
Middle-to-High School Girls as Game Designers – What
are the Implications?

Magy Seif El-Nasr Ibrahim Yucel Joseph Zupko Andrea Tapia Brian Smith
College of Information Sciences & Technology

Penn State University
University Park, PA

{magy,iyucel,jzupko,atapia,bsmith}@ist.psu.edu
ABSTRACT

The percentage of young women choosing educational paths
leading to science and technology-based employment has been
dropping for several years. In our view, the core cause for this
phenomenon is not a lack of ability, but rather a combination of
low self efficacy, misconception of the IT field, and lack of
interest and social support from families and peers. The specific
aim of this paper is to discuss a case study – a class named
Gaming for Girls . This class was offered to middle and high
school girls three times from Fall 05 to Summer 06. In these
classes, female students assumed the role of designers and
developers engaged in developing their own games using
commercial game engines. Based on this experience, we assert
that through the activity of designing games using game engines,
girls can (a) gain an understanding of the game development
process, (b) acquire computer science skills, and (c) increase their
confidence level with regards to computing.

Categories and Subject Descriptors
K.4 [Computers and Education], J.5 [Arts and Humanities]

General Terms
Performance, Design, Experimentation.

Keywords
Education, game modding, learning, gender

1. INTRODUCTION
The gender imbalance problem in the information technology (IT)
and game industries has been a topic of interest for many years. In
′02 women accounted for 24.6% of the IT profession compared to
25.4% in ′96 [2] (not counting administrative jobs). A parallel can
be found in the game industry where, in 2005, women accounted
for only 11.5% of the game development workforce [3].
We regard this problem as a "pipeline" issue. Women earn
significantly fewer undergraduate degrees in computer science
and engineering than men. This may be traced back to middle and
high school education, where women students continue to track

out of math and science classes that provide the foundations for
IT careers [4-6]. American cultural expectations and influences
often convey the message that women are unsuitable for the IT
world (e.g., [7]). In years prior to college, research studies have
revealed effects of such social norms and expectations; for
example, research showed that some girls exhibit low self-
efficacy regarding computing and small amounts of informal and
voluntary computer exploration (e.g., [8, 9]). It has been
suggested that this is related to young women’s negative
perceptions of the IT field, e.g., it is male-oriented or anti-social
[5].
As a result, there is a need for interventions that are aimed at
increasing middle and high school girls’ exposure to design and
programming, thus demystifying the technology profession and
promoting computer literacy. In this paper, we discuss a case
study of such an intervention—Gaming for Girls—a game design
course aim at engaging middle and high school students in design
and programming activities through building games using existing
game engines. Our premise is that this activity will (1) increase
students’ comfort level with technology, (2) demystify game and
software development careers and underlying development
processes, (3) increase students’ self-efficacy with computing,
and (4) promote the acquisition of programming and design skills.
In this paper, we will describe three different offerings of the
Gaming for Girls course during Fall 05, Spring 06, and Summer
06. We present these offerings as case studies, detailing the
curricula, engines used, problems encountered, and lessons
learned. We collected surveys, interviews, and observational data
during each offering. However, due to the small sample size (25
students in each offering) and the constant refinement of the
curricula and game engines, it is difficult to provide generalized
results, thus we will keep the analysis at an individual level. We
will discuss learning outcomes based on our observations and
interactions with students as well as their perception of what they
learned based on survey data. In future work, beginning with the
current offering (Fall 06), we will conduct and experiment with
several assessment methods to measure learning outcomes.

2. Games and Learning
Many researchers have argued that games provide suitable
environments for learning [10]. Several techniques have emerged
from such studies: 1) learning through game playing, and 2)
learning through game design, which has three flavours: creating
games a) from scratch, b) using tools created by researchers, or c)
using commercial game engine, i.e. game modding.
Modding is defined as the process of changing an existing game,
thus it generally requires the use of a game with built-in
development tools, e.g., Unreal Tournament and Warcraft III.
Game modding demands an understanding of the underlying

dstaylor
Typewritten Text

iliuta
Typewritten Text
This is the author’s version of the work. The definitive version was published in Magy Seif El-Nasr, Ibrahim Yucel, Joseph Zupko, Andrea Tapia, and Brian Smith. Middle-to-High School Girls as Game Designers – What are the Implications? 2nd Annual Microsoft Academic Days Conference on Game Development. , February 22-25, 2007. Downloaded from the SFU Library institutional repository.

iliuta
Typewritten Text

engine and game mechanics in order to use and modify the game,
which is mostly learned through the use of the engine itself or by
research on forums. Game modding has the advantage of offering
content and mechanics, thus providing an architecture for creating
complex and aesthetically pleasing games which are otherwise
difficult to build given students’ skill and time constraints.
Learning through design can occur in many domains with
different types of development activities. Since the development
of the Logo language in the 1960s, educational researchers have
investigated ways that programming computers can facilitate
learning about mathematics, computation, and more general
problem solving skills [11-13]. Many researchers have devised
approaches to engage students in learning through designing and
developing their own games. For instance, Harel’s work in
elementary schools demonstrated children working for prolonged
periods on the creation of educational games using the Logo
programming language [14]. Kafai [15] noted similar engagement
as students developed their own games, and she also tracked their
abilities to incrementally create, evaluate, and revise their designs
over time. Hooper’s longitudinal study of software development
in schools showed students expressing notions of cultural identity
in their programs—ideas that were not likely to be expressed had
students just played existing games [16].
These studies used Logo as the primary programming language,
but a number of programming environments have been created to
help novices learn by designing and implementing working
computer programs [17-21]. The courses described in this paper
are also examples of using games to teach computer science skills
where students use commercial game engines instead of research-
based languages or tools. Time, cost, and expertise are significant
barriers to experimenting with video game design in educational
settings, but customizing existing games may reduce the difficulty
and make it possible for learners to create credible and
aesthetically pleasing prototypes. The time commitment to return
is important for middle and high school students since they
generally lack the time to devote months to a game project but
still desire ‘commercial’ aesthetics quality. In addition, using
commercial game engines provides a robust infrastructure that
students can use and a realistic environment that students can
learn from (thus teaching them realities of game systems).

3. Gaming for Girls Courses
3.1 Engines used
A different game engine was used for each course offering. The
choice of a game engine is critical, as it fundamentally promotes
(or hinders) the course’s learning objectives. As we previously
argued, different engines promote different learning objectives
[22]. Therefore, when choosing an engine, an educator needs to
consider class schedule, size, style, student skills and age, in
addition to the course’s learning objectives. We chose three
engines: Warcraft III, Game Maker, and RPG Maker XP.
Warcraft III was used in the Fall 05 course. Warcraft III includes
a visual programming tool, the Trigger Editor, which allows
students to program using dialogue boxes and point-and-click
rather than writing code. However, it also allows students who are
interested in writing code to do so through the same interface. Its
programming environment includes notions of event-driven
programming, Boolean logic, and parallel execution. Its art and
design tools facilitate 2D map design, terrain design, and the
creation of character behaviors. Additionally, it includes in-

engine documentation in the form of tool tips and help text. These
features may help students focus on semantics rather than syntax.
These features also had drawbacks, however. Semi-complex
structures, such as deeply-nested conditionals, are tedious to
specify in the visual programming tool. Additionally, the in-
engine descriptions assume intermediate to advanced
programming knowledge and make assumptions that may not be
obvious, such as the fact that an expiration timer on floating text
is dependant on the floating point “permanence” being off.
In the Spring 06 course, we used Game Maker, an engine that
allows students to build 2D games. Game Maker is designed with
the flexibility to build any type of game, and thus is not
associated with a specific interaction model. Unlike Warcraft III,
which embeds a real-time strategy interaction model, Game
Maker can be used to produce a side-scroller as easily as a top-
down role-playing game. While this greatly increases students’
freedom and creativity, it can also be imposing as students needed
to develop their own interaction model in addition to building a
game. Using an existing game engine for game modding
(Warcraft III) seemed to increase students’ comfort with the tool
when compared to creating a game from scratch as is necessary in
Game Maker.
Game Maker offers a visual programming tool similar to Warcraft
III with some differences. In Game Maker, programs are part of
game objects but are also event driven. For example, a ball object
can be programmed to reverse direction when a collision event
occurs between the ball and a wall object. While the visual
programming tool is simple to understand and use, it too becomes
tedious to use with semi-complex structures.
Game Maker requires students to understand event-driven
programming and a weak concept of object-oriented
programming. Variables proved to be more important in Game
Maker than in Warcraft III and parallel processing less important,
although both concepts are present in both engines. Students must
also understand geometry in 2D, sprites (pixel editing), and
collision-detection, as Game Maker relies heavily on “object-
collides-with-object” events.
In Summer 06, we used RPG Maker XP . Like, Warcraft III and
Game Maker, it provides a visual programming tool on top of a
scripting language (Ruby in this case). Code is event-driven,
although the number and types of events is significantly smaller
than in the other two engines. Although RPG Maker XP is not
embedded in a game, it is defined by a 2D “Japanese-style” RPG
interaction model, and thus is constrained by that model. This
proved beneficial since students reacted favorably to the model,
and thus it was easy for them to construct their games using this
model as a base.
The visual programming tool of RPG Maker XP is conceptually
different than its underlying scripting language. In fact, the tool is
actually a “mini-language” that is implemented within Ruby. As a
result, it was very difficult for students to move from the visual
programming environment into Ruby when necessary, particularly
when compared with Warcraft III or Game Maker.
Students working with RPG Maker XP deal with 2D map editing,
layers (transparency), and event-driven programming. Switches,
which are basically Boolean variables, are used extensively.
Students will most likely need to deal with editing stats such as
health and mana points to use the engine’s combat system.

Table 1 summarizes the concepts that students are required to
know in order to work with the engines.

Table 1. Programming concepts required for each engine
Game
Engine

Programming Concepts Promoted

WarCraft
III

Variables, Boolean logic, event-based
programming, parallel execution, 2D map design,
terrain design, and character behavior scripting

Game
Maker

Variables, Boolean Logic, weak notion of Objects
(as entities), sprites, collision detection, 2D
geometry and coordinate systems

RPG Maker
XP

Variables, Boolean logic, event-driven
programming, concept of layers, 2D animation,
2D map design, and basic math for battle stats

3.2 Curriculum
The first offering used lectures to present knowledge and lab-time
for developing games to deepen and solidify understanding. Later
offerings nearly eliminated lectures all together, presenting
knowledge through building mini-projects or other activities with
the game engines. The last few days of all classes focused on
providing students with an environment to finish and polish their
game projects. Instructors concentrated on providing feedback,
help, and facilitating discussion and critique.
The first course was offered over a 5-week period during Fall 05
using Warcraft III. The class met on Saturdays, once a week, for
around 4 hours. Each week focused on a specific topic and
students were given homework on that topic. The first week’s
topic covered map design. Students were asked to design and
implement an environment for their games, motivated by a
provided short story. The second week focused on characters and
object design. Students were given a lecture on creating
interesting characters in a narrative sense and asked to flesh their
characters out on paper before implementing them in their game.
Week three focused on character behavior and plot. This was their
first exposure to programming, where they needed to make
characters move, talk, and carry objects. The last two classes were
spent providing students with more programming knowledge as
needed and helping them debug. During the final class, students
presented their games to parents and other educators.
The second course was offered over six weeks during Spring 06
using Game Maker. The class met on Saturdays, once a week, for
4 hours. The first class introduced Game Maker by asking
students to build a simple game of Breakout, from start to finish.
Students used existing art content, but many also created their
own sprites for the project. During the second class, students
focused specifically on designing environments and the collision
of objects in environments. Week three introduced students to
programming, and it was at this point that students decided
whether they wanted to build a completely new game for the rest
of the class, or to build on the Breakout game they had created
during the first class. The last three weeks of the course were
spent drawing and animating characters, polishing and critiquing,
and providing students with programming concepts and
debugging help as needed to complete their games.
The third course was offered as a 1-week camp during Summer
06 using RPG Maker XP . It should be noted that this particular
offering engaged only middle school girls, while other offerings

included both middle and high school girls. Similar to the second
class, students built an entire game from scratch during the first
day, this time a tale of King Arthur. Students were asked to bring
a fable or myth to the class and spent the next four days telling
that story in the game engine. The topics covered included map
design and how to make interesting characters, as well as
variables, flow control, and parallel execution.
4. Evaluation
We ran a study during each offering to evaluate the impact of the
course on increasing self efficacy, engaging girls in design
activities, promoting programming and design skills, and
enhancing their perception of the IT field. In these studies, both
quantitative and qualitative methods were used. Three types of
data were collected: (1) surveys conducted at different time
periods during the course sessions, (2) observations of student
performance and questions during class periods, and (3) analysis
of projects and assignments completed by the students.
Survey methods are often subjective, rely on perception, and to a
large extent rely on the participant’s judgement. However, they
can be effective in measuring certain qualities, such as motivation
and self-efficacy. The changes in the curriculum and engine
prevent us from generalizing our findings.
The analysis presented in this section will be use the survey data
taken from the summer 06 course. These surveys were comprised
of both closed and open ended questions. In the case of the closed
ended questions made of discreet categories, we present the data
in numerical form, providing descriptive statistics. In the case of
the open-ended questions, we provide the data in textual form, as
illustrative quotes. These quotes are used both as stand alone
qualitative data as well as supporting evidence for the numerical
descriptive data, adding richness and meaning.

4.1 Capture and Motivate
On the first day of class, we asked students to talk about their
motivations and hopes for the course. Most students expressed
some excitement for creating a game. One student said, “After
this morning's class, I'm excited to start working on more RPGs
and perhaps even buy the program and make my own RPGs
later.” Other students expressed a desire to creatively bring their
stories and characters to life. For example one student said she
was most interested in, “…making my characters talk, building a
world, and making an interesting story.” When asked why they
decided to take the course, they stated they liked computers
(68%) and games (68%), and thought the class would be fun
(61%). When asked how they felt about computers, 83% said they
“loved them.”
Parents were asked to complete a survey one week after the end
of each course. When asked what long term effects the class had
on their daughters, slightly more than half of the parents said they
had noticed some change. A parent stated, “She learned the math
she has been studying in school can have a real application. She
learned programming can be fun.”
It seems that game design motivated and captured the interest and
attention of the students in our classes. The positive opinions from
students must be tempered by the limitations of this study. This
population was self-selected: students already had an interest in
computers and gaming before they enrolled in the class or they
would not have been interested. While the data says nothing about
the effects this class might have on a truly general population, it

obviously had some positive effect on this narrow, self-selected
sample. This question demands further research.

4.2 Self Efficacy and Perception of IT
On the first day of class, the students were asked several
questions to determine their confidence level with computers and
their perceived self-efficacy. 24% felt they knew a lot about
computers, 48% felt they knew [somewhat] a lot about computers.
Fewer claimed they knew a lot about computer games. Fewer still
felt they were confident with programming. Several expressed
concern managing the programming aspects of the course.
Another group of students expressed concerns being able to finish
the project in the allotted time. One student said, “I don’t know if
I’ll be able to finish a whole video game in 4 more days.”
On the same day, we asked the students what they hoped to learn.
The most common answer was to build video games. However,
about a third of the students responded with the desire to learn
more programming or computer skills. One student said she
would like to learn, “… how to make an awesome video game. I
want to learn everything about technology or at least more than I
did.” Another student stated that she simply wanted to learn,
“how to be able to fix minor problems on my family’s computer.”
On the last day of class we asked the students similar questions
about competency and self efficacy. 64% of students responded
that they felt more confident about their abilities than they had on
the first day, with 36% more stating they felt somewhat more
confident. 96% felt they had learned a lot from the class. 48% felt
they understood more about computer programming than on the
first day with an additional 40% stating they felt somewhat more
confident in their programming abilities. 52% felt they clearly
understood how a computer game is built with an additional 48%
giving more cautious assent. 60% felt very confident they could
build a computer game in the future with an additional 24%
feeling somewhat confident. Perhaps most importantly, 76% said
they would like to take a more advanced programming class.
Before the course began, parents were surveyed on the impact of
the Gaming for Girls class on their daughters. The majority of the
parents hoped that their daughter would learn how to make a
computer game (32%) or how to program a computer (28%).
When the parents were asked what they imagined their daughter
would be doing in the class, they unanimously answered learning
how to create computer games using programming tools.
Parents were surveyed a second time one week after the end of
each course. 88% of parents felt that the camp may have
influenced their daughter’s perception of working with computers,
and confidence level with computers. When asked what long-term
effects the class had on their daughters, slightly more than half of
the parents said they had noticed some change. A mother stated
that her daughter, “…has always been fairly comfortable with
computers but she talks more about getting a Dell or converting
one of our Macs with a PC emulator. The camp was clearly a
confidence booster—something immeasurably important to girls
of this age group.” The parents also felt their daughters had
gained technical skills. A mother of a student said, “she learned
the basics of how games are made. She learned about various
applications of computer technology and how computers are used
in various areas.”
Some parents have also expressed the impact of the course on
their daughters’ technology related activities and career choices.
For example, a parent stated, “she was extremely enthusiastic

about pursuing technology as a possible career choice. This is
something that I will need to follow-up on to ensure that she is
given the opportunity to explore. Additional classes would be of
great interest.” A mother of one of the students said about her
daughter, “She wears her tee-shirt with confidence and talks often
about her camp experience. She also talks more about enrolling in
the College of [Information Sciences and Technology] and would
like to explore possible scholarships, grants, and/or funding for
that program.” Another mother stated that her daughter, “… has
purchased the software and is making new games already.”

5. Discussion
Each offering resulted in many lessons that helped us reshape
future offerings. These lessons were collected through student
comments, discussions with individual students, observations, as
well as the surveys and interview data collected.
The first two courses were offered during the school year (Fall
and Spring). Our collected survey data indicated that girls were
very busy and involved in many activities that competed with our
course, including clubs, social activities, and of course, school.
Spring was particularly busy, during which we had the lowest
retention rate of the three classes. In general, many girls
responded that they needed more time or would have liked to
devote more time to their projects outside of class. Additionally,
due to time commitment during the first two classes, it seemed
that it was harder for students to assimilate the design and
programming techniques. While all students demonstrated some
understanding of the basics, such as Boolean logic, flow control,
variables, and events as demonstrated by their project work, we
felt that some left the class with holes in their knowledge or didn’t
fully understand some of the basics. On the other hand, some
students demonstrated advanced knowledge beyond what was
taught, such as using the scripting language in Game Maker to
manipulate low-level parameters of game objects.
In the third class, all students understood most or all of the basic
concepts we targeted, e.g., variables, Boolean logic, map design,
mathematical manipulation to balance fight mechanics. Indeed,
we entered this class severely underestimating their abilities and
needed to add a great deal of material. For example, we presented
a tutorial on creating sprites, including how to add highlights and
shadow to sprites. Our initial plan did not include any discussion
about creating sprites at all, which we added. Further, several
students explored the Ruby programming language underlying the
visual programming environment of RPG Maker XP, adding new
features such as a visible timer. From analysis of projects and
interactions with the students, we didn’t note any student who
intentionally avoided an idea or gave up on an idea because she
found it too hard or lacked confidence that she would figure it out.
Every game created had interesting game-play, map design, usage
of music and sound effects, and a well told story. Student self-
efficacy was very high.
The selection of the engine was also a very important choice. For
example, students were constantly fighting Warcraft III’s default
interaction model as they tried to create their games. Game Maker
posed the exact opposite problem. Students were presented with a
blank slate, with no built-in interaction model to anchor their
ideas and very little art content. RPG Maker XP seemed to strike
the best balance, providing a great amount of content and a solid
interaction model that was flexible enough to let students control
their narratives.

In the summer course, we had time for polishing and critiquing,
but we found that the girls had very little interest in revisiting
their games. It seemed that the girls had little interest in reflecting
on their games once they were completed.
Students were interested in drawing or otherwise creating their
own characters throughout all of our classes (character modeling
was a topic that came up unanimously as something the students
would be interested in learning in the future). Sprite animation
was covered in detail during the Summer class. However, once we
showed them the steps involved, they generally lost interest, and
very few students actually created their own characters. Instead,
students tried to find the best fit among the provide content; for
example, they would edit the sprites provided in terms of
changing color hue, such changes involved much less time and
effort than creating characters and sprites from scratch. A
challenge for us in the future is to bring novel forms of visual
control over characters into our classes that give our students the
desired freedom without introducing a deterring time investment.

6. Future Work
The work presented here discussed three Gaming for Girls course
offerings where we used a different engine for each offering. The
courses provided a great environment for learning computer
science skills. We have seen students apply basic programming
concepts, such as variables, loops, and conditionals, and more
advanced concepts, such as parallel and event programming as
discussed in [23]. We can say with confidence that the majority of
projects across all classes demonstrated the knowledge we
targeted in the courses. However, to what degree students actually
learned these concepts is unknown. This problem requires further
research work. Future courses will include different assessment
methods to gauge learned knowledge.

7. Conclusion
Over the three offerings of the Gaming for Girls course, data
collected suggests that engaging girls in game design and
development using commercial game engines can be used as a
vehicle for (1) increasing students’ self efficacy, (2) acquiring
design, programming, and artistic skills, while (3) engaging them
in the activity. However, more work is needed to generalize this
assertion. We are continuing to run this class, and thus will
continue to gather survey and observation data, which will help us
generalize this assertion. In addition, we are currently exploring
several assessment techniques to measure learning outcomes in
future courses.

8. REFERENCES
[1] ITAA, "Adding Values: Growing Careers, ITAA's 2004

Workforce Study," Arlington, VA 2005.
[2] ITAA, "ITAA Blue Ribbon Panel on IT Diversity," 2003.
[3] IGDA, "Game Developers Demographic Report," 2005.
[4] T. Camp, "The Incredible Shrinking Pipeline,"

Communications of the ACM, vol. 40, 1997.
[5] J. Margolis and A. Fisher, "Greek Mythology and Attracting

Undergraduate Women to Computer Science," presented at
Joint National Conference of the Women in Engineering
Program Advocates Network and the National Association of
Minority Engineering Program Administrators, 1997.

[6] J. Margolis and A. Fisher, Unlocking the Clubhouse: Women
in Computing. MA: MIT Press, 2002.

[7] E. M. Trauth, "Odd Girl Out: An Individual Differences
Perspective on Women in the IT Profession," Information
Technology and People, vol. 15, pp. 98-118, 2002.

[8] C. Beise, "IT Project Management and Virtual Teams,"
presented at Proceedings of the 2004 SIGMIS Conference on
Computer Personal Research, Tucson, AZ, 2004.

[9] S. Nielsen, L. Von Hellens, and S. Wong, "The Game of
Social Constructs: We're Going to WinIT," presented at
Proceedings of the 2000 International Conference on
Information Systems (ICIS), 2000.

[10] J. Gee, What Video Games Have to Teach Us About
Learning and Literacy. NY: Palgrace Macmillan, 2004.

[11] S. Papert, Mindstorms: Children, Computers, and Powerful
Ideas. New York: Basic Books, 1980.

[12] M. Resnick and S. Ocko, Lego/Logo: Learning through and
about Design. Norwood, NJ: Ablex Publishing, 1993.

[13] R. D. Pea, D. M. Kurland, and J. Hawkins, "Logo and the
Development of Thinking Skills," in Mirrors of Mind:
Patterns of Experience in Educational Computing, R. D. Pea
and K. Sheingold, Eds. Norwood, NJ: Ablex Pub., 1987.

[14] I. Harel, Children Designers. Norwood, NJ.: Albex, 1991.
[15] Y. Kafai, Minds in Play: Computer Game Design as a

Context for Children's Learning. Mahwah, NJ: Erlbaum,
1994.

[16] P. K. Hooper, "They have their own Thoughts: Children's
Learning of Computational Ideas from a Cultural
Constructionist Perspective." Cambridge, MA: MIT, 1998.

[17] M. Conway, S. Audia, T. Burnette, D. Cosgrove, and K.
Christiansen, "Alice: Lessons learned from building a 3D
system for novices," presented at Proceedings of SIGCHI
Conference on Human Factors in Computing Systems, 2000.

[18] A. Repenning and J. Ambach, "The Agentsheets Behavior
Exchange: Supporting Social Behavior Processing,"
presented at CHI 97, New York, 1997.

[19] M. Resnick, Turtles, Termites, and Traffic Jams:
Explorations in Massively Parallel Microworlds. Cambridge,
MA: MIT Press, 1994.

[20] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay,
"Back to the Future: The Story of Squeak, a Practical
Smalltalk Written in Itself," presented at Proceedings of the
12th ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications, 1997.

[21] D. Smith, A. Cypher, and J. Spohrer, "Kidsim: Programming
Agents without a Programming Language," Communications
of the ACM, pp. 54-67, 1994.

[22] M. Seif El-Nasr and B. Smith, "Learning through Game
Modding," presented at Games, Learning, and Society,
Wisconsin, 2005.

[23] I. Yucel, J. Zupko, and M. Seif El-Nasr, "Education, IT,
Girls, and Game Modding," International Journal of
Interactive Technology and Smart Education, vol. 3, 2006.

