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Abstract

The main idea of this paper is to apply default analysis to the Student Investment

Advisory Service (SIAS) fixed income portfolio, which contains 19 bonds.

The portfolio credit risk analysis includes default probability, simulation of
default time by using Gaussian copula and t copula, Economic Capital, Credit Value at

Risk (VaR) and Expected Tail Loss (ETL).
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1: Introduction

The purpose of this paper is to analyze how the portfolio credit risk behaves under
different default correlation assumptions. Both credit Value at Risk (VaR) and Expected
Tail Loss (ETL) are used to measure the portfolio credit risk.

Credit VaR is defined as the maximum unexpected credit loss of a portfolio at a
specific confidence level over a given time horizon. It is an important and widely used
methodology to measure credit risk. Implementation of using credit VaR to quantify
portfolio credit risk forces institutions to not only consider their exposure to financial
risks but also to set up a proper risk management function. ETL, also known as
conditional VaR or expected shortfall, is defined as the average of the tail losses in a
portfolio loss distribution, which is larger than the VaR for a given confidence level. It is

a more conservative way to evaluate the risk since it focuses on the extreme portfolio loss.



2: Literature Review

During the early development of credit risk modelling, structural model is the first
and only valuation methodology, which is originated from Black/Scholes (1973) and
Merton (1974). Merton model is the foundation for structural models. Structural model
focuses on the capital structure of the issuer to model default probability. It is also known
as firm value model, because actual firm values can be measured based on firm financials.
Therefore, structure model is considered to be more appropriate to analyze default
probabilities of corporate issuers. As for sovereign issuers, it is hard to find specific
financial information. Howewver, some other literatures have presented the
implementation of using the structural model for sovereign credit by using national stock
indices as proxies for firm values, C.F. LEHRBASS(2000).

Adopting the idea from actuarial sciences, reduced-form model became more
popular since it was initiated by Jarrow/Turnbull (1995). The reduced-form model
ignores the reasons behind a default event, but pays more attention to the default event
itself.

Based on the analysis above, we choose to use reduced-form model instead of
structural model due to that a large proportion of the bonds in our portfolio are sovereign
bonds and it is very cumbersome to model government value based on public available
financial information.

The different treatments for the recovery value in the event of a default between

structural model and reduced-form model is one of the major differences between the



modes. When using the structural model approach the recovery amount for a bond holder
in the event of a default is simply the value of the firm’s assets minus liquidation cost at
the bond’s maturity. Within the reduced-form approach, however, we could make various
assumptions regarding the recovery amounts as different recovery assumptions could be
arbitrarily assigned. Currently, three popular methodologies are used to model the
recovery process.

The first assumption is equivalent recovery, which is introduced by
Jarrow/Turnbull (1995). Under this assumption, the recovery amount is the discounted
value of the recovered amount of par value at maturity.

The second one is the fractional recovery assumption, which is introduced by
Duffie/Singleton (1999) and later extended to multiple defaults by Schonbucher (1998).
Under this assumption, the value recovered is calculated as a fraction of the bond’s
market value when default occurs.

The last one is recovery of par value. Under this assumption, the recovery amount
is just a fraction of par value. This assumption is based on the hypothesis that bonds are
not likely to be traded below expected par recovery. Unlike this assumption, the
equivalent and the fractional recovery assumptions do not correspond to market
conventions, therefore the recovery of par value assumption is used in our reduced form

model.



3: Data

The Student Investment Advisory Service (SIAS) portfolio is one of North
America’s largest student-run endowment funds, which has over $9 million in assets. We
have chosen to analyze the fix income portion of the portfolio. Our portfolio consists of
19 bonds from a total of 16 issuers. Most of the bonds are highly rated. Eight bonds are
issued by Canadian government and the rest is issued by corporations. Detail information

regarding all the bonds is shown in Table 1.

To calculate default probability under reduced-form method, we obtained bond
prices and coupon rates through Bloomberg. We used bonds with different maturities
issued by the same issuer to generate the term structure of default probabilities. Because
not enough bonds with different maturities were issued by INDUSTRIAL ALLIANCE
CAP TR and TORONTO DOMINION, we used bonds issued by their peer groups with

same rating and coupon payment method to generate the term structure of defaults.

As stated earlier, the bonds in our portfolio are issued either by the government or
by corporations; different recovery rates are applied respectively. For the recovery rate of
the government bonds, we choose to use 50% based on Recovery Rates on Defaulted
Sovereign Bond Issuer, which is established by Moody’s Global Credit Policy. (Table 2).
In this table, the recovery rates are evaluated based on both percentage of par value and
percentage of cash flow. Based on our recovery rate assumption, recovery rate evaluated

as percentage of par value is chosen. Since the collateral types of most of the bonds in our



portfolio are Senior Secured, Senior Unsecured and Senior Subordinated, we chose to use
the recovery rates of these bonds to calculate the recovery rate for the corporate bond in
our portfolio. According to Average Annual Bond and Loan Recovery Rates table (Table
3), which is established in Moody’s Global Credit Policy, the recovery rate of corporation

bonds is 45.4%.



4: Methodology

4.1 Default Probability

In order to simulate default time, we calculated default probability under both risk
neutral and objective measures. Under risk neutral measure, the default probabilities are
implied by current bond prices and coupon rates; while the default probabilities are
obtained from historical default events under objective measure.

In this paper, we obtained average cumulative issuer-weighted global default rates
for the time period 1983-2008 based on Moody’s rating under objective measure, which
is shown in Table 4.

For reduced-form model, after all necessary data is collected, spot A, which is the
average number of credit events per unit time, can be calculated based on the formula

below.

nT nT
P= %Ze*“‘“ﬂ‘i b(0,t,)+ FV -e*®DT.p(0,T) +R)_ (e #4) —e#O%4).b(0, 1)

=) =)
P: market price of the bond

C:coupon payment per year

n: coupon payment frequency per year

FV: par value of the bond

R:recovery rate

b(¢,,,t,): discount factor



Canadian LIBOR swap rates, which can be used as a good prediction for future
interest rates, are converted to continuously compounded rates in order to perform
discount factor calculation.

All the bonds in our portfolio pay coupons semi-annually, so n equals to 2 in the
equation above.

Under piece-wise constant A assumption, the following formula is derived to
calculate forward A:

b(o,tz)[R +(1-R)e 0 ]
b(0, H)[R +(1-R)e #OWt ]

b(t, t,)[ R+ (L-R)e b)) ] =

/l(tl’tz) =-

1 R + efﬂ.(O,tZ)tz _ Refﬂ(o,tl)tl
In
t,—t, R+(1-R)e O

4.2 Default Time

Default dependence structure can be modelled by copulas. For multivariable
models, Gaussian and t-copula are wildly used because of the easy implementation.
Therefore, the default time is modelled for each issuer based on both Gaussian and t-

copula, using the following procedures:
a) Gaussian copula Cf (Uy,...,U,) = @y (P7(Uy),... @7 (u,))

(1) Specify or estimate the correlation matrix X.
(2) Determine A by performing a Cholesky-decompositon == AA'
(3) Generate a series of iid (independent and identically distributed)

standard normal random variables Z = (zl1,...zn)’.



(4) Bring in the dependence structure by calculating X = AZ

(5) Set Ui= ¢(Xi), where ¢ is the standard normal cumulative distribution
function. Then the Ui have a Gaussian Copula dependence structure.

(6) Calculate default time T from U. Since we assume piece-wise constant

“InU, — A(0,t )xt_ .
As, 7, =t + ! n" n jf .
At b=t

b) T copula C}y (U, Uy) =t, 5 (£ (U), ..t ()

(1) Specify or estimate the correlation matrix X.

(2) Generate correlated Xi as above.
(3) Generate an independent & ~ y via gzz \? , Where Y, are iid

standard normal random variables.

(4) Set U, :tUL X, J , Where t_ is the cumulative distribution function

N

of an univariate student-t distribution with v degrees of freedom.

(5) Calculate default time T from U as above.

4.3 Loss distribution

After modelling default time for each issuer, we compare each default time 7; to
the time horizon T. If t; < T, the issuer is considered to be in default. To compute the
portfolio loss, we assume constant Loss Given Default (LGD), which is 50% for
government bonds and 54.5% for corporate bonds. This is consistent with the recovery

rate assumptions used for default probability calculation under risk neutral measure. The
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time horizon is set to be one year based on industry convention. Portfolio loss

distributions are generated using Monte Carlo Method with 2 million simulations.

To measure the credit risk of the portfolio, credit Value at Risk (credit VaR) and
Expected Tail Loss (ETL) are calculated based on portfolio loss distributions. The
confidence level is chosen to be 99.9%, because most of the bonds in our portfolio are

highly rated.



5: Results

Case 1: A constant correlation of 0.2 is applied to the entire portfolio and is
considered to be the base case.

We compared credit VaR and ETL based on four loss distributions, which are
generated by using Gaussian and t-copulas with 6 degrees of freedom under risk neutral
and objective measures.

As shown in Table 5 and 6, under risk natural measures, credit VaR and ETL are
bigger when using t-copula than Gaussian copula. This is expected as student-t
distribution has fatter tail than normal distribution. Under objective measure, the credit
VaR are the same when using different copula functions, while the ETL behave the same
as under risk neutral measure.

Using the same copula, the risk neutral credit VaR and ETL are larger than
objective ones, because the default probability is higher under risk neutral measure.

Case 2: In order to observe how Credit VaR and ETL change with respect to the
change of correlations, we run a series of correlations from 0.1 to 0.5. The results are
shown in Table 7 and 8.

As the correlation increases, credit VaR stays the same under objective measure.
Under risk neutral measure, using Gaussian copula, credit VaR increases until the
correlation reaches 0.3 and stays afterwards; using t-copula with 6 degrees of freedom,
credit VaR is monotonically increasing. The ETL based on all the four distributions are

increasing as the default correlation increases.
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In order to take the tail dependence into consideration, we also calculated credit
VaR and ETL of the portfolio using t-copula with 2 degrees of freedom. A t-copula’s
degrees of freedom determine the level of tail dependence. Smaller degrees of freedom
correspond to higher tail dependence, in other words, a higher probability to have the
extreme losses. As the results shown in Table 7 and 8, credit VaR do not change under
objective measure as the default correlation changes, while the risk neutral VaR as well
as ETL increase.

Since no change is observed on credit VaR under objective measure, we increase
the confidence level to 99.99%. As the result shown in Table 9 and 10, ETL reacts the
same way to the change of correlation. The change of credit VaR is more obvious when
default correlation is high.

As the default correlation increases, we expect the portfolio loss distribution to
have both a higher head and a fatter tail. In other words, higher default correlation
indicates higher probability of having both no losses and extreme losses. In general, the
portfolio’s credit risk should increase as default correlation increases. However, due to
limited numbers of bonds in our portfolio, the loss distribution is discrete. This causes the
VaR to be unchanged as correlation increases in some situations, i.e. default correlation
goes up from 0.1 to 0.3 under objective measurement.

As stated above, credit VaR is unable to capture the impact on the portfolio’s
credit risk in certain situations, since it focus on the body part of the loss distribution. On
the other hand, ETL is observed to be able to better capture the impacts from changes in
default correlation, because it pays more attention on the tail of the loss distribution. It is

a great complement to credit VaR as a measure of portfolio credit risk.
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Case 3: The bonds in the portfolio are divided into two groups, government bonds
and corporate bonds. To be more realistic, instead of using a constant correlation
throughout the entire portfolio, we assigned different correlations for each group. The
correlation between government bonds, corporate bonds as well as between government
and corporate bonds are set to be 0.3, 0.26 and 0.13, respectively. To be comparable with
our base case, the simple average correlation is kept to be 0.2.

As the results shown in Table 9 and 10, at the 99.9% confidence level over one
year horizon, the portfolio VaR do not change except under risk neutral measure with
Gaussian copula, while ETL based on all four distributions increase.

To further analyze the impact from different correlations, we increased the
correlation within the same group from 0.3 to 0.38 and from 0.26 to 0.33 respectively. In
order to maintain the average correlation 0.2, we lowered the correlation between two
groups to 0.06.

Compare to the base case, the portfolio VaR remains the same under objective
measure and increased under risk neutral measure. However, the changes on ETL are

noticeable.

12



6: Conclusion

In general, an increase in the default correlation will lead to an increase in the
portfolio credit risk. However, in our portfolio, VaR is unable to reflect this relationship
perfectly because of other impacts, such as portfolio’s size and composition. With more
bonds having higher default probabilities in the portfolio, the positive relationship
between default correlation and credit VaR of the portfolio will be more properly
captured.

The current market value of our portfolio is $2,404,682.00. Under a very
conservative assumption, which has a constant correlation of 0.5 under objective measure
with t-copula with 2 degrees of freedom, our portfolio’s VaR is $187,154 and the ETL is
$220,605 at a 99.99% confidence level, which is 7.78% and 9.17% of the current
portfolio value, respectively. This shows the SIAS fixed-income portfolio has a very low

credit risk, which is in accord with the SIAS Investment Policy Statement.
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Appendix

Table 1 SIAS Fixed Income Securities

ISSURER CUSIP COUPON | MATURITY DATE | PRICE | RATINGS(Moody's)
BMO CAPITAL TRUST 05560HAC7 6.685 12.31.2011 100.000 A3
110709DF6 7.5 6.9.2014 97.900 Aaa
PROV OF BRITISH COLUMBIA 110709FJ6 5.4 6.18.2035 99.619 Aaa
GOVERNMENT OF CANADA 135087YC2 3.75 9.1.2011 98.970 Aaa
CANADA MORTGAGE & HOUSING CORP | 135143AS4 5.5 6.1.2012 99.050 Aaa
CANADIAN IMPERIAL BK OF COMM 135917312 3.05 6.3.2013 99.947 Aa2
EXPORT DEVELOPMENT CANADA 30215ZNR7 5.1 6.2.2014 99.992 Aaa
407 INTLINC 35085ZAD8 5.96 12.3.2035 99.930 A2
GE CAPITAL CANADA FUNDING CO 36158ZBH8 5.53 8.17.2017 99.954 Aa2
GREATER TORONTO AIRPORTS AUTH 39191ZAD1 6.25 1.30.2012 99.948 A2
INDUSTRIAL ALLIANCE CAP TR/CALLABLE | 455869AA5 5.714 12.31.2013 100.000 Baa2
LONDON ONTARIO 541508BZ1 5.875 8.6.2017 99.720 Aaa
MUNICIPAL FINANCE AUTH OF B C 626209GW4 4.9 12.3.2013 99.848 Aaa
6832345L3 5.85 3.8.2033 99.444 Aal
PROV OF ONTARIO 683234UV8 5.35 6.2.2019 102.000 Aal
683234WM6 4.5 3.8.2015 99.195 Aal
PROV OF QUEBEC 748148RK1 5.25 10.1.2013 100.423 Aa2
SHAW COMMUNICATIONS INC 82028KALS 6.15 5.9.2016 98.052 Baa3
TORONTO DOMINION BANK 891145DH4 5.141 11.19.2012 100.000 Aaa

Table 2 Recovery Rates on Defaulted Sovereign Bond Issuer

Year of Default |Defaulting Country |Average Trading Price [PV Ratio of Cash Flows
(% of par) (ratio in %)
1998 Russia 18 50
1999 Pakistan 52 65
1999 Ecuador 44 60
2000 Ukraine 69 60
2000 Ivory Coast 18 NA
2001 Argentina 27 30
2002 Moldova 60 95
2003 Uruguay 66 85
2004 Grenada 65 NA
2005 Pominican Republic 95 95
2006 Belize 76 NA
2008 Seychelles 29 NA
2008 Ecuador 26 NA
Recovery Rates 50 68

15




Table 3 Average Annual Bond and Loan Recovery Rates

Year Sr. Sec.| Sr. Unsec. | Sr. Sub. | All Bonds

1989 46.54%| 43.81%|34.57%| 41.64%

1990 33.81%| 37.01%| 25.64%[ 32.15%

1991 48.39%| 36.66%|41.82%( 42.29%

1992 62.05%| 49.19%|49.40%[ 53.55%

1993 n.a. 37.13%|51.91%| 44.52%

1994 69.25%| 53.73%| 29.61%[ 50.86%

1995 62.02%| 47.60%|34.30%[ 47.97%

1996 47.58%| 62.75%|43.75%| 51.36%

1997 75.50%| 56.10%|44.73%| 58.78%

1998 46.82%| 41.63%|44.99%| 44.48%

1999 43.00%(| 38.04%|( 28.01%| 36.35%

2000 39.23%( 23.81%| 20.75%| 27.93%

2001 37.98%| 21.45%|19.82%[ 26.42%

2002 48.37%( 29.69%| 21.36%| 33.14%

2003 63.46%( 41.87%|37.18%| 47.50%

2004 73.25%| 52.09%|42.33%| 55.89%

2005 71.93%( 54.88%|26.06%| 50.96%

2006 74.63%| 55.02%|41.41%[ 57.02%

2007 80.54%( 53.25%|54.47%| 62.75%

2008 57.98%| 33.80%|23.02%| 38.27%

Avg. 56.96%| 43.48%|35.76%| 45.40%
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Table 4 Average Cumulative Issuer-Weighted Global Default Rates , 1983-2008

Rating 1Year|2 Year| 3 Year| 4 Year| 5 Year| 6 Year| 7Year| 8 Year| 9 Year|10 Year|L1 Year |12 Year (13 Year(14 Year|15 Year|16 Year|17 Year |18 Year |19 Year 20 Year
Aaa 0.000{ 0.016] 0.016( 0.049| 0.088| 0.136| 0.188| 0.193| 0.193| 0.193] 0.193| 0.193| 0.193| 0.193| 0.193| 0.193| 0.193| 0.193| 0.193 0.193
Aal 0.000{ 0.000( 0.000| 0.094] 0.141| 0.159] 0.158| 0.159 0.159| 0.159| 0.159| 0.159| 0.323| 0.526| 0.759| 0.849| 0.849( 0.849 0.849| 0.849
Aal 0.000{ 0.020( 0.042| 0.104] 0.201| 0.245| 0.294| 0.350( 0.412| 0.483| 0.565| 0.658| 0.702( 0.702| 0.702| 0.810{ 0.998| 1.217| 1470 1495
Aa3 0.038] 0.118] 0.174| 0.246| 0.319| 0.370| 0.402| 0.417| 0.420| 0.468| 0.527| 0.684| 0.835 0.933| 1.030| 1.210| 1.466| 1826| 2417 3.139
Al 0.018] 0.154] 0.366( 0.544| 0.692| 0.793| 0.868| 0.935| 0.997| 1.076| 1.202| 1.322| 1.470| 1673| 1.910| 2.188| 2.333| 2.568| 2.568| 2.568
A2 0.026] 0.092| 0.244( 0.445| 0.639| 0.891| 1.230| 1.615| 1.955| 2.209| 2.401| 2.532| 2.684| 2.880| 3.091| 3.372| 4.061| 4.639| 5.192 5.609
A3 0.032| 0.151] 0.318| 0.463| 0.714| 0997 1.203| 1.432| 1.660| 1.799| 2.020| 2.309| 2.661| 3.035| 3.665| 4.379| 5.077| 6.074| 6.785| 7.420
Baal 0.135] 0.357( 0.622| 0.867| 1.091| 1.289| 1.547| 1.730| 1.859| 2.088| 2.382| 2.827| 3.469| 4.281| 5.209| 6.332| 6.940( 7.192 7.192| 7.192
Baa2 0.139] 0426] 0.796| 1.367| 1.850| 2.317| 2.756| 3.178| 3.666| 4.292| 5.140| 6.002| 6.686| 7.339| 7.980| 8.667| 9.527|10.568|11.574|11.940
Baa3 0.291| 0.816| 1459 2.129| 2.926| 3.741| 4.463| 5.189| 5.859| 6.520| 6.998| 7.452| 8.517| 9.589/10.181(10.820{11.865(12.986|13.985 |14.855
Bal 0.682| 1.862| 3.363| 4.857| 6.280| 7.789| 8.889| 9.649(10.346(11.120|11.938|13.222|14.161|15.087|16.669 | 17.886{19.306|21.066|23.830 {25.925
Ba2 0.728| 2.066| 3.760| 5.608| 7.230| 8.425| 9.661(11.006(12.330{13.365(14.74616.342|17.864|19.321(21.354|23.013|24.599 {25.112|25.499|25.499
Ba3 1.791] 4.954| 8.873(12.932|16.209{19.227(22.017)24.755|27.188|29.601|31.635{33.344 35.421|38.298|39.905 |41.745 |43.470(45.411|47.196 {49.403
Bl 24501 6.800(11.358/15.361]19.513|23.576{27.853 (31305 (34.187|36.717|38.998 | 41.585 44,132 |46.736|48.110|48.85049.644 {50,649 (51.792 |53.186
B2 3.827| 9.116|14.386(19.204|23.232|27.013|30.514 33.495|36.607{39.110|41.376 |43.339|45.820|48.886 | 53.355 |56.778{58.350{59.986 | 59.986 {59.986
B3 7.666{15.13822.336(28.744|34.261|39.643 |44.081 48.016{50.948|53.684 |56.398 | 59.27860.552|61.298 | 61.546 61.54661.999|62.73562.735 |62.735
(aal 9.150{18.76328.028 35.629|42.389|46.914 |49.140 (51.686|57.028|62.344 | 74.557 |83.038

(aa22 16.388(25.807{32.990|38.799 |41.983 |45.823[48.900|51.959|55.997|61.737{65.577{65.577|68.127 70.995|73.226{77.097 | 78.154 | 78.154  78.15478.154
(aa3 24.806(36.604|43.417149.310{55.959|57.67260.527|64.744{70.661(82.018|82.018

Ca-C 32.949|44.29753.255(58.406 63.932 |66.489|70.337|74.990{74.990 74,990 74.990| 74.950{ 74.990{74.990 74.990 | 74.990| 74.99074.990
Investment-Grade| 0.072| 0.229| 0.436| 0.673| 0.917| 1.154| 1.381| 1,599 1.803| 2.008| 2.230| 2.470| 2.766| 3.080| 3.408| 3.793| 4.232| 4.707| 5.116| 5433
Speculative-Gradg 4.351| 8.917]13.373|17.316|20.686|23.696|26.388|28.687 30.708|32.516|34.180(35.865(37.452 39.17640.810|42.171 |43.389|44.609 |45.983 [47.195
All Rated 1565( 3.192| 4.726| 6.037| 7.118| 8.037| 8.824| 9.482110.045/10.544{11.012{11.478|11.960 12.467 12.963|13.461]13.981|14.530 {15.046|15.467
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Table 5 VaR at 99.9% confidence level over 1 year time horizon, p=0.2

Risk Neutral Objective
Gaussian 81,984 58,328
T (v=06) 127,254 58,327
Tv=2) 185,808 58,322

Table 6 ETL at 99.9% confidence level over 1 year time horizon, p=0.2

Risk Neutral Objective
Gaussian 112,957 59,924
T (v=06) 173,477 72,859
T(v=2) 245,489 95,844

Table 7 VaR at 99.9% confidence level over 1 year time horizon

p 0.1 0.2 0.3 0.4 0.5
Gaussian 56,988 81,984 115,548 115,550 115,556
Risk Neutral t(v=06) 115,552 127,254 140,559 152,266 174,106
t(v=2) 174,108 185,808 199,101 199,113 210,827
Gaussian 58,323 58,328 58,328 58,321 58,327
Objective t(v=06) 58,323 58,327 58,324 58,324 58,323
t(v=2) 58,323 58,322 58,320 58,326 58,324

Table 8 ETL at 99.9% confidence level over 1 year time horizon

p 0.1 0.2 0.3 0.4 0.5
Gaussian 90,447 112,957 126,501 140,550 163,843
Risk Neutral t(v==6) 150,982 173,477 193,833 214,750 238,131
t(v=2) 225,160 245,489 262,280 276,188 295,649
Gaussian 59,268 59,924 61,668 64,799 69,277
Objective t(v=06) 70,085 72,859 78,537 83,834 91,612
t(v=2) 91,443 95,844 98,478 99,947 107,210
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Table 9 VaR at 99.99% confidence level over 1 year time horizon

p 0.1 0.2 0.3 0.4 0.5
Gaussian 115,541 115,543 152,264 174,118 232,675
Risk Neutral t(v=06) 199,098 232,679 257,680 294,380 327,948
t(v=2) 294,387 316,229 327,933 377,937 386,508
Gaussian 58,320 58,325 58,327 70,043 116,886
Objective t(v==6) 116,883 116,890 116,887 128,595 128,601
t(v=2) 128,595 175,444 175,444 187,154 187,154

Table 10 ETL at 99.99% confidence level over 1 year time horizon

p 0.1 0.2 0.3 0.4 0.5
Gaussian 122,622 144,885 182,448 216,516 268,004
Risk Neutral t(v=26) 241,352 267,771 301,880 340,324 369,136
t(v=2) 335,264 352,733 384,838 405,233 418,708
Gaussian 65,028 71,962 86,354 105,291 129,007
Objective t(v=06) 129,706 ~ 135,766 155,577 166,532 180,575
t(v=2) 175,214 193,161 199,337 210,408 220,605

Table 11 VaR at 99.9% confidence level over 1 year time horizon, with different
correlation between groups

Default Constant Poc =030  pgs =0.38
Correlation =020 Pec =0.26 Pee =0.33
' Poc =0.13 Poc =0.06
Risk Neutral Gaussian 81,984 115,545 115,544
t(v=06) 127,254 127,243 131,974
Objective Gaussian 58,328 58,326 58,324
t(v="6) 58,327 58,321 58,320
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Table 12 ETL at 99.9% confidence level over 1 year time horizon, with different
correlation between groups

Default Constant Psc =030 pgs =0.38
Correlation _090 Pec” 026  p.. =033
p T pGC = 013 pGC = 0.06

Gaussian 112,956 123,511 126,039

Risk Neutral
SKINeUWal tw=6) 173477 187510 194265
 Gawssian 59,923 62,089 62,768
Objective
t(v=6) 72,859 79,104 80,473
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Matlab Code

Code 1: spot A for issuer GOVERNMENT OF CANADA

% Converting Excel date format to Matlab date format
date(:,1) = x2mdate(can(:,1));

date(:,2) = x2mdate(can(:,2));

date(:,3) = can(:,3);

C=can(:4);

P=can(;,5);

% Calculating time factor for each cashflow of bonds
%Calculating discounted cashflow for each bonds

C = C/100;

L = length(C);

c=¢Cy,

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = cfamounts(C, date(:,1), date(;,2));
%Calculating discount factor Z(t)

TFactors = TFactors';

U = length(TFactors);

TFactors = TFactors';

R =R(1U,1);

R=R

A =nan(L,U);

forv=1L
forw =1U
A(v,w) = exp(-(TFactors(v,w)*R(w)));
end
end
Z=A(.2:end);
CF = CFlowAmounts(:,2:end);
TF = TFactors(;,2:end);
Z=27
W = length(2);
Z=27
b=nan(L,W);
for i=1:L
for j=1:W
if isnan(Z(ij)) ==1
b(i,j) = 0;
else
b(ij) = 1;
end
end
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end
b=0b,
¢ =sum(b);
c=c¢,
RecRate = 0.5;
FV = 100;
Rec = RecRate*FV;
Coef = nan(L,W);
fori=1LL
n=c(i,1);
if n==
Coef(i,n) = (CF(i,n)-Rec)*Z(i,n);
elseif n>1
fork=1n-1
Coef(i,k) = (CF(i,k) - Rec)*Z(ik)+Rec*Z(i,k+1);
end
Coef(i,n) = (CF(i, n) - Rec)*Z(i,n);
for m=1+n:\W
Coef(im) =0;
end
end
end
%calculating credit spread lamda and survival probability Q
AlTime = -(TF(;,1)-1);
c=cC,
Al = (AlTime.*C/2)*100;
PO =PO+Al;
LHS =PO0 - Rec*Z(:,1);

Q(1,1) = LHS(1)/Coef(1,1);
Lambda(1,1) = -log(Q(1,1))/TF(1,1);
forp=2L
n=c(pl);
d=c(p-11);
u=n-d;
if u==
forg=1n-1
Q(p.q) = exp(-Lambda(p-1,0)*TF(p,q));
if Q(p.a)>1
Q(pa) =1;
end
Lambda(p,q) = -log(Q(p,a))/TF(p,q);

J(p.0) = Q(p.a)*Coef(p,q);
end

RTerm(p) = sum(J(p,1:n-1));
Q(p,n) = (LHS(p)-RTerm(p))/Coef(p,n);
if Q(p,n)>1
Q(pn) =1;
end
Lambda(p,n) = -log(Q(p,n))/TF(p,n);
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elseifu>1
Lambda(p,1.d) = Lambda(p-1,1:d);
Lambda(p,d+1:n) = Lambda(p,d);
forg=1n-1
Q(p.a) = exp(-Lambda(p,q)*TF(p.q));
if Q(p.a)>1
Q(p.a) = 1;
end
J(p.) = Q(p,a)*Coef(p.a);
end
RTerm(p) = sum(J(p,1:n-1));
Q(p.n) = (LHS(p)-RTerm(p))/Coef(p,n);
if Q(p,n)>1
Q(p.n) = 1;
end
Lambda(p,n) = -log(Q(p,n))/TF(p,n);
end
end

Code 2: default simulations for VaR and ETL calculations

% Import data from Excel
[input, Ctype] = xIsread('Default.xIsx’, ‘Portfolio’, 'B2:B10");
Ctype = char(Ctype);
n = input(1); % Number of issuers in the portfolio
correlation = input(2); % Default correaltion, assume constant throughout the portfolio
if correlation ==
rho = xlsread('Default.xIsx’, ‘Correlation Matrix', 'C6:236');
else
rho = correlation*ones(n)+(1-correlation)*eye(n); % correlation matrics
end
T = input(3); % Time to maturity
dof = input(7);
sim = input(9); % Number of simulations
¢ = input(8); % Confidence level

portinfo = xlsread('Default.xIsx', ‘Portfolio’, 'D12:H62Y);
port =portinfo(:,1); % Portfolio information

FV =portinfo(:,2);

R = portinfo(:,4); % Recovery rate

lam = xIsread('Default.xIsx’, 'Lambda’, 'C2:L53");
lamda = lam(2:end, 1:5);

flamda = lam(2:end, 6:10);

time = lam(1,1.5);

def_probA = xlsread('Default.xlsx', 'Def_prob', 'H3:L53'),
def_prob = def_prObA * (time — T)';
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% Simulation
U = nan(n, sim);
if Ctype =='G'
U = copularnd('Gaussian',rho,sim)’;
disp('Gaussian Copula")
elseif Ctype =="T"
U =copularnd('t',rho,dof,sim)’; % T Copula with dof
disp ([ 'T-copula with dof ', num2str(dof)])
end

%% %%%% %%%%% %%%% %% RN %%%% %%%%%%%%%%%%% %
% convert Ui to default time tao
S = -log(ones(size(U)) - U);
tao = nan(n,sim);
for j=1:sim
fori=1n
if S(i,j) > lamda(i,5)*time(5)
tao(i,j) = S(i,j) / lamda(i,5);
elseif S(i,j) > lamda(i,4)*time(4)
tao(i,j) = time(4) + (S(i,j) - lamda(i,4)*time(4)) / flamda(i,5);
elseif S(i,j) > lamda(i,3)*time(3)
tao(i,j) = time(3) + (S(i,j) - lamda(i,3)*time(3)) / flamda(i,4);
elseif S(i,j) > lamda(i,2)*time(2)
tao(i,j) = time(2) + (S(i,j) - lamda(i,2)*time(2)) / flamda(i,3);
elseif S(i,j) > lamda(i,1)*time(1)
tao(i,j) = time(1) + (S(i,j) - lamda(i,1)*time(1)) / flamda(i,2);
else
tao(i,j) =S(i,j) / flamda(i,1);
end
end
end

Def=ta0< T;
N_Def =sum(Def);
% Loss Distribution
La = (diag(ones(n,1) - R) * FV)' * Def;
ELa = mean(La); % Expected loss
Lax = sort(La);
VaRa = Lax(sim*c) - ELa; % VaR
ETLa = mean(Lax(sim*c:end)); % Expected short fall

%% %%%% %% %% % % %% Rating %%%% %%%% %%%%% %%%% %%
Def R =U < def_prob*ones(1,sim);

N_Def R =sum(Def_R);

% Loss Distribution

La R = (diag(ones(n,1) - R) * FV)' * Def_R; % loss = (1-R)*FV

ELa R =mean(La_R); % Expected loss

Lax_R =sort(La_R);

VaR_R = Lax R(sim*c) - ELa_R; % VaR

ETL_R = mean(Lax_R(sim*c:end)); % Expected short fall
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