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Abstract

Background

Hyaluronic acid (HA), lubricin, and phospholipid species (PLs) contribute independently or

together to the boundary lubrication of articular joints that is provided by synovial fluid (SF).

Our study is the first reporting quantitative data about the molecular weight (MW) forms of

HA, lubricin, and PLs in SF from cohorts of healthy donors, patients with early (eOA)- or late

(lOA)-stage osteoarthritis (OA), and patients with active rheumatoid arthritis (RA).

Methods

We used human SF from unaffected controls, eOA, lOA, and RA. HA and lubricin levels

were measured by enzyme-linked immunosorbent assay. PLs was quantified by electro-

spray ionization tandem mass spectrometry. Fatty acids (FAs) were analyzed by gas chro-

matography, coupled with mass spectrometry. The MW distribution of HA was determined

by agarose gel electrophoresis.

Results

Compared with control SF, the concentrations of HA and lubricin were lower in OA and RA

SF, whereas those of PLs were higher in OA and RA SF. Moreover, the MW distribution of

HA shifted toward the lower ranges in OA and RA SF. We noted distinct alterations between

cohorts in the relative distribution of PLs and the degree of FA saturation and chain lengths

of FAs.
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Conclusions

The levels, composition, and MW distribution of all currently known lubricants in SF—HA,

lubricin, PLs—vary with joint disease and stage of OA. Our study is the first delivering a

comprehensive view about all joint lubricants during health and widespread joint diseases.

Thus, we provide the framework to develop new optimal compounded lubricants to reduce

joint destruction.

Introduction
Lubrication of cartilage within synovial joints entails a complex interaction of several mechani-
cal and molecular factors, resulting in decreased friction between opposing surfaces of articular
cartilage. In healthy weight-bearing joints, a layer of lubricating molecules covers the surfaces
of articular cartilage and acts as a boundary lubricant, effecting nearly frictionless motion of
joints [1, 2]. The lubricant components of synovial fluid (SF), such as hyaluronic acid or hya-
luronan (HA) [1], lubricin [3], and surface-active phospholipids [4], interact with and adsorb
to the surface of articular cartilage and have been suggested, independently or in combination,
to promote boundary lubrication [2]. Alterations in the composition and concentration of
these molecules leads to insufficient boundary lubrication and thus might be associated with
degenerative joint diseases, such as osteoarthritis (OA) [5–8].

HA is an extracellular matrix component in SF, cartilage, eye fluid, vitreous humor, and
lung, kidney, brain, and muscle tissues [9–11]. This glycosaminoglycan has a high molecular
weight (MW) distribution in human SF, ranging from 27 kDa to 10 MDa [12–14]. HA forms
long nonsulfated chains of repeating disaccharides, comprising D-glucuronic acid and N-acetyl
D-glucosamine, and provides SF with its high viscosity [9–12, 15, 16].

Several functions have been attributed to HA such as tissue hydration, lubrication, and in-
teractions with proteins and proteoglycans of the extracellular matrix were found. Also, HA
binds to the cell surface receptors CD44 and RHAMM, which mediate signaling pathways in
inflammation, cell and tissue functions, and expression of catabolic enzymes, such as aggreca-
nases [11, 13, 16–18]. HA in the MW range of 0.5–1.0 x 10(6) Da partially restores SF rheologi-
cal properties and fibroblast-like synoviocytes (FLSs) metabolism in animal models [13]. High-
MWHA inhibits phospholipase A2 activity and thus protects phospholipid integrity [19].

Notably, HA in SF from 24 human knee joints with advanced OA was found to be shifted
toward the low-MW forms, due to enzymatic cleavage of HA chains [6, 20]. In contrast, the
MW distribution of HA was unaltered in SF from 5 patients with advanced OA versus 5 pa-
tients who were undergoing meniscectomy or ligament reconstruction without any evident OA
[12]. The concentration of HA in human OA SF was reported to be normal [12, 20] but de-
clines in RA [6]. Although the specific contribution of HA to overall cartilage boundary lubri-
cation remains a topic of debate, viscosupplementation with intra-articular HA is still used
often to treat OA [21, 22].

Lubricin is a large mucin-like glycoprotein that comprises 3 domains: a cysteine-rich, somato-
medin B-like N-terminal domain; a mucin-likeO-linked oligosaccharide-rich domain; and a C-
terminal domain [23]. Homologs of lubricin—superficial zone protein, proteoglycan 4 (PRG4),
megakaryocyte-stimulating factor precursor, and arthritis-like camptodactyly-arthropathy-coxa
vara-pericarditis syndrome protein—are all encoded by PRG4 [24].

Lubricin is synthesized and secreted by chondrocytes from the superficial zone of articular
cartilage, FLSs and cells in the meniscus [24, 25] and is present in SF, where it acts as a cartilage
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boundary lubricant, alone or synergistically with HA [1, 26]. Lubricin is expressed in human
SF as various isoforms [27], the form that provides better boundary lubrication is unknown. SF
from human knee joints with advanced OA was reported to have markedly elevated lubricin
concentrations compared with normal human SF [8, 20] and a similar friction-lowering lubri-
cating function [8, 20]. However, compared to normal the levels of lubricin can also be low in
some OA SF concomitant with a diminished cartilage boundary lubricating function [7]. Lubri-
cin has been proposed to be chondroprotective, potentially protecting articular chondrocytes
against apoptosis [28].

The surface of articular cartilage was described to be hydrophobic, most likely due to the hy-
drophobic hydrocarbon layer that is generated by surface-active phospholipids that have attached
[29, 30]. Most phospholipid species possess a zwitterionic head group, harboring a negative
charge on the phosphate group and a positive charge on the amine group. Water-insoluble phos-
pholipids was reported to contribute to a small fraction (~11%) of lubricin in SF [4]. FLSs are be-
lieved to be a biosynthetic source of phospholipids [31]; other phospholipids can diffuse from the
plasma to SF or be released during cell necrosis. Our recently published lipidomic study demon-
strated significantly elevated concentrations of most phospholipid species in OA and RA SF [5].
Changes in the relative distribution and levels of certain phospholipids might alter the lubricating
ability of SF and modulate synovial joint inflammation [5]. However, the paucity of detailed
data on the biological functions of lipid species in RA and OA underscore the necessity for
further studies.

HA, phospholipids, and lubricin have been examined in vitro individually and in combina-
tion, and all of them mediate boundary lubrication in SF [1, 2]. Nevertheless, the SF lubricant
that contributes most to boundary lubrication in healthy, OA, and RA joints remains debated
[32–35]. Individual differences in the level and composition of lubricants might cause patient-
specific variability in joint lubrication and thus the speed of joint deterioration.

No data exist on the collective levels of HA, lubricin, and phospholipids in SF in patients
with common joint diseases, such as OA and RA. Thus, the aim of our study was to quantify
lubricin, the various molecular weight forms of HA, and all phospholipid species in parallel in
SF from cohorts of healthy donors, patients with early- or late-stage OA, and patients with ac-
tive RA.

Methods

Synovial fluid donors
SF samples were collected from knee joints of 16 postmortem donors, 20 patients with rheuma-
toid arthritis (RA), and 48 patients with OA. This study was approved by the ethical review
committee of the Faculty of Medicine (Justus-Liebig-University of Giessen, Germany), and all
patients provided written informed consent for their donor samples to be used for research.
The ethical review committee waived the need for consent to be obtained from relatives of de-
ceased donors, based on a judicial order that allowed an autopsy to be performed and to avoid
additional emotional strain on relatives.

Detailed information about the SF donors is provided in Table 1. Based on the macroscopic
appearance of the 6 cartilage surfaces—patella, trochlea, and femur and tibia from the medial
and lateral sides—we used the Outerbridge classification (OU) [36] to subcategorize OA pa-
tients. To estimate OU scores for the entire knee joint, the 6 individual OU scores were added
up and divided by 6 to generate an average score. OA joints were categorized as early (eOA; av-
erage OU� 2; n = 26)- or late-stage OA (lOA; average OU> 2; n = 22). RA was diagnosed per
the American College of Rheumatology [37]. Active arthritis in SF of RA patients was defined
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by the cell count of granulocytes (>1500/μl SF) in absence of bacteria and crystals (polarization
microscopy) to exclude other forms of arthritis.

Synovial fluid samples
SF was collected from knee joints by aspiration during arthroscopy (patients with early OA car-
tilage damages), knee replacement surgery of late OA patients or arthrocentesis during medical
exam for RA [5, 38] All SF samples were first incubated for 15 min at 37°C, passed through a
1.2-μm filter to eliminated cells and cellular debris, and centrifuged at 16,100 x g for 45 min at
RT [5, 38]. To quench protease and phospholipase activity, 10% (v/v) inhibitor cocktail was
added (PPI) [5]. The supernatants were then collected and stored at -86°C until analysis.

Level and molecular weight distribution of HA in synovial fluid
To examine HA levels in SF, samples were initially diluted 1:40,000 in 5% Tween20 in PBS (pH
7.2–7.4) and serially diluted 1:4 three times. HA concentration in human SF was measured in
triplicate per dilution by sandwich ELISA (DuoSet ELISA Development kit) according to the
manufacturer’s instructions (R&D Systems, Minneapolis, USA). This kit contained recombi-
nant human aggrecan to capture HA and biotinylated recombinant human aggrecan to detect
bound HA using streptavidin-conjugated horseradish peroxidase. According to the informa-
tion provided by the manufacturer, the HA ELISA detects low molecular weight (15–40 kDa),
medium molecular weight (75–350 kDa), and high molecular weight (>950 kDa) forms of HA.

The molecular weight distribution of HA forms in human SF was determined in duplicate
by horizontal 1% agarose gel electrophoresis, as described previously [7, 14]. In brief, SF sam-
ples without PPI were first treated with proteinase K (Roche Applied Science, Mannheim, Ger-
many) overnight. The Lo-Ladder (30–500 kDa), Hi-Ladder (0.5–1.5 MDa), and Mega-Ladder
(1.5–6.1 MDa; Hyalose, Oklahoma City, USA) markers were loaded in separate lanes
as references.

Electrophoresis was performed at 50 V for 3 h. The gels were stained overnight using
0.005% Stains-All (Sigma-Aldrich, Taufkirchen, Germany) in 50% ethanol and destained with
10% ethanol for a minimum of 24 h. To visualize the bands better, the staining and destaining
were occasionally repeated. The molecular weight distribution of HA forms according to MW
markers being commercially available (<0.5, 0.5–1.1, 1.1–3.1, 3.1–6.1,>6.1 MDa) was

Table 1. Demographic and disease characteristics of donors.

Postmortem donors n = 16 Patients with eOA n = 26 Patients with lOA n = 22 Patients with RA n = 20

Age 22 (20–26) 38 (26–56) 69 (53–74) 56 (49–72)

female/male 2/14 9/17 8/14 15/5

BMI 23.2 (21.2–25.0) 24.9 (23.7–28.1) 27.6 (26.1–30.4) 22.9 (24.2–32.6)

CRP nd 0.5 (0.5–1.0) 1.5 (0.65–2.1) 9.7 (3.5–33.4)

No. of cells nd nd nd 5800 (3763–12,788) cells/μl SF

DAS28 nd nd nd 2.63 (3.12–4.79)

Outerbridge score nd 1.16 (0.33–1.58) 3.5 (2.5–3.6) nd

K/L-score nd 0 (0–1) 3 (2.75–3) nd

Inclusion criteria: both genders, age 18–85 years, BMI <40, CRP � 3 mg/L, and all CRP levels for RA. Exclusion criteria: joint infection; severe liver or

kidney disease; any surgery within the last 3 months; knee joint surgery within the last 6 months; diabetes mellitus (OA); drug abuse; intra-articular

treatment with hyaluronate or corticosteroid treatment within the last 3 months; HIV infection; and tumor/cancer. BMI- body mass index, CRP- C-reactive

protein, DAS28- disease activity score 28, K/L-score, Kellgren-Lawrence score, nd, not determined.

doi:10.1371/journal.pone.0125192.t001
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determined densitometrically, with automatic subtraction of background noise, using ImageJ
(National Institutes of Health).

Analysis of lubricin in human synovial fluid
Lubricin (PRG4) concentration was measured in triplicate in SF that was stored with PPI using
a custom sandwich ELISA method [7]. Briefly, a capture antibody against AA1356-1373 at the
C-terminus of full-length PRG4 [39] was used to coat high-binding ELISA plates, followed by
incubation with SF or PRG4 standards and detection with horseradish peroxidase-conjugated
peanut agglutinin, which recognizes glycosylation in the mucin domain [40]. Purified PRG4
for the standard curve was prepared from culture medium that was conditioned with bovine
cartilage explants, as described [1]; purified by Superose 6 size exclusion chromatography; veri-
fied with regard to purity by western blot; and quantified by BCA protein assay.

SF was digested sequentially with S. hyaluronidase (1 U/mL, 3 h at 37°C) and sialidase A-66
(overnight at 37°C) prior to quantification. Purified PRG4 standards were also treated with sia-
lidase. SF samples, diluted 1:4, and PRG4 standard (320 μg/mL) were loaded and serially dilut-
ed (2X). If SF was diluted during aspiration from the joint and could not be loaded at 1:4
dilution, a higher dilution—up to approximately 15X—was used.

Analysis of lipids in human synovial fluid
Lipids were extracted from SF samples in the presence of internal standards (Avanti Polar Lip-
ids, Alabaster, AL, USA) [5]. Phospholipid and sphingolipid species were quantified by electro-
spray ionization mass spectrometry (ESI-MS/MS) as described [5]. Lipid species were
annotated according to a recently proposed shorthand nomenclature [41].

Gas chromatography
Total fatty acids (FAs) were analyzed by gas chromatography, coupled with mass spectrometry
(GC-MS), as described [42]. In brief, 50 μl of SF from lOA patients was derivatized to FA meth-
yl esters (FAMEs) in the presence of internal standards. FAMEs were separated in a highly
polar BPX70 column using a GC-2010 that was coupled to a GCMS-QP2010 detector (Shi-
madzu, Duisburg, Germany). Quantification was performed in the selected ion monitoring
mode using calibration with authentic standards.

Statistical analysis
Analysis of variance (ANOVA) was used to assess statistically significant differences between
cohorts. Subsequently, confidence intervals for pairwise differences between cohorts (control,
eOA, lOA, RA) were adjusted by Tukey’s honestly significant difference (HSD) procedure. The
statistical analysis was performed with R, version 3.1.0 using linear models of the logarithm or
the logits of the response. The data were expressed as medians with interquartile ranges for the
box plots. The values in the text are the medians with interquartile ranges in brackets.

Results

Level and molecular weight distribution of HA in human SF
By sandwich ELISA, as shown in Fig 1A, the concentrations of HA were highest in control SF
[2.2 mg/ml (1.6–3.7 mg/ml)], whereas the levels in eOA SF [1.7 mg/ml (1.1–1.9 mg/ml),
p = 0.004] and lOA SF [1.9 mg/ml (1.5–2.3 mg/ml), n.s.] were lower by 23.7% and 14.0%, re-
spectively. The lowest concentrations were observed in RA SF [1.0 mg/ml (0.8–1.2 mg/ml),
p<0.001], representing 47.1% of HA in control SF (100%).
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Fig 1. The concentrations of boundary lubricants in human SF. The content of HA (A) and lubricin (B) in
SF were determined by ELISA, and ESI-MS/MS was used to quantify phospholipids (C) in 16 control SF
(shaded bars), 27 eOA SF (hatched bars), 22 lOA SF (open bars), and 20 RA SF (grey bars) as described in
Material and Methods. Data are presented as median with interquartile ranges. P-values less than 0.05 were
considered statistically significant: *0.01< p�0.05, **0.001<p�0.01, ***p�0.001.

doi:10.1371/journal.pone.0125192.g001
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Relative HA concentration was calculated as the percentage of total HA, defined as 100%.
By horizontal agarose gel electrophoresis [7, 14], compared with control SF, the MW of HA
shifted toward the lower range in OA and RA SF (Fig 2A). The percentage of HA in the upper
range of 3.1–6.1 MDa was highest in control SF [46.0% (39.6% to 51.2%)], followed by eOA
[40.0% (28.5% to 52.7%)] and lOA SF [41.2% (32.9% to 50.7%)], and bottoming in RA SF
[38.1% (21.8% to 41.8%), p = 0.03]. In the lower ranges of 0.5–1.1 MDa and<0.5 MDa, the rel-
ative HA concentrations were significantly higher in eOA, lOA, and RA SF versus control SF
(p<0.001).

Lubricin content in human SF
By ELISA, the concentration of lubricin in control SF [364.4 μg/ml (305.0–404.8 μg/ml),
n = 8)] was 1.5-fold higher than in eOA [244.5 μg/ml (119.6–381.7 μg/ml), n = 23] (Fig 1B).
Notably, compared with control SF, the concentration of lubricin declined by 58.2% in lOA SF
[152.3 μg/ml (108.2–183.9 μg/ml), p = 0.005] and by 61.7% in RA SF (139.4 μg/ml (124.6–
162.4 μg/ml), p<0.001].

Levels of phospholipids in human SF
Lipids were extracted from cell- and cellular debris-free SF samples of 16 controls and 26 eOA,
22 lOA, and 20 active RA subjects and quantified by ESI-MS/MS. The content of total phos-
pholipids in SF was calculated as the sum of the concentrations of all lipid species that con-
tained a phosphate group. Compared with control SF [314.2 nmol/ml (247.3–487.1 nmol/ml)],
the concentrations of phospholipids rose by 2.1-fold in eOA [643.8 nmol/ml (394.9–1106.5
nmol/ml), p = 0.03], 2.4-fold in lOA SF [758.8 nmol/ml (503.3–1009.7 nmol/ml), p = 0.01],
and 2.8-fold in RA SF [877.7 nmol/ml (713.3–1065.0 nmol/ml), p = 0.015] (Fig 1C).

Correlation between lubricants
The concentrations of all lubricants were plotted against each other to examine their correla-
tions (Fig 3); the data were analyzed by linear regression, and the slopes, 95% confidence inter-
vals, and Pearson correlation coefficients (r) were calculated. In eOA SF, the concentrations of
HA and lubricin correlated significantly (r = 0.69, Fig 3A, p<0.001). Further, in lOA SF, corre-
lations between the levels of HA and lubricin (r = 0.62, Fig 3A, p = 0.002) and between HA and
phospholipids (r = 0.63, Fig 3B, p = 0.002) were observed.

Notably, lubricin concentration and the MW distribution of HA were associated only in
eOA SF [Fig 3C (R = 0.590, p = 0.008), Fig 3D (R = 0.540, p = 0.02, Fig 3E (R = 0.486, p = 0.04),
and Fig 3F (R = 0.656, p = 0.003)]. Increasing percentage of degraded HA (Fig 3C–3E) corre-
sponded to lower levels of lubricin, whereas higher percentages of high-molecular-weight HA
were linked to greater concentrations of lubricin (Fig 3F).

Phospholipid classes and species in human SF
Seven lipid classes were identified in human SF: phosphatidylcholine (PC), lysophosphatidyl-
choline (LPC), phosphatidylethanolamine (PE), phosphatidylethanolamine-based plasmalogen
(PE P), phosphatidylserine (PS), phosphatidylglycerol (PG), and sphingomyelin (SM) (Fig 2B).
PC was the most predominant lipid class, constituting 52.7% to 80.8% of all lipids. The percent-
age of PC was lowest in SF from the control group [63.6% (60.7% to 64.7%)], increasing to
63.4% in eOA SF (61.6% to 66.9%), 69.0% in lOA SF (64.9% to 69.6%), and 72.9% in RA SF
(71.9% to75.3%).
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Fig 2. Characterization of hyaluronic acid (HA) and lipids in human SF. The molecular weight distribution of HA (A) was determined by horizontal
agarose gel electrophoresis, and ESI-MS/MS was used to quantify phospholipid classes (B) in 16 control SF (shaded bars), 26 eOA SF (hatched bars), 22 lOA
SF (open bars), and 20 RA SF (grey bars) as described in Methods. The molecular weight distribution of HA was calculated as the percentage of total HA
(= 100%), whereas the relative distribution of phospholipid classes is shown as the percentage of total lipid content (= 100%). Data are presented as the
median and interquartile ranges. Significance was defined as follows: a: p�0.05: control vs. RA; b: p�0.05: control vs. eOA; c: p�0.05: eOA vs. late OA; and d:
p�0.05: eOA vs. RA, e: p�0.05: eOA vs. RA; and f: p�0.05: lOA vs. RA. The lipids that wemeasured were phosphatidylcholine (PC), lysophosphatidylcholine
(LPC), phosphatidylethanolamine (PE), PE-based plasmalogens (PE P), phosphatidylserine (PS), phosphatidylglycerol (PG), and sphingomyelin (SM).

doi:10.1371/journal.pone.0125192.g002
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In contrast, compared with control SF [4.8% (3.7% to 9.1%)], the percentage of PE P de-
clined by 39.6% in eOA SF [2.9% (2.2% to 4.4%), p<0.001], 39.6% in lOA SF [2.9% (2.3% to
3.4%), p<0.001], and 56.3% in RA SF [2.1% (2.0% to 2.3%), p<0.001]. The lowest percentages
of LPC were observed in control [9.0% (7.3% to 13.8%)] and RA SF [6.5 (4.8% to 7.5%)],
whereas LPC percentage peaked in eOA SF [12.7% (11.1% to 15.6%) and lOA SF [10.3% (9.1%
to 13.8%), p<0.001].

The 7 lipid classes in human SF comprise 124 lipid species. Figs 4 and 5 shows all 23 PC and
15 LPC species. Quantitatively, PC 34:2 was the main species in the PC class, constituting 18%
to 22% of total PC. The species pattern of PC was similar between all cohorts, except for PC
30:0, PC 32:1, PC 34:1, PC 34:2 and PC 36:5. For instance, when compared with control SF
[17.6% (16.3% to 19.9%)] the percentage of PC 34:1 decreased in eOA SF [15.8% (14.4% to
16.7%), p<0.001], lOA SF [14.7% (13.8% to 15.6%), p<0.001], and RA SF [13.3% (12.0% to
14.0%), p<0.001]. However, the percentage of PC 36:5 rose in eOA SF [0.72% (0.58% to
0.95%), p = 0.02], lOA [0.91% (0.83% to 1.15%), p = 0.001], and RA SF [1.01% (0.85% to
1.13%), p<0.001] versus control SF [0.62% (0.51–0.71%)] (Fig 4).

The predominant LPC species in SF was LPC 16:0, accounting for 42% to 49% of all LPCs
(Fig 5). The percentages of most LPC species peaked in control SF compared with other co-
horts, except for LPC 18:0, which was 1.5-fold higher in lOA SF [18.1% (17.3% to 19.7%],
p<0.001] and 2-fold higher in RA SF [24.4% (23.9% to 26.1%), p<0.001] than in control SF
[12.5% (11.6% to 13.0%)] (Fig 5).

The biophysical properties of lipid species depend on the fatty acid (FA) chain length and
the degree of FA saturation. Thus, we calculated the relative contribution of PC and LPC spe-
cies with various FA chain lengths and degrees of saturation to the total amount of PCs and
LPCs (Fig 6). PC contains 2 FAs, but our mass spectrometry method only analyzed the sum of
carbon atoms and double bonds in FAs.

In all cohorts, most PCs were unsaturated (Fig 6A)—7.2% of PC species in control SF, 5.1%
in eOA SF, 4.1% in lOA SF, and 3.6% in RA SF were present in saturated form (p<0.001). In
contrast, FAs were more saturated among LPCs (Fig 6B). Compared with control SF, [56.9%
(53.4% to 58.3%)], more LPC species with saturated FAs were recorded in eOA [63.5% (59.0%
to 70.7%), p<0.001], lOA [68.8% (65.3% to 70.6%), p<0.001], and RA SF [72.4% (70.2% to
75.4%), p<0.001].

Analysis of FA chain lengths revealed that more than 80% of PC species contained 36 C-
atoms or less and that nearly 20% of PC species more than 36 C-atoms (Fig 6C), but these dif-
ferences were not significant between cohorts. In all cohorts, approximately 90% of all LPC
species had FA chain lengths with 18-C atoms or less. Moreover, versus control SF, [89.1%
(86.2% to 91.5%)], the lengths of FA chains of LPC species were shorter in eOA [91.8% (90.7%
to 94.0%), p<0.001], lOA [93.5% (90.3% to 94.4%), p<0.001], and RA SF [94.2% (93.2% to
94.8%), p<0.001] (Fig 6D).

In order to get an overview of the FAs in SF, total composition was determined by gas chro-
matography coupled to mass spectrometry (GS-MS) for 6 lOA SF samples (Fig 6E). The princi-
pal FAs were FA 16:0, FA 18:1, and FA 18:2, each of which accounted for 20–25% of total FAs.
The polyunsaturated FAs constituted 13.5%. Medium long (<14 C-atoms) and very long (22–

Fig 3. Scatterplot of concentrations of hyaluronic acid (HA) by levels of lubricin (A) and phospholipids (PL) (B) and concentration of lubricin by
MW distribution of HA (C-F). HA and lubricin content in SF was determined by ELISA, and ESI-MS/MS was used to quantify phospholipids in 16 control SF,
27 eOA SF, and 22 lOA SF samples as described in Methods. Molecular weight distribution of HA was calculated as the percentage of total HA (= 100%).
Linear regression was performed, and Pearson correlation coefficients were calculated.

doi:10.1371/journal.pone.0125192.g003
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Fig 4. Percentage composition of phosphatidycholine (PC) species in human SF. PC species were
quantified by ESI-MS/MS in 16 control SF (shaded bars), 27 eOA SF (hatched bars), 22 lOA SF (open bars),
and 20 RA SF (grey bars) samples as described in Methods. Species were assigned based on the
assumption that only FAs with an even number of carbon atoms are present. Subsequently, the percentage
was calculated, defining total PC as 100%. Data are presented as the median and interquartile ranges.
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24 C atoms) FA chains were minor FAs [1.72% (1.26% to 1.92%) and 1.69 (0.91% to 2.12%),
respectively].

Lubricants and age dependency
Our cohorts differ with respect of their age (Table 1). Thus, the levels of lubricants were plotted
against the age of each donor within each cohort (S1 Fig). Subsequently, linear regression was
performed, and Pearson correlation coefficients were calculated. We did not find any age de-
pendency on the levels of all three lubricants (S1 Fig, [43]). In addition, the HAMW distribu-
tions were plotted against the age. Again, our analysis revealed no correlation between the HA
MW distribution in SF of our four cohorts and the age of donors (S2 Fig). We already reported
that no correlation was found between the levels of PLs and the age of patients [5].

Discussion
HA, lubricin, and phospholipids contribute to cartilage boundary lubrication that is provided
by SF [1, 3, 4]. However, the most important SF component in maintaining efficient joint lubri-
cation has long been debated. This study is the first to measure the levels of HA, lubricin, and
phospholipids in SF from the same cohorts of healthy donors, patients with early- and late-
stage OA, and patients with active RA. Further, we have detailed the MW forms of HA, the rel-
ative distribution of phospholipid classes, the phospholipid species composition, and the de-
gree of saturation and FA chain lengths.

OA and RA SF contained less HA and lubricin and are enriched with phospholipids. Also,
the MW distribution of HA shifted toward the lower range in OA and RA SF. These results in-
dicate that the catabolic activities in OA and RA SF are enhanced, leading to decreased levels of
lubricin and high-MWHA.

The levels of lubricin vary in OA SF compared with control SF. Some studies have demon-
strated lower levels of lubricin in OA and RA SF [1, 44–46], whereas others have reported op-
posite results [8, 20, 44]. In our study, the levels of lubricin are consistent with those of Ludwig
et al., who observed that some OA SF is lubricin-deficient and has poor boundary-lubricating
ability compared with healthy control SF [7]. Further, we confirmed our previous findings that
phospholipid levels are elevated under pathological conditions, which might compensate for
the decreased levels of HA and lubricin in SF to protect cartilage surfaces against wear [5, 43].

Several studies have attempted to characterize the components of SF, but none has deter-
mined which species is crucial for effective cartilage boundary lubrication. HA provides viscosi-
ty in SF and mediates the retention of water [9]. Lubricin has been suggested to be the most
important component for cartilage boundary lubrication and has chondroprotective properties
[3]. Phospholipids are believed to cover the surface of articular cartilage, where they generate a
microscopically thick biofilm, contributing to cartilage boundary lubrication [4, 30]. However,
the interaction between these components and their functions in cartilage boundary lubrica-
tion remain poorly understood.

Several models of cartilage boundary lubrication have been proposed. A model that was de-
veloped by Hills claims that a mono- to multilayered membrane-like structure adheres to the
surface of articular cartilage, where HA and phospholipids interact and form stable complexes.
HA molecules constitute a core filament that is surrounded by a bilayer of phospholipids, gen-
erating oligolamellar structures [30, 47]. Another model opines that a network of multilamellar

Significance was defined as follows: a: p�0.05: control vs. RA; b: p�0.05: control vs. eOA; c: p�0.05: eOA
vs. late OA; d: p�0.05: eOA vs. RA, e: p�0.05: eOA vs. RA; and f: p�0.05: lOA vs RA.

doi:10.1371/journal.pone.0125192.g004
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Fig 5. Percentage composition of lysophosphatidylcholine (LPC) species in human SF. PC species were quantified by ESI-MS/MS in 16 control SF
(shaded bars), 27 eOA SF (hatched bars), 22 lOA SF (open bars), and 20 RA SF (grey bars) samples as described in Methods. Species were assigned
based on the assumption that only FAs with an even number of carbon atoms are present. Subsequently, the percentage was calculated, defining total LPC
as 100%. Data are presented as the median and interquartile ranges. Significance was defined as follows: a: p�0.05: control vs. RA; b: p�0.05: control vs.
eOA; c: p�0.05: eOA vs. late OA; d: p�0.05: eOA vs. RA e: p�0.05: eOA vs. RA; and f: p�0.05: lOA vs RA.

doi:10.1371/journal.pone.0125192.g005
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Fig 6. The degree of saturation and length of fatty acids from phosphatidylcholine (PC) and
lysophosphatidylcholine (LPC). Phospholipid species were quantified by ESI-MS/MS in 16 control SF
(shaded bars), 27 eOA SF (hatched bars), 22 lOA SF (open bars), and 20 RA SF (grey bars) samples as
described in Methods. Subsequently, PC and LPC species were grouped by degree of saturation and
number of carbon atoms in the FA chains, respectively, and calculated as a percentage of total PC and LPC,
defined 100%. Composition of total FA was determined by gas chromatography for 6 lOA SF samples as
described in Methods. Data are presented as median and interquartile ranges (A-D) or mean ± SD (E). P-
values less than 0.05 were considered statistically significant: *0.01< p�0.05, **0.001<p�0.01,
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vesicles exists—by transmission electron microscopy and biotribological techniques, there are
vesicular structures that comprise 3–7 lipid bilayers that encapsulated HA with seric proteins,
such as albumin and y-globulin. Here lubricin functions solely to anchor this lipid layer to the
articular surfaces [2]. We noted correlations between the concentrations of HA and lubricin,
between the levels of HA and phospholipids, and between lubricin levels and the HAMW dis-
tribution in SF, supporting a model of tight interactions between these molecules.

The friction-reducing properties of HA at the cartilage-cartilage interface depend on the
concentration and molecular weight of HA [6, 44]. High-MWHA has distinct cartilage lubri-
cating abilities, and in vitro supplementation with high-MWHA is believed to partially restore
the cartilage boundary lubricating function of SF [44]. We found that OA and RA SF contain
significantly higher levels of small-MWHA, mitigating the impact of HA on lubrication. How-
ever, HA in the MW range of 0.5–1.1 x 10(6) Da was reported to restore SF rheological proper-
ties in animal models of OA (13).

The phospholipid organization on the surface of articular cartilage is thought to depend
strictly on the MW of HA [47]. Throughout the enzymatic degradation of HA during joint in-
flammation and OA, a membrane-like sheet that is constructed from phospholipids is de-
stroyed. Thus, altered MW distribution of HA can impair cartilage boundary lubrication and
might also explain the elevated levels of phospholipids in OA and RA SF.

The lubricating properties of phospholipids remain poorly understood. However, the tribo-
logical properties of phospholipids depend on the molecular structure of the lipids—especially
chain length and the number of double bounds. To better understand the molecular mecha-
nisms of the lubricating abilities of phospholipids, the pattern of phospholipid species must be
analyzed in details. Dipalmitoylphosphatidylcholine has been considered to be the chief phos-
pholipid in SF, as it is in the lung [30]. However, we and other groups have shown that unsatu-
rated forms of PC, such as dioleoylphosphatidylcholine, palmitoyloleoylphosphatidylcholine,
and palmitoyllinoleoylphosphatidylcholine, are the predominant phospholipids in SF [5, 48].

Further, LPC chain length is significantly shorter in OA and RA SF compared with control
SF. One study on boundary lubrication found that shorter FA chains increase the friction coef-
ficient, whereas more extensive unsaturation reduces the friction [49]. Further studies are
needed to elaborate the overall lubricating ability of these altered PC and LPC species in SF.

Conclusions
In conclusion, we have provided novel comprehensive measurements of HA, lubricin, and
phospholipids levels in SF from the same cohorts of healthy donors, patients with early- and
late-stage OA, and patients with RA. Our study provide insight into the detailed composition
of SF, correlating the concentrations of lubricants and the alterations that occur during wide-
spread joint diseases, which can impair the joint lubricating ability of SF. These results extend
our current knowledge on cartilage boundary-lubricating molecules. Thus our study provides
the framework to develop new optimal compounded lubricants able to reduce joint destruction
by improved lubrication.

***p�0.001.A, Relative distribution of PC species according to degree of FA saturation. B, Relative
distribution of LPC species by degree of FA saturation. C, Relative distribution of PC species according to
chain length of FAs.D, Relative distribution of LPC species by chain length of FAs. E, Degree of saturation
and length of fatty acid of total FAs representing 100%.

doi:10.1371/journal.pone.0125192.g006
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Supporting Information
S1 Fig. Scatterplot of lubricin and hyaluronic acid (HA) levels by the age of donors.HA and
lubricin content in SF was determined by ELISA in 16 control SF (A), 27 eOA SF (B), 22 lOA
SF (C), and 20 RA SF samples (D) as described in Methods. Linear regression was performed,
and Pearson correlation coefficients were calculated. The Pearson correlation coefficients (r)
were as follow: r = -0.12 for HA and r = 0.33 for lubricin in control SF; r = -0.29 for HA and
r = -0.19 for lubricin in eOA SF; r = -0.59 for HA and r = -0.45 for lubricin in lOA SF; r = 0.23
for HA and r = -0.01 for lubricin in RA SF.
(TIF)

S2 Fig. Scatterplot of the hyaluronic acid (HA) molecular weight distribution by the age of
donors.HA content in SF was determined by ELISA in 16 control SF (A), 27 eOA SF (B), 22
lOA SF (C), and 20 RA SF samples (D) as described in Methods. The molecular weight distri-
bution of HA was calculated as the percentage of total HA (= 100%). Linear regression was per-
formed, and Pearson correlation coefficients were calculated. The Pearson correlation
coefficients range as follow: from -0.30 to 0.10 for control SF; from -0.10 to 0.07 for eOA SF;
from -0.11 to 0.19 for lOA SF, and from -0.10 to 0.14 for RA SF.
(TIF)

Acknowledgments
The authors wish to express their sincere thanks to Anne Staubitz, Christiane Hild, and Simone
Düchtel for their expert technical support and to Manuela Döller for her assistance with the
study organization.

Author Contributions
Conceived and designed the experiments: TAS JS. Performed the experiments: MKK TEL GL
RZ. Analyzed the data: MKK TEL GL RZ HCS JW BI TAS JS. Contributed reagents/materials/
analysis tools: GL RZ HCS JW UK RBD HK BI MR GS TAS JS. Wrote the paper: MKK JS. Re-
vised the manuscript: TEL GL RZ HCS JW UK RBD HK BI MR GS TAS.

References
1. Schmidt TA, Gastelum NS, Nguyen QT, Schumacher BL, Sah RL. Boundary lubrication of articular car-

tilage: role of synovial fluid constituents. Arthritis Rheum. 2007; 56: 882–891. PMID: 17328061

2. Mirea DA, Trunfio-Sfarghiu AM, Matei CI, Munteanu B, Piednoir A, Rieu JP, et al. Role of the biomolec-
ular interactions in the structure and tribological properties of synovial fluid. Tribol Int. 2013; 16: 302–
311.

3. Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS. The role of lubricin in the mechanical behav-
ior of synovial fluid. Proc Natl Acad Sci U S A. 2007; 104: 6194–6199. PMID: 17404241

4. Schwarz IM, Hills BA. Surface-active phospholipid as the lubricating component of lubricin. Br J Rheu-
matol. 1998; 37: 21–26. PMID: 9487246

5. Kosinska MK, Liebisch G, Lochnit G, Wilhelm J, Klein H, Kaesser U, et al. A lipidomic study of phospho-
lipid classes and species in human synovial fluid. Arthritis Rheum. 2013; 65: 2323–2333. doi: 10.1002/
art.38053 PMID: 23784884

6. Dahl LB, Dahl IM, Engstrom-Laurent A, Granath K. Concentration and molecular weight of sodium hya-
luronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum
Dis. 1985; 44: 817–822. PMID: 4083937

7. Ludwig TE, McAllister JR, Lun V, Wiley JP, Schmidt TA. Diminished cartilage-lubricating ability of
human osteoarthritic synovial fluid deficient in proteoglycan 4: Restoration through proteoglycan 4 sup-
plementation. Arthritis Rheum. 2012; 64: 3963–3971. doi: 10.1002/art.34674 PMID: 22933061

Boundary Lubricants in Synovial Fluid

PLOS ONE | DOI:10.1371/journal.pone.0125192 May 1, 2015 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125192.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125192.s002
http://www.ncbi.nlm.nih.gov/pubmed/17328061
http://www.ncbi.nlm.nih.gov/pubmed/17404241
http://www.ncbi.nlm.nih.gov/pubmed/9487246
http://dx.doi.org/10.1002/art.38053
http://dx.doi.org/10.1002/art.38053
http://www.ncbi.nlm.nih.gov/pubmed/23784884
http://www.ncbi.nlm.nih.gov/pubmed/4083937
http://dx.doi.org/10.1002/art.34674
http://www.ncbi.nlm.nih.gov/pubmed/22933061


8. Neu CP, Reddi AH, Komvopoulos K, Schmid TM, Di Cesare PE. Increased friction coefficient and su-
perficial zone protein expression in patients with advanced osteoarthritis. Arthritis Rheum. 2010; 62:
2680–2687. doi: 10.1002/art.27577 PMID: 20499384

9. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern
Med. 1997; 242: 27–33. PMID: 9260563

10. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol
Cell Biol. 1996; 74: A1–7. PMID: 8724014

11. Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lu-
brication in health, injury, and disease. Wiley Interdiscip Rev Syst Biol Med. 2012; 4: 15–37. doi: 10.
1002/wsbm.157 PMID: 21826801

12. Dunn S, Kolomytkin OV, Marino AA. Pathophysiology of osteoarthritis: evidence against the viscoelas-
tic theory. Pathobiology. 2009; 76: 322–328. doi: 10.1159/000245898 PMID: 19955844

13. Ghosh P, Guidolin D. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthri-
tis: are the effects molecular weight dependent? Semin Arthritis Rheum. 2002; 32: 10–37. PMID:
12219318

14. Lee HG, CowmanMK. An agarose gel electrophoretic method for analysis of hyaluronan molecular
weight distribution. Anal Biochem. 1994; 219: 278–287. PMID: 8080084

15. Murano E, Perin D, Khan R, Bergamin M. Hyaluronan: from biomimetic to industrial business strategy.
Nat Prod Commun. 2011; 6: 555–572. PMID: 21560767

16. Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X. Hyaluronan: A simple poly-
saccharide with diverse biological functions. Acta Biomater. 2014; 10: 1558–1570. doi: 10.1016/j.
actbio.2013.12.019 PMID: 24361428

17. Kataoka Y, Ariyoshi W, Okinaga T, Kaneuji T, Mitsugi S, Takahashi T, et al. Mechanisms involved in
suppression of ADAMTS4 expression in synoviocytes by high molecular weight hyaluronic acid. Bio-
chem Biophys Res Commun. 2013; 432: 580–585. doi: 10.1016/j.bbrc.2013.02.043 PMID: 23438438

18. Goldberg VM, Buckwalter JA. Hyaluronans in the treatment of osteoarthritis of the knee: evidence for
disease-modifying activity. Osteoarthritis Cartilage. 2005; 13: 216–224. PMID: 15727888

19. Nitzan DW, Nitzan U, Dan P, Yedgar S. The role of hyaluronic acid in protecting surface-active phos-
pholipids from lysis by exogenous phospholipase A(2). Rheumatology (Oxford). 2001; 40: 336–340.
PMID: 11285383

20. Temple-Wong MM, Hansen BC, GrissomMJ. Effect of knee osteoarthritis on the boundary lubricating
molecules and friction of human synovial fluid [abstract]. Trans Orthop Res Soc. 2010: 56:340.

21. Abate M, Pulcini D, Di Iorio A, Schiavone C. Viscosupplementation with intra-articular hyaluronic acid
for treatment of osteoarthritis in the elderly. Curr Pharm Des. 2010; 16: 631–640. PMID: 20388073

22. Brockmeier SF, Shaffer BS. Viscosupplementation therapy for osteoarthritis. Sports Med Arthrosc.
2006; 14: 155–162. PMID: 17135962

23. Ikegawa S, Sano M, Koshizuka Y, Nakamura Y. Isolation, characterization and mapping of the mouse
and human PRG4 (proteoglycan 4) genes. Cytogenet Cell Genet. 2000; 90: 291–297. PMID: 11124536

24. Jay GD, Britt DE, Cha CJ. Lubricin is a product of megakaryocyte stimulating factor gene expression by
human synovial fibroblasts. J Rheumatol. 2000; 27: 594–600. PMID: 10743795

25. Schumacher BL, Block JA, Schmid TM, Aydelotte MB, Kuettner KE. A novel proteoglycan synthesized
and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys.
1994; 311: 144–152. PMID: 8185311

26. Jay GD, Torres JR, Rhee DK, Helminen HJ, Hytinnen MM, Cha CJ, et al. Association between friction
and wear in diarthrodial joints lacking lubricin. Arthritis Rheum. 2007; 56: 3662–3669. PMID: 17968947

27. Lord MS, Estrella RP, Chuang CY, Youssef P, Karlsson NG, Flannery CR, et al. Not all lubricin isoforms
are substituted with a glycosaminoglycan chain. Connect Tissue Res. 2012; 53: 132–141. doi: 10.
3109/03008207.2011.614364 PMID: 21966936

28. Waller KA, Zhang LX, Elsaid KA, Fleming BC,WarmanML, Jay GD. Role of lubricin and boundary lubri-
cation in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A. 2013; 110: 5852–5857.
doi: 10.1073/pnas.1219289110 PMID: 23530215

29. Sarma AV, Powell GL, LaBerge M. Phospholipid composition of articular cartilage boundary lubricant.
J Orthop Res. 2001; 19: 671–676. PMID: 11518278

30. Hills BA, Crawford RW. Normal and prosthetic synovial joints are lubricated by surface-active phospho-
lipid: a hypothesis. J Arthroplasty. 2003; 18: 499–505. PMID: 12820095

31. Schwarz IM, Hills BA. Synovial surfactant: lamellar bodies in type B synoviocytes and proteolipid in sy-
novial fluid and the articular lining. Br J Rheumatol. 1996; 35: 821–827. PMID: 8810664

Boundary Lubricants in Synovial Fluid

PLOS ONE | DOI:10.1371/journal.pone.0125192 May 1, 2015 17 / 18

http://dx.doi.org/10.1002/art.27577
http://www.ncbi.nlm.nih.gov/pubmed/20499384
http://www.ncbi.nlm.nih.gov/pubmed/9260563
http://www.ncbi.nlm.nih.gov/pubmed/8724014
http://dx.doi.org/10.1002/wsbm.157
http://dx.doi.org/10.1002/wsbm.157
http://www.ncbi.nlm.nih.gov/pubmed/21826801
http://dx.doi.org/10.1159/000245898
http://www.ncbi.nlm.nih.gov/pubmed/19955844
http://www.ncbi.nlm.nih.gov/pubmed/12219318
http://www.ncbi.nlm.nih.gov/pubmed/8080084
http://www.ncbi.nlm.nih.gov/pubmed/21560767
http://dx.doi.org/10.1016/j.actbio.2013.12.019
http://dx.doi.org/10.1016/j.actbio.2013.12.019
http://www.ncbi.nlm.nih.gov/pubmed/24361428
http://dx.doi.org/10.1016/j.bbrc.2013.02.043
http://www.ncbi.nlm.nih.gov/pubmed/23438438
http://www.ncbi.nlm.nih.gov/pubmed/15727888
http://www.ncbi.nlm.nih.gov/pubmed/11285383
http://www.ncbi.nlm.nih.gov/pubmed/20388073
http://www.ncbi.nlm.nih.gov/pubmed/17135962
http://www.ncbi.nlm.nih.gov/pubmed/11124536
http://www.ncbi.nlm.nih.gov/pubmed/10743795
http://www.ncbi.nlm.nih.gov/pubmed/8185311
http://www.ncbi.nlm.nih.gov/pubmed/17968947
http://dx.doi.org/10.3109/03008207.2011.614364
http://dx.doi.org/10.3109/03008207.2011.614364
http://www.ncbi.nlm.nih.gov/pubmed/21966936
http://dx.doi.org/10.1073/pnas.1219289110
http://www.ncbi.nlm.nih.gov/pubmed/23530215
http://www.ncbi.nlm.nih.gov/pubmed/11518278
http://www.ncbi.nlm.nih.gov/pubmed/12820095
http://www.ncbi.nlm.nih.gov/pubmed/8810664


32. Sun Y, Chen MY, Zhao C, An KN, Amadio PC. The effect of hyaluronidase, phospholipase, lipid solvent
and trypsin on the lubrication of canine flexor digitorum profundus tendon. J Orthop Res. 2008; 26:
1225–1229. doi: 10.1002/jor.20624 PMID: 18404658

33. Jay GD, Cha CJ. The effect of phospholipase digestion upon the boundary lubricating ability of synovial
fluid. J Rheumatol. 1999; 26: 2454–2457. PMID: 10555909

34. Hills BA, Monds MK. Enzymatic identification of the load-bearing boundary lubricant in the joint. Br J
Rheumatol. 1998; 37: 137–142. PMID: 9569067

35. Hills BA. Identity of the joint lubricant. J Rheumatol. 2002; 29: 200–201. PMID: 11824962

36. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961; 43-B: 752–757.
PMID: 14038135

37. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheuma-
tism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum.
1988; 31: 315–324. PMID: 3358796

38. Scanzello CR, Umoh E, Pessler F, Diaz-Torne C, Miles T, Dicarlo E, et al. Local cytokine profiles in
knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease.
Osteoarthritis Cartilage. 2009; 17: 1040–1048. doi: 10.1016/j.joca.2009.02.011 PMID: 19289234

39. Schmidt TA, Plaas AH, Sandy JD. Disulfide-bonded multimers of proteoglycan 4 (PRG4) are present in
normal synovial fluids. Biochim Biophys Acta. 2009; 1790: 375–384. doi: 10.1016/j.bbagen.2009.03.
016 PMID: 19332105

40. Estrella RPWJ, Packer NH et al. The glycosylation of human synovial lubricin: implications for its role
in inflammation. Biochem J. 2010; 429: 359–367. doi: 10.1042/BJ20100360 PMID: 20443780

41. Liebisch G, Vizcaino JA, Kofeler H, Trotzmuller M, Griffiths WJ, Schmitz G, et al. Shorthand notation for
lipid structures derived frommass spectrometry. J Lipid Res. 2013; 54: 1523–1530. doi: 10.1194/jlr.
M033506 PMID: 23549332

42. Ecker J, Scherer M, Schmitz G, Liebisch G. A rapid GC-MSmethod for quantification of positional and
geometric isomers of fatty acid methyl esters. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;
897: 98–104. doi: 10.1016/j.jchromb.2012.04.015 PMID: 22542399

43. Kosinska MK, Liebisch G, Lochnit G, Wilhelm J, Klein H, Kaesser U, et al. Sphingolipids in human syno-
vial fluid-a lipidomic study. PloS One. 2014; 9: e91769. doi: 10.1371/journal.pone.0091769 PMID:
24646942

44. Antonacci JM, Schmidt TA, Serventi LA, Cai MZ, Shu YL, Schumacher BL, et al. Effects of equine joint
injury on boundary lubrication of articular cartilage by synovial fluid: role of hyaluronan. Arthritis Rheum.
2012; 64: 2917–2926. doi: 10.1002/art.34520 PMID: 22605527

45. Elsaid KA, Jay GD, Chichester CO. Reduced expression and proteolytic susceptibility of lubricin/super-
ficial zone protein may explain early elevation in the coefficient of friction in the joints of rats with anti-
gen-induced arthritis. Arthritis Rheum. 2007; 56: 108–116. PMID: 17195213

46. Barton KI, Ludwig TE, Achari Y, Shrive NG, Frank CB, Schmidt TA. Characterization of proteoglycan 4
and hyaluronan composition and lubrication function of ovine synovial fluid following knee surgery.
J Orthop Res. 2013; 31: 1549–1554. doi: 10.1002/jor.22399 PMID: 23722645

47. Pasquali-Ronchetti I, Quaglino D, Mori G, Bacchelli B, Ghosh P. Hyaluronan-phospholipid interactions.
J Struct Biol. 1997; 120: 1–10. PMID: 9356287

48. Chen Y, Crawford RW, Oloyede A. Unsaturated phosphatidylcholines lining on the surface of cartilage
and its possible physiological roles. J Orthop Surg Res. 2007; 2: 14. PMID: 17718898

49. Trunfio-Sfarghiu AM, Berthier Y, Meurisse MH, Rieu JP. Role of nanomechanical properties in the tribo-
logical performance of phospholipid biomimetic surfaces. Langmuir. 2008; 24: 8765–8771. doi: 10.
1021/la8005234 PMID: 18620439

Boundary Lubricants in Synovial Fluid

PLOS ONE | DOI:10.1371/journal.pone.0125192 May 1, 2015 18 / 18

http://dx.doi.org/10.1002/jor.20624
http://www.ncbi.nlm.nih.gov/pubmed/18404658
http://www.ncbi.nlm.nih.gov/pubmed/10555909
http://www.ncbi.nlm.nih.gov/pubmed/9569067
http://www.ncbi.nlm.nih.gov/pubmed/11824962
http://www.ncbi.nlm.nih.gov/pubmed/14038135
http://www.ncbi.nlm.nih.gov/pubmed/3358796
http://dx.doi.org/10.1016/j.joca.2009.02.011
http://www.ncbi.nlm.nih.gov/pubmed/19289234
http://dx.doi.org/10.1016/j.bbagen.2009.03.016
http://dx.doi.org/10.1016/j.bbagen.2009.03.016
http://www.ncbi.nlm.nih.gov/pubmed/19332105
http://dx.doi.org/10.1042/BJ20100360
http://www.ncbi.nlm.nih.gov/pubmed/20443780
http://dx.doi.org/10.1194/jlr.M033506
http://dx.doi.org/10.1194/jlr.M033506
http://www.ncbi.nlm.nih.gov/pubmed/23549332
http://dx.doi.org/10.1016/j.jchromb.2012.04.015
http://www.ncbi.nlm.nih.gov/pubmed/22542399
http://dx.doi.org/10.1371/journal.pone.0091769
http://www.ncbi.nlm.nih.gov/pubmed/24646942
http://dx.doi.org/10.1002/art.34520
http://www.ncbi.nlm.nih.gov/pubmed/22605527
http://www.ncbi.nlm.nih.gov/pubmed/17195213
http://dx.doi.org/10.1002/jor.22399
http://www.ncbi.nlm.nih.gov/pubmed/23722645
http://www.ncbi.nlm.nih.gov/pubmed/9356287
http://www.ncbi.nlm.nih.gov/pubmed/17718898
http://dx.doi.org/10.1021/la8005234
http://dx.doi.org/10.1021/la8005234
http://www.ncbi.nlm.nih.gov/pubmed/18620439

