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ABSTRACT 

Quantum computers have the potential to increase the solution speed for 

many computational problems.  This paper is a first step into possible 

applications for quantum computing in the context of computational finance.  The 

fundamental ideas of quantum computing are introduced, followed by an 

exposition of the algorithms of Deutsch and Grover.  Improved mean and median 

estimation are shown as results of Grover’s generalized framework.  The 

algorithm for mean estimation is refined to an improved Monte Carlo algorithm.  

Quantum random number generation is also described. 
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INTRODUCTION 

Motivation 

This paper is an introduction to the field of quantum computing for 

financial practitioners, with an explanation of the basics of quantum computing 

and a description of modern algorithms that can be used to solve computational 

problems in finance.  We start with an introduction to the field of quantum 

computing.  The introduction follows the approach and notation used in the 

standard text on quantum computing (Nielsen & Chuang, 2000). 

In 1994, Peter Shor, a researcher at Bell Labs, published an algorithm for 

factoring large composite numbers (Shor, 1994).  This algorithm was 

exponentially faster than any known algorithm at the time.  It was also unique 

since it would only work on a computer that could use fundamental properties of 

quantum mechanics.  This breakthrough initiated a flood of new interest into the 

field of quantum computing, and during the following decade, many advances 

were made.  In 1996, Lov K. Grover published a quantum algorithm for searching 

an unsorted database (Grover, 1996), and a few years later, he generalized his 

method to create a framework for the invention of new algorithms (Grover, 1998).  

This generalized framework allowed the creation of an algorithm for finding the 

mean of a statistical distribution (Grover, 1998), which can be modified for use in 

Monte Carlo simulations (Abrams & Williams 1999).  This improved algorithm can 

be applied in finance to get a quadratic speed-up for any Monte Carlo simulation.   
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Another interesting application of quantum computing in finance is to allow 

true random number generation (Zak & Williams, 1999), which can be used as 

the first step in a Monte Carlo simulation (Glasserman, 2003), or any other 

situation where market factors are modelled as random variables.  This 

application is considered since randomness is the basic mathematical concept 

used to model financial risk (Powers, 2008). 

What is Quantum Computing? 

Quantum computing is a method for performing computational tasks by 

the use of quantum mechanical systems.  It is fundamentally different from the 

familiar paradigm of classical computing because quantum mechanical systems 

have properties that cannot be efficiently simulated using conventional classical 

information processing methods.  Some of the most useful quantum properties 

are superposition, interference, entanglement, non-determinism, and non-

clonability.  We can exploit each of these properties to realize fundamentally new 

computational advantages.   

In a conventional computer, the basic unit of information processing is a 

binary digit (usually referred to as a “bit”) which can be in one of two states: zero 

or one.  The bit is used to represent one piece of information, and a collection of 

bits (known as a register) can be used to represent more complicated 

information.  Physically, inside the computer, these bits are realized as 

transistors (or switches) which can also take one of two states: on or off.  The 

physical registers in the computer are just arrays of these switches, so a register 

taken as a whole is considered to be in only one state at a time.  For example, in 
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a register of 3 bits there are eight possible states, where the zeros and ones 

represent the states of the individual bits: 000, 001, 010, 011, 100, 101, 110, and 

111.  These eight register states could be used to represent the numbers from 

one to eight, or any other piece of information that is distinguished by three 

true/false decisions. 

Like the conventional bit, the quantum bit (or “qubit”) can also take one of 

two states: 0  or 1 .  Here, the “ ” surrounding the zero and one is used to 

show that we are talking about a quantum state, instead of a regular classical 

state.  The “ ” enclosure is known as Dirac notation, and it has become the 

standard for denoting quantum states, and we will use it to denote qubit states.  

We can think of a variable in this notation as a column vector, in which case the 

“ ” enclosure is the transpose of the column vector (the equivalent row vector) 

for our purposes.  See Appendix A for a more thorough description of this 

notation. 

There are similarities between bits and qubits, but there are also 

fundamental differences.  Unlike the conventional bit, the qubit can exist in a kind 

of mixture of both states 0  and 1  at the same time. This is possible to realize 

in a quantum system due to the quantum phenomenon known as superposition, 

in which a component of a quantum system can be prepared such that its 

configuration is fundamentally uncertain.  By fundamentally uncertain, we mean 

there is no possible way to measure how the component is configured without 
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altering its configuration.  Mathematically, the possible states of the qubit are 

linear combinations of the states 0  and 1 : 

10 ba  , 

where   is the state of the qubit, and a and b  are complex numbers.  In other 

words, the state of the qubit is a vector in a two-dimensional complex vector 

space.  Since the state of the qubit is fundamentally uncertain when it is in a 

superposition like this, we cannot examine a qubit to determine which state it 

occupies.  Due to the peculiarities of quantum mechanics, if we measure the 

qubit, we get either the result 0 , with probability 
2

a , or the result 1 , with 

probability 
2

b .  

 This property of superposition can be exploited for computational benefits.  

Consider a register of qubits, which is just an array of qubits combined together.  

Since the qubit can be arranged into a state that is an equal superposition of both 

of its basis states, namely the state: 

1
2

1
0

2

1
 . 

We can consider this state as being both 0  and 1  simultaneously, therefore 

representing 2 pieces of information simultaneously.  Now, consider a register of 

three such qubits, each in an equal superposition of its 2 states.  It would 

represent all of the 8 states: 000 , 001 , 010 , 011 , 100 , 101 , 110 , 111  

simultaneously.  In general, an n -qubit register could store n2  states 

simultaneously, whereas the conventional n -bit register could only store one 



 

 5 

state at a time.  Since a quantum register can be placed into a superposition of 

all of its classical states, it makes a quantum computer into a massively parallel 

computer.  A quantum computer can work on all possible classical states 

simultaneously in the time it would take to work on just one of the states in a 

classical computer.  Therefore, there might be a way in which we can manipulate 

this quantum register so it would end up in a quantum state that, when 

measured, would reveal an answer to a desired computation.  This is, in fact, 

what quantum computing is all about. 

Some Quantum Computing Basics 

In order to understand how we can manipulate quantum registers to 

output solutions to computational problems, we have to learn about how quantum 

systems evolve.  The most succinct way to learn this is to recall the four 

fundamental postulates of quantum mechanics.  Note that the postulates 

described in the following sections will not be stated in their most general form 

since we are only concerned with finite dimensional problems.  This simpler 

version of quantum mechanics will be good enough for our purposes, since 

quantum computers have a finite number of states, and we therefore only need 

to consider finite dimensional spaces.  This also greatly simplifies the 

mathematical formalisms needed.  Most of the descriptions and notation used in 

this section are borrowed from the standard text on quantum computing (Nielsen 

& Chuang, 2000). 
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The First Postulate of Quantum Computing Mechanics 

Postulate #1 explains that we can associate a mathematical concept 

(namely a Hilbert space) with any isolated physical system.  We call this the state 

space, because it contains all of the possible states for our physical system.  The 

system’s particular configuration is then represented by a state vector, which is a 

member of the state space.  We have already seen an example of a state space 

associated with the qubit, which is in fact the simplest quantum mechanical 

system.  The qubit has a 2-dimensional state space.  Since the basis states 0  

and 1  form an orthonormal basis for the state space, any arbitrary state vector 

in the state space can be written as 10 ba  .  There is one more detail 

associated with postulate #1, which is the condition that state vectors must be 

unit vectors in the system’s state space.  For the qubit state, this just means that 

1
22
 ba .  Previously, we saw that 

2
a  and 

2
b  are just the probabilities of 

measuring states 0  or 1  respectively.  Therefore, the condition 1
22
 ba  is 

just the familiar condition that probabilities must add to one. 

The Second Postulate of Quantum Computing Mechanics 

Postulate #2 states that the evolution of a closed quantum system is 

described by a unitary transformation.  More precisely, the state 1  at time 1t  is 

related to the state 2  at time 2t  by a unitary operator U , which depends only 

on times 1t  and 2t .  That is:  

1212 ),(  ttU  
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By a unitary operator, we mean a matrix U , which has the property that 

IUU  , where the   superscript denotes the conjugate transpose (i.e. 

transpose the matrix, and take the complex conjugate of all the elements), and I  

in this case refers to the identity matrix which has the same dimensions as the 

matrix U .  This postulate is very important for quantum computing, because it 

implies that qubits (or registers of qubits) can only be transformed by unitary 

operators.  Therefore, in a quantum computer, the analogues of classical logic 

gates are unitary operators.  Thus, we can visualize quantum circuits using 

diagrams similar to the logic diagrams of classical computing.  We will see such 

diagrams later in this section. 

One interesting and very useful unitary operator is the Hadamard 

operator, which is usually denoted by H , where: 













11

11

2

1
H  

If we identify the state 0  with the column vector 








0

1
, and similarly 1  with 









1

0
, 

then:  

2

10
0


H ,  

and 
2

10
1


H . 

Thus, the Hadamard operator has the remarkable property that it transforms the 

pure basis states to equal superposition states.  This is very useful in many 
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quantum algorithms, because often we would like to work with equal 

superpositions of the states, but usually only have the basis states to start with. 

The Third Postulate of Quantum Computing Mechanics 

Postulate #3 explains an alternate way in which quantum systems can 

evolve.  If the quantum system is measured (i.e. its state is observed), then it 

immediately undergoes a discontinuous and unpredictable jump into one of its 

basis states.  That is, the superposition is destroyed.  In the case of the single 

qubit, which is represented by the state vector 10 ba  , a measurement of 

this state gives the result 0 , with probability 
2

a , or the result 1 , with 

probability 
2

b . 

The Fourth Postulate of Quantum Computing Mechanics 

To understand how the entire quantum register evolves, we need to 

consider composite quantum systems.  That is, not just single qubits, but 

collections of qubits that make up a quantum register.  Postulate #4 deals with 

composite systems.  Postulate #4 says that the state space of a composite 

physical system is the tensor product of the state spaces of the component 

physical systems.  The tensor product is a way of putting vector spaces together 

to form larger vector spaces.  The tensor product between two state vectors   

and   is written as  , or sometimes as   ,   or , .  To 

get a good idea of how the tensor product works, it helps to see how the tensor 

product of two matrices A  and B  is defined.  Supposing A  is an m -by- n  matrix, 
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and B  is a p -by- q  matrix, then the matrix representation of the tensor product 

is: 





















BABABA

BABABA

BABABA

BA

mnmm

n

n









21

22221

11211

, 

and therefore, BA  is an mp -by- nq  matrix.  The tensor product can also be 

generalized to tensor exponentiation, for example: .
3




  Now, 

suppose we had a quantum register of n  qubits, and we wanted to construct a 

unitary operator which, when applied to our register would give us an equal 

superposition of all possible n -qubit states.  Since the Hadamard operator ( H ) 

gives us an equal superposition for one qubit, the natural operator which gives us 

the equal superposition of all n  qubits is 
nH 
. 

Quantum Circuits 

As mentioned above, the second postulate gives us a method for creating 

circuit diagrams, much like the logic diagrams of classical computing.  For 

example, the logic diagram for the simplest transformation in classical computing 

(the “not” transformation) looks like this: 

 

where x denotes a binary variable (0 or 1), and the symbol in the middle is known 

as the not gate, which transforms the binary value to its opposite value.  This is a 
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simple schematic diagram that helps us understand what is happening with the 

logic variables.  If x started as zero, it would end up as one, and if x started as 

one, it would end up as zero.  

 There is a similar “not” transformation for qubits, but it is not quite as 

simple since the qubit can take on a whole continuum of states instead of just 

two.  The quantum “not” gate is usually denoted by X , because its matrix 

representation is the same as the Pauli- X  spin matrix, which is well known in 

quantum mechanics.  The effect this X  gate has on a general qubit is as follows: 

 

that is, it effectively swaps the probability amplitudes (the a  and the b ).  

These “circuit” diagrams are one way to represent the evolution of qubits 

in a quantum algorithm.  Another way is to use vector and matrix representations, 

so that the evolution of the algorithm is found through matrix multiplication (where 

the matrices are unitary as stated in postulate #2).  If we identify the state 0  

with the column vector 








0

1
, and similarly 1  with 









1

0
, then the general qubit will 

be given by 








b

a
, and any transformation on a single qubit will be a 2-by-2 matrix.  

For example, the X  gate given above would be represented by 









01

10
X .  The 

quantum circuit as shown above would be expressed by the matrix multiplication: 



 

 11 



























b

a

a

b

01

10
.   

The problem with this method of representation becomes apparent when we deal 

with systems with many qubits.  Due to postulate #4, and the use of the tensor 

product, the unitary matrices used in the computations will grow exponentially 

with respect to the number of qubits, such that it will not be feasible to write out 

all of the matrices involved.  For example, the Hadamard operator for a single 

qubit is given by 











11

11

2

1
H  in our standard representation.  However, the 

Hadamard operator on three qubits is: HHHH 3 , which has the matrix 

representation: 

















































11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8

13H , 

whereas the quantum circuit representation is given by: 

. 
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This is why the quantum circuit method is generally a better method for 

visualizing quantum algorithms.  We will use it often in later sections. 

 Since we are considering multi-qubit quantum gates, we should mention 

another very important one, known as the controlled-NOT gate.  Its circuit 

representation is as follows: 

 

where the solid dot indicates that the top qubit “controls” the bottom qubit, and 

the   symbol is the same as the XOR (exclusive OR) operation from classical 

logic, which is equivalent to modulo-2 addition (that is, find the remainder when 

BA  is divided by 2).  The action of this gate can be described in the following 

way: if the top (control) qubit is 0  then the bottom (target) qubit is left alone, 

however, if the top qubit is 1, then the target qubit is flipped.  That is: 

0000  ;  0101  ;  1110  ;  1011  . 

 In terms of a matrix representation if we let 00  be represented by 



















0

0

0

1

,  

01  be represented by 



















0

0

1

0

, 10  be represented by 



















0

1

0

0

, and 11  be represented 
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by 



















1

0

0

0

, then the controlled-NOT operator is: 





















0100

1000

0010

0001

CNU .  Or, in terms of 

a simple equation in Dirac notation: BAUABA CN ,,  . 

 The controlled-NOT gate is very important, because it has been proven 

that this gate, along with 1-qubit rotation gates (of which X  is one example), is 

sufficient for universal quantum computation (DiVincenzo, 1995).  This means 

that any algorithm created by the use of quantum computing can be broken down 

into steps involving the controlled-NOT gate and one-qubit rotations.  In other 

words, since we can represent the evolution of a quantum system by a unitary 

operator, then all unitary operators can be broken down into products of smaller 

unitary operators such as 1-qubit rotations, and the controlled-NOT gate. 

 There is one more tool we need in our toolbox of quantum circuits, which 

is a symbol for quantum measurement (as mentioned in postulate #3).  For a 

measurement of a quantum state, we will use the following symbol: 

. 

This symbol will usually come at the end of the algorithm, since measurement 

destroys any superposition, so we hope to have finished all the necessary steps 

that require superposition for computational advantages.  Thus, the usual order 

of a quantum algorithm, is as we have explained it here.  First, prepare the state 
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(which may come from initializing all the qubits to 0 , and then applying the 

Hadamard operator to form equal superpositions).  The second step will be to 

evolve the states (by employing some unitary operators).  The third and final step 

is usually to measure the states, to get a certain output.  This is the general order 

of a quantum algorithm. 

Quantum Computing in Finance 

Now that we have acquired a basic understanding of quantum computing, 

one might wonder how to apply these methods to solve financial problems.  

Mathematical finance, like any other field of applied mathematics, has 

computational problems which can be categorized into computational classes.  

These problems are classified according to the resource requirements needed to 

solve them.   Computational resources include time, space, and energy.  Usually, 

for a certain computer system, energy requirements remain a constant, but 

space and time needs can vary drastically.  By space, we mean the amount of 

computer memory needed to solve the problem.  As mentioned before, a 

quantum computer has the potential to reduce the space requirements due to the 

way it can work with many numbers simultaneously through superpositions.   

The time requirement is the most variable, but also the resource we can 

best quantify.  We can characterize the time requirement by defining a function 

between the sizes of the input to the number of time steps it takes a given 

algorithm to run.  The general size of this function is taken as a measure of the 

time resource.  If the time to run grows as a function )(ng  of the input size ( n ) 
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then we say the algorithm runs in order )(ng  or ))(( ngO . This method measures 

the upper bound of the asymptotic running time, and is known as asymptotic 

notation, or big-O notation, and it can be used to classify problems into different 

computational classes.  We can also use the notation ))(( ng  to denote the 

asymptotic lower bound for the running time of an algorithm. 

One area in which quantum computing can reduce the time requirements 

of a computation is in the area of derivative pricing.  The usual computational 

methods used to price derivatives are:  

1) The binomial tree approach 

2) The Monte Carlo approach, and 

3) Solving partial differential equations (PDEs) using a finite difference 

scheme. 

These three methods could all potentially benefit from an implementation 

on a quantum computer.  However, the Monte Carlo approach is the most natural 

candidate due to its dependence on randomness.  Implementing an improved 

Monte Carlo algorithm on a quantum computer will be the major focus of this 

paper.   

An Example Solution to a Financial Problem 

We will now look at a simple quantum algorithm to see how we can exploit 

the power of quantum mechanics to compute the solution to a problem in less 

time than would be possible using a classical computer.  In the quantum 
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computing literature the following algorithm is known as Deutsch’s algorithm 

(Deutsch, 1985), and it is often posed as a solution to a financial problem. 

Let us suppose we have discovered a method that can predict whether the 

market price of a given financial instrument will rise or fall tomorrow, depending 

on the outputs of some complicated predictor function ),( Mxf .  In this function, 

x  is a binary variable (i.e. it can only take the values 0  or 1), the output is also a 

binary variable (i.e. ),( Mxf  can only take the values 0  or 1), and M  is a 

variable that includes relevant market data (which will be taken as a constant for 

any given market day, so we can suppress this variable and simply write )(xf ).  

Our predictive method works as follows: if )1()0( ff   the instrument’s market 

price will increase tomorrow, and if )1()0( ff   the market price will decrease.  

Our dilemma is this: the function )(xf  is so complicated that it takes the majority 

of a day to calculate its value on the fastest super-computer available today.  

Since it takes most of a day to calculate )0(f and most of a day to calculate )1(f , 

by the time we have calculated both )0(f  and )1(f  (both of which are needed in 

order to compare their values) at least an entire day will have passed.  At this 

point, it will be too late to execute any trades to take advantage of our prediction.  

However, as it turns out, if our super-computer had some quantum abilities, it 

could calculate our prediction in time to make a handsome profit! 

The basic idea of Deutsch’s algorithm is that we do not actually need to 

calculate both )0(f  and )1(f  in order to compare their values.  We are actually 
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only concerned with a joint property of )0(f  and )1(f  (whether they are equal or 

not) and quantum computers excel at answering questions about joint properties.   

Let us define an operator, U , that transforms the general 2-qubit register 

as follows:  

)(: xfyxyxU   

(recall that   is the exclusive-OR operator).  So the result of this transformation 

is that the first qubit, x , is unchanged, and the second qubit is unchanged 

unless 1)( xf , in which case its value is flipped.  In order to value the function 

at both inputs simultaneously, we need to work with superpositions of the states 

0  and 1 .  If we apply the Hadamard operator to the state 1 , we get 

2

10
1


H .  If we use this as the initial second qubit, and apply the U  

operator, we get: 

2

)(1)(0

2

10
:

xfxf
xxU





  . 

Now, let us consider what happens for the two possible values of )(xf :   

if 0)( xf : 
 

2

10)1(

2

10

2

)(1)(0 0 






 xx

xfxf
x , 

if 1)( xf : 
 

2

10)1(

2

01

2

)(1)(0 1 






 xx

xfxf
x . 

Therefore, it is clear that we can write: 
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 
2

10)1(

2

)(1)(0 )( 





xf

x
xfxf

x . 

This is the most important result for Deutsch’s algorithm, because it allows us to 

summarize the effect of the operator U  as a sign change on the second qubit.  

Now, if we also allow the first qubit to be an equal superposition of 0  and 1 , 

we will be able to use the fact that U  only needs to evaluate the function once, to 

give properties of both )0(f , and )1(f .  If we apply the Hadamard operator to the 

state 0 , we get 
2

10
0


H .  If we use this as the initial first qubit, and apply 

the U  operator, we get: 

   
2

10)1(

2

1

2

10)1(

2

0

2

01

2

10
:

)1()0( 








 ff

U   













 














 


2

10

2

1)1(0)1( )1()0( ff

. 

If we apply the Hadamard operator to the first qubit again, we get: 

   












 














 

2

10

2

1)1()1(0)1()1( )1()0()1()0( ffff

 

If we measure this first qubit, according to postulate #3, we get: 

0  with probability 

2
)1()0(

2

)1()1( ff 
, 

and 1  with probability 

2
)1()0(

2

)1()1( ff 
. 
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These probabilities are the results we need.  Notice that if )1()0( ff   we get 

state 0  with probability 1, and if )1()0( ff   we get state 1  with probability 1.  

Therefore, using Deutsch’s algorithm, we only need to evaluate the function )(xf  

once, and we get a result that allows us to determine with certainty if the value of 

)(xf  is equal for the two inputs or if )(xf  is not equal, thus allowing us to predict 

the movement of our specified financial instrument.  Now all we need to do is 

discover such a function )(xf  which has these properties! 

 Deutsch’s algorithm very clearly shows the potential benefits of a quantum 

computer.  It employs the quantum mechanical properties of superposition and 

interference, and it employs the four basic steps used in most quantum 

algorithms:  

1. Initialize the quantum registers. 

2. Put the registers in superpositions of states. 

3. Evolve the registers using unitary operators. 

4. Measure the states to get some result. 

Deutsch’s algorithm can be summarized in quantum circuit notation like so: 

. 
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In the next section, we will explore some other quantum algorithms that 

are much more powerful than Deutsch’s algorithm.  We will also see how to use 

these algorithms to solve some real-life finance problems (as opposed to the 

contrived problem posed in this section). 
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QUANTUM ALGORITHMS 

A Global Perspective 

 Quantum computing is still in its infancy, and all of the algorithms 

presented in this section are merely first steps into the world of possibilities 

unleashed when using quantum mechanics for computational advantages.  

However, even though this field is just beginning, it is useful to note that large 

financial institutions have much to gain by being early adopters of new 

computational technologies.  For this reason, when quantum computing matures, 

it is likely that some of its first real-world applications will be in the financial 

arena.  This section highlights some generic quantum algorithms, which, when 

refined and specialized, will allow computational acceleration to the solution of 

many financial problems. 

Grover’s Search Algorithm 

Suppose you have a problem with the following properties: 

1. The only way to solve the problem is to guess an answer and check if it’s 

correct, 

2. There are N  possible answers to check, and 

3. Every possible answer takes the same amount of time to check. 
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One example of this problem is the searching of an unsorted database.  For 

example, if you have a telephone book with N  entries in which all the names are 

randomly ordered, and you want to find a telephone number which corresponds 

to a certain name, guessing and checking is the best you can do.  There is no 

way in which the search can be sped up.  Since this search will take on average 

2

N
 guesses with the possibility of taking up to N  guesses, this method of 

guessing and checking is an )(NO  algorithm, and there is no possible way it can 

be sped up.  However, a surprising result from quantum computing is that there 

is an algorithm which can find an answer to such problems in only  NO  steps! 

In this section we will learn about this  NO  algorithm which is usually 

known as Grover’s algorithm (after its creator, Lov K. Grover (Grover, 1996)).  

Suppose there are N  elements which we want to search through.  We will 

identify each element by an index in the range from 0  to )1( N .  Furthermore, 

we will assume that nN 2 , so that the index can be encoded into n  bits.  We 

will also assume that there is only one solution.  We define )(xf  as our search 

function.  That is, for any index x , 1)( xf  if x  is the solution, otherwise 

0)( xf .   This function is an indicator function which lets us know whether or 

not we have found a solution. 

As in Deutch’s algorithm we will define a unitary operator (U ) which has the 

following action, which allows us to apply our search function: 
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)(: xfwxwxU   

Here, w  is an extra work qubit, which is flipped if 1)( xf .  This unitary operator 

allows us to check whether x  is a solution to our search problem without 

disturbing the state x  in the following way: after preparing the state 0x , we 

can apply the operator U .  If w  is flipped to 1, then we know that x  is a solution 

to our search problem. 

Just as in Deutch’s algorithm, it is useful to set the extra qubit to the equal 

superposition 
2

10 
, and similarly applying the operator U  works as follows: 

 












 














 

2

10
1

2

10
:

)(
xxU

xf
 

Notice the work qubit doesn’t change.  In fact, it doesn’t change throughout the 

entire quantum search algorithm.  Therefore we don’t need to show it, and we will 

furthermore simply write the effect of U  as: 

  xxU
xf )(

1:   

That is, U  indicates solution states by flipping the sign. 

The algorithm proceeds as follows: 

1. Start with the index in the zero state 
n

0  
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2. Apply the n -qubit Hadamard transform 
nH 

 to put the index in an equal 

superposition of all of its states: 





1

0

1 N

x

x
N

 

3. Then apply what is known as the Grover Iteration  NO  times which 

consists of the following steps: 

a. Apply the operator U , 

b. Apply the Hadamard transform 
nH 

, 

c. Switch the sign of every basis state except 0 .  This transformation 

can be denoted by:   xx x01


 , for each 

computational basis state x , where 0x  is the Kronecker Delta 

function which is 1 if both of its indices are the same, and 0  

otherwise. 

d. Apply the Hadamard transform 
nH 

again. 

4. After  NO  Grover iterations, the index will be equal to the solution value 

with high probability.  We measure the index state to determine the value. 

Ignoring the work qubits, the quantum circuit for Grover’s algorithm is: 
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At first glance, it’s not entirely obvious how this algorithm works.  But a little 

analysis can clear up the confusion.  

First of all, let’s consider what operator must be applied to a general state 






1

0

N

x

x xa  (where the x s are the computational basis states and the xa s are their 

respective amplitudes) to achieve the effect as described in step 3c.  After a little 

thought, we can see that the operator which switches the sign of all the states 

except the 0  state is I002 .  To prove this, we will apply this phase shift 

operator to the general state: 
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   

 

   







 





























1

1

0

1

1

00000

1

0

0

1

0

1

0

0

02002

02

002002

N

x

x

N

x

xxx

N

x

xxx

N

x

N

x

xxx

xaa

xaaaa

xaa

xaxaxaI





 

This shows that only the 0  state has remained unchanged, all of the other 

states have opposite signs. 

Now, if we combine this phase shift operator from step 3c with the 

Hadamard operators from steps 3b and 3d, we get the following operator: 

   
I

HHHHHIH nnnnnn



 

2

002002
 

Where, as above, the state   is the equal superposition state.  Now, if we 

apply the operator U  as well, we can express the entire Grover iteration as one 

operator:  UIG  2 . 

 Now that we have defined the Grover iteration, we can ask: what does it 

do?  It can be shown (Aharonov, 1999) that the Grover iteration is a rotation in a 

two dimensional space defined by the solution state.  If we define t  as the 
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target solution state, and 



tx

x
N

q
1

1
 as a superposition of all of the 

states which are not solutions, then the Grover iteration G  is a rotation in this t-q 

space.  To see this, first realize that we can write the equal superposition state 

  as a weighted sum of these two other states: 

t
N

q
N

N 11



  

Then, the U  operator performs a reflection about the state q , and the 

remaining part of the Grover iteration, I2 , performs a reflection about 

the state  .  Since the product of two reflections is a rotation, we can see that 

the Grover iteration rotates the index state towards the solution state.  This can 

be visualized geometrically as follows:  
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The effect of the operation G on the states t  and q  is: 

 
q

N

N
t

N

N
qG

q
N

N
t

N
tG








 














 














12
1

12

122
1

 

We can write this transformation in matrix form, where the first row and column 

correspond to q , and the second to t  as: 

 
2

11

11

212

122

2
1

12

1212
1



















































































 




N

N

N

NN

N

N

N

N

N

N

N

N

N

NN

N

N

N

N

N

G  

It can be shown that this matrix is a rotation operator if we define: 

 

 
N

N

N

1
cos

1
sin










 

then: 

   
    




2

2

cossin

sincos
RG 







 
  
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Therefore, the Grover iteration is a rotation in t-q space by an angle 2 .  Letting 

k  be the number of iterations of G  applied to the initial state  , the final state 

will be: 

      tkqkG k  12sin12cos   

Since we want our final state to have an amplitude close to 1 in the t  state, the 

optimal number of Grover iterations to apply will be: 

  
2

1

42

1

1
sin4

2

1

4
112sin

1















N

N

kk





  

Since k  must be an integer, we have to round this quantity.  A good choice is to 

round down, in which case we end up with: 









 Nk

4


 

This shows that Grover’s algorithm converges on the solution state t  in  NO  

iterations. 

Grover’s Generalized Framework 

In 1998, Grover published a generalized framework for algorithms in which 

this  NO  search algorithm is just a special case (Grover, 1998).  Two more 

algorithms came from this generalized framework, which have promise for 
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applications in finance.  These algorithms find approximations for the median and 

mean of a statistical distribution.  It takes  2   to estimate these statistics to a 

precision   on a classical computer, but using Grover’s generalized framework 

the calculation only takes  1O . 

Suppose we have a function )(xf  on the indices 1,1,0  Nx  , which is 

0  for all inputs except for a target state, t , and we want to find t  (many problems 

can be transformed into solving a function of this type).   Assume that we have a 

unitary transformation, U , and we start with the system in the state s .  If we 

apply U  to s , the amplitude of reaching t  is tsU  (the element at the tht  row 

and ths  column of the matrix representation of U ),  and the probability of getting 

t  when the system is measured is: 
2

tsU .  This probability means that it would 

take 















2

1

tsU
 guesses until we found the solution index t .  However, Grover’s 

generalized algorithm reaches t  in only 














tsU
O

1
 steps. 

 

This generalized algorithm uses a method called amplitude amplification 

to increase the probability of the solution state, while decreasing the probabilities 

of all the non-solution states.  To do this, we need to define the operator xI  which 

is effectively a diagonal matrix with all terms equal to 1, except the xx  term which 

is 1 .  This is used to identify certain states for amplification.  We also need to 
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define tI , which isn’t as simple since we don’t know the value of t  prior to 

running the algorithm.  However, this can be set up using the our indicator 

function )(xf , and the XOR operator as shown in the  previous sections.  The 

algorithm itself is extremely simple, and can be summarized as applying 














tsU
O

1
 

repetitions of the operation sequence: 

UIUIG ts

1 , 

to reach the state tU 1 .  Then we only need to apply U  once more to cancel 

the 1U  (since U  is unitary, and IUU 1 ) .  Then, after measurement we are 

left with the target value t .   

Search Starting from the Zero State 

Grover’s generalized algorithm allows the creation of new algorithms 

simply by selecting a unitary operator U  and a starting state s .  Notice if we 

select 
nHU   (the n -bit Hadamard transform, where nN 2 ), and start at 

n
s


 0  (all qubits initialized to 0 ), we get the original version of Grover’s 

search algorithm.  This can be seen by noting that in this case, 0II s   is the 

operator that takes   xx x01


 , and tI  is the operator that takes 

  xx
xf )(

1  for each state x .  Noting also that   nn HH  
1

, we 
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can see that UIUIG ts

1  is the same as the Grover iteration for the original 

search algorithm we have shown above. 

Search Starting from Any State 

The search algorithm does not need to start from the zero state.  It could 

start from any one of the nN 2  computational basis states, since the probability 

of going from any of these states to the target state is 
N

U ts

12
 .   Starting at any 

of the basis states, and repeatedly applying the Grover iteration would give us an 

equally efficient  NO  algorithm. 

Median Estimation 

 Suppose we are given nN 2  numbers, denoted by 110 ,, Nxxx  , then 

we will define the  -approximate median of these numbers to be the number ix  

such that the number of jx  less than it, and the number of jx  more than it, are 

both less than  
2

1
N

  (where is   is a small positive number) .  The best 

classical algorithm to get to get such a value ix  is 









2

1


.  But the quantum 

algorithm, using Grover’s generalized framework is 










1
O .   
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As Grover puts it in his paper: we will consider a certain “threshold”  , 

such that the number of values below   is  1
2

N
.  Then, given the bound 

02  , the task is to find an estimate e  such that 
4

0 e . 

Now, if we associate a quantum state j  (which will be composed of n  

qubits), with each of the N  numbers, we can consider a unitary transform R  

which is a selective inversion operation such that: if the value jx  is smaller 

than , then we will invert the amplitude in j . 

 If we start with the system in the zero state, and consider the unitary 

operator 
nnRHHU  , after one application of U , the probability of the 

system being in the state 0  is 2 .  After 










0

1


O  applications of UIUIG 0

1

0

 , 

followed by one more application of U  and a measurement, the probability of 

getting 0  is 

2

04 













.  Then, it is possible to estimate   within the needed error 

bound of 
4

0 . 

Mean Estimation 

Grover also mentions a mean estimation algorithm in his generalized 

framework paper, but we will omit the details since the algorithm described in the 
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next section is even more general and easier to describe.  The most important 

point is that it is an 










1
O  algorithm, just like the median estimation algorithm. 



 

 35 

FINANCIAL APPLICATIONS 

A Quantum Algorithm for Integration 

 In (Abrams & Williams, 1999), the authors put forward a quantum 

algorithm for computing multi-dimensional integrals based on Grover’s amplitude 

amplification method.  This method gives a quadratic speed increase over the 

classical Monte Carlo method for integration, and an exponential speed increase 

over the classical deterministic integration algorithm. 

Classical Integration Methods 

Consider the general problem of integration.  We seek to integrate a d -

dimensional function )(Xg , where X  is a d -dimensional vector.  Without loss of 

generality, we can scale the domain of integration to be the unit hyper-rectangle 

given by      1,01,01,0   .  Then, we wish to calculate the integral I : 




 dXXgI )( . 

 We can approximate the function )(Xg  by another function )(Af , where 

each element ix  in X  is replaced by 
M

ai  in A , where the ia  values are integers 

in the range  M,1  such that 







 A

M
gAf

1
)( .  This allows us to approximate the 

integral I  with the d -dimensional sum S , as follows: 
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
dM

d
Af

M
S

],1[

)(
1

. 

Note that this sum is the same as the average of f  over all the possible input 

vectors A .   

We should also note that a sum of this form can be used to calculate the 

moments of a stochastic process.  Consider a stochastic process given by a 

sequence of values: Nwww ,, 21   where each iw  is a random selection from 

some distribution (for example, we could use the log-normal distribution for stock 

prices in the Black-Scholes world).  We might want to find some properties of the 

function )(Wv , where W  is a vector made from the elements of the sequence.  

Suppose we want to approximate the moments (mean, variance, skewness, 

kurtosis, etc.) of this function.  We can easily transform this function into a 

function of the type g  by making a change of variables.  We can write each iw  

as a function ),,,( 121 iii wwwrw   where this ir  is a random selection from the 

interval  1,0 .  Then, we can write )(Rv , where R  is a vector built from the 

random ir  values.  Since each  1,0ir , we have a function of the same form as 

g  above, and we can approximate the mean by S .  We can get higher moments 

by doing the same with the functions ,, 32 vv  etc. 

We have so far described the deterministic algorithm for evaluating the 

integral I .  Since we need to make dM  function evaluations, it is obvious that 

this algorithm is  dMO .  Obviously, this is very impractical for integrals of high 
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dimensionality.  The classical Monte-Carlo method for evaluating the integral 

doesn’t evaluate the function at every point.  In the Monte-Carlo algorithm, we 

randomly choose the A  vectors and build an estimator Ŝ .  After m  random 

choices of iA  vectors, we get: 





m

i

iAf
m

S
1

)(
1ˆ . 

This method depends on the law of large numbers, which tells us: SS
m




ˆlim  with 

probability 1.  Also, the central limit theorem can be applied to tell us that we can 

determine S  with accuracy   in 







2

1


O  steps.  Note, that the Monte-Carlo 

method doesn’t depend on the dimensionality, and is therefore much more 

practical for integrating functions with a high number of dimensions. 

Quantum Integration 

 In this section, we will describe the quantum algorithm for integration using 

amplitude amplification (Abrams & Williams, 1999).  Suppose we have an 

estimate for S , which we will call E , and let us define the difference: ESD  .  

We will define a new function: Eff  .  Then: 




















dd M
d

M
d

Af
M

EAf
M

ESD
]1,0[]1,0[

)(
1

)(
1

. 

So, we can interpret D  as the average value of f  .  The essential quantum part 

of the algorithm is to estimate the average value of f  , and we iterate to find 
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better estimates.  Supposing we have 1log 2 Md  qubits, we can label the states 

Araaar d ,2,1 , where the first qubit r  is a work qubit and the rest 

describe the input vector A  .  Here, we need Mn 2log  qubits to represent the 

integer values for each element on function input.  This implies that nM 2 , for 

some integer n , which gives a restriction on which values of M  we can use for 

our approximation function f .   

The quantum computer is initialized into the zero state: 

 Md 2log1
00000


 , 

and the Hadamard transformation 
Md

H 2log
, is applied to the function qubits 

to obtain an equal superposition of all possible values for A : 





dM

d
A

M ]1,0[

1 0
1

, 

Then, we rotate the first qubit by an amount f  .  The state is then: 

 



dM

d
AAfAAf

M ]1,0[

2

2 1)(0)(1
1

. 

Next, we perform the inverse of the Hadamard transform used in the first step.  

We can now see that the amplitude of the state 0001   will be D  (since each 

state A1  contributes amplitude )(
1

Af
M d

  to the state 0001  ).  Therefore, 

an estimate for D  could be obtained by repeating the above process, measuring, 
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and counting the frequency of the result 0001  .  We would get an accuracy of 

  in 







2

1


O  measurements. 

 The method described thus far only has the same asymptotic speed as 

the classical Monte-Carlo method.  However, we can speed it up by introducing 

some amplitude amplification to increase the accuracy of our estimate.  We can 

consider the steps applied so far as a single unitary operation U , which has an 

amplitude tsU  between the starting state 0000 s , and the target state 

0001 t .  Therefore, we can use Grover’s generalized framework for 

amplitude amplification to increase the probability of measuring this target state.  

However, there is a limit on the amount of amplification which can be applied for 

each estimate of D .  For this reason, we will need to run the entire algorithm a 

few times.  As we get better estimates for D , we can apply more amplitude 

amplification.  The number of total iterations will be small, so the complexity will 

be dominated by the amplitude amplification at the last iteration, which, as we 

have seen is 










1
O  to get an estimate with accuracy  . 

Quantum Random Number Generation 

 Reliable random number generation is a fundamental part of any Monte 

Carlo computation.  However, the computation of true random numbers is not 

possible on a classical computer.  The “random numbers” which we use for our 

Monte Carlo computations and stochastic simulations are actually pseudo-
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random numbers, which are created by a deterministic function, designed to pass 

many statistical tests of randomness (Zak & Williams, 1999).  Sometimes 

numbers generated in this way can contain subtle correlations, and can therefore 

cause undesired results.  In the case of derivative pricing using Monte Carlo, this 

could cause undesired correlations in the asset price paths, which could cause 

unintended correlations in prices. 

 As an extreme example, we can consider the RANDU linear congruential 

generator (Zak & Williams, 1999).  This algorithm for calculating pseudo-random 

numbers was common on IBM mainframes of the 1960s.  A linear congruential 

generator is defined by: 

nmlNN kk mod)(1   

where l , m , n  are integers.  The sequence of numbers generated, N , appear to 

be a set of random numbers in the range 0  to 1n .  These numbers would pass 

many tests of randomness.   However, if we use 65539l , 0m , 312n , and 

11 N  (as was used in the RANDU algorithm), and we take 3 successive triples 

produced by the generator to be the ),,( zyx  coordinates of a 3-dimensional 

space, we can inspect the numbers from different angles to find a disturbing 

result. 
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When shown from this angle, the random numbers seem to have no pattern.  

These numbers look like they would be useful random numbers in a 2-

dimensional space. 



 

 42 

 

From this angle, the numbers also look random - so far, they appear to be 

random looking directly down two of the axes. 
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Here we look at the plotted triples of random number by the side, and it still looks 

very disordered.  However, if we change the angle slightly, we can see the 

disturbing truth. 
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As we can clearly see in this last case, all the numbers actually lie in a set 

of parallel planes.  Therefore, these numbers are not random at all, and could 

give misleading results if used in a numerical simulation of a stochastic process. 

Although pseudo-random number generators are better today than they 

were in the 60s, hidden correlations could still be lurking.  For example, as 

recently as 1992 there was a problem found in a supposedly good random 

number generator (Ferrenberg, 1992).  The lesson is that the only way to be truly 

confident about the randomness in our numbers is to use a random source for 

generating them. 

The quantum algorithm for random number generation is extremely 

simple, and gives us true random numbers, due to the inherent randomness of 
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the quantum system.  We can get a random number in the range 0  to 12 n  by 

preparing an n -qubit register in the zero state: 
n

0 , applying the Hadamard 

transform to each qubit, and then measuring the result, which will randomly give 

us one of the n2   possible states.  We could then use a function transformation to 

transform these uniform random numbers into random numbers from any other 

distribution. 

These true quantum random numbers could be used as the first step in a 

Monte-Carlo simulation - in which random numbers are calculated.  As described 

in (Glasserman, 2003), we could replace the usual pseudo-random number 

generation by quasi-random numbers which are not actually random, but have 

properties that allow the entire space to be efficiently filled.  Likewise, we could 

replace the usual pseudo-random number generation with this true quantum 

random number generation to use a set of random numbers which are 

theoretically free from any unwanted correlations like the hidden correlations 

demonstrated above. 
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CONCLUSION 

The importance of Monte-Carlo in computational finance cannot be 

overestimated.  Monte-Carlo simulation is the only practical method for 

consistently analysing portfolios of financial instruments dependent on multiple 

market factors.  It is therefore an indispensable tool for risk management.  

However, the quantum algorithm for Monte-Carlo as described above only gives 

a modest improvement in speed.  At the time of writing, the state of the art in 

quantum computer hardware is nowhere near able to implement even the 

simplest version of the algorithm.  Therefore, the expense of developing the 

quantum computer technology far outweighs the potential benefits of the slight 

speed increase available, especially after considering that this increase could 

also be obtained simply by the addition of extra classical computational 

resources. 

 To catalyze the development of quantum computer technology, an 

exponentially faster algorithm with wide applications in finance needs to be 

discovered.  Quantum algorithms which are exponentially faster than any known 

classical algorithms do exist, such as Shor’s factoring algorithm (Shor, 1994).  

Unfortunately, these algorithms do not have any practical or pervasive use in 

finance. 

 The quantum random number generation algorithm seems to be the most 

practical algorithm for use in finance.  Although the speed increase is not 



 

 47 

necessarily important, the ability to generate true random numbers may prove to 

be more important in the future.  As derivatives markets become more efficient, 

price differences caused by subtle correlations in random number generators 

may lead to potential arbitrage opportunities.  Pricing using true random numbers 

may prove to be the only way to remove these inaccuracies. 

 Although known applications for quantum computers in finance are quite 

weak at the time of writing, technological advancements might come at any time, 

and it is a good idea to be prepared for the possible implications of quantum 

computing technology, since the inability to adapt to new technology is a source 

of risk which should not be underestimated. 
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APPENDICES 

Appendix A: Dirac Notation and Tensor Products 

The standard notation used in the quantum mechanics literature is to 

denote quantum states in the following form:  

X , 

where X  is the label for the quantum state, and the “ ” enclosure indicates that 

it is a quantum state.  This notation is known as Dirac notation, after the inventor 

Paul Dirac, who was one of the pioneers in theoretical quantum mechanics. 

 Since a quantum state is a vector, we could have used many other 

notations to denote a vector, some examples are: 

X


, X , X  or just X . 

However, one advantage of the Dirac notation is that it can be used both to 

describe a column vector (which are the basis states we use in quantum 

computing) and the transpose – a row vector.  If we have a real, finite 

dimensional quantum state, we can use X  to denote the column vector for the 

state, and X  to denote the equivalent row vector, or transpose.   The “ ” 

enclosure is known as a “bra”, where the “ ” enclosure is known as a “ket”.  

This is why the notation is sometimes known as bra-ket notation.   
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If you multiply the bra by the ket, you get the inner product, which is a very 

useful operation in linear algebra.  Usually, in the bra-ket multiplication, one of 

the lines are removed, so: 

YXYX  . 

Another way to multiply is the ket by the ket, or the bra by the bra.  These are 

defined to denote the tensor product of the two states: 

YXYX  , 

which is the way larger quantum states are built from smaller quantum states.  In 

this notation, we have many different ways of writing the tensor products 

between two states, since it is very common: 

XYYXYX  , . 

These are all equivalent, and usually the context will determine which form is 

used. To make these ideas more clear, it might help to see some examples. 

 Consider the computational basis states for a single qubit.  These are 

denoted by 0 , and 1 .  Since quantum states are vectors, we can define them 

explicitly as follows: 











0

1
0 , and 










1

0
1 . 

Then, the inner products of all combinations of these states are: 

  1
0

1
010000 








 , 
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  0
1

0
011010 








 , 

  0
0

1
100101 








 , 

  1
1

0
101111 








 . 

Therefore, we can see that the inner product of the computational basis states is 

the Kronecker delta: 

 1,0,  xyx xy . 

The definition of the tensor product of two matrices is as follows: 

supposing X  is an m -by- n  matrix, and Y  is a p -by- q  matrix, then the matrix 

representation of the tensor product is: 































































YXYXYX

YXYXYX

YXYXYX

YYY

YYY

YYY

XXX

XXX

XXX

YX

mnmm

n

n

pqpp

q

q

mnmm

n

n

























21

22221

11211

21

22221

11211

21

22221

11211

, 

and therefore, YX   is an mp -by- nq  matrix.   

Therefore, if we have two vectors: suppose X  is an m -element column vector 

(or an m -by-1 matrix), and Y  is an n -element column vector (or an n -by-1 

matrix), then the tensor product between them is: 
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





























































YX

YX

YX

Y

Y

Y

X

X

X

YXYX

mnm


2

1

2

1

2

1

, 

Which is an mn -by-1 vector. The tensor product can also be generalized to 

tensor exponentiation, for example: XXXX 
3

. 

 The tensor product is useful in quantum computing when building registers 

of qubits from single qubits.  For example, if we consider all the possible 

combinations of the computational basis states for the single qubit, which are 

defined as: 











0

1
0 , and 










1

0
1 , 

then we get: 












































































0

0

0

1

0

1
0

0

1
1

0

1

0

1
00 , 












































































0

0

1

0

1

0
0

1

0
1

1

0

0

1
10 , 












































































0

1

0

0

0

1
1

0

1
0

0

1

1

0
01 , 
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










































































1

0

0

0

1

0
1

1

0
0

1

0

1

0
11 . 

This set of vectors can be used as a basis for the 2 -qubit registers, since they 

are orthonormal and span the space.  In this case, it makes sense to use the xy  

form for the tensor product, to define this new basis, and if we interpret all these 

two digit numbers as binary digits, we can re-label them as: 





















0

0

0

1

00000 , 





















0

0

1

0

10011 , 





















0

1

0

0

01102 , 





















1

0

0

0

11113 . 

The utility of Dirac’s notation becomes very noticeable when we build even larger 

registers of qubits.  
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