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ABSTRACT 

In this paper, we assess the effects of estimation error due to the impact of noisy input 

parameters in portfolio credit risk modelling by using Monte-Carlo simulations. We employ the 

methodology used in Löffler (2003) but apply different dataset to form two new portfolios: 

obligors with investment-grade credit rating and obligors with speculative-grade credit rating. 

The four sources of estimation risk are considered for each portfolio: default rate uncertainty 

only, recovery rate uncertainty only, correlation uncertainty only, and the three sources of 

uncertainty together. The resulting estimation error in the distribution of portfolio losses is 

considerable. The paper also shows that different credit datasets could result in different biases in 

value at risk (VaR) estimations in each portfolio. 

Keywords: Credit Risk; Estimation error; Value at risk; Quantiles; Simulated distributions 
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1. Introduction 

Credit risk is one of the major issues in financial world. How to manage this risk has become an 

important concern for banks, regulators and academics in the past few years.  In order to 

consistent with this trend, several models for the measurement and estimation of portfolio default 

and credit risk haven been proposed. (Crouhy et al., 2000) In the recent years, there is a 

considerable and growing literature about credit risk modeling. These credit risk models focus on 

characterizing, quantifying, forecasting and evaluating of the consequence of default of various 

contractual portfolios. (Jones, 2000) However, few of those literatures talked about the reliability 

of credit risk models (Löffler, 2003).  Although some of the models have been already widely 

used in the market, analysts should notice that there are still uncertainties and estimation error 

exit. Sometimes, simply neglects estimation error would lead to significant flawed estimation 

results. Indeed, since analysts like to use those models to estimate portfolio losses due to default 

and credit risks, actual distribution of portfolio losses may vary from the estimated value because 

of estimation error.  

 

In 2003, Löffler published a paper about analyzing estimation error in credit risk models in 

Journal of Banking & Finance, called The Effects of Estimation Error on Measures of Portfolio 

Credit Risk. Löffler (2003) doubted the reliability of existing credit risk model estimations and 

argued that there are uncertainties for the model input parameters, which should be taken into 

consideration. Also, even though the estimations of input parameters are correct, there is still 

considerable estimation error lead to biases in portfolios’ value at risk (VaR) estimates, as well 

as the distribution of portfolio losses. (Löffler, 2003) The results showed in Löffler (2003) 

contributed in credit risk modeling, and provided a platform for further research. Therefore, in 
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our paper, we employ the idea and methodology used in Löffler (2003) to quantify the estimation 

error in portfolios’ VaR calculations. By using different datasets, we would like to see if our 

results are consistent with those in Löffler (2003).  

 

The necessary input parameters for modeling credit risk in the events of default are default rates, 

recovery rates, and default correlations. We obtain updated historical data for these three 

parameters, and provide estimations of portfolios’ VaR based on the historical average of these 

data by using a credit risk model. These are estimations without considering any estimation error, 

called the base case estimation, and estimated portfolios’ VaR in the base case is called 

conventional VaR. In order to see the effects of estimation error, we analyze the uncertainties of 

the three input parameters by providing Monte Carlo simulation for them (if applicable). We also 

provide simulations for portfolios’ VaR due to those uncertainties. The estimated portfolios’ 

VaR through simulation is called predictive VaR. The reason of using Monte Carlo simulation is 

to simulate the actual paths of model input parameters and potential losses for portfolios. 

Comparing the simulation results with those in the base case, we can see the differences between 

portfolios conventional VaR and predictive VaR. We also can analyze how significant are the 

effects of input parameter uncertainties and estimation error when estimating portfolio’s credit 

risk. Besides, we compare our results with those concluded in Löffler (2003), and see whether 

those results are still applicable with new datasets used in our paper. 

 

Our paper is presented as follows. In section 2, we provide a brief literature review on previous 

papers that discussed about the underlying idea of the VaR calculation, as well as estimation 

errors in estimating the portfolios’ VaR. In section 3, we describe the methodologies for 
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estimating portfolios’ conventional and predictive VaR due to credit risk. We also provide the 

methodologies for determining the uncertainties of all input parameters of the credit risk model 

by simulating the actual possible values for those parameters. In section 4, we provide the 

estimation results in the base case, and the simulating results on the accuracy of input parameters 

as well as portfolios’ predictive VaR. In section 5, we conclude the paper and indicate possible 

areas for further research and analysis. 

 

2. Literature Review 

The modern financial institutions are very complex as they increasingly offer fee-based financial 

services and relatively new financial instruments and this has led to the creation of a number of 

new risks. Thus, risk management is playing on a more important role in modern finance. 

Essentially the riskier the bank’s business, the more capital it should hold to be able to cover 

future fiscal losses. Although various banks face different risks (with regards to their category) 

some risks are common to most banks like Market risks, Liquidity risks, Credit risks and 

Operational risks (Jorion P.). However more serious risks pertain to losses which arise due to the 

failure of the obligator to perform (Credit Risk) and such losses are reported to be responsible for 

a significant amount of yearly bank losses. It is not enough for risk management practitioners to 

focus solely on a transactional approach to manage firm’s credit risk. A more reliable way would 

be to pay more attention on the use of quantitative methods to manage such risk (The Committee 

on Regulationand Supervision, 1999).  
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Credit Risk has been defined as the “degree of value fluctuations in debt instruments and 

derivatives due to changes in the underlined credit quality of borrowers and counterparties” 

(Lopez & Saidenberg, 1999). While calculating the credit risk, when variables for the calculation 

of PD and LD have to be predicted, the prediction of those variables give rise to the estimation 

errors due to the fact that they are usually not present or available at the time of making the 

prediction (Hamerle, et al.).  

 

The literature on this topic is relatively new and emerged since the 1970s. The emergence of 

BASEL II has given this area of research a new dimension as it has now been recognized as one 

area which has enormous practical as well as academic significance. Not only literature review in 

this area grew in numbers but also most of the commercial banks strived to develop their own 

internal models to map and measure credit risk (Lopez & Saidenberg, 1999). By doing so, banks 

could better assess their portfolio credit risks and assign economic capital properly (Lopez & 

Saidenberg, 1999). The constrained time horizon is a critical condition in term of evaluating a 

model’s prediction of credit losses in quantitative methods, especially with the small number of 

observations when their planning horizons are long (Lopez & Saidenberg, 1999). To be more 

specific, the daily time horizon in the models usually can generate a steady stream of 

observations for forecasting. However, it will not give the same steady results when running the 

yearly based data which is commonly used for credit risk models (Lopez & Saidenberg, 1999).    

 

Value-at-Risk (VaR) is one of the risk management techniques widely used in financial risk 

management areas nowadays to measure credit risk in the context of a portfolio. It provides users 

with a summary measure of market risk and other types of financial risks. The VaR methodology 
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has been widely used not only to derivatives but also to all financial instruments and is definitely 

changing the way institutions approach their financial risk. The definition of VaR is “the worst 

loss over a target horizon that will not be exceeded with a given level of confidence (Jorion, 

2003).” More specifically, VaR represents the percentile of the projected distribution of gains 

and losses over a fixed target horizon. If c is the chosen confidence interval, VaR corresponds to 

1- c of the lower tail level. A longer horizon will increase VaR as risk increases with respect to 

time (Jorion, 2003).  

 

In contrast with traditional risk measures, VaR is a forward-looking risk measure. It describes an 

aggregate view of a portfolio’s market risk that accounts for leverage, correlations, and current 

positions (Jorion, 2003). Today VaR is being adopted by institutions all over the world, which 

includes: financial institutions, regulators, nonfinancial corporations and asset managers (Jorion, 

2003). VaR is an integrated way to deal with various types of markets and exposure to risks and 

to combine all of them together into a single number which is a good indicator of the overall risk 

of different portfolios (Wiener, 1997). The major advantage of VaR is that it provides more 

consistent, accurate and timely measure of risk and it has been widely accepted by the industry 

and the regulators as the primary risk management tool (Wiener, 1997). Once there is a unified 

standard to look at, it will be easier to compare of risk between portfolios, institutions and 

financial intermediaries. Moreover, VaR methodology is relative simply to use and at the same 

time it unfolds stable results. (Wiener, 1997) 

 

However, as VaR has moved far beyond use in financial institutions, it is used by an ever-

increasing number of individual companies. The dangers of the widespread use of VaR are an 
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overreliance on the results it presents, misinterpretation, and even misuse of it (Krause, 2003). 

For example, VaR does not provide an accurate risk measure under particular circumstances 

when its estimation is subject to large estimation errors. A decreasing trend bias in the estimation 

could be easily manipulated by employees or the entire company to their own benefit (Krause, 

2003). Practitioners should appropriate use VaR estimation with full awareness of its limitations, 

so that the decision making within the whole company will be improved. In our paper, we will 

mainly focus on the effects of estimation error in the portfolio of credit risk modeling. 

 

As discussed above that the new regulatory announcements have made credit risk a challenge for 

the financial institutions thus the models prepared by the financial institutions are still under 

scrutiny due to the fact that model implementation is still a challenge for the financial institutions 

(Lopez & Saidenberg, 1999). The available credit models which have been developed in the 

recent past include many innovative and sophisticated models however most of these models are 

subject to model misspecification (violation of key modeling assumptions) and flawed 

calibration (wrong estimates of key parameters) errors  (Tarashev & Zhu, 2007). The errors 

which emerge due to the portfolio risk measurements of credit portfolios of the financial 

institutions can emerge from many sources as during mapping of the credit risk, the essential 

portfolio risk measurements assumptions are violated thus creating a multiple of the sources 

from which those errors can emerge. Research has showed that a misspecification of model has 

little impact on the assessments of portfolio credit risk, especially for large and well diversified 

portfolios. By contrast, calibration error could have a substantial impact on measures of portfolio 

credit risk (Tarashev & Zhu, 2007). 

 



7 
 

Several aspects of the existing evaluation methodologies still require further research. For 

example, the impact of specific (noisy) input parameters, such as the number of credit 

observations to be included in a simulated portfolio and the essential of the simulated portfolio’s 

weights, must be better understood (Lopez & Saidenberg, 1999). Research has suggested that the 

available models provide different results for the same borrower with same chracterstics due to 

the fact that model differences arise due to the treatment of joint defaulter behavior- one of the 

main assumptions of almost all the credit risk models. Thus effectively what is most important to 

understand is the fact that these models and the resulting estimation errors emerge at the 

macrolevel as at the microlevel (i.e. individual borrower’s level), most of the models tend to 

converge together thus neglecting the impacts of the estimation errors on the individual 

borrower’s basis. (Koyluoglu et al, 1999) 

 

The existing literature therefore has largely focused on the estimation of errors which were based 

on the single sources of errors in credit risk models and failed to provide a unified framework for 

effectively measuring the errors during estimation of credit risk by the credit risk models. The 

assumptions of granularity which is considered as the backbone of any credit risk model are 

different in each model therefore the impact of noise in model parameters creates significant 

impact on the assessment of credit risk estimation of the models.  

 

This gap in the literature was filled by the work of Löffler who attempted to include the noise 

into the parameters of the credit risk model in order to assess the impact of estimation errors. 

Löffler (2003) analyzed the effects of estimation error by comparing the estimated portfolios’ 

VaR in two scenarios. Portfolios in the analysis contain either 50 or an infinite number of loans 
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to different obligors, whose credit quality is rated BBB or B by Standard & Poor’s. (Löffler, 

2003, p. 1429)  The paper introduced a credit risk model for calculating portfolios’ VaR, which 

contains three input parameters: default rates, recovery rates, and default correlations. The author 

firstly provided estimation of portfolios’ VaR based on the model introduced by using historical 

average of those input parameters. Estimated VaR in this scenario did not consider any 

estimation error. Secondly, the author predicted portfolios’ VaR through Monte Carlo 

simulations. Estimated VaR in the second scenario contained estimation errors and uncertainties 

of input parameters. After comparison estimated portfolios’ VaR, the author concluded that the 

effects of estimation error in estimating portfolios’ VaR are considerable (Jorion, 2003).  

 

We also imitate the methodology of how to calculate portfolio loss from Giesecke (2004). This 

paper used a Bernoulli mixture model which explains the cyclical default dependence to 

construct the portfolio loss distribution. When the issuers are independent and have equally 

likely default probabilities, the sequence then follows a classical Bernoulli distribution. By 

having the individual default probability p and the asset correlation ρ, we can easily calculate the 

portfolio loss when default occurs. (Giesecke, 2004) 

 

The approach in Löffler (2003) therefore proved one of the few academic attempts to help pave 

the way for the implementation of unified credit risk estimation parameters into credit risk 

models. The evaluation methodology could be implemented through various statistical tools. In 

our paper, we simply adopt the Monte-Carlo simulation methodology from Löffler (2003) and 

other statistical tools to assess the estimation error on measures of portfolio credit risk. We also 

use the simplified formula to calculate portfolio loss from Giesecke (2004).  
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3. Methodologies 

3.1 Portfolio Losses and VaR Modeling 

Löffler (2003) provided the analysis for four portfolios, which contain either 50 or an infinite 

number of obligors with BBB or B credit ratings. (Löffler, 2003, p. 1429) In our paper, we 

provide our analysis for just two infinite portfolios, obligors with investment-grade credit rating 

and obligors with speculative-grade credit rating. Portfolio of obligors with investment-grade 

credit rating contains bonds with high credit quality and medium credit quality, such as bonds 

with the rating AAA, AA, A, or BBB. Portfolio of obligors with speculative-grade credit rating 

contains other bonds with low credit quality, also called “junk bonds”, such as bonds with the 

rating BB, B, CCC, etc. (Investment Dictionary: Investment Grade) Thus, comparing with 

Löffler (2003), we provide the analysis based on portfolios with a larger variety of credit ratings. 

In order to assess the expect losses and VaR for each portfolio, we employ the methodology 

from both Löffler (2003) and Giesecke (2004). These papers talked about the one-factor model 

about asset returns for generating asset correlations, and provide formulas for calculating 

portfolio losses as well as different quantile VaR by using three input parameters: default rates, 

recovery rates, and correlations. In our paper, for portfolio of obligors with investment-grade 

credit rating, default rates for investment-grade rating bonds, recovery rates for senior secured 

bonds, and consistent correlation are taken into calculation, while for portfolio of obligors with 

speculative-grade credit rating, default rates for speculative-grade rating bonds, recovery rates 

for senior unsecured bonds, and consistent correlation are taken into calculation.  
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Let us first look at asset correlations. Same with Löffler (2003) the asset correlation in our paper 

is assumed to be constant, the expression is ρ. For any two firms i and j, the asset correlation 

matrix is of the form ρji = 1 for i = j, and ρij = ρ for i ≠ j. (Giesecke, 2004, p. 23) Both Löffler 

(2003) and Giesecke (2004) illustrate the one-factor linear model for asset return. Here is the 

expression (Löffler, 2003, p. 1430) , (Giesecke, 2004, p. 23): 

Xi =  𝜌 Zc +  1 − 𝜌 Zi --- (1) 

In this equation, Xi is the asset return, ρ is the asset correlation. Zc is a systematic factor 

(common factor), and Zi is an independent idiosyncratic factor. In Löffler (2003), the author 

assumed Zi is normally distributed. However, the distribution of Zc is a little bit more 

complicated. Zc was assumed to be drawn from two other distributions with both mean zero but 

can differ in their variance (Löffler, 2003, p. 1430):  

Zc = λZ1 + (1 – λ)Z2,   Z1~ N(0, σ
2
(Z1)), Z2~N(0, σ

2
(Z2)),--- (2) 

where λ equal to 1 with probability γ, and 0 with probability (1 – γ) γσ2 (Z1) + (1 – γ) σ
2
 (Z2) is 

the variance of Zc. (Löffler, 2003, p. 1430) In our paper, in order to simplify the calculation 

process, we employ the assumption used in Giesecke (2004), which is assuming both the two 

factors are normally distributed with a mean of 0 and a variance of 1 (Giesecke, 2004, p. 24):  

Zc~ N(0, σ
2
(Zc)), Zi~ N(0, σ

2
(Zi)),    σ

2
(Zc) = σ

2
(Zi) = 1 --- (3) 

Also,   𝜌 Zc represents the systematic risk in asset returns, and  1 − 𝜌 Zi represents the 

idiosyncratic risk in asset returns. (Giesecke, 2004, p. 24) 

  

According to Löffler (2003), the probability of portfolio losses can be calculated through the 

following formula with known default correlation and default threshold (Löffler, 2003, p. 1430): 

q(Zc,p, ρ, σ
2
(Zi)) = Prob [ Zi ≤ 

d –  𝜌Zc

 1−𝜌σ 𝑍𝑖 
 ] = Ф[ 

d –  𝜌Zc

 1−𝜌σ 𝑍𝑖 
 ]   --- (4) 
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The default threshold d can be expressed as (Löffler, 2003, p. 1430): 

γProb( 𝜌 Z1 +  1 − 𝜌 Zi ≤ d) + (1-γ)Prob( 𝜌 Z2 +  1 − 𝜌 Zi ≤ d) = p, --- (5) 

γ Ф(
𝑑

 𝜌σ2 𝑍1 +(1−𝜌)σ2 𝑍𝑖 
) + (1- γ) Ф(

𝑑

 𝜌σ2 𝑍2 +(1−𝜌)σ2 𝑍𝑖 
) = p, --- (6) 

where Ф is the cumulative normal distribution function and p is the probability of default. 

The above equations together with equation (1) demonstrate that the probability of portfolio 

losses rely on probability of default, asset correlation, the distribution of common factor, as well 

as the idiosyncratic factor. The probability of default is equal to the probability of occurrence of 

Xi ≤ d (Löffler, 2003). That means, if the value of portfolio’s asset return is smaller than or equal 

to the value of default threshold, default will occur and then may cause losses on portfolios’ 

value.   

 

In our paper, since we assume Zc and Zi are normally distributed with mean 0 and variance 1, 

equation (5) and (6) from Löffler (2003) can be simplified as: 

Prob( 𝜌 Zc +  1 − 𝜌 Zi ≤ d) = p --- (7) 

Ф(𝑑)= p --- (8) 

Therefore, d = Ф
-
1(p), and the probability of portfolio losses can be calculated though those 

simplified formulas, and can be expressed as: 

q = Ф[ 
Ф−1(p)  –  𝜌Zc

 1−𝜌
 ] --- (9) 

In the above equations, the common factor Zc is a random number related to economy status. 

Positive values of Zc correspond to a good state of the economy, which negative values of Zc
 

correspond to a distressed economy. (Giesecke, 2004, p. 24) Moreover, in our paper, we ignore 

the influence of the idiosyncratic factor Zi. As the size of the portfolio goes to infinity, 𝑍𝑖
 would 
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be close to 0. Therefore, we do not take Zi into account since the sample size of our portfolios is 

an infinite number.  

  

This paper also considers the estimation error in portfolios’ VaR. “VaR is the worst loss over a 

target horizon such that there is a low, prespecified probability that the actual loss will be larger.” 

(Jorion, 2003, p. 106) In our paper, portfolios’ VaR are determined by those three input 

parameters, default rates, recovery rates, and default correlations. αVaR is the cutoff portfolio 

losses (in percentage of portfolio value) at 1 – α confidence level. That means, the probability of 

experiencing a loss at αVaR percent of portfolio value is equal to α, or the probability of 

experiencing a greater loss than αVaR percent of portfolio value is less than α. (Jorion, 2003, p. 

106) Different probabilities (α) analyzed in the paper are based on the distribution of common 

factors (Zc) only, since we ignore the influence of Zi because the sample size of our portfolios.  

 

Employ the method using in Löffler (2003), portfolios’ VaR at the percentile level α can be 

calculated using the following formula (Löffler, 2003, p. 1431): 

αVaR = q(1- r) = Ф[ 
Ф−1(p)  –  𝜌𝑄α

𝑧

 1−𝜌
 ] (1- r), --- (10) 

where r is the expression for  recovery rates, p is the probability of default, 𝜌 is the correlation, 

and 𝑄α
𝑧  denotes the α quantile of risk factor Zc. (Löffler, 2003, p. 1431) Since Zc is a normally 

distributed random number, the values of 𝑄α
𝑧  are fixed by different α.  
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3.2 Input Parameter Uncertainties 

According to equation (10), the formula has three input parameters: default rates, recovery rates, 

and correlations. When estimate portfolios’ VaR, there are uncertainties exist in these parameters 

that could lead to estimation risk. In the following section, we analyze the uncertainty for each 

input parameter separately. 

 

3.2.1 Default Rates Uncertainty 

Bond default rates are varied based on different bond ratings, so that simply use the average 

default rates for all bonds is not an accurate analyze. For estimating the uncertainty of true mean 

default rate, Löffler (2003) used 18 annual default rates for BBB rating and B rating bonds from 

1981 to 1998. (Löffler, 2003, p. 1432). In our paper, we use the updated historical annual default 

rates for bonds as the original data in the recent 20 years (1988 – 2007). Also, different with 

Löffler (2003), we divide all trading bonds into two categories, investment-grade rating bonds 

and speculative-grade rating bonds, in order to consistent with our portfolio classification. 

Default rates of the former bond category are used for portfolio of obligors with investment-

grade credit rating, and default rates of the latter category are used for portfolio of obligors with 

speculative-grade credit rating. The data source is 2007 Annual Global Corporate Default Study 

and Rating Transitions report provided by Standard & Poor’s (S&P) in 2008. Table 1 listed 20 

historical annual default rates for two bond categories from S&P report. Since 20 default rates 

covers almost all possible value of default rates, and the numbers follow a reasonable 

distribution, it is easy for us to do the analysis based on this data source. 
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Usually, analysts average historical default rates and use the historical mean for estimation. This 

method neglect serial correlation between those historical default rates. By employing the 

method used in Löffler (2003), in order to estimate serial correlation, we need to run auto 

regressions based on the historical data. (Löffler, 2003, p. 1432) Here are the regression 

functions of default rates for both investment-grade rating bonds and speculative-grade rating 

bonds (t-statistics in parentheses): 

Investment-grade: 

Ratet = 0.0406072524604043 + 0.702321203723159*Ratet-1 - 0.144417926711624*Ratet-2---(11) 

             (1.195715)                      (2.83119)                               (-0.58218)        

Speculative-grade: 

 Ratet = 2.38991147193004 + 1.07722829673446*Ratet-1 - 0.605964474888393*Ratet-2 --- (12) 

             (2.373332)                      (5.07544)                               (-2.74017) 

We use the lag length of two which is same with the one used in Löffler (2003). Please refer to 

Table 2 and Table 3 for detail regression information obtained by using Excel. From t-stat 

values, we can see that there is a strong serial correlation existing in the default rates of 

speculative-grade rating bonds, because all of t-stat values for coefficients in the auto regression 

equation for speculative bonds are significant. For investment-grade rating bonds, not all of t-stat 

values for coefficients in the equation are significant. However, since the coefficients in equation 

(11) have the same sign as those in equation (12), we can still conclude that there is a serial 

correlation in the default rates of investment-grade rating bonds. These results are consistent with 

what it showed in Löffler (2003). In Löffler (2003), there were serial correlations exited in 

issuers with both BBB and B ratings, although the evidence for the BBB rated issuers is weaker. 

(Löffler, 2003, p. 1432) 
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Since there are serial correlations for the two portfolios, we can use a bootstrap procedure, which 

is used in Löffler (2003), based on the above auto regression functions to derive a distribution for 

the true mean default rates for each portfolio. (Löffler, 2003, p. 1432) We follow the instructions 

in Löffler (2003) to run the bootstrap step by step by using Java programming. Java codes are 

included in Appendix. We randomly draw two consecutive default rates from the 20 historical 

data for both investment-grade portfolio and speculative-grade portfolio, and substitute them into 

the regression equations provided above. This means, by knowing RATEt-2 and RATEt-1, we can 

get RATEt. Then, we use RATEt-1 and RATEt to get RATEt+1. This process is repeated until all 

the remaining 18 default rates are obtained.  Averaging the total new 20 default rates of the 

bootstrap sample gives a mean default rate. Given the history that was observed, this mean 

default rate might be a true mean. (Löffler, 2003, p. 1432) We simulate the whole process 20,000 

times to obtain a distribution of the true mean default rates for each portfolio. (Löffler, 2003, p. 

1433) The bootstrapped distribution would be used when estimating portfolios’ predictive VaR. 

 

3.2.2 Recovery Rates Uncertainty 

When estimating the true mean recovery rate, we assume the investment-grade rating bonds 

analyzed in our paper share the properties of senior secured bonds, and the speculative-grade 

rating bonds share the properties of senior unsecured bonds. This assumption is different with 

that in Löffler (2003), since it assumed all bonds analyzed share the properties of senior 

unsecured bonds. (Löffler, 2003, p. 1434) The reason for the difference is that portfolios 

analyzed in Löffler (2003) did not contain bond with high level credit rating. In our paper, we 

intend to use historical annual recovery rate of senior secured bonds and senior unsecured bond 

for investment-grade portfolio and speculative-grade portfolio, respectively. The time period is 



16 
 

the same with the one we select in default rate estimation (1988 – 2007). Altman High Yield 

Bond Default and Return report in 2007 is our data source for historical recovery rate. However, 

the most recent recovery rate for both senior secured bonds and senior unsecured bonds in that 

report is in the year 2006. Therefore, we select 19 annual average recovery rates in each bond 

category from 1988 to 2006 as historical data source for analyzing each portfolio. Please refer to 

Table 4. 

 

According to Löffler (2003), the true mean recovery rate in our paper is assumed to be normally 

distributed around the average of historical recovery rates, and the normal distribution would be 

used when estimating portfolios’ predictive VaR. Based on our datasets, the historical mean of 

recovery rate is 39.68% for portfolio of obligors with investment-grade credit rating, and 17.63% 

for portfolio of obligors with speculative-grade credit rating. The standard deviations of 

historical data for the two portfolios are 17.50% and 12.45%, respectively. Therefore, according 

to the historical data, the lower and upper bounds for actual recovery rate at 95% confidence 

interval can be calculated as follows: 

𝑋  – 
1.645 𝜎(𝑥)

 𝑁
 ≤ µx ≤ 𝑋  + 

1.645 𝜎(𝑥)

 𝑁
 --- (13) 

 

Thus, the 95% confidence interval of actual recovery is [33.08%, 46.29%] for investment-grade 

portfolio, and [12.93%, 22.33%] for speculative-grade portfolio. However, we still need to 

consider the standard error in the two cases, which is about 4.01% and 2.86%, respectively. In 

order to estimate portfolios’ predictive VaR due to recovery rate uncertainty, we can run 

simulations by drawing different recovery rates as one input parameter from assumed normal 
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distribution with the mean and standard deviation by using Excel. We also add a constraint that 

the recovery rates should be larger than 0 and smaller than 1.  

 

3.2.3 Correlations Uncertainty 

According to Löffler (2003), a firm is assumed to default if its value falls below a critical level, 

which is defined by its value of liabilities. Thus, correlations of asset values can be translated 

into default correlations. (Löffler, 2003, p. 1430)  In our paper, the meanings of default 

correlations and asset correlation are the same. Based on Löffler (2003), asset correlations are 

assumed to be constant. Since the historical data for asset correlation is difficult to obtain, we use 

the same estimate value 0.2 used in Löffler (2003) to be the mean of average asset correlations.  

 

In order to determine the uncertainty of asset correlations, Löffler (2003) ran simulations to 

generate actual asset correlation values based on the following formula (Löffler, 2003, p. 1435): 

Corr(Xi, Xj) = 
𝐶𝑜𝑣(𝑋𝑖 ,𝑌𝑗 )

σ(Xi )σ(Xj )
 = 

𝜌σ2(𝑍𝑐)

𝜌σ2 𝑍𝑐 +(1−𝜌)σ2 𝑍𝑖 
 

In this formula, analysts have to find the value for σ
2
(Zc) and σ

2
(Zi). Recall equation (2), Zc was 

assumed to be drawn from two other distributions with both mean zero but can differ in their 

variance (Löffler, 2003, p. 1430). Therefore, the variance of Zc is difficult to estimate. To 

simplify the simulation process, we assume the correlations used in our paper are normally 

distributed.  This normal distribution would be used when estimating portfolios’ predictive VaR. 

According to Table 2 in Löffler (2003), average asset correlations are in a range of [15.26%, 

27.04%] at 95% confidence interval. Based on this range and the mean of 0.2, we estimate the 

standard deviation of correlation is probably around 27.73%. In order to estimate portfolios’ 
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predictive VaR due to correlation uncertainty, we can run simulations by drawing different 

correlations as one input parameter from the assumed normal distribution with the mean and 

standard deviation using Excel.  

 

3.3 Portfolios’ VaR Calculation 

3.3.1 Base Case VaR (Conventional VaR) 

Estimating portfolios’ VaR by simply using average historical data is called the base case 

estimation. The estimated VaR in this case is called base case VaR, or conventional VaR. In this 

section, VaR calculations are provided from both investment-grade portfolio and speculative-

grade portfolio. For portfolio of obligors with investment-grade credit rating, one of the input 

parameters, default rate, is obtained by averaging the 20 annual default rates for investment-

grade rating bonds from 1988 to 2007 based on S&P report, which is 0.10%. Another input 

parameter, recovery rate, is also obtained by averaging the 19 annual recovery rates from 1988 to 

2006 based on Altman 2007 report, and the mean recovery rate to be used is 39.68%. For 

correlations, since we assume the asset correlations are constant between every two firms, the 

assumed number 0.2 in Löffler (2003) is a reasonable number to directly use in the calculation. 

For portfolio of obligors with speculative-grade credit rating, we use the same correlation 0.2 for 

VaR calculation. However, the other inputs using are different from those for investment-grade 

portfolio. We use the average of historical annual default rates and recovery rates for 

speculative-grade bonds from the same data sources as those for investment-grade bonds, which 

are 4.4945% and 17.63%, respectively.  
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Same with Löffler (2003), we calculate 1% VaR, 5% VaR and 10% VaR for both two portfolios. 

Here, the values of 𝑄α
𝑧  in equation (10) are – 2.326, - 1.645 and – 1.282 when α equals to 1%, 

5% and 10% respectively. To be noticed that, this base case estimation does not consider any 

estimation error. If we consider uncertainties for the input parameters, the results would be 

different with this estimation. 

 

3.3.2 Simulated VaR (Predictive VaR) 

Estimated portfolios’ VaR through simulations is called predictive VaR. In order to consistent 

with the analysis in the base case, based on equation (10), we simulate 1% VaR, 5% VaR and 

10% VaR for both two portfolios. In order to estimate the effects of estimation errors and input 

uncertainties in portfolio VaR calculation, we divide our estimation into four situations. Firstly, 

we fix correlation and default rate with the value used in the base case, and then simulate 

portfolio’s VaR 20,000 times by using different recovery rates. Recovery rates using here are 

drew from assumed normal distribution mentioned in Section 3.2.2. Then we can get the 

distribution of portfolio’s VaR due to uncertainty of recovery rates. Secondly, we fix recovery 

rate and default rate with the value used in the base case, and then simulate portfolio’s VaR 

20,000 times by using different correlations. Correlations using here are drew from assumed 

normal distribution mentioned in Section 3.2.3. Then we can get the distribution of portfolio 

VaR due to uncertainty of correlations. Thirdly, we fix recovery rate and correlation with the 

value used in the base case, and then simulate portfolio’s VaR 20,000 times by using different 

default rates. Same with the situations above, default rates using here are drew from the 

bootstrap distribution mentioned in Section 3.2.1. Then we can get the distribution of portfolio 

VaR due to uncertainty of correlations. Finally, in order to obtain portfolio’s VaR due to 
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uncertainty of all the three input parameters, as well as estimation errors, we calculate VaR by 

drawing the values of those three parameters form their distributions at the same time. This 

process is repeated 20,000 times, and then we can get the distribution of portfolio’s predictive 

VaR including all the uncertainties and estimation errors. 

 

4.  Result 

4.1 Base Case VaR (Conventional VaR) 

Table 5 presents the risk characteristics of portfolio of obligors of investment-grade rating and 

portfolio of obligors of speculative-grade rating as calculated above in the base case, where the 

asset correlation is 0.2 (the same assumption as in Löffler (2003)), mean recovery rates are 

39.68% for Investment-grade portfolio and 17.63% for speculative-grade portfolio respectively, 

and default rates are 0.10% for investment-grade portfolio and 4.4945% for speculative-grade 

portfolio respectively. Here we ignore the estimation error as the same purpose in Löffler (2003), 

as there will be a comparison in the following section with the situation that the error term has 

been taken into account.  

 

Let us review the definition of VaR. “VaR is the worst loss over a target horizon such that there 

is a low, pres-pecified probability that the actual loss will be larger.” (Jorion, 2003) For example, 

a 1% VaR of 0.66% (from Table 5) for the investment-grade bond is the cutoff probability of 

loss such that the probability of experiencing a greater loss is less than 1%.  
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As we can see from Table 5, the VaR number increases much from the portfolio of obligors with 

investment-grade credit rating to the portfolio of obligors with speculative-grade credit rating. 

When the credit rating goes down from investment to speculative, the bonds are affected to a 

higher degree by the possibility of default. Thus, it causes the VaR figures to increase. Another 

thing to be noticed from Table 5 is that the VaR figures decrease as the percentile gets bigger. It 

is because that the greater possibility of portfolio loss is more likely to be in the extreme 

quantiles.  

 

The base case VaR figures of investment-grade portfolio in our paper are less than those figures 

of portfolio of BBB-rated bonds in Löffler’s (2003), and the base case VaR figures of 

speculative-grade portfolio in our paper are greater than those figures of portfolio of B-rated 

bonds. This could be explained by the classification of the bond’s credit rating. We divide the 

bond’s credit rating into two grades in our paper: the investment-grade and the speculative-grade, 

instead of single rating bond such as BBB or B in Löffler (2003). The investment-grade portfolio 

contains bonds with credit rating equal to or higher than BBB, and the bonds with rest credit 

ratings (include junk bonds) go into the speculative-grade portfolio (Wikipedia).  

 

4.2 Simulated VaR (Predictive VaR) 

Table 6 represents the simulated distribution of the percentage portfolio VaR in the presence of 

estimation risk. Estimation error in the following input parameters used in the table is modeled: 

default rates (estimates based on S&P historical data of investment-grade rating bonds and 

speculative-grade rating bonds), recovery rates (estimates based on historical data of senior 

secured and unsecured bonds), and default correlations (estimates based on joint distribution of 

http://en.wikipedia.org/wiki/Default_%28finance%29
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asset values). In Table 6, we include the simulated confidence intervals for the 1% VaR, 5% VaR 

and 10% VaR of the two portfolios due to estimation error from different sources: uncertainty of 

recovery rates only, uncertainty of default correlations only, uncertainty of default rates only, and 

uncertainty of three input parameters together.  We also include the simulated standard errors of 

those VaR figures. Figure 1 and Figure 2 show the confidence interval for each portfolio VaR in 

graphic forms, so that the width of the intervals can be presented more clearly.  

 

For most of the cases of investment-grade portfolios, uncertainty of default rates is the most 

important source of estimation risk, as measured by the width of the confidence intervals or the 

standard error. However, the role of correlation uncertainty in more extreme percentile levels is 

larger. For example, uncertainty of default correlations is the most important source of 

estimation error for the precision of the 1% VaR of the investment-grade portfolio. It has the 

widest confidence interval (0.112%, 0.9917%) and the largest standard error (0.00197%) among 

all of three input parameters. When default rates rise, the elasticity of default correlations with 

respect to changes in asset correlations increases as well. (Morgan, 1997) especially in riskier 

portfolios or portfolios with more extreme percentiles. On the other hand, for speculative-grade 

portfolio, uncertainty of default correlations becomes the most important source of uncertainty in 

all three quantiles. The reasons for this could be the parameter estimation methodology used for 

default correlation (mentioned in section 3.2.3) or the range of the original datasets (speculative-

grade portfolios). 

 

Comparing Table 6 in our paper and Table 4 in Löffler (2003), the results we get are very similar 

to what Löffler got in his paper except for the correlation uncertainty in the portfolio of obligors 
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with speculative-grade credit rating. In this portfolio, default correlation becomes the most 

significant source of estimation risk in all three different quantiles (i.e. 1%, 5%, 10% VaR) in our 

paper. While in Löffler (2003), correlation uncertainty only matters in some more extreme 

quantiles as we mentioned in last paragraph, for example 1% VaR. The inconsistency may be 

due to the fact that we used different methodology to generate random numbers from the 

distribution of correlation, which was discussed previously in section 3.2.3, other than the 

methodology used in Löffler (2003). The small-sample estimation errors in the correlation 

parameters could still possibly lead to large flaws in quantifying of portfolio credit risk 

(Tarashev & Zhu, 2007).   

 

4.3 Base Case VaR and Simulated VaR Comparison 

Due to different market scenarios, the estimated VaR will sometimes overstate risk and 

sometimes understate risk. We need to take estimation error into account to the above two sides 

and assess its overall effects on the distribution of portfolio value (Löffler, 2003).  

 

In Table 7, we put the conventional VaR (from base case parameters) and the predictive VaR 

(from 20,000 times simulated distributions) together. The results show that for the investment-

grade portfolio, the conventional VaR overestimates the predictive VaR by considering the 

existence of estimation error. The magnitude of the bias ranges from a 4.5 to an 8.8 basis points. 

The documented biases thus appear to be very modest. From the numbers in Table 5 and the 

analysis here, we can conclude that the conventional VaR figures can be regarded as reasonable 

approximations to the true risk factors of a portfolio (Löffler, 2003). However, the estimation 

error adjustments would still be important in an economical use, especially for more extreme 
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events less than 1% quantile (Löffler, 2003). On the other hand, the conventional VaR 

underestimates the predictive VaR in speculative-grade portfolio. The magnitude of the bias 

ranges dramatically from 2.2 to 360 basis points. The differences are significant between the 

conventional ones and the predictive ones. Estimation error really plays a role in this case. 

Again, it returns to the question of the large data range of the speculative-grade rating bonds. 

In most of the cases, recovery rates are ranked as the third important uncertainties among the 

three. On the other hand, the conventional VaR underestimates the predictive VaR in 

speculative-grade portfolio. The magnitude of the bias ranges dramatically from 2.2 to 360 basis 

points. The differences are significant between the conventional ones and the predictive ones. 

Estimation error really plays a role in this case. Again, it returns to the question of the large data 

range of the speculative-grade portfolio. In most of the cases, recovery rates are ranked as the 

third most important uncertainties among the three. 

 

Compared Table 7 in our paper with Table 7 in Löffler (2003), the conventional VaR estimates 

of the two different portfolios has different bias numbers in the presence of estimation risk.  The 

bias for the portfolio of obligors with speculative-grade credit rating bonds is much higher than 

the bias for the portfolio of obligors with investment-grade credit rating bonds (i.e. a range of 

0.045 to 0.088 for investment-grade portfolio and a range of 0.022 to 3.60 for speculative-grade 

portfolio). This is due to the large volatility of speculative-grade rating bonds (from BB to CCC). 

Therefore, the estimation error will matter much in the VaR calculation for the portfolio of 

speculative-grade portfolios. 
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5. Conclusion 

This paper implements the idea and methodology mainly in Löffler (2003) to analyze the effects 

of estimation error in portfolios’ VaR in the events of default. We attempt to replicate the main 

procedures showed in Löffler (2003) by using different and updated datasets. Our analysis is 

based on two portfolios, portfolio of obligors with investment-grade credit rating, and portfolio 

of obligors with speculative-grade credit rating. We simulate portfolios’ predictive VaR values 

due to the uncertainty of each input, default rates, recovery rates, and correlations, as well as the 

VaR values due to the uncertainty of those input together. We compare the predictive VaR 

values estimated from simulations with those estimated by using historical means (base case 

estimation). 

 

The results we get are basically consistent with those revealed in Löffler (2003). The estimates of 

portfolio credit risk are sensitive to uncertainty about input parameters. (Löffler, 2003, p. 1452) 

For portfolio of obligors with investment-grade credit rating, in the most of the cases, predicted 

portfolio VaR due to the uncertainty of default rates has higher value. That means, default rates 

are the most significant source of estimation risk. However, for portfolios of obligors with 

speculative-grade credit rating, correlations become the significant uncertainty. Besides, we find 

out biases in conventional (base case) VaR estimates, which are compared with predictive VaR 

through simulations, are small for investment-grade portfolio. However, the biases in 

conventional VaR estimates are larger for speculative-grade portfolios. This is slightly different 

with the result concluded in Löffler (2003). 
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Further research and analysis may focus on how to deal with those estimation errors when 

estimating portfolios’ VaR. Since the estimations are sensitive to uncertainty about input 

parameters of VaR calculation, how to increase parameter accuracy may be the first step for the 

following research.  
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Table 1 
Annual historical default rate from 1988 to 2007 for bonds with investment-grade credit rating 

and speculative-grade credit rating  

 

Year Investment-grade default rate(%) Speculative-grade default rate(%) 

1988 0.00 3.96 

1989 0.14 4.53 

1990 0.14 8.09 

1991 0.14 11.04 

1992 0.00 6.08 

1993 0.00 2.50 

1994 0.05 2.10 

1995 0.05 3.51 

1996 0.00 1.79 

1997 0.08 1.98 

1998 0.14 3.68 

1999 0.17 5.45 

2000 0.23 6.05 

2001 0.26 9.64 

2002 0.41 9.19 

2003 0.10 4.88 

2004 0.03 2.01 

2005 0.03 1.41 

2006 0.00 1.14 

2007 0.00 0.86 

Mean 0.10 4.4945 

 

 
Source: Standard & Poor’s 2008 Report: Default, Transition, and Recovery:2007 Annual Global 

Corporate Default Study and Rating Transitions 
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Table 2 
Summary output of regression for portfolio of obligors with investment-grade credit rating 

Regression Statistics 

Multiple R 0.619816393 

R Square 0.384172361 

Adjusted R Square 0.302062009 

Standard Error 0.093612111 

Observations 18 

 

ANOVA      

  df SS MS F Significance F 

Regression 2 0.082002 0.041001 4.678732 0.02636 

Residual 15 0.131448 0.008763   

Total 17 0.21345    

 
  Coefficients Standard 

Error 
t Stat P-value Lower 

95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 0.040607252 0.033961 1.195715 0.250369 -0.03178 0.112993 -0.03178 0.112993 

X Variable 1 0.702321204 0.248066 2.83119 0.012638 0.173582 1.231061 0.173582 1.231061 

X Variable 2 -0.144417927 0.248066 -0.58218 0.569096 -0.67316 0.384322 -0.67316 0.384322 

 

Notes: This table shows the regression results for portfolio of obligors with investment-grade 

credit rating. Beside the coefficient values, the main information that our paper refers to is the t-

state value in this table. 
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Table 3 
Summary output of regression for portfolio of obligors with speculative-grade credit rating 

Regression Statistics 

Multiple R 0.797636747 

R Square 0.63622438 

Adjusted R Square 0.587720964 

Standard Error 2.062501476 

Observations 18 

 

ANOVA      

  df SS MS F Significance F 

Regression 2 111.598 55.79901 13.1171 0.000508 

Residual 15 63.80869 4.253912   

Total 17 175.4067       

 
  Coefficients Standard 

Error 
t Stat P-value Lower 

95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 2.3899114 1.00698 2.3733 0.0314 0.2435 4.5362 0.2435 4.53625 

X Variable 1 1.0772282 0.21224 5.0754 0.0001 0.6248 1.5296 0.6248 1.529614 

X Variable 2 0.6059644 0.22114 2.7401 0.0151 1.0773 0.1346 -1.07732 -0.13461 

 

Notes: This table shows the regression results for portfolio of obligors with speculative-grade 

credit rating. Beside the coefficient values, the main information that our paper refers to is the t-

state value in this table. 
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Table 4 
Annual historical Recovery Rate from 1988 to 2006 for senior secured bond and senior 

unsecured bond 

 
 

Source: Altman Edward I, and Suresh Ramayanam. Default and Returns in the High Yield Bond 

Market 2006 in Review and Outlook. 

 

 

 

 

 

 

 

 

 

 

 

Year Senior Secured Bond Recovery 

Rate (%) 

Senior Unsecured Bond 

Recovery Rate (%) 
1988 21 31 

1989 12 21 

1990 10 27 

1991 3 44 

1992 22 12 

1993 6 22 

1994 23 36 

1995 15 27 

1996 17 17 

1997 16 48 

1998 18 62 

1999 11 47 

2000 8 29 

2001 3 67 

2002 11 75 

2003 28 53 

2004 39 48 

2005 54 36 

2006 18 52 

Mean 17.63 39.68 
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Table 5 
Distribution of portfolios’ VaR in the base case (in % of portfolio value)  
Portfolio  1% VaR 5% VaR 10% VaR 

Investment-grade 0.66070 

 

0.25564 0.14758 

Speculative-grade 19.0876 11.6543 8.62497 

 

Notes: VaR in the base case also called conventional VaR, which is the estimation without 

considering estimation error. This table contains VaR values with different probability of α (1%, 

5%, 10%), where the probability of loss is based on the distribution of common factor. 
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Table 6 
Simulated distribution of portfolios’ VaR (in % of portfolio value) 

Source of 

estimation 

error 

VaR of the portfolio of obligors with 

Investment-grade credit ratings 

VaR of the portfolio of obligors with Speculative-

grade credit ratings 

Std. 

error 

Quantiles Std. 

error 

Quantiles 

2.5% 25% 75% 97.5% 2.5% 25% 75% 97.5% 

Panel A: 

1% VaR 

          

Recovery 

rate 

0.00119 0.2515 0.4706 0.7012 0.9160 0.0179 12.7026 16.1697 19.8532 21.8237 

Correlation 0.00197 0.1120 0.3805 0.8755 0.9917 0.09273 5.8189 13.0791 29.6916 54.8548 

Default 

rate 

0.00153 0.0939 0.3988 0.6916 0.9547 0.01678 13.1002 16.3912 19.5644 22.4183 

All 0.00303 0.0291 0.2464 0.7996 1.6371 0.09787 5.3277 12.5178 29.5267 57.8024 

Panel B: 

5% VaR 

          

Recovery 

rate 

5.19e
-4

 0.1097 0.2052 0.3057 0.3994 0.0116 8.2353 10.4831 12.8712 14.1487 

Correlation 4.59e
-4 

0.0333 0.1677 0.2586 0.2682 0.03511 5.1058 9.2704 16.4055 23.6841 

Default 

rate 

7.22e
-4

 0.0346 0.1674 0.3066 0.4378 0.01273 8.0598 10.4605 12.8739 15.1222 

All 8.92e
-4

 0.0022 0.0971 0.2661 0.4850 0.04175 4.4773 8.7457 16.3958 26.6273 

Panel C: 

10% VaR 

          

Recovery 

rate 

3.00e
-4

 0.0633 0.1185 0.1765 0.2306 0.00859 6.0947 7.7582 9.5256 10.4710 

Correlation 2.96e
-4 

0.0033 0.0887 0.1432 0.1485 0.01335 4.6598 7.3264 10.3068 10.9810 

Default 

rate 

4.36e
-4

 0.0180 0.0944 0.1789 0.2608 0.01029 5.7701 7.6643 9.6180 11.4777 

All 5.10e
-4 

0.0001 0.0474 0.1458 0.2690 0.01992 3.8261 6.6436 10.4380 14.7284 

 

Notes: VaR obtained through simulation also called predictive VaR, which is the estimation that 

take input parameter uncertainties and estimation error into account. This table contains VaR 

values with different probability of α (1%, 5%, 10%), where the probability of loss is based on 

the distribution of common factor. For each αVaR, the quantile value of the distribution is also 

showed in the table. 
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Table 7 
Biases of conventional VaR estimates in the presence of estimation risk (in % of portfolio value) 

 

 

Notes: This table shows the value of conventional VaR and predictive VaR in two portfolios, as 

well as the difference between them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Portfolio Percentil

e level (%) 

Conventio

nal VaR 

Predicti

ve VaR 

Difference 

Investment-grade 1 0.66070 

 

0.5730

1 

0.08769 

 5 0.25564 0.1913

1 

0.06433 

 10 0.14758 0.1025

8 

0.045 

     

Speculative-grade 1 19.0876 22.691 3.6034 

 5 11.6543 13.044 1.3897 

 10 8.62497 8.6472 0.02223 



34 
 

Figure 1 
Simulated Distribution of the VaR due to Default of Portfolio of Obligors with Investment-grade 

Credit Rating 

 

Distribution of the 1% VaR 

 
 

 

Distribution of the 5% VaR 
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Figure 1: Con’t 
 

Distribution of the 10% VaR 

 
 
 

Notes: This figure shows simulated distribution of the 1% VaR, 5% VaR and 10% VaR due to 

default of portfolio of obligors with investment-grade credit rating in a graphic form. For each 

graph, the horizontal axis represents the source of estimation error: uncertainty of recovery rates 

only, uncertainty of default correlations only, uncertainty of default rates only, and uncertainty of 

three input parameters together. The vertical axis represents the confidence intervals for the 

portfolio VaR due to estimation error from different sources. Dots in the graphs represent 

different quantile of the confidence intervals for the portfolio VaR. 
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Figure 2 
Simulated Distribution of the VaR due to Default of Portfolio of Obligors with Speculative-grade 

Credit Rating 

 

Distribution of the 1% VaR 

 
 

 

Distribution of the 5% VaR 
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Figure 2 Con’t 
 

Distribution of the 10% VaR 

 
 

Notes: This figure shows simulated distribution of the 1% VaR, 5% VaR and 10% VaR due to 

default of portfolio of obligors with Speculative-grade credit rating in a graphic form. For each 

graph, the horizontal axis represents the source of estimation error: uncertainty of recovery rates 

only, uncertainty of default correlations only, uncertainty of default rates only, and uncertainty of 

three input parameters together. The vertical axis represents the confidence intervals for the 

portfolio VaR due to estimation error from different sources. Dots in the graphs represent 

different quantile of the confidence intervals for the portfolio VaR. 
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Appendix 
Java Code for bootstrap procedure of investment-grade rating bonds and speculative-grade rating 

bonds 

 

public class MainLoop { 

 

static ArrayList<Double> rate = new ArrayList<Double>(); 

static ArrayList<Double> residuals = new ArrayList<Double>(); 

static ArrayList<Double> means = new ArrayList<Double>(); 

 

regression coefficients for bonds with two credit ratings: (investment-grade rating 

bonds/speculative-garde rating bonds) 

static double para1 = 0.0406072524604043;/2.389911472 

static double para2 = 0.702321203723159;/1.077228297 

static double para3 = 0.144417926711624;/0.605964475 

  

historical data for bonds with two credit ratings: (investment-grade rating 

bonds/speculative-garde rating bonds) 

public void inital(){ 

rate.add(0.00);/(3.96) 

rate.add(0.14);/(4.53) 

rate.add(0.14);/(8.09) 

rate.add(0.14);/(11.04) 

rate.add(0.00);/(6.08) 

rate.add(0.00);/(2.5) 

rate.add(0.05);/(2.1) 

rate.add(0.05);/(3.51) 

rate.add(0.00);/(1.79) 

rate.add(0.08);/(1.98) 

rate.add(0.14);/(3.68) 

rate.add(0.17);/(5.45) 

rate.add(0.23);/(6.05) 

rate.add(0.26);/(9.64) 

rate.add(0.41);/(9.19) 

rate.add(0.10);/(4.88) 

rate.add(0.03);/(2.01) 

rate.add(0.03);/(1.41) 

rate.add(0.00);/(1.14) 

rate.add(0.00);/(0.86) 

 

Residual terms for bonds with two credit ratings: (investment-grade rating 

bonds/speculative-garde rating bonds) 

residuals.add(0.001068);/(3.219864) 

residuals.add(0.021286);/(2.680331) 

residuals.add(-0.11871);/(-3.30026) 

residuals.add(-0.02039);/(0.250388) 
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residuals.add(0.009393);/(0.701282) 

residuals.add(-0.02572);/(0.37282) 

residuals.add(-0.0685);/(-3.10846) 

residuals.add(0.046614);/(-0.21121) 

residuals.add(0.043207);/(0.241853) 

residuals.add(0.042621);/(0.295698) 

residuals.add(0.090217);/(0.019144) 

residuals.add(0.08241);/(4.035364) 

residuals.add(0.220005);/(0.081693) 

residuals.add(-0.19101);/(-1.56814) 

residuals.add(-0.02163);/(-0.06797) 

residuals.add(-0.01724);/(-0.18803) 

residuals.add(-0.05734);/(-1.55081) 

residuals.add(-0.03627);/(-1.90354) 

} 

  

public double calculate(double previous, double beforePrevious){ 

double result = para1 + para2 * previous - para3 * beforePrevious + 

residuals.get(getRandomNumber(18)).doubleValue(); 

return result; 

} 

 

public int getRandomNumber(int range){ 

Random r = new Random(); 

int randint = r.nextInt(range); 

return randint; 

} 

  

public void outputResult(int round, double result){ 

try{ 

// Create file  

FileWriter fstream = new FileWriter("c:\\Means_Result2.xls", true); 

BufferedWriter out = new BufferedWriter(fstream); 

//out.write("mean "+round+" = "+Double.toString(result)); 

out.write(Double.toString(result)); 

out.newLine(); 

out.close(); 

}catch (Exception e){//Catch exception if any 

System.err.println("Error: " + e.getMessage()); 

} 

} 

  

public static void main(String[] args) { 

double buffer[] = new double[20]; 

double totalmeans  = 0; 

MainLoop mainLoop = new MainLoop(); 
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//calculate for formula1 

mainLoop.inital(); 

   

//calculation starts********************************************************** 

System.out.println("Calculation starts..................."); 

for(int j = 0; j<20000; j++){ 

System.out.println("round "  +j); 

int random1 = mainLoop.getRandomNumber(20); 

buffer[0] = rate.get(random1).doubleValue(); 

buffer[1] = random1 == 19?rate.get(random1 -1).doubleValue(): rate.get(random1 + 

1).doubleValue(); 

double total  = buffer[0]+buffer[1]; 

for(int i=2; i<20; i++){ 

buffer[i] = mainLoop.calculate(buffer[i-1], buffer[i-2]); 

total = total +buffer[i]; 

} 

means.add(j, new Double(total/20)); 

totalmeans = totalmeans + total/20; 

mainLoop.outputResult(j, total/20); 

}//end of outside for loop 

System.out.println("Calculation done..................."); 

 

double minMean = (Double)Collections.min(means).doubleValue(); 

double maxMean = (Double)Collections.max(means).doubleValue(); 

System.out.println("min Mean is: "+minMean); 

System.out.println("max Mean is: "+maxMean); 

System.out.println("average of all means is: "+totalmeans/20000); 

} 

} 
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