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Abstract 
 

This project estimates risk neutral parameters of a jump diffusion model, as in Bates (1991), 

implicit in the option prices on the S&P500 futures over the period 2006-2008. Additionally, it 

investigates the extent to which market participants anticipated the financial market crash of 

2008. We find that high levels of skewness premium are detectable in the short maturity out-of-

the-money put options as early as July 2007. Nevertheless, market expectations of an extreme 

downturn subsided after the collapse of Bear Stearns in April 2008. Overall, our findings indicate 

that the estimated parameters show the presence of crash expectations prior to September 2008 

but there is no evidence that the magnitude of the crash was predictable. 

 

Keywords: Option pricing; Jump-diffusion; Probability density function, Skewness premium; 

non-central moment; Martingale; Bubble  
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1. Introduction 

After every major market crash since the Great Depression, pundits, academics, financial 

reporters and professionals alike, rush to offer possible explanations for causes of the 

latest crash, warning signs that might have been missed, and propose preventive measures 

to avoid the next big one. Others are of the opinion that extreme financial crashes, 

popularly referred to as Black Swan events1, cannot be foreseen thereby prevented.  

Various factors contribute to the occurrence of crashes. There is an on-going 

debate and despite the well accepted Theory of Rational Bubbles in Asset Prices, it still 

remains unclear why bubbles burst at the time they do2. However, the key issue is to 

understand what a financial bubble consists of. A bubble, according to Cox and Hobson, 

is “in economic terms a deviation between the trading price of an asset and its underlying 

value.”  Please see Exhibit I for definitions and a list of characteristics of a bubble.  

Andersen and Sornette (2004) provide an alternative model with “exponential 

growth followed by a downward jump (or crash) at an unpredictable stopping time”. 

Many analysts and academics have characterized the growth in the subprime mortgage 

segment and subsequent crash in similar terms.  The reason bubbles exist is due to 

irrational behavior and fear in the market. Misleading credit ratings issued by major 

ratings agencies superimposed with a lack of transparency in terms of companies 

disclosing exposures to mortgage related derivates are believed to have contributed to the 

irrational behavior.  

                                                 

1Nassim Nicholas Taleb, “The Black Swan, 2007  
2Benninga, Loewestein, Sarig, Oded,Simon“A note on market expectation of risk-free rates and volatilities 
before and after 1987.” Journal of Banking & Finance, 1993 



2 
 

There is a consensus that financial markets are driven by expectations. Central 

banks, policy makers, financial analysts and other market participants rely on forecasting 

tools to extract expectations containing invaluable information when setting short term as 

well as long term economic policies and strategies. They use not only options but also 

financial instruments such as forwards to extract expectations of spot prices, yield curves 

to forecast estimates of inflation, and interest rates to name a few.  

In the wake of the current crisis, market regulators have been accused of being 

asleep at the wheel but the brunt of the blame has fallen for the most part on financial 

institutions. The need for risk management has now become essential for the latter as 

they try to rebuild credibility and reassure investors, who have suffered significant 

decline in wealth in the last year, that they have the tools at their disposal to identify, 

measure, mitigate and control common but more importantly extreme risks.   

The use of risk management techniques such as Value at Risk (VAR), Expected 

Shortfall (ES) that assume log-normality of returns (low tail risk) and scenario analysis  

that has been criticized for ruling out unlikely extreme events, is believed to have limited 

the incentive to measure rare and extreme risk events.  This has, in turn, led to an 

incomplete market for options as other risks such as jump risk are assumed to have zero 

risk premia3.  Additionally, it has been shown that VAR measures are only good if the 

forecasts of the risk factors and correlations are realized. Historical data modeling or 

Monte Carlo simulations have been shown not to be reliable in times of changing 

                                                 

3 See  Pan, J., “The Jump-risk Premia Implicit in Options: Evidence from an Integrated Time-series Study,” 
Journal of Financial Economics, volume 63, pages 3--50, 2002 for an approach to finding a price kernel  
that prices diffusive price shocks, jump risks, and volatility shocks. 
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regimes.  Hence, there is a need in the market to extract expectations information implied 

in options data under the appropriate distributional hypotheses.  

Some believe that record high levels in the S&P500, the Dow and other major 

indices reached in recent years pointed to a bubble that was ready to burst. So was the 

magnitude of the decline predictable? We attempt to provide an answer to this question 

however our primary objective for this research project is to analyze Bates' (1991) 

methodology for extracting information implicit in option prices. A secondary objective 

is to find evidence of a bubble, if one existed, that possibly burst in or prior to September 

2008. 

We adopt an asymmetric jump diffusion model as in Bates (1991) to extract 

market expectation of a crash prior to September 2008 implicit in the distribution of 

option prices on the S&P500 futures. We find that high levels of skewness premium are 

detectable in short maturity out of the money put options (OTM) as early as July 2007. 

OTM puts are widely used as crash insurance to protect against sharp downturns in the 

market.4 Nevertheless, market expectations of an extreme downturn subsided after the 

collapse of Bear Sterns in April 2008. Overall, our findings indicate the presence of crash 

expectations prior to September 2008 although there is no evidence that the magnitude of 

the crash was predictable. 

The remainder of this paper is organized as follows. The next section provides a 

review of the related literature. Section 3 presents a background to the study and 

addresses model and estimation issues. Section 4 provides a detailed description of the 

data used in our research and some summary statistics. In Section 5, the estimation results 

                                                 

4 Bates, D.S, “The Market for Crash risk,” Journal of Economic Dynamics and Control 32:7, July 2008, 
2291-23212001 
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are presented and discussed in the context of the major financial events of 2008. Finally, 

Section 6 concludes and recommends areas for future research.  

2. Review of related literature 

2.1. Implied volatility 

Implied volatilities from option prices have long been used as a measure of future 

expectations of underlying asset volatilities.  However, Canina and Figlewski (1993) find 

that for most actively stock traded options, implied volatility has no correlation to future 

realized volatility. They argue that the high transaction costs of executing an arbitrage 

trade prohibits prices from approaching their theoretical values resulting in the realized 

volatility diverging from the implied volatility. Options on futures and futures series, on 

the other hand, tend not to be subject to limits to arbitrage as they trade on the same 

exchange and involve lower transaction costs. They suggest using implied volatility as 

one of the tools, rather than the tool in determining future expectations.  

2.2. Risk neutral probability density distributions 

Another approach to forecasting expectations is to extract information from the 

dispersion in the risk neutral density distribution of economic variables5 such as asset 

prices based on investor preferences. There is vast literature on inference of risk neutral 

probability density function (PDFs) from the cross-sections of option prices. Bliss and 

Panigirtzoglou (2001)6 survey other studies7 with findings similar to theirs, showing that 

                                                 

5 Schmalensee, R and Trippi, R.R., “ Common stock volatility expectations implied by option premia”, The 
Journal of Finance Vol XXXIII- March 1978 
6 Robert R. Bliss and Nikolaos Panigirtzoglou, “Option-Implied Risk Aversion Estimates: Robustness and 
Patterns,” Available at SSRN: http://ssrn.com/abstract=301334 or DOI: 10.2139/ssrn.301334 
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implied risk neutral PDFs do not provide unbiased forecasts of the distribution of future 

underlying asset values.  However, some financial regulators and others still employ risk 

neutral PDFs to infer market expectations for the future value of assets. This may have 

unintended consequences as most findings have shown that risk neutral PDFs do not 

predict future market turbulence (see Anagnou et al., 2001). Nevertheless, they cannot 

reject the hypothesis that subjective PDFs8 derived from risk neutral ones using a risk 

aversion utility function are good forecasts of the distributions of future prices. Risk 

neutral PDFs tend to include expectations as well as risk premium whereas subjective 

PDFs only contain expectations. Given a level of risk aversion of a market agent, a 

corresponding subjective PDF is inferred from the risk neutral one.   

Of course, market expectation and degree of risk aversion can be extracted 

directly from other sources such as a security or future price however the forecast 

estimate provides only a single value at some future point in time. For instance under 

security valuation methods, securities are priced by discounting streams of future cash 

flows. Given a current security price and known future cash flows,  single expectation 

measures such as a (constant) dividend growth rate and present value of future growth 

opportunities can be extracted. In contrast, market expectations inferred from risk neutral 

PDFS of option prices provide multiple distributions of possible future values of the 

underlying asset at different points in time as a result of the fact that options are available 

for different maturities and different strikes prices.  

                                                                                                                                                             

7 Anagnou, Bedendo, Hodges and Tompkins, “The relation between implied and realized probability density 
functions”, presents an extensive literature review of research in this area as of 2001. 
8 Bliss and Panigirtzoglou (2001) obtain measure of risk aversion implied in option prices by inferring 
subjective PDFs from risk neutral ones. 
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In summary, market participants must be careful not to rely solely on a single 

measure of market expectation especially when there has not been substantial empirical 

evidence warranting its use. 

2.3. Other considerations 

Another method of extracting market expectation consists of conducting surveys 

to estimate the actual expectations present in the market. This kind of tool is useful 

although unreliable in some instances as it may draw on biased samples of selected 

individuals’ opinion when in fact the information implicit in prices of financial products 

represent the entire market’s aggregate belief. 

Shiller,Kon-Ya and Tsutsui (1996) present a paper on the causes of the Nikkei 

crisis by summarizing the statistics contained in market surveys. Their justification is 

based on the fact that implied volatilities or other market-derived expectation data 

disregard the fundamental sociological fact that expectations that are relevant for market 

behavior diffuse across different subpopulations of the investing public at different rates, 

and that attention of certain subpopulations shifts from one market to others. If crash 

theory is considered, they state that actors will not have been giving consideration to the 

probability of a crash or have nothing to do in the derivative markets at all9. 

However, there is empirical research that provides evidence that extracting 

information from the derivative market is among the most technical and reliable 

approaches.  Michael P. Leahy and Charles P. Thomas (1996) present a framework to 

extract expectations from options on exchanges rates (i.e. FX options). They analyze the 

period prior to the Quebec’s referendum, a structural change event, to measure the 
                                                 

9 J. Shiller, Fumiko Kon-Ya, Yoshiro Tsutsui Source, “Why Did the Nikkei Crash? Expanding the Scope of 
Expectations Data Collection” 
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impact on the Canadian Dollar foreign exchange rates. They relied on the assumption 

that the distribution of underlying asset is completely described by the second derivative 

of the option price with respect to the strike price. This makes it feasible to model the 

distribution of option prices as a weighted mixture of lognormal distributions.   

Mel-lick and Thomas (1996) propose the measurement of expectations in the oil 

market with the parameters extracted from option prices on oil futures. They make the 

assessment that the parameters extracted under the Brownian motion assumption yield 

martingale parameters10 rather than the objective ones. In order to solve this issue, they 

propose a model similar to Barone-Adesi and Whaley (1987) with a similar weighted 

lognormal distribution that is estimated with MLE and SLN models. The weights are 

assigned to solve the options’ moneyness problem. They conclude that their model yield 

results coherent with realized parameters for the period under study (i.e. Persian Gulf 

War) unlike those estimated under the Brownian motion assumption.  

3. Background to the study: Model and Estimation issues 

3.1. Background to Models 

In his 1991 paper and subsequent work, Bates presents empirical results supporting the 

fact that some of the widely used stochastic processes do not explain moneyness biases 

observable in option prices on index futures. For instance, processes that assume log 

normal return distribution, one of the assumptions that made the derivation of the Black-

Scholes formula possible; others in the family of constant elasticity of variance (CVE) 

                                                 

10 The expected value of the parameters at time t are equal to their current values 
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processes11; and stochastic volatility processes12 have been shown not to capture the 

skewness present in the implicit distribution of option prices (Bates 1996, page 1-2). 

Figure 1 shows the monthly probability density distributions (PDF’s) of the future 

price proportional to the current price, Ft+T /Ft, from the period 2006 to 2008. The PDF’s 

are clearly skewed and far from normal. Bates’ central thesis states that given the 

existence of biases (skewness) implying that theoretical prices are skewed, better 

distributional hypotheses ought to be used such as the jump diffusion model to be 

examined in this paper. Bates’ model for option pricing under asymmetric jump diffusion 

differs in significant ways from models introduced by Merton (1976a, b) and extended by 

Ball and Torous (1983, 1985). 

 
Figure 1:  Probabil i ty densi ty function of  F t + 1 m o n t h /F t .  Moments  were calculating daily using the es t imated 
 parameters  λ∗,  γ∗ ,  δ  and σ .  Refer  to  sect ion four for  model  specif icat ions.  

                                                 

11 Special cases of CVE processes are arithmetic and geometric Brownian motion 
12 Similar to GARCH and ARCH processes 
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3.1.1. Merton (1976) 
Merton presents a diffusion process for an asset or security which consists of both a 

continuous and a jump diffusion component. Merton recognizes that once the continuous 

time trading assumption of the Black-Scholes framework is relaxed, thereby allowing 

trading at discrete intervals, risk neutrality essential to derive the no-arbitrage price is no 

longer valid. The return on the non-arbitrage portfolio13 will contain a level of risk 

(Merton 1976, page 126). Although for a small interval that approaches zero, the 

difference between Black-Scholes and the option price evaluated at discrete point is quite 

small.  

On the other hand, when pricing an option on an asset that follows a process that 

is not continuous, derivation of a risk neutral distribution from lognormal returns such as 

in the Black-Scholes model, will not yield tractable results. Merton presents an option 

pricing model under symmetric jump diffusion. The continuous part is modeled using a 

Wiener process, the jump counter using an independent Poisson process and the jump 

size a normal random variable with μ = 0 and σ = t.  

3.1.2. Ball and Torous  (1983) 
 

Ball and Torous conduct empirical tests on the returns of 47 stocks listed on the NYSE 

and find than more than 34 have experienced jumps. Similar to specifications of Merton’s 

model, they define a diffusion component “conditional on no arrivals of abnormal 

information” and jump size variable “contingent upon the arrival of abnormal 

                                                 

13 The cash flow of the option can be replicated by a self-financing dynamic strategy in risk free bonds and 
stocks. 
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information.” However, the jump counter (for each interval) is defined as Bernoulli 

variable, which takes on either a value of zero or one, rather than Poisson.14  

3.1.3. Numerical Technique for Estimation 

Estimation of parameters λڅ, γڅ, δ, and σ from Bates’ jump diffusion model are extracted 

via non-linear regression. Trying to minimize unstable functions, as is the case for Bates 

option pricing equations, can be quite problematic. In Bates (1991), the Hillclimbing 

algorithm of Godfeld and Quandt(1966) is employed to extract parameters values.  

 This method consists of running numerous iterations to solve for unknown 

parameters values while minimizing a complex function. The method must be passed a 

vector of initial values R, which is updated after each iteration and fed back into the 

process. On one hand, this allows the process to advance faster when the function is 

approaching a local maxima or reaching convergence. On the other hand, the process 

slows down the further the function is from a maxima (i.e. diverging). The values in R are 

updated only if the function is locally maximized. Once the iterations for the first run are 

complete, the values in R are set as the starting values for the next run of Hillclimbing 

optimization. A global maxima is reached when the values in R are no longer 

significantly different from one run to the next. Picking good starting values is key as 

they determine the estimation accuracy. A drawback of the algorithm is that it requires a 

large amount of iterations for complex equations and large data sets. 

 

                                                 

14 The Bernoulli distribution is a special case of binomial distribution with n=1. As n goes to 1, the 
binomial distribution converges to Poisson. 
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3.2. Model Development 
 

As mentioned above, Merton and Bates models differ in significant ways. Merton’s 

model assumes that the percentage jump size follows a normal distribution with μ = 0 and 

σ = t. Under Merton’s and Ball and Torous’ models, the assumption of zero mean implies 

that jump risk is non-systematic or diversifiable. On the other hand, Bates’ model allows 

for the average jump size to have positive or negative skewness15 thereby allowing the 

distribution of the underlying asset to be more or less skewed than the lognormal 

distribution. Bates also points out that the degree of skewness “increases or decreases 

OTM call option prices relative to OTM put option prices.”  (Bates 1996, page 12).  

The fact that Merton’s jump diffusion model assumes non-systematic or 

diversifiable jump risk makes it inadequate to use for deriving a risk neutral distribution 

from option prices on the S&P500 futures. Using an equilibrium model,  Bates derives 

an option pricing model that prices systematic (non-diversifiable) jump risk  by 

making modifications to optimally invested wealth16. In brief, here are the  three 

restrictions (Bates 1991, page 1024) that apply to Merton’s model to derive an  option 

pricing model under  asymmetric jump diffusion: 

a. Markets are frictionless 

b. Optimally invested wealth17 follows a jump diffusion:  

dW/W ൌ ሺuw – λ kതw  C/Wሻ dt ൅  σw dZw ൅ kwdq 

c. A consumer in this economy has time separable power utility: 

                                                 

15 A standard normal distribution has a skewness of 0  
 
16 See Bates, D.S,  “Pricing Options Under Jump-diffusion,” 1988 
17 A development of the modification is beyond the scope of this paper. Interested readers can refer to 
Cox, Ingersoll and Ross (1985b) and Bates (1988b).  
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Eτ න    e‐ρτ

∞

τ

UሺCτ ሻdτ ,UሺCሻ ൌ
ሺC1‐R – 1ሻ 

ሺ1 – Rሻ   

3.2.1.  Bates Jump diffusion Model 
  

Rather than presenting a derivation of the asymmetric jump diffusion process here, we 

determine it more useful to present the model from an implementation standpoint18. 

The jump stochastic process specification for the S&P500 index is as follows: 

dS
S ൌ  ൫µ –  λ kത െ d୲൯dt ൅  σdZ ൅  kdq                          ሺ1ሻ 

Where 

μ − continuous expected return on the asset, 

dt − continuous dividend yield, 

σ − variance conditional on no jumps (variance of diffusion component), 

dZ − Wiener process (geometric Brownian motion), 

    k − random percentage jump size conditional on a jump event occurring;  

   ln(1+k) ~ N(γ – ½ δ2, δ2) and E(k)  ≡ kത ൌ  eஓ ൌ 1, 

λ − annualized average number of Poisson events, 

δ – standard deviation of jump sizes conditional on a jump 

q − Poisson counter (number of Poisson events) with intensity λ  - Prob[dq =1] = λdt and 

( Prob [dq=0] = 1 − λdt) 

 

Applying Ito’s Lemma19: 

ܵ௧ ൌ  ܵ଴   ݁ሺ௕ି ఒ௞ିఙమ /ଶሻ ܻ ሺ݊ሻ                                                              (2) 

where 

Y (n) = 1 if n = 0 (i.e. no jump or Poisson event occur) 

otherwise Y (n) = ∏ ሺ1 ൅ ݇௜  
௡ሺ௧ሻ
௜ୀ଴ )   ;  ln(1 + ki) is a normal deviate drawn from  

                                                 

18 Interest readers  are referred to Bates, D.S.,"The Crash of '87 -- Was It Expected? The Evidence from 
Options Markets," Journal of Finance 46:3, July 1991, pages 1023 to 1024 
19 Refer to Hillard and Schwartz 2005, page 2-3 
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N(γ – ½ δ2, δ2). It follows that the percentage size of the next jump which is lognormal 

 is eln(1+ki)  ≡ 1+ki; 

n(t) is Poisson distributed with parameter λ. 

 

The steps to generate a sample path of the underlying asset from time t to [t+T]  are as 

 follow: 

Step 1: Draw a random normal deviate from  N(0,1) for the continuous diffusion process 

 

Step 2: Select a time period T and length of interval dt (t to t+1) after which occurrence 

of a jump is determined 

 

Step 3a: At the end of each interval of length dt, draw a random deviate q (Poisson event 

 counter) from a Poisson distribution with λ dt to evaluate whether jumps occurred or not. 

 q - represents the number of jumps in the next time step. 

Step 3b: Alternatively to step 3a, from Bates(1991) and Ball and Torous(1983, 1985), 

 either one jump (q=1) occurs in the next interval or no jumps (q=0) occur. This is 

 implemented by drawing a random uniform deviate [0,1]. If this deviate is less than λ dt,  

 a jump has occurred (q=1) then draw a normal random deviate from N(γ – ½ δ2, δ2) to 

 calculate the size of the jump in the underlying asset from the previous level.  Else, q=0 

 and the asset drifts only due to the diffusion process i.e. there is no negative or positive 

 asset price change caused by the jump diffusion. Note if λ = 0 then q is always = 0. In this 

 case, the mixed diffusion process collapses to a Wiener process such Brownian motion 

 used in the Black-Scholes option pricing model. 

Here are two sample paths generated with different parameters under an asymmetric 

 jump diffusion process: 
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Figure 2: Asymmetric Jump Diffusion Process – Example 1: negative jump size 

 
Figure 3: Asymmetric Jump Diffusion Process Example 2: positive jump size 
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3.2.2. Non­Linear Least Squared Regression: Hillclimbing method 

The following regression equation is used to extract daily parameters λ*, γ*, δ, and σ: 

       ܸ ൬1, ܶ; ൬
ܺ
൰ܨ ݆ , ,כߣ  ,כߛ ,ߪ ൰ߜ ൅ ௝߳                                 ሺ3ܽሻ 

where Vj is the objective call or put price and v(F,T,X) is the call or put price option 

 formula under jump diffusion:  

 

ܸሺܨ, ܶ; ܺሻ ൌ ݁ି௥௧ ෍ ቎ቈ
݁ఒ்כሺܶכߣሻ௡

݊! ቉ ሾ݁ݏ݌݉ݑ݆ ݊ ݁ݒ݅݃ ݂݂݋ݕܽ݌ ݀݁ݐܿ݁݌ݔሿ቏      ሺ3ܾሻ
ஶ

௡ୀ଴

 

 

Note that we estimate γ* in our implementation then kതכ is calculated as follows: kതכ ൌ

 eஓ ൌ 1 

To run the non-linear estimation equation #3a is rearranged in the form: 

Daily pricing error term 

 =∑  ሺ݉ܽ݊݋݅ݐ݌݋ ݂݋ ݁ܿ݅ݎ݌ ݐ݁݇ݎ െ ሻଶሻெ݁ܿ݅ݎ݌ ݊݋݅ݐ݌݋ ݊݋݅ݏݑ݂݂݅݀ ݌݉ݑ݆
ଵ  

Where M is the number of observations and the jump diffusion option call and put price 

 are calculated as follows: 

(4) 

ܿሺܨ, ܶ; ܺሻ ൌ ݁ି௥௧ ෍ ቎ቈ
݁ఒ்כሺܶכߣሻ௡

݊! ቉ ሾ݁ܨ௕೙்ܰሺ݀ଵ௡ሻ െ ܺܰሺ݀ଶ௡ሻሿ቏
∞

௡ୀ଴

 

(5) 

,ܨሺ݌ ܶ; ܺሻ ൌ ݁ି௥௧ ෍ ቎ቈ
݁ఒ்כሺܶכߣሻ௡

݊! ቉ ሾܺܰሺെ݀ଶ௡ሻ െ ௕೙்ܰሺെ݀ଵ௡ሻሿ቏݁ܨ
∞

௡ୀ଴

 

 

ܾሺ݊ሻ ൌ  ൫ܾ – כߣ kതכ൯ ൅
כߛ݊

ܶ ൌ  െכߛ kതכ  ൅  
כߛ݊

ܶ  
 
 

݀ଵ௡ ൌ
୪୬  ቀF

Xቁ ା ௕ሺ௡ሻ்ାభ
మሺఙమ்ା௡ ఋమሻ

ሺఙమ்ା௡ ఋమሻ
భ
మ
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3.2.3. Option Pricing Model under Asymmetric Jump Diffusion 

3.2.3.1. Martingale property 

One important specification of the future price on an index is that at time t the expected 

value of the S&P500 at a future date T (denoted by St+T) is the value of the future contract 

maturity at T, or, 

 Et (St+T) = Ft,t+T 

Given that the cost of carry on future indices are typically zero, it follows that  Ft,t+T = 

St ebT = St. Therefore, the expected value of the S&P500 at time [t+T] is its value  at time 

[t]. In other words, St =  Ft,t+T is a martingale which is defined as the best forecast  of 

tomorrow’s price being today’s price. At any point in time, the current price St or Ft,t+T 

fully  reflects all the information available in the market. The martingale property 

makes it possible to price the option on the futures as the discounted expectation of the 

payoff.  

 

3.2.3.2. American options on the S&P500 futures 

The daily estimated parameters λ*, γ*, δ, and σ from the non-linear least square regression 

 are used to calculate the European call and put prices under the jump diffusion process. 

 The option is evaluated as the discounted expectation of the expected payoff at time T 

 given that n jumps occurred.  

As shown in equation 3b, this consists of summing from n=0 to 1 the expected 

payoff at    T given n jumps times the probability of n jumps. The implementation of the 

European option formula consists of truncating the summation at  ሺ஛כT ୣಋכ  ሻ ೙

௡!
  for calls and 

ሺ஛Tሻ౤

௡!
  for puts. Additional iterations are conducted until the difference between the 
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previous and next values in the summation is less than 104 or n = 1000. See equations 4 

and 5. As there are no closed-form solution for American call and put prices20, they are 

calculated using the quadratic approximation Bates derives from earlier work by 

MacMillian(1987) and Barone-Adesi and Whaley(1987). See equations 6 and 7.21 

 

C(F, T;X) = c(F, T;X) + A2[(F/X)/ ݕ௖
q[כ

2                 (F/X <  ݕ௖
 (6)              (כ

                         = F – X                                                     (F/X ≥   ݕ௖
 (כ

 

  P (F, T;X) = p(F, T;X) + A1[(F/X)/ ݕ௣
௣ݕ  < q1            (F/X [כ

 (7)               (כ

                         = X – F                                                (F/X ≤   ݕ௣
 (כ

 

3.2.4. Skewness Premium Calculation 

From Future series  

To examine the skewness premium present in the underlying time series of S&P500 

 futures, Bates derives measures of non-central moments for St+T /St:22 

 

                                                 

20 Interested readers are referred to a book by  Rama Cont and Peter Tankov, Financial Modeling With Jump 
Processes  (Boca Raton, Fla. : Chapman & Hall/CRC, c2004) for an overview of theoretical, numerical and 
empirical research on the use of jump processes 
21 C++ code to solve equations for A2 and A1 (Bates 1991, page 1027) and find root ݕ௖

௣ݕ and כ
 using the כ

Barone-Adesi and Whaley algorithm was borrowed from the “Financial Numerical Recipes in C++” by Bernt 
Arne. For our purpose, the source code was converted to MATLAB and modified to solve both equations 
using customized functions to find the European option prices. A function implementing the Newton 
algorithm written by Matt Fig was used to solve the roots q1 and q2 of the following equation: 
ଵ
ଶ

ଶݍ ଶߪ ൅  ቀെכߣkതכ െ ଵ
ଶ

σଶ ቁ q െ ୰
ሺଵିୣ౨Tሻ

λכ ቂe ఊכ୯ାభ
మ୯ሺ୯ିଵሻஔమ

െ  1ቃ ൌ 0  

 
22 Bates argues that examining central moments for ln(St+T , St) will not give a clear sense of the skewness 
premium as they approach those of a normal distribution (skewness = 0) as T increases from daily to weekly 
to monthly and so on time intervals. 



18 
 

௡ܯ ؠ ܧ ൥൭ܵ௧ା்
ൗݐܵ ൱

௡

൩

ൌ ൛݊݌ݔ݁ െ ݀ െ ሻܶ݇ߣ ൅ 1
2ൗ ሺ݊ଶ െ ݊ሻߪଶܶ ൅ ௡ఊାଵ/ଶሺ௡మି௡ሻఋమ݁ൣܶߣ െ 1൧ൟ       ሺ8ሻ 

 

Var(St+T /St) = M2 − (M1)2 

SKEW = [M3 − 3M1 M2 + 2 (M1)3] / (Var) 3/2  

KURT = [M4 – 4 M1M3 + 6 (M1)2M2 – 3 (M1 )4] / (Var)2 

From Option Prices  

Market expectation can be quantified by calculating the risk premium implicit in 

theoretical call and put prices using the four parameters estimated by performing a non-

linear Hillclimbing regression. The risk premium (SK(x)) is defined as the ratio of the 

difference between call and put prices over the put prices. 

 

ሻݔሺܭܵ ൌ  
cሺF, T; Xୡሻ  
pሺF, T; X୮ሻ െ 1                   ሺݏ݊݋݅ݐ݌ܱ ݊ܽ݁݌݋ݎݑܧ ሻ 

ሻݔሺܭܵ ൌ  
CሺF, T; Xୡሻ  
PሺF, T; X୮ሻ െ 1                   ሺݏ݊݋݅ݐ݌ܱ ݊ܽܿ݅ݎ݁݉ܣ ሻ 

Where 

 

Xp   =   F (1 + x)   <   F   <    Xc   =   F(1 + x),     x  > 0 

 

3.3. Estimations 
 

To deal with the infinite sum in the call and put price formula, we set the upper limit of 

 the summation equal to the annualized expected number of jumps times the average size 

 of jumps (λ*T eγ∗) Please see the next section for truncation values suggested by Bates). 

 The resulting function, although unstable, gives us a starting point to try out a number of  
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 methods for minimizing the daily pricing error function. Bates enlists the help of 

 Golfeld and Quandt’s software, GQOPT method GRADX, with six starting values.  

Our first approach is to use the MATLAB function FMINSEARCH to minimize 

the squared errors using the Nelder-Mead simplex method. However, given the non-

stable nature of the error function, the results are not much better than the initial values. 

So we proceed to implement the Simplex Hillcimbing method algorithm designed by 

Kyriakos Tsourapas. The algorithm is modified to match specifications of the Bates Jump 

diffusion model as defined above. To ensure a solid and robustness estimation, additional 

important restrictions are made. First, a random number is generated for the first seeds of 

the starting values within the limits shown below. 

 

  λ  γ Δ Σ 
Upper Limit 10 1 1 1 
Lower Limit 0 -1 0 0 

 

Second, we run a number of iterations on the same day using six new starting 

values. To prevent the Hillclimbing function from getting trapped at a local minimum, we 

modify the algorithm by inserting the restriction that non-negative values for λ*, δ, and σ 

are not permitted to be recognized as local minimums. The daily Hillclimbing estimation 

takes on average more than 1000 seconds of computing time for a total estimation time of 

approximately 40 hours. If sufficient computer power is available, we suggest increasing 

the number of starting points for the Hillclimbing function to 20 to improve accuracy. 
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4. Data and summary stats:  

4.1.1. Options on S&P500 futures Data 
Option prices on the S&P500 futures are obtained from the Chicago Mercantile Exchange 

(CME).  The data series ranges from December 2006 to December 2008. There are 

approximately 108558 observations for each call and put series (Please see Appendix-

Table 1 and Table 2 for descriptive statistics).  We use end-of-day settlement prices 

which are closing prices adjusted by the Settlements Committee to take into account 

margin requirements. On any given trading day, options of different strikes and different 

maturities matching  those of different futures contract series trade on the CME. Classes 

of options with different strikes but the same maturity mature one day prior to the 

expiration date of the  futures contract they are written on. New options contracts are then 

issued once the futures contracts are rolled over.  

Looking at objective option prices alone is difficult due to the sheer amount of 

options with different strikes and maturity trading daily. For this reason, the information 

available in option prices must be summarized by running a non-least linear estimation to 

extract  daily parameters common across all classes of calls and puts. Before running the 

regression, a cubic spline extrapolation for each futures series is conducted on a 

representative sample of Option Price/Future Price ratios over the Strike Price/Future for 

puts and calls. The price ratio of 1 ought to be the point where the lower bounds of the 

calls and puts graph crosses. As seen in figure 4, the fitting of our  representative sample 

agrees with option theory giving us an adequate level of confidence that other samples 

chosen similarly to run the regression will yield acceptable jump diffusion parameters.  
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Figure 4: Transaction prices of calls and puts on the S&P500 futures (2006-2008): Cubic 
 Spline of representative data set 

 

 

 

4.1.2. S&P500 Index 
 

When the dust settles and the world economies finally recover, the current global 

financial crisis that was triggered by the credit crunch of 2008 will be viewed by most as 

the worst since the great depression. As shown in figure 2, the S&P500 index started on a 

downward trend, after it peaked in April 2007, marking the first signs of turmoil. The 

first sharp decline occurred after the collapse of Bear Sterns in April 2008. However, it 

paled in comparison to systemic shock, which some argue was caused by the failure of 
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Lehman Brothers in late September 2008. In a span of two weeks, the S&P500 index lost 

more than 30% of its value dropping from around 1250 level to 900. 

 

Figure 5: S&P500 index - December 2006 - December 2008. Source: yahoo/finance 

4.1.3. S&P500 Futures series 
The Futures series maturing in no more than 120 days are selected as follows: SPZ06, 

SPH07, SPM07,SPU07, SPZ07, SPH08, SPM08, SPU08, SPZ08, SPH09 (See Appendix 

– Exhibit II). Below is a histogram of the futures contract values from December 2006 to 

December 2008. 
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Figure 6: Histogram of Futures prices December 2006- December 2008. Data obtained from Datastream 

 

We can see that the Futures series form a normal distribution with observations in 

the tail that appear to form a pseudo-normal distribution. This is evidence that 

conventional VAR measurements would result in underestimating the real risk. The 

switching regimen will be more detectable with the implicit volatility obtained from 

option prices. 912 observations are obtained from Datastream. This data is incomplete for 

some trading days. We use the cubic spline approximation to complete the series as 

mentioned above (See Appendix – Table 3 for descriptive statistics) 

When we analyze each series individually, some interesting facts are observed. 

First of all, the downtrend starts with series SPH07 (March 07 maturity). Some have 

attributed the  trend primarily to increasing signs of financial trouble in the mortgage 
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industry and a  string of bankruptcy filings by a number of subprime mortgage lenders23. 

However, this  downtrend is not sustained in the next series SPM07 (June 07 maturity) as 

the futures prices go up. In the next two series, SPU07 and SPZ07, a lot of noise is 

detected but no steady trend is observed. Overall, the market remained stable in 2007. In 

the first quarter of 2008, the SPH08 series shows expectation of stability in the market. 

However, as can be seen in series SPM08 (March 08 maturity) things changed radically 

as volatility increased after Bear Stearns’ collapse. Surprisingly, the next two futures 

series SPM08 and SPU08 do not give a preview of any drastic downward movement, 

much less an expectation of a crash. As expected, the effect of Lehman Brothers’ demise 

can be observed in the SPZ08 (December 08 maturity) series.  

After observing the S&P500 future series over the period of December 2006 to 

December 2008, our assessment is that a sharp market downturn was not expected until 

the second quarter of 2008. As illustrated in figure 7, the slope of the adjusted cubic spine 

tendency line (in green) suggests that given the information available in July 08, a decline 

was expected in the third quarter of 2008. However, crash fears were present but not as 

strong  as to predict the magnitude of what actually transpired after the Lehman Brothers’ 

failure. Of course, the magnitude of the drop in the S&P500 cannot be solely attributed to 

Lehman Brothers chapter 11 bankruptcy filings given the fact that a myriad of critical 

events and announcements were made in proximity albeit most agree that it accentuated 

crash fear already present. 

                                                 

23 Several subprime lenders declared bankruptcy, announced significant losses, or liquidated their assets  sale. 
These include Accredited Home Lenders Holding, New Century Financial, DR Horton and Countrywide 
Financial, J. Cox, "Credit Crisis Timeline" University of Iowa Center for International Finance and 
Development E-Book, 2008. 
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Figure 7: S&500 futures - Adjusted Cubic Spline Tendency Line 

 

An analysis of the evolution of the PDFs for the Futures time series (see Figure 8)  

shows that the series starts with low kurtosis and is skewed (μ=1351 See Appendix- 

Table 3) to the right. Progressively, the PDFs of later series increase in kurtosis and 

become more negatively skewed until Q4 2008 when the distribution shows an unusual 

clustering of observations in the left tail. 
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Figure 8: Quarterly PDFs of the Futures Series 2007-2008  

 

4.1.4. Risk Premium 
Although the analysis of the futures series gives a general idea of market expectation, it is 

not conclusive and is difficult to quantify. In order to measure the actual crash fears, we 

need to extract a value of the actual risk premia or crash insurance investors were paying.  

Daily skewness premium can be quantified by calculating SK(x), as detailed in 

section 3.2.4 Skewness Premium Calculation, from daily estimated risk neutral 

parameters which provide a way to estimate the size and probability of a correction Prob 

[St,t+T < X]. This is the left tail probability of the distribution of index prices being less 

than the strike price at maturity. This probability gets larger when expectation of a 

downturn intensifies which translates into OTM puts not only being priced higher than 

OTM calls for skewed distributions but also more likely to expire ITM. Note that if the 
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distribution of the underlying asset is assumed to be normal than the OTM calls and puts 

prices are identical stemming from the fact that the probability of an upward and 

downward trend are the same. Therefore, skewness premium defined as the percentage 

deviation of x% out of the money put prices from call prices gives a direct measure of 

downward expectations. 

Regardless of the distribution hypotheses assumed (i.e. geometric Brownian 

motion, jump diffusion, etc.) calls are typically priced about 0% to 4% higher than puts 

(Bates  1996). So, ATM and OTM put options priced higher than calls points to the 

existence of skewness premium. Please note early exercise premium in options on future 

indices is negligible as the cost of carry which determine cash flow and the early exercise 

decision is zero. Therefore, it’s reasonable to assume that the premium in option prices on 

index futures is attributed mostly to skewness in the underlying asset distribution. 

5. Results  

5.1. Data for Non Linear Estimation 
There were approximately 600,000 data observations from December 2006 to December 

2008. Running a regression on the entire data set of option prices would be 

computationally prohibitive. So, we proceed to generate separate random representative 

samples for call and put prices. Only options with maturity within 30 to 120 days 

matching the maturity on futures series March(SPH), June(SPM), September(SPU) and 

December(SPZ) are selected.  

Additionally, only options 4% OTM and ITM options are used as they exhibit 

greater moneyness bias. The daily random representative sample consists of 50 call and 

50 put options prices. For computing efficiency when running the daily regressions, the 
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sample for the entire two year period is divided in four groups. Option prices especially 

OTM can fluctuate widely depending on factors such as maturity term left and the strike 

price. Therefore, it is quite a challenge not only to select a set of options that contains 

mostly premium associated with moneyness biases, but also to interpret some of the 

results. 

 

5.2. Test of validity of results from the regression and model 
implementation 

 

5.2.1. Estimated Option prices 

Given that American options on futures are bound between the European  option price 

and the future value of the European option prices24: 

c(F, T : X) < C(F, T;X) < erT c(F, T : X) 

p(F, T : X) < P(F, T;X) < erT p(F, T : X) 

As you can see from Table 6 (see appendix), the estimation of European and 

American from both jump diffusion models we have implemented yield results within 

these bounds providing an adequate level of confidence from the implementation to 

continue our tests. Additionally, options prices replicated from Bates (1991) paper (Table 

5A and 5B- Appendix) are for the most part accurate. 

5.2.2. Estimated parameters 

The put and call series were fitted with approximately 99% accuracy.25 Figure 9 

shows the robustness of implementation given that squared residuals from the parameters 

                                                 

24 We credit Dr. Bates for personally reminding us of this fact 
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extracted from both call and put prices26 are fairly congruent and for the most part move 

in this same direction. We are fairly confident that the parameters we estimate have the 

characteristics of those extracted from the risk neutral distribution implicit in option 

prices. In the period of March 2007 to November 2007, the put series lose some 

explanatory power. This could be attributed to the fact that implicit volatility increases 

with higher demand for puts. Also, the data sampling and picking of strike prices could 

affect implicit volatility. 

 

Figure 9: Squared Residuals from the Non-linear daily estimation using the Hillclimbing method. 

For the most part, call and put parameters estimated separately via a non-linear 

Hillclimbing estimation exhibit characteristics of those implied from a risk neutral 
                                                                                                                                                             

25 The R2 was calculated assuming that the sample has the same distribution as the population and that the 
variance remains constant. 

26 Two different random samples were used for running the regression of puts and calls 
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distribution. We come to this conclusion after finding the same tendency in squared- 

residual errors of the calls and the puts. Additionally, most tables and graphs presented in 

the paper are estimated using both sets of parameters yielding for the most part similar 

results.  

Nevertheless, we do find some discrepancies that may be due to various factors.  

Our assessment is that options are very sensitive to factors such as the strike price 

(moneyness bias) and time left to maturity, making it difficult to summarize information 

intrinsic in the options prices across all strikes and maturity terms at once.  We suspect 

that estimating parameters on subsections (e.g. deep OTMs, OTM, ATM and ITM) of 

daily option prices would provide a better sense of the effect of various factors. The 

problem of the sensitivity of pricing errors to the moneyness of the options ought to be 

considered when using option based models to extract the implicit parameters of the 

distribution of underlying asset prices. The lack of a complete inventory of options could 

also pose problems to the usefulness of option-based tools s in risk management given 

that some risks (e.g. tail risk) are not priced into the market. 

To summarize, we reject Bates’ hypothesis of identical jump-diffusion parameters 

for calls and puts as we find evidence that the fit is not as accurate depending on the 

factors detailed above. We recommend careful consideration when picking x% OTM 

strikes prices and term to maturity in the estimations. 

5.3. Probability density functions  

The daily μ and σ estimated using parameters from the regression are used to generate a 

daily probability density function (PDF) of the S&P500 future series. Note that the   
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reason  for using estimated risk neutral parameters rather than the true parameters of the 

jump  diffusion model to estimate moments of St+T/St is due to the fact that the true 

parameters of the underlying asset jump diffusion process are not observable. Here is 

another view of the monthly PDF graph shown in section two: 

 
 

Figure 7: Probability density function of Ft+1month/Ft 

5.3.1. Skewness and Kurtosis from PDFs 

Figure 7 clearly shows that the PDFs of the future series are characterized mostly by 

negative skewness and lower kurtosis. Similarly to figure 6, the distribution of futures 

started to shift to the left starting as early as July 2007 suggesting that the market 

expected future downward movements in the S&P500 index. 
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Figure 8: Skewness of Ft+1month/F t  

 

Figure 8 shows that monthly coefficient of skewness has been positive for the 

most part. However, we can observe infrequent but large negative jumps throughout the 

two year period which have resulted in the implicit distribution of Ft+T/Ft being 

negatively skewed. The negative jumps every quarter might be associated with the low 

trading volume prior to the futures contract rolling over. The coefficient of kurtosis 

hovered just above that of a normal distribution for December 2006 to June 2007.  Then, 

as volatility picked up in the market in the summer of 2007 so did the coefficient of 

kurtosis. The combined effect of the sharp negative jumps experienced and higher 

kurtosis suggest an increasing left tail probability making OTM puts more valuable.  
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Figure 9: Kurtosis of Ft+1month/Ft  

 

Note that estimated risk neutral parameters rather than the true parameters of the 

jump  diffusion model are used to estimate moments of St+T/St as the true parameters of 

the underlying asset jump diffusion process are not observable. 

5.4. Skewness premium estimated Options prices  

 

 We calculated daily call and put prices for 2 set of strikes then estimated the skewness 
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ሻݔሺܭܵ ൌ  
CሺF, T; Xୡሻ  
PሺF, T; X୮ሻ െ 1                   ሺݏ݊݋݅ݐ݌ܱ ݊ܽܿ݅ݎ݁݉ܣ ሻ 

Where 

 

Xp   =   F (1 + x)   <   F   <    Xc   =   F(1 + x),     x  > 0 

 

 For ATM options, Xc and Xp  were set to F. For OTM options, Xc and Xp were set based  

 on the above restrictions (x=4%). Estimated puts with prices lower than $3 were excluded 

 as most were closer to maturity and most likely did not contain any significant 

 moneyness bias. 

 

 

Figure 10:  Skewness premium (C-P)/P against time 
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The OTM puts are priced much higher than calls after March 2007 yet crash fear 

eased after January 2008. We do see, however, high isolated jumps in skewness 

premium, most likely associated with major events, on March 2008, July and finally after 

the crash of September 2008. 

5.4.1. Jumps 

5.4.1.1. Annualized jump frequency 

From figure 11 depicting the annualized jump frequency for puts and calls, we again 

observe similar trend lines except for the period July 2007 – January 2008 in which both 

set of parameters behave differently.   

 
Figure 11: λ* - Implicit annualized jump frequency estimated via Non-linear regression December 

2006 December 2008  
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5.4.1.2. Average Jump Size and jump size volatility  

Figure 12 illustrates estimated daily jump size parameters ࢑ഥכ which measure the change in 

the distribution of the underlying asset, in this case the S&P500 index.  Recall from the 

specifications of equation #2, the asset price changes by a factor if (1+כ࢑). The implicit 

sizes of the corrections or jumps would indicate strong crash fears starting in December 

2008 through the end of our testing window.  

 

 
Figure 12: ࢑ഥכ Daily average jump size from Non Linear Estimation December 2006 – December 2008 

 

An interesting observation is that the sizes of the jump are quite muted between 

July 2007 and December 2007compared to other months even though the implicit 

volatility and implicit annualized frequency of jumps were higher in this period. 
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Nevertheless, the daily delta parameter (Figure 13), volatility of jump sizes conditional 

on jump occurring, was below 0.2 for the most part from December 2006 to March 2008 

although it spiked five times from July to the end of 2007. 

 

We conclude that the volatility of the S&P500 index and the one associated with 

jumps or sharp movements in the index definitely increased starting in March 2007 which 

marks the beginnings of the mortgage crisis. Although we cannot definitely tell from our 

analysis what the expected size of the correction was a few months prior to the crash as 

other figures (see figure #14) depict a more muted correction.  

We also note that expectations of further downward movements were present after the 

September 2008 crash actually reaching their peak in December. This hinted to a terrible 

first quarter in 2009 which in fact materialized. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1‐
D
ec
‐0
6

1‐
Ja
n‐
07

1‐
Fe
b‐
07

1‐
M
ar
‐0
7

1‐
A
pr
‐0
7

1‐
M
ay
‐0
7

1‐
Ju
n‐
07

1‐
Ju
l‐0

7

1‐
A
ug

‐0
7

1‐
Se
p‐
07

1‐
O
ct
‐0
7

1‐
N
ov
‐0
7

1‐
D
ec
‐0
7

1‐
Ja
n‐
08

1‐
Fe
b‐
08

1‐
M
ar
‐0
8

1‐
A
pr
‐0
8

1‐
M
ay
‐0
8

1‐
Ju
n‐
08

1‐
Ju
l‐0

8

1 ‐
A
ug

‐0
8

1‐
Se
p‐
08

1‐
O
ct
‐0
8

1‐
N
ov
‐0
8

1‐
D
ec
‐0
8



38 
 

Figure 13:   δ –Implicit jump standard deviation (percent) December 2006-December 2008 

5.4.1.3. Jump frequency times Size 

The jump frequency times jump size, λ*࢑ഥכ, represents the expected jump loss or gain 

which summarizes the expectations of the market. In Figure 14, we observe a drastic 

change in expectations starting in July 2007. The period from July to November 2007 is 

characterized by the presence of higher expected jump losses in the put parameters 

compared to calls.  Perhaps, the market was purchasing crash insurance to hedge against 

corrections expected in 2008 (refer back to Figure 12). Surprisingly, expected jump loss 

in the put series decreased after January 2008.  

 

 Figure 14:   λ* ࢑ഥכ  of Non-linear Estimation for Options on Futures S&P500 December 2006-

 December 2008 
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  In summary, our findings lead to the conclusion that there was a structural break 

in market behavior after Bear Stearns collapse in April 2008. As discussed above, our 

estimated parameters point to large negative jumps and high volatility associated with the 

jump size distribution after April 2008. However, no corrective actions seem to have 

been taken as calls were still priced at a premium for the most part. We offer the 

explanation that actions taken by the Fed (i.e. string of government bailouts) spread a 

false sense of confidence that the market had dodged a bullet.  Signs of fear re-appeared 

after mid-July 2008 although it’s unclear how and why the market did not grasp the 

extent of well document problems27 in the financial system.   

5.4.2. Implied volatility   
  

 The graph of the implied volatilities inferred from the call and put  prices on the S&P500 

 future series show an increase in unconditional volatility (i.e. not dependent on jumps) 

 from July 2007 to January 2008 pointing to increased uncertainty in the 3 month forward 

 looking market outlook. Volatility stabilized then increased sharply after Lehman 

 Brothers’ collapse reaching its highest level at 0.5 then dropping down sharply below 0.1 

 for the March 2009 series. 

                                                 

27 http://www.creditwritedowns.com/credit-crisis-timeline 
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Figure 15: Implied Volatility from Non linear Estimation for Options on Futures of SP500  
      Dec2006-Dec2007 
 

  

Figure 16 presents the differentials between  ATM option prices estimated using 

the Black-Scholes and Bates jump diffusion. Differentials appear to increase in periods of 

high volatility (July 07 to Jan. 08 and Sept. 2008 to Dec. 2008). We suspect that these 

differentials could provide a measure of pure risk premium associated with jump risk.  

More analysis would be needed in this area before drawing conclusions. 
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Figure 16: Differentials from Black and Scholes and Jump diffusion call and put option prices. Also refer           
to Table 6. 
 

6. Conclusions and further research 

 Our research provides evidence that the information contained in option prices on the 

 S&P500 futures between December 2006 and December 2008 are ample to forecast 

 market expectation of a crash prior to it happening in “September 2008”. Our assessment 

 is that Bates’ (1991) jump diffusion model is an adequate modeling tool to extract

 parameters of the risk-neutral distribution implicit in options prices. There is strong 

 evidence of its robustness and the empirical data back up this affirmation.  The results 

 obtained in our research are consistent with those presented in Bates’ (1991) paper. The 

 fitting is very good showing that the model is consistent and unbiased.  
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  We find option-based forecast models to be superior to those using historical data. 

 The former are also helpful in estimating tail risk when assuming an asymmetric jump 

 diffusion process.  Further model development is required for its use as an alternative 

 measure, or at the minimum a supplementary one, to popular market risk management 

 tools such as VAR. Further empirical studies into the effectiveness of option based 

 forecasting tools and the use of implied volatility in option trading and risk management 

 would be very valuable to gauge the accuracy of such models against realized volatility. 

 Jorion (2007) states that “whenever possible, VAR should use implied parameters”.  

  After reviewing work by Bliss and Panigirtzoglou (2001) and others in the 

 literature review section, who recommend using a subjective PDF inferred from the risk 

 neutral one to extract expectation, we see the benefit of further research into the relative 

 risk aversion parameter R. Based on the preliminary work Bates has laid out, R can 

 provide a measure of the divergence between true parameters from the actual distribution 

 of the underlying asset from risk neutral ones. It would be interested to see how R 

 evolves over time.    .  

In the context of the current financial crisis, we conclude that expectation of 

market downturn started in the summer 2007 and remained through December 2007.   

That is, the information implied in the futures series and option prices on futures 

predicted a persistent downward trend until the end of March 2008.  However, in early 

January 2008, the three month outlook seemed positive as apparent in the reduced 

oscillation of the implied volatility graph and the average jump times expected jump size 

figure (#16). There was a sizeable negative jump after April 2008, however sentiments of 

crash fears subsided until July 2008 when market expectation of a correction (larger 
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negative jump) intensified. Surprisingly, the market did not take corrective measures in 

the summer of 2008.  Evidence of this is proven by the fact that crash insurance paid by 

put options remained somewhat at the same level from February 2008 to September 2008 

as depicted in figure 16 showing the cost per unit time of jump insurance, λ* ,  times the 

average size of the jumps, ത݇.  Additionally, figure 18 shows minimal difference in the put 

prices estimated using Black-Scholes formula, which ignores jump risk, and option 

pricing under asymmetric jump diffusion, which factors in positive and negative jumps. 

 The parameters derived from our non-linear estimation show evidence of a 

rational bubble that was ready to burst in the period under observation.  Similar to Bates 

(1991), we can assess that implicit jump risk assessments are strongly countercyclical 

after the crash. The bankruptcy of Lehman Brothers and liquidity constraints faced by 

other  institutions holding mortgage backed securities magnified fears of widespread 

systemic risk. Similarly to events following the crash of October 1987, after mid 

September 2008, behavior of market participants reflected strong crash fear and 

irrationality as the market experienced large downward but also large upward movement 

in December 2008.   

 We conclude that the Theory of Rational Bubble cannot be rejected. We have 

 gathered enough information to determine that a bubble did in fact burst not in September 

 2008 as reported but in April 2008. We are of the opinion that from information available 

 in January 2008, a crash was expected in April 2008 but was delayed by actions of the 

 Fed when Bear Sterns was liquidated and sold off to JP Morgan. We cannot say definitely 

 what the magnitude of a crash would have been had the bubble burst in April rather than 

 in September 2008. It also raises the question of whether or when the market would have 

 crashed if Lehman Brothers was bailed out. It would be interesting to research the 
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 question of the actions, whether delayed, inadequate or unnecessary, of the Fed 

 introduced heightened fear of systemic risk in the market.  So to answer the question: was 

 the magnitude of the crash in September 2008 expected? The answer would be no. In July 

 2008, there was clear evidence in the future series maturing in September 2008 and 

 information extracted from the option prices of an imminent sharp downward movement 

 however the expected size of the negative jump in the S&P500 was moderate in 

 comparison to events that transpired in September 2008.  
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8. Appendix 

­­­Exhibit I­­­ 

Bubble definition and characteristics  

“The price process S has a bubble if S is a strict local martingale 

under the risk-neutral measure Q. 

The key fact is that simply because S is a strict local martingale does not mean that there 

 are arbitrage opportunities. In particular, the strategy of selling the assetshort may not be 

 admissible, since the liability is unbounded.”28  

To see this super martingale process we can check the following conditions: 

ST  - asset price at time T 

(ii) Et[ST ] < St, so that the forward price is below the current price; 

(iii) Ct
E (K) –  Pt

E (K) < St − K for some K, so that put-call parity fails; 

(iv) limK↑∞ Pt
E  (K) − K + St > 0; 

(v) Ct
E (K) < Ct

A (K) for some K, so that American calls are more expensive than their 

 European counterparts; 

(vi) limK↑∞ CA t (K) > 0. 

 

 

                                                 

28 Alexander M.G. Cox1, David G. Hobson, Local martingales, bubbles and option prices 
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­­­Exhibit II : Futures Series­­­ 
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Table 1: Descriptive Statistics for Call Data from 12/ 2006 to 12/2008 

  X V V/F X/F 

Mean 1442.79 45.45 0.03 1.12 
Standard Error 0.71 0.29 0.00 0.00 
Median 1465.00 4.40 0.00 1.07 
Mode 1475.00 0.00 0.00 1.00 
Standard Deviation 235.44 96.22 0.07 0.24 
Sample Variance 55431.21 9258.66 0.00 0.06 
Kurtosis 1.47 26.58 27.40 4.02 
Skewness -0.68 4.42 4.45 1.43 
Range 2075.00 979.80 0.79 2.42 
Minimum 200.00 0.00 0.00 0.22 
Maximum 2275.00 979.80 0.79 2.64 

                 Number of Observations 108558.00 108558.00 
108558

.00 
108558.0

0 
                 Confidence 
Level(95.0%) 1.40 0.57 0.00 0.00 

 

 

Table 2: Descriptive Statistics for Put Data from 12/ 2006 to 12/2008 

  X V V/F X/F 

Mean 1250.9340 33.5262 0.1944 0.0036 

Standard Error 0.7099 0.1816 0.0004 0.0000 

Median 1285.0000 6.2000 0.2078 0.0028 

Mode 1400.0000 0.0000 0.0000 0.0000 

Standard Deviation 233.9096 59.8203 0.1266 0.0042 

Sample Variance 54713.7186 3578.4691 0.0160 0.0000 

Kurtosis -0.0214 9.4684 -0.1503 59.9508

Skewness -0.6096 2.8197 -0.0214 5.4016 

Range 1250.0000 488.5000 0.9810 0.0818 

Minimum 500.0000 0.0000 0.0000 0.0000 

Maximum 1750.0000 488.5000 0.9810 0.0818 

Number of Observations 108558 108558 108558 108558 

Confidence Level(95.0%) 1.3915 0.3559 0.0008 0.0000 
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Table 3: Descriptive Statistics for the Future Series from  

12/ 2006 to 12/ 2008 

 

   

Mean 1351.03

Standard Error 6.34

Median 1414.2

Mode 1536

Standard Deviation 191.38

Sample Variance 36624.78

Kurtosis 1.37

Skewness -1.49

Range 829.27

Minimum 749.5

Maximum 1578.77

Count 912
 

 

Table 4:  Mean and Volatility Historic for Future Series Q1 2007 ­Q42008  

(Daily Observations) 

 

Q1-2007 Q2-2007 Q3-2007 Q4-2007 Q1-2008 Q2-2008 Q3-2008 Q4-2008 

Variance 571.2121 865.9525 1528.508 1857.677 2258.227 1178.7578 1405.57 4793.667 

STD 23.9 29.4271 39.0961 43.1008 47.5208 34.333 37.4909 69.2363 

Mean 1429.79 1508.771 1495.37 1497.855 1341.128 1369.3831 1250.34 903.4645 

Volatility 1.67% 1.95% 2.61% 2.88% 3.54% 2.51% 3.00% 7.66% 
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Table 5A: Theoretical Futures Options Values under Asymmetric Jump 

Diffusion Processes Futures Price (Bates 1991, page 1028­1029) 

F= 250. Parameters: r=0.10, T=0.25  
 

Jump 
Diffusion 
Parameters 

Exercise 
Price X 

Call Options Put Options 

European 
c(F,T:X) 

American C(F,T;X) 

European 
p(F,T;X) 

American C(F,T;X) 

Finite 
Difference 
Method29 

Quadratic 
Approximat
ion Method 

Finite 
Difference 
Method 

Quadratic 
Approximation 
Method 

σ = 0.11414 220 29.49 

N/A 

30.03 0.23 

N/A 

0.23 

λ = 0 235 16.39 16.53 1.76 1.77 

γ = 0 250 6.88 6.92 6.88 6.92 

δ = 0 265 2.04 2.06 16.67 16.82 

  280 0.42 0.43 29.68 30.12 

σ = 0.10 220 29.45 

N/A 

30.01 0.19 

N/A 

0.19 

λ = 10 235 16.25 16.42 1.62 1.63 

γ = 0.01 250 6.81 6.86 6.81 6.85 

δ = 0.03 265 2.17 2.18 16.79 16.91 

  280 0.56 0.56 29.82 30.19 

σ = 0.10 220 29.58 

N/A 

30.04 0.33 

N/A 

0.33 

λ = 10 235 16.49 16.61 1.86 1.88 

γ = -0.01 250 6.79 6.83 6.79 6.85 

δ = 0.03 265 1.88 1.89 16.51 16.68 

  280 0.35 0.35 29.61 30.09 

σ = 0.10 220 29.3 

N/A 

30 0.04 

N/A 

0.04 

λ = 0.25 235 15.62 15.92 0.99 0.99 

γ = 0.2 250 6.28 6.42 6.28 6.28 

δ = 0.03 265 2.65 2.72 17.28 17.32 

  280 1.42 1.45 30.68 30.81 

σ = 0.10 220 30.14 

N/A 

30.32 0.88 

N/A 

0..90 

λ = 0.25 235 16.71 16.75 2.08 2.13 

γ = - 0.20 250 6.02 6.02 6.02 6.14 

δ = 0 265 1.11 1.11 15.74 16.03 

  280 0.09 0.09 29.35 30.01 

 

                                                 

29 Finite Difference method for jump diffusion was not replicated 
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Table 5B: Replicated results (re: Table5A) 

Jump 
Diffusion 
Parameters 

Exercise 
Price X 

Call Options Put Options 
European 
c(F,T:X) 

American C(F,T;X) European 
p(F,T;X) 

American C(F,T;X) 
Finite 
Difference 
Method30 

Quadratic 
Approximation 
Method 

Finite 
Difference 
Method 

Quadratic 
Approximation 
Method 

σ=0.11414 220 29.48 

N/A 

30 0.23 

N/A 

0.23 

λ = 0 235 16.38 16.38 1.76 1.76 

γ = 0 250 6.88 6.91 6.88 6.88 

δ = 0 265 2.04 2.05 16.67 16.69 

  280 0.42 0.42 29.68 29.74 

σ = 0.10 220 29.45 

N/A 

30 0.19 

N/A 

0.19 

λ = 10 235 16.25 16.3 1.62 1.62 

γ = 0.01 250 6.81 6.83 6.81 6.81 

δ = 0.03 265 2.17 2.17 16.79 16.8 

  280 0.56 0.56 29.82 29.82 

σ = 0.10 220 29.58 

N/A 

30 0.33 

N/A 

0.33 

λ = 10 235 16.49 16.49 1.86 1.87 

γ = -0.01 250 6.79 6.82 6.79 6.8 

δ = 0.03 265 1.88 1.89 16.51 16.54 

  280 0.35 0.35 29.61 29.68 

σ = 0.10 220 24.38 

N/A 

30 0.04 

N/A 

0.04 

λ = 0.25 235 11.58 15 0.99 0.99 

γ = 0.2 250 3.14 3.19 6.28 6.28 

δ = 0.03 265 0.39 0.41 17.28 17.28 

  280 0.02 0.03 30.66 30.66 

σ = 0.10 220 30.11 

N/A 

30.11 0.01 

N/A 

0.02 

λ = 0.25 235 16.71 16.71 0.35 0.38 

γ = - 0.20 250 6.02 6.03 3.41 3.46 

δ = 0 265 1.11 1.11 12.24 12.37 

  280 0.09 0.09 24.97 30 

 

Some replicated results (in red) differ from the Bates result. We re-estimated these prices using 

slightly lower values of lambda and observe the prices approaching those reported by Bates. 

Therefore, we conclude again as presented in our results section that prices estimated under a 

jump diffusion process is very sensitive to set strike price selection and maturity term.  
 

                                                 

30 Finite Difference method for jump diffusion was not replicated 
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Table 6: Option prices with Black­Scholes and Jump Diffusion Model 

Date X=F 

(1)          
JD 

European 
Call 

(2)            
Black-Scholes 

Call 
Call Differential    

(2) - (1) 

(3)             
JD European 

Put 

(4)            
Black-Scholes 

Put 
Put Differential  

(4) - (3) 
December-15-06 1438.10 30.60 35.03 4.43 13.87 16.36 2.49 

January-16-07 1438.80 19.00 36.07 17.07 15.94 23.00 7.07 
February-15-07 1459.70 15.05 18.41 3.37 12.96 10.52 -2.45 

March-15-07 1403.80 40.06 29.58 -10.48 3.71 11.18 7.47 
April-16-07 1475.50 24.08 28.72 4.64 12.48 15.14 2.67 
May-15-07 1508.30 14.53 24.79 10.25 11.54 16.26 4.71 
June-15-07 1547.80 11.68 21.52 9.84 3.88 1.24 -2.64 
July-16-07 1559.70 22.97 58.18 35.20 22.97 43.63 20.66 

August-15-07 1414.00 3.98 10.31 6.33 3.98 2.31 -1.67 
September-14-07 1498.00 31.29 45.67 14.38 31.29 25.86 -5.43 

October-15-07 1560.50 16.50 43.71 27.21 16.50 28.96 12.46 
November-14-07 1478.00 35.17 50.17 15.00 35.17 41.63 6.46 
December-14-07 1498.50 45.91 61.24 15.33 45.91 41.23 -4.67 

January-15-08 1388.40 35.43 45.80 10.37 28.55 32.85 4.30 
February-15-08 1351.00 30.03 33.89 3.86 21.72 26.41 4.69 

March-14-08 1292.00 27.11 26.15 -0.95 22.11 23.45 1.34 
April-15-08 1336.50 50.82 49.85 -0.96 32.82 37.39 4.57 
May-15-08 1424.50 26.46 26.59 0.12 15.14 18.53 3.39 
June-16-08 1357.80 11.37 10.97 -0.40 8.17 8.63 0.46 
July-15-08 1211.10 52.34 49.90 -2.44 32.71 38.45 5.74 

August-15-08 1299.90 28.06 29.72 1.66 20.82 22.37 1.56 
September-15-08 1196.30 63.05 65.65 2.59 40.65 49.97 9.31 

October-15-08 903.00 82.17 70.13 -12.04 38.50 61.60 23.10 
November-17-08 850.00 55.65 52.19 -3.46 30.58 47.59 17.01 

December-15-08 872.50 40.79 53.36 12.58 27.62 42.03 14.41 
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Table 7: Estimated Sample of Parameter with Non­Linear Estimation with 

the Hillclimbing method for Bates Jump Diffusion Process 

 
Date F Lambda Gamma Delta Sigma 

12/01/06 459.286 0.3 -0.421 0.161 0.034 
12/06/06 704.452 3.245 -0.036 0.063 0.119 
12/07/06 444.299 3.373 -0.066 0.087 0.069 
12/08/06 1703.414 3.447 -0.08 0.089 0.043 
12/12/06 398.931 3.51 -0.061 0.083 0.039 
12/14/06 94.580 3.023 -0.064 0.075 0.031 
12/15/06 156.028 2.592 0.055 0.079 0.046 
12/20/06 184.550 3.08 -0.128 0.027 0.118 
12/21/06 105.499 3.192 -0.048 0.022 0.138 
12/26/06 148.626 2.233 -0.064 0.023 0.121 
12/28/06 141.934 3 -0.131 0.068 0.039 
1/10/07 117.656 2.987 0.128 0.031 0.095 
1/11/07 89.108 2.832 -0.048 0.033 0.101 
1/22/07 96.946 3 -0.128 0.031 0.078 
1/29/07 71.842 1.987 -0.032 0.055 0.063 
2/02/07 20.674 4.023 -0.032 0.019 0.087 
2/15/07 36.934 2.527 -0.064 0.014 0.077 
3/05/07 354.231 3.512 0.031 0.058 0.121 
3/07/07 380.221 3.793 -0.056 0.026 0.126 
3/28/07 356.703 2.384 -0.064 0.086 0.052 
3/30/07 314.072 2 -0.064 0.072 0.095 
4/03/07 165.245 4.023 -0.111 0.031 0.127 
4/05/07 292.625 1.831 -0.064 0.051 0.107 
4/06/07 301.528 2 -0.112 0.006 0.125 
4/23/07 196.863 3 -0.13 0.045 0.085 
4/24/07 185.077 2.576 -0.108 0.067 0.039 
4/25/07 120.810 3.965 -0.032 0.011 0.128 
4/26/07 77.677 4.023 -0.064 0.055 0.054 
4/30/07 130.685 3.896 -0.064 0.039 0.103 
5/03/07 110.570 4.023 -0.128 0.05 0.045 
5/07/07 82.025 4.023 -0.128 0.027 0.094 
5/10/07 50.001 4.023 0.008 0.015 0.115 
5/11/07 81.409 3 -0.051 0.057 0.039 
5/15/07 53.994 4.023 -0.064 0.051 0.051 
6/12/07 488.492 0.008 -1.023 0.944 0.095 
6/14/07 570.823 0.026 -0.641 0.052 0.028 
6/19/07 205.868 2.255 0.041 0.031 0.139 
6/26/07 472.395 1.998 -0.064 0.071 0.15 
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­­­Exhibit III: Probability density functions for Ft+1/Ft ­­­­ 
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