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Abstract

Two most important characteristics of equity returns time series data are volatility clustering

and non-normality. GARCH model has been widely used to forecast dynamic volatilities

and hence has been used for value-at-risk (VaR) estimation. (Bhattacharyya et al 2008) has

developed a new VaR estimation model for equity return time series using a combination of

the Pearson’s Type IV distribution and the GARCH(1,1) approach which showed superior

predictive abilities. This new model was tested on indices of eighteen countries [3] on daily

return up to March 1st, 2005. In this project, we replicate the results in [3], and test the

model for its predictive power over a more volatile period (i.e. 350 trading days prior to July

18th, 2008). We backtest the validity of the VaR estimations and compare the predictive

power of this model over both of the above time periods on indices of eight countries. We

discover that the Pearson’s type IV model still remains a good predictive ability during the

more volatile period.

Keywords: Risk Management, GARCH, Pearson’s Type IV Distribution,Value-at-Risk,

Volatility Forecast, Backtesting
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Chapter 1

Introduction

In response to the financial disasters of the early 1990s, Value-at-Risk (VaR), a new method

to measure financial-market risk has been developed. Since its adoption by the Basel Com-

mittee, VaR becomes the most common tool of measuring risk in financial sector. VaR

was initially used to measure market risk. Nowadays, VaR is not only being adopted to

control and manage risk activities, but also has been extended to quantify operational risk

and credit risk. As increasing financial uncertainty and the VaR applications, intensive

research has been done by financial institutions, regulators and academics for developing

sophisticated models for VaR estimation. In recent years, especially under the sub-prime

crisis, we’ve witnessed billions of dollars of financial losses and several financial institutions

failure that should draw highly attention to risk management systems.

“VaR uses standard statistical techniques used routinely in other technical field, and it

can be defined as the worst loss over a target horizon that will not be exceeded with a given

1



CHAPTER 1. INTRODUCTION 2

level of confidence” (Jorion 2007). Thus, VaR is calculated based on the statistical distrib-

ution of the asset returns. Parametric approach is one reasonable way of estimating VaR,

which involves estimation of parameters such as the standard deviation. If the distribution of

asset returns can be assumed to belong to a particular parametric family, VaR computation

can be reduced considerably. The important issue is whether the distribution assumption

is realistic. Originally, many implementations of conditional VaR assume that asset returns

are normally distributed such that it results in underestimating VaR because of lowering

the likelihood of extreme returns. In fact, empirical evidence shows that the distribution of

asset return is leptokurtic, and it shows volatility clustering and heteroscedasticity. In order

to capture this empirical fact, GARCH models have been widely used with several other

distributions which have been proposed in terms of VaR estimation. Examples of proposed

distribution are the student t distribution (Bollerslev, 1987), stable distribution (McCul-

loch, 1996), and mixture of normal distribution (Alexander and Lazar, 2006). Whatever

the assumed distribution, most of the models focus on the first two moments. That is, the

mean and conditional variance. The second moment, variance, is a measure of risk that has

been widely recognized as proxy market volatility. Recent studies tilted to the importance

of higher than second moment effect on risk management of asset return and portfolio con-

struction. The characteristic of Pearson’s Type IV distribution has been applied in such

respect. Pearson’s type IV distribution captures great range of skewness and kurtosis that

is a better fit in explaining excess kurtosis in the financial data. This distribution was first

introduced by Permaratne and Bera (2001) in use of extended GARCH model for capturing
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asymmetry and fat-tail of asset returns. In addition to it, Yan (2005) again used Pearson’s

Type IV distribution in autoregressive conditional density models to accommodate time-

varying parameters in modeling non-normal innovation. Due to the natural of financial

return data, simultaneously combining asymmetry, excess kurtosis and volatility clustering

of financial data by using Pearson’s Type IV distribution in estimation of VaR theoretically

would yield more accurate results.

In the literature, Bhattacharyya et al(2008) is known as the first one using Pearson’s

Type IV distribution for estimation of VaR. They found that Pearson-GARCH is a more

robust method for estimating conditional VaR, and they also asserted Pearson-GARCH

model performed very well for holdout sample. Stated in Bhattacharyya et al (2008) that

”The high kurtosis values of Pearson’s type IV curves ensure that even extreme events

can be protected against”. From this respect, we follow their approaches and then update

the sample size to verify the performance of estimating VaR of market indices during the

high volatility period i.e. 350 trading days prior to Jul 18th, 2008. The rest of this paper

is organized as follows. Chapter 1 provides an introduction of background knowledge of

VaR estimation such as, GARCH model, Pearson IV distribution and backtesting methods.

Chapter 2 describes the methodology and detailed settings of the models that are used. In

the last two sections of Chapter 2, we assess the VaR predictive power of the models over

eight indices at different confidence levels. In addition, we also compared the predictive

abilities of the models over two periods of time with emphasis on the new innovations with

Pearson’s Type IV distribution. Chapter 3 gives us the concluding remarks.
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1.1 GARCH

Modeling volatility in time series of financial data has been very popular since early 1980.

Engel (1982) initially developed the Autoregressive Conditional Heteroscedasticity (ARCH).

ARCH models have been proposed by researchers with various refinements to improve the

model performance. GARCH (Bollerslev 1986) is one of the most common ways used in esti-

mating conditional mean and volatility of the returns needed for implantation of conditional

VaR. The GARCH model (Akgiray, 1989) assumes that the variance of returns follows a

predictable process. The conditional variance not only depends on the all past innovations

of order p but also on all pervious conditional variances of order q. A general GARCH(p,

q) process can be described as follows:

Rt|Ωt−1 ∼ F (µt, σ
2
t ), (1.1)

µt = c + ρRt−1, (1.2)

σ2
t = ω + Σp

i=1αie
2
t−i + Σq

j=1βjσ
2
t−j , (1.3)

and

et = Rt − µt (1.4)

Where p > 0, and q ≥ 0 are the orders of the process, and the parameters satisfy the

conditions ω > 0, αi, βj ≥ 0, i = 1, . . . , p, j = 1, . . . , q. F (µt, σ
2
t ) is the conditional

distribution of the variable, with conditional mean µt and variance σ2
t . Ωt−1 is the set of all

information available at time t (i.e.Rt−1, Rt−2, . . .).
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It is well known that financial data are not normally distributed with fatter tails and

peaked around mean that are caused by volatility clustering. GARCH model captures the

dynamic volatility in returns, however, it assumes the conditional kurtosis is constant over

the estimated period.

1.2 Pearson’s Type IV Distribution

To better modeling conditional skewness and conditional kurtosis presented in the finan-

cial data, many distribution of return residuals are assumed to take these into account.

Introduced by Pearson (1895), the Pearsons family of curves encompasses a wide range of

distribution such as normal, beta, student t, gamma, and inverse Gaussian. To see this, lets

present the probability density function of such distribution:

1
f(x)

df(x)
dx

=
x− α

c0 + c1x + c2x2
(1.5)

where α, c0, c1, c2 are the parameters, some special cases are state as follow:

i If c1 = c2 = 0, it is normal distribution which gives first order estimation to the

unknown distribution.

ii If α = 0 and c1 = 0, integrate the equation then it gives a symmetric leptokurtic

density

iii If c1 6= 0 and c2 6= 0, the roots of quadratic equation c0 +c1x+c2x
2 = 0 are imaginary.

Equation 1.5 integrates to following density

f(x)dx = k[1 + (
x− λ

a
)2]−m exp[−v tan−1(

x− λ

a
)]dx (1.6)
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where m > 1/2, v, a, and λ are real valued parameters, −∞ < x < ∞ and k is a

normalization constant that depends on m , v, a.

Equation 1.6 is known as Pearson’s type IV distribution. v can be interpreted as skewness

parameters (e.g. when v = 0, it is symmetric). m can be interpreted as kurtosis parameter

that controls the thickness of the tail. In another word, increases m decreases the kurtosis.

When m →∞, it becomes normal distribution. The first four moments: mean µ, variance

σ2, kurtosis s and skewness k of Pearson’s Type IV are given below.

µ = λ− av

2(m− 1)
, (m > 1), (1.7)

σ2 =
a2

r2(r − 1)
(r2 + v2), (m > 3/2), (1.8)

s = − 4a3v(r2 + v2)
r3(r − 1)(r − 2)

, (m > 2), (1.9)

k =
3a4(r2 + v2)[(r + 6)(r2 + v2)− 8r2]

r4(r − 1)(r − 2)(r − 3)
, (m > 5/2), (1.10)

where r = 2(m− 1).

1.3 Backtesting Methods

VaR models should always be backtested because they are only useful when they produce

acceptable results. “Backtesting is a formal statistical framework that consists of verifying

that actual losses are in line with projected losses” (Jorion 2007). It is essential for VaR users

to check that their VaR models are well calibrated. If not, the models should be examined

for faulty assumptions, wrong parameters or inaccurate modeling. It is also important from

a regulator’s point of view that financial institutions do not understate their risks.
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Since VaR is usually reported at a specific statistic level (95% or 99%), it still can be

acceptable if the VaR estimation does not exceed a given confidence level. The issue is how

to make the decision whether to accept or reject the result produced by VaR models. This

decision is made based on some confidence levels: 95% confidence level (mostly used) and

99% confidence level (the Basel rule). One way to verify the accuracy of the model is to

record the failure rate, which is the proportion of VaR exceeds in a given sample. Let N be

the number of VaR exceedances over the sample period of T days, p be the quantile level,

N/T is the failure rate. Ideally, the failure rate should be unbiased and converge to p as the

sample size increases. To test whether N is too many or too few under the null hypothesis

given a confidence level, it is important to point out that return distribution can be normal,

skewed or fat-tailed. However, there is no assumption for return series distribution. The

setup for such a test is the classic testing framework for a sequence of success and failures,

also called Bernoulli trials. Under the null hypothesis that the model is correctly calibrated,

the number of exceptions x follows a binomial probability distribution:

f(x) =

 T

x

 px(1− p)T−x (1.11)

We also know that x has expected value of E(x) = pT and variance V (x) = p(1−p)T . When

T is large, we can use the central limit theorem and approximate the binomial distribution

by the normal distribution (Equation 1.12).

z =
x− pT√
p(1− p)T

≈ N(0, 1) (1.12)

The cutoff value of | z | is 1.96 for 95% confidence level of decision rule. If | z | is larger
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than the cutoff value of 1.96, then the VaR model is biased.

For any backtesting model, there is always a trade-off between type 1 and type 2 errors.

Type 1 error occurs when we reject a correct model and type 2 error occurs when we do not

reject an incorrect model. Our goal is to get the lowest type 2 error for a given type 1 error.

Kupiec (1995) developed approximate 95 percent confidence regions for such a test. The

regions are defined by the tail points of the Log-likelihood Ratio (LLR):

LRuc = −2ln[(1− p)T−NpN ] + 2ln[(1− N

T
)T−N (

N

T
)N ]. (1.13)

This LLR follows the Chi-square distribution with one degree of freedom. The null hy-

pothesis is that p is the true probability, and we will reject the VaR model if LRuc > 3.841.

Statistical decision theory shows that the LLR test is the most powerful backtesting method

among its class. This test is also easy to be done by plugging the values of p, N and T

into the the LLR formula and compare the result with the critical value to see if we should

reject the VaR model at the 95% confidence level.



Chapter 2

Testing the Pearson-GARCH

Model

2.1 Description of Data

We obtain from http://finance.yahoo.com the daily adjusted closing index values of eight

countries: Australia (All Ordinary), Hong Kong (Hang Seng), Japan (N225) Korea (KOSPI),

France (CAC 40), Germany (DAX), UK (FTSE 100) and USA (NYSE Composite). We have

shown in Table 2.1 the periods for which data have been analyzed and the number of ober-

vations in each data set. As we can see in Table 2.1, the starting dates of our data series

are the same as those in [3] for all eight indices that we choose among the eighteen indices

analyzed.

For each index series we obtained, we denote the index observations made at time t and

9
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Country Index Ticker Data range Data points
From To

Australia All Ordinary AORD 1984-8-3 2008-7-18 6061
Hong Kong Hang Seng HSI 1986-12-31 2008-7-18 5342
Japan N225 N225 1984-1-4 2008-7-18 6040
Korea KOSPI KS11 1997-7-1 2008-7-18 2715
France CAC 40 FCHI 1995-3-1 2008-7-18 3391
Germany DAX GDAXI 1995-3-1 2008-7-18 3384
UK FTSE 100 FTSE 1995-3-1 2008-7-18 3380
USA S&P 500 GSPC 1995-3-1 2008-7-18 3371

Table 2.1: Countries analyzed and data ranges

t + 1 as Pt and Pt+1 respectively. We use the continuous compounding to transform the

index series {Pt} into a return series {Rt} such that

Rt = log
Pt+1

Pt
= log Pt+1 − log Pt. (2.1)

We calculate log return series for all eight indices and plot them in Figure 2.1.

By looking at the return series, it is clearly shown in each return series the volatility

clustering property of the series and a high volatile period in the last 350 observations. In our

experiments, we divide each of the sample return series into two parts: estimation sample

and prediction sample. Estimation sample is used to estimate the initial values of AR(1)-

GARCH(1,1) parameters and the Pearson’s Type IV distribution parameters (Section 2.3).

The parameters are then used to predict the VaR in the next time period (i.e. VaR in the

next day). In later sections, we will refer these two parts of the samples as in-sample and

holdout-sample respectively.
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Figure 2.1: Log returns of the entire sample data
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2.2 Test for Autocorrelation and Stationary

The return series are tested for autocorrelation using the MATLAB ‘autocorr’ function. A

plot of the autocorrelations is shown in Figure 2.2. The return series are also tested for

stationary using augmented Dickey-Fuller tests and none of the series are found to have

unit roots. This is achieved using the MATLAB ‘dfARDTest’ function. The tests for

autocorrelation and stationary are against the entire sample data.

2.3 VaR Estimation using GARCH and Pearson’s Type IV

Distribution

In this section, we will describe two approaches that we have adopted for VaR estimation.

Both of the approaches combine the GARCH model with the Pearson’s Type IV distribution.

Before we get into these two approaches, let’s first look at the GARCH model settings that

we are using for both of the approaches. To be consistent with the settings used in [3], we

choose AR(1) model without a constant term for the conditional mean and GARCH(1,1)

model for the conditional variance. This AR(1)-GARCH(1,1) model is expressed as follows:

µt = ρRt−1, (2.2)

σ2
t = ω + α(Rt−1 − µt−1)2 + βσ2

t−1, (2.3)

and

et = Rt − µt = Rt − ρRt−1 (2.4)
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Figure 2.2: Autocorrelations of the entire sample data
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where |ρ| < 1, ω, α, β > 0 and α + β < 1. We denote ht to be the variance (i.e. σ2
t ) and Zt

to be the i.i.d. standardized innovations. In GARCH models, Zt is assumed to follow the

standard normal distribution that is

Zt ∼ N(0, 1) ⇒ (et | Ft−1) ∼ N(0, ht) (2.5)

f(et | Ft−1) =
1√

2πht
exp(− e2

t

2ht
) (2.6)

The log-likelihood (LL) of the model is given by
∑

lt where lt is the conditional LL defined

as:

lt = −1
2
[log(2πht) +

e2
t

ht
] (2.7)

The maximum likelihood estimates (MLE) for ρ, ω, α and β are computed by minimizing

the negative of the LL. We refer this model as normal innovation for AR-GARCH model.

In the following two models, we will use the same setting for GARCH as shown in equations

2.2 and 2.3 except that the distribution of Zt is assumed to be Pearson’s Type IV. Assume

the 1-day ahead mean and variance prediction to be µt and σ2
t , the VaR prediction at day

t for the return can be written as

V aRt
q = µt+1 + σt+1V aR(Z)q (2.8)

where V aR(Z)q denotes the qth quantile of the residuals Zt.
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2.3.1 GARCH-PIV: Pseudo Maximum Likelihood - Method of Moments

Estimation

In this approach, we estimate the model coefficients in two steps, then obtain VaRt
q from

both normal and Pearson’s Type IV fitted standardized residuals. First of all, an AR(1)-

GARCH(1,1) model is fitted to the return series using the Pseudo Maximum Likelihood

(PML) method. The standardized residuals {Zt} are extracted and the model is used to

make 1-day ahead predictions of µt+1 and σ2
t+1. Then, we fit a Pearson’s Type IV curve to

{Zt} using the Method of Moments (MM). At last, the VaRt
q is calculated using Equation

2.8. We denote this VaR estimation model as Approach 1.

The MM estimates the Pearson’s Type IV parameters r, ν, a and λ by matching the

first four moments (Equations 2.9, 2.10, 2.11 and 2.12) using (Heinrich, 2004).

r = 2(m− 1) =
6(k − s2 − 1)
2k − 3s2 − 6

(2.9)

ν = − r(r − 1)s√
16(r − 1)− s2(r − 2)2

(2.10)

a =
σ
√

16(r − 1)− s2(r − 2)2

4
(2.11)

λ = µ− (r − 1)sσ
4

(2.12)

where µ, σ2, s and k are the mean, variance, skewness and kurtosis of Zt.

The reason of using PML instead of MLE is that the PML method yields consistent and

asymptotically normal estimators (Gourieroux, 1997). This approach is computationally

faster than the next approach.
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2.3.2 GARCH-PIV: Maximum Likelihood Estimation

In this approach, we use the maximum likelihood (ML) method to estimate all model co-

efficients (i.e. AR-GARCH coefficients and PIV coefficients) together. We assume that Zt

follows a Pearson’s Type IV distribution with parameters m, ν, a and λ.

Zt ∼ PIV (k,m, ν, a, λ) (2.13)

This choice results in Zt being a unit variance process, but the mean is not necessarily zero.

The theoretical justification for such a choice is given by Newey and Steigerwald (1997)

[13], who proved that if the conditional distribution of innovations in a GARCH model

is asymmetric, then an additional location parameter is required to satisfy identification

condition for the consistency of the parameter estimates. Due to the non-zero mean of the

innovation series, the expected conditional return needs to be adjusted and is given by

E(Rt | Ft−1) = µt +
√

ht(λ−
aν

r
) (2.14)

As the normalizing constant k is inversely proportional to the scale parameter a,

Zt ∼ PIV (k, m, ν, a, λ) ⇒ (et | Ft−1) ∼ PIV (
k√
ht

,m, ν, a
√

ht, λ
√

ht) (2.15)

Therefore, we can compute MLEs of ρ, ω, α, β, r, ν and λ. At last, the VaRt
q is calculated

using Equation 2.8. We refer this VaR estimation model as Approach 2 in later sections.

2.4 Data Analysis and Parameter Interpretation

Although the Bhattacharyya et al (2008) provided an excellent example to study VaR models

in actual market with Pearson’s type IV distribution, this method has not been widely
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studied and hence is not commonly used. We have repeated the same experiments that

Bhattacharyya et al (2008) did with updated data. The data set that we used has been

described in Section 2.1.

For each index series, we obtain its log-return series via continuous compounding. For

each return series, we divide it into two parts: in-sample data and holdout-sample data. We

fix the holdout-sample data size to be 350 for all indices. This means we use the data from

in-sample to estimate model parameters and then predict the VaR in the next day for 350

days appear in the end of the return series.

2.4.1 AR-GARCH Model Parameters

From the log return series of the samples (Figure 2.1), we can observe volatility clustering

on log returns for all eight indices. After testing for autocorrelation and stationary of the

return series, we obtain the parameters of AR(1)-GARCH(1,1) model with both normal

innovations and Pearson’s Type IV innovations using the MATLAB code suggested by

Bhattacharyya et al (2008). This code is freely available under the GNU General Public

License at http://nmisra.googlepages.com. The estimated AR(1)-GARCH(1,1) parameters

for both of the approaches are reported in Table 2.2. The coefficients of the mean and

variance equations are found to be significant by looking at the t-statistic values.

2.4.2 Standardized Residuals

Characteristics of the standardized residual series in AR(1)-GARCH(1,1) model are sum-

marized in Table 2.3. It lists the mean, standard deviation, skewness and kurtosis of the
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Table 2.2: AR(1)-GARCH(1,1) estimated model parameters.

Country Mean Equation Coefficients Variance Equation Coefficients
ρ ω α β
N P N P N P N P

Austratlia 0.10132 0.0638 6.2E‐06 2.1E‐06 0.2173 0.0867 0.7222 0.8834
Hong Kong 0.10819 0.05173 6.6E‐06 3.8E‐06 0.1358 0.0833 0.847 0.9019
Japan 0.02949 0.0002 2.6E‐06 1.5E‐06 0.1251 0.0946 0.8716 0.9037
Korea 0.07241 0.04778 2.1E‐06 1.8E‐06 0.0802 0.069 0.9192 0.9298
France ‐0.01496 ‐0.0279 1.5E‐06 1.2E‐06 0.0724 0.0683 0.9206 0.9259
Germany ‐0.015 ‐0.035 2.3E‐06 1.5E‐06 0.0922 0.0848 0.8977 0.9101
UK ‐0.01908 ‐0.0315 9.5E‐07 8.8E‐07 0.0851 0.0821 0.9085 0.9118
USA 0.03031 0.00644 1.3E‐06 9.4E‐07 0.083 0.0785 0.9064 0.9146

N: Normal Innovation for AR(1)‐GARCH(1,1) ‐‐ Approach 1; P: Pearson's Type IV innovations for AR(1)‐GARCH(1,1) ‐‐ App
N: Normal Innovation for AR-GARCH (Approach 1); P: Pearson’s Type IV innovations for
AR-GARCH (Approach 2).

Table 2.3: Standardized residual series characteristics.
Country Mean SD Skewness Kurtosis

N  P N P N P N P
Austratlia 0.0378 0.0409 1 1.0378 ‐1.0219 ‐1.8337 13.215 30.766
Hong Kong 0.0304 0.0337 0.9996 1.0169 ‐0.8194 ‐1.0024 9.6338 11.629
Japan 0.0049 0.0063 0.9994 1.0102 ‐0.6026 ‐0.6955 10.369 11.683
Korea 0.0168 0.0171 0.9983 0.9966 ‐0.3605 ‐0.3786 4.9356 5.0143
France 0.0215 0.0219 1 1.0014 ‐0.3048 ‐0.3108 3.8474 3.8622
Germany 0.0324 0.0335 0.9991 1.0008 ‐0.3914 ‐0.4157 4.1024 4.2056
UK 0.0192 0.0196 0.9991 1 ‐0.3113 ‐0.3157 3.5326 3.5294
USA 0.0341 0.0356 0.998 1.0008 ‐0.5094 ‐0.523 5.031 5.0927

N: Normal innovation for AR(1)‐GARCH(1,1) ‐‐ Approach 1; P: Pearson's Type IV innovations for AR(1)‐GARCH(1,1) ‐‐ Approach 
N: Normal Innovation for AR-GARCH (Approach 1); P: Pearson’s Type IV innovations for
AR-GARCH (Approach 2).
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Table 2.4: Q-statistic for standardized residuals

Country Lag 5 Lag 10 Lag 15
MM MLE MM MLE MM MLE

Austratlia 9.5453 16.177 14.906 21.337 31.34 39.583
Hong Kong 21.901 37.285 28.74 44.704 35.719 52.53
Japan 1.1855 5.7245 15.193 20.728 19.889 25.851
Korea 3.4446 6.3598 8.2706 11.396 17.559 20.545
France 7.6594 8.5719 15.013 15.758 19.898 20.881
Germany 4.7431 7.2579 9.0422 11.515 16.936 19.258
UK 6.1435 7.5983 9.6466 11.182 17.063 18.566
USA 7.8781 9.7751 13.848 15.616 23.036 24.681

MM: Method of moments (using Approach 1); MLE: Method of maximum likelihood (using
Approach 2).

standardized residuals. In all cases, the skewness statistic on the standardized residuals is

negative. The excess kurtosis statistic is larger than that of normal distribution which show

the characteristic of heavy tail in all markets.

The Q-statistics at lag 5, 10, and 15 for the standardized residuals are listed in Table

2.4. The null hypothesis is that autocorrelations up to a given number of lags are all

simultaneously zero. Low values of the Q-statistic mean that we cannot reject the null

hypothesis. The statistic follows a chi-quare distribution with degrees of freedom equal to

the number of lags. The threshold values for lags 5, 10, and 15 are 15.09, 23.21 and 30.58

at 1% significance level. The statistical values shown in Table 2.4 tell that we cannot reject

the null hypothesis for all indices except Australia and Hong Kong.
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Table 2.5: Pearson’s Type IV parameter estimates.

Country μ ν α λ
MM MLE MM MLE MM MLE MM MLE

Austratlia 2.9374 4.5841 1.1411 1.5112 1.6264 2.4302 0.5168 0.5569
Hong Kong 3.1227 3.2389 1.1211 0.3021 1.741 1.8606 0.4902 0.1655
Japan 2.9795 3.8063 0.6895 0.7397 1.6936 2.1293 0.2998 0.2872
Korea 4.2794 4.4278 1.1608 1.159 2.3178 2.386 0.427 0.42
France 6.8356 8.0222 2.7031 3.3673 3.1823 3.5122 0.7585 0.8642
Germany 6.0699 7.2287 2.7695 3.8303 2.9138 3.2354 0.8283 1.0283
UK 10.435 10.436 6.1651 6.196 4.0144 4.0166 1.3308 1.3383
USA 4.4458 4.7154 1.8299 1.6215 2.3412 2.4776 0.6558 0.577

MM: Method of moments (using Approach 1); MLE: Method of maximum likelihood (using
Approach 2)

2.4.3 Pearson’s Type IV Distribution Parameters

We obtain the estimated parameters of Pearson’s Type IV distribution that fits the stan-

dardized residual (Approach 1) by PML estimation and the parameters of the Pearson’s

Type IV distribution (Approach 2) by ML estimation. Table 2.5 lists the Pearson’s Type

IV parameter estimations. We can see that values of m (i.e. µ shown in the table) are

all greater than 5/2 in all cases so than they all satisfying the conditions for a type IV

distribution.

2.4.4 VaR Exceedances over the Entire Sample

The model is fitted on the eight indices in our study. The goodness of fit of the model

is measured in terms of the number of exceptions observed. An exception occurs when a

realized daily loss (i.e. negative of daily return) is greater than the estimated VaR for a
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Table 2.6: VaR exceedances for returns of entire sample.

Country 95 percentile 97.5 percentile 99 percentile
N Pearson E N Pearson E N Pearson E

MM MLE MM MLE MM MLE
Austratlia 269 279 287 303 158 117 140 151 85 32 57 60.6
Hong Kong 232 240 285 267 141 101 129 134 70 34 50 53.4
Japan 302 321 318 301.9 181 135 144 151 84 35 45 60.4
Korea 145 143 142 135.7 83 64 66 67.8 41 19 19 27.1
France 183 176 175 169.5 100 82 81 84.7 51 27 30 33.9
Germany 183 171 167 168.7 102 76 79 84.3 45 27 29 33.7
UK 183 169 171 168.9 107 93 93 84.5 58 34 35 33.8
USA 175 173 175 168.5 109 81 86 84.2 61 24 30 33.7

N: Normal innovation for AR-GARCH; Pearson: Pearson’s Type IV innovations for AR-
GARCH; E: Expected number of exceptions; MM: Method of moments (using Approach 1);
MLE: Method of maximum likelihood (using Approach 2).

given percentile. If the model is correct, the expected exception is the tail area of each

quantile times the total number of observation. A high exception number implies that the

model excessively underestimated the realized VaR, and a low exception number implies

it overestimated the realized VaR. The number of VaR exception for our entire sample for

each index with normal and Pearson’s Type IV innovations is given in the Table 2.6 along

with the expected number of exceptions. As we can see from the table, in most cases, the

Pearson’s Type IV distribution with MLE method out performs the normal distribution at

all three percentiles and the Pearson’s Type IV distribution with PML estimation also out

performs the normal distribution at 95 and 97.5 percentile.
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2.4.5 VaR Predictions

To test the predictive power of the models, we need to identify an holdout-sample. It is

usually the last N data points in the entire sample. In our case, we choose the last 350

points in each return series to justify model predictions and use the data points that are

prior to it to estimate the model parameters. As we can see, the return series between Jan

1th, 2007 and July 18th, 2008 is very volatile compare to a prior to it. As we all know, the

stock markets around the world have been extremely volatile since 2007. We choose such

period to see the performance of the models under this particular situation. The expected

numbers of exceptions for an holdout-sample of size 350 are 17.5, 8.75 and 3.5 at 5%, 2.5%

and 1% significance, respectively. The actual number of exceptions are disclosed in Tables

2.7, 2.8 and 2.9 with different window sizes that we will explain in the following paragraphs.

Default Sliding Window

We use the same method described in Bhattacharyya et al (2008) that is after computing

the VaR at the end of a day, we roll the window forward by one point such that we drop

the least recent data point and repeat the same steps for the next VaR computation. The

in-sample size, which is also the sliding window size, equal to the number of observations in

the entire sample for each return series minus the holdout-sample size (i.e. 350). The VaR

violations for the holdout-sample are reported in Table 2.7.
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Table 2.7: VaR exceedances for returns for holdout-sample using moving window size equal
the length of in-sample.

VaR exceedances for returns for holdout sample

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 3 5 7 1 1 1 0 0 0
Hong Kong 17 18 21 5 4 7 3 3 3
Japan 22 22 25 17 11 14 6 3 3
Korea 18 17 19 12 9 12 5 3 4
France 14 14 13 12 12 12 7 6 6
Germany 19 17 16 13 10 9 6 4 4
UK 19 18 17 9 8 8 5 4 3
USA 17 15 19 9 6 6 3 0 0

The size of the holdout sample is 500. Therefore, the expected numbers of
 violations for 95%,97.5% and 99% VaR are 25, 12.5, and 5, respectively.

VaR exceedances for returns for holdout sample

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 28 30 24 18 14 17 11 3 8
Hong Kong 25 26 29 16 14 15 8 4 6
Japan 26 29 27 17 12 13 7 3 6
Korea 20 20 23 15 12 12 7 3 5
France 29 29 30 15 13 13 5 4 4
Germany 21 21 21 13 13 13 6 4 5
UK 23 23 23 16 15 14 11 9 9
USA 26 25 26 22 15 15 13 4 5

The size of the holdout sample is 350. Therefore, the expected numbers of
 violations for 95%,97.5% and 99% VaR are 17.5,8.75, and 3.5, respectively.

VaR exceedances for returns for holdout sample increamental 

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 29 30 27 18 16 17 11 4 8
Hong Kong 25 26 31 18 12 15 8 4 6
Japan 26 27 27 17 12 14 7 3 6
Korea 20 19 19 13 11 11 7 3 3
France 30 28 29 17 13 14 6 3 4
Germany 20 20 20 13 13 13 6 4 4
UK 23 23 23 16 15 15 13 9 9
USA 26 26 26 21 15 16 13 4 6

VaR exceedances for returns for holdout sample with 2000 moving windows

N: AR-GARCH model with normal innovation; MM: Method of moments (using Approach
1); MLE: Method of maximum likelihood (using Approach 2). The size of the holdout-
sample is 350. Therefore, the expected number of violations are 17.5, 8.75 and 3.5 re-
spectively. The underlined numbers of exceptions should be rejected at 95% level of test
confidence. See Table 2.10 for model backtesting 95% non-rejection test confidence regions.
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Table 2.8: VaR exceedances for returns for holdout-sample using incremental window.

VaR exceedances for returns for holdout sample

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 3 5 7 1 1 1 0 0 0
Hong Kong 17 18 21 5 4 7 3 3 3
Japan 22 22 25 17 11 14 6 3 3
Korea 18 17 19 12 9 12 5 3 4
France 14 14 13 12 12 12 7 6 6
Germany 19 17 16 13 10 9 6 4 4
UK 19 18 17 9 8 8 5 4 3
USA 17 15 19 9 6 6 3 0 0

The size of the holdout sample is 500. Therefore, the expected numbers of
 violations for 95%,97.5% and 99% VaR are 25, 12.5, and 5, respectively.

VaR exceedances for returns for holdout sample

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 28 30 24 18 14 17 11 3 8
Hong Kong 25 26 29 16 14 15 8 4 6
Japan 26 29 27 17 12 13 7 3 6
Korea 20 20 23 15 12 12 7 3 5
France 29 29 30 15 13 13 5 4 4
Germany 21 21 21 13 13 13 6 4 5
UK 23 23 23 16 15 14 11 9 9
USA 26 25 26 22 15 15 13 4 5

The size of the holdout sample is 350. Therefore, the expected numbers of
 violations for 95%,97.5% and 99% VaR are 17.5,8.75, and 3.5, respectively.

VaR exceedances for returns for holdout sample increamental 

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 29 30 27 18 16 17 11 4 8
Hong Kong 25 26 31 18 12 15 8 4 6
Japan 26 27 27 17 12 14 7 3 6
Korea 20 19 19 13 11 11 7 3 3
France 30 28 29 17 13 14 6 3 4
Germany 20 20 20 13 13 13 6 4 4
UK 23 23 23 16 15 15 13 9 9
USA 26 26 26 21 15 16 13 4 6

VaR exceedances for returns for holdout sample with 2000 moving windowsN: AR-GARCH model with normal innovation; MM: Method of moments (using Approach
1); MLE: Method of maximum likelihood (using Approach 2). The size of the holdout-
sample is 350. Therefore, the expected number of violations are 17.5, 8.75 and 3.5 re-
spectively. The underlined numbers of exceptions should be rejected at 95% level of test
confidence. See Table 2.10 for model backtesting 95% non-rejection test confidence regions.

Incremental Window and Customized Sliding Window

As pointed out in [3] that the right window size can be obtained by trial and error. We

adopted two rolling window algorithms other than the default sliding window algorithm.

The first one is called incremental window such that the window size keeps increasing as

predictions go on. The difference between the incremental window and the default sliding

window is that, after we compute the VaR at the end of a day, we roll the window forward

to include one more data points without dropping off the least recent data in the in-sample.

Therefore, the window size increases by one after each prediction. The VaR prediction of

using the incremental window is described in Table 2.8.
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Table 2.9: VaR exceedances for returns for holdout-sample using moving window size equal
to 2000.

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 25 24 26 19 14 15 12 7 7
Hong Kong 23 25 24 18 15 17 9 6 6
Japan 25 24 23 16 12 12 7 6 6
Korea 21 21 20 17 11 11 7 3 3
France 31 27 29 16 11 12 6 3 3
Germany 19 19 19 13 10 12 5 4 4
UK 23 22 22 17 14 14 12 9 9
USA 26 26 26 20 16 17 13 6 6

N: AR-GARCH model with normal innovation; MM: Method of moments (using Approach
1); MLE: Method of maximum likelihood (using Approach 2). The size of the holdout-
sample is 350. Therefore, the expected number of violations are 17.5, 8.75 and 3.5 re-
spectively. The underlined numbers of exceptions should be rejected at 95% level of test
confidence. See Table 2.10 for model backtesting 95% non-rejection test confidence regions.

The second rolling window algorithm that we use is the customized sliding window in

which we fix the sliding window size to a specific number and hence ignoring the data that is

prior to the end of the (N + holdout-sample size) observations. The motivation of choosing

a smaller window size is trying to put more weight on the recent data. We have done

experiments with window size equal to 1000 and 2000. The results shown in Table 2.9 are

those produced with window size equal 2000. This result is much better than the result

produced with window size equal 1000.
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Table 2.10: Model backtesting 95% non-rejection test confidence regions.

            Nonrejection Region for Number of Exceptions N
Probability VaR Confidence
level p level c T = 350 Days T = 500 days
0.01 99% 0 < N < 8 1 < N < 10
0.025 97.5% 3 < N < 16 6 < N < 20
0.05 95% 10 < N < 27 16 < N < 36

Model Backtesting 95% Nonrejection Test Confidence Regions
N is the number of failures that could be observed in a sample size T without the null
hypothesis that p is the correct probability at the 95 percent level of test confidence.

2.5 Backtesting

We use the log-likelihood ratio (LLR) method mentioned in Section 1.3 to check the validity

of the predictions made by the models. The null hypothesis of the test is that p is the

correct probability at the 95 percent level of test confidence. We have generated the non-

rejection regions for all three different quantiles. The model backtesting 95% non-rejection

test confidence is shown in Table 2.10. The results of the backtesting are shown in Tables

2.7, 2.8 and 2.9 with the rejections underlined.

2.6 Comparing the Two Periods of Experiments

The tables shown in Appendix A give us the the empirical results that we have generated

using Approach 1 and Approach 2 for the date range that have been analyzed in Table 1 of

[3]. As described in Section 2.3, we used the same settings for the models and the parameters,

and we have obtained similar parameter estimations as in [3]. We have reproduced the tables
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that are in the same format of those shown in [3] for the ease of comparison. Table A.1

corresponds to Table 2 of [3]; Table A.2 corresponds to Table 3 of [3]; Table A.3 corresponds

to Table 4 of [3]; Table A.4 corresponds to Table 5 of [3]; Table A.5 corresponds to Table

7 of [3]; Table A.6 corresponds to Table 8 of [3] with additional information disclosed for

approach 1 and normal innovation of GARCH.

Now, let’s look at Tables A.6, and 2.9 for the comparison of the predictive power during

the two periods. For period one (i.e. 500 trading days prior to March 1st, 2005), we should

reject the MLE model for 3, 1 and 2 countries for 95%, 97.5% and 99% VaR predictions

respectively; for period two (i.e. 350 trading days prior to July 18th, 2008), we should

reject the MLE model for 1, 2 and 1 countries for 95%, 97.5% and 99% VaR predictions

respectively. This is under the change that we used moving window size equal to 2000.

Therefore, we see a similar predictive power of the Pearson’s Type IV model among those

two periods. Another observation is that, for all of those rejections during period 1 shown

in Table A.6, the model is rejected because of overestimating the VaR during period 1;

however, for all of those rejections during period 2 shown in Table 2.9, the model is rejected

because of underestimating the VaR. Nevertheless, the number of rejections of the models

during the two periods are similar which indicates a similar predictive power.
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Conclusion

Superior performance in measuring market risk is on demanding with increasing occurrence

of extreme events in recent years. Models that can better explain the left tail behavior

of returns are required, since otherwise the reported VaR with thinner tail leads to an

underestimation of risk. This paper has analyzed the application of newly proposed GARCH

model with Pearson’s Type IV distribution to measure VaR in order to account for a non-

normal return distribution. Most existing GARCH models of the estimation of VaR capture

time-varying volatility in return and the leptokurtosis in the distribution of returns. Literally

we can say they ignore the role of skewness and kurtosis in the return distribution. Thus,

such models are likely to provide poor estimations of VaR when high confidence levels are set.

Empirical evidence approves this while more study on skewness and excess kurtosis discovers

the important role they play on asset returns. In this respect, the high kurtosis value of

Pearson’s Type IV distribution is adopted. Applying the Pearson-GARCH procedure to the

28
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in-sample period of eight indices, the results show that at high confidence levels, it generates

VaR forecasts that are more accurate than those generated by normal distribution. For the

out samples period, in the case of high market volatility, the performances are pretty good

at high confidence level and are generally good at lower confidence level.Our study shows

the Pearson- GARCH model provides good tail estimates, and therefore more reliable VaR

predictions in turbulent times. In other words, this approach dose reliably captures the

risk of the extreme events. Furthermore, the size of rolling window used in estimation is

important. In our case, window size equals to 2000 gives us the best performance of the

Pearson-GARCH model. In both of the two periods that we have tested the model on, it

shows similar power of VaR predictions.
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Empirical Results of Replicating

Bhattacharyya 2008

The following tables show the empirical results that have been generated using Approach 1

and Approach 2. Both of the approaches are using the same AR(1)-GARCH(1,1) settings

mentioned in section 2.3. The date ranges of the data that have been analyzed are the

same as the date ranges stated in Table 1 of [3]. Table A.1 corresponds to Table 2 of [3];

Table A.2 corresponds to Table 3 of [3]; Table A.3 corresponds to Table 4 of [3]; Table A.4

corresponds to Table 5 of [3]; Table A.5 corresponds to Table 7 of [3]; Table A.6 corresponds

to Table 8 of [3] with additional information.

30
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Table A.1: AR(1)-GARCH(1,1) estimated model parameters on return series used in [3].

Country Mean Equation Coefficients Variance Equation Coefficients
ρ ω α β
N P N P N P N P

Austratlia 0.13194 0.09572 7.8E‐06 2.4E‐06 0.237 0.087 0.6793 0.8751
Hong Kong 0.12693 0.06928 8.8E‐06 5.4E‐06 0.1431 0.0874 0.8329 0.891
Japan 0.03657 0.00926 2.7E‐06 1.5E‐06 0.1326 0.0987 0.8661 0.9003
Korea 0.07791 0.05876 4.8E‐06 3.5E‐06 0.0799 0.0699 0.9156 0.9272
France 0.00137 ‐0.0077 1.4E‐06 1.2E‐06 0.0661 0.0629 0.9278 0.9318
Germany ‐0.00731 ‐0.0242 2E‐06 1.3E‐06 0.0909 0.0847 0.9024 0.9121
UK 0.00437 ‐0.0048 9E‐07 7.8E‐07 0.077 0.0747 0.9162 0.9195
USA 0.06642 0.0335 1.2E‐06 9.4E‐07 0.0958 0.0822 0.8966 0.9112

N: Normal Innovation for AR(1)‐GARCH(1,1) ‐‐ Approach 1; P: Pearson's Type IV innovations for AR(1)‐GARCH(1,1) ‐‐ App
N: Normal Innovation for AR-GARCH (Approach 1); P: Pearson’s Type IV innovations for
AR-GARCH (Approach 2). The coefficients of the mean and the volatility equations are all
found to be significant.

Table A.2: Standardized residual series characteristics.
Country Mean SD Skewness Kurtosis

N  P N P N P N P
Austratlia 0.0388 0.0423 1.0001 1.0441 ‐1.0415 ‐1.9898 13.745 34.172
Hong Kong 0.0275 0.0305 0.9996 1.0202 ‐0.8567 ‐1.0406 9.9857 11.983
Japan 0.0048 0.0061 0.9993 1.0124 ‐0.6086 ‐0.711 11.109 12.647
Korea 0.004 0.0041 0.9973 0.9975 ‐0.3427 ‐0.3585 5.3012 5.4018
France 0.0246 0.025 0.9995 1.0005 ‐0.2227 ‐0.2264 3.6009 3.609
Germany 0.0276 0.0284 0.9989 0.999 ‐0.2708 ‐0.289 3.5943 3.6707
UK 0.0205 0.0209 0.999 0.9993 ‐0.2444 ‐0.2481 3.434 3.4347
USA 0.0361 0.0379 0.9979 1.0009 ‐0.4792 ‐0.4992 4.7411 4.8492

N: Normal innovation for AR(1)‐GARCH(1,1) ‐‐ Approach 1; P: Pearson's Type IV innovations for AR(1)‐GARCH(1,1) ‐‐ Approach 
N: Normal Innovation for AR-GARCH (Approach 1); P: Pearson’s Type IV innovations for
AR-GARCH (Approach 2). The kurtosis values of the standardized residuals clearly show
that the residuals have a much thicker tail than that of a normal distribution.
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Country Lag 5 Lag 10 Lag 15
MM MLE MM MLE MM MLE

Austratlia 7.0000 12.1156 10.4937 15.4084 21.5422 27.6593
Hong Kong 14.1600 28.3219 18.8729 33.9399 25.4967 41.0269
Japan 0.7698 3.3626 10.9956 14.2687 16.4206 19.9810
Korea 2.9929 4.4244 4.1841 5.6621 10.8778 12.3991
France 7.5548 8.0707 12.2331 12.6896 17.0246 17.6879
Germany 2.7751 3.7869 7.0958 8.0121 15.9481 16.8966
UK 7.9229 8.7156 13.0790 13.9174 17.3068 18.1242
USA 6.6033 8.8989 10.7058 12.6492 19.9185 22.0288

Table A.3: Q-statistic for standardized residuals.

Table A.4: Pearson’s type IV parameter estimates

Country μ ν α λ
MM MLE MM MLE MM MLE MM MLE

Austratlia 2.9183 4.3862 1.1361 1.1091 1.6151 2.371 0.5171 0.4353
Hong Kong 3.1033 3.1976 1.1511 0.1606 1.7265 1.8414 0.4999 0.1057
Japan 2.9339 3.6649 0.6584 0.564 1.6683 2.0693 0.2888 0.2255
Korea 3.9532 4.255 0.9028 0.6572 2.1837 2.3355 0.3378 0.2404
France 8.2681 8.7855 2.8084 3.0659 3.6105 3.7453 0.7222 0.7625
Germany 8.8081 8.9167 3.8791 4.2335 3.7062 3.7207 0.9482 1.0229
UK 11.341 11.318 5.5079 5.585 4.2828 4.2775 1.1611 1.1786
USA 4.7714 5.1001 2.0278 1.7507 2.465 2.6242 0.6987 0.5989

MM: Method of moments (using Approach 1); MLE: Method of maximum likelihood (using
Approach 2).
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Table A.5: VaR exceedances for returns for entire sample.

Country 95 percentile 97.5 percentile 99 percentile
N Pearson E N Pearson E N Pearson E

MM MLE MM MLE MM MLE
Austratlia 220 233 245 260.05 129 94 118 130 68 24 51 52.01
Hong Kong 185 187 224 224.6 111 75 110 112 57 29 46 44.92
Japan 261 270 271 260.25 153 113 129 130 75 25 39 52.05
Korea 91 92 92 93.75 51 41 43 46.9 26 14 15 18.75
France 134 130 132 126.25 72 63 63 63.1 36 25 25 25.25
Germany 136 122 123 126.05 74 58 58 63 32 21 22 25.21
UK 136 130 129 126.2 79 70 69 63.1 39 24 24 25.24
USA 122 123 127 125.85 76 58 62 62.9 43 22 24 25.17

N: AR-GARCH model with normal innovation; MM: Method of moments (using Approach
1); MLE: Method of maximum likelihood (using Approach 2). The expected number of
violations is based on the actual number of observations. For example, for 99% VaR for
Australia index, the expected number of violations is 0.01*5201 = 52.01.
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Table A.6: VaR exceedances for returns for holdout-sample.
VaR exceedances for returns for holdout sample

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 3 5 7 1 1 1 0 0 0
Hong Kong 17 18 21 5 4 7 3 3 3
Japan 22 22 25 17 11 14 6 3 3
Korea 18 17 19 12 9 12 5 3 4
France 14 14 13 12 12 12 7 6 6
Germany 19 17 16 13 10 9 6 4 4
UK 19 18 17 9 8 8 5 4 3
USA 17 15 19 9 6 6 3 0 0

The size of the holdout sample is 500. Therefore, the expected numbers of
 violations for 95%,97.5% and 99% VaR are 25, 12.5, and 5, respectively.

VaR exceedances for returns for holdout sample

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 28 30 24 18 14 17 11 3 8
Hong Kong 25 26 29 16 14 15 8 4 6
Japan 26 29 27 17 12 13 7 3 6
Korea 20 20 23 15 12 12 7 3 5
France 29 29 30 15 13 13 5 4 4
Germany 21 21 21 13 13 13 6 4 5
UK 23 23 23 16 15 14 11 9 9
USA 26 25 26 22 15 15 13 4 5

The size of the holdout sample is 350. Therefore, the expected numbers of
 violations for 95%,97.5% and 99% VaR are 17.5,8.75, and 3.5, respectively.

VaR exceedances for returns for holdout sample increamental 

Country Holdout sample VaR violations
95 percentile 97.5 percentile 99 percentile
N Pearson N Pearson N Pearson

MM MLE MM MLE MM MLE
Australia 29 30 27 18 16 17 11 4 8
Hong Kong 25 26 31 18 12 15 8 4 6
Japan 26 27 27 17 12 14 7 3 6
Korea 20 19 19 13 11 11 7 3 3
France 30 28 29 17 13 14 6 3 4
Germany 20 20 20 13 13 13 6 4 4
UK 23 23 23 16 15 15 13 9 9
USA 26 26 26 21 15 16 13 4 6

VaR exceedances for returns for holdout sample with 2000 moving windows

N: AR-GARCH model with normal innovation; MM: Method of moments (using Approach
1); MLE: Method of maximum likelihood (using Approach 2). The size of the holdout-
sample is 500. Therefore, the expected number of violations are 25, 12.5 and 5 respectively.
The underlined numbers of exceptions should be rejected at 95% level of test confidence.
See Table 2.10 for model backtesting 95% non-rejection test confidence regions.
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