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ABSTRACT

Mean-variance optimization, in theory a very powkrnd intuitive tool, has
failed to provide meaningful solutions in practicattings, and indeed, in theoretical
settings in much past research. Whereas inaccustatestical estimates for inputs
provide even more erroneous outputs, the modelingrse determine outputs that are

nothing short of extreme.

In this study, we employ two different models based the mean-variance
framework, with one portfolio seeking the highesturn given a risk target while the
other portfolio seeks the lowest risk given a dsskitevel of return. In unconstrained
form, our results confirm to be acutely departesirfrpast experience in this subject
matter and contrary to the known literature on nliadeerrors, our portfolios remain
solvent. In constrained form, our portfolios oufpem the benchmark and market
portfolios while maintaining at least some divacsifion; in unconstrained form, our
portfolios provide surprisingly high absolute amkradjusted returns with betas less than

the benchmark and market portfolios.
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1 INTRODUCTION

Selecting the correct mix of assets for an investrpertfolio requires more than
just finding the most attractive securities. Altigh all investors demand the highest
returns possible from their investment, high resuame generally associated with high
risk. Finding the right balance between a portfslreturn and its risk is the central tenet

of mean-variance optimization.

Mean-variance optimization looks for the meanarme efficient solution to
these following problems: to maximize the expecttdrn for a specified level of risk, to
minimize the risk for a specified return, and toxinaize the return and minimize the risk
given a specified risk parameter. The implicai®that investors are willing to trade off
return and risk and the amount of return they aténgy to give up for a given reduction

in risk depends on their risk tolerances or aversio

Following conventiof, the mean-variance model is according to equdtion

1 .
M ax: (Tpp — 5ﬁﬁ} )

st. Z T =1

Wherey, is one plus the rate of returs?, is the portfolio’s variance, and is a

guadratic programming parameter representing atoigkance measure.

! Grauer, Robert R. 2008. Extreme Mean-Variancet®uls: Estimation Error versus Modeling Error. p.6



Since its introduction by Markowitz (1952) mean+iasace optimization has
become one of the foundational procedures in gasttmnstruction. Markowitz showed
that for a specified level of risk we can selecseds that maximize the portfolio’s
expected return. He called the mean-variance @ptoortfolios efficient and suggested
they line up along a frontier in risk-return spacéccording to his model, rational

investors should be investing only in portfoliosrad the efficient frontier.

Even though Markowitz’'s model provided a framewtokthe CAPM and many
other important studies in the academic communitywas never fully adopted by
practitioners. Michaud (1989) claims many praotigrs ignore the results or even
disregard the practice altogether. He suggestsniv@aance optimization tends to
maximize the input errors and without appropriatnstraints the results are often
meaningless. The model also significantly overglves (under weights) securities with
large (small) estimated returns, negative (positigerrelation, and small (large)
variances. Best and Grauer (1991) confirm the W®densitivity to estimation errors.
With only the budget constraint, small changes ssed means can have a profound
influence on the portfolio’s weights, mean, andiatace. They also show that imposing
non-negativity constraints produce extreme poufalieights while its expected return
and standard deviation remain (almost) the samsindJa general form of parametric
guadratic programming for sensitivity analysis, Basd Grauer (1991) further show that
imposing or relaxing constraints in response tongea in the means changes the

portfolio’s weights in “economically counterintwié ways.”

Black and Litterman (1992) suggest that one wayovercome the model’s

shortcomings is to calibrate its inputs accordimgnivestor’s specific views about global



markets. Using this approach apparently producesermalanced and better behaved

portfolio that more accurately reflect the investqreferences.

Taking a different approach, Konno and YamazakO@)%elieve that a large
number of assets make it challenging to propertynege the covariance matrix. Using
historical data for the covariance matrix may netabgood approximation of the real
correlation structure. Their view is supporteduajyoux, Cizeau, Bouchaud, and Potters
(1999) who claim that when the correlation matsxbased on historical numbers, the

lowest risk portfolios are plagued with noise.

It is obvious that estimation errors contributetih@ reluctance of investment
professionals to adopt mean-variance optimizatworpbrtfolio construction. However, a
study by Grauer (2001, 2008) provides empiricablence that modeling errors play a
more fundamental role in determining the unrealisblutions. His results show that
using mean-variance optimization without properstaaints, without means based on
predictive variables, and without a specific righketance will produce very extreme

solutions.

There have been numerous recent attempts to ma&e-wagiance optimization
practical. Bai, Liu, and Wong (2006), for examplevelop new estimators for returns
and weights, so-called bootstrap corrected retnchleotstrap corrected allocation, using
large dimensional matrix theory and the paramdtootstrap method. Their simulation

suggests vastly improved accuracy of the estimatroness and ease of implementation.

Another alternative to the classic mean-variancéehe full-scale optimization.
Contrary to mean-variance theory, the full-scaledetoassumes that assets are not

normally distributed and investor’s preferencesnocdnbe captured by the quadratic



utility function. Relying on sophisticated searalgorithms to identify the optimal
portfolio given any set of return distribution aady description of investor preferences,
the full-scale optimization calculates the weigtitat yield the highest possible utility.
However, the full-scale procedure suffers from reation error just like the original
mean-variance model. Adler and Kritzman (2006) assirthis issue by bootstrapping
returns from out of sample periods to generateradteve histories. They claim better in-
sample results than the mean-variance model far shely of hedge funds but admit that
their model may not outperform the classic meamawae procedure on other samples or

if returns are more normally distributed.

Mean-variance theory formalized the risk-rewarduitmon and provided the
necessary framework for other advances in the steteting of institutional investment
management and passive investing techniques. @uy sboth complements the
theoretical work on mean-variance optimization asfters alternative methods for
investment portfolio selection. We present an agapin where investors can optimize
their expected portfolio returns given the optimiak levels obtained from historical
returns of the benchmark portfolio. Alternativeilyyestors can select their assets based

on the benchmark returns but with a lower levaiisK.

To best of our knowledge, our methods have nobgen tested in literature. We
can only compare our work to the study by Grau@0&, where he compares policies
and performances of the global minimum-variancefplo, tangency portfolios, and six
mean-variance portfolios and finds that permittsiwprt sales generates rather bizarre
outcomes. He shows that in some cases the tangemtiplio’s weights are plus and

minus thousands of times wealth and many of tangpodfolios are ex ante inefficient.

10



Ex post, many of the tangency portfolios, alonghwrost of the mean-variance
portfolios, become insolvent. Grauer argues thxattiag literature focuses mainly on
performance metrics and tends to attribute extreahges for expected returns, weights,
and standard deviations to estimation error. Whaeagrees that estimation error is
partly responsible for the odd results he sugg#sis we should focus more on the
modeling error of utilizing the mean-variance moaeéth only a budget constraint.
Without the short-sale constraint, risk toleranaed without basing the means on
predictive variables the investors may miss oupmofitable opportunities. Our models
show that relying on historical data, subject te Hudget constraint and risk tolerance
variable even without the short-sale or predictiveans restrictions, the mean-variance

model can produce very profitable outcomes

This paper proceeds as follows: in the next sedtiermodels are formalized and
subsequently the methods for implementing themdascribed in detail. As trading
strategies, the models are further reduced to t@msin which an investor is limited to
the frequency in which he or she can review andlegize the implemented portfolio.
Constraints are also placed on the models to mdlifierent constraints an investor may
face in practice. To test for economic significamisk based performance measures are
discussed and then applied to the outcomes oftthtegies. Lastly, limitations to the

models are presented.
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2 HYPOTHESIS

The goal of our empirical work is to create and te® trading strategies based
on mean-variance optimization theory. The strat®gare based on the tenet that
investors will categorically choose one of two farbs in relation to a given portfolio in
every instance: the first would be the portfoliatthas the highest expected return for the
same level of risk as the given portfolio, and skeond would be the portfolio that has a
the smallest level of risk for the same level dire as the given portfolio. In simple
terms, an investor will maximize return given &rarget, or will minimize risk given a
return target. The expectation is that with bdtbse strategies the investor will be able
to achieve higher risk adjusted returns over ting laun than the investor who accepts the

given, or benchmark, portfolio.

We test this hypothesis by modeling the tradin@tstiies against a given
portfolio and comparing the risk adjusted perforoeamf the implemented portfolios

against the given portfolio and the market portfoli
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3 METHOD

The given portfolio (benchmark) is an equal weighitedex rebalanced monthly.
The benchmark includes 25 assets: each of thes¢sdssan equal weighted basket of
stocks with similar size and distress charactesstiThe assets and monthly return data
are sourced from the 5x5 Fama French factors dlailan Ken French’s data library on
his websité. The data set has been truncated to July 198atasfor several of the assets
is missing prior to that point. Each of the 25e#ssrepresents a basket of equally

weighted stocks; the assets have been assignebvesjghts in the benchmark portfolio.

According to our hypothesis, an investor who hasdhoice of holding the given
portfolio or an alternate combination of the ass@tkin the given portfolio will choose
to hold one of two alternate combinations of theets the investor will either combine
the assets such that the expected return of théemgmted portfolio is the highest
possible given the level of risk carried by theegivortfolio (maximize return given a
risk target) or minimize the risk of the implemeantportfolio for the level of return
achieved by the given portfolio (minimize risk giva return target). In doing so, the

investor should achieve better risk adjusted paréorce than the given portfolio.

3.1 Maximize Return Given a Risk Target

An investor will choose to maximize return givepradetermined risk target, all

else equal. Equivalently, if two portfolios havgual risk, but one has a higher expected

2 http://mba.tuck.dartmouth.edu/pages/faculty/keméh/data_library.htn{accessed September 2, 2008)
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return, the investor will choose the portfolio witie higher expected return. To model
this behavior we look to our benchmark equal wemgrtfolio and calculate the standard
deviation and average return of that portfolio otrex past 84 months (the first history is
July 1931 to June 1938). If an investor could tamas a portfolio from the assets within
the benchmark to obtain the same level of standaveation that was realized but with a
higher expected return moving forward then that kvdoe the portfolio our investor

would choose to hold. The model can be expressaat@ing to the following equation:

M ax: Z z: E(r;) )

st. Op = E E TiT;0i; and E xr; =1
O |

In equation 2 the investor is maximizing the expdaeturn of the portfolio by
altering the asset weights within the portfolio jggbto two constraints: 1) the variance
of the constructed portfolio must equaflp " which is the variance of the benchmark

portfolio; and 2) the sum of the weights within fha&rtfolio must equal 1.

3.2 Minimize Risk Given a Return Target

An investor will choose to minimize risk for a degermined return target, all else
equal. Equivalently, if two portfolios have equedurn, but one has a lower level of risk,
the investor will choose the portfolio with the lemlevel of risk. To model this behavior
we look to our benchmark once again, and calcdlsestandard deviation and average
return of that portfolio over the past 84 monthee(first history is again July 1931 to

June 1938). If an investor could construct a pbédffrom the assets within the
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benchmark to obtain the same level of average metighieved over that period (the
investor set this as an expected return target)whilit a lower standard deviation by
historical estimates then that would be the padfolur investor would choose to hold.

The model can be expressed according to the fallgpwguation:

Min: Z Z L0 3
i i
st. Tp = Z z; E(r;) and Z;z‘,- =1

In equation 3 the investor is minimizing the staxdadeviation of the portfolio by
altering the asset weights within the portfolio jggbto two constraints: 1) the expected
return of the constructed portfolio must equ,a*l which is the average return of the
benchmark portfolio over the past 84 months; anth2)sum of the weights within the

portfolio must equal 1.

In both models while the investor is constructihg bptimal portfolio according
to either equation 2 or equation 3 above, the tovesan not implement this portfolio
until the past 84 months has been observed. As, sue calculate the optimal portfolio
weights based on the observed data from July 1®3iine 1938 (month 1 to month 84),
and implement our portfolio during the subsequeantn (July 1938 — month 85). The
returns for the optimal portfolios under each moded captured, and the exercise is
repeated with a second 84 month history of montb éhonth 85 —returns are captured
for month 86 (August 1938). This exercise is rép@a840 times with data collected

from July 1938 to June 2008. In this way, we atli@monthly optimal portfolio weights

15



based on the benchmark portfolio over 70 yearshawe portfolio returns for the same

frequency and duration.

3.3 Inputs to Mean-Variance Optimization

When observing the data over the previous 84 nsortbie investor is striving to
determine the expected asset returns, variancds;aariances as these form the inputs
to the portfolio optimization exercise the investimidertakes when fulfilling either of the

models presented.

For each asset the expected return used in thelnsaithe average return for that
asset over the past 84 months. The use of suetuanrassumes that the return figure is
the correct long run expected rate of return faut thsset. 84 months provides a
reasonable length of time for a return figure twere to the mean though a casual
observation of the average returns shows that mestnstances the asset return is
negative over the 84 month period. Clearly theeetgd return for the assets should all
be positive or investors would not be persuadeldold that asset. We do not calibrate
the means as Black and Litterman would recommentisagsset mispricing that allows

our investor to construct portfolios superior te tiiven portfolio.

In the same way that the expected return is cdkdlas the mean return for each
asset over the past 84 months, the variance-coxarimatrix is calculated based on the
asset returns over the past 84 months. The asgumsgtthat the variance-covariance is
stable over this length of time. However, as widgative means in the data set, a casual
observation of the data shows that certain assglsbie exceptionally desirable

risk/return trade-offs: some assets have very nmahwariations in return coupled with

16



good returns; other assets have very large vansiio return coupled with poor returns.

The data is not subjected to any corrections arsaajents.

The desired risk target in the risk targeting madehe standard deviation of the
benchmark over the past 84 months. The investbichvwose to maximize the return of

her portfolio, subject to the risk level of the bemark, for the subsequent period.

The desired return target in the return targetirmgleh is the actual average return
of the benchmark over the past 84 months. Thestovavill choose to minimize the risk
of the portfolio while achieving a level of retuconsistent with the average return

achieved by the given benchmark portfolio over ffetod.

3.4 Rebalancing Frequency

To this point we've assumed that an investor hamathly decision to make with
respect to the optimal portfolio weights under eitmodel. However, in practice an
investor would certainly be remiss to rebalance tmgnas the transaction expenses
would significantly erode returns. To add robusthé our models, our investor can

choose to rebalance monthly, quarterly, or annublly can not combine these options.

The investor who rebalances monthly will optimipe the subsequent month, as
above, and will then do the optimization again eacdmth moving forward to obtain new
asset weights within the portfolio. For examplayihg optimized and held the portfolio
through July 1938, the investor will then calculéite average asset returns and the
variance-covariance matrix from August 1931 to 988, and will set as the risk target
the standard deviation of the benchmark over tmesperiod. The optimal portfolio

weights calculated using these inputs will therubed as the investor’s portfolio weights

17



for the subsequent one month holding period (Au@988). The return that the investor
achieves in August 1938 is the investor’s next mmath return. In rolling this exercise
forward, the investor constructs an optimal portfdased on the previous 84 months
data, holds that portfolio for one month, and themvaluates based on the new previous
84 months data. We run this exercise over the sittand capture the monthly returns

from July 1938 to June 2008 for both models.

The investor who rebalances quarterly will optienfer the subsequent month, as
has been described above in detail, but will theld that position for 3 months prior to
re-evaluating the portfolio holdings. At the enfdtlee three month holding period, the
investor will then look to the subsequent 84 magoeghiod to determine the inputs to the
optimization to determine the holdings for the néatee month period. The returns are
the three month holding period rate of return fackethree month period. We run this
exercise over the data set and capture the retroms July 1938 to June 2008 for both

models.

The investor who rebalances annually will do jastabove, but will hold the
optimal portfolio position for 12 months prior te-evaluating the portfolio holdings. At
the end of the 12 month holding period, the investidl then look to the subsequent 84
month period to determine the inputs to the optatian to determine the holdings for the
next 12 month period. We run this exercise over data set and capture the annual

returns from July 1938 to June 2008 for both madels

For the purpose of analysis, the monthly, quarteahd annual returns that are
arrived at using the decision models are companethe same frequency of realized

returns for the benchmark over the same period$. na@e, the benchmark standard

18



deviations and returns are invariant to changeghalancing frequency. There are two
reasons for this: first, the investor has no inflcee over how the benchmark index is
constructed or rebalanced, so trying to adjustoit domparison purposes would be
meaningless in real application; second, the mgregblal weight returns in each of the
25 assets is the monthly return for a basket afkste- without knowing the composition
of those baskets and the monthly returns of eamtksit's impossible to calculate the

true quarterly or annual rebalancing standard dievis and returns.

A note on rebalancing frequency: mean variancenopétion is typically only
useful in a single period setting (the CAPM hasvaindo be inefficient beyond a single
period). Since we are rebalancing monthly, qubstend annually, we expect above
average returns for a given level of risk to persas least in the short term, and vice
versa. Assets that have demonstrated above avexages for a given level of risk are
welcome, assets that have demonstrated poor (atimep returns along with above
average risk, are avoided. If we were rebalanowgr a much larger time period, we
would expect mean reversion to produce drasticdifferent and likely undesirable
returns, unless the inputs to the optimization weakbrated according to the Black

Litterman methodology.

3.5 Constrained Scenarios

To mimic different constraints an investor mayefan practice there are three
scenarios we've modeled using the above models rabdlancing schedules: the
Unconstrained Scenario (Unconstrained), the LowsBamt Scenario (Constrained 1),

and the High Constrained Scenario (Constrained 2).
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The Unconstrained Scenario places no constraintsthe weights that the
optimization can place in a single asset. Therg b® positive or negative weights
though the weights must sum to one to satisfy ifm@le budget constraint. The universe
of investments is the given benchmark portfolioeéssso the optimization can only
choose amongst the 25 assets in the benchmarkolpmrtf For risk targeting the
optimization must maximize return given the levélrigk in the benchmark portfolio,
though this level of risk need not plot on the @ént frontier (in mean variance space,
the portfolio is optimized such that return is mmaied, though other combinations of
assets may combine to dominate the portfolio ouestor chooses). Where targeting

return this is also true.

To calculate the optimal portfolio weights in th@constrained case for risk
targeting we’ve looked to the efficient set mathaosadiscussed by Best and Grauer
(1990). Having calculated the covariance matrigsead returns, and the standard
deviation (all from the benchmark portfolio) we aele to calculate the risk tolerance
measure associated with the standard deviatiomeob&énchmark portfolio. Knowing the
risk tolerance level makes it a relatively simptereise to arrive at optimal weights. The
reader may wish to refer directly to Best and Grau®90) for a full discussion on

efficient set mathematics.

To calculate the optimal portfolio weights in tbaconstrained case for return
targeting and to double-check the optimal weightsvided by the efficient set
mathematics we refer to the portopt function witiiatLab. The portopt function
requires as inputs the asset returns, the covarianatrix, and the target level of portfolio

return. The output of the portopt function is thgimal portfolio standard deviation,

20



return, and asset weights. Using the function idex\ output weights consistent with the

efficient set mathematics when the asset bounds sedrat +/- 100 (100 times wealth).

The Constrained 1 scenario places a non-negataimgtraint on the weights in

the optimized portfolios and alters the risk tamggimodel to the following:

Max Y aE(r) @
st. O‘;‘f* = ZZ.;';.‘:'J-J,-J- and Z;zr,- =1

i
and ;=0

The return targeting model is altered to the folla:

Min: Z Z X 05 )
i i
st. -r':j = Z B (15) and Z;zr,- =1

and x; =)

The optimization is further constrained, thoughgchsuhat the investor will
maximize return given risk or minimize risk giveaturn, but will only choose the
portfolio that plots on the efficient frontier. inean variance space, the optimization will
choose the portfolio that maximizes return (miniesizisk) for a given level of risk
(return) provided that the combination of asseteseh is not dominated by another

combination of assets (to the left and up in risk#m space). In instances where this
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occurs, the optimization chooses the dominant glotfon the efficient frontier,

associating with a lower level of risk (higher le@éreturn).

Calculating the weights in this scenario is a mdifécult exercise than in the
unconstrained scenario. The efficient set matlunable to accommodate the non-
negativity constraint and the available softwarknmsted to 15 assets. As such, we once
again refer to the portopt function within MatLalvhile we are equipped with the asset
returns, covariance matrix, and target standardatlen, portopt does not have the ability
to target a specific level of standard deviatiohhe function does, though, have the
ability to construct a specified number of portislilining the efficient frontier. We used
this feature by directing the function to providg00 equally spaced portfolios along the
efficient frontier, constrained to positive weigh&d then chose the specific portfolio
that had the standard deviation we were targetikgr the return targeting model the
portopt function allows us to proceed with easa. béth instances, where the portopt
function fails equation 6 and 7 come into play #émel function is directed to select the
optimal portfolio where return is maximized (whaskrtargeting) or risk is minimized

(when return targeting).

In addition to the constraints identified in Coasied 1, the Constrained 2
optimization is further constrained such that tipdiroal portfolio must include at least
five assets. This constraint is onerous, but esstirat the investor does not concentrate
his or her entire wealth in a single asset (whicesdoccur under Constrained 1).
Equation 8 represents the Constrained 2 scenariahi® risk targeting model and

Equation 9 represents the Constrained 2 scenartbéaeturn targeting model:
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M ax: Z z; E(r;) (6)

2+ — S L, T =
s.t. op = E E L% 045 and E T; 1
i

and x; =0 and x; < .20

Min: Z Z LiZ T (7)
§ i
s.t. -jr'; — Z .'I'jE{F'.;]I and Z.’I-‘; =1

and x; =) and x; < (.20
The optimal weights for the Constrained 2 scenar® calculated in the same
manner as Constrained 1. The only difference & ghrtopt function is directed to

concentrate no more than 20% of wealth in a siagéet. As such, in most instances, the

optimal portfolio includes five assets, each withG8 weight.
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Figure 1: A Visual Depiction of Models

Portfolio Optimization Strategies and Decision Hules

Efficient Frontier

Figure 1 is a graphical illustration of the effigtefrontier (the efficient frontier
lies between points D and B and inclusive of thtse points). Both optimization
models assume that the benchmark portfolio, thelegaight index, plots inefficiently
within the hyperbola. Optimization in both modedgjuires choosing the portfolio that
plots on the frontier (the unconstrained scenamay plot inefficiently on the frontier),

subject to either the risk target or return tagetstraints.

With the first model, maximizing return given akrigarget, the weights in the
optimal portfolio are such that if the benchmarktfadio for either the unconstrained or
constrained scenarios is point a on the chart glibeeoptimal solution will be point A.
If the benchmark in the constrained cases is gmitite optimal solution will be point B.

In the unconstrained case the efficient frontieneser truncated at point B (the frontier
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extends indefinitely) — it's the non-negativity amginimum asset constraints in the

constrained scenarios that cause the efficientiéroto end.

With the second model, minimizing risk given aurettarget, the weights in the
optimal portfolio are such that if the benchmarktfwdio is point ¢ on the chart above,
the optimal solution will be point C. If the bemalrk portfolio in the unconstrained case
is point d, the optimal solution will be point Eo(the right and below point D). If the

benchmark in the constrained cases is point dpphienal solution will be point D.

3.6 Tests

The rebalancing frequencies discussed earlierarastness tests built into the
models to see whether frequency of rebalancing @tsptne magnitude of the results.
The constrained scenarios accomplish a similarcesesin that the models are stressed to
include some constraints that may apply in practiceaddition to those tests, the data is
split into two time periods, one spanning the fBStyears of the data set (July 1938 to
June 1973) and the second spanning the seconda8$ gethe data set (July 1973 to
June 2008). Each of the rebalancing frequenc@sstained scenarios, and time frames
are combined and then scrutinized for economicifsigmce in terms of risk adjusted
performance using the performance metrics below. gét a feel for the level of risk
implicit in the returns the skew and kurtosis @ tlesulting time series of returns for each

model, rebalancing schedule and scenario are alsuolated.

3.7 Performance Metrics

According to the efficient market hypesis any performance assessment should

balance risk and reward. Since a portfolio’s exgpe&ceturn can be increased merely by
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increasing its systematic risk, performance measha®e to adjust the return for the risk
taken. We test our results with the following redjusted performance metrics: Sharpe

Ratio, Treynor Ratio, and Jensen’s Alpha.

3.7.1 Sharpe Ratio

The Sharpe Ratio is a risk-return measure of exadssns based on the Capital
Asset Pricing Model. Thanks to its simplicity, is one of the most referenced risk-
adjusted performance metrics. Originally called theward to variability ratio® it is
used to determine how well investors are rewardwdirfvesting in risky assets as

compared to risk-less assets:

(Tp —Ty) (8)

As a function of the Security Market Line the SlearfRatio is calculated by
dividing an asset’s excess return by its standasdation In 1994 Sharpe revised the
Sharpe Ratio to acknowledge that the risk free chtanges over time. We adopted this
change in our calculations and have divided theamesperiodic portfolio return less the
average periodic risk free rate (to arrive at theess return) by the standard deviation of
the portfolio return over the entire time periods a ranking measure the higher the

Sharpe Ratio, the better the risk adjusted returns.

3.7.2 Treynor Ratio

The Treynor Ratio is a measure pioneered by Jaelnbr (1965) for ranking

performance. Similar to other CAPM based risk-at#jd performance metrics its origin

% Sharpe, William F. 1966. “Mutual Fund PerformaficgheJournal of Businesslan 66: p123
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can be attributed to the desire to distinguish gomedstment managers from those who
merely increase the systematic risk of their psidéoto achieve higher returns. At the
time of his research, there was no simple way tasuee the impact of investment
managers’ actions on their portfolio returns amdhirdual investment funds were mostly
ranked based on average returns. With all mutwadd, trust funds, and pension funds
invested significantly in stocks, returns are exgabgto the risk of general market
fluctuation. Treynor argued that ranking fundsdahen average returns is insufficient as
average returns are dominated by general marketidsrand average returns make no
allowance for investor’'s aversion to risk. To aamne this difficulty, he proposed that a
manager’s performance could be effectively meastekdive to the Capital Market Line
by dividing a portfolio’s excess return by its hetalhe resulting ratio (reward to
volatility) shows the relation of the excess rettonthe systematic risk of the portfolio
where the higher the ratio the better. We adjustratio in the same way as the Sharpe

Ratio by using averages of periodic returns andames of the risk free rate:

(FJJ - -"_J’} (9)

As noted by Wikipedia: portfolios with the sametsysatic risk, but not the same
total risk, will be rated the same by the Treynati&®. Therefore, a portfolio could have
very high total risk relative to a second portfolmt if each has the same systematic risk

the Treynor Ratio will be the same. This is nat thse with the Sharpe Ratio.

* http://en.wikipedia.org/wiki/Treynor_ratitaccessed Nov 15, 2008)
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3.7.3 Jensen’s Alpha

Jensen’s alpha was first introduced as an evaluatoml for mutual fund
managers’ ability to outperform the market. Simgenparison of mutual fund returns to
market portfolio returns is misleading becauseogsh’t account for risk the individual
managers take. Jensen wanted to test if individmahagers could add value
consistently, over the long term, as opposed tanigakandom good years. Since the
CAPM formula at that time allowed only for the tala performance he added an alpha
term to get an absolute measure of performancee atlded term changes the CAPM

formula to:
E(ry) = a+rp + B[E(rm) — 1/] (10)
We calculate Jensen’s alpha and beta by runnindotleeving regression where
the dependent variable is the periodic excess gimrtfeturns, the intercept is Jensen’s

Alpha, the coefficient is the slope (beta) of thed line, the dependent variable is the

periodic excess market returns, and the final ®coounts for noise:
(rp=7rr)=ap+ Bplrm—rs)+e (11)

A positive measure for Jensen’s Alpha demonstritas a portfolio is able to
consistently achieve returns higher than the exue@APM risk adjusted returns. For
properly priced assets one would expect Jenserphadto be zero: the market will
exploit these opportunities. Investors seek toimepe alpha to achieve abnormal excess

returns, and seek to minimize beta to achieve déwel of systematic risk.
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4 RESULTS

For simplicity and clarity, the results of the netsl and the tests of them are
presented in independent sections below. A summiasyich can be found in Tables 1

through Table 6.

4.1 Maximize Return Given a Risk Target

The hypothesis stated we would expect the modelrttaximizes return given a
risk target to outperform the benchmark in all éhseenarios. The results below show
that the unconstrained scenario does just that theerentire time period, and in both
temporal subsets. The constrained scenarios pedtong, though the results from the

unconstrained scenario are astounding.

4.1.1 July 1938 to June 2008

As expected, the unconstrained scenario rebalammedhly produces portfolio
growth that far outstrips the benchmark, the mag@tfolio (as sourced from Ken
French’s website), and the constrained 1 and 2asimenn The annualized compound rate
of return for the unconstrained portfolio is 27.94%er the entire time period, as
compared to 14.23% for the benchmark and 11.11%hermarket. The constrained
scenarios fare better than the benchmark portdiovell, though to a lesser extend. To
put these figures in perspective, the annualizealvtyr rate for the unconstrained
portfolio grows $1.00 to $30,984,588.92 over thérerperiod compared to $11,083.55

for the benchmark portfolio.
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With respect to performance measurement, the 8agio for the unconstrained
scenario is 0.24 compared to the benchmark atdh@lthe market at 0.15. As a measure
of risk adjusted returns, the unconstrained scenprovides superior risk adjusted
returns, with the constrained 1 and 2 scenariosigiray similar results, though to a
slightly lesser degree. The Treynor Ratio providgaally compelling results with the
same trends. As a measure of risk adjusted retwetetive to the CAPM, the
unconstrained portfolio has a highly significamred of 1.91%, and a highly significant
beta of 0.42. The t-stats for the alphas and batasall significant, though the
benchmark and the constrained 1 and 2 scenariashach smaller alphas and provide

betas just slightly over one.

These results are supportive of the notion th#alencing monthly to the
benchmark standard deviation, using historical ayerasset returns and variance-
covariance matrices leads to highly significanttislio growth and excess returns. A
review of the descriptive statistics of the retdrstribution shows that the unconstrained
scenario has high kurtosis and slightly negativewsk The high kurtosis suggests that
there is a high probability of large negative amsifive returns. The slightly negative
skew suggests that the bulk of the returns areildiséd just to the right of the mean,

though there are significant left tail risks prasgreavy draw downs are possible).

The results for quarterly rebalancing of the urstined scenario and the
constrained 1 and 2 scenarios are very similah¢oré¢sults for the monthly rebalancing
scenarios above. However they differ in magnituddwere is evidence of diminishing

excess returns for the unconstrained and constrainend 2 scenarios with respect to
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magnitude of returns and excess returns. The mesm%f kurtosis and skew for all

scenarios closely approximate a normal returnidigion.

The return for the unconstrained scenario with uahnrebalancing is still
staggering at 25.80% compared to 14.23% for thehlreark and 11.10% for the market.
This represents the growth of $1 to $9,516,901\&k the entire time period, once again
compared to $11,083.55 for the benchmark. Thetmined 1 and 2 cases still show

higher returns, but they're not near as impressive.

The Sharpe and Treynor Ratios both favor the ustcaimed scenario, followed
by the constrained 1 and 2 scenarios. All threepagferred to the benchmark and to the
market and this is reinforced with an alpha of 6809 (highly significant) for the
unconstrained portfolio, compared to an insignificalpha of only 2.31% for the
benchmark. The constrained 1 and 2 scenarios nepaaitive and significant, though to

a lesser extent.

The return distribution for all three scenariosd gahe benchmark are slightly
positively skewed and the kurtosis, aside from uheonstrained portfolio, is close to
normal. The unconstrained portfolio has a very Idwrtosis suggesting the
unconstrained has thinner tails — this can be pné¢éed as a lower likelihood of tall

events presenting themselves.

In sum, in all three scenarios, and under eachalaebing schedule, the
unconstrained scenario provides returns that atkimnvexcess of the benchmark, these
returns are significant in terms of excess retuams| they come at a lower risk expense
than the constrained 1 and 2 scenarios, and atsethchmark and index (the measure of

beta is at first, counterintuitive. One would esipine beta to be significantly higher than
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reported. As discussed with the Treynor measwet is a measure of risk related to the
market, and does not encompa#isrisk present in a portfolio - please refer to Apghe

B for a discussion on beta).

While not normally distributed when rebalanced rhbnt the unconstrained
scenario becomes more preferred from a probabdeysity function stance when
rebalanced annually. The diminishing excess amealreturns, and the diminishing
excess returns when extending the rebalancing framthly to quarterly to annually
suggests that the assets chosen for inclusioreipaintfolio under each of the scenarios

exhibit mean reversion with respect to plottingigk-return space.
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Table 1: Optimization with Risk Target — Results: 1

938-07 to 2008-06

Optimization with Risk Target - Summary Statistics:

1938-07 to 2008-06

Panel A - Monthly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $11,083.55 $30,984,588.92 $63,512.59 $32,058.69 $1,594.85
Compound Return (Annualized) 14.23% 27.94% 17.11% 15.98% 11.11%
Arithmetic Mean (Annualized) 15.10% 30.22% 17.63% 16.59% 11.72%
Standard Deviation (Annualized) 18.60% 31.03% 18.80% 18.45% 14.82%
Skew (Monthly) 0.07 -0.87 0.70 0.52 -0.56
Kurtosis (Monthly) 5.86 8.34 12.10 10.03 2.38
Sharpe Ratio (Monthly) 0.17 0.24 0.21 0.20 0.15
Sharpe Ratio (Annualized) 0.59 0.84 0.72 0.68 0.52
Treynor Measure (Monthly) 0.80 5.21 1.05 0.96 0.64
Jensen's Alpha (Monthly) 0.18 1.91 0.44 0.34 -
(T-stat) (2.47) (6.23) (4.44) (3.88) -
Beta (Monthly) 1.15 0.42 1.08 1.10 1.00
(T-stat) (66.81) (6.00) (47.59) (53.58) -
Panel B - Quarterly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $11,083.77 $11,201,706.77 $45,524.70 $26,071.91 $1,615.07
Compound Return (Annualized) 14.23% 26.10% 16.56% 15.63% 11.13%
Arithmetic Mean (Annualized) 15.70% 30.17% 17.76% 16.93% 11.96%
Standard Deviation (Annualized) 21.15% 34.41% 21.17% 21.20% 15.90%
Skew (Quarterly) 0.13 -0.38 0.29 0.40 -0.52
Kurtosis (Quarterly) 1.78 2.32 2.44 2.57 0.96
Sharpe Ratio (Quarterly) 0.27 0.38 0.32 0.30 0.25
Sharpe Ratio (Annualized) 0.55 0.76 0.64 0.60 0.50
Treynor Measure (Quarterly) 2.39 10.96 3.03 2.74 1.98
Jensen's Alpha (Quarterly) 0.51 5.32 1.19 0.89 -
(T-stat) (1.92) (5.21) (3.45) (2.90) -
Beta (Quarterly) 1.22 0.61 1.13 1.18 1.00
(T-stat) (38.19) (4.93) (27.11) (31.68) -
Panel C — Annual Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $11,083.32 $9,516,901.61 $34,469.07 $31,661.68 $1,584.84
Compound Return 14.23% 25.80% 16.10% 15.96% 11.10%
Arithmetic Mean 16.49% 32.79% 18.52% 18.33% 12.33%
Standard Deviation 23.48% 41.47% 24.67% 24.72% 17.24%
Skew 0.84 0.32 0.91 1.18 0.35
Kurtosis 2.80 0.35 2.70 3.76 0.5
Sharpe Ratio 0.52 0.69 0.58 0.56 0.47
Treynor Measure 10.03 24.59 11.52 11.31 8.18
Jensen's Alpha 231 18.96 4.21 3.89 -
(T-stat) (1.72) (3.93) (2.62) (2.45) -
Beta 1.23 1.18 1.24 1.26 1.00
(T-stat) (17.64) (4.73) (14.87) (15.24) -
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4.1.2 July 1938 to June 1973 and July 1973 to June 2008

In the July 1938 to June 1973 time period the mignbalancing shows that the
unconstrained scenario still dominates. The urtcaimgd scenario posts an annual
compound growth rate of 20.12% compared to 13.3d&f4He benchmark and 11.13%
for the market. The constrained 1 and 2 scenadnse again, exhibit similar results,
though to a lesser extent. With the unconstraiseshario $1.00 grows to $611.46
compared to $79.20 in the benchmark portfolio. tHa July 1973 to June 2008 time
period the same results are present. Howeveruitieenstrained scenario grows at an
annual compound rate of 36.28% as compared to ¥bft6the benchmark and 11.15%
for the market. Note that the difference in compbgrowth rate between the first and
second time periods for the unconstrained scenarguite large, though the results in

both periods are nothing short of staggering.

With respect to performance measurement, the rdiffee between the two
periods is notable to the point where a significatminge in the market is suspected, at
least at some level, though the exact timing andetdwing reasons are unknown. In
particular, the Sharpe and Treynor Ratios are amfdr all scenarios (except that the
Treynor Ratio is still very much higher for the onstrained scenario than for the other
scenarios) in the first time period and quite ddéfg in the second. This result is
reaffirmed by the alpha and beta measures. lfirgtetime period, the only significant
alpha is for the unconstrained scenario; the beacknand constrained 1 and 2 scenarios
are not significantly different from zero. In tkecond time period, the unconstrained
portfolio provides significant excess returns, asasured by alpha, near 2.29% per

month — this is compared to 0.30% per month for tkachmark. The beta of the
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unconstrained scenario is drastically lower thae, @uggesting the overall risk profile of
the unconstrained scenario is lower than the markée benchmark and constrained 1

and 2 scenarios are all slightly higher than 1.00.

From July 1937 to June 1973, unconstrained saeraard constrained 1 and 2
scenarios exhibit very high levels of kurtosis. eTlavel of skew is slightly negative for
the unconstrained scenario and slightly positive tfee remaining scenarios and the
benchmark. In the second period the benchmarlgnstained scenario and constrained
1 and 2 scenarios exhibit very low levels of kugpence again suggesting thin tails. To
compare the first period to the second, all thenaes appear much better in the second

period, and on almost all fronts.

The results in the two time periods for quartedipalancing are very close to the
results discussed just above. Only, the magnitdidiee growth and annualized returns in
the first time period with quarterly rebalancing sbghtly higher than with monthly
rebalancing. The annualized Sharpe Ratio for tthfavors the monthly rebalancing,
though. However, when comparing excess returndeasribed by alpha, the results for
monthly rebalancing are consistent to quarterhalaicing. The measures of kurtosis
and skew seem to approximate a normal distributiothe first period. In the second
period, once again, the unconstrained scenario {l@maonstrained 1 scenario) exhibit

just slight negative skew; kurtosis is very low.

With annual rebalancing the unconstrained scemadwas at an annual compound
rate of 22.49% in the July 1938 to June 1973 timeopd. This compares to 13.31% for
the benchmark and 11.08% for the market. The cainsd 1 and 2 scenarios fare in the

middle, as expected. In the July 1973 to June 20808 period the unconstrained
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scenario grows at 29.21%. This compares to 15.t8%e benchmark and 10.98% for
the market. To illustrate, from July 1938 to Jubh®@73 $1.00 invested in the

unconstrained scenario would grow to $1,210.67 @etpto $7,860.88 in the second.

With respect to performance measurement, from J19i§8 to June 1973 the
Sharpe Ratio for the unconstrained scenario is Gordpared to 0.51 for the benchmark
(0.54 for the market); from July 1973 to June 2@B8se figures are 0.67 and 0.55,
respectively (0.38 for the market). Clearly, thacenstrained scenario provides
significantly better risk adjusted returns as measwy the Sharpe Ratio. The same
intuition is provided by the Treynor Ratio. Inres of excess returns, in the first time
period the unconstrained scenario provides a higiggificant excess return of 15.99%
annually — the benchmark and the constrained 12ascknarios provide excess returns
that aren’t statistically significant. In the sado time period the benchmark,
unconstrained scenario and constrained 1 and 2asosnall provide statistically
significant positive excess returns though the nstrained scenario provides the highest
excess return (by far) at 21.92%. A significarffedence in this result, though, is the
beta of the unconstrained scenario is less thanmothe first time period (as is consistent
thus far), though it's 1.88 in the second. Theamimg scenarios and benchmark are
consistently just slightly higher than one. Thghbeta for the unconstrained scenario
suggests that the investor would need to take deradly more risk than the benchmark
to obtain the excess returns, though the SharpeTaeghor Ratios suggest the risk
adjusted return is higher... it might be the hightandard deviation of the unconstrained
scenario that leads to the higher excess retuouygth the high Treynor Ratio would

suggest that isn’t the only factor.
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In the first time period all the scenarios and trenchmark exhibit positive
measures of skew. The measure of kurtosis is safrgen near 2.00 to 2.90 for the
benchmark and constrained scenarios but is 0.1théunconstrained scenario. In the
second time period skew is near 1.00 for the beackmand the constrained scenarios but
0.00 for the unconstrained scenario. The meastideudosis for the unconstrained
scenario is 0.01, and above 4.00 for the benchmadkconstrained 1 and 2 scenarios.
The unconstrained scenario in both periods has ht#eyskew coupled with thin tails —

while not normally distributed, these traits arsicsble.

In sum, the unconstrained scenario continues toirEte in both time periods as
the preferred investment strategy. The excessngticoupled with the risk profile,
appear to be better than the benchmark and thdraome 1 and 2 scenarios. When
extending from monthly to quarterly to annual relpaing the results appear to hold,

though the become slightly less relevant in terfitetal magnitude.
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Table 2: Optimization with Risk Target — Results: 1938-07 to

1973-06

Optimization with Risk Target - Summary Statistics:

1938-07 to 1973-06

Panel A - Monthly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $79.20 $611.46 $161.67 $144.85 $40.31
Compound Return (Annualized) 13.31% 20.12% 15.64% 15.28% 11.14%
Arithmetic Mean (Annualized) 14.40% 24.90% 16.53% 16.18% 11.59%
Standard Deviation (Annualized) 19.37% 33.09% 20.05% 19.75% 13.93%
Skew (Monthly) 0.45 -1.15 1.49 1.04 -0.62
Kurtosis (Monthly) 7.38 11.24 17.07 12,51 2.45
Sharpe Ratio (Monthly) 0.18 0.20 0.21 0.20 0.19
Sharpe Ratio (Annualized) 0.63 0.69 0.71 0.70 0.66
Treynor Measure (Monthly) 0.79 3.78 0.94 0.91 0.78
Jensen's Alpha (Monthly) 0.01 1.50 0.20 0.17 -
(T-stat) (0.14) (3.22) (1.50) (1.35) -
Beta (Monthly) 1.28 0.50 1.27 1.28 1.00
(T-stat) (48.93) (4.45) (38.28) (43.00) -
Panel B - Quarterly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $79.20 $692.59 $165.60 $145.57 $40.19
Compound Return (Annualized) 13.31% 20.55% 15.72% 15.29% 11.13%
Arithmetic Mean (Annualized) 14.88% 26.20% 17.04% 16.68% 11.77%
Standard Deviation (Annualized) 21.32% 35.84% 21.61% 21.62% 14.64%
Skew (Quarterly) 0.26 -0.27 0.75 0.63 -0.66
Kurtosis (Quarterly) 2.52 3.42 4.50 3.84 1.22
Sharpe Ratio (Quarterly) 0.29 0.33 0.34 0.33 0.32
Sharpe Ratio (Annualized) 0.59 0.67 0.68 0.66 0.64
Treynor Measure (Quarterly) 2.35 10.77 2.84 2.70 2.38
Jensen's Alpha (Quarterly) -0.04 4.63 0.60 0.43 -
(T-stat) (-0.11) (2.97) (1.32) (1.05) -
Beta (Quarterly) 1.34 0.57 1.30 1.34 1.00
(T-stat) (28.54) (2.84) (22.53) (25.35) -
Panel C - Annual Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $79.20 $1,210.67 $123.45 $147.26 $39.56
Compound Return 13.31% 22.49% 14.75% 15.33% 11.08%
Arithmetic Mean 16.36% 26.25% 17.65% 18.39% 12.56%
Standard Deviation 27.42% 31.69% 27.02% 28.16% 18.52%
Skew 0.74 0.58 0.82 1.03 0.30
Kurtosis 2.00 0.11 2.00 291 -0.05
Sharpe Ratio 0.51 0.74 0.56 0.56 0.54
Treynor Measure 10.15 32.57 11.50 11.44 10.29
Jensen's Alpha -0.13 15.99 1.67 1.69 -
(T-stat) (-0.07) (2.84) (0.79) (0.82) -
Beta 1.38 0.78 1.33 1.40 1.00
(T-stat) (15.92) (2.95) (13.50) (14.50) -
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Table 3: Optimization with Risk Target — Results: 1~ 973-07 to 2008-06

Optimization with Risk Target - Summary Statistics:

1973-07 to 2008-06

Panel A - Monthly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $139.94 $50,673.54 $392.85 $221.32 $40.44
Compound Return (Annualized) 15.16% 36.28% 18.61% 16.68% 11.15%
Arithmetic Mean (Annualized) 15.80% 35.53% 18.72% 16.99% 11.85%
Standard Deviation (Annualized) 17.81% 28.78% 17.48% 17.07% 15.67%
Skew (Monthly) -0.41 -0.39 -0.47 -0.27 -0.51
Kurtosis (Monthly) 3.74 2.67 3.16 5.08 2.26
Sharpe Ratio (Monthly) 0.16 0.30 0.21 0.19 0.11
Sharpe Ratio (Annualized) 0.56 1.03 0.73 0.65 0.38
Treynor Measure (Monthly) 0.79 7.00 1.15 0.98 0.50
Jensen's Alpha (Monthly) 0.30 2.29 0.60 0.45 -
(T-stat) (3.10) (5.70) (4.47) (3.79) -
Beta (Monthly) 1.05 0.37 0.94 0.95 1.00
(T-stat) (48.62) (4.15) (31.67) (36.25) -
Panel B - Quarterly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $139.94 $16,173.74 $274.90 $179.11 $40.19
Compound Return (Annualized) 15.16% 31.90% 17.41% 15.98% 11.13%
Arithmetic Mean (Annualized) 16.52% 34.14% 18.48% 17.18% 12.16%
Standard Deviation (Annualized) 21.05% 32.93% 20.79% 20.84% 17.12%
Skew (Quarterly) 0.01 -0.49 -0.22 0.15 -0.43
Kurtosis (Quarterly) 1.14 0.91 0.24 1.24 0.74
Sharpe Ratio (Quarterly) 0.25 0.43 0.30 0.27 0.18
Sharpe Ratio (Annualized) 0.50 0.85 0.60 0.54 0.36
Treynor Measure (Quarterly) 2.37 11.34 3.15 2.67 1.57
Jensen's Alpha (Quarterly) 0.89 6.04 1.57 1.16 -
(T-stat) (2.42) (4.49) (3.10) (2.61) -
Beta (Quarterly) 1.13 0.65 1.01 1.06 1.00
(T-stat) (26.74) (4.20) (17.34) (20.94) -
Panel C - Annual Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $139.94 $7,860.88 $279.21 $215.01 $38.33
Compound Return 15.16% 29.21% 17.46% 16.58% 10.98%
Arithmetic Mean 16.61% 39.34% 19.39% 18.26% 12.10%
Standard Deviation 19.16% 48.97% 22.44% 21.14% 16.13%
Skew 1.10 0.00 117 1.50 0.42
Kurtosis 4.32 0.01 4.55 5.80 1.63
Sharpe Ratio 0.55 0.67 0.59 0.58 0.38
Treynor Measure 10.35 19.12 11.81 11.66 6.06
Jensen's Alpha 4.38 21.92 6.43 5.77 -
(T-stat) (2.44) (3.03) (2.68) (2.48) -
Beta 1.02 1.88 1.14 1.07 1.00
(T-stat) (9.63) (4.38) (8.06) (7.74) -
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4.2 Minimize Risk Given a Return Target

Unlike the tests where return was maximized givisk and abnormally high
returns were expected for a given level of riskewhminimizing risk given a level of
return we would expect that the return under eawnaio be similar to that of the
benchmark though we would expect it to be acconguhhy a lower standard deviation.

As such, the measures of risk adjusted return &oéss returns are still applicable.

4.2.1 July 1938 to June 2008

When rebalancing monthly the results for the ust@med scenario from July
1938 to June 2008 reveal that not only does theonsiained scenario manage to
provide slightly better annual compound returnsalgo manages to do this with a
significantly reduced risk profile. The annual quwund growth rate for the
unconstrained scenario is 15.71% compared to thehoeark at 14.23% and the market
at 11.11% (constrained 1 and 2: 14.04% and 14.X6%pectively). Of more important
note, the unconstrained scenario achieves itsafateturn at a standard deviation of
14.28%. This compares to 18.60% for the benchnaatt 14.82% for the market

(constrained 1 and 2: 16.01% and 16.03%, respégtive

The performance measurement, as measured by #rpeSand Treynor Ratios,
illustrate the best risk adjusted performance figr tinconstrained scenario, followed by
the constrained 1 and 2 scenarios, then the benkharad lastly the market. The excess
return, as measured by alpha, is the best forribenstrained scenario by a large margin,
and is highly statistically significant. Both carasned portfolios also perform better than

the benchmark. As when maximizing return given ftis& budget the unconstrained
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scenario achieves its result with a beta of 0.5Be-constrained scenarios are both near

1.00 and the benchmark is slightly above.

The measure of skew for all the scenarios inclgdire benchmark is very close
to zero suggesting no skew. The measure of ksrigsmuch higher than that of the
standard normal distribution for the benchmark #mel constrained 1 and 2 scenarios.
The unconstrained scenario has a kurtosis meas@d& The unconstrained portfolio
most closely approximates the normal distributiofit accomplishes it dominant risk

adjusted performance and excess returns in the pnedictable manner.

When rebalancing quarterly the unconstrained plotlachieves a rate of return
of 16.42% on a standard deviation of 16.34%. Thimpares to the benchmark return of
14.23% achieved with a standard deviation of 21.29%e constrained 1 and 2 scenarios
achieve a rate of return similar to the benchmankaoconsiderably lower standard

deviation, though the results aren’t strong asuth@nstrained portfolio.

As with monthly rebalancing, the Sharpe and TreyRatios support the
expectation that the unconstrained scenario prevadgerior risk adjusted performance.
The unconstrained scenario generates an alpha9&fcl per quarter, compared to a
statistically insignificant 0.51% generated by thenchmark portfolio. Both the
constrained 1 and 2 scenarios generate statigtsigthificant excess returns, though not

as high as the unconstrained scenario.

The skew of all the scenarios including the beratknis close to 0.00 as above.
However, all the scenarios including the benchnierke a kurtosis less than 3.00. The

unconstrained case is the lowest at 1.01; the netl 1 scenario is the highest at 2.53.
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When rebalancing annually, the results identifedmbve continue to hold true.
The unconstrained scenario continues to providédnigeturns on a lower standard
deviation than the benchmark and the constrain@shdlL 2 scenarios. The annualized
compound return is less, as expected due to thgetotime frame involved in the

rebalancing (mean reversion).

The Sharpe and Treynor Ratios continue to sughertinconstrained scenario as
dominant over the benchmark; the constrained 12aswknarios dominant the benchmark
according to these measures as well, though nibtet@ame extent as the unconstrained
scenario. The excess return is highest for the@nstcained scenario (though less than
the annualized excess return for the quarterly lagloe and monthly rebalance), is
statistically positive for the constrained 1 anscc2narios, and is statistically insignificant

for the benchmark.

All the scenarios, including the benchmark, exhgmsitive skew ranging from
0.56 to 0.84 and kurtosis ranging from 1.31 to 2.80hile none of the scenarios, or the
benchmark, provide normally distributed returng, taturns aren’t far off suggesting the

risk profiles are reasonable predictable.
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Table 4: Optimization with Return Target — Results:

1938-07 to 2008-06

Optimization with Return Target - Summary Statistic

s: 1938-07 to 2008-06

Panel A - Monthly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $11,083.55 $27,266.98 $9,847.34 $10,593.65 $1,594.85
Compound Return (Annualized) 14.23% 15.71% 14.04% 14.16% 11.11%
Arithmetic Mean (Annualized) 15.10% 15.69% 14.48% 14.60% 11.72%
Standard Deviation (Annualized) 18.60% 14.28% 16.01% 16.03% 14.82%
Skew (Monthly) 0.07 -0.09 0.02 -0.13 -0.56
Kurtosis (Monthly) 5.86 2.18 5.77 6.07 2.38
Sharpe Ratio (Monthly) 0.17 0.24 0.19 0.19 0.15
Sharpe Ratio (Annualized) 0.59 0.82 0.65 0.66 0.52
Treynor Measure (Monthly) 0.80 1.77 0.88 0.88 0.64
Jensen's Alpha (Monthly) 0.18 0.62 0.24 0.24 -
(T-stat) (2.47) (5.24) (3.62) (3.91) -
Beta (Monthly) 1.15 0.55 0.99 1.00 1.00
(T-stat) (66.80) (20.14) (65.18) (71.30) -
Panel B - Quarterly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $11,083.77 $41,988.19 $9,978.08 $11,416.00 $1,615.07
Compound Return (Annualized) 14.23% 16.42% 14.06% 14.28% 11.13%
Arithmetic Mean (Annualized) 15.70% 16.81% 14.97% 15.17% 11.96%
Standard Deviation (Annualized) 21.15% 16.34% 18.13% 18.06% 15.90%
Skew (Quarterly) 0.13 -0.24 0.06 -0.11 -0.52
Kurtosis (Quarterly) 1.78 1.01 2.53 1.84 0.96
Sharpe Ratio (Quarterly) 0.27 0.39 0.30 0.31 0.25
Sharpe Ratio (Annualized) 0.55 0.78 0.60 0.61 0.50
Treynor Measure (Quarterly) 2.39 4.94 2.62 2.66 1.98
Jensen's Alpha (Quarterly) 0.51 1.91 0.67 0.71 -
(T-stat) (1.92) (4.88) (2.93) (3.26) -
Beta (Quarterly) 1.22 0.65 1.04 1.04 1.00
(T-stat) (38.19) (13.60) (37.77) (39.27) -
Panel C - Annual Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $11,083.32 $32,890.59 $9,580.71 $11,208.82 $1,584.84
Compound Return 14.23% 16.02% 13.99% 14.25% 11.10%
Arithmetic Mean 16.49% 17.57% 15.80% 16.05% 12.33%
Standard Deviation 23.48% 19.63% 20.76% 20.92% 17.24%
Skew 0.84 0.74 0.56 0.73 0.35
Kurtosis 2.80 131 1.53 2.08 0.5
Sharpe Ratio 0.52 0.69 0.55 0.56 0.47
Treynor Measure 10.03 18.71 10.64 10.82 8.18
Jensen's Alpha 231 7.65 2.69 2.90 -
(T-stat) (1.72) (3.80) (2.35) (2.47) -
Beta 1.23 0.71 1.10 1.10 1.00
(T-stat) (17.64) (6.75) (18.38) (18.09) -
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4.2.2 July 1938 to June 1973 and July 1973 to June 2008

When rebalancing monthly the July 1938 to June 1@vi& period struggles to
produce evidence that maximizing return given & tagget is a meaningful endeavor
though the second time period, and certainly tls¢ ¢ the entire data set, seems to
endorse it. The same results are found here. uhkbenstrained scenario does provide
higher returns from a lower standard deviation thhe benchmark, though the
constrained 1 and 2 scenarios provide a less pestacome in the first period. In the
second period the unconstrained scenario contittupsovide higher returns on a lower

standard deviation than the benchmark.

The performance measurement brings into questiendsults from July 1938 to
June 1973. The Sharpe Ratio and Treynor RatithBounconstrained scenario are much
higher than the benchmark in both periods; the tcaim&d 1 and 2 scenarios do not
appear to dominate the benchmark in either. Whemparing excess returns, the
unconstrained scenario is the only one in the firse period that provides statistically
significant excess returns of 0.51% monthly. Frdaty 1973 to June 2008 all the
scenarios, including the benchmark, provide stasiy significant excess returns though
the unconstrained portfolios excess returns ardabythe best. The other scenarios,
including the benchmark, have insignificant alpha$he beta of the unconstrained
portfolio in the first time period is 0.55 and 0.%4 the second. The betas of the
unconstrained 1 and 2 scenarios, including the lreack, are all slightly higher than
1.00 in the first time period; in the second tinegipd the beta of the benchmark remains

just above 1.00, the unconstrained 1 and 2 betaslightly below 1.00.
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From July 1938 to June 1973 the unconstrained gdarthas a slightly negative
skew at -0.29; the benchmark and the constrairett12 scenarios have slightly positive
skew. The unconstrained scenario has a kurtosi2.@8; the benchmark and the
constrained 1 and 2 scenarios have kurtosis wedixitess (the lowest is 7.38 for the
benchmark). The unconstrained portfolio provides most normally distributed returns
in the first time period. From July 1973 to Jur®@ the unconstrained scenario has a
very slightly positive skew; the benchmark and toastrained 1 and 2 scenarios have
slightly negative skews. The measure of kurtosis dll scenarios, including the
benchmark, is close to 3.00. Simply, all the soesaincluding the benchmark, appear

to have normally distributed returns in the secpadod when rebalancing in monthly.

The themes discussed above under monthly rebal@mepeat when rebalancing
quarterly. The magnitudes are slightly higher @orual compound returns (only
slightly), though the interpretation of the perf@mee measurement for risk adjusted
returns, excess returns, and beta are the same.of clear difference is in the return
distribution. The level of kurtosis in the firseqod drops off significantly, from above
3.00 for all scenarios except the unconstrained,d¢agust under 3.00 in all instances. In
the latter time period, the unconstrained scendewelops a slightly negative skew (as
opposed to a slightly positive skew), and kurtabigps off from just under 3.00 in all
instances to near 1.00. The tails of the retustribution have thinned, suggesting

extreme events are less likely for the benchmadkadirthree scenarios.

When rebalancing annually the unconstrained stengenerates an annual
compound return of 14.04% on a standard deviatfoh3®7% from July 1938 to June

1973 and an annual compound return of 17.40% daralard deviation of 14.59% from
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July 1973 to June 2008. This compares to an antaabound return and standard
deviation of 13.21% and 27.42% for the benchmarkhafirst period and 15.16% and
19.16% in the second. The constrained 1 and 2asosndon’t do as well in either
period, but do still post higher returns and lostndard deviations in the second period

suggesting that the model still works better ingbeond period than the first.

The performance measurement reinforces the viawthie first time period is not
as noteworthy: while the Sharpe Ratio, Treynor &ka@nd alpha are strong for the
unconstrained scenario in the first time perio@, ¢bnstrained 1 and 2 scenarios provide
Sharpe Ratios and Treynor Ratios that aren’t sramtly different from the benchmark.
More importantly, the alpha for the benchmark ane tonstrained 1 and 2 scenarios
aren't statistically non-zero. In the second petrilee unconstrained portfolio continues
to prevail as the clearly dominant leader with atess return of 8.84 annually
(compared to 4.38% for the benchmark) though al $henarios produce statistically

significant positive alphas.

In the first time period the benchmark and alethscenarios have positive skew
ranging from 0.54 to 0.96. Kurtosis for the undaasised scenario is 2.92 with a range of
1.10 to 2.92 for all scenarios. In the second tmeeod skew isn’'t all that different
ranging from 0.51 to 1.10; kurtosis ranges from 20.@nconstrained) to 4.32
(benchmark). The return distributions, while diéfet in the second time period, are still
somewhat consistent with slightly positive skewd &urtosis generally less than 3.00,

once again, implying tail events occur with low Ipability.

In sum, the unconstrained scenario continues toimgte in from July 1973 to

June 2008 as the preferred investment strategg. eXbess returns, coupled with the risk
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profile, appear to be better than the benchmarkthadconstrained 1 and 2 scenarios.
When extending from monthly to quarterly to anntebdalancing the results appear to
hold, though they become slightly less relevarierms of total magnitude. These results

compliment the results from maximizing return gi\gerisk target.
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Table 5: Optimization with Return Target — Results:

1938-07 to 1973-06

Optimization with Return Target - Summary Statistic

s: 1938-07 to 1973-06

Panel A - Monthly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $79.20 $99.39 $93.71 $74.99 $40.31
Compound Return (Annualized) 13.31% 14.04% 13.85% 13.13% 11.14%
Arithmetic Mean (Annualized) 14.40% 14.19% 14.42% 13.77% 11.59%
Standard Deviation (Annualized) 19.37% 13.97% 16.70% 16.61% 13.93%
Skew (Monthly) 0.45 -0.29 0.34 0.19 -0.62
Kurtosis (Monthly) 7.38 2.08 7.66 7.80 2.45
Sharpe Ratio (Monthly) 0.18 0.25 0.21 0.20 0.19
Sharpe Ratio (Annualized) 0.63 0.86 0.73 0.69 0.66
Treynor Measure (Monthly) 0.79 1.80 0.90 0.85 0.78
Jensen's Alpha (Monthly) 0.01 0.56 0.14 0.07 -
(T-stat) (0.14) (3.37) (1.66) (1.05) -
Beta (Monthly) 1.28 0.55 1.12 1.13 1.00
(T-stat) (48.93) (13.64) (54.75) (63.64) -
Panel B - Quarterly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $79.20 $125.36 $92.32 $77.91 $40.19
Compound Return (Annualized) 13.31% 14.80% 13.80% 13.25% 11.13%
Arithmetic Mean (Annualized) 14.88% 15.06% 14.71% 14.20% 11.77%
Standard Deviation (Annualized) 21.32% 14.45% 18.12% 17.96% 14.64%
Skew (Quarterly) 0.26 -0.20 0.47 0.14 -0.66
Kurtosis (Quarterly) 2.52 0.30 4.49 3.14 1.22
Sharpe Ratio (Quarterly) 0.29 0.44 0.34 0.33 0.32
Sharpe Ratio (Annualized) 0.59 0.88 0.68 0.66 0.64
Treynor Measure (Quarterly) 2.35 5.60 2.71 2.58 2.38
Jensen's Alpha (Quarterly) -0.04 1.83 0.37 0.23 -
(T-stat) (-0.10) (3.49) (1.25) (0.88) -
Beta (Quarterly) 1.34 0.58 1.15 1.16 1.00
(T-stat) (28.54) (8.53) (29.96) (34.83) -
Panel C - Annual Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $79.20 $98.33 $81.02 $73.22 $39.56
Compound Return 13.31% 14.01% 13.38% 13.05% 11.08%
Arithmetic Mean 16.36% 15.14% 15.45% 15.24% 12.56%
Standard Deviation 27.42% 16.78% 22.34% 23.23% 18.52%
Skew 0.74 0.96 0.54 0.79 0.30
Kurtosis 2.00 2.92 1.01 2.05 -0.05
Sharpe Ratio 0.51 0.75 0.57 0.55 0.54
Treynor Measure 10.15 20.86 11.45 10.81 10.29
Jensen's Alpha -0.13 6.39 1.27 0.63 -
(T-stat) (-0.07) (2.64) (0.98) (0.48) -
Beta 1.38 0.63 1.16 1.20 1.00
(T-stat) (15.92) (5.58) (19.01) (19.49) -
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Table 6: Optimization with Return Target — Results: 1973-07 to 2008-06

Optimization with Return Target - Summary Statistic ~ s: 1973-07 to 2008-06

Panel A - Monthly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $139.94 $274.35 $105.08 $141.27 $40.44
Compound Return (Annualized) 15.16% 17.40% 14.22% 15.19% 11.15%
Arithmetic Mean (Annualized) 15.80% 17.20% 14.55% 15.43% 11.85%
Standard Deviation (Annualized) 17.81% 14.59% 15.32% 15.44% 15.67%
Skew (Monthly) -0.41 0.08 -0.40 -0.52 -0.51
Kurtosis (Monthly) 3.74 2.24 3.04 3.79 2.26
Sharpe Ratio (Monthly) 0.16 0.22 0.16 0.18 0.11
Sharpe Ratio (Annualized) 0.56 0.78 0.57 0.62 0.38
Treynor Measure (Monthly) 0.79 1.74 0.82 0.89 0.50
Jensen's Alpha (Monthly) 0.30 0.67 0.28 0.35 -
(T-stat) (3.10) (4.01) (3.00) (3.84) -
Beta (Monthly) 1.05 0.54 0.88 0.90 1.00
(T-stat) (48.62) (14.79) (42.43) (44.98) -
Panel B - Quarterly Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $139.94 $334.93 $108.08 $146.53 $40.19
Compound Return (Annualized) 15.16% 18.07% 14.32% 15.31% 11.13%
Arithmetic Mean (Annualized) 16.52% 18.56% 15.24% 16.14% 12.16%
Standard Deviation (Annualized) 21.05% 18.05% 18.20% 18.21% 17.12%
Skew (Quarterly) 0.01 -0.31 -0.35 -0.35 -0.43
Kurtosis (Quarterly) 1.14 1.14 0.77 0.78 0.74
Sharpe Ratio (Quarterly) 0.25 0.35 0.26 0.28 0.18
Sharpe Ratio (Annualized) 0.50 0.70 0.51 0.56 0.36
Treynor Measure (Quarterly) 2.37 4.55 2.44 2.68 1.57
Jensen's Alpha (Quarterly) 0.89 2.07 0.83 1.06 -
(T-stat) (2.43) (3.55) (2.47) (3.09) -
Beta (Quarterly) 1.13 0.70 0.96 0.96 1.00
(T-stat) (26.74) (10.44) (25.06) (25.54) -
Panel C - Annual Rebalance Equal Weight Index Unconstrained Portfolio Constrained 1 Constrained 2 Market
Growth of $1 $139.94 $334.49 $118.26 $153.09 $38.33
Compound Return 15.16% 18.07% 14.61% 15.46% 10.98%
Arithmetic Mean 16.61% 20.00% 16.16% 16.86% 12.10%
Standard Deviation 19.16% 22.09% 19.37% 18.64% 16.13%
Skew 1.10 0.51 0.63 0.70 0.42
Kurtosis 4.32 0.62 2.79 2.34 1.63
Sharpe Ratio 0.55 0.64 0.52 0.58 0.38
Treynor Measure 10.35 16.35 9.90 11.16 6.06
Jensen's Alpha 4.38 8.84 3.92 4.86 -
(T-stat) (2.44) (2.79) (2.10) (2.61) -
Beta 1.02 0.85 1.02 0.98 1.00
(T-stat) (9.63) (4.51) (9.26) (8.94) -
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5 LIMITATIONS

Several critiques of our models are presentedwbel®Vhile valid, our models

show powerful resolve, and the critiques only pdewvilirection for further research.

First, the data set employed by the model is Zkéta of equally weighted stocks
where each basket includes stocks with similar aizé distress characteristics. As a
function of construction, within each basket, arattainly within the equal weight
benchmark portfolio, there is a bias towards sroaflitalization stocks and the higher
returns they generate. This outcome is evidentnwdmnparing the performance of the
benchmark in all scenarios versus the market dartfdt’s highly likely that the results
of the model would differ if the data set used waastructed differently, such as with
value weightings. A bias towards small capitalaatstocks also ignores the potential
consequence that the portfolio transactions recamdet: by the models could result in
highly undesirable price movements in the stocksdiag potential returns. In this vein,

liquidity issues may be highly problematic.

Second, our model ignores the impact of transasticosts and taxes. This
critiqgue is powerful and we fully acknowledge thhe results would be different had
these items been considered, especially sincedsis ¢o rebalance monthly would be
near prohibitive. However, the reality is that tireconstrained model produces powerful

results that favor mean variance optimization ®hart intervals.
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Third, the unconstrained scenario, while providthg most impressive results,
assumes that an investor can short securities &stglat no cost. Certainly there are
costs to short sell securities and there are linatsvhich this type of trading can be
implemented. However, the scenario constrainewtshort selling would be possible in
reality and it produces results that reinforcettiaeling strategies, though not to the same

extent as the unconstrained scenario.

Fourth, there are thinly traded securities that may exhibit continuous price
movements. In addition to this, even actively é@decurities can display erratic pricing
movements such as a gaps up or down at closinghe#fie types of movements occur
after the calculation of the optimal portfolio wetg but prior to the portfolio being
implemented in practice the returns to the implet@erportfolio could be significantly

different from what has been reported here.

Lastly, the models are based on a finite univefsassets. Most notably, a risk
free asset is omitted from the models. Includingsk free asset would likely enhance
the performance of the model. According to the fwad separation theorem, investors
will hold the market portfolio and either lever agportfolio by borrowing at the risk free
borrowing rate or delever a portfolio by lending the risk free lending rate. The
outcome, in mean-variance space, is a tangencydittee efficient frontier at the market
portfolio with an intercept of the risk free lendimate. Where targeting a specific level
of risk, our models would likely combine with bowimg to move upwards in mean-
variance space, potentially enhancing returns, w&hdn targeting a specific level of
return, our models would likely combine with lenglito move towards the left in mean-

variance space, potentially reducing the risk l@fe¢he portfolio.

51



6 SUMMARY

Our paper suggests two alternative methods forstmvent portfolio construction.
The first is a portfolio that delivers the highespected return for the same level of risk
as a given portfolio, and the second is a portfalith the smallest level of risk for the
same level of return as a given portfolio. In dienggrms, investor will maximize returns
given a risk target, or will minimize risk givenrggt returns. These models are applied
with consideration for an investor’s preference relnalancing frequency in addition to

constraints that may be imposed on the portfolimpaosition.

In the unconstrained form our models produce higidyificant absolute and risk
adjusted returns.  Consider that $1 grows to @&&£,000,000 in the base case risk
targeting unconstrained optimization model compaieds11,000 for the benchmark
portfolio over the 70 year horizon. Consider fertlthat it manages to grow at such a
pace with lower risk when ranking versus the berarftnand market portfolios using the
Sharpe and Treynor Ratios. The base case risktiaggunconstrained optimization
model generates highly significant alpha, well xeess of any other case presented, and
has a companion beta of 0.42. Even when consttdmeron-negativity or minimum
holdings the results are still desirable. Our tssiade when the rebalancing schedule is
moved from monthly to quarterly or annually - thisinforces the notion of mean
reversion in asset pricing over time but the resalt still significant enough that the

strategies could likely be implemented profitably.
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The return targeting model produces equally notédworesults. In the base case
return targeting unconstrained scenario the modadyces a portfolio that grows at a
compound rate of 15.71% over a 70 year time frarnenpared to 14.23% for the given
portfolio) and manages to achieve this rate of ginomith a standard deviation of 14.28%
compared to 18.60% for the given portfolio. Theiition behind the risk return trade-off
in these results is evidenced by the Sharpe anghdreRatios and is further reinforced
by a highly significant alpha of 0.62% per mon®imilar to the risk targeting model the
performance is less noteworthy when constraingtbtenegativity or minimum holdings

but model still dominates. The results fade agébalancing schedule is lengthened.

Extending the rebalancing out further than one yeauld likely lead to less
favorable results for both models, as would the asmpon of additional constraints,

transactions costs, and consideration for markeling constraints.

In addition to simply demonstrating that our mopletforms very well, this paper
lends credence to mean-variance optimization asl@able to in portfolio construction.
Even without correcting for estimation errors inang or covariances mean-variance
optimization can be employed over short intervalsdnstruct portfolios with desirable

risk-return features that dominate our given pdidfom addition to the market portfolio.
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APPENDIX A - HISTOGRAMS

The following pages include histograms to provad@sual confirmation of the

return distributions reported in the results tend figures above.
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APPENDIX B — BETA

Below are graphs of the excess returns for thectbeark, unconstrained,
constrained 1 and constrained 2 scenarios fromeThaldn excess market returns. Note
that the benchmark and constrained 1 and 2 scenexiaibit a visual linear relationship
with the market; the unconstrained scenario doesWhile the beta is statistically non-
zero at 0.42, the Rs only 0.04. The 0.42 value for beta captureslével of systematic
risk for the unconstrained scenario but certainbesd not explain total risk (note the
visual maximum monthly draw-down of near 70%). Ha@s a more robust pricing
model such as the Fama-French three factor moeleilsed to calculate alpha, would

better capture the dynamics of our models.
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