

EXPLORATIONS IN QUANTUM COMPUTING FOR

FINANCIAL APPLICATIONS

by

Jesse Gare
B. Sc., McMaster University 2004

THESIS PROJECT
 SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ARTS

In the
Faculty

of
Business Administration

Financial Risk Management Program

© Jesse Gare 2008

SIMON FRASER UNIVERSITY

Summer 2008

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Simon Fraser University Institutional Repository

https://core.ac.uk/display/56366396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of

which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies

only for such users or in response to a request from the library of any other university, or other educational

institution, on its own behalf or for one of its users.

I further grant permission to Simon Fraser University to keep or make a digital copy for use in its

circulating collection.

I further agree that permission for multiple copying of this work for scholarly purposes may be granted by

me or the Dean of Graduate Studies. It is understood that copying, publication or public performance of this

work for financial gain shall not be allowed without my written permission.

 Public performance permitted:

Multimedia materials that form part of this work are hereby licenced to Simon Fraser University for

educational, non-theatrical public performance use only. This licence permits single copies to be made for

libraries as for print material with this same limitation of use.

 Public performance not permitted:

Multimedia materials that form part of this work are hereby licenced to Simon Fraser University for private

scholarly purposes only, and may not be used for any form of public performance. This licence permits

single copies to be made for libraries as for print material with this same limitation of use.

 Multimedia licence not applicable to this work.

No separate DVD or DC-ROM material is included in this work.

Title of Project:

Explorations in Quantum Computing for Financial Applications

Author:

 Jesse Gare

 (Date Signed)

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has

granted to Simon Fraser University the right to lend this thesis, project or

extended essay to users of the Simon Fraser University Library, and to make

partial or single copies only for such users or in response to a request from the

library of any other university, or other educational institution, on its own behalf

or for one of its users.

The author has further granted permission to Simon Fraser University to keep or

make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work

for scholarly purposes may be granted by either the author or the Dean of

Graduate Studies.

It is understood that copying or publication of this work for financial gain shall

not be allowed without the author’s written permission.\

Permission for public performance, or limited permission for private scholarly

use, of any multimedia materials forming part of this work, may have been

granted by the author. This information may be found on the separately

catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this

author, may be found in the original bound copy of this work, retained in the

Simon Fraser University Archive.

W. A. C. Bennett Library

Simon Fraser University

Burnaby, BC, Canada

 ii

APPROVAL

Name: Jesse Gare

Degree: Master of Arts

Title of Thesis: Explorations in Quantum Computing for Financial
Applications

Supervisory Committee:

 Chair:

 Dr. Geoffrey Poitras
Supervisor
Professor of Business Administration

 Dr. John Heaney
Second Reader
Associate Professor of Finance

Date Defended/Approved: ______________________________________

 iii

ABSTRACT

Quantum computers have the potential to increase the solution speed for

many computational problems. This paper is a first step into possible

applications for quantum computing in the context of computational finance. The

fundamental ideas of quantum computing are introduced, followed by an

exposition of the algorithms of Deutsch and Grover. Improved mean and median

estimation are shown as results of Grover’s generalized framework. The

algorithm for mean estimation is refined to an improved Monte Carlo algorithm.

Quantum random number generation is also described.

 iv

DEDICATION

To Sasha, for being the coolest girl in the world!

 v

ACKNOWLEDGEMENTS

I want to thank Dr. Poitras for his patience.

I want to thank all of the excellent instructors in the Financial Risk

Management program who really came through and pioneered a top notch first

year for the program. Special thanks to Drs. Pavlov, Jones, Theunissen, and

Goddard for excellence in teaching and for all the extra support they provided.

I want to thank Dr. William Macready and his colleagues at D-Wave

Systems for meeting with me to discuss the potential applications of their work. I

wish them luck with their vision of commercializing a quantum computer. It truly

is a noble goal.

I want to thank Drs. John Berlinsky and Brian King at McMaster University

for introducing me to the wonders of quantum mechanics, and quantum

computing in particular.

I want to give a huge thanks to the lovely and talented Sasha Wilson, for

her motivation and all-around awesomeness.

Last, but not least, I want to thank to my parents: Robert and Sharon

Gare. None of this would have been possible without their constant support and

encouragement.

 vi

TABLE OF CONTENTS

Approval .. ii

Abstract .. iii

Dedication .. iv

Acknowledgements .. v

Table of Contents .. vi

Introduction ... 1

Motivation .. 1

What is Quantum Computing? .. 2
Some Quantum Computing Basics ... 5

The First Postulate of Quantum Computing Mechanics 6
The Second Postulate of Quantum Computing Mechanics 6
The Third Postulate of Quantum Computing Mechanics 8

The Fourth Postulate of Quantum Computing Mechanics 8
Quantum Circuits ... 9

Quantum Computing in Finance .. 14

An Example Solution to a Financial Problem .. 15

Quantum Algorithms .. 21

A Global Perspective ... 21

Grover’s Search Algorithm .. 21
Grover’s Generalized Framework .. 29

Search Starting from the Zero State .. 31

Search Starting from Any State ... 32
Median Estimation ... 32
Mean Estimation .. 33

Financial Applications ... 35

A Quantum Algorithm for Integration ... 35
Classical Integration Methods .. 35

Quantum Integration .. 37
Quantum Random Number Generation ... 39

Conclusion .. 46

Appendices ... 48

Appendix A: Dirac Notation and Tensor Products ... 48

Reference List ... 53

 vii

 1

INTRODUCTION

Motivation

This paper is an introduction to the field of quantum computing for

financial practitioners, with an explanation of the basics of quantum computing

and a description of modern algorithms that can be used to solve computational

problems in finance. We start with an introduction to the field of quantum

computing. The introduction follows the approach and notation used in the

standard text on quantum computing (Nielsen & Chuang, 2000).

In 1994, Peter Shor, a researcher at Bell Labs, published an algorithm for

factoring large composite numbers (Shor, 1994). This algorithm was

exponentially faster than any known algorithm at the time. It was also unique

since it would only work on a computer that could use fundamental properties of

quantum mechanics. This breakthrough initiated a flood of new interest into the

field of quantum computing, and during the following decade, many advances

were made. In 1996, Lov K. Grover published a quantum algorithm for searching

an unsorted database (Grover, 1996), and a few years later, he generalized his

method to create a framework for the invention of new algorithms (Grover, 1998).

This generalized framework allowed the creation of an algorithm for finding the

mean of a statistical distribution (Grover, 1998), which can be modified for use in

Monte Carlo simulations (Abrams & Williams 1999). This improved algorithm can

be applied in finance to get a quadratic speed-up for any Monte Carlo simulation.

 2

Another interesting application of quantum computing in finance is to allow

true random number generation (Zak & Williams, 1999), which can be used as

the first step in a Monte Carlo simulation (Glasserman, 2003), or any other

situation where market factors are modelled as random variables. This

application is considered since randomness is the basic mathematical concept

used to model financial risk (Powers, 2008).

What is Quantum Computing?

Quantum computing is a method for performing computational tasks by

the use of quantum mechanical systems. It is fundamentally different from the

familiar paradigm of classical computing because quantum mechanical systems

have properties that cannot be efficiently simulated using conventional classical

information processing methods. Some of the most useful quantum properties

are superposition, interference, entanglement, non-determinism, and non-

clonability. We can exploit each of these properties to realize fundamentally new

computational advantages.

In a conventional computer, the basic unit of information processing is a

binary digit (usually referred to as a “bit”) which can be in one of two states: zero

or one. The bit is used to represent one piece of information, and a collection of

bits (known as a register) can be used to represent more complicated

information. Physically, inside the computer, these bits are realized as

transistors (or switches) which can also take one of two states: on or off. The

physical registers in the computer are just arrays of these switches, so a register

taken as a whole is considered to be in only one state at a time. For example, in

 3

a register of 3 bits there are eight possible states, where the zeros and ones

represent the states of the individual bits: 000, 001, 010, 011, 100, 101, 110, and

111. These eight register states could be used to represent the numbers from

one to eight, or any other piece of information that is distinguished by three

true/false decisions.

Like the conventional bit, the quantum bit (or “qubit”) can also take one of

two states: 0 or 1 . Here, the “ ” surrounding the zero and one is used to

show that we are talking about a quantum state, instead of a regular classical

state. The “ ” enclosure is known as Dirac notation, and it has become the

standard for denoting quantum states, and we will use it to denote qubit states.

We can think of a variable in this notation as a column vector, in which case the

“ ” enclosure is the transpose of the column vector (the equivalent row vector)

for our purposes. See Appendix A for a more thorough description of this

notation.

There are similarities between bits and qubits, but there are also

fundamental differences. Unlike the conventional bit, the qubit can exist in a kind

of mixture of both states 0 and 1 at the same time. This is possible to realize

in a quantum system due to the quantum phenomenon known as superposition,

in which a component of a quantum system can be prepared such that its

configuration is fundamentally uncertain. By fundamentally uncertain, we mean

there is no possible way to measure how the component is configured without

 4

altering its configuration. Mathematically, the possible states of the qubit are

linear combinations of the states 0 and 1 :

10 ba  ,

where  is the state of the qubit, and a and b are complex numbers. In other

words, the state of the qubit is a vector in a two-dimensional complex vector

space. Since the state of the qubit is fundamentally uncertain when it is in a

superposition like this, we cannot examine a qubit to determine which state it

occupies. Due to the peculiarities of quantum mechanics, if we measure the

qubit, we get either the result 0 , with probability
2

a , or the result 1 , with

probability
2

b .

 This property of superposition can be exploited for computational benefits.

Consider a register of qubits, which is just an array of qubits combined together.

Since the qubit can be arranged into a state that is an equal superposition of both

of its basis states, namely the state:

1
2

1
0

2

1
 .

We can consider this state as being both 0 and 1 simultaneously, therefore

representing 2 pieces of information simultaneously. Now, consider a register of

three such qubits, each in an equal superposition of its 2 states. It would

represent all of the 8 states: 000 , 001 , 010 , 011 , 100 , 101 , 110 , 111

simultaneously. In general, an n -qubit register could store n2 states

simultaneously, whereas the conventional n -bit register could only store one

 5

state at a time. Since a quantum register can be placed into a superposition of

all of its classical states, it makes a quantum computer into a massively parallel

computer. A quantum computer can work on all possible classical states

simultaneously in the time it would take to work on just one of the states in a

classical computer. Therefore, there might be a way in which we can manipulate

this quantum register so it would end up in a quantum state that, when

measured, would reveal an answer to a desired computation. This is, in fact,

what quantum computing is all about.

Some Quantum Computing Basics

In order to understand how we can manipulate quantum registers to

output solutions to computational problems, we have to learn about how quantum

systems evolve. The most succinct way to learn this is to recall the four

fundamental postulates of quantum mechanics. Note that the postulates

described in the following sections will not be stated in their most general form

since we are only concerned with finite dimensional problems. This simpler

version of quantum mechanics will be good enough for our purposes, since

quantum computers have a finite number of states, and we therefore only need

to consider finite dimensional spaces. This also greatly simplifies the

mathematical formalisms needed. Most of the descriptions and notation used in

this section are borrowed from the standard text on quantum computing (Nielsen

& Chuang, 2000).

 6

The First Postulate of Quantum Computing Mechanics

Postulate #1 explains that we can associate a mathematical concept

(namely a Hilbert space) with any isolated physical system. We call this the state

space, because it contains all of the possible states for our physical system. The

system’s particular configuration is then represented by a state vector, which is a

member of the state space. We have already seen an example of a state space

associated with the qubit, which is in fact the simplest quantum mechanical

system. The qubit has a 2-dimensional state space. Since the basis states 0

and 1 form an orthonormal basis for the state space, any arbitrary state vector

in the state space can be written as 10 ba  . There is one more detail

associated with postulate #1, which is the condition that state vectors must be

unit vectors in the system’s state space. For the qubit state, this just means that

1
22
 ba . Previously, we saw that

2
a and

2
b are just the probabilities of

measuring states 0 or 1 respectively. Therefore, the condition 1
22
 ba is

just the familiar condition that probabilities must add to one.

The Second Postulate of Quantum Computing Mechanics

Postulate #2 states that the evolution of a closed quantum system is

described by a unitary transformation. More precisely, the state 1 at time 1t is

related to the state 2 at time 2t by a unitary operator U , which depends only

on times 1t and 2t . That is:

1212),( ttU

 7

By a unitary operator, we mean a matrix U , which has the property that

IUU  , where the  superscript denotes the conjugate transpose (i.e.

transpose the matrix, and take the complex conjugate of all the elements), and I

in this case refers to the identity matrix which has the same dimensions as the

matrix U . This postulate is very important for quantum computing, because it

implies that qubits (or registers of qubits) can only be transformed by unitary

operators. Therefore, in a quantum computer, the analogues of classical logic

gates are unitary operators. Thus, we can visualize quantum circuits using

diagrams similar to the logic diagrams of classical computing. We will see such

diagrams later in this section.

One interesting and very useful unitary operator is the Hadamard

operator, which is usually denoted by H , where:













11

11

2

1
H

If we identify the state 0 with the column vector 








0

1
, and similarly 1 with 









1

0
,

then:

2

10
0


H ,

and
2

10
1


H .

Thus, the Hadamard operator has the remarkable property that it transforms the

pure basis states to equal superposition states. This is very useful in many

 8

quantum algorithms, because often we would like to work with equal

superpositions of the states, but usually only have the basis states to start with.

The Third Postulate of Quantum Computing Mechanics

Postulate #3 explains an alternate way in which quantum systems can

evolve. If the quantum system is measured (i.e. its state is observed), then it

immediately undergoes a discontinuous and unpredictable jump into one of its

basis states. That is, the superposition is destroyed. In the case of the single

qubit, which is represented by the state vector 10 ba  , a measurement of

this state gives the result 0 , with probability
2

a , or the result 1 , with

probability
2

b .

The Fourth Postulate of Quantum Computing Mechanics

To understand how the entire quantum register evolves, we need to

consider composite quantum systems. That is, not just single qubits, but

collections of qubits that make up a quantum register. Postulate #4 deals with

composite systems. Postulate #4 says that the state space of a composite

physical system is the tensor product of the state spaces of the component

physical systems. The tensor product is a way of putting vector spaces together

to form larger vector spaces. The tensor product between two state vectors 

and  is written as  , or sometimes as  ,  or , . To

get a good idea of how the tensor product works, it helps to see how the tensor

product of two matrices A and B is defined. Supposing A is an m -by- n matrix,

 9

and B is a p -by- q matrix, then the matrix representation of the tensor product

is:





















BABABA

BABABA

BABABA

BA

mnmm

n

n









21

22221

11211

,

and therefore, BA is an mp -by- nq matrix. The tensor product can also be

generalized to tensor exponentiation, for example: .
3




 Now,

suppose we had a quantum register of n qubits, and we wanted to construct a

unitary operator which, when applied to our register would give us an equal

superposition of all possible n -qubit states. Since the Hadamard operator (H)

gives us an equal superposition for one qubit, the natural operator which gives us

the equal superposition of all n qubits is
nH 
.

Quantum Circuits

As mentioned above, the second postulate gives us a method for creating

circuit diagrams, much like the logic diagrams of classical computing. For

example, the logic diagram for the simplest transformation in classical computing

(the “not” transformation) looks like this:

where x denotes a binary variable (0 or 1), and the symbol in the middle is known

as the not gate, which transforms the binary value to its opposite value. This is a

 10

simple schematic diagram that helps us understand what is happening with the

logic variables. If x started as zero, it would end up as one, and if x started as

one, it would end up as zero.

 There is a similar “not” transformation for qubits, but it is not quite as

simple since the qubit can take on a whole continuum of states instead of just

two. The quantum “not” gate is usually denoted by X , because its matrix

representation is the same as the Pauli- X spin matrix, which is well known in

quantum mechanics. The effect this X gate has on a general qubit is as follows:

that is, it effectively swaps the probability amplitudes (the a and the b).

These “circuit” diagrams are one way to represent the evolution of qubits

in a quantum algorithm. Another way is to use vector and matrix representations,

so that the evolution of the algorithm is found through matrix multiplication (where

the matrices are unitary as stated in postulate #2). If we identify the state 0

with the column vector 








0

1
, and similarly 1 with 









1

0
, then the general qubit will

be given by 








b

a
, and any transformation on a single qubit will be a 2-by-2 matrix.

For example, the X gate given above would be represented by 









01

10
X . The

quantum circuit as shown above would be expressed by the matrix multiplication:

 11



























b

a

a

b

01

10
.

The problem with this method of representation becomes apparent when we deal

with systems with many qubits. Due to postulate #4, and the use of the tensor

product, the unitary matrices used in the computations will grow exponentially

with respect to the number of qubits, such that it will not be feasible to write out

all of the matrices involved. For example, the Hadamard operator for a single

qubit is given by 











11

11

2

1
H in our standard representation. However, the

Hadamard operator on three qubits is: HHHH 3 , which has the matrix

representation:

















































11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8

13H ,

whereas the quantum circuit representation is given by:

.

 12

This is why the quantum circuit method is generally a better method for

visualizing quantum algorithms. We will use it often in later sections.

 Since we are considering multi-qubit quantum gates, we should mention

another very important one, known as the controlled-NOT gate. Its circuit

representation is as follows:

where the solid dot indicates that the top qubit “controls” the bottom qubit, and

the  symbol is the same as the XOR (exclusive OR) operation from classical

logic, which is equivalent to modulo-2 addition (that is, find the remainder when

BA is divided by 2). The action of this gate can be described in the following

way: if the top (control) qubit is 0 then the bottom (target) qubit is left alone,

however, if the top qubit is 1, then the target qubit is flipped. That is:

0000  ; 0101  ; 1110  ; 1011  .

 In terms of a matrix representation if we let 00 be represented by



















0

0

0

1

,

01 be represented by



















0

0

1

0

, 10 be represented by



















0

1

0

0

, and 11 be represented

 13

by



















1

0

0

0

, then the controlled-NOT operator is:





















0100

1000

0010

0001

CNU . Or, in terms of

a simple equation in Dirac notation: BAUABA CN ,,  .

 The controlled-NOT gate is very important, because it has been proven

that this gate, along with 1-qubit rotation gates (of which X is one example), is

sufficient for universal quantum computation (DiVincenzo, 1995). This means

that any algorithm created by the use of quantum computing can be broken down

into steps involving the controlled-NOT gate and one-qubit rotations. In other

words, since we can represent the evolution of a quantum system by a unitary

operator, then all unitary operators can be broken down into products of smaller

unitary operators such as 1-qubit rotations, and the controlled-NOT gate.

 There is one more tool we need in our toolbox of quantum circuits, which

is a symbol for quantum measurement (as mentioned in postulate #3). For a

measurement of a quantum state, we will use the following symbol:

.

This symbol will usually come at the end of the algorithm, since measurement

destroys any superposition, so we hope to have finished all the necessary steps

that require superposition for computational advantages. Thus, the usual order

of a quantum algorithm, is as we have explained it here. First, prepare the state

 14

(which may come from initializing all the qubits to 0 , and then applying the

Hadamard operator to form equal superpositions). The second step will be to

evolve the states (by employing some unitary operators). The third and final step

is usually to measure the states, to get a certain output. This is the general order

of a quantum algorithm.

Quantum Computing in Finance

Now that we have acquired a basic understanding of quantum computing,

one might wonder how to apply these methods to solve financial problems.

Mathematical finance, like any other field of applied mathematics, has

computational problems which can be categorized into computational classes.

These problems are classified according to the resource requirements needed to

solve them. Computational resources include time, space, and energy. Usually,

for a certain computer system, energy requirements remain a constant, but

space and time needs can vary drastically. By space, we mean the amount of

computer memory needed to solve the problem. As mentioned before, a

quantum computer has the potential to reduce the space requirements due to the

way it can work with many numbers simultaneously through superpositions.

The time requirement is the most variable, but also the resource we can

best quantify. We can characterize the time requirement by defining a function

between the sizes of the input to the number of time steps it takes a given

algorithm to run. The general size of this function is taken as a measure of the

time resource. If the time to run grows as a function)(ng of the input size (n)

 15

then we say the algorithm runs in order)(ng or))((ngO . This method measures

the upper bound of the asymptotic running time, and is known as asymptotic

notation, or big-O notation, and it can be used to classify problems into different

computational classes. We can also use the notation))((ng to denote the

asymptotic lower bound for the running time of an algorithm.

One area in which quantum computing can reduce the time requirements

of a computation is in the area of derivative pricing. The usual computational

methods used to price derivatives are:

1) The binomial tree approach

2) The Monte Carlo approach, and

3) Solving partial differential equations (PDEs) using a finite difference

scheme.

These three methods could all potentially benefit from an implementation

on a quantum computer. However, the Monte Carlo approach is the most natural

candidate due to its dependence on randomness. Implementing an improved

Monte Carlo algorithm on a quantum computer will be the major focus of this

paper.

An Example Solution to a Financial Problem

We will now look at a simple quantum algorithm to see how we can exploit

the power of quantum mechanics to compute the solution to a problem in less

time than would be possible using a classical computer. In the quantum

 16

computing literature the following algorithm is known as Deutsch’s algorithm

(Deutsch, 1985), and it is often posed as a solution to a financial problem.

Let us suppose we have discovered a method that can predict whether the

market price of a given financial instrument will rise or fall tomorrow, depending

on the outputs of some complicated predictor function),(Mxf . In this function,

x is a binary variable (i.e. it can only take the values 0 or 1), the output is also a

binary variable (i.e.),(Mxf can only take the values 0 or 1), and M is a

variable that includes relevant market data (which will be taken as a constant for

any given market day, so we can suppress this variable and simply write)(xf).

Our predictive method works as follows: if)1()0(ff  the instrument’s market

price will increase tomorrow, and if)1()0(ff  the market price will decrease.

Our dilemma is this: the function)(xf is so complicated that it takes the majority

of a day to calculate its value on the fastest super-computer available today.

Since it takes most of a day to calculate)0(f and most of a day to calculate)1(f ,

by the time we have calculated both)0(f and)1(f (both of which are needed in

order to compare their values) at least an entire day will have passed. At this

point, it will be too late to execute any trades to take advantage of our prediction.

However, as it turns out, if our super-computer had some quantum abilities, it

could calculate our prediction in time to make a handsome profit!

The basic idea of Deutsch’s algorithm is that we do not actually need to

calculate both)0(f and)1(f in order to compare their values. We are actually

 17

only concerned with a joint property of)0(f and)1(f (whether they are equal or

not) and quantum computers excel at answering questions about joint properties.

Let us define an operator, U , that transforms the general 2-qubit register

as follows:

)(: xfyxyxU 

(recall that  is the exclusive-OR operator). So the result of this transformation

is that the first qubit, x , is unchanged, and the second qubit is unchanged

unless 1)(xf , in which case its value is flipped. In order to value the function

at both inputs simultaneously, we need to work with superpositions of the states

0 and 1 . If we apply the Hadamard operator to the state 1 , we get

2

10
1


H . If we use this as the initial second qubit, and apply the U

operator, we get:

2

)(1)(0

2

10
:

xfxf
xxU





  .

Now, let us consider what happens for the two possible values of)(xf :

if 0)(xf :
 

2

10)1(

2

10

2

)(1)(0 0 






 xx

xfxf
x ,

if 1)(xf :
 

2

10)1(

2

01

2

)(1)(0 1 






 xx

xfxf
x .

Therefore, it is clear that we can write:

 18

 
2

10)1(

2

)(1)(0)(





xf

x
xfxf

x .

This is the most important result for Deutsch’s algorithm, because it allows us to

summarize the effect of the operator U as a sign change on the second qubit.

Now, if we also allow the first qubit to be an equal superposition of 0 and 1 ,

we will be able to use the fact that U only needs to evaluate the function once, to

give properties of both)0(f , and)1(f . If we apply the Hadamard operator to the

state 0 , we get
2

10
0


H . If we use this as the initial first qubit, and apply

the U operator, we get:

   
2

10)1(

2

1

2

10)1(

2

0

2

01

2

10
:

)1()0(








 ff

U 













 














 


2

10

2

1)1(0)1()1()0(ff

.

If we apply the Hadamard operator to the first qubit again, we get:

   












 














 

2

10

2

1)1()1(0)1()1()1()0()1()0(ffff

If we measure this first qubit, according to postulate #3, we get:

0 with probability

2
)1()0(

2

)1()1(ff 
,

and 1 with probability

2
)1()0(

2

)1()1(ff 
.

 19

These probabilities are the results we need. Notice that if)1()0(ff  we get

state 0 with probability 1, and if)1()0(ff  we get state 1 with probability 1.

Therefore, using Deutsch’s algorithm, we only need to evaluate the function)(xf

once, and we get a result that allows us to determine with certainty if the value of

)(xf is equal for the two inputs or if)(xf is not equal, thus allowing us to predict

the movement of our specified financial instrument. Now all we need to do is

discover such a function)(xf which has these properties!

 Deutsch’s algorithm very clearly shows the potential benefits of a quantum

computer. It employs the quantum mechanical properties of superposition and

interference, and it employs the four basic steps used in most quantum

algorithms:

1. Initialize the quantum registers.

2. Put the registers in superpositions of states.

3. Evolve the registers using unitary operators.

4. Measure the states to get some result.

Deutsch’s algorithm can be summarized in quantum circuit notation like so:

.

 20

In the next section, we will explore some other quantum algorithms that

are much more powerful than Deutsch’s algorithm. We will also see how to use

these algorithms to solve some real-life finance problems (as opposed to the

contrived problem posed in this section).

 21

QUANTUM ALGORITHMS

A Global Perspective

 Quantum computing is still in its infancy, and all of the algorithms

presented in this section are merely first steps into the world of possibilities

unleashed when using quantum mechanics for computational advantages.

However, even though this field is just beginning, it is useful to note that large

financial institutions have much to gain by being early adopters of new

computational technologies. For this reason, when quantum computing matures,

it is likely that some of its first real-world applications will be in the financial

arena. This section highlights some generic quantum algorithms, which, when

refined and specialized, will allow computational acceleration to the solution of

many financial problems.

Grover’s Search Algorithm

Suppose you have a problem with the following properties:

1. The only way to solve the problem is to guess an answer and check if it’s

correct,

2. There are N possible answers to check, and

3. Every possible answer takes the same amount of time to check.

 22

One example of this problem is the searching of an unsorted database. For

example, if you have a telephone book with N entries in which all the names are

randomly ordered, and you want to find a telephone number which corresponds

to a certain name, guessing and checking is the best you can do. There is no

way in which the search can be sped up. Since this search will take on average

2

N
 guesses with the possibility of taking up to N guesses, this method of

guessing and checking is an)(NO algorithm, and there is no possible way it can

be sped up. However, a surprising result from quantum computing is that there

is an algorithm which can find an answer to such problems in only  NO steps!

In this section we will learn about this  NO algorithm which is usually

known as Grover’s algorithm (after its creator, Lov K. Grover (Grover, 1996)).

Suppose there are N elements which we want to search through. We will

identify each element by an index in the range from 0 to)1(N . Furthermore,

we will assume that nN 2 , so that the index can be encoded into n bits. We

will also assume that there is only one solution. We define)(xf as our search

function. That is, for any index x , 1)(xf if x is the solution, otherwise

0)(xf . This function is an indicator function which lets us know whether or

not we have found a solution.

As in Deutch’s algorithm we will define a unitary operator (U) which has the

following action, which allows us to apply our search function:

 23

)(: xfwxwxU 

Here, w is an extra work qubit, which is flipped if 1)(xf . This unitary operator

allows us to check whether x is a solution to our search problem without

disturbing the state x in the following way: after preparing the state 0x , we

can apply the operator U . If w is flipped to 1, then we know that x is a solution

to our search problem.

Just as in Deutch’s algorithm, it is useful to set the extra qubit to the equal

superposition
2

10 
, and similarly applying the operator U works as follows:

 












 














 

2

10
1

2

10
:

)(
xxU

xf

Notice the work qubit doesn’t change. In fact, it doesn’t change throughout the

entire quantum search algorithm. Therefore we don’t need to show it, and we will

furthermore simply write the effect of U as:

  xxU
xf)(

1: 

That is, U indicates solution states by flipping the sign.

The algorithm proceeds as follows:

1. Start with the index in the zero state
n

0

 24

2. Apply the n -qubit Hadamard transform
nH 

 to put the index in an equal

superposition of all of its states: 





1

0

1 N

x

x
N

3. Then apply what is known as the Grover Iteration  NO times which

consists of the following steps:

a. Apply the operator U ,

b. Apply the Hadamard transform
nH 

,

c. Switch the sign of every basis state except 0 . This transformation

can be denoted by:   xx x01


 , for each

computational basis state x , where 0x is the Kronecker Delta

function which is 1 if both of its indices are the same, and 0

otherwise.

d. Apply the Hadamard transform
nH 

again.

4. After  NO Grover iterations, the index will be equal to the solution value

with high probability. We measure the index state to determine the value.

Ignoring the work qubits, the quantum circuit for Grover’s algorithm is:

 25

At first glance, it’s not entirely obvious how this algorithm works. But a little

analysis can clear up the confusion.

First of all, let’s consider what operator must be applied to a general state






1

0

N

x

x xa (where the x s are the computational basis states and the xa s are their

respective amplitudes) to achieve the effect as described in step 3c. After a little

thought, we can see that the operator which switches the sign of all the states

except the 0 state is I002 . To prove this, we will apply this phase shift

operator to the general state:

 26

   

 

   







 





























1

1

0

1

1

00000

1

0

0

1

0

1

0

0

02002

02

002002

N

x

x

N

x

xxx

N

x

xxx

N

x

N

x

xxx

xaa

xaaaa

xaa

xaxaxaI





This shows that only the 0 state has remained unchanged, all of the other

states have opposite signs.

Now, if we combine this phase shift operator from step 3c with the

Hadamard operators from steps 3b and 3d, we get the following operator:

   
I

HHHHHIH nnnnnn



 

2

002002

Where, as above, the state  is the equal superposition state. Now, if we

apply the operator U as well, we can express the entire Grover iteration as one

operator:  UIG  2 .

 Now that we have defined the Grover iteration, we can ask: what does it

do? It can be shown (Aharonov, 1999) that the Grover iteration is a rotation in a

two dimensional space defined by the solution state. If we define t as the

 27

target solution state, and 



tx

x
N

q
1

1
 as a superposition of all of the

states which are not solutions, then the Grover iteration G is a rotation in this t-q

space. To see this, first realize that we can write the equal superposition state

 as a weighted sum of these two other states:

t
N

q
N

N 11





Then, the U operator performs a reflection about the state q , and the

remaining part of the Grover iteration, I2 , performs a reflection about

the state  . Since the product of two reflections is a rotation, we can see that

the Grover iteration rotates the index state towards the solution state. This can

be visualized geometrically as follows:

 28

The effect of the operation G on the states t and q is:

 
q

N

N
t

N

N
qG

q
N

N
t

N
tG








 














 














12
1

12

122
1

We can write this transformation in matrix form, where the first row and column

correspond to q , and the second to t as:

 
2

11

11

212

122

2
1

12

1212
1



















































































 




N

N

N

NN

N

N

N

N

N

N

N

N

N

NN

N

N

N

N

N

G

It can be shown that this matrix is a rotation operator if we define:

 

 
N

N

N

1
cos

1
sin










then:

   
    




2

2

cossin

sincos
RG 







 


 29

Therefore, the Grover iteration is a rotation in t-q space by an angle 2 . Letting

k be the number of iterations of G applied to the initial state  , the final state

will be:

      tkqkG k  12sin12cos 

Since we want our final state to have an amplitude close to 1 in the t state, the

optimal number of Grover iterations to apply will be:

  
2

1

42

1

1
sin4

2

1

4
112sin

1















N

N

kk







Since k must be an integer, we have to round this quantity. A good choice is to

round down, in which case we end up with:









 Nk

4



This shows that Grover’s algorithm converges on the solution state t in  NO

iterations.

Grover’s Generalized Framework

In 1998, Grover published a generalized framework for algorithms in which

this  NO search algorithm is just a special case (Grover, 1998). Two more

algorithms came from this generalized framework, which have promise for

 30

applications in finance. These algorithms find approximations for the median and

mean of a statistical distribution. It takes  2  to estimate these statistics to a

precision  on a classical computer, but using Grover’s generalized framework

the calculation only takes  1O .

Suppose we have a function)(xf on the indices 1,1,0  Nx  , which is

0 for all inputs except for a target state, t , and we want to find t (many problems

can be transformed into solving a function of this type). Assume that we have a

unitary transformation, U , and we start with the system in the state s . If we

apply U to s , the amplitude of reaching t is tsU (the element at the tht row

and ths column of the matrix representation of U), and the probability of getting

t when the system is measured is:
2

tsU . This probability means that it would

take















2

1

tsU
 guesses until we found the solution index t . However, Grover’s

generalized algorithm reaches t in only














tsU
O

1
 steps.

This generalized algorithm uses a method called amplitude amplification

to increase the probability of the solution state, while decreasing the probabilities

of all the non-solution states. To do this, we need to define the operator xI which

is effectively a diagonal matrix with all terms equal to 1, except the xx term which

is 1 . This is used to identify certain states for amplification. We also need to

 31

define tI , which isn’t as simple since we don’t know the value of t prior to

running the algorithm. However, this can be set up using the our indicator

function)(xf , and the XOR operator as shown in the previous sections. The

algorithm itself is extremely simple, and can be summarized as applying














tsU
O

1

repetitions of the operation sequence:

UIUIG ts

1 ,

to reach the state tU 1 . Then we only need to apply U once more to cancel

the 1U (since U is unitary, and IUU 1) . Then, after measurement we are

left with the target value t .

Search Starting from the Zero State

Grover’s generalized algorithm allows the creation of new algorithms

simply by selecting a unitary operator U and a starting state s . Notice if we

select
nHU  (the n -bit Hadamard transform, where nN 2), and start at

n
s


 0 (all qubits initialized to 0), we get the original version of Grover’s

search algorithm. This can be seen by noting that in this case, 0II s  is the

operator that takes   xx x01


 , and tI is the operator that takes

  xx
xf)(

1 for each state x . Noting also that   nn HH  
1

, we

 32

can see that UIUIG ts

1 is the same as the Grover iteration for the original

search algorithm we have shown above.

Search Starting from Any State

The search algorithm does not need to start from the zero state. It could

start from any one of the nN 2 computational basis states, since the probability

of going from any of these states to the target state is
N

U ts

12
 . Starting at any

of the basis states, and repeatedly applying the Grover iteration would give us an

equally efficient  NO algorithm.

Median Estimation

 Suppose we are given nN 2 numbers, denoted by 110 ,, Nxxx  , then

we will define the  -approximate median of these numbers to be the number ix

such that the number of jx less than it, and the number of jx more than it, are

both less than  
2

1
N

 (where is  is a small positive number) . The best

classical algorithm to get to get such a value ix is 









2

1


. But the quantum

algorithm, using Grover’s generalized framework is 










1
O .

 33

As Grover puts it in his paper: we will consider a certain “threshold”  ,

such that the number of values below  is  1
2

N
. Then, given the bound

02  , the task is to find an estimate e such that
4

0 e .

Now, if we associate a quantum state j (which will be composed of n

qubits), with each of the N numbers, we can consider a unitary transform R

which is a selective inversion operation such that: if the value jx is smaller

than , then we will invert the amplitude in j .

 If we start with the system in the zero state, and consider the unitary

operator
nnRHHU  , after one application of U , the probability of the

system being in the state 0 is 2 . After 










0

1


O applications of UIUIG 0

1

0

 ,

followed by one more application of U and a measurement, the probability of

getting 0 is

2

04 













. Then, it is possible to estimate  within the needed error

bound of
4

0 .

Mean Estimation

Grover also mentions a mean estimation algorithm in his generalized

framework paper, but we will omit the details since the algorithm described in the

 34

next section is even more general and easier to describe. The most important

point is that it is an 










1
O algorithm, just like the median estimation algorithm.

 35

FINANCIAL APPLICATIONS

A Quantum Algorithm for Integration

 In (Abrams & Williams, 1999), the authors put forward a quantum

algorithm for computing multi-dimensional integrals based on Grover’s amplitude

amplification method. This method gives a quadratic speed increase over the

classical Monte Carlo method for integration, and an exponential speed increase

over the classical deterministic integration algorithm.

Classical Integration Methods

Consider the general problem of integration. We seek to integrate a d -

dimensional function)(Xg , where X is a d -dimensional vector. Without loss of

generality, we can scale the domain of integration to be the unit hyper-rectangle

given by      1,01,01,0   . Then, we wish to calculate the integral I :




 dXXgI)(.

 We can approximate the function)(Xg by another function)(Af , where

each element ix in X is replaced by
M

ai in A , where the ia values are integers

in the range  M,1 such that 







 A

M
gAf

1
)(. This allows us to approximate the

integral I with the d -dimensional sum S , as follows:

 36


dM

d
Af

M
S

],1[

)(
1

.

Note that this sum is the same as the average of f over all the possible input

vectors A .

We should also note that a sum of this form can be used to calculate the

moments of a stochastic process. Consider a stochastic process given by a

sequence of values: Nwww ,, 21 where each iw is a random selection from

some distribution (for example, we could use the log-normal distribution for stock

prices in the Black-Scholes world). We might want to find some properties of the

function)(Wv , where W is a vector made from the elements of the sequence.

Suppose we want to approximate the moments (mean, variance, skewness,

kurtosis, etc.) of this function. We can easily transform this function into a

function of the type g by making a change of variables. We can write each iw

as a function),,,(121 iii wwwrw  where this ir is a random selection from the

interval  1,0 . Then, we can write)(Rv , where R is a vector built from the

random ir values. Since each  1,0ir , we have a function of the same form as

g above, and we can approximate the mean by S . We can get higher moments

by doing the same with the functions ,, 32 vv etc.

We have so far described the deterministic algorithm for evaluating the

integral I . Since we need to make dM function evaluations, it is obvious that

this algorithm is  dMO . Obviously, this is very impractical for integrals of high

 37

dimensionality. The classical Monte-Carlo method for evaluating the integral

doesn’t evaluate the function at every point. In the Monte-Carlo algorithm, we

randomly choose the A vectors and build an estimator Ŝ . After m random

choices of iA vectors, we get:





m

i

iAf
m

S
1

)(
1ˆ .

This method depends on the law of large numbers, which tells us: SS
m




ˆlim with

probability 1. Also, the central limit theorem can be applied to tell us that we can

determine S with accuracy  in 







2

1


O steps. Note, that the Monte-Carlo

method doesn’t depend on the dimensionality, and is therefore much more

practical for integrating functions with a high number of dimensions.

Quantum Integration

 In this section, we will describe the quantum algorithm for integration using

amplitude amplification (Abrams & Williams, 1999). Suppose we have an

estimate for S , which we will call E , and let us define the difference: ESD  .

We will define a new function: Eff  . Then:




















dd M
d

M
d

Af
M

EAf
M

ESD
]1,0[]1,0[

)(
1

)(
1

.

So, we can interpret D as the average value of f  . The essential quantum part

of the algorithm is to estimate the average value of f  , and we iterate to find

 38

better estimates. Supposing we have 1log 2 Md qubits, we can label the states

Araaar d ,2,1 , where the first qubit r is a work qubit and the rest

describe the input vector A . Here, we need Mn 2log qubits to represent the

integer values for each element on function input. This implies that nM 2 , for

some integer n , which gives a restriction on which values of M we can use for

our approximation function f .

The quantum computer is initialized into the zero state:

 Md 2log1
00000


 ,

and the Hadamard transformation
Md

H 2log
, is applied to the function qubits

to obtain an equal superposition of all possible values for A :





dM

d
A

M]1,0[

1 0
1

,

Then, we rotate the first qubit by an amount f  . The state is then:

 



dM

d
AAfAAf

M]1,0[

2

2 1)(0)(1
1

.

Next, we perform the inverse of the Hadamard transform used in the first step.

We can now see that the amplitude of the state 0001  will be D (since each

state A1 contributes amplitude)(
1

Af
M d

 to the state 0001 ). Therefore,

an estimate for D could be obtained by repeating the above process, measuring,

 39

and counting the frequency of the result 0001  . We would get an accuracy of

 in 







2

1


O measurements.

 The method described thus far only has the same asymptotic speed as

the classical Monte-Carlo method. However, we can speed it up by introducing

some amplitude amplification to increase the accuracy of our estimate. We can

consider the steps applied so far as a single unitary operation U , which has an

amplitude tsU between the starting state 0000 s , and the target state

0001 t . Therefore, we can use Grover’s generalized framework for

amplitude amplification to increase the probability of measuring this target state.

However, there is a limit on the amount of amplification which can be applied for

each estimate of D . For this reason, we will need to run the entire algorithm a

few times. As we get better estimates for D , we can apply more amplitude

amplification. The number of total iterations will be small, so the complexity will

be dominated by the amplitude amplification at the last iteration, which, as we

have seen is 










1
O to get an estimate with accuracy  .

Quantum Random Number Generation

 Reliable random number generation is a fundamental part of any Monte

Carlo computation. However, the computation of true random numbers is not

possible on a classical computer. The “random numbers” which we use for our

Monte Carlo computations and stochastic simulations are actually pseudo-

 40

random numbers, which are created by a deterministic function, designed to pass

many statistical tests of randomness (Zak & Williams, 1999). Sometimes

numbers generated in this way can contain subtle correlations, and can therefore

cause undesired results. In the case of derivative pricing using Monte Carlo, this

could cause undesired correlations in the asset price paths, which could cause

unintended correlations in prices.

 As an extreme example, we can consider the RANDU linear congruential

generator (Zak & Williams, 1999). This algorithm for calculating pseudo-random

numbers was common on IBM mainframes of the 1960s. A linear congruential

generator is defined by:

nmlNN kk mod)(1 

where l , m , n are integers. The sequence of numbers generated, N , appear to

be a set of random numbers in the range 0 to 1n . These numbers would pass

many tests of randomness. However, if we use 65539l , 0m , 312n , and

11 N (as was used in the RANDU algorithm), and we take 3 successive triples

produced by the generator to be the),,(zyx coordinates of a 3-dimensional

space, we can inspect the numbers from different angles to find a disturbing

result.

 41

When shown from this angle, the random numbers seem to have no pattern.

These numbers look like they would be useful random numbers in a 2-

dimensional space.

 42

From this angle, the numbers also look random - so far, they appear to be

random looking directly down two of the axes.

 43

Here we look at the plotted triples of random number by the side, and it still looks

very disordered. However, if we change the angle slightly, we can see the

disturbing truth.

 44

As we can clearly see in this last case, all the numbers actually lie in a set

of parallel planes. Therefore, these numbers are not random at all, and could

give misleading results if used in a numerical simulation of a stochastic process.

Although pseudo-random number generators are better today than they

were in the 60s, hidden correlations could still be lurking. For example, as

recently as 1992 there was a problem found in a supposedly good random

number generator (Ferrenberg, 1992). The lesson is that the only way to be truly

confident about the randomness in our numbers is to use a random source for

generating them.

The quantum algorithm for random number generation is extremely

simple, and gives us true random numbers, due to the inherent randomness of

 45

the quantum system. We can get a random number in the range 0 to 12 n by

preparing an n -qubit register in the zero state:
n

0 , applying the Hadamard

transform to each qubit, and then measuring the result, which will randomly give

us one of the n2 possible states. We could then use a function transformation to

transform these uniform random numbers into random numbers from any other

distribution.

These true quantum random numbers could be used as the first step in a

Monte-Carlo simulation - in which random numbers are calculated. As described

in (Glasserman, 2003), we could replace the usual pseudo-random number

generation by quasi-random numbers which are not actually random, but have

properties that allow the entire space to be efficiently filled. Likewise, we could

replace the usual pseudo-random number generation with this true quantum

random number generation to use a set of random numbers which are

theoretically free from any unwanted correlations like the hidden correlations

demonstrated above.

 46

CONCLUSION

The importance of Monte-Carlo in computational finance cannot be

overestimated. Monte-Carlo simulation is the only practical method for

consistently analysing portfolios of financial instruments dependent on multiple

market factors. It is therefore an indispensable tool for risk management.

However, the quantum algorithm for Monte-Carlo as described above only gives

a modest improvement in speed. At the time of writing, the state of the art in

quantum computer hardware is nowhere near able to implement even the

simplest version of the algorithm. Therefore, the expense of developing the

quantum computer technology far outweighs the potential benefits of the slight

speed increase available, especially after considering that this increase could

also be obtained simply by the addition of extra classical computational

resources.

 To catalyze the development of quantum computer technology, an

exponentially faster algorithm with wide applications in finance needs to be

discovered. Quantum algorithms which are exponentially faster than any known

classical algorithms do exist, such as Shor’s factoring algorithm (Shor, 1994).

Unfortunately, these algorithms do not have any practical or pervasive use in

finance.

 The quantum random number generation algorithm seems to be the most

practical algorithm for use in finance. Although the speed increase is not

 47

necessarily important, the ability to generate true random numbers may prove to

be more important in the future. As derivatives markets become more efficient,

price differences caused by subtle correlations in random number generators

may lead to potential arbitrage opportunities. Pricing using true random numbers

may prove to be the only way to remove these inaccuracies.

 Although known applications for quantum computers in finance are quite

weak at the time of writing, technological advancements might come at any time,

and it is a good idea to be prepared for the possible implications of quantum

computing technology, since the inability to adapt to new technology is a source

of risk which should not be underestimated.

 48

APPENDICES

Appendix A: Dirac Notation and Tensor Products

The standard notation used in the quantum mechanics literature is to

denote quantum states in the following form:

X ,

where X is the label for the quantum state, and the “ ” enclosure indicates that

it is a quantum state. This notation is known as Dirac notation, after the inventor

Paul Dirac, who was one of the pioneers in theoretical quantum mechanics.

 Since a quantum state is a vector, we could have used many other

notations to denote a vector, some examples are:

X


, X , X or just X .

However, one advantage of the Dirac notation is that it can be used both to

describe a column vector (which are the basis states we use in quantum

computing) and the transpose – a row vector. If we have a real, finite

dimensional quantum state, we can use X to denote the column vector for the

state, and X to denote the equivalent row vector, or transpose. The “ ”

enclosure is known as a “bra”, where the “ ” enclosure is known as a “ket”.

This is why the notation is sometimes known as bra-ket notation.

 49

If you multiply the bra by the ket, you get the inner product, which is a very

useful operation in linear algebra. Usually, in the bra-ket multiplication, one of

the lines are removed, so:

YXYX  .

Another way to multiply is the ket by the ket, or the bra by the bra. These are

defined to denote the tensor product of the two states:

YXYX  ,

which is the way larger quantum states are built from smaller quantum states. In

this notation, we have many different ways of writing the tensor products

between two states, since it is very common:

XYYXYX  , .

These are all equivalent, and usually the context will determine which form is

used. To make these ideas more clear, it might help to see some examples.

 Consider the computational basis states for a single qubit. These are

denoted by 0 , and 1 . Since quantum states are vectors, we can define them

explicitly as follows:











0

1
0 , and 










1

0
1 .

Then, the inner products of all combinations of these states are:

  1
0

1
010000 








 ,

 50

  0
1

0
011010 








 ,

  0
0

1
100101 








 ,

  1
1

0
101111 








 .

Therefore, we can see that the inner product of the computational basis states is

the Kronecker delta:

 1,0,  xyx xy .

The definition of the tensor product of two matrices is as follows:

supposing X is an m -by- n matrix, and Y is a p -by- q matrix, then the matrix

representation of the tensor product is:































































YXYXYX

YXYXYX

YXYXYX

YYY

YYY

YYY

XXX

XXX

XXX

YX

mnmm

n

n

pqpp

q

q

mnmm

n

n

























21

22221

11211

21

22221

11211

21

22221

11211

,

and therefore, YX  is an mp -by- nq matrix.

Therefore, if we have two vectors: suppose X is an m -element column vector

(or an m -by-1 matrix), and Y is an n -element column vector (or an n -by-1

matrix), then the tensor product between them is:

 51































































YX

YX

YX

Y

Y

Y

X

X

X

YXYX

mnm


2

1

2

1

2

1

,

Which is an mn -by-1 vector. The tensor product can also be generalized to

tensor exponentiation, for example: XXXX 
3

.

 The tensor product is useful in quantum computing when building registers

of qubits from single qubits. For example, if we consider all the possible

combinations of the computational basis states for the single qubit, which are

defined as:











0

1
0 , and 










1

0
1 ,

then we get:












































































0

0

0

1

0

1
0

0

1
1

0

1

0

1
00 ,












































































0

0

1

0

1

0
0

1

0
1

1

0

0

1
10 ,












































































0

1

0

0

0

1
1

0

1
0

0

1

1

0
01 ,

 52












































































1

0

0

0

1

0
1

1

0
0

1

0

1

0
11 .

This set of vectors can be used as a basis for the 2 -qubit registers, since they

are orthonormal and span the space. In this case, it makes sense to use the xy

form for the tensor product, to define this new basis, and if we interpret all these

two digit numbers as binary digits, we can re-label them as:





















0

0

0

1

00000 ,





















0

0

1

0

10011 ,





















0

1

0

0

01102 ,





















1

0

0

0

11113 .

The utility of Dirac’s notation becomes very noticeable when we build even larger

registers of qubits.

 53

REFERENCE LIST

Aaronson, S. (2008) The Limits of Quantum. Scientific American, 298 (3), p. 62.

Abrams, D. S. & Williams, C. P. (1999) Fast quantum algorithms for numerical
integrals and stochastic processes. arXiv:quant-ph, article 9908083v1.
Retrieved March 7, 2007, from http://arxiv.org/PS_cache/quant-
ph/pdf/9908/9908083v1.pdf.

Aharanov, D. (1999) Quantum computation. In D. Stauffer (Ed.), Annual
Reviews of Computational Physics VI. Singapore: World Scientific.

Bacon, D. & Leung, D. (2007) Toward a World with Quantum Computers.
Communications of the ACM, 50 (9), p. 55.

Deutsch, D. (1999) Quantum theory, the Church-Turing principle and the
universal quantum computer. Proc. R. Soc. Lond. A, 400:97.

DiVincenzo, D. P. (1995) Two-bit gates are universal for quantum computation.
Phys. Rev. A, 51(2), p. 1015-1022.

Ferrenberg, A. M., & Landau, D. P. (1992) Monte Carlo simulations: hidden
errors from “good” random number generators. Physical Review Letters,
69(23), p. 3382-3384.

Glasserman, P. (2003) Monte Carlo Methods in Financial Engineering. New
York: Springer-Verlag.

Grover, L. K. (1996) A fast quantum mechanical algorithm for database search.
Proceedings of the 28th Annual Symposium on the Theory of Computing
(STOC), p. 212-219.

Grover, L. K. (1998) A framework for fast quantum mechanical algorithms.
Proceedings of the 30th ACM Symposium on the Theory of Computing
(STOC), p. 53-63.

Knights, M. (2007) The Art of Quantum Computing. Engineering & Technology, 2
(1), p. 30.

Nielsen M., & Chuang, I. (2000) Quantum Computation and Quantum
Information. Cambridge: Cambridge University Press.

Powers, M. R. (2008) The Nature of Randomness. Journal of Risk Finance, 9 (1),
p. 5.

Shor, P. (1994) Algorithms for Quantum Computation: Discrete Logarithms and
Factoring. Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, p. 124-134.

 54

Williams, C. P., & Clearwater, S. H. (2000) Ultimate Zero and One, Computing at
the Quantum Frontier. New York: Springer-Verlag.

Zak, M., & Williams, C. P. (1999) Quantum Recurrent Networks for Simulating
Stochastic Processes. Springer-Verlag Lecture Notes in Computer
Science, Volume1509, Heidelberg: Springer-Verlag.

