). 

In the following paragraphs we describe an ordering of the split edges of T which gener- 

ates a sequence of cover functions evaluated at non-decreasing weight values for any node 

in the decomposition. Refer to Figure 4.2 on page 87 where we consider edge e = vivi+l as 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 

split edge. Node r h  uses weight 

where the first term is the total weight of negative vertices from the other side of split edge 

e and the second term is the weight of positive vertices from the same side of the split 

edge but between the split edge and the subtree considered by the cover function. Assume 

another edge el = generates a cover function call at the same node rh. The weight it 

generates is 

WTh (el) = w ( T - ( V ~ + ~ ) )  + w (TC+(vl) \ TC+(rh~) ) .  

If we add w(T+(T~L))  to both expressions, we obtain two values, denoted W(e) and W(el) 

that do not depend on the choice of node r h  but only on the choice of the edge. Moreover, if 

W(e) 5 W(el) then also Wrh (e) 5 Wrh (el) for any node r h  for which both e and el generate 

queries. 

For every edge e = vivi+l we compute 

We sort the edges in increasing order by W(e) and W1(e) and solve the 1-median problem 

corresponding to each ordering by splitting the edges in the order given. For each split edge, 

we visit O(1ogn) SD nodes on the path in the decomposition from the edge to the root of 

the decomposition, and evaluate the cover functions sequentially. The algorithm is sketched 

in Program 4.2. 

From all our arguments presented earlier, we can directly state the following result. 

Theorem 4.1. The 2-median problem on a tree with positive and negative weights under 

the objective MWD is solved by Program 4.2 in O(n1ogn) time and space. 

4.3 Solving problem WMD 

In the WMD problem, one has to compute 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 95 

I 

Compute the spine decomposition of T. 
Compute functions I B U ~ ( )  for each node as in Chapter 3, and any additional 
information such as C(y), etc. 
Traverse T top-down and SD(T) bottom-up to compute IBUL () as in Section 
4.2.2. 
Compute the cover functions K () for IBUR () and IBUL (). 
Sort the edges according to W(e) and W'(e). 
In each of the ordering, split the edges and compute the 1-median appropriate 
for the ordering, following the sequential procedure described in Section 4.2.3. 
For each edge, add the cost obtained above from both orderings and return 
the solution with minimum value. 

Program 4.2: Algorithm for solving the 2-median MWD problem with positive/negative 
weights 

Figure 4.7: Optimal 2-median WMD solution on an edge of the path 

Surprisingly, this problem is more difficult than version MWD. Consider our argument from 

page 85 on the vertex optimality of problem MWD. Using Figure 4.1 for illustration, we 

studied the case of median ml for which a direction improving the total cost of vertices it 

serves is towards m2. Suppose that a vertex with negative weight from T2 becomes closer 

to ml. Originally, the vertex was served by m2 and now it is served by ml. Then, since the 

distance between ml and the vertex decreases, the overall cost might start to increase and 

we have a local optimum configuration with ml on an edge. 

Figure 4.7 shows an example where the optimal solution has one median placed in 

the middle of the leftmost edge of the given path. The position of ml is such that the 

midpoint between the two medians falls exactly on the negative vertex. In fact, Burkard et 

al. [21] prove that the set of optimal solutions for the 2-median problem has two possible 

configurations: 

1) Both medians are on the vertices of the network. 

2) One median and the midpoint are on the vertices of the network, and the other median 

is on an edge. 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 96 

It is also possible that the optimal solution consists of both medians placed on the same 

vertex of the network, as when all client vertices have negative weight. The value of the 

optimal solution for this degenerate case is equal to the solution of the 1-median problem. 

In the following, we assume that any two median algorithm computes also the optimal 

1-median in a separate step, so we are simply ignoring this particular situation from our 

discussion. 

The algorithm proposed by Burkard et al. [21] enumerates all possible candidate con- 

figurations for the optimal solution and updates the 2-median cost in amortized constant 

time. Our approach is similar to the techniques we used so far in Chapter 3. We partially 

enumerate the set of candidates for the optimal solution. Using pre-processed information, 

we are able to quickly find the best local optimum configuration from a larger set of config- 

urations without going through each case sequentially. Details are provided in the following 

section. 

4.3.1 General algorithm 

Before we describe the algorithm, observe that midpoint p of any two points on the network, 

ml and m2, is either along r (ml ,  rT), or along n(m2, rT), or both. This gives us three cases 

to consider if we want to cover the set of all candidates for the optimal solution: 

(a) ml is a vertex, p is a vertex from the path from ml to the root, and ma is somewhere 

on an edge of T ,  

(b) ml is a vertex, p is on an edge from the path between ml and the root, and ma is 

somewhere on a vertex of T ,  and 

(c) ml is on an edge, p is a vertex from the path from ml to the root, and ma is somewhere 

on a vertex of T. 

Our algorithm considers each of the three cases above separately, as outlined by Program 

4.3. To efficiently extract the best configuration from each set of partial configurations that 

we enumerate, we again make use of the spine decomposition (Chapter 2). 

In each of the cases considered, the midpoint is located either on a vertex of the tree 

or on an edge, while the position of one of the medians is determined. As a consequence, 

any interaction between the two medians can be modeled by restricting the position of the 

second median somewhere in the second subtree at a certain distance from the midpoint. 

Generally, it is not difficult to compute the 1-median cost of the first median whose position 

and set of served vertices is pre-determined. The challenge is to compute the optimal cost of 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 97 

We compute the spine decomposition of T and preprocess all the information 
needed. 
For all possible cases do: 
Case 1: 

Case 2: 

Case 3: 

A median is on a vertex, the other on an edge. We fix vertex ml E V 
and for all vertices p E r(ml,  rT) as midpoints, compute the smallest 
cost of the second tree if the second median is at distance d(ml, p) 
from p. 
Both medians are on the vertices of T. Fix ml E V. For all edges 
e on path r (ml ,  rT), consider midpoint p as placed anywhere on e. 
Compute the best cost of the second tree if the second median is 

I/ , " -7 . 
a 1, I i s  I I r , r m p I criv@q ?gnu@ ~ ) f  TJEI~PS f e y  the 0- ' -- 0- 

distance between m2 and edge e. 
A median is on a vertex, the other on an edge. We fix edge e in 
T for which ml E e and for all vertices p on the path from e to 
the root, compute the cost of the second tree served by mz such 
that d(ml, p) = d(p, ma). Here, both ml and ma cover a range of 
distances from vertex p. 

Program 4.3: Main algorithm for solving the WMD 2-median problem 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 

Figure 4.8: Illustration of cost functions IBR () , IBL () , and IS() 

the second subtree. For this, we define and pre-compute a set of cost functions very similar 

to IBUR() and IBuL() from Section 3.1 and Section 4.2 respectively. As in Figure 4.8 for 

any given SD node x, we define: 

Function IBR(x, a) (I = inside, B = big) is a continuous function and defines the 

best median cost in T(xR) given that the median is in T, at distance exactly a from 

XR. The median can be placed on an edge of T,. Intuitively, this accounts for the 

contribution of all vertices in the tree toward the leaf from XR. 

, . - - r lA'..-n+;r\n u r l b u l v r a  r'uU~(2, Q) is Z:SO ~ ~ ~ i t i n i i ~ i i s  ~ i i d  r~tiii-iis the best ~ i ~ e d i a ~ ~  wsi ~ I I  TC(zLj 

when the median is in T, at distance a from XL. Here, if e is the spine edge incident 

on XL towards the leaf, then TC(xL) is the component containing XL obtained by 

deleting e, The function accounts for the cost of all the vertices towards the root from 

XL. 

Function IS(X, x) (I = inside, S = small) is a discrete function and returns the cost 

of vertices in T, if they are served by a median located at vertex x E {xL, xR). 

To compute the I-median cost of the subtree containing the root of the tree (the difficult 

case) we use the same idea as in our previous algorithms. We restrict the median to each of 

the components making up the subtree and we compute the cost in each case selecting the 

one with the smallest value as solution. 

4.3.2 Implementation of Case 1 

Consider vertices ml and p fixed. We are going to evaluate the 2-median cost by walking 

along path u(p, s ~ T ~ )  and using the functions IBR(), IBL() ,  and IS() stored at the nodes 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 99 

Figure 4.9: Computing the cost for the second median for Case 1 

adjacent to the path. 

Let II = r(vo, v,) be the current spine with vo towards the root and assume that p and 

ml come from Tvj (see Figure 4.9). The cost of the vertices served by the first median (ml) 

is easy to compute recursively as midpoint p moves towards the root because ml is fixed. 

Denote this cost by Cl (ml, p). 

The value of Cl(ml, p) can be computed for different positions of midpoint p as it moves 

towards the root, in constant time for each new position oi p. Consider Figure 4.10 where 

ml is on spine I1' and the current mid-vertex is on spine 11, p = vi. Clearly, when p is 

moved over to vi-1, the only change that occurs for Cl(ml,p) is that vertices from Tvz-l 

are now served by ml. The contribution of all other vertices from the first subtree remains 

unaltered. Therefore, 

All terms from the relation above can be precomputed. 

To compute the second median, let II' be the spine that contains p and snl the root of 

the search tree over II'. Let ro, rl, ... r h ,  ... be the SD nodes adjacent to the SD path from 

p to s s o  towards the root, and let lo, 11, ... be the SD nodes adjacent to path a(snl, ssD) 

towards the leaf. Nodes li and ri above correspond to SD components whose union give the 

second subtree whose 1-median we want to compute (Figure 4.9). 

Assume mz E T,,. The cost of the second median is 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 100 

0 For vertices ml and p fixed do 
- Traverse the SD via search tree paths from p to the root s s ~  and, 

* look at the left and right sibling node li and rh .  

* Compute the 1-median of vertices served by m2 if the median is 
restricted to the subtree induced by nodes shadowed by li or rh. 

* Compute the 1-median cost Cl(ml, p) for the nodes closer to ml, 
add with the value obtained above, and retain the solution with 
minimum cost. 

Program 4.4: Implementation of Case 1 

where, to simplify the equation, we write TC(p) for the subtree served by the second median. 

The relation is in fact very similar to (4.1) on page 88 except that here, we do not use cover 

functions to determine the location of the median, we actually know this location. It is at 

distance d(p, ml) - d(p, rhL) from r h ~  inside T,, and we use function IBL (rh, d(p, ml) - 

d(p, rhL)) to determine it. 

The second term of the expression equals the contribution of vertices not accounted for 

@ PGX~~GE 1UUL i) tit EG& ;.h, and can b e  compiited in amortized i;oiistaiit tiiiie i-eciirsiwly, 

in almost the same way as function I B U ~ ( )  from Section 4.2.2. A similar relation using 

function IBR(li, a) is obtained for the case when ma E zI. Program 4.4 presents the steps 

for processing Case 1 as a whole. 

4.3.3 Implementation of cases 2 and 3 

For Case 3, the first median ml is fixed somewhere on an edge e and the midpoint p is 

placed on a vertex from the path from ml to root rT. We do not know the position of the 

first median ml on edge e and therefore the position of the second median must be found 

at a distance from p that can vary over an interval of size equal to the length of e. 

Let edge e = uv with u being the endpoint closest to the root r~ (see Figure 4.10), and 

consider that median ml is located at distance 0 5 a 5 l(e) from u. The cost of the first 

median can be obtained exactly as in the previous section, only now this cost is a linear 

function of the distance from ml to u as ml moves on edge e. Let fl(a) be the value of this 

cost as a linear function of a .  



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 101 

Figure 4.10: Computing the cost of the two medians for Case 3 

For the second median, we proceed exactly as in Section 4.3.2. At every SD node r h  we 

need to add to function I B L ( ~ ~ ,  a) the contribution of vertices in TC(p) \ TC(rhL), exactly 

as for Case 1. Now the difference is that this contribution is a function linear in a because 

as ml moves on e, m2 also shifts from a vertex to another in order to maintain the invariant 

d(ml,p) = d(ma,p). Let f2(a) be the value of this contribution as a linear function of a .  

The total cost of the 2-median problem is, 

--- 
we denote gjaj  = fl  jaj + f2jaj. 

What we have to do is to quickly obtain a vertex z* E T,, or that minimizes IBr, (rh, a) + 
g(a) for a in some interval A, determined by the length of edge e. Figure 4.11 illustrates 

the situation. We can again interpret the value of IBL (rh, a) + g(a) as the intercept of a 

line with slope equal to the negative of the slope of linear function g(a).  The line must be 

tangent to the polygonal line that represents function IBL(rh, a) in the interval A,. The 

same argument from Section 3.5.3 on page 63 can be used here to explain that the optimal 

vertex z* is a lower convex hull vertex of the piece within A, of the piecewise linear function 

IBL (). The lower convex hull is determined by the critical points of IBL (). In a similar 

way, we consider the case when ma E qi, this time using function IBR(li, a). 

The lower convex hull of functions IBL() or IBR() can be precomputed into a slope- 

sequence array as in Section 3.5.3 and thus the optimal point can be found in logarithmic 

time by binary search. One problem exists though, parameter a is confined to interval A,. 

Therefore the correct approach is to compute the tangent point to the convex hull of only 

those critical points that fall in the interval. But the query intervals A, are not known at 

preprocessing time. 



CHAPTER 4. THE %MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 102 

cost 

Figure 4.11: Finding the minimum of the sum between a piecewise linear function and a 
linear function over an interval A, 

The solution is to use the data structure of Overmars and van Leeuwen [84] for dynamic 
-7 

I v x  I I I I i I i I I  I Ci.3~3. yTriJCTi1re C ~ & S T S  "f " hillEry ~ e ~ r &  ~ r t r ~ ~  xyhi& n_x:e 

OL tree to avoid confusion with the other tree structures mentioned in this thesis. The 

leaves of the OL tree store the critical points for the piecewise linear cost function, sorted 

by their x-coordinate in non-decreasing order. An internal node contains information which 

allows the reconstruction of the convex hull of all points at its leaves. 

An illustration of an OL tree is given in Figure 4.12. The root node contains a list of the 

leaves that form the lower hull of the whole set of points, and an index in this list identifying 

the bridge between the convex hull of the left and right child node. The bridge is the line 

segment tangent to these two lower convex hulls and defines their union at the parent node. 

Any other internal node M contains a possibly empty list of points that are on the convex 

hull of the leaves of M but are not on the convex hull of the parent of M,  and an index 

identifying the bridge between the hulls of the children of M. Starting from the root of the 

OL tree, one can visit any internal node and update the convex hull of its leaves in constant 

time per node, provided the data structure that stores the convex hull permits splitting and 

splicing in constant time. We can afford to use a doubly connected linked list to store the 

convex hull points because we will show later how to efficiently compute the tangent of the 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/iVEGATIVE WEIGHTS 103 

Figure 4.12: An OL tree. The nodes contain lists of convex hull points and indices in the 
complete convex hull list that identify the bridge. Bridges are shown by double lines, drawn 
differently if they belong to different levels in the OL tree 

Figure 4.13: Representation of interval A, in a segment tree 

hull with a line by traversing the points on the hull sequentially. In conclusion, we construct 

an OL tree at each SD node rh or l i e  We discuss now how to use the OL tree to compute 

the optimum cost of the 2-median problem under Case 3. 

For a given SD node x with the corresponding interval A,, we can use the OL tree at 

x to determine the critical points that fall in the interval A, (the leaves of the OL tree are 

critical points of IBR () or IBL () sorted by their x coordinate) [88]. We identify O(1og ITx I )  
nodes in the OL tree that cover the interval A,. Here, t o  cover means that the leaves of 

the O(1og ITXI) OL tree nodes are critical points of the respective cost function with the x 

coordinate in the interval A, (see for example Figure 4.13 where the O(1og ITXI) nodes are 

drawn as hollow discs). 

Given now the slope w of g(a), we start from the root of the OL tree and compute 

the lower convex hull at each of the O(1og IT,[) nodes of the OL tree as that cover interval 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 104 

For edge e and vertex p fixed, where ml E e, do: 
- Compute the cost of the first median. 
- Traverse the SD(T)  from p to the root while updating function g(a); 

at every SD node rh or li do 
* Start from the root of the OL tree and traverse the tree twice to 

identify interval A,, once for each endpoint. 
* Identify the minimal number of OL nodes that cover A, and as- 

semble their convex hull. 
* Solve the query based on g(a) at each OL node identified above. 

Compute the cost of the 2-median based on the best result of the query 
above and retain the minimum over all cases. 

Program 4.5: Implementation of cases 2 and 3 

A, as described in [84]. For each such lower convex hull, we compute the tangent point 

determined by weight w and the associated cost (the intercept of the tangent line) and 

retain the minimum value. This value represents the optimal solution to the 2-median 

WMD problem when the median is restricted in tree T,. The algorithm is sketched by 

Program 4.5. 

One observation should be perhaps made here. To simplify the presentation, we haven't 

mentioned anything about two points from the convex hull determined by an interval A,. 

They are at the two extremities of interval A, (see Figure 4.11). However, we do not have 

to consider these two points explicitely in our computation (the OL tree does not consider 

them!) because they do not correspond to a vertex in the subtree served by the second 

median. Our case only considers vertices as candidate medians for the second subtree. 

The algorithm for Case 2 is identical with the one described above. The only difference 

is that the cost of the first median is constant because ml is chosen on a vertex. Now, 

~ ( 4  = f 2 ( 4  

4.3.4 Preprocessing phase 

The computation of functions IBR()  and IBL( )  is not much different from the computation 

of the cost functions in Section 3.1 and Section 4.2. The only difference is that here, we 

merge (compute the minimum of) two piecewise linear functions that are not necessarily 



Lemma 4.1. The time complexity for the pre-processing phase of the 2-median WMD al- 

gorithm is O(n log2 n), and the space complexity is O(n log n). 

CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 105 

concave. However, this is not difficult to implement in time linear in the size of the functions 

merged because the critical points of the two functions are available in sorted order by a .  

4.3.5 Analysis of the WMD algorithm 

Preprocessing: 

We know from Chapter 2 that the spine decomposition can be constructed in O(n) time, n 

being the size of tree T. The size of cost functions IBR()  and IBL()  at any SD node x is 

also linear in ITz[. By counting the number of times an element (or vertex) can participate 

in different cost functions, it follows that the total computation time of all functions needed 

is O(n1og n). The space complexity is also O(n1ogn). Finally, the OL tree at any node x 

can be built in time O(ITxl log ITXI) and therefore the total time to compute every OL tree 

is O(n log2 n). The storage complexity of OL trees is linear, therefore the total space needed 

for all OL trees is O(n1og n). We can conclude with the following lemma. 

For every pair of vertices ml and p, O(1ogn) SD nodes are visited and the value for a cost 

function at that node is required. The cost functions are piecewise linear with the critical 

points stored in sorted order by their abscissa. Therefore, to evaluate any cost function at 

given value a, one can identify the appropriate linear piece of the function by binary search. 

The time spent for the evaluation is dominated by the binary search step, and is O(1ogn). 

Therefore, the total time spent for a particular pair of vertices ml and p is 0(log2 n). Note 

that the cost of the first median is computed, as described in Section 4.3.2, in amortized 

constant time. 

Lemma 4.2. The time to solve Case 1 of our algorithm is O(nh log2 n), where h represents 

the height of the tree. 

Implementation of Cases 2 and 3: 

Similar to Case 1, the last two cases consider O(nh) different choices for the first median 

and mid-vertex. For each choice, O(1og n) SD nodes are visited. At each node, the quest for 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 106 

Enumerate pairs ml and p in the usual order; compute g(a) for every SD 
node x involved in the pair. Store the triple ml, p, x under a key equal to 
the slope of g(a). 

0 Sort triples ml, p, x according to their key. 
0 Generate and solve the queries in order for each triple ml, p, x; use sequential 

search at the OL tree nodes to find the tangent point and save the position 
of the tangent at the OL node. Compute the 2-median cost corresponding 
to the query. 
Return the 2-median cost with smallest value. 

Program 4.6: A modified algorithm for cases 2 and 3 

the optimal vertex to serve as facility translates to computing tangent points at O(1og n) OL 

tree nodes, and the computation of the tangent point requires, under usual circumstances, 

O(1og n) time. Observe that this amount to 0(log3 n) step for each choice of ml and p. 

However, we can use the same trick we used for the easier problem MWD to reduce 

a logarithmic factor. We follow the steps of the algorithm from Program 4.5 to generate 
1 1  d l  1 1 r i i i  ) t y E J u y c 1 i t  I p I .  L i r c r t u  01 

computing the tangent point determined by g(a) right away, we store the slope of g(a) in 

an array. After all O(nh log n) slopes are generated, we sort them in 0(nhlog2 n) time. 

We then proceed to answer them in sorted order as usual, except that when we actually 

process an OL node to find the tangent, we use sequential search instead of binary search 

and we make sure we save the position of the most recently tangent point obtained. Since 

the convex hull at each OL tree node is assembled in O(1og n) time [84], it follows that the 

total time consumed for answering all O(nh log n) queries is O(nh log2 n). An outline of the 

algorithm described above is given in Program 4.6. 

Lemma 4.3. Cases 2 and 3 are implemented in O(nh log2 n) time and O(nh log n) space. 

One can notice that we require a lot of storage space for the class of trees with height 

linear in n simply because we sort all queries in a pre-processing step. If we can afford an 

extra logarithmic factor in running time, we can reduce the storage space of the algorithm 

to O(n log n),  the bound required by the storage of the cost functions only. In this case, we 

can no longer compute tangent points of lines to convex hulls by sequential search. We need 



CHAPTER 4. THE 2-MEDIAN WITH POSITIVE/NEGATIVE WEIGHTS 107 

to use binary search and the data structure to store convex hull fragments becomes more 

complicated. However, we can afford to spend O(1og n) time to assemble the hull fragments 

because O(1og n) time is spent anyway for binary search. The results from all three lemmas 

can be collected in the following theorem. 

Theorem 4.2. The 2-median problem for trees with positive and negative weights under the 

objective function WMD is answered by our algorithm in 0(nhlog2 n) time and O(nh1ogn) 

space, where h represents the height of the tree. Alternatively, we can use O(n1ogn) space 

but the running time becomes O(nh log3 n).  

4.4 Conclusion 

In this chapter, we have presented improved algorithms for a generalization of the k-median 

problem in trees in which client vertices are allowed to have negative weight. This general- 

ization is more difficult than the usual k-median problem in which all clients are positively 

weighted. For example, if we consider a facility moving along a path in a tree, the 1-median 

cost for the facility when all vertices are positive is a convex function, but when negative 

vertices are allowed, this is no longer true. 

Using techniques similar to those from Chapter 3, we have improved the running time of 

the algorithms for solving two instances of this problem, the 2-median with WMD objective 

and the 2-median with MWD objective. For the MWD problem, our algorithm has a running 

time of O(n1og n) improving the previously known quadratic solution of Burkard et al. [21]. 

To improve this result is perhaps a difficult task since no algorithm better that O(n log n) 

exists so far for the problem with positive weights. 

For WMD problem, we propose an algorithm with 0(nhlog2 n) running time where h 

is the height of the tree, improving the cubic algorithm published in the same paper [21]. 

This instance is much more difficult than MWD because the optimal 2-median set might 

not necessarily lie on the vertices of the tree. Our approach is based on solving several 

cases that cover the entire set of candidate solutions. One of these cases, the "vertex-edge" 

case, can actually be solved in O(nh log n) time. For the future, we propose to investigate 

means to reduce the complexity of the other two cases we consider. Another direction of 

research worth taking is the design of an algorithm whose performance is independent on 

the height of the tree while still sub-quadratic in n. We believe that to be successful, a 

different approach must be used, one that either avoids the explicit enumeration of all local 



CHAPTER 4. THE 2-MEDIAN WTTH POSITIVE/NEGATIVE WEIGHTS 108 

optima, or one that uses more properties of the optimum solution like in the algorithm of 

Breton [20] for the case with all vertices positive. 

When the number of facilities is three or more, nothing is known about this generalization 

in trees. We believe that it is possible to adapt the dynamic programming algorithm of Tamir 

[99] for the general k-median WMD problem with positive/negative weights. The obvious 

approach leads though to a blow-up in the running time of the algorithm (although the 

bound remains polynomial in n) since we might need to enumerate a quadratic number of 

values for each cost function. This quadratic number has its source in the enumeration of 

local optima configurations. We feel that further research could lead to interesting results 

on this problem. 

Moreover, other graph structures for which the k-median problem with positive vertices 

is efficiently solvable have not yet been considered within the positive/negative framework. 

These too constitute possible directions for future research and test grounds for techniques 

similar to those used in this thesis. 



Chapter 5 

The collect ion depots facility 

location problem 

In this chapter we consider another generalization of the k-median facility location problem 

in trees called the round-trip collection depots location problem. We are given a set of 

locations at which one of two types of objects are already placed, clients or collection depots. 

A third class of objects, the facilities, dispatch vehicles that serve clients. We are asked to 

find a placement for one or more facilities so that the following scenario is optimized. 

To serve a client, a vehicle executes a tour that starts at the facility, visits the client (to 

collect garbage, for example), then stops at a collection depot (to dump the garbage), 

and finally returns to the originating facility. 

0 All clients must be served in this way. 

0 The objective function to optimize is: 

* Minmax problem (also called the center problem): to minimize the cost of the most 

expensive tour. 

* Minsum problem (also called the median problem): to minimize the total cost of all 

tours. 

The collection depots location problem was recently proposed by Drezner and Wesolow- 

sky 1371 who characterized some properties of the optimal solution for minsum problems 

on the line and in the plane with Euclidean and rectilinear distances. They also proposed 

a heuristic algorithm to solve the Euclidean distance version in the plane and presented 

an empirical study of its performance. One year later, Berman et al. 1151 considered the 



CHAPTER 5 .  THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 110 

minsum and minmax problems in general graphs and trees, and they analyzed the properties 

of the optimal solution. In [16] Berman and Huang extended their results on the minsum 

problem in graphs by looking at the case of placing multiple facilities. They established 

some properties of the optimal solution in trees and in a cycle, and they also studied the 

problem of locating the collection depots simultaneously with the facilities. Their method 

uses a Lagrangean relaxation algorithm embedded in a branch and bound framework. 

Finally, Tamir and Halman [I041 focused on the minmax problem in the plane, in graphs, 

and in trees with an additional constraint that specifies the sets of collection depots allowed 

for each client. They also considered two extensions of the depots collection problem, the 

customer one way and the depot one way collection problem. In the latter two versions, the 

cost of the return trip to the facility is not important, however the order in which the client 

and the depot are visited becomes important. As an example, Tamir and Halman showed 

that the minmax customer one way k facility problem in which the depot is visited before 

the customer and a set of allowable collection depots is &en for each client, is NP-hard 

even on path graphs, whereas the depot one way problem is polynomially solvable in trees 

using the O(n log2 n) time algorithm by Megiddo and Tamir for the k-center problem [79]. 

Other variations of the minmax problem in graphs exist. When the facilities are re- 

stricted lie ~2 the y e r t j ~ e g  Of the r,et~?.T3r;4, y;e the d:scrctc ycrsier,, % c;~;i;oscd to 

the continuous version where facilities can lie on the edges of the network. Also, depending 

on whether the clients are weighted or not and the cost of the tour is taken using weighted 

distances or not, we have weighted and unweighted minmax problems. Among other results 

concerning the minmax problem in the plane, Tamir and Halman gave algorithms for the 

following instances: 

For the unweighted 1-center collection depots problem in an arbitrary graph: 

O(I E I (n log n + S))  time, 

where E is the set of edges, n the number of clients, and S the sum over all clients of 

the size of the set of collection depots allowed for that client. S can be between O(n) 

and 0(n2) .  

For the weighted k-center collection depots problem in a tree: 

0 (n2 log n) time 

in the discrete and continuous models. 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 111 

Figure 5.1: Example of trips from facilities yl and y:! to client ci 

For both weighted and unweighted 1-center collection depots problem in a tree, Tamir [loo] 
showed that an O(n log n) algorithm is possible. 

In the following paragraphs, we study the 1-median collection depots location problem 

in trees. We show that using techniques similar to those employed in the previous chapters, 

we achieve an algorithm with O(n1og n) running time and space. Unlike for the minmax 

objective, for this problem no previous results are known. For completeness, we also de- 

scribe an obvious adaptation of Tamir's dynamic programming algorithm for the k-median 

collection depots problem in trees. 

5.1 Not at ion and characterizations of the optimal solution 

Let T = ( C U D , E )  be a tree where ICI = nc,  ID1 = no,  and ICUD1 = n. Let C = 

{cl, ca, . . . , cn,) be the customer nodes of T and let D = {dl, d2, . . . ,dnD) be the depots 

nodes of T.  It is allowed for a customer vertex and a depot vertex to coincide. Each 

customer c E C is associated with weight w(c) 2 0. If TI is a subtree of T ,  we denote by 

C(T1) and D(T1) the client respectively depot set of TI. 

We consider the tree as a network in which facilities can be located on edges. Let y be 

such a point in T. We denote the weighted trip distance from facility y to a client ci by 

T(Y, ci) = W(Ci) (d(y, ci) + l<k<nD min {d(ci, 6k) + d(6k, y))). 

Figure 5.1 shows a typical example of two routes, one from facility yl to client ci, the other 

from facility ya to client ci. The depot locations are shown as empty discs and the optimal 

depot location for the route determined by yj and ci, denoted S(yj, ci) where j E {1,2), is 

not necessarily the closest depot to the client or to the facility, but it depends on the pair 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 112 

I 

facility-client. The k facility minsum (median) and minmax (center) problems are defined 

as follows: 

minsum: Find k facilities yl, y2, ... yk that give 

minmax: Find k facilities yl, 92, ... yk that give 

Let b(y, ci) E D denote the optimal depot used in the trip from y to ci. Then, 

If we analyze the trip for ci from y and keep in mind that T is a tree network, we notice that 

the trip from y to ci can be partitioned into two parts. One part involves the path from y 

to cil denoted by n(y, ci), and the other involves the path from 6(y, ci) to n(y, ci). Hence 

The weighted distance of the trip from y to ci is determined by the pair of elements (d(y, ci), 

d(S(y, ci), n(y, ci))), i. e. by the length of two paths, one from the facility to the client (path 

facility-client) and the other from the depot to the path facility-client. 

As in the case of the classic k-median problem, the k-median collection depots facility 

location problem admits an optimal solution with the set of facilities chosen from the set 

of client and depot vertices. This was shown by Berman and Huang in [16]. We restate 

their result here because it is essential for the correctness of the algorithms proposed in this 

chapter. 

Lemma 5.1. For the weighted minsum problem on a network, there always exists an optimal 

set of facility locations which is a subset of C U D. 

Sketch of proof. Consider Figure 5.2 where we assume that facility yh is located inside edge 

uv in the optimal solution. Let T(u) and T(v) be the components of T obtained after the 

deletion of edge uv. We split the set of clients served by yh in the optimal solution into four 

sets: 



C H A P T E R  5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 113 

Figure 5.2: Vertex optimality for the k-median collection depots problem 

C,,: the set of clients from T(u) that use a depot also from T(u). 

C,,: the set of clients from T(u) that use a depot from T(v). 

C,,: the set of clients from T(v) that use a depot from T(u). 

C,,: the set of clients from T(v) that use a depot also from T(v). 

Observe that the total cost for serving the clients from C,, U C,, remains constant as 

yh moves on edge uv because the clients served use a depot from the other side of the edge 

and the same distance is traversed no matter where the facility is placed on the edge. Let 

w(C1) denote the total weight of clients from a subset C'. If w(C,,) 2 w(C,,), then from 

(5.1) we see that yh can move on u without increasing the totd cost. fl 

The previous lemma suggests that the k-median collection depots problem has nice 

properties and might not be too difficult to solve. This is partially true. For example, 

unlike in the usual k-median problem, the optimal solution in the collection depots problem 

does not always split the client set into k connected components, and thus an algorithm 

based on the split edge technique is not suitable. 

Figure 5.3 illustrates a tree where the optimal 2-median collection depots solution deter- 

mines three connected groups of client vertices served by the same facility. The two facilities 

are placed at A and C. We can force this placement by assigning a huge weight to vertices A 

and C as clients and connecting A with A' through a very long edge. A' is both a client and 

a depot, and its weight is slightly larger than the total weight of clients from path T(A, B) 

served by A. As a result, there is no incentive to move the facility from A on a vertex from 

path x(A, B), and of course, no incentive to move the facility over to A'. The collection 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 114 

Figure 5.3: An optimal Zmedian that split the clients into three connected sets, each served 
by one facility 

depots are at B and C. We have 

Note that for any client served by facility A on path x(A, B), the best collection depot is B 

because C is too far and ii' is the depot used oniy for A' as ciient. In the same time, the 

cost of the trip from A to any client on path x(A, B) is the same, namely x + y (assume all 

clients have weight i). However, for any client on path r(P, Q), the cost of the trip from 

facility C is no more than y + E + x - E and thus any client in x(P, Q) is served by C and not 

A. In fact, the set of clients to be served by A is the disjoint set r(P, B) U x(Q, A) U {A') .  

Despite this behaviour, we will show in Section 5.3 that it is still not difficult to use 

the classic algorithm of Tamir [99] almost directly to obtain the optimal solution for the 

k-median collection depots problem. But first, we describe how to solve the 1-median case. 

5.2 1-median collection depots problem 

The general idea of the 1-median algorithm follows a pattern similar to the work of Rosen- 

thal and Pino [go] who studied the location of one facility in trees, with several objective 

functions, in linear time. For this problem, the same framework seems not to lead to lin- 

ear time algorithms very easily because of the particularities of our distance function. We 

propose here an algorithm with running time O(n log n). 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 115 

Figure 5.4: Computing the cost of the 1-median when v is the facility 

From Lemma 5.1 we know that the optimal solution must be a vertex of the input 

tree, therefore we simply compute the 1-median cost with the facility at each vertex in the 

tree and return the one for which the value computed is smallest. The obvious algorithm 

to compute the cost for a given facility uses linear time for processing which leads to a 

quadratic 1-median algorithm. In the following paragraphs, we show that using the spine 

decomposition from Chapter 2 and pre-processing, we can compute the cost in logarithmic 

time. 

Assume that at every node x of the SD we have the following information available: 

The clients of T, are sorted in decreasing order of the distance from the path between 

the client and XL, and the closest depot to the path. The sequence is zl, z2, ... Z l c ( ~ ~ ) l  

such that 

d ( d ( x ~ ,  zj), ~ ( X L ,  zj)) 2 ~(S(XL,  zj/), ~ ( x L ,  zjO) 

for any j' > j .  Not that S(xL, zj) is the closest depot to the path and is computed 

taking in consideration all depots in the whole tree. We will show later how to compute 

this efficiently. 

The weighted sum for the depot distance to path r(zj ,  xL) for all clients starting with zj 

to the last one in the order described above. We use subscript "L" because we compute 

another value PR(x, j )  which returns the same weighted sum but using the ordering 

relative to paths x(zj, xR). 

I C(TZ I 
PL(x, j )  = C W(G) . d ( d ( x ~ ,  zi), ~ ( X L ,  zi)), 1 5 j 5 lC(Tx)l. 

i= j 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 116 

(c) The sum of the weights of the clients in the order described at (a) up to vertex zj. 

(d) The cost of all clients in T, as if served by a facility at xr, but without adding the depot 

distance. To obtain the trip distance, one needs to add this value to the depot distance 

A similar ordering of the clients in T, is computed relative to the depot distance to the 

MR(x) exactly in the same way using the new ordering. 

To compute the contribution of clients in T, if served by some tree vertex v (Figure 5.4 

(a)), we simply have to know the depot distance to path n(v, xL). Let this distance be dnew, 

Let j be the largest index in the ordering zl, ... z l c ( ~ ~ ) l  of the client vertices in T, relative 
.n ,.Chnr ... n r A o  +nr ..rhirrh t C  z; h :":k& the &pet d:St2cCZ :S h g c r  t h 2 ~  dnew, ;U v u r r b r  V V U L U D ,  svr vvrrrbrl  

Then, the contribution of clients in T, served by v is 

Indeed, the first two terms represent the total cost for the trip between the clients and 

the facility and the last two the total cost for the trip between the optimal depot and the 

client-facility path. Note that we use dne, as depot distance for all clients for which the 

depot distance for the trip inside T, is larger than dnew. Of course, if v is towards the root 

from x, we use the values PR, QR and MR in a similar way. 

Now, we have all the ingredients needed to compute the 1-median cost when some vertex 

v E T is the facility. Consider Figure 5.4 (b) where v E T is the facility for which we need 

the cost. Let ro, rl, ... r, and lo, 11, ... lb be the SD nodes adjacent to path a(v, sm). At 

each of these SD nodes including v, we use (5.2) to evaluate the contribution of the client 

vertices in the respective components, and we report the total as the result. 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 117 

I 

Compute the SD and any information required for maintaining the sorted 
lists of vertices at any node. 
Traverse the SD bottom up; at every node x with children y and t do: 
1: Compute the sorted lists for x, compute values P, Q, and M for x. 
2: Traverse the sorted list of y and generate queries in t .  Answer the queries 

by sequential search in the list at t. 
3: Store the result incrementally in an array indexed by the tree vertex cor- 

responding to the query. 
4: Repeat steps 2 and 3 with the roles for y and t interchanged. 
5: Discard the lists stored at y and t. 
Traverse the array indexed by tree vertices and output the entry with smallest 
value. 

Program 5.1: Algorithm to solve the 1-median collection depots problem in trees 

Observe that the evaluation of (5.2) is done in constant time once value j is determined. 

If we use binary search with dnew over the ordering of clients, we spend O(1og n) time at each 

SD node, and thus 0(log2 n) time for each vertex. This gives an algorithm with O(n log2 n) 

runni~lg Lime. iiowever, we can use the ideas from the previous chapter and repiace Lhe 

binary search step with sequential search. This can be done easily. Let y be the SD node 

sibling of x. Node x is used in the computation from (5.2) only when v E Ty. But at y, we 

already have the sorted list of all vertices (we will compute the sorted list for all vertices 

and not only for the clients) relative to their depot distance to the path to either y~ or y ~ .  

This gives a set of queries with dnew in sorted order. 

Normally, if we keep the lists of sorted vertices at all nodes in the spine decomposition, 

the storage space of the algorithm is O(n1ogn). However, we can use the idea of Chapter 

3 where we reduced the storage space of the k-median algorithm with a logarithmic factor 

by discarding lists that were no longer needed. In our present case, we can combine pre- 

processing with the computation steps as follows. Let x be the current SD node in the 

bottom-up pre-processing phase, and let y and t be its two children. Nodes y and t have all 

the required data available which we use to obtain the sorted list and values P, Q, and M 

for node x. Then, we simply generate all queries with v E Ty for t, and v E Tt for y, after 

which we discard the lists at y and t. The algorithm is sketched by Program 5.1. 

Assuming that the pre-processing phase is executed in O(n log n) time with O(n) space, 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 118 

we can state the following result. 

Theorem 5.1. The 1-median collection depots problem in trees can be solved in O(n1ogn) 

time and O(n) space. 

5.2.1 Preprocessing 

We now show how to obtain the lists of tree vertices zj E T, for SD node x, sorted by 

d(6(xL, zj), n-(xL, xj)). Values ML, PL, QL and MR7 PR, QR are not difficult to obtain 

recursively once this ordering is determined. Similar operations are already illustrated in 

the previous chapters. Suppose we know the distance d(S(x, x), x) for all vertices z in the 

tree. This value represents the distance to the closest depot from x. Then, we can use a 

bottom-up traversal to obtain our lists of distances, as described below. 

Consider Figure 3.4 from page 46 where node x has children y and t with t towards the 

root. To obtain the list at x with XL as reference, we can simply merge the lists of sorted 

vertices from y and t updating the depot distance as follows: 

- If x E Tg, use the entry from y with the depot distance unchanged because 

- If x E Tt, use the entry from t and update the depot distance, 

In the last expression, we have to use the closest depot to the path from x to y ~ ,  and since 

we only have this distance for the part ~ ( z ,  tL), we need to explicitly compare the key of 

every entry with the distance to the depot closest to the remaining part, x(yL, yR). 

It follows immediately that the merging step is executed in time linear in the size of 

the lists. The depot S(z, x) is needed to startup the bottom-up procedure and to maintain 

S(xL, xR). It can be obtained easily, in amortized constant time for each x, without the 

spine decomposition. 

The idea is to traverse the tree twice. The first time we walk bottom-up and compute, 

for every vertex x E T,  the value S1(z, z) which returns the depot closest to x but only from 

subtree T(z). Recall that T(x) is the subtree rooted at z. Obviously, S1(rT, rT) = S(rT, rT). 

The second traversal is performed from root to leaf, and we use 6(v, v) for the parent of z 

to find S(z, x). It is an easy exercise to verify all the details. 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 119 

Figure 5.5: Obtaining the sorted trip distances for all vertices in total 0(n2) time 

5.3 k-median collection depots problem 

In this section, we consider the general k-median collection depots problem in trees. We 

show that the algorithm of Tamir [99] can be used almost directly for solving the collection 

depots problem. This contrasts the k-median problem with positive/negative weights for 

which a direct translation is not possible. 

Since none of our previous techniques are needed here, we will be brief in our exposition. 

We mentioned the algorithm of Tamir [99] in Section1 1.4.1. Two cost functions are used in 

the dynamic programming algorithm, 

G(vi,p, r;) that returns the optimal cost in T(vi)  if at most p facilities are located in 

Tjv,) and at least one within distance rj from vj. rj represents the 2-th distance to 

a vertex in T from vj when the distances are sorted in increasing order. Thus ry = 0 

and represents the distance between vj and itself. 

F(vj, p, r )  is the cost in T ( v j )  if at most p facilities are in T ( v j )  and an external median 

is at distance exactly r from vj. 

The collection depots k-median problem has a strong similarity with the usual k-median 

problem. The difference lies in the distance function used. For the classic k-median problem, 

the distance between two vertices is simply the vertex distance. In the collection depots 

problem, it is the trip distance with one of the vertices being the facility. Note that the 

trip distance is symmetric and monotone but not uniformly monotone. We call the trip 

distance monotone because it never decreases as the client moves away from the serving 

facility. The trip distance is not uniformly monotone because given two facilities placed 

on the same side of the client vertex, as the client moves away from both facilities, the 

 he description of the functions in Section 1.4.1 is a bit different because we were not interested in the 
details at that point. 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 120 

I 

difference in length between the trips using the two facilities is not a monotone function. 

Figure 5.3 provides an example. The difference is constant if pure distance is used instead of 

trip distance. However, in Tamir's algorithm, the monotonicity property is not needed since 

all pairs of distances are explicitly computed and sorted. In order to apply the algorithm on 

the collection depots problem, we need to compute and sort the trip distances originating 

from every vertex in the tree. Then, we replace parameter rj above with the sorted trip 

distance and everything else is carried out in the usual manner. Without detailing the steps 

of the dynamic programming algorithm, we just discuss how to obtain the sorted list of trip 

distances. 

Notice that in total 0 (n2)  time, we can compute all pairwise trip distances by traversing 

the tree n times, every time using a different vertex as origin. We call v E T an origin if we 

compute r(v, x ) ,  QX E T.  In O(n1ogn) time we can sort directly the list of distances with 

one vertex as origin, which gives a total 0 ( n 2  log n) time for the entire process. However, 

the sorting time would dominate the computation time when k is constant, and we wish to 

avoid this. 

To sort all lists in total 0(n2)  time, we use merging in a similar way to Tamir [99]. 

First we compute and sort the trip distances at the root node r~ directly as in the previous 

p2r,ragrap;h,. x?Te ;4ccx?J the scrt;ed trip $IstzPe 2: cede z w~r, t  the gCrte$ l i t  

for one of its children, y, as in Figure 5.5. Consider vertices z E T \ T(y) for which the 

depot for the trip from x belongs to T \ T(y), but the new depot for the trip from y is in 

T(y). Denote this set by V,,. The vertices from V,, use the same new depot from T(y) with 

the same depot distance equal to d(S(y, y), y). Their relative trip order is given then by the 

distance to x order in T \ T(y). This distance order can be computed with the algorithm of 

Tamir [99]. Therefore, the relative order of vertices in V,, is known. 

Consider now elements from set V,, of vertices in T(y) whose depot for the trip from x 

lies in T \ T(y), but the new depot for the trip originating at y is in T(y). These vertices 

used the same depot S(x, x) from T \T(y), but now, each might use some other depot within 

T(y). Their relative order is given by the trip distance order in T(y) that uses only depots 

from T(y). This distance is not difficult to compute bottom-up in total 0(n2) time for all 

vertices y E T.  Therefore, the relative order of vertices in Vy, is also known. 

For all other vertices, the depot distance does not change, and the relative order is the 

same as that for parent node x. We thus have, at node y, three sorted lists which can be 

merged in linear time to give the sorted trip distance for vertex y. This gives a total of 



CHAPTER 5. THE COLLECTION DEPOTS FACILITY LOCATION PROBLEM 121 

I 

0(n2)  time to obtain the sorted lists at every vertex in the tree. We can therefore state the 

following result. 

Theorem 5.2. The k-median collection depots location problem can be solved directly by 

the dynamic programming algorithm of Tamir [99] i n  0(kn2) time and 0(n2)  space. 

The storage space analysis is similar to that from Chapter 3. We do not need to maintain 

the cost functions at all nodes in the tree during the bottom-up traversal. We simply discard 

the storage space for the cost functions of the children vertices once we used their information 

entirely. This means that the storage used by the cost functions at any moment in time is 

O(kn), which is dominated by the memory requirement for the lists of sorted trip distances. 

5.4 Conclusion 

In this chapter, we considered the collection depots location problem in trees. Using the 

same set of techniques as for earlier applications, we propose an algorithm for the location 

of one facility. We also show that the k-median algorithm for the simple distance function 

in a tree can be used directly to solve collection depots instances. 
77 1 1  .( 1. 11 r .  1  1 1 .  
POI- I I I I ~  I-clle(llil.ll ( : O I I ~ ( : I ~ N J L I  c ~ e i ~ c ~ i ~ n  ~ J I O L J I ~ I I ~ ;  ( J ILL  $dui , ; i~i l   it^ t:ie SEKiiG i-iiiiiiiiig tiiiit: 

as the algorithm for the 1-center collection depots problem. A gap still exists between the 

performance of the best known algorithm for collection depots and the simple pure 1-median 

and 1-center linear time algorithms. For the k-median problem, both the collection depots 

generalization and the pure distance problem can be solved with the same algorithm. This 

indicates that the dynamic programming algorithm is quite powerful since it can accom- 

modate a wide palette of distance functions. Unfortunately, the undiscretized version of 

the k-median algorithm cannot be used directly with collection depots. The trip distance 

depends on two components with no apparent relationship. To predict the behaviour of the 

optimal solution by precomputing useful information, leads quickly to complexity quadratic 

in n. 



Chapter 6 

Conclusion 

In this thesis we study several optimization problems from location science. These problems 

aim to establish an optimal placement of objects called facilities in order to minimize a 

certain objective function. The setting is a tree network where vertices are assigned weights, 

and the objective function to be minimized is based on the weighted tree distance. The 

cardinality of the set of facilities to be located is constrained. 

We propose new algorithms to solve these problems that either improve or supplement 

the resuits known in the iiterature, or are the first ones for particular instances. 'Table 6.1 

summarizes their performance. 

How significant are these results? With our algorithm for the k-median problem in trees, 

we answer a question remained open since 1996 when Tamir [99] gave a careful analysis of 

the dynamic programming algorithm and showed that it runs in time 0(kn2). Until now, 

nobody has given algorithms sub-quadratic in n when the number of facilities is more than 

2, or when the trees used for input are restricted to particular classes. Of course, we exclude 

paths from this discussion because on paths, many optimization problems have very efficient 

algorithms. For example, Hassin and Tamir [56] and later Auletta et al. [8] proposed an 

O(kn) dynamic programming algorithm for the k-median on paths (the real line). In fact, 

we were able to extend the methods used for the k-median problem on paths to arbitrary 

trees. 

Our general idea is simple. We use a decomposition of trees that we named the spine 

decomposition which enables us to apply intuitive geometric techniques in the processing 

of the information managed by our dynamic programming algorithms. These techniques 

are nothing but computation of convex hulls and tangent points. Similar recipes have been 



CHAPTER 6. CONCLUSION 

Running time Storage space Prev. running time 
k-median, T-arbitrary O(n logk+2 n) ~ ( n  logk n) 
k-median, T-balanced ~ ( n  logk-' n) ~ ( n  logk-2 n) 0(kn2) [99] 
k-median, T-directed ~ ( n  logk-' n) O(n logk-2 n) 

3-median, T-arbitrary 

2-median (+/- MWD) 

2-median (+/- WMD) 
or 

1-median (collect .) 

k-median (collect .) 

0(nlog3n) O(n1ogn) 0(n2> ~ 9 1  

0 (n log n) O(n log n) O(n log2 n) [20] 

O(nh log2 n) O(nh log n) 
0 (nh log3 n) 0 (n log n) o(n3> [211 

O(n log n) ow unknown 

0(kn2) o(n2> the same [loo] 
Table 6.1: Summary of problems solved and algorithm complexity for tree T and for constant 
k 

successfully used in solving optimization problems on the line, as in the afore mentioned 

paper of Hassin and Tamir. With this combination of spine decomposition and geometric 

techniques, we were able to improve several results on the k-median problem in trees and 

two of its generalizations. This makes us believe that many other problems could be solved 
effiE;CifXn+!;. by the n z e  ~nnrnnr-h 

-rr- --""' 

The spine decomposition is a structure we designed to overcome several disadvantages 

of the centroid decomposition. Although it can be argued that many other decompositions 

can be used instead, we feel that the particular structure of the spine decomposition makes 

certain algorithms simpler. In fact Boland [18] has independently proposed an almost iden- 

tical data structure and has applied it to the circular ray shooting problem. Therefore, 

there is evidence that the spine decomposition could be successfully used with many other 

algorithms not necessarily limited to optimization problems in trees. 

Another feature of the spine decomposition is that both the structure of the tree and 

the relationship between the components of the decomposition are well represented. For 

example, given any two nodes in the decomposition, we can easily determine the tree path 

between the components of the two nodes. Conversely, for any tree vertices, it is easy to 

view the succession of adjacent decomposition nodes starting at a component containing 

one vertex and ending at the component containing the other. The same information is 

not so clearly represented in the centroid decomposition for example, where the relationship 



CHAPTER 6. CONCLUSION 124 

I 

between the structure of the decomposition and that of the tree is more blurred. The top- 

trees of Holm [61] overcome many of the problems of the centroid decomposition, however 

they are more suitable for applications where the parent-child relationship in the tree is 

not essential. The spine decomposition can be immediately used with both rooted and 

un-rooted trees as demonstrated by our algorithm for the k-median problem in directed 

trees from Chapter 3. Finally, it is important to note that the spine decomposition can be 

constructed easily in linear time as opposed to the linear time construction of the centroid 

decomposition which is much more complex [48]. 

Regarding the algorithm for k-median problems in trees, our bound on both the running 

time and the storage space is based on the recurrence relation obtained from the recursive 

computation of cost functions controlled by the dynamic programming framework. This 

bound is proportional to a constant exponential in k which explains the need to assume 

that parameter k is not part of the input. However, a conjecture by Chrobak et al. [28] 

states that the cost functions have a much tighter bound than the one obtained through the 

recurrence relation, in fact, it is believed that their size is linear in n. If this is true, then 

the complexity of our algorithms would be drastically improved. Our intuition favours a 

positive answer for Chrobak's conjecture, however, we were not able yet to settle this issue. 
--- !/?/e s:"-su~d dse mn~tiin thEt sr\~r ,k-median nirrnrit'hm i s  pr2CtiC2ii,. Alt.sl?w'h it i s  plnrp 

"'0"" ""'̂ ' 0" 

complex than the classic 0(kn2) dynamic programming algorithm, its implementation does 

not pose significant challenges, except perhaps if one implements fractional cascading. The 

calculation of the recursive functions is direct and solving the j-median subproblem amounts 

to a repeated application of convex hull computations. The computation of the spine de- 

composition is straightforward, but our undiscretized dynamic programming framework is 

flexible and can be used with other decompositions of trees too. For example, we argued in 

Chapter 2 that the centroid decomposition is not suitable because a logarithmic number of 

versions of the same cost function must be calculated for every component. This also means 

that, if one doesn't mind at least a logarithmic blow-up of storage space and running time, 

the centroid decomposition can be used as well. 

Directions for future research 

The results presented in this thesis open several possibilities for further study. First, it would 

be extremely useful if we could answer Chrobak's conjecture either in the affirmative or in 

the negative. Second, the two k-median generalizations that we studied here are relatively 



CHAPTER 6. CONCLUSION 125 

I 

new problems, and many issues are still open. For instance, no algorithms are known for 

the computation of k medians in trees for positive and negative weights, or in more general 

graphs. It is also not clear what changes are necessary in the different algorithms that solve 

the usual k-median problem in order to accommodate negative weights in both WMD and 

MWD formulations. It might also be possible to improve the running time of the WMD 

2-median problem which currently depends on the height of the tree. 

The k-median collection depots problem is not harder than the usual kmedian problem, 

at least when speaking of Tamir's dynamic programming algorithm. However the compu- 

tation of one median is still super-linear, as opposed to the simple linear time algorithm 

for the classic problem. Is a linear time algorithm possible for the one facility collection 

depots problem? At a more general level, many issues are still open. Is it possible to design 

an algorithm linear in n for the 1-center problem? Can we develop efficient algorithms for 

other classes of graphs, such as interval or circular arc graphs? Can we design sub-quadratic 

algorithms for the k-median collection depots problem in trees? For the last question, we 

feel the task is much more difficult than designing sub-quadratic algorithms for the posi- 

tivelnegative problem. The reason for this statement is that the cost of the solution in the 

collection depots problem is determined by two parameters independent of each other, the 

ciiect-f2cilit5. the &pet-p& &tar,ce. I.ndiPCrPtiZPCi_ r i v n a m i ~  nrnmam- 
-J -------- I- -0----- 

ming approach we could think of so far, involved both of these parameters as arguments of 

cost functions and we couldn't avoid the quadratic complexity arising from here. Perhaps 

by considering only two facilities to locate, one can achieve sub-quadratic performance more 

easily. 

Our results on the k-median problem in trees could also further the research towards 

solving the k-median more efficiently on other classes of graphs, such as the graphs with 

bounded tree-width. These are graphs with a structure similar to a tree, the similarity being 

controlled by a parameter of the graph, the tree-width. The idea to exploit the structure of 

graphs that are not too different from trees is not new. Gurevich et al. [49] looked at solving 

the k-cover problem on graphs and proposed an algorithm whose running time depends on 

the number of edges that should be removed to transform the graph into a tree. Their 

idea is to recursively decompose the graph into connected components assembled into a 

tree-like structure on which the k-cover algorithm is applied. The components are obtained 

by removing vertices with large degree. Then, all possible interactions that could take place 

through the removed vertex are enumerated in order to compute the solution on the original 



CHAPTER 6. CONCLUSION 126 

I 

graph from the solution of the tree decomposition (the tree decomposition mentioned here 

is a decomposition of a general graph into components). A similar approach but using the 

tree decomposition of a graph in the sense of Robertson and Seymour [89], could be also 

used for solving the k-median problem. One possibility is to combine our framework for the 

k-median problem in trees with a method inspired from the algorithm of Chaudhuri and 

Zaroliagis [25] for computing shortest paths in trees with bounded tree-width. 

Finally, we believe that the simple techniques we used for solving the k-median in trees 

can be used on optimization problems with a much broader application range. We hope 

that the results from this thesis will have impact on areas not necessarily limited to facility 

location. 



Bibliography 

[I] A. Aggarwal, M. Klawe, S. Moran, and R. Wilber, "Geometric applications of a 
matrix-searching algorithm," Algorithmica, vol. 2, pp. 195-208, 1987. 

[2] S. Alstrup, J. Holm, K. de Lichtenbarg, and M. Thorup, "Minimizing diameters of 
dynamic trees," in Proc. ICA LP'97, pp. 270-280, 1997. 

[3] S. Alstrup, J. Holm, and M. Thorup, "Maintaining center and median in dynamic 
trees," in In Proc. 7-th SWAT, vol. 1851 of LNCS, pp. 46-56, 2000. 

[4] D. Applegate, R. Bixby, V. Chvhtal, and W. Cook, "TSP cuts which do not conform 
to the template paradigm," in Computational combinatorial optimization: optimal or 
provably near optimal solutions (M. Jiinger and D. Naddef, eds.), vol. 2241 of Lecture 
Notes in Computer Science, pp. 261-303, Springer, 2001. 

[ii] S. Arora, P. Ragilavan, and S. Rao, "Approximation schemes for euclidean k-medians 
and related problems," in Proc. 30th Annual ACM Symposium on Theory of Comput- 
ing (STOC'98), pp. 106-113, 1998. 

[6] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Mungala, and V. Pandit, "Local 
seach heuristic for k-median and facility location problems," in Proc. 33rd Annual 
ACM Symposium on Theory of Computing, pp. 21-29, 2001. 

[7] V. Auletta, D. Parente, and G. Persiano, "Dynamic and static algorithms for optimal 
placement of resources in a tree," Theoretical Computer Science, vol. 165, pp. 441-461, 
1996. 

[8] V. Auletta, D. Parente, and G. Persiano, "Placing resources on a growing line," Jour- 
nal of Algorithms, vol. 26, pp. 87-100, 1998. 

[9] R. Benkoczi and B. Bhattacharya, "Spine tree decomposition," Tech. Rep. 09, School 
of Computing Science, Simon Fraser University, Canada, 1999. 

[lo] R. Benkoczi and B. Bhattacharya, "The 2-median problem on a tree with positive and 
negative weights." unpublished, 2004. 

[Ill R. Benkoczi and B. Bhattacharya, "New results regarding the k-median problem on 
trees." submitted to FOCS, 2004. 



BIBLIOGRAPHY 128 

[12] R. Benkoczi, B. Bhattacharya, and D. Breton, '%fFicient computation of 2-medians in 
a tree network with positive/negative weights." to appear in Discrete Mathematics, 
2004. 

[13] R. Benkoczi, B. Bhattacharya, M. Chrobak, L. Larmore, and W. Rytter, "Faster 
algorithms for k-median problems in trees," in Proc. 28th International Symposium 
on Mathematical Foundations of Computer Science (B. Rovan and P. Vojt&, eds.), 
vol. LNCS 2747, pp. 218-227, 2003. 

[14] R. Benkoczi, B. Bhattacharya, and Q. Shi, "Minsum and minmax collection depots 
problems in trees." unpublished, 2004. 

[15] 0. Berman, Z. Drezner, and G. 0 .  Wesolowsky, "The collection depots location prob- 
lem on networks," Naval Research Logistics, vol. 49, no. 1, pp. 15-24, 2002. 

(161 0. Berman and R. Huang, "The minisum collection depots location problem with 
multiple facilities on a network." submitted to Jnl. Operational Research Society, 
2003. 

[17] B. Bhattacharya and R. Benkoczi, "On computing the minimum bridge between two 
convex polygons," Information Proc. Letters, vol. 79, no. 5, pp. 215-221, 2001. 

[18] R. Boland, Polygon visibility decompositions with applications. PhD thesis, University 
of Ottawa, Ottawa, Canada, 2002. 

[19] D. Bovet and P. Crescenzi, Introduction to the Theory of Complexity. Prentice-Hall, 
1993. 

[20] D. Breton, "Facility location optimization problems in trees," Master's thesis, School 
of Computing Science, Simon F'raser University, Canada, 2002. 

[21] R. Burkard, E. Cela, and H. Dollani, "2-medians in trees with pos/neg weights," 
Discrete Applied Mathematics, vol. 105, pp. 51-71, 2001. 

[22] R. Burkard and J. Krarup, "A linear algorithm for the pos/neg-weighted 1-median 
problem on a cactus," Computing, vol. 60, pp. 193-215, 1998. 

[23] M. Charikar and S. Guha, "Improved combinatorial algorithms for facility location and 
k-median problems," in Proc. 40th Symposium on Foundations of Computer Science 
(FOCS'99), pp. 378-388, 1999. 

[24] M. Charikar, S. Guha, E. Tardos, and D. Shmoys, "A constant-factor approxima- 
tion algorithm for the k-median problem," in Proc. 31st Annual ACM Symposium on 
Theory of Computing (STOC'99), pp. 1-10, 1999. 

[25] S. Chaudhuri and C. Zaroliagis, "Shortest paths in digraphs of small treewidth. Part 
I: Sequential algorithms," Algorithmica, vol. 27, pp. 212-226, 2000. 



BIBLIOGRAPHY 

I 

[26] B. Chazelle and L. Guibas, "Fractional cascading: I. A data structuring technique," 
Algorithmica, vol. 1, no. 2, pp. 133-162, 1986. 

[27] B. Chazelle and L. Guibas, "Fractional cascading: 11. Applications," Algorithmica, 
vol. 1, no. 2, pp. 163-191, 1986. 

[28] M. Chrobak, L. Larmore, and W. Rytter, "The k-median problem for directed trees," 
in Proc. 26th International Symposium on Mathematical Foundations of Computer 
Science (MFCS'OI), no. 136 in Lecture Notes in Computer Science, pp. 260-271, 
2001. 

[29] R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and M. Thorup, "An 
O(n log n) algorithm for the maximum agreement subtree problem for binary trees," 
SIAM Journal on Computing, vol. 30, pp. 1385-1404, 2000. 

[30] R. Cole and U. Vishkin, "The accelerated centroid decomposition technique for opti- 
mal parallel tree evaluation in logarithmic time," Algorithmica, vol. 3, pp. 329-346, 
1988. 

[31] T .  H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms. MIT 
Press, 1999. ISBN 0-262-03141-8. 

[32] G. Cornu6jols, M. Fisher, and G. Nemhauser, "Location of bank accounts to optimize 
float: an analytic study of exact and approximate algorithms," Management Science, 
T! 2.1, ~y ?89-810, 1977 

[33] H. Davenport and A. Schinzel, "A combinatorial problem connected with differential 
equations," American J.  Math., vol. 87, pp. 684-694, 1965. 

[34] E. Demaine, F. Fomin, M. T .  Hajiaghayi, and D. Thilikos, "Fixed-parameter algo- 
rithms for the (k,r)-center in planar graphs and map graphs," in Lecture Notes in 
Computer Science, vol. 2719, (Heidelberg), pp. 829-844, Springer-Verlag, 2003. 

[35] R. Diestel, Graph Theory, vol. 173 of Graduate Texts in Mathematics. New York: 
Springer-Verlag, 2000. 

[36] R. Downey and M. Fellows, Parameterized complexity. Heidelberg: Springer-Verlag, 
1998. 

1371 Z. Drezner and G. 0 .  Wesolowsky, "On the collection depots location problem," Eu- 
ropean Journal of Operational Research, vol. 130, no. 3, pp. 510-518, 2001. 

[38] U. Feige, "A threshold of Inn for approximating set cover," in Proceedings of the 28-th 
ACM Symposium on Theory of Computing, pp. 314-318, 1996. 

1391 G. F'rederickson, "Parametric search and locating supply centers in trees," in Proceed- 
ings 2-nd Workshop on Algorithms and Data Structures, vol. 519 of Lecture Notes in 
Computer Science, (Ottawa), pp. 299-319, Springer, 1991. 



BIBLIOGRAPHY 

[40] G. Rederickson and D. Johnson, "Finding k-th paths and p-centers by generating and 
searching good data structures," Journal of Algorithms, vol. 4, pp. 61-80, 1983. 

[41] Z. Galil and K. Park, "A linear time algorithm for concave one-dimensional dynamic 
programming," Information Processing Letters, vol. 33, pp. 309-311, 1989. 

[42] M. Garey and D. Johnson, Computers and Intractability: a Guide to the Theory of 
NP-completeness. W.H. Freeman and Co., 1979. 

[43] R. Gavish and S. Sridhar, "Computing the 2-median on tree networks in O(n log n) 
time," Networks, vol. 26, pp. 305-317, 1995. 

[44] A. Goldman, "Optimal center location in simple networks," Trans. Sci., vol. 5, 
pp. 212-221, 1971. 

[45] A. Goldman and C. Witzgall, "A localization theorem for optimal facility placement," 
Trans. Sci., vol. 1, pp. 106-109, 1970. 

[46] T .  Gonzalez, "Clustering to minimize the maximum intercluster distance," Theoretical 
Computer Science, vol. 38, pp. 293-306, 1985. 

[47] D. Granot and D. Skorin-Kapov, "On some optimization problems on k-trees and 
partial k-trees," Discrete Applied Mathematics, vol. 48, no. 2, pp. 129-145, 1994. 

[48] L. Guibas, J .  Hershberger, D. Leven, M. Sharir, and R. Tarjan, "Linear-time algo- . . ,  . . . .  3 r-~hms f ~ r  x:isi.&lity ~ r i _  ~ H Q ~ L P ~  park p r ~ b l ~ m s  Inla? rnaqparea  ~ u n p ~ e  P ~ l Y g ~ ~ ~ y , "  
Algorithmica, vol. 2, no. 2, pp. 209-233, 1987. 

1491 Y. Gurevich, L. Stockmeyer, and U. Vishkin, "Solving NP-hard problems on graphs 
that are almost trees and an application to facility location problems," Journal of the 
ACM, vol. 31, no. 3, pp. 459-473, 1984. 

[50] S. Hakimi, "Optimum locations of switching centers and the absolute centers and 
medians of a graph," Operations Research, vol. 12, pp. 450-459, 1964. 

[51] S. Hakimi, "Optimum distribution of switching centers in a communication network 
and some related graph-theoretic problems," Operations Research, vol. 13, pp. 450- 
459, 1965. 

[52] M. Halldorson, K. Iwano, N. Katoh, and T. Tokuyama, "Finding subsets maximiz- 
ing minimum structures," in Proc. 6th Annual Symposium on Discrete Algorithms 
(SODA'95), pp. 150-157, 1995. 

[53] G. Handler, "Minimax network location theory and algorithms," Tech. Rep. 107, MIT, 
Cambridge, Mass., Nov. 1974. 

[54] G. Handler, "Finding two centers of a tree: the continuous case," Transportation 
Science, vol. 12, no. 2, pp. 93-106, 1978. 



BIBLIOGRAPHY 131 

[55] R. Hassin and A. Tamir, "Efficient algorithms for optimization and selection on series- 
parallel graphs," SIAM Journal of Algebraic Discrete Methods, vol. 7, pp. 379-389, 
1986. 

[56] R. Hassin and A. Tamir, "Improved complexity bounds for location problems on the 
real line," Operation Research Letters, vol. 10, pp. 395-402, 1991. 

[57] J. Hershberger and S. Suri, "A pedestrian approach to ray shooting: shoot a ray, take 
a walk," Journal of Algorithms, vol. 18, pp. 403-431, 1995. 

[58] D. Hirschberg and L. Larmore, "The least weight subsequence problem," SIAM Jour- 
nal on Computing, vol. 16, pp. 628-638, 1987. 

[59] D. Hochbaum, "Various notions of approximations: good, better, best, and more," 
in Approximation Algorithms for NP-hard Problems, pp. 346-398, Boston, MA: PWS 
Publishing Company, 1997. 

[60] D. Hochbaum and D. Shmoys, "A unified approach to approximation algorithms for 
bottleneck problems," Journal of the ACM, vol. 33, pp. 533-550, 1986. 

[61] J. Holm and K. de Lichtenberg, "Top-trees and dynamic graph algorithms," Tech. 
Rep. 17, Univ. of Copenhagen, Dept. of Computer Science, 1998. 

[62] W. Hsu, "The distance-domination numbers of trees," Operation Research Letters, 
vol. 1: pp. 96-100, 1982. 

[63] W. Hsu and G. Nemhauser, "Easy and hard bottleneck location problems," Discrete 
Applied Mathematics, vol. 1, pp. 209-216, 1979. 

[64] K. Jain and V. Vazirani, "Primal-dual approximation algorithms for metric facility 
location and k-median problems." Manuscript, March 1999. 

[65] A. Kang and D. Ault, "Some properties of a centroid of a free tree," Information 
Processing Letters, vol. 4, pp. 18-20, 1975. 

[66] 0. Kariv and S. Hakimi, "An algorithmic approach to network location problems I: 
The p-centers," SIAM Journal on Applied Mathematics, vol. 37, pp. 513-538, 1979. 

[67] 0. Kariv and S. Hakimi, "An algorithmic approach to network location problems 11: 
The p-medians," SIAM Journal on Applied Mathematics, vol. 37, pp. 539-560, 1979. 

[68] A. Kolen and A. Tamir, "Covering problems," in Discrete Location Theory (B. Mir- 
chandani and R. Francis, ed~. ) ,  pp. 263-304, Wiley-Interscience, 1990. 

[69] M. Korupolu, C. Plaxton, and R. Rajaraman, "Analysis of a local search heuristic for 
facility location problems," Journal of Algorithms, vol. 37, pp. 146-188, 2000. 



BIBLIOGRAPHY 132 

[70] M. Labbe, D. Peeters, and J. Thisse, Location on networks, vol. 8 of Handbooks in 
Operations Research and Management Science. Elsevier, 1995. 

[71] L. Larmore and B. Schieber, "On-line dynamic programming with applications to the 
prediction of rna secondary structure," in Proc. 1st Ann. ACM Symposium on Discrete 
Algorithms (SODA), pp. 00-00, 0000. 

[72] H. Lenstra, "Integer programming with a fixed number of variables," Mathematics of 
Operations Research, vol. 8, no. 4, pp. 538-548, 1983. 

[73] B. Li, X. Deng, M. Golin, and K. Sohraby, "On the optimal placement of web proxies 
on the internet: linear topology," in Proc. 8th IFIP Conference on High Pefomnance 
Netwworking (HPN'98), pp. 485-495, 1998. 

[74] B. Li, M. Golin, G. Italiano, X. Deng, and K. Sohraby, "On the optimal placement of 
web proxies in the internet," in IEEE InfoComm'99, pp. 1282-1290, 1999. 

[75] J.-H. Lin and J .  Vitter, "Approximation algorithms for geometric median problems," 
Information Processing Letters, vol. 44, pp. 245-249, 1992. 

[76] J.-H. Lin and J .  Vitter, "E-approximations with minimum packing constraint viola- 
tion," in Proceedings of the 24th Annual ACM Symposium on Theory of Computing, 
pp. 771-782, 1992. 

[77! A. Lozano and J .  Mesa, "Location of facilities with undesirable effects and inverse 
location problems: a cla~sification,'~ Studies in Locational Analysis, vol. 14, pp. 253- 
291, 2000. 

[78] N. Megiddo, "Linear programming in linear time when the dimension is fixed," Journal 
of the ACM, vol. 31, pp. 114-127, 1984. 

[79] N. Megiddo and A. Tamir, "New results on the complexity of p-center problems," 
SIAM J. on Computing, vol. 12, pp. 751-758, 1983. 

[80] N. Megiddo and K. J .  Supowit, "On the complexity of some common geometric loca- 
tion problems,'' SIAM Journal on Computing, vol. 13, pp. 182-196, 1984. 

[81] E. Meyr, H. Promel, and A. Steger, Lectures on Proof Verification and Approximation 
Algorithms, vol. 1367 of Lecture Notes in Computer Science. Springer, 1998. 

[82] E. Minieka, "The m-center problem," SIAM Review, vol. 12, pp. 138-139, 1970. 

[83] P. Mirchandani and A. Oudjit, "Localizing 2-medians on probabilistic and determin- 
istic tree networks," Networks, vol. 10, pp. 329-350, 1980. 

[84] M. Overmars and J. van Leeuwen, "Maintenance of configurations in the plane," J.  
Comput. Syst. Sci., vol. 23, pp. 166-204, 1981. 



BIBLIOGRAPHY 

[85] C. Papadimitriou, Computational Complexity. Addison-Wesley, 1994. 

[86] J. Plesnik, "On the computational complexity of centers locating in a graph," Aplikace 
Matematiky, vol. 25, pp. 445-452, 1980. 

[87] J. Plesnik, "A heuristic for the p-center problem in graphs," Discrete Applied Mathe- 
matics, vol. 263-268, pp. 263-268, 1987. 

[88] F. Preparata and M. Shamos, Computational geometry. New York: Springer-Verlag, 
1985. 

[89] N. Robertson and P. Seymour, "Graph minors. I. excluding a forest," J.  Combin. The- 
ory Ser. B, vol. 35, pp. 39-61, 1983. 

[go] A. Rosenthal and J .  A. Pino, "A generalized algorithm for centrality problems on 
trees," Journal of the ACM, vol. 36, no. 2, pp. 349-361, 1989. 

[91] G. Sabidussi, "The centrality index of a graph," Psychometrika, vol. 31, pp. 581-603, 
1966. 

[92] R. Shah, Undiscretized dynamic programming and ordinal embeddings. PhD thesis, 
The State University of New Jersey - Rutgers, 2002. 

[93] R. Shah and M. Farach-Colton, "Undiscretized dynamic programming: faster algo- 
rithms for facility location and related problems on trees," in Proc. 13th Annual Sym- 

/ n n n  4 \ .nn 4 . "  nnnn yosiurn on Discrete Aiyorithms ( o u u ~ ) ,  pp. I U U - L ~ ~ ,  LUUL. 

[94] R. Shah, S. Langerman, and S. Lodha, "Algorithms for efficient filtering in content- 
based multicast," in Proc. 9th Annual European Symposium on Algorithms (ESA), 
pp. 428-439, 2001. 

[95] M. Sharir and P. Agarwal, Davenport-Schinzel sequences and their geometric applica- 
tions. Cambridge University Press, 1995. 

[96] H. Sherali and F. Nordai, "A capacitated balanced 2-median problem on a tree network 
with a continuum of link demands,'' Transportation Science, vol. 22, no. 1, pp. 70-73, 
1988. 

[97] D. D. Sleator and R. E. Tarjan, "A data structure for dynamic trees," Journal of 
Computer and System Sciences, vol. 26, pp. 362-391, 1983. 

[98] A. Tamir, "Improved complexity bounds for center location problems on networks 
by using dynamic data structures," SIAM Journal of Disrete Mathematics, vol. 3, 
pp. 377-396, 1988. 

[99] A. Tamir, "An o ( P ~ ~ )  algorithm for the pmedian and related problems on tree 
graphs," Operations Research Letters, vol. 19, pp. 59-64, 1996. 



BIBLIOGRAPHY 134 

[loo] A. Tamir, "The 1-center collection depots problem in trees," 2004. personal commu- 
nication. 

[loll A. Tamir, "The k-median problem in unweighted balanced binary trees," 2004. private 
communication. 

[I021 A. Tamir, D. Pbrez-Brito, and J. Moreno-Pbrez, "A polynomial algorithm for the 
p-centdian problem on a tree," Networks, vol. 32, pp. 255-262, 1998. 

[103] A. Tamir and E. Zemel, "Locating centers on a tree with discontinuous supply and 
demand regions," Mathematics of Operations Research, vol. 7, no. 2, pp. 183-197, 
1982. 

[104] A. Tamir and N. Halman, "One-way and round-trip center location problems." sub- 
mitted, 2003. 

[lo51 B. Tansel, R. Francis, and T. Lowe, "Duality: Covering and constraining p-center 
problems on trees," in Discrete Location Theory (B. Mirchandani and R. Francis, 
eds.) , pp. 349-386, Wiley-Interscience, 1990. 

[I061 M. Thorup, "Quick k-median, k-center, and facility location for sparse graphs," in 
28th International Colloqium on Automata, Languages and Programming, vol. 2076 of 
Lecture Notes in Computer Science, (Crete, Greece), pp. 249-260, 2001. 

[lo71 A. Vi~neron; 1,. Can; M. Colin; C Tt,aliann, and R T,i, " A n  a l g n r i t h  fnr f ; _ ~ ? l ~ g  2 

k-median in a directed tree,'' Information Processing Letters, vol. 74, pp. 81-88, 2000. 

[lo81 R. Wilber, "The concave least-weight subsequence problem," Journal of Algorithms, 
vol. 9, pp. 418-425, 1988. 

[I091 G. Woeginger, "Monge strikes again: optimal placement of web proxies in the inter- 
net," Operations Research Letters, vol. 27, pp. 93-96, 2000. 

[I101 B. Zelinka, "Medians and peripherians of trees," Arch. Math. (Brno), vol. 4, pp. 87-95, 
1968. 



Index 

SD, see tree decomposition, spine 

binary search tree (SD), 24 
binary tree from arbitrary, 24 

center problem, 5 
centroid, 22 
collection depots problem, 8 
concavity of cost functions, 42 
cqto, 42 
covering a vertex, 17 

A n c r \ m n n o ; t i n r ,  c o o  trnn r l n c n m n n o ; + ; n n  Uvvv'l'y " V L  "4"I ' )  "V" Y*  "V L."""l~ly "UI V * " I I  

dynamic programming, 17-18 

facility location, 1 

leaf reference vertex, 28 

median problem, 5 
mixed obnoxious location problem, 7 

root of SD, 25 
root reference vertex, 28 

spine decomposition, see tree decomposi- 
tion, spine 

spine definition, 24 
spine tree decomposition, see tree decom- 

position, spine 
spine vertices, 24 
split edges, 17 
super-node, 24 

tree decomposition 
centroid, 22 
centroid path, 29 
spine, 2, 19 

depth, 31-33 
top-trees, 30 

undiscretized dynamic programming, 18- 
19 

spine components, 24 


