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Abstract 

The main idea of this paper is to apply default analysis to the Student Investment 

Advisory Service (SIAS) fixed income portfolio, which contains 19 bonds.  

The portfolio credit risk analysis includes default probability, simulation of 

default time by using Gaussian copula and t copula, Economic Capital, Credit Value at 

Risk (VaR) and Expected Tail Loss (ETL).  
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1: Introduction 

The purpose of this paper is to analyze how the portfolio credit risk behaves under 

different default correlation assumptions. Both credit Value at Risk (VaR) and Expected 

Tail Loss (ETL) are used to measure the portfolio credit risk.  

Credit VaR is defined as the maximum unexpected credit loss of a portfolio at a 

specific confidence level over a given time horizon. It is an important and widely used 

methodology to measure credit risk. Implementation of using credit VaR to quantify 

portfolio credit risk forces institutions to not only consider their exposure to financial 

risks but also to set up a proper risk management function. ETL, also known as 

conditional VaR or expected shortfall, is defined as the average of the tail losses in a 

portfolio loss distribution, which is larger than the VaR for a given confidence level. It is 

a more conservative way to evaluate the risk since it focuses on the extreme portfolio loss.  
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2: Literature Review 

During the early development of credit risk modelling, structural model is the first 

and only valuation methodology, which is originated from Black/Scholes (1973) and 

Merton (1974). Merton model is the foundation for structural models. Structural model 

focuses on the capital structure of the issuer to model default probability. It is also known 

as firm value model, because actual firm values can be measured based on firm financials. 

Therefore, structure model is considered to be more appropriate to analyze default 

probabilities of corporate issuers. As for sovereign issuers, it is hard to find specific 

financial information. However, some other literatures have presented the 

implementation of using the structural model for sovereign credit by using national stock 

indices as proxies for firm values, C.F. LEHRBASS(2000).  

Adopting the idea from actuarial sciences, reduced-form model became more 

popular since it was initiated by Jarrow/Turnbull (1995). The reduced-form model 

ignores the reasons behind a default event, but pays more attention to the default event 

itself. 

Based on the analysis above, we choose to use reduced-form model instead of 

structural model due to that a large proportion of the bonds in our portfolio are sovereign 

bonds and it is very cumbersome to model government value based on public available 

financial information. 

The different treatments for the recovery value in the event of a default between 

structural model and reduced-form model is one of the major differences between the 
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modes. When using the structural model approach the recovery amount for a bond holder 

in the event of a default is simply the value of the firm’s assets minus liquidation cost at 

the bond’s maturity. Within the reduced- form approach, however, we could make various 

assumptions regarding the recovery amounts as different recovery assumptions could be 

arbitrarily assigned. Currently, three popular methodologies are used to model the 

recovery process. 

The first assumption is equivalent recovery, which is introduced by 

Jarrow/Turnbull (1995). Under this assumption, the recovery amount is the discounted 

value of the recovered amount of par value at maturity.  

The second one is the fractional recovery assumption, which is introduced by 

Duffie/Singleton (1999) and later extended to multiple defaults by Schonbucher (1998). 

Under this assumption, the value recovered is calculated as a fraction of the bond’s 

market value when default occurs.  

The last one is recovery of par value. Under this assumption, the recovery amount 

is just a fraction of par value. This assumption is based on the hypothesis that bonds are 

not likely to be traded below expected par recovery. Unlike this assumption, the 

equivalent and the fractional recovery assumptions do not correspond to market 

conventions, therefore the recovery of par value assumption is used in our reduced form 

model.  
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3: Data 

The Student Investment Advisory Service (SIAS) portfolio is one of North 

America’s largest student-run endowment funds, which has over $9 million in assets. We 

have chosen to analyze the fix income portion of the portfolio. Our portfolio consists of 

19 bonds from a total of 16 issuers. Most of the bonds are highly rated. Eight bonds are 

issued by Canadian government and the rest is issued by corporations. Detail information 

regarding all the bonds is shown in Table 1. 

To calculate default probability under reduced-form method, we obtained bond 

prices and coupon rates through Bloomberg. We used bonds with different maturities 

issued by the same issuer to generate the term structure of default probabilities. Because 

not enough bonds with different maturities were issued by INDUSTRIAL ALLIANCE 

CAP TR and TORONTO DOMINION, we used bonds issued by their peer groups with 

same rating and coupon payment method to generate the term structure of defaults.  

As stated earlier, the bonds in our portfolio are issued either by the government or 

by corporations; different recovery rates are applied respectively. For the recovery rate of 

the government bonds, we choose to use 50% based on Recovery Rates on Defaulted 

Sovereign Bond Issuer, which is established by Moody’s Global Credit Policy. (Table 2). 

In this table, the recovery rates are evaluated based on both percentage of par value and 

percentage of cash flow. Based on our recovery rate assumption, recovery rate evaluated 

as percentage of par value is chosen. Since the collateral types of most of the bonds in our 
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portfolio are Senior Secured, Senior Unsecured and Senior Subordinated, we chose to use 

the recovery rates of these bonds to calculate the recovery rate for the corporate bond in 

our portfolio. According to Average Annual Bond and Loan Recovery Rates table (Table 

3), which is established in Moody’s Global Credit Policy, the recovery rate of corporation 

bonds is 45.4%.  
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4: Methodology 

4.1 Default Probability 

In order to simulate default time, we calculated default probability under both risk 

neutral and objective measures. Under risk neutral measure, the default probabilities are 

implied by current bond prices and coupon rates; while the default probabilities are  

obtained from historical default events under objective measure.  

In this paper, we obtained average cumulative issuer-weighted global default rates 

for the time period 1983-2008 based on Moody’s rating under objective measure, which 

is shown in Table 4. 

For reduced-form model, after all necessary data is collected, spot λ, which is the 

average number of credit events per unit time, can be calculated based on the formula 

below.  

1 1(0, ) (0, ) (0, )(0, )

1 1
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P: market price of the bond 

c: coupon payment per year 

n: coupon payment frequency per year 

FV: par value of the bond 

R: recovery rate 



b(tm,tn): discount factor 
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Canadian LIBOR swap rates, which can be used as a good prediction for future 

interest rates, are converted to continuously compounded rates in order to perform 

discount factor calculation.  

All the bonds in our portfolio pay coupons semi-annually, so n equals to 2 in the 

equation above.  

Under piece-wise constant λ assumption, the following formula is derived to 

calculate forward λ: 
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4.2 Default Time 

Default dependence structure can be modelled by copulas. For multivariable 

models, Gaussian and t-copula are wildly used because of the easy implementation. 

Therefore, the default time is modelled for each issuer based on both Gaussian and t-

copula, using the following procedures: 

a) Gaussian copula  1 1

1 1( ,..., ) ( ),..., ( )G

n nC u u u u 

     

 (1) Specify or estimate the correlation matrix Σ. 

 (2) Determine A by performing a Cholesky-decompositon  

 (3) Generate a series of iid (independent and identically distributed) 

standard normal random variables Z = (z1,…zn)’. 

TAA 
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 (4) Bring in the dependence structure by calculating X = AZ 

 (5) Set Ui = ϕ(Xi), where ϕ is the standard normal cumulative distribution 

function. Then the Ui have a Gaussian Copula dependence structure.  

 (6) Calculate default time τ from U. Since we assume piece-wise constant 

λs,  if . 

b) T copula  

 (1) Specify or estimate the correlation matrix Σ. 

 (2) Generate correlated Xi as above.  

 (3) Generate an independent  via , where  are iid 

standard normal random variables.  

 (4) Set , where  is the cumulative distribution function 

of an univariate student-t distribution with υ degrees of freedom.  

 (5) Calculate default time τ from U as above. 

 

4.3 Loss distribution 

After modelling default time for each issuer, we compare each default time τi to 

the time horizon T. If τi < T, the issuer is considered to be in default. To compute the 

portfolio loss, we assume constant Loss Given Default (LGD), which is 50% for 

government bonds and 54.5% for corporate bonds. This is consistent with the recovery 

rate assumptions used for default probability calculation under risk neutral measure. The 
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time horizon is set to be one year based on industry convention. Portfolio loss 

distributions are generated using Monte Carlo Method with 2 million simulations.  

To measure the credit risk of the portfolio, credit Value at Risk (credit VaR) and 

Expected Tail Loss (ETL) are calculated based on portfolio loss distributions. The 

confidence level is chosen to be 99.9%, because most of the bonds in our portfolio are 

highly rated. 
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5: Results 

Case 1: A constant correlation of 0.2 is applied to the entire portfolio and is 

considered to be the base case.  

We compared credit VaR and ETL based on four loss distributions, which are 

generated by using Gaussian and t-copulas with 6 degrees of freedom under risk neutral 

and objective measures. 

As shown in Table 5 and 6, under risk natural measures, credit VaR and ETL are 

bigger when using t-copula than Gaussian copula. This is expected as student-t 

distribution has fatter tail than normal distribution. Under objective measure, the credit 

VaR are the same when using different copula functions, while the ETL behave the same 

as under risk neutral measure.  

Using the same copula, the risk neutral credit VaR and ETL are larger than 

objective ones, because the default probability is higher under risk neutral measure.  

Case 2: In order to observe how Credit VaR and ETL change with respect to the 

change of correlations, we run a series of correlations from 0.1 to 0.5. The results are 

shown in Table 7 and 8. 

As the correlation increases, credit VaR stays the same under objective measure. 

Under risk neutral measure, using Gaussian copula, credit VaR increases until the 

correlation reaches 0.3 and stays afterwards; using t-copula with 6 degrees of freedom, 

credit VaR is monotonically increasing. The ETL based on all the four distributions are 

increasing as the default correlation increases.  



 

 11 

In order to take the tail dependence into consideration, we also calculated credit 

VaR and ETL of the portfolio using t-copula with 2 degrees of freedom. A t-copula's 

degrees of freedom determine the level of tail dependence. Smaller degrees of freedom 

correspond to higher tail dependence, in other words, a higher probability to have the 

extreme losses. As the results shown in Table 7 and 8, credit VaR do not change under 

objective measure as the default correlation changes, while the risk neutral VaR as well 

as ETL increase. 

Since no change is observed on credit VaR under objective measure, we increase 

the confidence level to 99.99%. As the result shown in Table 9 and 10, ETL reacts the 

same way to the change of correlation. The change of credit VaR is more obvious when 

default correlation is high.  

As the default correlation increases, we expect the portfolio loss distribution to 

have both a higher head and a fatter tail. In other words, higher default correlation 

indicates higher probability of having both no losses and extreme losses. In general, the 

portfolio’s credit risk should increase as default correlation increases. However, due to 

limited numbers of bonds in our portfolio, the loss distribution is discrete. This causes the 

VaR to be unchanged as correlation increases in some situations, i.e. default correlation 

goes up from 0.1 to 0.3 under objective measurement.  

As stated above, credit VaR is unable to capture the impact on the portfolio’s 

credit risk in certain situations, since it focus on the body part of the loss distribution. On 

the other hand, ETL is observed to be able to better capture the impacts from changes in 

default correlation, because it pays more attention on the tail of the loss distribution. It is 

a great complement to credit VaR as a measure of portfolio credit risk.  
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Case 3: The bonds in the portfolio are divided into two groups, government bonds 

and corporate bonds. To be more realistic, instead of using a constant correlation 

throughout the entire portfolio, we assigned different correlations for each group. The 

correlation between government bonds, corporate bonds as well as between government 

and corporate bonds are set to be 0.3, 0.26 and 0.13, respectively. To be comparable with 

our base case, the simple average correlation is kept to be 0.2.  

As the results shown in Table 9 and 10, at the 99.9% confidence level over one 

year horizon, the portfolio VaR do not change except under risk neutral measure with 

Gaussian copula, while ETL based on all four distributions increase.  

To further analyze the impact from different correlations, we increased the 

correlation within the same group from 0.3 to 0.38 and from 0.26 to  0.33 respectively. In 

order to maintain the average correlation 0.2, we lowered the correlation between two 

groups to 0.06.  

Compare to the base case, the portfolio VaR remains the same under objective 

measure and increased under risk neutral measure. However, the changes on ETL are 

noticeable. 
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6: Conclusion 

In general, an increase in the default correlation will lead to an increase in the 

portfolio credit risk. However, in our portfolio, VaR is unable to reflect this relationship 

perfectly because of other impacts, such as portfolio’s size and composition. With more 

bonds having higher default probabilities in the portfolio, the positive relationship 

between default correlation and credit VaR of the portfolio will be more properly 

captured. 

The current market value of our portfolio is $2,404,682.00. Under a very 

conservative assumption, which has a constant correlation of 0.5 under objective measure 

with t-copula with 2 degrees of freedom, our portfolio’s VaR is $187,154 and the ETL is 

$220,605 at a 99.99% confidence level, which is 7.78% and 9.17% of the current 

portfolio value, respectively. This shows the SIAS fixed- income portfolio has a very low 

credit risk, which is in accord with the SIAS Investment Policy Statement.  
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Appendix 

Table 1 SIAS Fixed Income Securities  

 

Table 2 Recovery Rates on Defaulted Sovereign Bond Issuer 
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  Table 3 Average Annual Bond and Loan Recovery Rates 
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Table 4 Average Cumulative Issuer-Weighted Global Default Rates , 1983-2008 
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Table 5 VaR at 99.9% confidence level over 1 year time horizon, ρ=0.2  

 Risk Neutral Objective 

Gaussian  81,984 58,328 

T (v = 6) 127,254 58,327 
T (v = 2) 185,808 58,322 

 

 
 

Table 6 ETL at 99.9% confidence level over 1 year time horizon, ρ=0.2  

 Risk Neutral Objective 

Gaussian 112,957 59,924 
T (v = 6) 173,477 72,859 

T (v = 2) 245,489 95,844 

 
 

 
Table 7 VaR at 99.9% confidence level over 1 year time horizon 

ρ 0.1 0.2 0.3 0.4 0.5 

Risk Neutral 

Gaussian 56,988  81,984  115,548  115,550  115,556  

t (ν = 6) 115,552  127,254  140,559  152,266  174,106  

t (ν = 2) 174,108   185,808 199,101 199,113 210,827 

Objective 

Gaussian 58,323  58,328  58,328  58,321  58,327  

t (ν = 6) 58,323  58,327  58,324  58,324  58,323  

t (ν = 2) 58,323 58,322 58,320 58,326 58,324  

 

 

Table 8 ETL at 99.9% confidence level over 1 year time horizon 

ρ 0.1 0.2 0.3 0.4 0.5 

Risk Neutral 

Gaussian 90,447 112,957 126,501 140,550 163,843 

t (ν = 6) 150,982 173,477 193,833 214,750 238,131 

t (ν = 2) 225,160 245,489 262,280 276,188 295,649 

Objective 

Gaussian 59,268 59,924 61,668 64,799 69,277 

t (ν = 6) 70,085 72,859 78,537 83,834 91,612 

t (ν = 2) 91,443 95,844 98,478 99,947 107,210 
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Table 9 VaR at 99.99% confidence level over 1 year time horizon 

ρ 0.1 0.2 0.3 0.4 0.5 

Risk Neutral 

Gaussian  115,541   115,543   152,264   174,118   232,675  

t (ν = 6)  199,098   232,679   257,680   294,380   327,948  

t (ν = 2) 294,387  316,229 327,933  377,937  386,508  

Objective 

Gaussian  58,320   58,325   58,327   70,043   116,886  

t (ν = 6)  116,883   116,890   116,887   128,595   128,601  

t (ν = 2) 128,595  175,444  175,444  187,154  187,154  

 

 
 

Table 10 ETL at 99.99% confidence level over 1 year time horizon 

ρ 0.1 0.2 0.3 0.4 0.5 

Risk Neutral 

Gaussian  122,622   144,885   182,448   216,516   268,004  

t (ν = 6)  241,352   267,771   301,880   340,324   369,136  

t (ν = 2) 335,264  352,733  384,838  405,233  418,708 

Objective 

Gaussian  65,028   71,962   86,354   105,291   129,007  

t (ν = 6)  129,706   135,766   155,577   166,532   180,575  

t (ν = 2) 175,214  193,161  199,337  210,408  220,605  

 

 
 

Table 11 VaR at 99.9% confidence level over 1 year time horizon, with different 

correlation between groups 

Default 

Correlation 

Constant

0.20 
 

0.30
0.26
0.13

GG

CC

GC









 
0.38
0.33
0.06

GG

CC

GC









 

Risk Neutral 
Gaussian  81,984 115,545 115,544 

t (ν = 6) 127,254 127,243 131,974 

Objective 
Gaussian  58,328  58,326  58,324 

t (ν = 6)  58,327  58,321  58,320 
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Table 12 ETL at 99.9% confidence level over 1 year time horizon, with different 

correlation between groups 

Default  

Correlation 

Constant

0.20 
 

0.30
0.26
0.13

GG

CC

GC









 
0.38
0.33
0.06

GG

CC

GC









 

Risk Neutral 
Gaussian 112,956 123,511 126,039 

t (ν = 6) 173,477 187,510 194,265 

Objective 
Gaussian   59,923   62,089    62,768 

t (ν = 6)   72,859   79,104    80,473 
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Matlab Code 

Code 1: spot λ for issuer GOVERNMENT OF CANADA 

% Converting Excel date format to Matlab date format 
date(:,1) = x2mdate(can(:,1)); 
date(:,2) = x2mdate(can(:,2)); 
date(:,3) = can(:,3); 
C=can(:,4); 
P=can(:,5); 
% Calculating time factor for each cashflow of bonds  
%Calculating discounted cashflow for each bonds 
C = C/100; 
L = length(C); 
C = C'; 
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = cfamounts(C, date(:,1), date(:,2)); 
%Calculating discount factor Z(t) 
TFactors = TFactors'; 
U = length(TFactors); 
TFactors = TFactors'; 
R = R(1:U,1); 
R = R'; 
A = nan(L,U); 
  
for v = 1:L 
    for w = 1:U 
A(v,w) = exp(-(TFactors(v,w)*R(w))); 
    end 
end 
Z = A(:,2:end); 
CF = CFlowAmounts(:,2:end); 
TF = TFactors(:,2:end); 
Z = Z'; 
W = length(Z); 
Z = Z'; 
b=nan(L,W); 
for i=1:L 
    for j= 1:W 
        if isnan(Z(i,j)) == 1 
    b(i,j) = 0; 
        else 
    b(i,j) = 1; 
        end  
    end 
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end 
b = b'; 
c = sum(b); 
c = c'; 
RecRate = 0.5; 
FV = 100; 
Rec = RecRate*FV; 
Coef = nan(L,W); 
for i = 1:L 
       n = c(i,1);  
       if n == 1 
       Coef(i,n) = (CF(i,n)-Rec)*Z(i,n); 
       elseif n > 1 
               for k = 1:n-1 
               Coef(i,k) = (CF(i,k) - Rec)*Z(i,k)+Rec*Z(i,k+1); 
               end 
               Coef(i,n) = (CF(i, n) - Rec)*Z(i,n); 
               for m = 1+n:W 
                   Coef(i,m) = 0; 
               end 
       end 
end 
%calculating credit spread lamda and survival probability Q 
AITime = -(TF(:,1)-1); 
C = C'; 
AI = (AITime.*C/2)*100; 
P0 = P0+AI;  
LHS = P0 - Rec*Z(:,1);  
  
Q(1,1) = LHS(1)/Coef(1,1); 
Lambda(1,1) = -log(Q(1,1))/TF(1,1); 
for p = 2:L 
    n = c(p,1); 
    d = c(p-1,1); 
    u = n - d; 
    if u == 1 
    for q = 1:n-1 
        Q(p,q) = exp(-Lambda(p-1,q)*TF(p,q)); 
        if Q(p,q)>1 
            Q(p,q) = 1; 
        end 
        Lambda(p,q) = -log(Q(p,q))/TF(p,q); 
        J(p,q) = Q(p,q)*Coef(p,q); 
    end 
        RTerm(p) = sum(J(p,1:n-1)); 
        Q(p,n) = (LHS(p)-RTerm(p))/Coef(p,n); 
        if Q(p,n)>1 
            Q(p,n) = 1; 
        end 
        Lambda(p,n) = -log(Q(p,n))/TF(p,n); 
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    elseif u > 1 
        Lambda(p,1:d) = Lambda(p-1,1:d); 
        Lambda(p,d+1:n) = Lambda(p,d); 
        for q = 1:n-1 
            Q(p,q) = exp(-Lambda(p,q)*TF(p,q)); 
            if Q(p,q)>1 
            Q(p,q) = 1; 
        end 
            J(p,q) = Q(p,q)*Coef(p,q);    
        end 
        RTerm(p) = sum(J(p,1:n-1)); 
        Q(p,n) = (LHS(p)-RTerm(p))/Coef(p,n); 
        if Q(p,n)>1 
            Q(p,n) = 1; 
        end 
        Lambda(p,n) = -log(Q(p,n))/TF(p,n);      
    end 
end 
 

Code 2:  default simulations for VaR and ETL calculations 

% Import data from Excel 
[input, Ctype] = xlsread('Default.xlsx', 'Portfolio', 'B2:B10'); 
Ctype = char(Ctype); 
n =  input(1);  % Number of issuers in the portfolio 
correlation = input(2);  % Default correaltion, assume constant throughout the portfolio 
if correlation == 0 
    rho = xlsread('Default.xlsx', 'Correlation Matrix', 'C6:Z36'); 
else 
    rho = correlation*ones(n)+(1-correlation)*eye(n);  % correlation matrics 
end 
T = input(3);  % Time to maturity 
dof = input(7); 
sim = input(9);  % Number of simulations 
c = input(8); % Confidence level 
  
portinfo = xlsread('Default.xlsx', 'Portfolio', 'D12:H62'); 
port =portinfo(:,1); % Portfolio information 
FV =portinfo(:,2); 
R = portinfo(:,4);  % Recovery rate 
  
lam = xlsread('Default.xlsx', 'Lambda', 'C2:L53'); 
lamda = lam(2:end, 1:5); 
flamda = lam(2:end, 6:10); 
time = lam(1,1:5); 
  
def_probA = xlsread('Default.xlsx' , 'Def_prob', 'H3:L53');  
def_prob = def_probA * (time == T)'; 
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% Simulation 
U = nan(n, sim); 
if Ctype == 'G' 
    U = copularnd('Gaussian',rho,sim)';  
    disp('Gaussian Copula') 
elseif Ctype == 'T' 
    U = copularnd('t',rho,dof,sim)';  % T Copula with dof  
    disp (['T-copula with dof  ' , num2str(dof)]) 
end 
  
%%%%%%%%%%%%%%%%% RN %%%%%%%%%%%%%%%%%% 
% convert Ui to default time tao 
S = -log(ones(size(U)) - U);  
tao = nan(n,sim); 
for j = 1:sim 
    for i = 1:n 
        if S(i,j) > lamda(i,5)*time(5) 
            tao(i,j) = S(i,j) / lamda(i,5); 
        elseif S(i,j) > lamda(i,4)*time(4) 
            tao(i,j) = time(4) + (S(i,j) - lamda(i,4)*time(4)) / flamda(i,5); 
        elseif S(i,j) > lamda(i,3)*time(3) 
            tao(i,j) = time(3) + (S(i,j) - lamda(i,3)*time(3)) / flamda(i,4); 
        elseif S(i,j) > lamda(i,2)*time(2) 
            tao(i,j) = time(2) + (S(i,j) - lamda(i,2)*time(2)) / flamda(i,3); 
        elseif S(i,j) > lamda(i,1)*time(1) 
            tao(i,j) = time(1) + (S(i,j) - lamda(i,1)*time(1)) / flamda(i,2); 
        else 
            tao(i,j) =S(i,j) / flamda(i,1); 
        end 
    end 
end 
     
Def = tao < T;   
N_Def = sum(Def); 
% Loss Distribution 
La = (diag(ones(n,1) - R) * FV)' * Def;  

 ELa = mean(La);     % Expected loss 
 Lax = sort(La); 
 VaRa = Lax(sim*c) - ELa;  % VaR 
 ETLa = mean(Lax(sim*c:end));   % Expected short fall 
  
%%%%%%%%%%%%%% Rating %%%%%%%%%%%%%%%%%%% 
Def_R = U < def_prob*ones(1,sim);       
N_Def_R = sum(Def_R); 
% Loss Distribution 
 La_R = (diag(ones(n,1) - R) * FV)' * Def_R;     % loss = (1-R)*FV 
 ELa_R = mean(La_R);     % Expected loss 
 Lax_R = sort(La_R); 
 VaR_R = Lax_R(sim*c) - ELa_R;  % VaR 
 ETL_R = mean(Lax_R(sim*c:end));   % Expected short fall 


