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Abstract 

This paper implements the reduced form approach to model the credit risk term 

structure of the 16 SIAS fixed income portfolio’s debt issuers.  The major advantage 

of reduced form model risk measures is that they explicitly take the default risk and 

recovery rate into consideration. The default-risk-adjusted duration and convexity 

will be smaller than the traditional measures because of the possibility of receiving 

the recovery value. By analyzing the credit risk term structure, we can observe the 

time-varying pattern in market’s expectation on the issuer’s ability to fulfill its debt 

obligation. Discrepancy between bonds’ rating and their implied default probability is 

also observed.  
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1. Introduction 

Effective risk management relies on a comprehensive integration of market, credit, 

and liquidity risk. Therefore, the parameterization of a particular general model and 

the estimation of its risk factors are critical to the success of the implementation of 

risk management procedures. For credit-risky bonds, risk parameters can be 

categorized into three aspects: the term structure of Treasury interest rates, credit risk, 

and issue-specific features, such as liquidity, degree of subordination, and call 

structure. Credit risk has been proven to be the main contributor for spreads of risky 

bonds. Longstaff, Mithal, and Neis (2006) found that the default risk in the 

highest-rated firm accounts for more than 50% of the total corporate spread.  

For modeling the credit risk, the available tools have two main types – structural and 

reduced form. In the structural approach, equity prices and balance sheet data are 

used to estimate the possibility of bankruptcy and the possible residual value of the 

debt issuers. The reduced form model, on the other hand, does not look into the 

volatility of the issuers’ asset, but rather treats default as an exogenous event, and the 

dynamics of the default intensity can be calibrated from market prices. The purpose 

of this paper is to construct the credit risk term structures for issuers of bonds in the 

fixed income portfolio of Simon Fraser University Student Investment Advisory 

Service (SIAS) endowment fund by applying the reduced form model and compute 

default-risk-adjusted risk measures. One major assumption we apply to estimate 

bondholders’ residual claim given default is the Recovery of Face Value assumption. 

We analyze and compare the credit risk term structures of issuers in the same sector 

(Government, Provincial, Municipal, and Corporate). We also conduct a comparison 

between the implied default probability we derived and the objective default 
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probability measured by the credit rating agency. Default-risk-adjusted risk measures 

such as the reduced form duration and convexity are calculated for each of the 19 

bond in the portfolio. Since the default-risk adjustment is more prominent for risk 

measures of fixed income securities with higher credit risk, we also include two lower 

graded bonds to demonstrate the larger effect.  We further conduct relative pricing 

test using credit term structures we constructed on bonds not included in the portfolio. 

  

We start by presenting findings of credit risk term structure analysis. Section 3 

outlines the basic concept of reduced form model. Section 4 gives an overview on 

SIAS fund fixed income investment philosophy and our data source. Section 5 

explains our methodology. Section 6 discusses our results. The final section 

concludes and suggests direction for further investigation. 

 

2. Credit Risk Investigation 

2.1 Patterns in Default Rates  

When the maturity of corporate bond increases, the bond’s credit spread may widen 

or narrow based on the bond’s credit risk. By looking at rating category (Fons, 1994), 

lower-rated (smaller or younger) issuers normally have wider credit spreads that 

narrow with the time to maturity (TTM). In contrast, higher-rated (mature or stable) 

issuers have narrower credit spreads that widen with the maturity time. The pattern 

reflects a typical company’s life cycle, and assumes a highly leveraged firm may run 

into refinancing difficulty when their short-term debt matures. This higher default 

risk is normally reflected in a higher spreads at shorter maturities. Bernt et al (2004), 
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Hull, Predescu, and White (2004) also pointed out that the risk premiums have varied 

through time.  

2.2 Credit Risk vs. Issue-Specific Factors 

Liquidity plays a role in the determination of spreads (Covitz and Downing, 2007); 

however, the effect of liquidity is more prominent in the short-term period, even 

though credit risk still plays a more significant role than liquidity. As shown by 

Longstaff, Mithal, and Neis (2006), there is a strong relationship between non-credit 

component of spread and bond-specific characteristics. In addition, the measures of 

Treasury richness such as the on/off- the-run spread and the overall liquidity of fixed 

income markets are all relevant factors of change in the non-credit component.  

2.3 Risk-Neutral Default Probabilities vs. Objective Probabilities 

The default probability calculated from historical data is an objective measure, which 

is usually much smaller than the risk-neutral default probability implied from bond 

prices. Altman (1989) initiated the investigation on the huge difference between the 

objective default probabilities and risk-neutral default probabilities. Possible 

explanations to this puzzle include the market’s recognition of contagion risk 

(Collin-Dufresne et al, 2003), underestimation of liquidity risk premium, agency 

costs, supply/demand effects and/or other institutional factors (Hull, Predescu, and 

White, 2004). Courtois and Quittard-Pinon (2007) further examined the relations 

between the actual and risk-neutral world with a structural approach that excluded 

liquidity issue. 
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2.4 Fusion of Reduced Form and Structural Model 

Although the two approaches require two different intakes: structural models use 

equity information, and the reduced form models use debt prices, ways of combining 

the two’s advantages and trimming the weaknesses have been investigated. Portfolio 

theories often incorporate equity in the reduced form model (Duffie & Singleton, 

1999). In his 2001 paper, Jarrow argued that the partition of debt and equity market is 

unnecessary since both markets present useful information that can lead to 

parameterization of defaulting process (Jarrow 2001). He presented a methodology 

that allows default probabilities and recovery rates to be correlated and to be 

dependent on the macroeconomic status. Darrell & Lando (2001), Giesecke (2001), 

and Cetin, Jarrow, Protter & Yildirim (2002) introduced the incomplete information 

credit models that contained new structural/reduced form hybrids. 

 

3. The Reduced Form Model 

The reduced form model was initiated by Philippe & Delbaen (1995), Jarrow and 

Jurnbull(1995), and Duffie & Singleton (1999). Different from the other school of 

thought, where the endogenized default probability is explicitly modeled using 

fundamental information such as the asset and liability on the company’s balance 

sheet (Merton 1974), the reduced from models treat bankruptcy event as an 

exogenous event and aim to explain the occurrence of default in an actuarial way. 

This stream leads to a pricing methodology that shares similar concepts to the term 

structure models.   
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3.1 Default Intensity 

In a reduced form model, we model the default count, N, as a stochastic process 

which only takes on integer value. N(0,t) represents the number of credit events that 

have happened from time 0 to time t. If we assume that the economic life of a 

company ends with the first default event, we are only interested in the time when the 

first default arrives, which is denoted by τ: 

                     (1) 

Poisson process is the simplest way to express the counting process of credit event. 

The probability of having N defaults in the time interval 0 to t therefore is: 

                             
   

  
      

       (2) 

Here we use the default intensity, or hazard rate, λ, as a determinant of the dynamic of 

the process: 

                                             (3) 

Equation (3) shows that, given that the company has survived to time t, the 

probability of defaulting in the time interval dt is proportional to λ(t) and the length of 

dt. The survival probability, Q(0,t), which is the probability that τ does not occur 

between the time interval 0 to t (N equal 0), is  

                                                        (4) 

 

And the probability that default happens in the time interval is: 

                                                        (5) 

 

Literally, λ is the conditional default probability per unit time, and can be constant, 

time – deterministic, or time – stochastic. Specifying the intensity function λ therefore 
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determines the risk-neutral default probability measure, which is different from the 

objective default frequencies, and parameterizes the default factor in the no-arbitrage 

valuation.  

3.2 Implied Default Probabilities from Security Prices  

Under the risk-neutral assumption, the present value of a credit-risky bond should be 

the risk neutral expectation of its cash flows. The simplest scenario: for a risky zero 

bond with no recovery, its value at time 0, B(0,t), has a relationship with the risk-free 

zero bond, b(0,t), such that: 

                                                               (6) 

Since the bond prices can be observed from the market, we can derive the implied 

default probabilities from the readily available prices. However, corporate zeroes are 

rare. The variability in recovery values plus the issue-specific features of the 

securities further complicate the application of the model. Therefore, some 

methodologies have been developed to resolve the problems.  

3.2.1 Piece-wise Constant Default Intensity 

One assumption that we consider is the piece-wise constant default intensity. The 

function λ takes on the form of: 

                                                        (7) 

This means that λ is constant between each time interval. 

Consider the simplest scenario again: a zero recovery, zero coupon bond. By 

rearranging equation (6) we can determine the spot λ : 

                            
 

 
    

      

      
                                 (8) 

To avoid arbitrage opportunity, the bond price of a two-period zero coupon bond must 
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equal to: 

                                               )                (9) 

By replacing the bond prices with equation (6), the forward λ can be calculated: 

                              
 

       
    

       

       
  

       

       
                 (10) 

 

Adding coupon to our simple scenario, the value of a zero-recovery risky bond, 

V(0,T), equal to: 

                              
 
                                   (11) 

Where N is the number of coupon payments. 

3.2.2 Recovery Value 

One advantage of structural models over the reduced form models is their 

accessibility to the recovery value – it is the by-product of the asset – liability 

simulation. The reduced form approach requires an explicit method of parameterizing 

the recovery value, R. Several conventional methods are described below. 

Equivalent Recovery: Introduced by Jarrow & Turnbull (1995), this assumption 

replaces the defaulting security by R of non-defaultable securities. The value of a zero 

bond with R>0 thus becomes: 

                                                             (12) 

 

Fractional Recovery: This assumption was made by Duffie & Singleton (1999) and 

further developed to multiple default by Schonbucher(1998). The idea is to allow the 

bond to continue to trade after losing a fraction q of its face value at each credit event. 

Therefore, we deem the bond to be default free, where the value of a zero risky bond 

is the sum of the expected cash flow discounted using an adjusted interest rate: 
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                 (13) 

Recovery of Face Value: Under this assumption, bondholders receive a fraction R of 

the bond’s principal value but not the outstanding coupon payments. This assumption 

is in line with conventional bankruptcy practices, where bondholders entitle to 

receive fraction of the company’s residual value weighted by the contractual 

promised face value of their debt.  

For a risky coupon bond, under the piece-wise constant default intensity and recovery 

of face value assumption, its value, V(0,T), can be expressed as: 

                   
 

   
                                     

 

   
 

                          

(14) 

3.3 Default-Risk-Adjusted Risk Measures 

One of the first steps to monitor the risk of a fixed income portfolio is to accurately 

measure the sensitivity parameters. Berd, Mashal & Wang (2004) adopted the 

reduced from approach for their duration and convexity calculation. By explicitly 

incorporating the default risk and the possibility of receiving recovery values in the 

traditional duration and convexity calculation, we can obtain the interest rate 

sensitivity and credit risk sensitivity measure of a particular credit risky bond.  

Reduced-form Macaulay duration is: 

     
 

 
               

 

   
                             

             
 

   
                          

                                                                 (15) 
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Where P is the market price of the bond. 

 

In this equation, the cash flow is both weighted by the risk-free discount factor and 

the probability of realization of the cash flow. The reduced-form Macaulay duration is 

always less than the traditional Macaulay duration since we take into account the 

possibility of receiving the recovery value if the company defaults. If the default risk 

is high, the difference between the reduced-form duration and traditional duration 

will be large
1
. Thus, the interest rate sensitivity will be overestimated with the 

traditional duration measures.  

We can modify the traditional convexity with the same approach to arrive at a 

reduced-form convexity: 

  
 

 
    

            
 

   
                              

    
          

 

   
                           

                                                                 (16) 

 

The reduced-form convexity is expected to exhibit the same deviation from its 

traditional measure as the reduced-form duration. 

   

                                                      
1
 Berd, Mashal, and Wang have further demonstrated the closer relationship between a company’s 

financial stands and the reduced-form duration with a particular Calpine bond. Beside interest rate 
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4. Fixed Income Portfolio and Data   

4.1 SFU SIAS Fixed Income Portfolio 

Our paper applies the reduced form approach to the fixed income portfolio of Simon 

Fraser University SIAS fund, which consists of 19 Canadian bonds with 16 different 

issuers. The fund adopts a value investment philosophy, where the major objective is 

the preservation of the fund value. Based on the fund’s Investment Policy Standard, 

50% to 100% the fixed income portfolio has to consist of bonds with A rating or 

above. Purchasing any bond which has a rating below BBB is restricted. Therefore, 

bonds in SIAS fund portfolio generally have a relatively low default risk  

4.2 Data 

To construct credit term structures for each of the 19 bond in SIAS fixed income 

portfolio, we use the bullet bond portfolio of each bond’s issuer as our starting point. 

Bond information, including price, coupon, payment frequency, rating, and maturity 

time, is retrieved from Bloomberg on July 12, 2010. For bond issuers with 

insufficient number of bonds outstanding to extrapolate a legitimate credit term 

structure, we select bullet bonds with equivalent rating from issuers’ parent 

companies or peer companies (same sector with similar capitalization size) to create  

peer bond portfolio that serves as the basis of our credit curve construction.  

For the two U.S. corporate bond issuers, Ford Motor Company and Ally Financial Inc, 

their bond information is retrieved from Bloomberg on August 12, 2010.  

We use LIBOR Swap rates as our risk-free discount rates. Canadian dollar LIBOR 

Swap rates on July 12, 2010 and U.S. dollar LIBOR Swap rates on August 12, 2010 
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are collected from Bloomberg for the following maturity: 0.5 year, 1 to 10 years, 12, 

15, 20, 25, and 30 years.  

  

5. Methodology 

There are three assumptions we employed: 

Fairness of Market Bond Price: We assume that market is efficient and the 

observable bond prices on the market fairly represent the intrinsic value of the 

securities.  

Correlation between Risk free Rate and default probability: We assume independence 

between interest rate and the default intensity. 

Recovery Rate: We use the recovery of face value assumption for our credit risk 

modeling. For the recovery rate for Sovereign bonds, we take the issuer-weighted 

average recovery rate for the period from 1983 to 2008 of 50% (Moody’s 2009),  

The recovery rate for corporate bonds is set to be 41.44% for constructing credit risk 

term structure, which is the average world-wide corporate bond recovery rate from 

1920 to 2008 (Moody’s 2009). However, for calculating individual bonds’ 

default-risk-adjusted duration and convexity, we assign recovery rate to each bond 

according to its seniority – here we use the average world-wide corporate bond 

recovery rate based on seniority from 1982 to 2008 (Moody’s 2009).  

5.1 Extracting Implied Piece-wise Constant Default Intensity   

Our bootstrapping procedure assumes a semiannual piece-wise constant default 

intensity. A semiannual time interval is chosen to better accommodate the traditional 

semiannual coupon payments of bonds. The process starts with arranging the bonds 
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in a particular issuer’s portfolio from the shortest TTM to the longest. The value of a 

risky coupon bond with a TTM = T1, where 0 < T1 < 0.5, can be expressed as: 

 

                                                                  (17) 

Where Q(0, 0) = 1 because the survival probability at t = 0 must equal to 1. 

 

Since Q(0,T1) is the only unknown in the equation, we can rearrange equation (17) to 

calculate the Q(0,T1): 

                              
                  

                  
                       (18) 

And, from equation (4), we can compute the piece-wise constant default intensity: 

                              
          

  
                   (19) 

Once we obtain the first 0.5-year’s implied default intensity from the bond with the 

shortest TTM, we use that as an input to calculate the 1-year implied default intensity 

from the second bond. The implied default intensities of longer period are extracted 

in the same fashion. 

During the process, if the difference between the TTM of a particular bond and the 

consecutive bond is longer than 0.5 year, we will assume that the default intensity in 

the period between the two maturity dates is constant. Also, the survival probability 

must satisfy the constraint: 

       

5.2 Fitted Implied Survival, Default, and Default Intensity Term Structures 

After the semiannual piece-wise constant default intensities and the survival 

probabilities are extracted from each issuer’s bond portfolio, we extrapolate the credit  
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risk term structures using cubic smoothing spline
2
. We also derive the fitted implied 

forward default intensity term structure from the credit information recovered. Now 

we can analyze bonds in SIAS fixed income portfolio using the issuer-specific fitted 

implied credit term structures and calibrate their calculated price to the market price 

with a constant, issue-specific OAS-to-Fit rate (OASF). 

The value of individual bond, V(0,T), is: 

                   
 

   
                                             

          
 

   
                        

          

(20) 

Where Q(0,0) = 1. 

The survival probability Q(0,ti) can be obtained from the fitted implied credit term 

structure. Therefore, we solve for the constant OASF rate and calibrate the model to 

the bond’s market price.   

5.3 Reduced-Form Duration and Convexity 

We adopted Berd, Mashal & Wang’s (2004) approach to calculate the reduced-form 

duration and convexity.   

 

 

 

                                                      
2
 The cubic smoothing spline f for a given data x and y – in our case, TTM and default risk measures – 

approximates the data value y at each smaller, intermediate x value. This smoothing spline f minimizes 

the value:  

       
                                             

where j is the smaller intermediate x value, p is the smoothing parameter, λ is the weight function, and 

D
2
f  is the second derivative of the function f.  



21 
 

Reduced-form Macaulay duration is: 

     
 

 
               

 

   
                                       

                       
 

   
                       

             

                                                                 (21) 

The reduced-form convexity: 

  
 

 
    

            
 

   
           

                      

                     
          

 

   
                       

                       

                                                                 (22) 

 

6. Results 

6.1 Implied Credit Risk Term Structure 

Looking at the implied credit risk term structures for the 16 debt issuers of bonds in 

the SIAS portfolio (Figure 1 – 47), overall, the market appears to anticipate an 

increase in default intensity with TTM between 0 to 20 years. After that, the 

expectation of default intensity gradually decreases with TTM. Each issuer’s 

cumulative default probabilities for the next 10 years are summarized in Table A. The 

following sections give a more detailed analysis on the credit term structure based on 

the issuers’ sector. 
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6.1.1 Government Bonds 

The three Canadian Government issuers in our portfolio exhibit a relatively low 

default risk as predicted. Constructing the credit term structure for Government of 

Canada bonds mainly serves as a check on our model, since the yield is close to, or 

sometimes even lower, than the Canadian LIBOR swap rates. That means a flat fitted 

implied survival probability term structure of 1. However, some irregularities appear 

for bonds with time-to-maturity less than 2 years (Figure 1 & 2). A closer look at the 

credit risk term structure reveals a small discount of 0.03% for a bond due 

immediately, and this discount decreases steadily and disappears when the TTM 

reaches 2 years. We suspect the existence of this deviation is due to other issues, 

rather than credit risk. For Canadian Mortgage & Housing Corporation (CANMOR) 

and Export Development Canada (EDC), their default probabilities are low, with an 

implied cumulative default probability of 2.73% for TTM of 7.5 years and 3.48% for 

TTM of 6.5 years, respectively (Figure 3 & 6). However, CANMOR’s fitted implied 

hazard rate and forward hazard rate show a decreasing trend after TTM of 5 years, 

indicating the market’s stronger confidence in its ability to meet the debt obligation in 

the longer term (Figure 4 & 5).  

6.1.2 Provincial and Municipal Bond 

We analyze three Canadian Provinces – British Columbia (BC), Ontario, and Quebec, 

with S&P rating of AAA, AA-, and A+, respectively. Both BC and Ontario bonds 

show an inclining implied hazard rate for TTM up to 15 years and a declining rate 

after (Figure 10 & Figure 13). For Ontario bonds, the hazard rate even slightly raises 

after TTM reaches 30 years. This might imply a different view on Ontario bonds’ 

credit risk with respect to their TTM.  
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Comparing the three provinces’ default probability, some interesting facts emerge 

after taking their rating into consideration. Although Ontario’s rating is between BC’s 

and Quebec’s, its annual cumulative default probabilities for the next 8 years is lower 

than those of the other two provinces. Only if we extend TTM after 9 years, we 

would see default probabilities for Ontario higher than BC’s. Moreover, BC actually 

has the highest default probability for the next 6 years, despite its highest credit rating. 

This may indicates that the market is more vigilant about BC’s short-term financial 

stands, and this concern over the short run has not been accounted for in the rating 

system. The rating is relatively accurate for Quebec in the longer time period, as its 

default probability becomes the highest among the three after TTM of 7 years. 

For our two municipal bond issuers, Municipal Finance Authority of British Columbia 

(BCMFA) and London Ontario (London), their hazard rates show an upward trend up 

to TTM of the longest bonds in their debt portfolios (Figure 22 & 19). 

6.1.3 Corporate Bond 

SIAS portfolio contains 8 corporate bonds, with 3 of them issued by Canadian 

Banks – Bank of Montreal (BMO), Toronto-Dominion Bank (TD), and Canadian 

Imperial Bank of Commerce (CIBC). In the 1-to-15-year time period, the three banks’ 

implied hazard rates increase steadily (Figure 24-26, 30-32, 42-44). However, when 

TTM reaches 15 years, there is a sharp elevation in hazard rate for CIBC and BMO, 

and the rate curve quickly flattens out after TTM of 20 years. Therefore, the market 

seems to be suspicious about both banks’ creditworthiness for fulfilling their 

long-term debt. In terms of credit rating, BMO’s implied default probability is always 

lower than CIBC’s for the time period analyzed, although BMO has a lower rating 

than CIBC.  

The other 5 corporate bonds scatter over different industrial sectors. Among them, 
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General Electric Capital Canadian Funding has the highest S&P rating of AA+. 

However, its cumulative implied default probability for the next 10 years is not the 

lowest – only higher than the two lowest grading corporate bonds (S&P A- for 

Industrial Alliance Capital Trust, S&P BBB- for Shaw Communications Inc).  There 

is also a discrepancy between the default probabilities of the two A-rating bonds: 407 

International Inc. (ETHWAY) and Greater Toronto Air Authority (GTAA). According 

to our result, ETHWAY has cumulative default probabilities that are more than 

double, sometimes triple, than GTAA’s numbers. In fact, GTAA has the lowest 

cumulative default probability for the next 10-year period out of all 8 corporate 

bonds. 

6.2 Comparison of Implied Default & Objective Default Probability 

As the aforementioned, a large difference between the implied default probability and 

objective default probability exists because of the difference between the fundamental 

assumptions of the two. Now we would like to do a comparison between the implied 

default probability we derived and the objective default probability measured by 

credit rating agency.  

Table B summarizes the comparison of our corporate bonds’ cumulative implied 

default probability and the average real-world default probability of every Moody’s 

rating category for 1970-2008 (Moody’s 2009). Figure 48 - 51 are the graphic 

presentations of the comparison. It is clear that the implied default probability is 

much higher than the objective default probability. However, the magnitude of the 

difference appears to decrease with the rating. 

6.3 Survival-based Duration and Convexity 

Table C presents the OASF, duration, and convexity of the 19 bonds in SIAS 
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portfolio. Most bullet bonds have low OASF, where three of the four callable bonds 

have relatively higher OASFs due to their call feature. Although a more detailed 

investigation should be done in order to prove the assumption, the credit risk appears 

to be able to explain the majority portion of the yield spread because of the small 

OASF values.  

We expect the reduced form duration and convexity to be smaller than their 

traditional numbers because of the possibility of receiving the recovery value if the 

issuer defaults. The deviation would not be significant since the bonds in SIAS 

portfolio generally have a relatively low default risk. Our model confirms the low 

deviation. Moreover, the magnitude of the difference increases as the bond’s TTM 

becomes longer, since the default probability grows with time. However, the BMO 

callable bond has a significantly higher reduced form duration than their traditional 

duration (34.75% higher). This means the sum of time-weighted cash flow from 

recovery is smaller than the time-weighted difference between the spreads and the 

default probability of the bonds. Except for the BMO callable bond, the reduced form 

convexities are smaller than the traditional numbers.  

For our two U.S. corporate bonds, Ford Motor Company and Ally Financial Inc., 

their duration and convexity values do show a more significant difference between 

the reduced-form and the traditional than bonds with similar TTM in our SIAS fixed 

income portfolio. Their higher default probability leads to a higher chance of 

receiving the recovery value when default occurs; therefore, this larger deviation is 

expected.          

6.4 Relative Pricing Using Fitted Credit Term Structure 

In this section, we test our credit term structures by pricing bonds that are not 

included in SIAS portfolio. For provincial bond, we choose two Province of Alberta 
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bonds (ALTA), with S&P rating of AAA. For banking sector, two bonds from Bank 

of Nova Scotia (BNS) with S&P rating of AA- and three bonds from Royal Bank of 

Canada (RBC) with S&P rating of AA- are selected.  

6.4.1 Provincial Bond 

The ALTA bond with a shorter TTM (Maturity Date: June 1
st
, 2012) has a market 

price that is closer to the calculated prices using BC’s and Quebec’s credit term 

structure, where BC has the same rating and Quebec has a lower rating (Table D). 

The calculated price using ONT’s credit term structure is higher than the market price. 

The result indicates that the implied default probability of ALTA is higher than 

Ontario’s, and similar to that of BC or Quebec, for the bond duration. For the ALTA 

bond with a longer TTM (Maturity Date: December 1
st
, 2019), the calculated price 

using BC’s and ONT’s term structure is very close to its market price. Using the 

credit term structure of QBC undervalued the bond.  

 6.4.2 Banking Sector Bond 

For the BNS bond with shorter TTM (Maturity Date: June 4
th

, 2012), the calculated 

price using CIBC’s credit term structure is close to its market price (Table E). The 

value of the bond is overpriced with the credit term structure of TD or BMO. 

Therefore, the short-run default probability of BNS is similar to CIBC’s and higher 

than TD’s or BMO’s, although BNS has a rating (AA-) same as TD’s and higher than 

CIBC’s (A+) and BMO’s (A). This result is not surprising since we have observed the 

discrepancy between the rating and the implied default probability. For BNS bond 

with longer TTM (Maturity Date: June 8
th

, 2017), using CIBC’s or BMO’s credit term 

structure would overvalue the bond. The default probability of BNS in the period 

corresponding to the bond’s TTM is actually higher than the two bonds with lower 
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rating.  

Pricing the three RBC bonds with the three banks’ credit term structures posts similar 

result (Table F). The RBC bond with the shortest TTM (Maturity Date: July 6
th

, 2011) 

has a market price that is similar to value calculated with CIBC’s credit term structure. 

The mid-term bond (Maturity Date: January 25
th

, 2017) is relatively overpriced by 

less than 1% using BMO or CIBC credit term structure. The long-term default risk 

for RBC is higher than that of BMO or CIBC since the market price of its long-term 

bond (Maturity Date: June 8
th

, 2023) is lower than the price computed using BMO’s 

or CIBC’s credit term structure, despite RBC’s higher rating.  

7. Conclusion and Discussion 

In this paper, we employ the reduced form approach to model the credit term 

structure of 16 debt issuers and compute the credit-risk-adjusted risk measures. 

Different from the traditional duration and convexity value that only measure interest 

rate risk, the reduced from duration and convexity explicitly take the default risk and 

recovery value into consideration, therefore give a more comprehensive and detailed 

view on the risk of the portfolio. Moreover, incorporating the default risk parameters 

into the estimation of duration and convexity usually results in risk measures lower 

than the traditional forms because of the possibility of receiving the recovery value, 

and that means the traditional numbers may overestimate the interest rate sensitivity 

of the security. The overstatement is higher for bonds with higher default risk and/or 

longer TTM.  

By analyzing the credit term structure of 16 bond issuers, we find that, although the 

default probability increases with TTM, the default intensity exhibits patterns that 

might correspond to the market’s expectation in the issuer’s ability to fulfill its debt 
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obligation in different time period. Even for high-graded bond, such as the provincial 

bonds we examined, the long-term default intensity shows a decreasing trend. Further 

investigation can be done to the issuers’ financial stands or economic outlook in order 

to analyze the pattern. This approach thus leads to the incorporation of structural 

model and the reduced form model.  

The risk-neutral default probability we derived is much higher than the objective 

default probability calculated by Moody’s. However, the discrepancy between credit 

rating and risk-neutral implied default probability is a puzzling result. Some issuers 

have a higher implied default probability, although their ratings show a higher 

creditworthiness than issuers with a lower implied default probability. Moreover, our 

credit term structure analysis and relative pricing test shows that bonds with different 

TTM, even though issued by the same institution, may exhibit different credit risk 

pattern and thus fall into different credit rating category. Considering this and the 

fluctuation in default intensity, the credit risk modeling process should take the 

pattern in credit risk term structure into account for better implementation of risk 

management. 
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8. Tables 

Table A : 10 years Implied Cumulative Default Probability  

 

Issue S&P Moody's 

Name Rating Rating Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

Government

Canada AAA Aaa 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

CMHC AAA Aaa 0.20% 0.75% 1.28% 1.79% 2.18% 2.43% 2.64%

Export Development Corp. AAA Aaa 0.10% 0.53% 1.08% 1.68% 2.33% 3.08%

Provincial

British Columbia  AAA Aaa 0.00% 1.11% 2.52% 3.93% 5.36% 6.67% 8.09% 9.50% 10.90% 12.27%

Ontario AA- Aa1 0.00% 0.00% 1.09% 2.37% 3.73% 5.37% 7.20% 9.07% 11.15% 13.23%

Quebec A+ Aa2 0.08% 0.81% 1.76% 2.95% 4.53% 6.32% 8.29% 10.25% 12.22% 14.11%

Municipal

London Ontario AAA Aaa 0.55% 1.79% 3.33% 5.05% 6.98% 9.29% 11.76% 14.33% 16.82%

B.C. MFA AAA Aaa 0.00% 1.00% 2.24% 3.72% 5.33% 7.17% 9.10% 11.19% 13.31% 15.34%

Corporate

C.I.B.C. A+ Aa2 0.36% 1.45% 2.61% 3.88% 5.32% 6.92% 8.63% 10.35% 11.93% 13.31%

GE Capital Cda Funding AA+ Aa2 0.94% 2.81% 4.88% 7.11% 9.44% 11.80% 14.27% 16.97% 19.84% 22.81%

Toronto-Dominion Bk AA- Aaa 0.00% 0.33% 2.39% 7.60% 16.48%       

407 International Inc. A NA 0.08% 1.70% 3.28% 5.03% 6.89% 8.77% 10.86% 12.96% 15.29% 17.69%

Grtr Tor Air Authority A A2 0.37% 0.67% 0.98% 1.31% 1.75% 2.39% 3.39% 4.92% 7.07% 9.66%

Ind Alliance Cap Trust A- NA 0.00% 0.77% 3.69% 6.86% 10.35% 14.15% 18.14% 22.01% 25.34% 27.98%

BMO Capital Trust A- NA 0.00% 0.04% 1.17% 2.49% 3.87% 5.42% 7.13% 8.98% 11.00% 13.21%

Shaw Communications Inc. BBB- Baa3 1.06% 3.18% 5.50% 8.16% 11.02% 13.96% 17.05% 20.26% 23.60%

Cumulative Default Probability (%)
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Table B: Comparison of Risk-Neutral and Objective Default Probability    

 

 

 

 

Issuer Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

Aaa Category

Toronto-Dominion Bk 0.00% 0.33% 2.39% 7.60% 16.48%

Objective Default Rate 0.00% 0.01% 0.01% 0.04% 0.11%

Aa Category

GE Capital Cda Funding 0.94% 2.81% 4.88% 7.11% 9.44% 11.80% 14.27% 16.97% 19.84% 22.81%

C.I.B.C. 0.36% 1.45% 2.61% 3.88% 5.32% 6.92% 8.63% 10.35% 11.93% 13.31%

Objective Default Rate 0.02% 0.05% 0.09% 0.16% 0.23% 0.31% 0.39% 0.46% 0.50% 0.55%

A Category

Grtr Tor Air Authority 0.37% 0.67% 0.98% 1.31% 1.75% 2.39% 3.39% 4.92% 7.07% 9.66%

Objective Default Rate 0.03% 0.12% 0.27% 0.43% 0.61% 0.81% 1.03% 1.27% 1.52% 1.75%

BBB Category

Shaw Communications Inc. 1.06% 3.18% 5.50% 8.16% 11.02% 13.96% 17.05% 20.26% 23.60%

Objective Default Rate 3.44% 9.75% 15.11% 19.86% 24.18% 28.26% 32.16% 35.43% 38.44%
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Table C: OASF, Reduced Form and Traditional Duration and Convexity 

Gonvernment, Provincial, and Municipal 

 
 

Corporate 

Issue Coupon Price S&P Moody's Maturity

Name  Rating Rating Date Reduced Form Maculay % Difference Reduced Form Traditional % Difference

Government

Canada 3.75% 102.92 AAA Aaa Sep 1, 2011 0.31% 1.12 1.11 0.45% 1.26 1.71 -26.42%

CMHC 5.50% 106.87 AAA Aaa Jun 1, 2012 0.12% 1.81 1.80 0.58% 3.36 4.08 -17.66%

Export Development Corp. 5.10% 109.00 AAA Aaa Jun 2, 2014 -0.93% 3.68 3.57 3.22% 14.04 14.62 -3.95%

Provincial    

British Columbia 7.50% 117.67 AAA Aaa Jun 9, 2014 0.30% 3.59 3.47 3.32% 14.12 14.13 -0.13%

British Columbia 5.40% 111.43 AAA Aaa Jun 18, 2035 0.02% 13.30 14.52 -8.42% 252.39 282.79 -10.75%

Ontario 4.50% 106.54 AA- Aa1 Mar 8, 2015 0.10% 4.19 4.2 -0.24% 18.80 20.17 -6.79%

Ontario 5.35% 110.34 AA- Aa1 Jun 2, 2019 0.12% 7.07 7.24 -2.41% 57.50 60.36 -4.74%

Ontario 5.85% 116.06 AA- Aa1 Mar 8, 2033 0.12% 12.11 13.32 -9.09% 211.07 238.48 -11.49%

Quebec 5.25% 108.51 A+ Aa2 Oct 1, 2013 0.23% 2.97 2.97 -0.11% 9.28 10.34 -10.28%

Municipal   

London Ontario 5.88% 112.69 AAA Aaa Aug 6, 2017 0.22% 5.66 5.83 -2.92% 36.91 39.51 -6.59%

B.C. MFA 4.90% 107.39 AAA Aaa Dec 3, 2013 0.31% 3.14 3.15 -0.44% 10.30 11.49 -10.41%

 Duration Convexity
OASF

Issue Coupon Price Type Recovery S&P Moody's Maturity

Name  Rate Rating Rating Date Reduced Form Maculay % Difference Reduced Form Traditional % Difference

Corporate   

C.I.B.C. 3.05% 101.27 Deposit Notes 71.38% A+ Aa2 Jun 3, 2013 0.10% 2.75 2.78 -1.07% 7.83 8.88 -11.88%

GE Capital Cda Funding 5.53% 105.81 Company Guarnt 58.56% AA+ Aa2 Aug 17, 2017 0.29% 5.56 5.87 -5.31% 36.89 39.95 -7.66%

Toronto-Dominion Bk 5.14% 106.55 Sr. Unsecured 45.49% AA- Aaa Nov 19, 2012 0.53% 2.22 2.23 -0.35% 5.13 5.95 -13.82%

407 International Inc. 5.96% 111.05 Sr. Secured 58.56% A n/a Dec 3, 2035 -0.03% 11.56 13.91 -16.89% 208.19 266.43 -21.86%

Corporate - Callable   

Grtr Tor Air Authority 6.25% 106.45 Sr. Secured 58.56% A A2 Jan 30, 2012 0.98% 1.46 1.46 0.10% 2.23 2.78 -19.83%

Ind Alliance Cap Trust 5.71% 105.44 Subordinated 35.82% A- n/a Dec 31, 2013 0.54% 3.21 3.19 0.58% 10.72 11.62 -7.73%

BMO Capital Trust 6.69% 106.12 Jr. Subordinated 28.89% A- n/a Dec 31, 2011 0.91% 1.90 1.41 34.75% 3.64 2.58 41.13%

Shaw Communications Inc. 6.15% 109.17 Sr. Unsecured 45.49% BBB- Baa3 May 9, 2016 0.16% 4.84 4.97 -2.70% 26.28 28.35 -7.30%

Non - SIAS Corporate   

Ford Motor Company 6.50% 101.00 Sr. Unsecured 45.49% B B2 Aug 1, 2018 -0.19% 5.61 6.02 -6.77% 38.71 42.59 -9.11%

Ally Financial Inc. 8.00% 99.87 Subordinated 35.82% CCC+ B3 Dec 31, 2018 0.05% 5.55 5.85 -5.13% 38.59 41.45 -6.90%

OASF
Convexity Duration
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Table D: Alberta Price Comparison 

 

 

Table E: Bank of Scotia Bank (BNS) Price Comparison 

 

Table F: Royal Bank Price Comparison 

 

 

 

Issue Coupon Maturity S&P Market 

Name  Date Rating Price BC (AAA) ONT (AA-) QBC (A+)

Calculated Price

Alberta 4.25% 2012/6/1 AAA 104.583 104.728 105.320 104.757

100.885 100.050Alberta 4.00% 2019/12/1 AAA 101.996 101.006

Issue Coupon Maturity S&P Market 

Name  Date Rating Price BMO (A) TD(AA-) CIBC (A+)

Calculated Price

BNS 3.03% 2012/6/4 AA- 101.996 103.893 102.630 101.968

BNS 4.10% 2017/6/8 AA- 101.344
102.447 n/a 102.396

Issue Coupon Maturity S&P Market 

Name  Date Rating Price BMO (A) TD(AA-) CIBC (A+)

Calculated Price

RBC 4.92% 2011/7/16 AA- 103.315 105.858 108.080 103.430

n/a 101.126

RBC 9.30% 2023/6/8 AA- 143.012 145.257 n/a 148.208

RBC 3.66% 2017/1/25 AA- 100.312 101.277
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9. List of Figures 

Government of Canada 

Figure 1. Fitted Implied Survival Probability of Government of Canada Bond 

 

 

Figure 2. Fitted Implied Hazard Rate Government of Canada Bond 
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Canadian Mortgage Housing Corporation (CANMOR)  

Figure 3. Fitted Implied Survival Probability of CANMOR Bond 

 

Figure 4. Fitted Implied Hazard Rate Term Structure of CANMOR Bond 

 

Figure 5. Fitted Implied Forward Hazard Rate Term Structure CANMOR Bond 
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Export Development Canada (EDC) 

Figure 6. Fitted Implied Survival Probability of EDC Bond 

 

Figure7. Fitted Implied Hazard Rate Term Structure of EDC Bond 

 

Figure 8. Fitted Implied Forward Hazard Rate Term Structure of EDC Bond 
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Province of British Columbia  

Figure 9. Fitted Implied Survival Probability of British Columbia Bond 

 

Figure 10. Fitted Implied Hazard Rate of British Columbia Bond  

 

Figure 11. Fitted Forward Hazard Rate of British Columbia Bond 
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Province of Ontario 

Figure 12. Fitted Implied Survival Probability of Ontario Bond  

 

Figure 13. Fitted Implied Hazard Rate Term Structure of Ontario Bond 

 

Figure 14. Fitted Implied Forward Hazard Rate of Ontario Bond 
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Province of Quebec 

Figure 15. Fitted Implied Survival Probability of Quebec Bond  

 

Figure 16. Fitted Implied Hazard Rate Term Structure of Quebec Bond  

 

Figure 17. Fitted Implied Forward Hazard Rate of Quebec Bond 
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London Ontario 

Figure 18. Fitted Implied Survival Probability of London Bond  

 

Figure 19. Fitted Implied Hazard Rate Term Structure of London Bond  

 

Figure 20. Fitted Implied Forward Hazard Rate of London Bond 
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Municipal Finance Authority of BC 

Figure 21. Fitted Implied Survival Probability of BCMFA Bond 

 

Figure 22. Fitted Implied Hazard Rate Term Structure of BCMFA Bond  

 

Figure 23. Fitted Implied Forward Hazard Rate Term Structure of BCMFA Bond 
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Canadian Imperial Bank of Commerce  

 

Figure 24. Fitted Implied Survival Probability of CIBC Bond 

 

Figure 25. Fitted Implied Hazard Rate Term Structure of CIBC Bond 

 

Figure 26. Fitted Implied Forward Hazard Rate Term Structure of CIBC Bond 
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General Electric Corporation  

Figure 27. Fitted Implied Survival Probability of GE Bond 

 

Figure 28. Fitted Implied Hazard Rate Term Structure of GE Bond 

 

Figure 29. Fitted Implied Forward Hazard Rate Term Structure of GE Bond 
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Toronto Dominion 

Figure 30. Fitted Implied Survival Probability of TD-Peer Bond 

 

Figure 31. Fitted Implied Hazard Rate Term Structure of TD-Peer Bond 

 

Figure 32. Fitted Implied Forward Hazard Rate of TD-Peer Bond 
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407 International Inc. Corporations  

Figure 33. Fitted Implied Survival Probability of ETHWAY Bond 

 

Figure 34. Fitted Implied Hazard Rate Term Structure of ETHWAY Bond 

 

Figure 35. Fitted Implied Forward Hazard Rate of ETHWAY Bond 
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Grtr Tor Air Authority 

Figure 36. Fitted Implied Survival Probability of GTAA Bond  

 

Figure 37. Fitted Implied Hazard Rate Term Structure of GTAA Bond 

 

Figure 38. Fitted Implied Forward Hazard Rate Term Structure of GTAA Bond 
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Industrial Alliance Capital Trust 

 

Figure 39. Fitted Implied Survival Probability of IDAL Bond  

 

Figure 40. Fitted Implied Hazard Rate Term Structure of IDAL Bond 

 

Figure 41. Fitted Implied Forward Hazard Rate Term Structure of IDAL Bond 

 

 

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25 30

Su
rv

iv
al

 P
ro

b
ab

ili
ty

Time to Maturity (Year)

0

50

100

150

200

250

0 5 10 15 20 25 30

H
az

ar
d

 R
at

e
 (

b
p

)

Time to Maturity (Year)

0

200

400

600

800

1,000

0 5 10 15 20 25 30

H
az

ar
d

 R
at

e
 (

b
p

)

Time to Maturity (Year)



47 
 

 

BMO Capital Trust 

Figure 42. Fitted Implied Survival Probability of Bank of Montreal Bond 

 

Figure 43. Fitted Implied Hazard Rate of Bank of Montreal Bond 

 

Figure 44. Fitted Implied Forward Hazard Rate Bank of Montreal Bond 
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Shaw Communications Inc. 

Figure 45. Fitted Implied Survival Probability of Shaw Bond 

 

Figure 46. Fitted Implied Hazard Rate Term Structure of Shaw Bond 

 

Figure 47. Fitted Implied Forward Hazard Rate Term Structure of Shaw Bond 
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Figure 48. Objective and Risk-Neutral Default Probability – Aaa Rating  

 

 

 

Figure 49. Objective and Risk-Neutral Default Probability – Aa Rating   
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Figure 50. Objective and Risk-Neutral Default Probability - A Rating   

 

 

Figure 51. Objective and Risk-Neutral Default Probability - BBB Rating   
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10. Sample of Matlab Code 

Here we show the set of code for constructing the credit risk term structure and 

estimating the default-risk-adjusted duration and convexity for Province of Quebec 

bonds. There are a few limitations to our model; for example the model cannot 

handle a portfolio with two consecutive bonds where the difference between their 

TTM is shorter than six months. That means we have to cherry-pick the bonds and 

may produce inaccurate result. Therefore, we will continue to improve our codes in 

terms of accuracy and efficiency. One modification we will be working on is to use 

exponential cubic spline to calibrate the term structure, instead of extracting 

piece-wise constant default intensity and forming the curve with cubic smoothing 

spline. This will solve the problem we mentioned and ensure a more reliable result. 

 

% Codes for constructing credit risk term structure and estimating 

% default-risk-adjusted duration and convexity. 

% This set is for Pronvince of Quebec bonds 

% June 24, 2010 

% By Belinda Liao 

  

clc 

clear all 

close all 

load qbc 

addpath(genpath('C:\Users\EPC\Documents\matlab\finfixed')) 

% Converting Excel date format to Matlab date format 

MatTime(:,1) = x2mdate(qbcdata(:,1)); 

MatTime(:,2) = x2mdate(qbcdata(:,2)); 

MatTime(:,3) = qbcdata(:,3); 

C=qbcdata(:,4); 

P0=qbcdata(:,5); 

% Calculating time factor for each cashflow of bonds 

%TF = cftimes(MatTime(:,1),MatTime(:,2),MatTime(:,3));  

%Calculating discounted cashflow for each bonds 

C = C/100; 

L = length(C); 

C = C'; 

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = cfamounts(C, 
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MatTime(:,1), MatTime(:,2)); 

%Calculating discount factor Z(t) 

U = length(R); 

R = R'; 

A = nan(L,R); 

% for v = 1:L 

% A(v,:) = exp(-(TFactors(v,:).*R)); 

% end 

for v = 1:L 

    for w = 1:U 

A(v,w) = exp(-(TFactors(v,w)*R(w))); 

    end 

end 

Z = A(:,2:end); 

CF = CFlowAmounts(:,2:end); 

TF = TFactors(:,2:end); 

Z = Z'; 

W = length(Z); 

Z = Z'; 

b=nan(L,W); 

for i=1:L 

    for j= 1:W 

        if isnan(Z(i,j)) == 1 

    b(i,j) = 0; 

        else 

    b(i,j) = 1; 

        end  

    end 

end 

b = b'; 

c = sum(b); 

c = c'; 

RecRate = 0.5; 

FV = 100; 

Rec = RecRate*FV; 

Coef = nan(L,W); 

for i = 1:L 

       n = c(i,1);  
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       if n == 1 

       Coef(i,n) = (CF(i,n)-Rec)*Z(i,n); 

       elseif n > 1 

               for k = 1:n-1 

               Coef(i,k) = (CF(i,k) - Rec)*Z(i,k)+Rec*Z(i,k+1); 

               end 

               Coef(i,n) = (CF(i, n) - Rec)*Z(i,n); 

               for m = 1+n:W 

                   Coef(i,m) = 0; 

               end 

       end 

end 

%calculating cash price for bonds 

AITime = -(TF(:,1)-1); 

C = C'; 

AI = (AITime.*C/2)*100; 

P0 = P0+AI; 

LHS = P0 - Rec*Z(:,1); 

  

Q(1,1) = LHS(1)/Coef(1,1); 

if Q(1,1)>1 

    Q(1,1) = 1; 

end 

Lambda(1,1) = -log(Q(1,1))/TF(1,1); 

for p = 2:L 

    n = c(p,1); 

    d = c(p-1,1); 

    u = n - d; 

    if u == 1 

    for q = 1:n-1 

        Q(p,q) = exp(-Lambda(p-1,q)*TF(p,q)); 

        if Q(p,q)>1 

            Q(p,q) = 1; 

        end 

        Lambda(p,q) = -log(Q(p,q))/TF(p,q); 

        J(p,q) = Q(p,q)*Coef(p,q); 

    end 

        RTerm(p) = sum(J(p,1:n-1)); 
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        Q(p,n) = (LHS(p)-RTerm(p))/Coef(p,n); 

        Lambda(p,n) = -log(Q(p,n))/TF(p,n); 

             

    elseif u > 1 

        Lambda(p,1:d) = Lambda(p-1,1:d); 

        Lambda(p,d+1:n) = Lambda(p,d); 

        for q = 1:n-1 

            Q(p,q) = exp(-Lambda(p,q)*TF(p,q)); 

            J(p,q) = Q(p,q)*Coef(p,q);    

        end 

        RTerm(p) = sum(J(p,1:n-1)); 

        Q(p,n) = (LHS(p)-RTerm(p))/Coef(p,n); 

        if Q(p,q)>1 

            Q(p,q) = 1; 

        end 

        Lambda(p,n) = -log(Q(p,n))/TF(p,n);      

    end 

end 

  

%% Piece-wise Duration calculation 

%Weighting bond cashflow 

for i = 1:L 

    for j = 1:W 

SumBCF(i,j) = TF(i,j)*CF(i,j)*Z(i,j)*Q(i,j); 

    end 

end 

for i=1:L 

    for j= 1:W 

        if isnan(SumBCF(i,j)) == 1 

        DurBCashflow(i,j) = 0; 

        else 

            DurBCashflow(i,j) = SumBCF(i,j); 

        end 

    end 

end 

DurBCashflow = DurBCashflow'; 

DurWeightBCF = sum(DurBCashflow); 

%Weighting recovery  
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for y = 1:L 

    x(1) = 1; 

    for x = 2:W 

        SumRec(y,x) = Rec*TF(y,x)*Z(y,x)*(Q(y,x-1) - Q(y,x)); 

    end 

end 

for i=1:L 

    for j= 1:W 

        if isnan(SumRec(i,j)) == 1 

        DurRec(i,j) = 0; 

        else 

            DurRec(i,j) = SumRec(i,j); 

        end 

    end 

end 

DurRec = DurRec'; 

DurWeightRec = sum(DurRec); 

% Summing the Weighted Cashflows 

DurWeightCF = DurWeightBCF+DurWeightRec; 

%Calculating Duration  

DurWeightCF = DurWeightCF'; 

Duration = DurWeightCF./P0; 

  

%% Piece-wise Convexity Calculation 

  

%Weighting bond cashflow 

for i = 1:L 

    for j = 1:W 

ConvSumBCF(i,j) = (TF(i,j)^2)*CF(i,j)*Z(i,j)*Q(i,j); 

    end 

end 

for i=1:L 

    for j= 1:W 

        if isnan(ConvSumBCF(i,j)) == 1 

        ConvBCashflow(i,j) = 0; 

        else 

            ConvBCashflow(i,j) = ConvSumBCF(i,j); 

        end 
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    end 

end 

ConvBCashflow = ConvBCashflow'; 

ConvWeightBCF = sum(ConvBCashflow); 

%Weighting recovery  

for y = 1:L 

    x(1) = 1; 

    for x = 2:W 

        ConvSumRec(y,x) = Rec*(TF(y,x)^2)*Z(y,x)*(Q(y,x-1) - Q(y,x)); 

    end 

end 

for i=1:L 

    for j= 1:W 

        if isnan(ConvSumRec(i,j)) == 1 

        ConvRec(i,j) = 0; 

        else 

            ConvRec(i,j) = ConvSumRec(i,j); 

        end 

    end 

end 

ConvRec = ConvRec'; 

ConvWeightRec = sum(ConvRec); 

% Summing the Weighted Cashflows 

ConvWeightCF = ConvWeightBCF+ConvWeightRec; 

%Calculating Duration  

ConvWeightCF = ConvWeightCF'; 

Convexity = ConvWeightCF./P0; 

  

%% Standardizing Survival Probability 

Time = [0:W]; 

SAQ(1) = 1; 

SAQ(1,2:W+1) = exp(-Lambda(L,:).*Time(:,2:W+1)); 

%SAQ = exp(-Lambda(L,:).*Time); 

plot(Time,SAQ,'.') 

title('Survival Probability of Qebec Bond') 

figure 

p = 0.02; 

lx = 500; 
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xx = linspace(0,W,lx); 

CSQ = csaps(Time,SAQ,p,xx); 

for i = 1:lx 

    if CSQ(1,i)>1 

        CSQ(1,i) = 1; 

    end 

end 

  

plot(Time, SAQ,'o',xx,CSQ,'-'); 

title('Fitted Survival Probability of Qebec Bond') 

figure 

%% plot Lambda 

PlotLambda(1) = 0; 

PlotLambda(2:W+1) = Lambda(L,:); 

  

plot(Time, PlotLambda, '.')   

title('Lambda of Qebec Bond') 

figure 

p = 0.02; 

lx = 500; 

xx = linspace(0,W,lx); 

CSLambda = csaps(Time,PlotLambda,p,xx); 

  

plot(Time, PlotLambda, 'o',xx,CSLambda,'-');   

title('Fitted Lambda of Qebec Bond') 

  

%% Option Value - QBC 

%[OptionValue] = 

OptionValueCal(0.0625,40938,40371,Rec,R,Time,SAQ,p,106.278) 

Coupon = 0.0525; 

MTD = x2mdate(41548); 

SET = x2mdate(40371); 

[CallCFlow, CallCFlowDates, CallTFactors, CallCFlowFlags] = 

cfamounts(Coupon, SET, MTD); 

CallCFlow = CallCFlow'; 

s = length(CallCFlow); 

CallCFlow = CallCFlow'; 

CallCFlow = CallCFlow(1,2:s); 
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CallFlowDates = CallCFlowDates(1,2:s); 

CallTFactors = CallTFactors(1,2:s); 

  

 for w = 1:s-1 

    Z2(1,w) = exp(-(CallTFactors(1,w)*R(w+1))); 

    Q2(1,w) = csaps(Time,SAQ,p,CallTFactors(1,w)); 

 end 

 DCallCF = CallCFlow.*Z2; 

 DCallCF = DCallCF.*Q2; 

  

 DCallRec(1,1) = Z2(1,1)*(1-Q2(1,1))*Rec 

 for x = 2:s-1 

     DCallRec(1,x) = Z2(1,x)*(Q2(1,x-1)-Q2(1,x))*Rec; 

 end 

 BulletPrice = sum(DCallCF)+sum(DCallRec) 

 CallPrice = 108.512; 

 OptionValue = BulletPrice - CallPrice 

  

   

%% OAS-adjusted Duration and Convexity 

%Sloved using Excel Solver 

OAS = 0.002277539; 

% Weighting Cashflow 

    for j = 1:s-1 

CallBCF(1,j) = 

CallTFactors(1,j)*CallCFlow(1,j)*Z2(1,j)*Q2(1,j)*exp(-OAS*(CallTFact

ors(1,j))); 

    end 

CallConvBCF = CallBCF.*CallTFactors; 

CallBCFsum = sum(CallBCF); 

CallConvsum = sum(CallConvBCF); 

% Weighting Recovery Value 

CallRec(1,1) = Rec*CallTFactors(1,1)*Z2(1,1)*(1 - 

Q2(1,1))*exp(-OAS*(CallTFactors(1,1))) 

    for x = 2:s-1 

        CallRec(1,x) = Rec*CallTFactors(1,x)*Z2(1,x)*(Q2(1,x-1) - 

Q2(1,x))*exp(-OAS*(CallTFactors(1,x))); 

    end 
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CallConvRec = CallRec.*CallTFactors; 

CallRecsum = sum(CallRec); 

CallConvRecsum = sum(CallConvRec); 

  

CallAITime = -(TF(1,1)-1); 

CallAI = (CallAITime*Coupon)*100; 

CallDirPrice = CallPrice+CallAI;  

CallDur = (CallBCFsum+CallRecsum)/CallPrice/2 

CallConv = (CallConvsum+CallConvRecsum)/CallPrice/4 
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