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Agrarwissenschaften, Ökotrophologie und Umweltmanagement
Justus-Liebig-Universität Gießen

von
Eva Herzog

aus Aschaffenburg

Gießen, 28. Februar 2014



Contents

1 General introduction 1

2 Selection strategies for marker-assisted backcrossing with
high-throughput marker systems1 10

3 Efficient marker-assisted backcross conversion of seed parent
lines to cytoplasmic male sterility2 21

4 Selection strategies for marker-assisted background selection
with chromosome-wise SSR multiplexes in pseudo-backcross
programs for grapevine breeding3 31

5 Selection strategies for the development of maize introgres-
sion populations4 36

6 General discussion 51

7 Summary 65

8 Zusammenfassung 68

References 71

1Herzog, E, & Frisch, M. 2011. Selection strategies for marker-assisted backcrossing
with high-throughput marker systems. Theor Appl Genet, 123(2), 251-260.

2Herzog, E, & Frisch, M. 2013. Efficient marker-assisted backcross conversion of seed-
parent lines to cytoplasmic male sterility. Plant Breeding, 132(1), 33-41.
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Chapter 1

General introduction

Marker-assisted backcrossing in plant breeding

Marker-assisted backcrossing (MABC) is one of the most successful applica-

tions of DNA markers in plant breeding. It is now routinely applied in gene

and transgene introgression, seed parent line conversion to cytoplasmic male

sterility (CMS) and the development of introgression populations for QTL

detection and pre-breeding (Semagn et al., 2006; Xu & Crouch, 2008). A

typical application in public and commercial plant breeding is the introgres-

sion of single or multiple resistance genes to biotic or abiotic stresses, e.g.,

in the major cereals maize (Willcox et al., 2002), rice (Datta et al., 2002;

Neeraja et al., 2007) and wheat (Liu et al., 2000; Wilde et al., 2008). The

importance of MABC is underlined by the fact that in 2013 over 90% of

the total acreage of maize, soybean and cotton in the U.S. was planted with

varieties that were developed with breeding schemes using MABC for trait

introgression (National Agricultural Statistics Service, 2013).

A typical backcross scheme for the introgression of a dominant target al-

lele from a donor into the genome of a recipient line is shown in Figure 1.1.

At the target locus, the donor parent P1 carries the target allele Q in ho-

mozygous state. The recipient P2 carries the allele q in homozygous state.

The donor is crossed with recipient to create a heterozygous F1 population
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Figure 1.1. Schematic representation of a backcross program for gene in-

trogression with n backcross generations. The donor parent P1 carries

the target allele Q at the target locus. The recipient parent P2 carries

the allele q at the target locus. The genome of the donor parent P1 is

displayed in red. The genome of the recipient parent P2 is displayed in

green. Modified from Becker (2011, p. 198f).

with genotype Qq at the target locus. The F1 is backcrossed to the recip-

ient to create a BC1 population. From this BC1 population, heterozygous

carriers of the target allele with genotype Qq are again backcrossed to the re-

cipient, while BC1 individuals with genotype qq are discarded. This process

is repeated for n backcross generations. To obtain a homozygous carrier of

the target allele with genotype QQ, this process is followed by one or several

generations of selfing. Individuals carrying the target allele Q can be selected

with markers linked to or located in the target gene. This process is called

foreground selection (Hospital & Charcosset, 1997).

Beside foreground selection, fast and complete recovery of the genotype

of the recipient is the major objective of MABC. Without selection for the

recipient genome (in Figure 1.1 displayed in green), the donor genome pro-

portion (in Figure 1.1 displayed in red) is per expectation reduced by 50%

in every backcross generation. The average recipient genome proportion in
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Figure 1.2. Distribution of the recipient genome proportion in backcross

populations of generations BC1-BC4. Data generated with simulations

based on a published linkage map of maize (Schön et al., 1994).

generation n is thus (2n+1 − 1) /2n+1. For example, in generation BC1 of a

gene introgression program in maize, the average recipient genome propor-

tion is 75% (Figure 1.2). However, the actual recipient genome proportion

of the individuals in the BC1 population ranges around this expected value

from about 60% to 90%. The possibility to select individuals from the upper

tail of the distribution, having a recipient genome proportion of about 90%,

leads to considerable gains in recipient genome in generation BC2 compared

to no selection.

The actual recipient genome proportion of a backcross individual can be

estimated by genotyping background markers which cover the entire genome

and allow to distinguish between alleles from the donor and the recipient

(Figure 1.3). The individuals with the highest proportion of the green recip-

ient alleles at the background marker loci will be selected as non-recurrent

parents for the following backcross generation. This process was described

by Tanksley et al. (1989) and is referred to as background selection (Hospital

& Charcosset, 1997). Background selection has the potential to speed up the

restoration of the recipient genotype by several generations.

— 3 —
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Figure 1.3. Graphical genotype of a diploid backcross plant with ten chro-

mosomes (C1-C10) derived from simulations with a published linkage map

of maize (Schön et al., 1994). The donor alleles are displayed in red. The

recipient alleles are displayed in green.

Since the advent of molecular markers in the 1980’s, it has constantly been

hypothesized that new developments in marker technology will improve the

speed and efficiency of marker-assisted selection (Collard et al., 2005; Ragot

& Lee, 2007). However, during the 1990’s, the large-scale implementation of

marker-assisted background selection in breeding programs proceeded slowly

and to a much lower extent than expected. The reason was that the effort in

the laboratory was very high with the then available marker systems. More-

over, the analysis of a high number of molecular markers was very expensive.

Different types of molecular markers

During the 1980’s, restriction fragment length polymorphisms (RFLPs)

emerged as the first system of DNA markers that was suitable for widespread

use in genetic studies (Botstein et al., 1980; Beckmann & Soller, 1986). Dur-

ing the 1990’s, amplified fragment length polymorphism (AFLP) and simple

sequence repeat (SSR) markers began to replace RFLPs as the markers of

choice in plant breeding (Vos et al., 1995; Zietkiewicz et al., 1994). SSR mark-

ers have up to now been very useful as they are abundant in the genome,
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highly informative and transferable between crop species and their wild rel-

atives. Nevertheless, the described marker types generally provide informa-

tion only about one locus per assay (Collard & Mackill, 2008). This type of

marker assay is therefore referred to as single marker (SM) assay.

From the early 2000’s on, single nucleotide polymorphisms (SNPs) be-

gan to arise which are the most abundant source of genetic variation in

the genome (Gupta et al., 2001). For SSRs and SNPs, several different high-

throughput (HT) assays have been developed which allow to multiplex several

SSRs in one polymerase chain reaction (PCR), or to genotype ten-thousands

of SNPs with one chip or microarray (Syvänen, 2005; Appleby et al., 2009).

HT assays have considerably reduced the cost and effort of marker analysis,

but their relative efficiency compared to SM assays in background selection

has not yet been determined.

An important difference between SM and HT assays with respect to back-

ground selection is that with SM assays only those markers which have not yet

been fixed for the recipient alleles have to be analyzed in advanced backcross

generations. They are therefore very flexible to use, but have the disadvan-

tage that the analysis of the single locus is comparatively expensive. For

HT assays such as SNP chips, the complete set of markers included in the

assay has to be analyzed in every analysis run. With this type of assay, the

analysis of the single locus is cheaper than with SM assays, but the complete

HT assay is expensive. HT assays are therefore less flexible than SM assays

and only cost-efficient if used at or near full capacity.

Due to their different characteristics, SM and HT assays are suitable for

different applications within a MABC program. However, as they usually are

employed for different types of molecular markers, e.g., SSRs and SNPs, it

is not always possible to combine them efficiently. With Competitive Allele

Specific PCR (KASP) assays, a type of SNP assay has recently emerged which

is suitable for genotyping small subsets of SNP markers originally developed

for analysis with HT assays (Chen et al., 2010; Mammadov et al., 2012).

With this type of assay, new possibilities for the combination of HT and SM

assays have arisen which have not yet been investigated.
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The theoretical framework of MABC

With the multitude of marker types and marker assays that is now available,

innovative strategies are required to apply them efficiently in the breeding

process (Septiningsih et al., 2013). However, gathering expertise through

field experiments is time-consuming and very costly. Even though the costs of

molecular markers have constantly been decreasing since the beginning of the

millennium, they are still the main factor which limits the implementation

of marker-assisted selection in practice. Beside the financial component,

utilizing molecular markers increases the complexity of breeding programs,

as it requires additional steps of analysis, interpretation and decision-making

within a limited timeframe (Eathington et al., 2007). It is therefore crucial

to develop tools and guidelines beyond “gut-instinct” which help breeders to

decide whether the way in which they plan to incorporate markers in their

breeding programs is likely to be cost-effective (Morris et al., 2003).

An important step towards this goal was the development of a theoreti-

cal framework for MABC by mathematical modelling (Stam & Zeven, 1981;

Hillel et al., 1990; Hospital et al., 1992; Hill, 1993; Visscher, 1996; Markel

et al., 1997; Hospital & Charcosset, 1997; Frisch et al., 1999b; Ribaut et al.,

2002) that was built on classical population-genetical investigations (Bartlett

& Haldane, 1935; Hanson, 1959). However, the numerical solutions pre-

sented in these studies are only valid for unselected populations in which the

donor genome proportions of the individuals are stochastically independent.

They are consequently of little use for small backcross populations under

marker-assisted selection. In 1999, Visscher showed in a simulation study

that marker-assisted selection significantly reduces the variance of the donor

genome proportion compared to the theoretical estimates which assumed the

absence of selection (Visscher, 1999).

A general selection theory for the recipient genome proportion in MABC,

which in contrast to standard normal distribution selection theory takes the
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reduced variance of the donor genome proportion under marker-assisted se-

lection into account, has more recently been published (Frisch & Melchinger,

2005). Compared to the previously presented numerical solutions, this ap-

proach had the advantage that individuals that were used as non-recurrent

parents were subject to background selection. Nevertheless, it was limited

to a specific marker score as selection index and did not allow a comparison

of alternative selection strategies. Moreover, this approach was developed

for only one backcross generation. Hence, whereas the presented analytical

approaches greatly improved the understanding of the underlying principles

of population genetics and are generally applicable, they are not sufficient

for planning practical breeding programs.

The role of simulations

Simulations are often more powerful than analytical approaches, as they can

be tailored to be closer to real conditions of selection (Moreau et al., 1998).

For more complex breeding designs which take into account many differ-

ent parameters and even interactions thereof, numerical approaches are not

straightforward, and sometimes no exact solution is available (Hospital et al.,

1992). A great advantage of simulations is therefore that they are compar-

atively easy-to-use tools which allow breeders to evaluate the efficiency of

alternative crossing and selection schemes over all generations of a backcross

program without the need to conduct expensive field experiments (Moreau

et al., 1998; Frisch & Melchinger, 2005).

As the scale and complexity of breeding programs increases, the opti-

mization of breeding designs by computer simulations and the development

of decision support tools for breeders is gaining importance for the successful

application of marker-assisted selection (Xu & Crouch, 2008). Its efficient

implementation in practical large-scale plant breeding programs requires,

among other logistical and genetical prerequisites, the design of optimal

— 7 —
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breeding systems by simulation analysis, and the development of decision

support tools for breeders (Eathington et al., 2007).

Validation studies have shown that simulations are effective and robust

tools to improve the planning process of practical breeding programs (Kuchel

et al., 2007; Prigge et al., 2008; Randhawa et al., 2009). They have been rec-

ognized as useful and integral parts of efficient plant breeding in scientific

literature (Utomo et al., 2012; Septiningsih et al., 2013). Guidelines for opti-

mizing MABC designs have also been used as a basis for more sophisticated

models (Tesfaye et al., 2013; Peng et al., 2014a) and have found their way

into practical breeding programs (Timonova et al., 2013).

To date, a broad range of simulation studies is available which cover im-

portant applications of MABC. They provide guidelines for different aspects

of the introgression of single dominant or recessive target genes (Hospital

et al., 1992; Frisch et al., 1999a; Frisch & Melchinger, 2001b; Prigge et al.,

2009), the combination of two genes (Frisch & Melchinger, 2001c) or several

genes (Ribaut et al., 2002; Servin et al., 2004) and quantitative trait loci

with estimated positions (Hospital & Charcosset, 1997). More recent stud-

ies have dealt with the development of introgression libraries (Falke et al.,

2009) and multiple integration of transgenic traits (Peng et al., 2014a; Peng

et al., 2014b). These studies have focused on optimizing the use of SM as-

says. However, none of these studies has provided guidelines for the efficient

application of HT assays.

Objectives

The aim of my Ph.D. project was to employ computer simulations for the

development of efficient strategies for MABC with HT assays. Guidelines

should be derived for a wide range of applications of MABC and should

be implementable in practical breeding programs. The thesis project was

divided into the following four sub-projects:

— 8 —
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(1) Application of marker-assisted background selection for gene introgres-

sion is still limited by the high costs of marker analysis. HT assays

promise to reduce these costs, but new selection strategies are required

for their efficient implementation in breeding programs. The objec-

tives of the first study were to investigate the properties of HT assays

compared to SM assays, and to develop optimal selection strategies

for marker-assisted gene introgression with HT assays in maize (Chap-

ter 2).

(2) For many crops, efficient conversion of seed-parent lines to CMS is a

cornerstone of hybrid production. In contrast to gene introgression, no

target genes have to be considered in CMS conversion programs. The

optimal selection strategies for CMS conversion will consequently differ

from those for gene introgression and have not yet been investigated.

The objectives of the second study were to evaluate and optimize the

resource requirements of CMS conversion programs in rye, sugarbeet,

sunflower and rapeseed, and to determine the most cost-effective use of

SM and HT assays (Chapter 3).

(3) Organizing SSR markers located on the same chromosomes into PCR

multiplexes has the potential to reduce the costs of marker analysis and

constitutes an HT assay with a level of throughput between SM assays

and SNP chips. The objectives of the third study were to develop se-

lection strategies for gene introgression in grapevine with chromosome-

wise SSR multiplexes (Chapter 4).

(4) Introgression populations are valuable resources for QTL detection and

breeding, but their development is costly and time-consuming. Selec-

tion strategies for the development of introgression populations with a

limited number of individuals and HT marker assays are required. The

objectives of the fourth study were to design and compare selection

strategies for the development of maize introgression populations with

limited resources for different doubled haploid (DH) and S2 crossing

schemes (Chapter 5).

— 9 —



Chapter 2

Selection strategies for
marker-assisted backcrossing
with high-throughput marker
systems1

1Herzog, E, & Frisch, M. 2011. Selection strategies for marker-assisted backcrossing
with high-throughput marker systems. Theor Appl Genet, 123(2), 251-260.
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Abstract Application of marker-assisted backcrossing

for gene introgression is still limited by the high costs of

marker analysis. High-throughput (HT) assays promise to

reduce these costs, but new selection strategies are required

for their efficient implementation in breeding programs.

The objectives of our study were to investigate the prop-

erties of HT marker systems compared to single-marker

(SM) assays, and to develop optimal selection strategies

for marker-assisted backcrossing with HT assays. We

employed computer simulations with a genetic model

consisting of 10 chromosomes of 160 cM length to

investigate the introgression of a dominant target gene. We

found that a major advantage of HT marker systems is that

they can provide linkage maps with equally spaced mark-

ers, whereas the possibility to provide linkage maps with

high marker densities smaller than 10 cM is only of sec-

ondary use in marker-assisted backcrossing. A three-stage

selection strategy that combines selection for recombinants

at markers flanking the target gene with SM assays and

genome-wide background selection with HT markers in the

first backcross generation was more efficient than genome-

wide background selection with HT markers alone.

Selection strategies that combine SM and HT assays were

more efficient than genome-wide background selection

with HT assays alone. This result was obtained for a broad

range of cost ratios of HT and SM assays. A further con-

siderable reduction of the costs could be achieved if the

population size in the first backcross generation was twice

the population size in generations BC2 and BC3 of a three-

generation backcrossing program. We conclude that

selection strategies combining SM and HT assays have the

potential to greatly increase the efficiency and flexibility of

marker-assisted backcrossing.

Introduction

Marker-assisted backcrossing is used for transferring genes

which are responsible for favorable agronomic traits from a

donor line into the genome of a recipient line. Using

molecular markers for selection against the genetic back-

ground of the donor can reduce the time and resources

required for gene introgression. Although background

selection has become a standard tool in plant breeding, the

high costs of marker analysis still limit its use in practice

and are the crucial factor for the experimental designs of

gene introgression programs (Collard and Mackill 2008).

These designs depend on the number of target genes to be

transferred, the employed marker map, and the number of

generations available for the gene introgression. Computer

simulations are a robust tool for optimizing the design

parameters of a marker-assisted backcrossing program

before implementing it in practice (Prigge et al. 2008).

The design of marker-assisted backcrossing programs

was studied with respect to the introgression of single

dominant and recessive genes (Hospital et al. 1992; Frisch

et al. 1999a, b; Frisch and Melchinger 2001a), two genes

(Frisch and Melchinger 2001b), and favorable alleles at

quantitative trait loci (Hospital and Charcosset 1997;

Bouchez et al. 2002). More recently, marker-assisted

backcrossing for developing libraries of near-isogenic lines

was studied (Peleman and van der Voort 2003; Falke et al.

2009; Falke and Frisch 2011). These studies have mainly
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focused on optimizing the number of genotyped individu-

als as well as the positions and density of background

selection markers with respect to the required number of

marker data points. The optimizations have been carried

out assuming marker systems in which each marker locus

is analyzed in a separate assay (cf. Prigge et al. 2009). We

refer to such systems as single-marker (SM) systems.

Typical examples are the simple sequence repeat (SSR)

and the restriction fragment length polymorphism (RFLP)

marker systems.

Recently, high-throughput (HT) marker systems based

on single nucleotide polymorphisms (SNPs) have been

developed. Due to the high level of automation of systems

such as DNA chips, they allow for cheap and fast analysis

of hundreds of marker loci in a single analysis step (Gupta

et al. 2001; Syvänen et al. 2005). HT marker systems have

been developed for crops (Ragot and Lee 2007) and are

becoming the marker systems of choice in commercial

breeding programs of many economically important crops.

The crucial difference between HT and SM marker

systems is that with SM marker systems, only those

markers are analyzed in advanced backcross generations

which were not already fixed for the recipient alleles in

earlier generations. In contrast, with HT marker systems,

the entire panel of markers used in a gene introgression

program needs to be analyzed also for individuals of

advanced backcross generations, even if 80 or 90% of these

markers have already been fixed for the recipient alleles.

To our knowledge, no study investigating the implications

of this property on the efficiency of marker-assisted

backcrossing is available. The combination of SM marker

systems for the reduction of the chromosome segment

attached to the target gene and HT markers for genome-

wide background selection promises to further enhance

selection efficiency in marker-assisted backcrossing and is

not yet investigated.

The objectives of our simulation study were to (1)

compare the relative costs of genome-wide background

selection with SM and HT marker systems for different

cost ratios of HT:SM markers, (2) compare the efficiency

of equally spaced and randomly distributed markers with

respect to the recovery of the recipient genome, (3) develop

selection strategies combining SM and HT assays, which

are more efficient than genome-wide background selection

with SM or HT assays alone.

Simulations

A genetic model with ten equally sized chromosomes of

160 cM length was used for the simulations. Its genome

length of 1,600 cM is similar to that of published linkage

maps of maize (cf. Schön et al. 1994). Markers for

genome-wide background selection were assumed to be

(a) randomly distributed in the genome or (b) equally

spaced. Average marker distances (randomly distributed

markers) or marker distances (equally spaced markers)

between two adjacent marker loci of dGW = 2, 5, 10,

20 cM were investigated. For equally spaced markers, two

markers were located at the telomeres of each chromo-

some. One dominant target gene to be introgressed was

located on Chromosome 1. It was 81, 82.5, 85, and 90 cM

distant from the telomere for linkage maps with dGW = 2,

5, 10, 20 cM, respectively. Flanking markers for selection

against the donor chromosome segment attached to the

target gene were located on both sides of the target gene.

The distances between target gene and each flanking

marker were dF = 5, 10, 20, 30, 40 cM.

The investigated breeding scheme started with the cross

of two homozygous parents (donor and recipient), which

were polymorphic at all loci. The recipient carried the

desirable alleles at all loci of the genome except for the

target locus, while the donor carried the desirable allele at

the target locus. The donor and recipient were crossed to

create an F1 individual, which was backcrossed to the

recipient. From the BC1 population of size n1, one indi-

vidual was selected with two- or three-stage selection, as

described below, and backcrossed to the recipient. This

procedure was repeated for t backcross generations.

Two-stage selection consisted of pre-selection of carri-

ers of the target gene in the first selection step. The pre-

selected individuals were subjected to genome-wide

background selection in the second step. A selection index

i ¼
P

m xm was constructed, where summation is over

markers and xm = 1 if a marker is homozygous for the

recipient allele. A plant with the highest value of i was

selected and backcrossed to the recipient. Two-stage

selection was carried out with SM and HT assays. For SM

assays, only those markers were analyzed in advanced

backcross generations which were not yet fixed for the

recipient allele in the non-recurrent parent.

Three-stage selection combined selection for recombi-

nants between the target gene and its two flanking

markers, genotyped with SM assays, and genome-wide

background selection with HT assays. It consisted of (1)

selection for the target gene followed by (2) pre-selection

with flanking markers and (3) genome-wide selection with

background markers. For selection step (2), a selection

index f was created, which took the values 0, 1, or 2,

depending on whether recombination occurred between

the target gene and none, one, or both flanking markers,

respectively. On the basis of f, pre-selection of individuals

was carried out according to one of two decision rules.

Either (a) individuals with f C 1 were selected, or (b) all

individuals having the maximum observed score of

f (f = max) were selected.

252 Theor Appl Genet (2011) 123:251–260
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Four series of simulations were carried out with soft-

ware Plabsoft (Maurer et al. 2008), assuming no interfer-

ence in crossover formation. Each simulation was

replicated 10,000 times in order to reduce sampling effects

and to obtain results with high numerical accuracy and a

small standard error. The 10% quantile (Q10) of the dis-

tribution of recipient genome (in percent) was determined

in the last backcross generation to measure the success of a

marker-assisted backcrossing program with respect to

restoring the genome of the recipient. The number of SM

and HT assays was determined as a measure for the costs of

a marker-assisted backcrossing program.

In the first series of simulations, the population size nt

(constant across all backcross generations BCt, t =

1, …, 3) and the number of marker assays were determined

which were required to reach Q10 values of 93, 94, 95, 96,

97, 98%, respectively. For 93–96%, we investigated two-

generation backcrossing programs, and for 96–98% three-

generation backcrossing programs. Two-stage selection

with either SM or HT assay or a combination of both

systems (HT in backcross generation BC1 and SM in the

following backcross generations) was carried out for link-

age maps with dGW = 5, 10, 20 cM.

In the second series of simulations, two-stage selection

with HT assays was carried out. Background selection

markers were either equally spaced or randomly distributed

with dGW = 2, 5, 10, 20 cM. We considered three back-

cross generations and constant values of nt ranging from 40

to 200 individuals.

In the third series of simulations, three-stage selection

was carried out either in backcross generation BC1 or

BC3. In the remaining two generations, two-stage selec-

tion with HT assays was carried out. The flanking

markers for three-stage selection had distances of dF = 5,

10, 20, 30, 40 cM from the target gene and individuals

with f C 1 were selected for genome-wide analysis with

HT assays. Distances between genome-wide background

selection markers were dGW = 5 cM. In the generations

with two-stage selection, we investigated population sizes

from nt = 40 to 200. In the generation with three-stage

selection, these population sizes were multiplied by a

factor m = 1, 2, 5.

In the fourth series of simulations, three-stage selection

was carried out in backcross generations BC1 and BC2.

Marker distances of dGW = 5 cM and dF = 20 cM were

employed. Individuals with f C 1 were pre-selected for

genome-wide analysis in backcross generation BC1, while

only individuals having the highest observed number of

recombinations between target gene and flanking markers

(f = max) were pre-selected in backcross generation BC2.

In backcross generation BC3, two-stage selection was

carried out with HT assays. We investigated population

sizes from nt = 40 to 200 for generations BC2 and BC3. In

backcross generation BC1, these population sizes were

multiplied by the factor m = 1, 2, 5.

For comparing the costs of marker-assisted backcrossing

programs with different selection strategies, linkage maps,

and population sizes, the numbers of SM and HT assays

required for the entire backcrossing program were asses-

sed. For SM analyses, only those markers not yet fixed for

the recipient allele in the non-recurrent parent of a back-

cross population were considered. For HT analyses, the

number of assays was the same as the number of individ-

uals subjected to genome-wide background selection.

Calculation of costs was based on five cost ratios of one HT

assay (corresponding to all HT marker loci on the linkage

map) compared to one SM assay (corresponding to one SM

locus). Cost ratios of HT:SM of 200:1, 100:1, 50:1, 20:1,

10:1 were investigated. For example, a cost ratio HT:SM of

100:1 corresponds to a price of 200€ for analyzing all SNP

background marker loci with a DNA chip, and 2€ for

analyzing one SSR marker locus. Comparisons were car-

ried out to compare (a) the costs of two-stage selection with

HT assays to those of two-stage selection with SM assays,

(b) the costs of two-stage selection with HT assays in

generation BC1 and SM assays in BC2 and BC3 to those of

two-stage selection with HT assays in all backcross gen-

erations, (c) the costs of three-stage selection in BC1 to

those of two-stage selection with HT assays in all gener-

ations. For (a) the costs of SM assays were set 1 and the

relative costs of HT assays were determined, for (b) the

costs of using HT assays in all backcross generations were

set 1 and the relative costs of the strategy combing HT and

SM were determined, and for (c) the costs of two-stage

selection were set 1 and the relative costs of three-stage

selection were determined.

Results

For two-stage selection, HT assays were considerably more

expensive (up to factor 4.77) than SM assays for scenarios

with high relative costs of HT markers (200:1, 100:1, and

50:1) in combination with large marker distances and/or

large attempted Q10 values (Table 1). For scenarios with

small marker distances and/or low relative cost ratios of

HT:SM assays and low attempted Q10 values, HT assays

were cheaper. To reach a Q10 value of 96% in two gen-

erations, the number of required marker assays was 9–14

times greater than those required to reach the same Q10

value in three generations. The increase in the required

number of marker assays, which accompanied the short-

ening of a backcrossing program from three to two gen-

erations, was greater for SM than for HT marker systems.

For high cost ratios of HT:SM markers (200:1, 100:1,

and 50:1) and large marker distances, combining HT assays
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in generation BC1 with SM assays in generations BC2 and

BC3 for genome-wide background selection was cheaper

(up to 60%) than using HT assays alone (Table 2). This

cost reduction was more pronounced for three-generation

than two-generation backcross programs.

To reach a given Q10 value with randomly distributed

background selection markers, linkage maps with two to

four times more markers are required than with equally

spaced markers of marker distances dGW = 20 or 10 cM

(Table 3). With equally spaced markers and dGW = 5 cM,

approximately the same Q10 values were reached as with

randomly distributed markers and dGW = 2 cM. A decrease

in the distance between equally distributed markers from

dGW = 10 to 5 cM resulted in only marginally greater Q10

values in generation BC3. No difference in the Q10 values

was observed for dGW = 5 and 2 cM.

With three-stage selection combining SM and HT assays

in generation BC1, the flanking marker distance dF had

only marginal influence on the recovered genome-wide

Q10 values (Table 4). For population sizes n2 = n3 \ 100

in generations BC2 and BC3, a substantial increase of the

Q10 values was observed, if in generation BC1 larger

populations n1 [ n2 = n3 were employed. Doubling the

population size in generation BC1 (n1 = mn2 = mn3,

m = 2) had approximately the same effect on the Q10

values as increasing a constant population size by about 20

individuals (n1
0 = n2

0 = n3
0 = n2 ? 20). The combination

of doubled population sizes in generation BC1 and small

flanking marker distances dF resulted in less required HT

assays at the expense of more required SM assays to reach

a certain Q10 value, compared to backcrossing programs

with constant population sizes across generations.

Three-stage selection in generation BC3 recovered

similar Q10 values as three-stage selection in generation

BC1 for all combinations of nt and m. However, more HT

assays were required (data not shown).

Three-stage selection in generations BC1 and BC2

required more SM assays but less HT assays compared to

three-stage selection only in generation BC1 for all com-

binations of nt and m (Table 5). For population sizes smaller

than 100, slightly lower Q10 values were recovered.

Three-stage selection combining SM and HT assays in

generation BC1 of a three-generation backcrossing program

was cheaper than two-stage selection with HT assays for all

Table 1 Relative costs of a gene introgression program using HT assays in generations BC1 to BC3 (HT[BC1–3]) compared to using SM assays

in BC1 to BC3 (SM[BC1–3]) depending on the cost ratio of HT:SM assays

dGW Q10 (%) No. of BC

generations

nt No. of assays Cost ratio HT:SM

Relative costs

HT[BC1–3] SM[BC1–3] 200:1 100:1 50:1 20:1 10:1

20 cM (nm = 90) 93 2 44 44 2,643 3.33 1.66 0.83 0.33 0.17

94 2 72 72 4,260 3.38 1.69 0.85 0.34 0.17

95 2 133 133 7,737 3.44 1.72 0.86 0.34 0.17

96 2 291 291 16,583 3.51 1.75 0.88 0.35 0.18

96 3 17 26 1,158 4.40 2.20 1.10 0.44 0.22

97 3 30 45 1,975 4.56 2.28 1.14 0.46 0.23

98 3 70 105 4,401 4.77 2.39 1.19 0.48 0.24

10 cM (nm = 170) 93 2 39 39 4,442 1.76 0.88 0.44 0.18 0.09

94 2 62 62 6,960 1.78 0.89 0.45 0.18 0.09

95 2 110 110 12,141 1.81 0.91 0.45 0.18 0.09

96 2 222 222 24,050 1.85 0.92 0.46 0.18 0.09

96 3 16 24 2,070 2.32 1.16 0.58 0.23 0.12

97 3 26 39 3,258 2.39 1.20 0.60 0.24 0.12

98 3 53 80 6,382 2.49 1.25 0.62 0.25 0.12

5 cM (nm = 330) 93 2 38 38 8,406 0.90 0.45 0.23 0.09 0.05

94 2 60 60 13,077 0.92 0.46 0.23 0.09 0.05

95 2 104 104 22,292 0.93 0.47 0.23 0.09 0.05

96 2 206 206 43,361 0.95 0.48 0.24 0.10 0.05

96 3 15 23 3,780 1.19 0.60 0.30 0.12 0.06

97 3 25 38 6,094 1.23 0.62 0.31 0.12 0.06

98 3 50 75 11,719 1.28 0.64 0.32 0.13 0.06

Two-stage selection, nm equally spaced background selection markers with distances dGW, and population sizes nt were used to recover Q10

target values of 93–98% in two or three backcross generations
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investigated combinations of nt with m = 1 and m = 2

(Fig. 1). The costs were ranging between 75.3–83.0%

(m = 1) and 57.1–89.7% (m = 2) of the costs of two-stage

selection. For m = 5, three-stage selection was only cheaper

for cost ratios of HT:SM from 200:1 to 50:1. Three-stage

selection with doubled population size (m = 2) in generation

Table 2 Relative costs of a gene introgression program using HT assays in backcross generation BC1 and SM assays in backcross generations

BC2 and BC3 (HT[BC1], SM[BC2,3]) compared to using HT assays in all backcross generations (HT[BC1–3], data presented in Table 1)

depending on the cost ratio of HT:SM assays

dGW Q10 (%) No. of BC

generations

nt No. of assays Cost ratio HT:SM

Relative costs

HT[BC1] SM[BC2,3] 200:1 100:1 50:1 20:1 10:1

20 cM (nm = 90) 93 2 44 22 664 0.58 0.65 0.80 1.25 2.01

94 2 72 36 1,019 0.57 0.64 0.78 1.21 1.92

95 2 133 67 1,749 0.57 0.64 0.77 1.16 1.82

96 2 291 146 3,490 0.56 0.62 0.74 1.10 1.70

96 3 17 9 393 0.42 0.50 0.65 1.10 1.86

97 3 30 15 624 0.40 0.47 0.61 1.03 1.72

98 3 70 35 1,250 0.39 0.45 0.57 0.93 1.52

10 cM (nm = 170) 93 2 39 20 1,130 0.66 0.80 1.09 1.96 3.41

94 2 62 31 1,686 0.64 0.77 1.04 1.86 3.22

95 2 110 55 2,787 0.63 0.75 1.01 1.77 3.03

96 2 222 111 5,183 0.62 0.73 0.97 1.67 2.83

96 3 16 8 712 0.48 0.63 0.93 1.82 3.30

97 3 26 13 1,051 0.47 0.60 0.87 1.68 3.03

98 3 53 27 1,880 0.46 0.57 0.81 1.51 2.69

5 cM (nm = 330) 93 2 38 19 2,129 0.78 1.06 1.62 3.30 6.10

94 2 60 30 3,194 0.77 1.03 1.56 3.16 5.82

95 2 104 52 5,138 0.75 0.99 1.49 2.97 5.44

96 2 206 103 9,359 0.73 0.95 1.41 2.77 5.04

96 3 15 8 1,300 0.63 0.91 1.48 3.17 6.00

97 3 25 13 1,969 0.60 0.86 1.38 2.93 5.52

98 3 50 25 3,479 0.57 0.80 1.26 2.65 4.97

Two-stage selection, nm equally spaced background selection markers with distances dGW, and population sizes nt were used to recover Q10

target values of 93–98% in two or three backcross generations

Table 3 Q10 values recovered in generation BC3 for constant population sizes nt in generations BC1 to BC3 and equally spaced or randomly

distributed markers (dGW = 2, 5, 10, 20 cM) applying two-stage selection with HT assays

dGW (cM) Generation Equally spaced markers, nt Randomly distributed markers, nt

40 80 120 160 200 40 80 120 160 200

20 BC1 79.7 81.4 82.4 83.0 83.4 78.0 79.6 80.5 80.9 81.4

BC2 92.8 94.2 94.9 95.3 95.6 91.3 92.6 93.2 93.6 94.0

BC3 97.4 98.1 98.4 98.6 98.7 96.4 97.0 97.3 97.4 97.5

10 BC1 79.9 81.7 82.7 83.3 83.8 78.8 80.5 81.3 81.9 82.3

BC2 93.0 94.5 95.2 95.6 95.9 91.9 93.4 94.1 94.4 94.8

BC3 97.6 98.4 98.7 98.9 99.0 97.0 97.8 98.1 98.3 98.4

5 BC1 80.0 81.7 82.7 83.4 83.9 79.3 81.0 81.9 82.5 83.0

BC2 93.1 94.5 95.3 95.7 96.0 92.4 93.8 94.4 94.8 95.1

BC3 97.8 98.5 98.8 99.0 99.1 97.1 97.9 98.3 98.4 98.6

2 BC1 80.0 81.8 82.8 83.4 83.8 79.8 81.5 82.5 83.1 83.7

BC2 93.2 94.6 95.3 95.7 96.0 93.0 94.4 95.1 95.5 95.9

BC3 97.8 98.5 98.8 99.0 99.1 97.7 98.5 98.7 98.9 99.1

Theor Appl Genet (2011) 123:251–260 255

123
— 15 —



BC1 was the optimal selection strategy for reaching Q10

values of 98 and 99%. The only exception was the combi-

nation of a cost ratio of HT:SM assays of 10:1 and a desired

Q10 value of 99%. In this case, constant population size over

generations (m = 1) was optimal.

Discussion

HT marker systems

HT marker systems are expected to increase the cost-effi-

ciency of marker-assisted backcrossing programs (Ragot

and Lee 2007; Collard and Mackill 2008). However, pre-

vious studies on the efficiency of gene introgression pro-

grams have rarely taken differences between marker

systems into account (Ribaut et al. 2002). In this study, we

investigated the different properties of SM and HT marker

systems and their effect on the efficiency of gene intro-

gression. The simultaneous analysis of a large number of

marker loci at comparatively low cost per individual

marker locus is made feasible in HT assays (Syvänen et al.

2005). They, therefore, promise to be a powerful tool for

marker-assisted background selection, especially when the

expected number of required marker analyses is high.

However, HT assays do not provide the possibility to

Table 4 Q10 values recovered in generation BC3 and number of required SM/HT assays for increased population sizes n1 = mnt (m = 1, 2, 5;

t = 2, 3) in generation BC1 and equally spaced markers (dGW = 5 cM) applying three-stage selection (dF = 5, 10, 20, 30, 40 cM; f C 1) in

generation BC1 and two-stage selection in generations BC2 and BC3

m dF (cM) nt

40 60 80 100 120 140 160 180 200

Q10 (%) in generation BC3

1 40 97.8 98.2 98.5 98.7 98.8 98.9 99.0 99.0 99.1

30 97.8 98.2 98.5 98.7 98.8 98.9 99.0 99.0 99.1

20 97.8 98.2 98.6 98.7 98.9 99.0 99.0 99.1 99.1

10 97.6 98.2 98.5 98.7 98.9 99.0 99.1 99.1 99.2

5 97.4 98.0 98.3 98.6 98.8 98.9 99.0 99.1 99.1

2 40 98.0 98.4 98.6 98.8 98.9 99.0 99.0 99.1 99.2

30 98.0 98.4 98.6 98.8 98.9 99.0 99.1 99.1 99.2

20 98.0 98.5 98.7 98.8 99.0 99.1 99.1 99.2 99.2

10 97.9 98.4 98.7 98.8 99.0 99.1 99.2 99.2 99.3

5 97.7 98.2 98.6 98.8 98.9 99.1 99.1 99.2 99.3

5 40 98.2 98.6 98.8 98.9 99.0 99.1 99.1 99.2 99.2

30 98.2 98.6 98.8 98.9 99.0 99.1 99.2 99.2 99.2

20 98.2 98.6 98.8 99.0 99.1 99.1 99.2 99.2 99.3

10 98.2 98.6 98.9 99.0 99.1 99.2 99.3 99.3 99.4

5 98.1 98.6 98.8 99.0 99.1 99.2 99.3 99.3 99.4

No. of required SM/HT assays

1 40 40/49 60/73 80/98 100/123 120/148 140/172 160/197 180/222 200/246

30 40/47 60/71 80/95 100/119 120/143 140/167 160/191 180/215 200/239

20 40/45 60/68 80/91 100/114 120/137 140/160 160/183 180/206 200/229

10 40/43 60/64 80/86 100/108 120/129 140/151 160/173 180/195 200/216

5 40/44 60/64 80/84 100/104 120/125 140/146 160/166 180/187 200/208

2 40 80/58 120/88 160/117 200/146 240/176 280/205 320/235 360/265 400/294

30 80/55 120/83 160/111 200/139 240/167 280/195 320/223 360/251 400/279

20 80/51 120/77 160/103 200/129 240/155 280/181 320/207 360/233 400/259

10 80/46 120/69 160/93 200/116 240/140 280/163 320/187 360/210 400/234

5 80/44 120/65 160/86 200/108 240/130 280/152 320/174 360/196 400/218

5 40 200/86 300/130 400/174 500/218 600/261 700/305 800/349 900/393 1,000/437

30 200/79 300/119 400/159 500/199 600/239 700/279 800/319 900/359 1,000/399

20 200/69 300/104 400/140 500/175 600/210 700/245 800/280 900/315 1,000/350

10 200/56 300/85 400/114 500/142 600/171 700/200 800/228 900/257 1,000/285

5 200/48 300/73 400/98 500/122 600/147 700/172 800/196 900/221 1,000/245
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selectively analyze individual markers. In contrast to SM

assays, all markers on the linkage map need to be analyzed

for every backcross individual, even if a large proportion of

markers has already been fixed for the recipient alleles, as

is the case in advanced backcross generations.

Comparing two-generation with three-generation gene

introgression programs showed that SM marker systems

require relatively less assays in three-generation programs

than HT assays. For example, in a two-generation gene

introgression program with distances of genome-wide

background selection markers of dGW = 20 cM, both 44

HT and 2,643 SM assays resulted in a Q10 value of 93%,

whereas in a three-generation program, 45 HT or 1,975 SM

assays resulted in a Q10 value of 97% (Table 1). This

effect is expected to be even more pronounced for back-

ground selection in higher backcross generations, and when

background selection is carried out in selfing generations or

during doubled haploid production. In line, using HT

assays for genome-wide background selection in the first

backcross generation, and SM assays in advanced back-

cross generations reduced the costs of marker analysis

compared to using HT assays in all backcross generations

(Table 2). Only 5–9% of all marker analyses in a three-

generation backcross program fell upon backcross gener-

ation BC3. The cost reduction compared to using HT assays

in all backcross generations was consequently greater for

three-generation than for two-generation programs. We

conclude that HT assays are particularly suited for short

gene introgression programs, while SM assays are efficient

for marker-assisted background selection when in

advanced generations already large percentages of the

markers have been fixed for the recipient alleles.

Marker distance and distribution for genome-wide

background selection

HT systems based on SNP markers are often analyzed with

techniques employing marker numbers that are multiples of

96. We did not limit our investigations to these marker

numbers for two reasons. Firstly, usually not all markers of

such a set are polymorphic for a certain cross. Moreover,

reduced representation sequencing approaches have

recently emerged and a trend towards genotyping by

sequencing can be observed. For these systems, fixed

marker numbers are less relevant. Therefore, we focused in

our study on marker distances dGW, but not on the fixed

marker numbers employed by a certain marker technology.

The results discussed below can be regarded as thresholds,

which, if they are surpassed for two parental lines and a

certain HT markers system, result in the presented Q10

values.

SNPs occur in abundance in plant genomes. Dense

linkage maps with marker distances below 5 cM can con-

sequently be established at reasonable costs. However, the

effect of such dense markers on the recipient genome

recovery has not yet been investigated. Decreasing the

marker distances dGW below 10 cM had only marginal

effect on the recipient genome recovery (Table 1). An

explanation for this result is that on expectation one

crossover per meiosis and chromatid occurs on a chromo-

some segment of length 1 M. In two- or three-generation

backcrossing programs, the number of recombination

events resulting in chromosome segments of different

parental origin is therefore limited. To detect these chro-

mosome segments and to efficiently identify the backcross

individuals with the smallest percentage of donor genome,

a marker distance of dGW = 10 cM is sufficient. Smaller

marker distances are not required, because the factor lim-

iting selection response is not the precise estimation of the

donor genome percentage, but the limited number of

crossovers.

The difference in the Q10 values between equally

spaced and randomly distributed markers was considerable

for all marker distances dGW except 2 cM. Less than half

the markers were required to reach a certain Q10 value

with equally spaced markers compared with randomly

Table 5 Q10 values recovered in generation BC3 and number of required SM/HT assays for increased population sizes n1 = mnt (m = 1, 2, 5;

t = 2, 3) in generation BC1 and equally spaced markers (dGW = 5 cM) applying three-stage selection (dF = 5, 10, 20, 30, 40 cM) in genera-

tions BC1 (f C 1) and BC2 (f = max) and two-stage selection in generation BC3

m dF (cM) nt

40 60 80 100 120 140 160 180 200

Q10 (%) in generation BC3

1 20 97.3 98.0 98.4 98.7 98.8 98.9 99.0 99.1 99.1

2 20 97.6 98.3 98.6 98.8 99.1 99.0 99.1 99.2 99.2

5 20 98.0 98.5 98.8 99.0 99.1 99.1 99.2 99.3 99.3

No. of required SM/HT assays

1 20 58/30 86/45 115/61 143/77 172/93 200/109 228/125 256/141 285/157

2 20 97/36 146/55 194/73 242/92 291/111 338/131 387/151 436/169 484/189

5 20 217/54 325/82 433/111 542/138 650/168 758/196 866/224 974/252 1082/281
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distributed markers (Table 3). This difference can be

explained by the fact that, with random marker distribution,

occasionally the distance between adjacent markers can get

quite large, resulting in random gaps in the marker cov-

erage. The recipient genome content of the chromosome

regions in these gaps is not assessed and, therefore, the

correlation of the marker estimate of the recurrent parent

genome contribution and the true recurrent parent genome

contribution is lower than for equally spaced markers. This

results in a smaller response to marker-assisted background

selection for randomly distributed compared to equally

spaced markers.

We conclude that the possibility to generate linkage

maps with equidistant marker distribution is a major

advantage of HT marker systems, while the possibility to

establish linkage maps with marker distances below 10 cM

is only of secondary importance for gene introgression

programs.

Pre-selection with flanking markers

In three-stage selection, the pre-selection of backcross

plants showing recombination between the target gene and

flanking markers allows an efficient control of the donor

chromosome segment attached to the target gene. This

reduces the probability of introducing negative alleles

linked to the target gene into the genome of the recipient.

Further, three-stage selection reduces the number of
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Fig. 1 Relative costs of three-stage selection with m = 1, 2, 5 in generation BC1 and two-stage selection in generations BC2 and BC3 compared

to two-stage selection in generations BC1 to BC3 for cost ratios for HT:SM assays of 200:1, 100:1, 50:1, 20:1, and 10:1
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backcross plants subjected to genome-wide background

selection and, therefore, reduces the number of required

marker assays (Frisch et al. 1999a). To take advantage of

these favorable properties of three-stage selection, a pre-

selection for recombination between the target gene and

flanking markers analyzed with SM assays can be com-

bined with genome-wide background selection on the basis

of HT assays. The design decisions required to implement

such a selection strategy are discussed in the following.

Distances of flanking markers

Tightly linked flanking markers result in short donor

chromosome segments attached to the target gene. How-

ever, they also result in a greater reduction of the number

of individuals subjected to genome-wide background

selection than loosely linked flanking markers. This

reduced selection intensity can result in a decline of the

genome-wide recovery of the recurrent parent genome.

Therefore, the smallest dF that has no negative effect on the

genome-wide response to selection can be regarded as an

optimal flanking marker distance.

In backcrossing programs with constant (m = 1) popu-

lation sizes B60, marker distances dF = 20 cM between

each flanking marker and the target gene resulted in high

overall Q10 values while minimizing the number of HT

assays required for background selection (Table 4). For

larger populations, dF = 10 was optimal. With dF = 5 cM,

controlling the donor genome segment attached to the

target gene resulted in a decrease of the overall Q10 values.

For such tightly linked flanking markers, only few

recombinations do occur in a backcross population (see

Frisch et al. 1999a, b for theoretical results) and, hence,

only few plants are pre-selected and subjected to genome-

wide background selection. This small number of indi-

viduals available for genome-wide background selection

results in a smaller response to selection compared with

less tightly linked flanking markers. We conclude that for

gene introgression programs with constant population

sizes, an optimum exploitation of the advantages of three-

stage selection is reached with flanking marker distances of

dF = 20–10 cM, and that with smaller flanking marker

distances, controlling the donor segment attached to the

target gene is only possible at the cost of a lower overall

Q10 value.

Generation of three-stage selection

Carrying out pre-selection for recombinants at markers

flanking the target gene in only some, but not all genera-

tions of a gene introgression program can considerably

reduce the logistic effort required for the marker analysis.

A comparison of three-stage selection in generations BC1

and BC3 showed similar genome-wide Q10 values, but

three-stage selection in generation BC3 required more HT

marker analyses (results not shown). Therefore, carrying

out three-stage selection in generation BC1 can be regarded

as superior to three-stage selection in generation BC3.

Three-stage selection in generations BC1 and BC2

required less HT assays but more SM assays than three-

stage selection in generation BC1 (Tables 4, 5). For pop-

ulation sizes below 100 individuals, this was accompanied

by smaller genome-wide Q10 values. For population sizes

greater than 100, employing three-stage selection in gen-

erations BC1 and BC2 provides a means to reduce the

number of required genome-wide HT assays, by increasing

the number of required SM analysis. Depending on the

actual costs of SM and HT analysis and the work flow in

the lab, this strategy can be used to shift the number of

required marker analyses from HT to SM assays.

Large population sizes in the first backcross generation

As pre-selection with SM assays reduces the number of

required HT assays, it provides a means to handle larger

populations without necessarily increasing the cost of

marker analysis. Increasing the population size in the

generation where pre-selection with flanking markers is

carried out increases the chance to find an individual with a

small donor chromosome segment attached to the target

gene, which has in addition a high proportion of recurrent

parent genome (Frisch et al. 1999b). This theoretical con-

sideration can serve as a rationale for using large popula-

tion sizes in generations with three-stage selection.

We investigated backcrossing programs with three-

stage selection in BC1 populations that had m = 1, 2, or 5

times the size of the BC2 and BC3 populations in which

two-stage selection was employed (Table 4). The Q10

values reached with m = 1 were comparable to those

reached with two-stage selection for constant population

sizes across generations (Table 3). Doubling the popula-

tion size for three-stage selection in generation BC1

(m = 2, n1 = mn2 = mn3) resulted in Q10 values that

were comparable to those reached with constant popula-

tion sizes but using 20 more individuals per generation

(n1
0 = n2

0 = n3
0 = n2 ? 20). Using m = 2 required more

SM but less HT assays than m = 1. A similar effect was

observed for m = 5 and n1
0 = n2

0 = n3
0 = n2 ? 40.

However, here the increase in the number of required SM

assays was considerable, while the reduction in the

number of required HT assays was only small.

In conclusion, three-stage selection can be employed to

put a stronger emphasis on the reduction of the donor

segment attached to the target gene, and using two times

larger population sizes in generation BC1 (m = 2) than in

BC2 and BC3 allows to shift the effort in the lab from HT to
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SM assays compared to constant population size in all

backcross generations (m = 1). These effects can be

exploited without a reduction in the overall Q10 values.

However, neither genetic advantages nor a reduction in the

required marker assays supported employing five times

larger populations in generation BC1 (m = 5) than in

generations BC2 and BC3.

Relative costs of three-stage selection

To compare the costs of three-stage selection in generation

BC1 with those of two-stage selection, we assumed cost

ratios of 200:1 to 10:1 for the costs of one HT assay

(comprising all marker loci on the linkage map) in relation

to one SM assay (for one SM locus). First, the number of

marker assays required to reach a given Q10 value with

three-stage selection was determined from the simulations

presented in Table 4, and the number of marker assays

required to reach this Q10 value with two-stage selection

was determined from the simulations presented in Table 3.

Then the costs required with three-stage selection were

determined with the above cost ratios and were set in

relation to the costs that were required with two-stage

selection (Fig. 1). For example, with a cost ratio of 200:1

for HT:SM assays (first diagram in Fig. 1) reaching the

Q10 value of 99% with three-stage selection and m = 5

required 0.85 times the costs that were required to reach the

Q10 value of 99% with two-stage selection. Three-stage

selection with m = 1 required 0.77, and three-stage

selection with m = 2 required 0.74 times the costs of two

stage selection.

From the cost comparisons, we conclude that three-stage

selection reaches a given Q10 value with less cost than

two-stage selection, regardless of the cost ratio of HT:SM

assays. If the aspired Q10 values are 99% or less, then

doubling the population size in generation BC1 provides a

means to further reduce the costs required for the marker

analyses.
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Abstract
For many crops, cytoplasmic male sterility (CMS) is a cornerstone of
hybrid production. Efficient conversion of elite lines to CMS by
marker-assisted backcrossing is therefore desirable. In contrast to gene
introgression, for which donor segments around target genes have to be
considered, background selection for CMS conversion focuses solely on
recovery of the recurrent parent genome. The optimal selection strategies
for CMS conversion will consequently differ from those for gene
introgression and have not yet been investigated. The objectives of our
study were to evaluate and optimize the resource requirements of CMS
conversion programmes and to determine the most cost-effective use of
single-marker (SM) and high-throughput (HT) assays for this purpose.
We conducted computer simulations for CMS conversion of genetic
models of sugar beet, rye, sunflower and rapeseed. CMS conversion
required fewer resources than gene introgression with respect to popula-
tion size, marker data points and number of backcross generations. Com-
bining HT assays in early backcross generations with SM assays in
advanced backcross generations further increased the cost-efficiency of
CMS conversion for a broad range of cost ratios.

Key words: cytoplasmic male sterility — simulation study —

high-throughput markers — hybrid breeding — marker-assisted
backcrossing

Cytoplasmic male sterility (CMS) in plants is a maternally inher-
ited condition, which inhibits the production of functional pollen.
It is mediated by plant mitochondrial genomes and the interac-
tion of mitochondrial and nuclear genes (Chase 2007). In seed
crops such as rye, sunflower, rice and rapeseed, CMS plus
nuclear restoration of male-fertility in F1 progeny is essential for
large-scale production of hybrid seeds. CMS is a mainstay for
hybrid breeding and seed production in sugar beet and rye
(Hagihara et al. 2005, Tomerius et al. 2008). For some crops
such as Brassica oleracea, where the use of CMS in hybrid
breeding is a comparatively new system, conversion of existing
elite lines to CMS is required. For rapeseed (Brassica napus), in
which the genetic basis of adapted germplasm is relatively nar-
row (Gehringer et al. 2007), CMS conversion of newly devel-
oped lines is used after the introduction of new genetic variation
into the breeding pool. Moreover, it has been recognized in
maize and rice that cytoplasmic uniformity can lead to vulnera-
bility to pathogens (Pring and Lonsdale 1989, Dalmacio et al.
1995). For such crops, it may be important to convert existing
lines to newly identified CMS systems to reduce maternally
inherited disease susceptibility.
New CMS donors used in early cycles of hybrid breeding pro-

grammes are often poorly adapted or wild relatives of cultivated

crops (Hanson and Bentolila 2004). Complete recovery of the
converted elite genotypes is therefore desirable. Typically, elite
lines are selected as fertile maintainers and converted to CMS by
backcrossing. As thousands of lines often are to be converted,
breeders will seek to devote as little resources as possible to the
conversion of a single line.
In commercial breeding programmes, dense marker maps are

available for major crops. In combination with high-throughput
(HT) marker systems based on single nucleotide polymorphisms
(SNPs), they can speed up the backcross process by marker-
assisted background selection (Gupta et al. 2010).
In the field of single-marker (SM) assays, the Competitive

Allele Specific PCR (KASPar) assay has quite recently emerged.
KASPar is a SNP detection system, which is cost-effective for
genotyping small subsets of SNP markers. It enables the com-
bined use of HT and SM assays for SNP genotyping at different
stages in marker-assisted breeding programmes, given that a
SNP set exists which is inter-convertible between KASPar and
HT marker platforms (Chen et al. 2010, Mammadov et al.
2012). An advantage of HT assays is fast and cost-effective
screening of large populations with a high number of marker
data points. However, while with HT assays such as SNP chips,
all markers need to be analysed in every backcross generation,
SM assays allow for analysing only those marker loci which are
not yet fixed for the desired alleles in advanced backcross
generations. A combination of HT assays in early backcross gen-
erations with SM assays in advanced backcross generations has
the potential to increase the cost-effectiveness of background
selection for gene introgression (Herzog and Frisch 2011).
For gene introgression, background selection focuses on both

reduction of donor segments around target genes and recurrent
parent genome recovery. In contrast, in CMS conversion pro-
grammes, background selection solely focuses on fast and com-
plete recurrent parent genome recovery. Moreover, as no
preselection for target genes is conducted, all individuals from a
backcross are subjected to background selection. This results in
higher selection intensity and hence a greater selection response
per backcross generation. However, it will also substantially
increase the number of required marker data points. The optimal
strategies for using molecular markers for CMS conversion will
consequently differ from those for gene introgression and have
not yet been investigated for major CMS crops. Depending on the
genome size of a crop species, population size, marker density
and use of HT and/or SM marker systems need to be optimized.
The goal of our study was to investigate, with computer simu-

lations, CMS conversion in sugar beet, rye, sunflower and rape-
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seed with two to four backcross generations. In particular, our
objectives were (i) to assess recurrent parent genome recovery
with different marker densities and to investigate the effect of
increasing population size per backcross generation, (ii) to evalu-
ate the resource requirements for recovering varying target levels
of recurrent parent genome while minimizing the number of
marker data points, and (iii) to determine the most efficient use
of SM and HT assays for different cost ratios of HT/SM.

Material and Methods
Simulations were conducted assuming no interference in crossover for-
mation. Each simulation was replicated 10 000 times to reduce sampling
effects and to obtain results with high numerical accuracy and a small
standard error. The 10% quantile (Q10), the arithmetic mean and the
standard deviation of the probability distribution of the proportion of
recipient genome in the entire genome of selected individuals (in percent-
age) were determined in every backcross generation to measure recurrent
parent genome recovery.

Q10 values were included as they allow inferences about the probabil-
ity to reach a certain level of recurrent parent genome. For example, a
Q10 value of 96% can be interpreted as ‘with a probability of 0.9 a recur-
rent parent genome proportion >96% can be achieved’. The arithmetic
mean does not allow such probability inferences in advanced backcross
generations, when the distribution of recurrent parent genome is getting
more skewed.

We investigated four different genetic models that represent different
crop species for which CMS is used in hybrid seed production. Model 1
represented sugar beet (Beta vulgaris) and cabbage (B. oleracea) and had
n = 9 chromosomes of 100 cM length (cf. Weber et al. 1999, cf. Ini-
guez-Luy et al. 2009). Model 2 represented rye (Secale cereale) and had
n = 7 chromosomes of 100 cM length (cf. Gustafson et al. 2009).
Model 3 represented sunflower (Helianthus annuus) and had n = 17
chromosomes of 80 cM length (cf. Tang et al. 2002). Model 4 repre-
sented rapeseed (B. napus) and had n = 19 chromosomes of 140 cM
length (cf. Piquemal et al. 2005). These models are hereafter referred to
as sugar beet, rye, sunflower and rapeseed, respectively.

Markers for genome-wide background selection were assumed to be
equally spaced. We considered different marker densities: two markers
per chromosome (2M/chr), three markers per chromosome (3M/chr), as
well as marker distances between two adjacent loci of 20, 10, 5 and
2 cM. For 2M/chr and 3M/chr, markers divided the chromosomes in 3
or 4 equal parts, respectively. For marker densities of 20, 10, 5 and
2 cM, the first marker and last marker of each chromosome were placed
on the telomeres.

Each backcross scheme started by crossing two homozygous parents
(CMS donor and recipient), which were polymorphic at all loci. The
CMS recipient carried the desirable alleles at all loci of the genome,
while the donor carried no desirable alleles. The CMS recipient was
assumed to be a fertile maintainer. An F1 individual was created by
crossing CMS donor and recipient. This F1 individual was backcrossed
to the recipient to create n1 BC1 individuals. The n1 BC1 individuals
were subjected to genome-wide background selection. A selection index
i = Σm xm was constructed, where summation is over markers and xm is
the number of recurrent parent alleles at the mth marker. The plant with
the highest value of i was selected and backcrossed to the recipient. For
each of the four genetic models, we investigated two to four backcross
generations t and constant population sizes of nt ranging from 10 to 200
individuals.

For calculating the relative costs of different marker strategies, the
resource requirements for target Q10 values of 96% in generation BC2

and 99% in generation BC3 with a marker density of 10 cM were deter-
mined. One HT assay included genotyping one individual for all markers
on the linkage map. One SM assay corresponded to one locus and thus
one marker data point. For estimating the total number of required mar-
ker data points for SM assays, only marker loci not yet fixed for the reci-
pient allele were analysed in advanced backcross generations. We took

into account cost ratios of HT : SM of 200 : 1, 100 : 1, 50 : 1, 20 : 1
and 10 : 1. To give an example in absolute costs, a cost ratio of HT/SM
of 100 : 1 corresponded to costs of € 50 for analysing all SNP back-
ground marker loci with a SNP chip, and € 0.5 for analysing one SNP
marker locus with a KASPar assay. We compared the costs of using only
HT assays in all generations of the backcross conversion programme
(strategy HT) to the costs of using only SM assays in all generations of
the backcross conversion programme (strategy SM). In this case, the
costs for strategy SM were set to 1.

In addition, for two-generation programmes, we compared the costs of
a combined strategy that relied on HT assays in generation BC1 and SM
assays in generation BC2 (strategy Combined A) to the costs of strategy
SM and strategy HT. In this case, the costs of strategy SM and strategy
HT were set to 1, respectively. For three-generation programmes, we
compared the costs of a strategy using HT assays in generation BC1 and
SM assays in generations BC2 and BC3 (strategy Combined B) to the
costs of strategy HT. We also compared the costs of a strategy using HT
assays in generations BC1 and BC2, and SM assays in generation BC3

(strategy Combined C) to the costs of strategy HT. In both cases, the
costs for strategy HT were set to 1.

Results
For a marker density of 20 cM and constant population sizes of
nt = 40, 80, 120, 160, 200 individuals per backcross generation,
the Q10 values recovered in generations BC1 and BC2 were
higher for genetic models with shorter genomes (Tables 1–4).
Q10 values for rye were 2.9–3.8% higher than for rapeseed,
while for sugar beet and sunflower, intermediate Q10 values
were recovered. The differences in Q10 values between the
genetic models that were observed in generation BC2 diminish
in advanced backcross generations.
Genetic models with shorter genomes had fewer and shorter

fragments of donor genome in generations BC1 and BC2

(Tables 1–4). In generations BC1 and BC2, the length of donor
fragments is decreasing to a greater extent with increasing nt in
genetic models with shorter genomes. The average length of
donor fragments is decreasing by about 39% in sugar beet, 30%
in rye, 28% in sunflower and 20% in rapeseed if nt is increased
from 40 to 200 individuals in generation BC2. The average
length of donor fragments ranged between 32% and 46% of
marker distance for rye and 88–110% for rapeseed in generation
BC2. In advanced backcross generations, the differences in the
length of donor fragments between population sizes and genetic
models diminish considerably.
Genetic models with shorter genomes required fewer marker

data points (Tables 1–4). For a population size of nt = 200,
rapeseed required about four times as many marker data points
as rye, about three times as many marker data points as sugar
beet, and about twice as many marker data points as sunflower.
For all genetic models, the major proportion of marker data
points had to be analysed in generations BC1 and BC2. For
example, for sugar beet, 98.2–99.8% of marker analyses had to
be conducted in generations BC1 and BC2. From generation BC3

–BC4, marker data points were no longer or only marginally
increasing, indicating complete fixation. This also held true for
higher marker densities of 10, 5 and 2 cM (data not shown).
For all four genetic models, Q10 values of >90% could be

recovered in generation BC2 with low marker densities of 2M/
chr or 3M/chr and nt = 10–20 individuals per backcross genera-
tion (Fig. 1). Q10 values increased considerably for all four
investigated genetic models when population size was increased
from nt = 10 to nt = 40–50 individuals per backcross generation,
irrespective of marker density.
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For all genetic models, Q10 values of � 96% could be
reached in generation BC2. Minimum required marker densities
for a Q10 value of 96% were 3M/chr for sugar beet and rye,
2M/chr for sunflower and 20 cM for rapeseed. For sugar beet
and rye, there was a limit of recurrent parent genome that could
be recovered, indicated by a plateau in the Q10 curves for mar-
ker densities of 2M/chr, 3M/chr and 20 cM. The population
sizes per backcross generation for which the limit was reached
depended on marker density and lay between nt = 70–200 for

sugar beet and between nt = 50–150 for rye. For sunflower and
rapeseed, the plateau was not reached with the highest investi-
gated population size of nt = 200.
The differences in Q10 values between marker densities were

bigger in sugar beet and rye than in sunflower and rapeseed
(Fig. 1). For example, for nt = 100 individuals per backcross
generation, the differences in Q10 values between a marker den-
sity of 3M/chr and 20 cM were 1.7% for sugar beet, 2.3% for
rye, 0.4% for sunflower and 1.0% for rapeseed. The maximum

Table 1: Sugar beet: recovered proportion of recurrent parent genome (Q10, �x, sx), required number of marker data points (MDP) for single-marker
assays, number of donor fragments (�x, sx) and length of donor fragments in cM (�x, sx) in generations BC1–BC4 with genome-wide background selec-
tion with constant population sizes nt = 40, 80, 120, 160, 200 and equally spaced markers (marker density 20 cM) (Note that the number of required
high-throughput assays can be easily obtained by multiplying nt by the number of backcross generations)

nt BCt

Recurrent parent genome (%)

MDP

No. of donor
fragments

Length of donor
fragments (cM)

Q10 �x sx �x sx �x sx

40 BC1 84.56 88.08 2.81 2160 6.48 1.71 33.10 28.16
BC2 97.23 98.71 1.07 2682 2.00 1.31 11.60 10.20
BC3 99.32 99.80 0.32 2732 0.59 0.78 6.01 4.49
BC4 99.57 99.90 0.23 2732 0.32 0.58 5.70 4.36

80 BC1 86.30 89.60 2.61 4320 6.06 1.68 30.90 26.79
BC2 98.19 99.27 0.75 5233 1.44 1.16 9.19 7.75
BC3 99.34 99.82 0.31 5276 0.54 0.74 6.08 4.56
BC4 99.62 99.91 0.22 5276 0.28 0.55 5.79 4.38

120 BC1 87.32 90.34 2.45 6480 5.86 1.65 29.65 25.95
BC2 98.58 99.46 0.62 7754 1.20 1.09 8.06 6.63
BC3 99.38 99.83 0.30 7790 0.50 0.72 6.02 4.55
BC4 99.65 99.92 0.21 7790 0.27 0.53 5.64 4.38

160 BC1 87.98 90.89 2.36 8640 5.71 1.64 28.71 25.25
BC2 98.81 99.55 0.55 10245 1.10 1.05 7.34 5.91
BC3 99.40 99.83 0.30 10273 0.51 0.73 5.89 4.42
BC4 99.65 99.91 0.21 10273 0.27 0.54 5.59 4.36

200 BC1 88.46 91.30 2.29 10800 5.60 1.63 27.96 24.76
BC2 98.92 99.60 0.51 12723 1.01 1.01 7.07 5.58
BC3 99.40 99.84 0.29 12745 0.49 0.71 5.93 4.47
BC4 99.65 99.92 0.21 12745 0.27 0.53 5.65 4.35

Table 2: Rye: recovered proportion of recurrent parent genome (Q10, �x, sx), required number of marker data points (MDP), number of donor frag-
ments (�x, sx) and length of donor fragments (�x, sx) in generations BC1–BC4 with genome-wide background selection with constant population sizes
nt = 40, 80, 120, 160, 200 and equally spaced markers (marker density 20 cM) (Note that the number of required high-throughput assays can be easily
obtained by multiplying nt by the number of backcross generations)

nt BCt

Recurrent parent genome (%)

MDP

No. of donor
fragments

Length of donor
fragments (cM)

Q10 �x sx �x sx �x sx

40 BC1 85.75 89.73 3.15 1680 4.71 1.51 30.50 26.45
BC2 98.05 99.28 0.87 2031 1.11 1.04 9.11 7.80
BC3 99.31 99.82 0.35 2047 0.42 0.66 5.93 4.47
BC4 99.66 99.91 0.24 2047 0.22 0.48 5.46 4.31

80 BC1 87.79 91.35 2.85 3360 4.32 1.45 28.01 24.64
BC2 98.79 99.60 0.58 3953 0.78 0.89 7.23 5.79
BC3 99.35 99.84 0.33 3961 0.38 0.63 5.88 4.43
BC4 99.69 99.92 0.23 3961 0.20 0.46 5.57 4.34

120 BC1 88.82 92.21 2.67 5040 4.14 1.41 26.34 23.47
BC2 98.93 99.66 0.51 5844 0.72 0.87 6.59 4.99
BC3 99.38 99.85 0.33 5847 0.36 0.62 5.89 4.50
BC4 99.71 99.92 0.23 5847 0.20 0.46 5.53 4.37

160 BC1 89.55 92.78 2.56 6720 3.98 1.42 25.41 22.59
BC2 99.01 99.69 0.47 7715 0.68 0.83 6.40 4.72
BC3 99.39 99.85 0.32 7716 0.36 0.61 5.87 4.49
BC4 99.73 99.93 0.22 7716 0.18 0.45 5.60 4.31

200 BC1 90.14 93.18 2.44 8400 3.88 1.38 24.58 21.87
BC2 99.02 99.70 0.46 9576 0.65 0.82 6.39 4.67
BC3 99.37 99.85 0.32 9577 0.35 0.60 6.09 4.54
BC4 99.72 99.93 0.22 9577 0.18 0.43 5.76 4.38
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Q10 values recovered in generation BC2 depended on genome
length and were 99.60% for sugar beet, 99.99% for rye, 98.09%
for sunflower and 96.50% for rapeseed. Increasing marker den-
sity from 10 to 5 or 2 cM did not substantially increase Q10 val-
ues. This held true for all investigated genetic models.
Moreover, marker densities of 5 and 2 cM incurred very high
numbers of marker data points (data not shown).
The optimum designs that minimized the required number of

marker data points for target Q10 values of 96–99% in

generation BC2 employed marker densities of 2M/chr–10 cM for
sugar beet and rye (Table 5). For the sunflower model, a Q10
value of 98% could only be reached with a marker density of
5 cM and 68 000 marker data points. For rapeseed, a Q10 value
of 96% in generation BC2 could only be reached with a marker
density of 20 cM and about 33 000 marker data points. Higher
target Q10 values could not be reached in generation BC2 for
this model. For all four genetic models, two-generation pro-
grammes incurred substantially more marker data points than

Table 3: Sunflower: recovered proportion of recurrent parent genome (Q10, �x, sx), required number of marker data points (MDP), number of donor
fragments (�x, sx) and length of donor fragments (�x, sx) in generations BC1–BC4 with genome-wide background selection with constant population sizes
nt = 40, 80, 120, 160, 200 and equally spaced markers (marker density 20 cM) (Note that the number of required high-throughput assays can be easily
obtained by multiplying nt by the number of backcross generations)

nt BCt

Recurrent parent genome (%)

MDP

No. of donor
fragments

Length of donor
fragments (cM)

Q10 �x sx �x sx �x sx

40 BC1 82.19 85.06 2.31 3400 11.81 2.17 34.39 26.21
BC2 95.46 97.08 1.24 4424 4.94 1.83 16.11 14.47
BC3 99.20 99.69 0.36 4620 1.23 1.14 6.84 5.53
BC4 99.57 99.87 0.21 4626 0.59 0.80 5.75 4.42

80 BC1 83.61 86.23 2.12 6800 11.35 2.13 32.99 25.73
BC2 96.45 97.84 1.04 8692 4.17 1.69 14.12 12.53
BC3 99.37 99.77 0.29 8976 1.01 1.03 6.24 4.63
BC4 99.59 99.89 0.20 8976 0.53 0.75 5.82 4.41

120 BC1 84.37 86.88 2.03 10200 11.05 2.13 32.30 25.48
BC2 96.94 98.20 0.94 12904 3.76 1.64 13.01 11.44
BC3 99.40 99.78 0.28 13249 0.98 1.00 6.10 4.49
BC4 99.60 99.89 0.19 13249 0.52 0.75 5.63 4.35

160 BC1 84.93 87.36 1.98 13600 10.84 2.11 31.72 25.24
BC2 97.29 98.45 0.86 17076 3.47 1.60 12.15 10.65
BC3 99.41 99.79 0.27 17464 0.94 1.00 6.06 4.59
BC4 99.62 99.90 0.19 17464 0.49 0.71 5.75 4.45

200 BC1 85.30 87.68 1.95 17000 10.72 2.07 31.26 25.02
BC2 97.52 98.61 0.81 21244 3.24 1.55 11.64 10.04
BC3 99.41 99.79 0.27 21670 0.93 0.98 6.04 4.51
BC4 99.61 99.89 0.19 21670 0.49 0.72 5.81 4.45

Table 4: Rapeseed: recovered proportion of recurrent parent genome (Q10, �x, sx), required number of marker data points (MDP), number of donor
fragments (�x, sx) and length of donor fragments (�x, sx) in generations BC1–BC4 with genome-wide background selection with constant population sizes
nt = 40, 80, 120, 160, 200 and equally spaced markers (marker density 20 cM) (Note that the number of required high-throughput assays can be easily
obtained by multiplying nt by the number of backcross generations)

nt BCt

Recurrent parent genome (%)

MDP

No. of donor
fragments

Length of donor
fragments (cM)

Q10 �x sx �x sx �x sx

40 BC1 81.07 83.37 1.89 6080 19.60 2.87 45.13 38.58
BC2 94.19 95.65 1.11 8116 10.57 2.60 21.92 20.56
BC3 98.68 99.29 0.44 8644 3.69 1.86 10.27 9.21
BC4 99.64 99.86 0.16 8712 1.28 1.17 5.75 4.46

80 BC1 82.19 84.36 1.78 12160 19.16 2.86 43.45 37.65
BC2 95.12 96.39 0.99 15992 9.59 2.53 20.00 18.78
BC3 99.07 99.54 0.34 16861 2.88 1.71 8.42 7.34
BC4 99.66 99.87 0.15 16926 1.20 1.13 5.74 4.39

120 BC1 82.86 84.89 1.69 18240 18.87 2.87 42.59 37.14
BC2 95.62 96.79 0.91 23797 9.09 2.46 18.77 17.61
BC3 99.24 99.64 0.30 24955 2.53 1.64 7.47 6.38
BC4 99.67 99.88 0.15 25011 1.15 1.11 5.70 4.36

160 BC1 83.26 85.25 1.64 24320 18.71 2.84 41.93 36.68
BC2 95.91 97.04 0.86 31551 8.64 2.38 18.23 17.00
BC3 99.34 99.70 0.26 32970 2.29 1.55 6.96 5.68
BC4 99.68 99.88 0.15 33014 1.09 1.09 5.77 4.40

200 BC1 83.58 85.51 1.58 30400 18.58 2.84 41.50 36.50
BC2 96.16 97.22 0.82 39284 8.39 2.37 17.64 16.35
BC3 99.40 99.73 0.24 40941 2.18 1.53 6.63 5.33
BC4 99.68 99.88 0.14 40974 1.09 1.10 5.69 4.36
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three-generation programmes. The shorter genomes of sugar beet
and rye required 3.6–11.2 times as many marker data points for
two-generation programmes as for three-generation programmes.
For sunflower and rapeseed, two-generation programmes
required 28.8–60.2 times as many marker data points as three-
generation programmes.
For two-generation programmes, strategy HT was 0.05–4.10

times as expensive as strategy SM for recovering a target Q10
value of 96%, depending on genetic model and cost ratio of
HT : SM (Fig. 2a). Strategy Combined A was more cost-effec-
tive than strategy HT, indicated by the smaller range of rela-
tive costs and the smaller slopes of the cost curves (Fig. 2b).
Which marker strategy was cheapest depended on the cost
ratio of HT : SM and the genetic model. For sugar beet, strat-
egy HT was the cheapest strategy for cost ratios of HT : SM
of 10 : 1–35 : 1 (Fig. 2c). For cost ratios ranging between
35 : 1 and 100 : 1, strategy Combined A was cheapest
(Fig. 2b). For cost ratios of HT : SM >100 : 1, strategy SM
was cheapest. If the choice was between either strategy HT or
strategy SM, strategy HT should be used for cost ratios of
HT : SM of 10 : 1–60 : 1 (Fig. 2a). For longer genomes,
using HT assays became relatively cheaper compared with SM

assays. For rapeseed, strategy HT was the cheapest strategy
for recovering a target Q10 value of 96% for cost ratios of
HT : SM of up to 190 : 1 (Fig. 2a). For cost ratios >190 : 1,
strategy Combined A was cheapest (Fig. 2b). Strategy SM was
never cheaper than strategy Combined A.
For three-generation programmes with a target Q10 value of

99%, the use of HT assays became less efficient compared with
SM assays (Fig. 2d), indicated by steeper cost curves. Strategy
Combined C was equivalent to or cheaper than strategy HT for
nearly all investigated scenarios (Fig. 2f).

Discussion
Genetic models

Computer simulations and model calculations are considered
robust and useful tools for the optimization of breeding pro-
grammes (Prigge et al. 2008, Tomerius et al. 2008). However,
the validity of simulated results for real breeding applications is
influenced by the theoretical assumptions for the underlying
genetic model.
We used a Poisson procedure for modelling crossover formation

during meiosis, assuming no interference in crossover formation as
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Fig. 1: Q10 values recovered in generation BC2 with genome-wide background selection (marker densities 2M/chr, 3M/chr and 2, 5, 10, 20 cM) with
constant population sizes nt = 20–300 and equally spaced markers for four genetic models
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proposed by Haldane (1919). This approach has the advantage of
applicability for a broad range of scenarios, as has been discussed in
detail in the study by Frisch and Melchinger (2001). Further neces-
sary simplifications for the sake of generality include the assump-
tions of perfect fertility, no natural selection at gamete or zygote
level, unchanged recombination frequencies and Mendelian segre-
gation in any cross. This will not hold true in all cases, especially if
CMS donors are unadapted wild relatives. For such wide crosses,
the simulations might underestimate the actual resource require-
ments and/or overestimate recovered Q10 values. On the other
hand, in advanced cycles of hybrid breeding programmes, adapted
lines often are available as CMS donors, which might be similar to
the recipient lines. In these cases, complete recovery of an elite
genotype might be achieved with less resources or in shorter time.
The reader should be aware that the presented simulation

approach does not cover every detail of the complex biological pro-
cesses, which might underlie any specific cross. Conclusions drawn
from simulated data should therefore be interpreted as guidelines
and might require adjustment in specific breeding programmes.

Population size

In a simulation study on the introgression of one dominant target
gene, Prigge et al. (2009) employed the same genetic model for
sugar beet that was used in the present study. With a marker

density of 20 cM and nt = 40–200 individuals per backcross
generation, they recovered Q10 values in generation BC2 that
were approximately 3–4% lower than in the present study
(Table 1). The greater selection response in CMS conversion can
be explained by the lack of preselection for the target gene and
the lack of donor genome attached to the target gene. Conse-
quently, CMS conversion required considerably smaller popula-
tion sizes than gene introgression.
In generation BC2, Q10 values increased considerably for all

four genetic models when population size was increased from
nt = 10 to nt = 40–50 individuals (Fig. 1). For sugar beet and
rye, a plateau in the Q10 curves was observed. This limit of
recurrent parent genome recovery is caused by the limited esti-
mation accuracy of a given marker density. The wider adjacent
markers are spaced, the more likely it is that segments of recur-
rent parent genome between markers go unnoticed. Sugar beet
and rye had fewer and shorter donor fragments in generation
BC2, which were still considerably decreased with increasing
population size nt (Tables 1–4). For rye, for which the plateau is
reached at nt = 120 with a marker density of 20 cM, the average
length of donor fragments is only 6.59 cM and consequently
only about 33% of the distance between two adjacent markers
(Table 2). As a consequence, the plateau is reached with smaller
population sizes for lower marker densities. Increasing popula-
tion size beyond the number of individuals for which the plateau
is reached (Fig. 1) is not economic.
We conclude that recurrent parent genome recovery is maxi-

mized for all four genetic models with population sizes of
nt � 40–50 individuals per backcross generation. For rye and
sugar beet, population sizes should not exceed nt = 50–150 and
nt = 70–200 individuals, respectively, depending on marker den-
sity. For sunflower and rapeseed, population sizes of nt > 200
still have positive effects.

Marker density

It has been estimated for backcross programmes that a target
Q10 value of at least 96% should minimize the risk of undesir-
able effects from unadapted donor genome (Prigge et al. 2009).
For sugar beet and rye, a Q10 level of about 96% could be
recovered in generation BC2 with a marker density of 3M/chr
and nt = 40–60 individuals per backcross generation (Fig. 1).
For sunflower, the Q10 value of 96% could be reached with a
marker density of 2M/chr, indicating that two markers per chro-
mosome are sufficient for controlling short chromosomes
(Fig. 1). We therefore conclude that for CMS conversion, a
threshold Q10 value of 96% in generation BC2 can in most
cases be reached with 2–3 markers per chromosome.
The differences in Q10 values between marker densities were

bigger in sugar beet and rye than in sunflower and rapeseed
(Fig. 1). For example, for a population size per backcross gener-
ation of nt = 100, the differences in Q10 values between a mar-
ker density of 3M/chr and 20 cM were 1.7% for sugar beet,
2.3% for rye, 0.4% for sunflower and 1.0% for rapeseed. If mar-
ker density was increased from 3M/chr to 20 cM, the increase in
the number of markers per chromosome was greater in genetic
models with longer chromosomes, which partly accounts for the
big gap in Q10 values. Moreover, increasing marker density
shifted the frequency distribution of recurrent parent genome to
the right and decreased the variance of the distribution in all four
genetic models. The extent of these changes depended on chro-
mosome number and length. The differences between marker
densities were bigger for genetic models with a lower number of

Table 5: Optimum designs for recovering Q10 values of 96–99% [mar-
ker density, population size, no. of backcross generations, no. of marker
data points (MDP)] in two vs. three backcross generations with genome-
wide background selection if the number of MDP is minimized (Note
that the number of required high-throughput assays can be easily
obtained by multiplying nt by the number of backcross generations)

Genetic model Q10 (%) nt Marker density No. of MDP

No. of BC generations = 2
Sugar beet 96 40 3M/chr 1305
9 9 100 cM 97 40 20 cM 2684

98 70 20 cM 4600
99 120 10 cM 14 172

Rye 96 30 3M/chr 749
7 9 100 cM 97 30 20 cM 1541

98 40 20 cM 2030
99 60 10 cM 5475

Sunflower 96 120 2M/chr 5059
17 9 80 cM 97 130 20 cM 13 948

98 190 5 cM 68 411
99 – – –

Rapeseed 96 170 20 cM 33 476
19 9 140 cM 97 – – –

98 – – –
99 – – –

No. of BC generations = 3
Sugar beet 96 – – –
9 9 100 cM 97 10 2M/chr 240

98 10 20 cM 746
99 20 20 cM 1421

Rye 96 – – –
7 9 100 cM 97 10 2M/chr 181

98 10 20 cM 563
99 10 10 cM 1028

Sunflower 96 – – –
17 9 80 cM 97 10 2M/chr 485

98 20 3M/chr 1394
99 30 20 cM 3513

Rapeseed 96 10 2M/chr 556
19 9 140 cM 97 20 3M/chr 1618

98 20 20 cM 4448
99 80 20 cM 16 863
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chromosomes. If chromosome number was comparable, the dif-
ferences were bigger for genetic models with longer chromo-
somes. For sunflower, 2–3 equally spaced markers per
chromosome seemed sufficient to get acceptable genome cover-
age for recurrent parent genome recovery. For rapeseed, sugar
beet and rye, at least 6–8 equally spaced markers per chromo-
some, corresponding to a marker density of 20 cM, provide an
adequate selection response.
Given that differences in Q10 values between marker densities

were bigger (Fig. 1) and donor fragments on average shorter
(Tables 1–4) in genetic models with shorter genomes, we con-
clude that it pays off more to invest in higher marker densities
for sugar beet and rye than for sunflower and rapeseed.
For all four genetic models, hardly any differences in Q10 val-

ues could be observed between marker densities of 2, 5 and
10 cM (Fig. 1). However, marker densities of 5 and 2 cM
incurred very high numbers of marker data points (data not
shown). This was also observed in a previous simulation study

on gene introgression (Herzog and Frisch 2011). The reason is
that selection response is not limited by precise estimation of the
genetic contribution of the recurrent parent, but by the limited
number of recombination events that occur in two- or three-gen-
eration backcross programmes. We therefore conclude that it is
not efficient to increase effective marker density beyond 10 cM,
even though marker maps with higher density are available for
SNPs.

Marker fixation

For all four genetic models, the major proportion of marker data
points was incurred in generations BC1 and BC2. From
generation BC3–BC4, the number of required marker data points
is only marginally increasing (Tables 1–4). Accordingly, the
population sizes at which the plateau of recurrent parent genome
recovery is reached are diminishing in generations BC3 and BC4

due to marker fixation (data not shown). As a consequence, dif-
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(Cost ratio HT : SM) for recovering Q10 values of 96% in generation BC2, and Q10 values of 99% in generation BC3 with a marker density of
10 cM HT, a strategy using only high-throughput assays in all backcross generations; SM, a strategy using only single-marker assays in all backcross
generations; Combined A, a strategy using HT assays in generation BC1 and SM assays in generation BC2; Combined B, a strategy using HT assays
in generation BC1 and SM assays in generations BC2 and BC3; Combined C, a strategy using HT assays in generations BC1 and BC2 and HT assays
in generation BC3. HT, high-throughput; SM, single-marker

Efficient CMS conversion 39

— 28 —



ferences in Q10 values and average length of donor fragments
between the four genetic models disappear in generation BC4.
This indicates that recurrent parent genome recovery was no
longer controlled for by markers and resulted in a reduction in
selection response.
For gene introgression, Prigge et al. (2009) reported that the

optimum backcross designs were characterized by increasing
marker densities and population sizes. Due to the faster rate of
marker fixation in CMS conversion programmes, we conclude
that keeping a constant population size in each backcross genera-
tion, or increasing population size in advanced backcross genera-
tions, is only efficient for CMS conversion if it is also
accompanied by an increase in marker density. Additional mark-
ers could be placed between the original markers analysed in
previous generations to increase the precision of selection. For
sugar beet, rye and sunflower, marker densities of 3M/chr in
generations BC1 and BC2, and 20 cM in advanced backcross
generations could decrease the loss of selection response. For
rapeseed, we suggest that CMS conversion programmes could
start with 20 cM in generations BC1 and BC2, followed by
10 cM in advanced backcross generations.

CMS conversion designs for different genetic models

In the present study, Q10 values of 96–98% could be reached in
generation BC2 for sugar beet and rye with a marker density of
20 cM and nt = 30–70 individuals (Table 5). We therefore con-
clude that for these crops, two-generation programmes are suit-
able for CMS conversion.
If Q10 values >96% were aimed for in generation BC2, sun-

flower required nt = 130–190 individuals per backcross genera-
tion and marker densities of 20–5 cM. Moreover, a target Q10
value of 98% in generation BC2 required about 68 000 marker
data points (Table 5). For rapeseed, a Q10 value of 96% in gen-
eration BC2 could only be reached with nt = 170 individuals per
backcross generation, a marker density of 20 cM, and about
33 000 marker data points. We conclude that for target Q10 val-
ues of 96–99%, three-generation conversion programmes are
required for the longer genomes of sunflower and rapeseed.
With the exception of a Q10 value of 98% for sunflower, all

Q10 levels could be reached with marker densities of 2M/chr–
10 cM. Increasing marker density beyond 10 cM incurs high
numbers of marker data points, but will not help to save addi-
tional backcross generations (cf. Fig. 1). This confirms that a
marker density of 10 cM is sufficient for almost all backcross
designs, as has also been previously observed (Herzog and Fris-
ch 2011).
For all four genetic models, two-generation programmes

required considerably more marker data points than the three-
generation programmes (Table 5). We therefore conclude that
three-generation CMS conversion programmes are also advanta-
geous for shorter genomes if the focus of cost reduction is on
the cost of marker analysis.

Relative costs of HT and SM assays

Different strategies of using HT and SM assays for CMS conver-
sion with a marker density of 10 cM were compared by calculat-
ing their relative costs for cost ratios of HT/SM ranging from
200 : 1 to 10 : 1 (Fig. 2). For a Q10 value of 96% in generation
BC2, the relative costs of strategy HT compared with strategy
SM ranged from 0.10 to 2.02 for sunflower (Fig. 2a). In a gene
introgression study on maize with the same parameters, the rela-

tive costs ranged from 0.09 to 1.85 (Herzog and Frisch 2011).
These genetic models are comparable with respect to genome
length (1360 vs. 1600 cM) and number of background markers.
For a given population size, the number of SM and HT assays
are approximately in the same ratio for gene introgression and
CMS conversion in generations BC1 and BC2. It can therefore
be assumed that the relative costs we determined in the present
study are to a certain extent also valid for background selection
in gene introgression programmes.
For sugar beet and a target Q10 value of 96% in generation

BC2, strategy HT was cheapest up to a cost ratio of HT/SM of
35 : 1 (Fig. 2c). From a cost ratio of HT/SM of 35 : 1–100 : 1,
strategy Combined A was cheapest (Fig. 2b). For higher cost
ratios of HT/SM, strategy SM was the cheapest option. If the
choice is between either strategy HT or strategy SM, strategy
HT should be used up to a cost ratio of HT/SM of 60 : 1
(Fig. 2a). For sunflower and rapeseed, strategies involving HT
assays became relatively cheaper. We therefore conclude that the
use of HT assays for background selection is cost-efficient for
two-generation CMS conversion programmes and crops with
long genomes such as sunflower and rapeseed.
For three-generation programmes, strategy HT became less

efficient compared with strategy SM, indicated by steeper cost
curves (Fig. 2d). For sugar beet and a target Q10 value of 99%
in generation BC3, strategy HT was only cheaper than strategy
SM up to a cost ratio of HT/SM of 45 : 1. This can be
explained by the fact that for sugar beet, 98–99% of marker data
points are incurred in generations BC1 and BC2 and most mark-
ers are already fixed in generation BC3 (Tables 1–4).
For three-generation programmes, strategy Combined C was

equivalent to or cheaper than strategy HT for nearly all investi-
gated scenarios (Fig. 2f). Combining HT and SM assays in one
backcross programme can pose a challenge as HT and SM plat-
forms often require different types of markers. Recently, KASPar
assays have become available, which allow for inexpensive anal-
ysis of small sets of SNPs (Chen et al. 2010). It has been shown
that SNP markers can be inter-converted between KASPar and
HT assays (Mammadov et al. 2012). Combinations of HT and
SM thus have the potential to make marker-assisted background
selection more cost-effective. We conclude that for three-genera-
tion CMS conversion programmes, HT assays should be used in
generations BC1 and BC2, and SM assays in generation BC3 for
all investigated genetic models.
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Chapter 4

Selection strategies for
marker-assisted background
selection with chromosome-wise
SSR multiplexes in
pseudo-backcross programs for
grapevine breeding1

1Herzog, E, Töpfer, R, Hausmann, L, Eibach, R, & Frisch, M. 2013. Selection strategies
for marker-assisted background selection with chromosomewise SSR multiplexes in pseudo-
backcross programs for grapevine breeding. Vitis, 52(4), 193-196.



Vitis 52 (4), 193–196 (2013)

Selection strategies for marker-assisted background selection with 
chromosome-wise SSR multiplexes in pseudo-backcross programs 

for grapevine breeding

E. HERZOG1), R.TÖPFER2), L. HAUSMANN2), R. EIBACH2) and M. FRISCH1)

1) Institute of Agronomy and Plant Breeding II, Justus Liebig University, Giessen, Germany

2) Julius Kühn Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof,  
Siebeldingen, Germany

Correspondence to: Dr. M. FRISCH, Institute of Agronomy and Plant Breeding II, Justus Liebig University, Heinrich-Buff-Ring 26-32, 
35392 Giessen, Germany. E-mail: matthias.frisch@uni-giessen.de

Summary

Organizing SSR markers located on one chromo-
some into PCR multiplexes has the potential to reduce 
the costs of marker analysis. The optimal selection 
strategies for such chromosome-wise multiplexes have 
not yet been investigated. We investigated with compu-
ter simulations three different selection strategies for 
gene introgression with a pseudo-backcross scheme and 
a marker density of one marker every 10 cM. Selecting 
individuals with the highest number of chromosomes 
carrying V. vinifera alleles at all background marker 
loci reduced the number of required multiplexes by 
7.24-7.87 % in generations pBC4-pBC6 for population 
sizes nt = 150-300 individuals per pseudo-backcross 
generation.

K e y  w o r d s :  gene introgression, simulation study, multi-
plex PCR, microsatellite, marker-assisted selection.

Introduction

American and Asian Vitis species carrying resistance 
genes against mildew disease have been employed in in-
terspecific breeding programs (DI GASPERO and CATTONARO 
2010, TÖPFER et al. 2011). Along this line only one example 
has been described for a systematic development of intro-
gression lines as described by the pioneering work of Alain 
Bouquet (PAUQUET et al. 2001). This work turns out to be 
very time consuming as well as space and labor demanding. 
The development of molecular markers for early selection 
of seedlings with traits of agronomic interest is therefore 
of particular value (EIBACH et al. 2007). Simple sequence 
repeats (SSRs) are useful genetic markers, as they are 
abundant in the genome, highly polymorphic and transfer-
able between V. vinifera and related species (SALMASO et al. 
2008, VEZZULLI et al. 2008, BLANC et al. 2012). However, 
they have the disadvantage of low throughput compared 
to single nucleotide polymorphisms (SNPs), which lim-
its their use in large-scale breeding programs. Organizing 
SSRs into PCR multiplexes considerably reduces the costs 
of marker analysis (MERDINOGLU et al. 2005). PATOCCHI 
et al. (2009) suggested that organizing SSR markers locat-
ed on one linkage group in one multiplex is applicable and 

advantageous. Efficient selection strategies for V. vinifera 
genome recovery in pseudo-backcross programs for gene 
introgression with such chromosome-wise multiplexes 
have not yet been investigated. The objective of our study 
was to compare with computer simulations different selec-
tion strategies for gene introgression with chromosome-
wise multiplexes.

Material and Methods

Computer simulations were carried out assuming no 
interference in crossover formation. Each simulation was 
run 10,000 times in order to reduce sampling effects and to 
obtain stable results with small standard error.

The genetic model for grapevine consisted of 19 chro-
mosomes (2 x 40 cM, 7 x 60 cM, 5 x 80 cM, 5 x 100 cM). 
This corresponded to a total genome length of 1400 cM. 
The marker for the dominant target gene was assumed to 
be a gene-based marker and was located on a 100 cM chro-
mosome at 61 cM from the telomere. Background markers 
were equidistantly spaced with one marker every 10 cM, 
the first and last marker of each chromosome being placed 
on the telomeres.

A pseudo-backcross scheme with changing V. vinifera 
parents in every generation was investigated up to genera-
tion pBC6. The goal was to recover as much V. vinifera 
genome as possible, irrespective from which of the parents. 
For chromosome-wise multiplexes it was assumed that one 
multiplex included genotyping all background marker loci 
located on one chromosome. This resulted in multiplexes 
comprising 5 to 11 SSRs. In advanced pseudo-backcross 
generations only those chromosomes were analyzed which 
did not yet carry V. vinifera alleles at all background mark-
er loci.

The donor was heterozygous for the desired allele at 
the target locus. The V. vinifera parents could be distin-
guished from the donor at all marker loci. Initially, the do-
nor and the first V. vinifera parent were crossed to produce 
nF1 F1 individuals. From this F1 population, one individual 
that carried the donor allele at the target locus was selected 
as parent for generation pBC1. This individual was crossed 
to the second V. vinifera parent to produce  n1 pBC1 individ-
uals. From this pBC1 population, one best individual was 
selected with the selection strategies described below (see 
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also Fig. 1), and crossed to the next V. vinifera parent. This 
procedure was repeated for t = 6 pseudo-backcross genera-
tions with constant population sizes nF1 = nt

 = 50, 100, 150, 
200, 250, 300. 

For all selection strategies, carriers of the donor allele 
at the target locus were pre-selected in the first selection 
step. These individuals were then subjected to one of three 
genome-wide background selection strategies. For Strat-
egy 1, a selection index i = ∑m xm was created, where sum-
mation is over background markers and xm is the number 
of V. vinifera alleles at the mth marker. One individual with 
the highest value of i was selected in the second selection 
step and crossed to the next V. vinifera parent of genera-
tion pBCt+1. The individual with the highest proportion of 
V. vinifera alleles at background marker loci was thus se-
lected as parent for the next generation pBCt+1.

For Strategy 2, a selection index j = ∑c xc was creat-
ed, where summation is over chromosomes and xc = 1 if 
a chromosome carries V. vinifera alleles at all background 
marker loci. All individuals with the highest value of j were 
selected in the second selection step. For these individuals, 
the value of i was determined as described for Strategy 1 
in the third selection step. One individual with the highest 
value of i was selected and crossed to the next V. vinifera 
parent of generation pBCt+1. The best individual with the 
highest number of chromosomes carrying V. vinifera alle-
les at all background marker loci was thus selected as par-
ent for the next generation pBCt+1.

For Strategy 3, a selection index k = ∑c xc was created, 
where summation is over chromosomes and xc = length of 
chromosome c in M if a chromosome carries V. vinifera 
alleles at all background marker loci. All individuals with 
the highest value of k were selected in the second selection 
step. For these individuals, the value of i was determined 
as described for Strategy 1 in the third selection step. One 
individual with the highest value of i was selected and 
crossed to the next V. vinifera parent of generation pBCt+1. 
The best individual with the highest cumulative length of 
chromosomes carrying V. vinifera alleles at all background 

marker loci was thus selected as parent for the next genera-
tion pBCt+1.

To quantify the success of the respective pseudo-back-
cross programs, the 10th percentile (Q10), the arithmetic 
mean (x) and the standard deviation (sx) of the frequency 
distribution of V. vinifera genome in percentage, the aver-
age number of chromosomes carrying V. vinifera alleles at 
all background marker loci, and the average number and 
length of donor fragments were determined in every back-
cross generation for the selected individuals. In addition, 
the required number of chromosome-wise multiplexes for 
the respective pseudo-backcross programs, and the number 
of individuals ni selected for evaluation with selection in-
dex i were determined in every backcross generation.

 

Results and Discussion

Up to generation pBC3, Strategy 2 required a higher 
resource input than Strategy 1 for recovering equivalent 
levels of V. vinifera genome (Fig. 2). Strategy 3 was always 
inferior to Strategy 2. A Q10 ≥ 98 % required nt = 100 in-
dividuals per generation, 1753 multiplexes and three pseu-
do-backcross generations with Strategy 1 (Fig. 1). With 
Strategy 2, a Q10 ≥ 98% required nt = 200 individuals and 
3162 multiplexes. With Strategy 3, a Q10 ≥ 98 % required 
nt = 250 individuals and 3947 multiplexes, or an additional 
pseudo-backcross generation.

In generations pBC1-pBC3, pre-selection for chromo-
somes carrying V. vinifera alleles at all background marker 
loci considerably reduced the number of individuals ni 
from which the parent for the next generation was selected 
(Tab. 1). With Strategy 2 only ni = 1.8, 2.4, 10.5 individuals 
were evaluated for selection index i. For Strategy 1, ni were 
all individuals carrying the target gene (Tab. 1). These indi-
viduals have on average more, but shorter donor fragments 
than those selected with Strategy 2, and the probability that 
an individual with a higher overall proportion of V. vinifera 
genome is selected is higher than for Strategy 2.

Fig. 1: Strategies and effort required to get Q10 ≥ 98 % of V. vinifera genome in generation pBC3. Number of plants per generation and 
number of chromosome-wise multiplexes are indicated for each strategy.
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In generations pBC4-pBC6, the differences in V. vini-
fera genome between the selection strategies disappeared 
(Fig. 2 and Tab. 1). For population sizes of nt ≥ 150 indi-
viduals per pseudo-backcross generation, the differences in 
Q10 values were < 0.1% between Strategy 1 and 2 (Fig. 2). 
Moreover, Strategy 1 then required more chromosome-

wise multiplexes for equivalent levels of V. vinifera ge-
nome than Strategy 2 (Tab. 2). For nt = 150-300  individu-
als per pseudo-backcross generation, 7.24-7.87 % of multi-
plexes were saved in generations pBC4-pBC6 with Strategy 
2 compared to Strategy 1 (Tab. 2). In generation pBC4, all 
non-carrier chromosomes carried V. vinifera alleles at all 
background marker loci on average, and selection focused 
on individuals with the shortest donor segment around the 
target gene for all three strategies (Tab. 1). The number of 
required multiplexes was then increasing at approximate-
ly the same rate for Strategy 1 and Strategy 2. However, 
Strategy 2 was more efficient than Strategy 1 in selecting 
for chromosomes which carried V. vinifera alleles at all 
background marker loci in generations pBC1-pBC3. While 
for Strategy 2, 9.3, 15.6, and 18.0 chromosomes on aver-
age carried V. vinifera alleles at all background marker loci, 
only 8.1, 14.5, 17.6 chromosomes carried V. vinifera alleles 
at all background marker loci with Strategy 1. These early 
savings resulted in an overall saving of chromosome-wise 
multiplexes in advanced pseudo-backcross generations.

Increasing the number of individuals per pseudo-back-
cross generation from nt = 150 to nt = 300 resulted in an ad-
ditional V. vinifera genome recovery of 1.2-0.7 % for Strat-
egy 1 in generations pBC1-pBC3 (data for pBC1 and pBC2 
not shown, for pBC3 see Fig. 2). In contrast, increasing the 
number of individuals per pseudo-backcross generation 
beyond nt = 150-200 had little effect on V. vinifera genome 
recovery in advanced backcross generations for both Strat-
egy 1 and Strategy 2 (Tab. 2, see also Fig. 2).

Fig. 2: Tenth percentile Q10 values of V. vinifera genome recov-
ered in generations pBC3-pBC5 for Strategies 1, 2, 3 with constant 
population sizes nt = 50, 100, 150, 200, 250, 300 individuals per 
pseudo-backcross generation plotted against the required number 
of chromosome-wise multiplexes.

T a b l e  1  
                                                                           

      Recovered level of V. vinifera genome (Q10, x, sx) in percentage, required number of chromosome-wise 
multiplexes (CM), average number of chromosomes carrying V. vinifera alleles at all background marker 
loci (CCV), number of individuals evaluated for selection index i, number (x, sx) and length (x, sx) of 
donor fragments (cM) in generations pBC1-pBC6 for Strategies 1, 2, 3 with constant population size nt = 

150 individuals per pseudo-backcross generation

Strategy pBCt

V. vinifera genome 
(%) CM CCV nt

No. donor 
fragments

Length donor 
fragments (cM)

Q10 x sx x sx x sx

1 pBC1 82.24 84.59 1.92 1425 8.1 75.0 12.9 2.2 33.55 26.22
pBC2 94.90 96.24 1.04 2246 14.5 74.9 5.8 1.8 18.14 17.62
pBC3 98.55 99.14 0.43 2585 17.6 75.0 2.2 1.1 10.91 9.71
pBC4 99.37 99.64 0.20 2692 18.4 75.0 1.4 0.6 7.05 5.08
pBC5 99.54 99.75 0.15 2740 18.7 74.9 1.3 0.5 5.51 3.79
pBC6 99.64 99.80 0.13 2761 18.9 74.9 1.2 0.4 4.91 3.26

2 pBC1 79.10 82.75 2.86 1425 9.3 1.8 11.5 1.7 41.96 29.21
pBC2 92.89 95.07 1.66 2152 15.6 2.4 4.7 1.5 29.40 26.45
pBC3 97.88 98.82 0.69 2407 18.0 10.5 1.8 0.9 18.69 18.39
pBC4 99.28 99.60 0.24 2481 18.3 54.9 1.4 0.6 8.25 6.30
pBC5 99.52 99.74 0.16 2534 18.7 47.9 1.2 0.5 5.84 4.02
pBC6 99.63 99.79 0.13 2558 18.8 61.9 1.2 0.4 5.06 3.34

3 pBC1 78.29 82.19 3.06 1425 9.2 1.1 11.6 1.7 43.04 28.95
pBC2 92.02 94.47 1.87 2163 15.5 1.2 4.8 1.5 32.23 27.28
pBC3 97.52 98.63 0.80 2428 18.0 8.9 1.8 0.9 20.95 20.68
pBC4 99.22 99.57 0.27 2506 18.3 55.3 1.4 0.6 8.67 6.88
pBC5 99.51 99.74 0.16 2560 18.6 48.2 1.2 0.5 5.90 4.03
pBC6 99.62 99.79 0.13 2586 18.8 61.4 1.2 0.4 5.10 3.35
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We conclude that if SSR markers are analyzed as chro-
mosome-wise multiplexes, selecting for individuals with 
the highest proportion of V. vinifera genome at background 
marker loci is the most efficient selection strategy for short 
gene introgression programs of up to three pseudo-back-
cross generations. For such short gene introgression pro-
grams, population sizes of nt ≥ 300 individuals per pseudo-
backcross generation maximize V. vinifera genome recov-
ery. For gene introgression programs of four to six pseudo-
backcross generations, pre-selecting individuals with the 
highest number of chromosomes carrying V. vinifera alleles 
at all background marker loci has the potential to consider-
ably reduce the number of required SSR multiplexes. For 
these longer gene introgression programs, population sizes 
of nt = 150-200 individuals are sufficient.
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T a b l e  2

Recovered level of V. vinifera genome (Q10) and percentage of saved chromosome-wise 
multiplexes (CM (%)) for Strategy 2 compared to Strategy 1 in generations pBC4-pBC6 with 

constant population sizes nt = 150, 200, 250, 300

Generation
nt = 150 nt = 200 nt = 250 nt = 300

Q10 CM (%) Q10 CM (%) Q10 CM (%) Q10 CM (%)
pBC4 99.28 7.84 99.36 7.83 99.40 7.63 99.44 7.87
pBC5 99.52 7.52 99.56 7.50 99.61 7.33 99.64 7.52
pBC6 99.63 7.35 99.67 7.37 99.68 7.24 99.68 7.47
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Abstract

Introgression libraries are valuable resources for QTL detection and breeding, but their development is costly and time-
consuming. Selection strategies for the development of introgression populations with a limited number of individuals and
high-throughput (HT) marker assays are required. The objectives of our simulation study were to design and compare
selection strategies for the development of maize introgression populations of 100 lines with population sizes of 360–720
individuals per generation for different DH and S2 crossing schemes. Pre-selection for complete donor chromosomes or
donor chromosome halves reduced the number of simultaneous backcross programs. The investigated crossing and
selection schemes differed considerably with respect to their suitability to create introgression populations with clearly
separated, evenly distributed target donor chromosome segments. DH crossing schemes were superior to S2 crossing
schemes, mainly due to complete homozygosity, which greatly reduced the total number of disjunct genome segments in
the introgression populations. The S2 crossing schemes were more flexible with respect to selection and provided economic
alternatives to DH crossing schemes. For the DH crossing schemes, increasing population sizes gradually over backcross
generations was advantageous as it reduced the total number of required HT assays compared to constant population sizes.
For the S2 crossing schemes, large population sizes in the final backcross generation facilitated selection for the target
segments in the final backcross generation and reduced fixation of large donor chromosome segments. The suggested
crossing and selection schemes can help to make the genetic diversity of exotic germplasm available for enhancing the
genetic variation of narrow-based breeding populations of crops.
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Introduction

Introgression libraries are valuable resources for the identifica-

tion of alleles of agricultural interest in exotic germplasm. They

facilitate the introduction of new genetic variation into elite

breeding germplasm by providing favorable chromosome seg-

ments from wild or exotic species in an adapted genetic

background [1,2]. Ideally, an introgression library consists of a

set of homozygous introgression lines (ILs) which carry short

marker-defined chromosome segments from an exotic donor in a

common genetic background. The concept was first described in

tomato [3]. In the mean time, introgression libraries have been

developed for the model species Arabidopsis thaliana [4,5], and in

many agriculturally important crops, such as rice [6,7], barley

[8,9], wheat [10,11], maize [12,13] and rye [14].

Introgression libraries are usually developed by marker-assisted

backcrossing followed by selfing or production of double haploid

(DH) lines. The backcross process for their development is costly

and labor-intensive if complete coverage of the donor genome by

short evenly distributed target chromosome segments is to be

achieved. Often additional backcross programs have to be run for

the developed ILs in order to close gaps in donor genome

coverage, or to shorten donor chromosome segments by additional

recombination events [3,9]. In spite of the high resource

requirements, only incomplete donor genome coverage has been

achieved for most of the reported introgression libraries [9,14].

In previous simulation studies on introgression libraries, two

generations of selfing were investigated for line development

[15,16]. Recent genetic studies in maize were based on ILs that

underwent two to five generations of selfing [17–19]. The use of

DH technology has to our knowledge not yet been investigated in

simulation studies on the development of introgression libraries.

However, in vivo induction of maternal haploids is currently a

routine method of DH production in commercial maize breeding

programs. The main advantage of the DH technology is that

complete homozygosity can be obtained after only two genera-

tions. Inspite of this time-saving, the production of DH lines is still

considerably more costly than conventional selfing [20]. More-

over, a current drawback of in vivo induction of maternal haploids

in maize is that on average only one viable DH line can be derived

from one backcross individual. It is therefore of economic interest

to compare this method with S2 crossing schemes which require

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e92429
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the same number of generations to evaluate the benefits of DH

lines.

A possible approach to tackle the high costs required for the

development of ideal introgression libraries would be to resort to

introgression populations which are not perfect in appearance, but

carry some additional donor segments outside the actual target

segments. Such introgression populations could be developed with

fewer individuals and marker assays. Complete coverage of the

donor genome is desirable in order to capture the whole wealth of

alleles of agricultural interest in the exotic donor. It is therefore

one component of a minimum standard which introgression

populations should meet. A second component are short, evenly

distributed target donor chromosome segments in a clean adapted

background, as they facilitate the use of the ILs in the following

breeding process.

The design of the crossing scheme and the selection strategy are

the most important factors that influence the distribution of donor

chromosome segments in the introgression population. Falke et al.

[16] suggested for the development of ideal introgression libraries

that a chromosome-based selection strategy which pre-selects

individuals carrying the donor alleles on complete chromosomes in

generation BC1 saves resources. Adapting and advancing this

concept to crossing schemes with small population sizes might be

an efficient approach to develop introgression populations with a

limited number of marker assays.

The objectives of our simulation study were (1) to design

selection strategies and crossing schemes for the development of

maize introgression populations with limited resources, (2) to

compare these selection strategies with respect to the distribution

and length of donor chromosome segments and the required

investments in terms of time, individuals and marker assays, (3) to

give guidelines for the optimal experimental design for construct-

ing introgression populations.

Materials and Methods

Software
All simulations were conducted in R version 3.0.0 [21] with the

software package SelectionTools, which is available from http://

www.uni-giessen.de/population-genetics/downloads.

Genetic Model
A genetic model of maize with 10 equally sized chromosomes of

200 cM length was used for the simulations. Genetic markers for

selection were equally spaced. The distance between two adjacent

marker loci was 1 cM. All markers were polymorphic between

donor and recipient. It was assumed that markers were analyzed

with high-throughput (HT) assays. One HT assay comprised

genotyping one individual at all marker loci in the linkage map.

Recombination was modelled assuming no interference in

crossover formation [22]. Each simulation of an introgression

population of 100 ILs was replicated 1,000 times in order to

reduce sampling effects and to obtain results with high numerical

accuracy and a small standard error.

Crossing Schemes
Four crossing schemes were investigated: BC2DH, BC3DH,

BC2S2, BC3S2. Each crossing scheme started with the cross of a

homozygous donor and a homozygous recipient to create one F1

individual. The F1 individual was backcrossed to the recipient to

create a BC1 population of size nBC1. From the BC1 population,

the best individuals with the highest values of selection indices for

the respective selection strategy were selected. Each of the selected

BC1 individuals was backcrossed to the recipient to create BC2

sub-populations of size nBC2. From these BC2 sub-populations, the

best individuals with the highest values of the respective selection

indices were selected. For the DH crossing schemes, in vivo

induction of maternal haploids was assumed with a success rate of

one viable DH line per backcross individual. For the BC2DH
schemes, one DH line was thus created from each of the selected

BC2 individuals. For the BC2S2 crossing schemes, the selected

BC2 individuals were selfed to create a fixed number of S1

individuals. Each of the S1 individuals was selfed again and one S2

individual was created. For the BC3 crossing schemes, each of the

selected BC2 individuals was backcrossed to the recipient to create

BC3 sub-populations of size nBC3. From these BC3 sub-popula-

tions, the best individuals with the highest values of the respective

selection indices were selected. The generations S1, S2 or DH of

the BC3 crossing schemes were carried out as described for the

BC2 crossing schemes.

Evaluation of Selection Candidates
The final introgression populations should consist of 100 ILs

which guarantee an acceptable resolution of QTL detection in

maize, and which can be immediately used in further breeding

steps. Each IL should ideally carry a 20 cM chromosome segment

from the donor to provide a complete and even coverage of the

donor genome without overlap. The 20 cM chromosome

segments are hereafter simply referred to as ‘‘target segments’’.

To determine the selection index for an individual with respect to

a given target segment, we denote with tc the donor genome

proportion of the chromosome on which the target segment is

located, with th the donor genome proportion of the chromosome

half on which the target segment is located and with ts the donor

genome proportion of the target segment itself. The values for the

genetic background bc, bh, bs correspond to tc, th, ts and denote

the recipient genome proportion outside the respective chromo-

some region. Depending on the selection strategy, t and b are used

to define selection indices.

Selection Strategies
We considered generations g~ BC1,BC2,BC3,DH,S1,S2f g for

selection. Generation DH was the generation in which homozy-

gous diploid DH lines were available for selection. In each

generation g, the genome was divided into selection regions that

could either be 10 complete chromosomes, 20 chromosome halves

or 100 target segments. For selection for complete donor

chromosomes, a fixed number nsel of best individuals for each of

the chromosomes c~1,2,:::,10 with the highest values for selection

index i~tczbc were selected. For selection for donor chromo-

some halves, a fixed number nsel of best individuals for each of the

chromosome halves h~1,2,:::,20 with the highest values for

selection index i~thzbh were selected. For selection for donor

target segments, a fixed number nsel of best individuals for each of

the target segments s~1,2,:::,100 with the highest values for

selection index i~tszbs were selected.

Selection for complete donor chromosomes, donor chromosome

halves and donor target segments were combined to form different

selection strategies. Selection for complete donor chromosomes in

a backcross generation is denoted by a C in the strategy name,

selection for donor chromosome halves is denoted by an H, and

selection for donor target segments is denoted by an S. For

example, for strategy CH, selection for complete donor chromo-

somes was conducted in generation BC1 while selection for donor

chromosome halves was conducted in generation BC2. An

overview of the investigated selection strategies is presented in

Table 1. The investigated combinations of crossing scheme and

selection strategy are listed in the first column of Table 2. For all
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selection strategies, the best 100 ILs for selection index i~tszbs

were selected in generation DH or S2, depending on the crossing

scheme.

Population Sizes and Simulation Series
We investigated population sizes of ntot~360{720 individuals

per backcross generation. This should be within a range which can

be realized in practical maize breeding programs. Variations in

population size were investigated to determine both the effect on

preserving the target segments up to line development as well as on

recovering the genotype of the recipient outside the target

segments.

In the first series of simulations, basic crossing schemes were

investigated. Selection was carried out in generation BC1 for basic

crossing schemes with two backcross generations, and in gener-

ations BC1 and BC2 for basic crossing schemes with three

backcross generations. The total population size per generation

was kept constant at ntot~360 individuals in every generation g.

In the second series of simulation, crossing schemes with high

selection intensity were investigated. Population size was doubled

compared to the basic crossing schemes ntot~720ð Þ in every

generation g, while the number of selected individuals was the

same as for the basic crossing schemes. The crossing schemes with

high selection intensity are denoted by BC3{CC0, BC3{HH0

and BC3{CH0 (Table 2). In the first and second series of

simulations, all backcross individuals generated in the final

backcross generation were used for line development for both

DH and S2 crossing schemes. One IL was derived from one

backcross individual.

In the third series of simulations, crossing schemes with selection

in the final backcross generation were investigated. ntot was

doubled to 720 individuals in the final backcross generation

for the DH crossing schemes BC2DH{CC, BC2DH{HH,

BC2DH{CH, BC3DH{CCC, BC3DH{HHH, BC3DH{

CHH. This increase in population size was necessary to enable

selection and to keep ntot at 360 individuals in generation DH. For

the corresponding S2 schemes, ntot was kept at 360 individuals also

in the final backcross generation.

In the fourth series of simulations, crossing schemes with

increasing population sizes were investigated. Selection was

conducted in the final backcross generation. The crossing schemes

with increasing population sizes are denoted by BC3{HHH� and

BC3{HHS�. The details concerning the total population size ntot

and population sizes in the sub-populations ng for all investigated

combinations of crossing scheme and selection strategy are

summarized in Table 2. Schematic representations of the crossing

schemes BC3DH{HHH� and BC3S2{HHS� are given in

Figure 1 and Figure 2 for illustration.

Measures
To evaluate and compare introgression populations originating

from different crossing and selection schemes, the following

measures were determined: (a) the genome coverage of the donor

O in percent, which is defined as the proportion of the donor

genome which is covered by the introgression population,

irrespective of whether by the target segments or other donor

segments in the genetic background, (b) the depth of donor

genome coverage T , which is defined as the average number of

ILs in which each donor allele appears in the introgression

population, (c) the number of disjunct genome segments in the

introgression population S, (d) the resolution of the introgression

population R in cM, which is defined as the total genome length of

the genetic model in cM divided by S, (e) the average number of

donor segments per IL N , (f) the average length of donor segments

per IL L in cM, (g) the average total donor genome proportion of

the introgression population Dt in percent, (h) the average donor

genome proportion of the chromosomes carrying the respective

target segments Dc in percent, (i) the average donor genome

proportion of the target segments Ds in percent.

Results

High values for the donor genome coverage O around 99%

were observed for all crossing schemes (Table 3). However, the

resulting introgression populations differed substantially in the

values for the number of disjunct genome segments S, the total

donor genome proportion Dt, the donor genome proportion of the

carrier chromosomes Dc and the donor genome proportion of the

target segments Ds. BC3 crossing schemes resulted in 2–3% lower

values for Dt than BC2 crossing schemes, even if the number of

Table 1. Definition of the selection index i in generations BC1, BC2, BC3, DH, S1, S2 for different selection strategies for
developing introgression populations.

Generation

Strategy BC1 BC2 BC3 S1 DH/S2

C tczbc – – – tszbs

H thzbh – – – tszbs

CC tczbc tczbc – – tszbs

HH thzbh thzbh – – tszbs

CH tczbc thzbh – – tszbs

CCC tczbc tczbc tczbc – tszbs

HHH thzbh thzbh thzbh – tszbs

CHH tczbc thzbh thzbh – tszbs

HHS thzbh thzbh tszbs – tszbs

Selection for complete donor chromosomes (C), selection for donor chromosome halves (H) and selection for donor target segments (S) were combined to form
different selection strategies (left column). tc , th and ts denote the donor genome proportions of the chromosome on which the target segment is located, of the
chromosome half on which the target segment is located and of the target segment itself. bc , bh and bs correspond to tc , th , ts and denote the recipient genome
proportion outside the respective chromosome region.
doi:10.1371/journal.pone.0092429.t001
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generations of selection was the same. For example, the basic

crossing scheme BC3DH{CC resulted in a Dt of only 5.0%,

while crossing scheme BC2DH{CC with selection in the final

backcross generation resulted in a Dt of 7.8%. An additional

generation of selection in BC2 schemes only resulted in minor

improvements of Dt of 0.4–1.4% compared to the basic crossing

schemes without selection. For example, scheme BC2DH{CC
improved Dt only by 0.5% compared to scheme BC2DH{C.

The DH crossing schemes had in most cases better values for T ,

Dt, Dc, Ds and especially S than the S2 crossing schemes (Table 3).

Table 2. Subdivision of the total population sizes ntot into sub-population sizes ng in generations g~BC1,BC2,BC3,S1,DH,S2 for
different crossing and selection schemes for developing introgression populations.

Generation

Scheme BC1 BC2 BC3 S1 DH/S2

Basic crossing schemes

BC2DH{C 1|1|360 1|10|36 – – 10|36|1

BC2DH{H 1|1|360 1|20|18 – – 20|18|1

BC3DH{CC 1|1|360 1|10|36 10|1|36 – 10|36|1

BC3DH{HH 1|1|360 1|20|18 20|1|18 – 20|18|1

BC3DH{CH 1|1|360 1|10|36 10|2|18 – 20|18|1

Crossing schemes with high selection intensity

BC3DH{CC0 1|1|720 1|10|72 10|1|72 – 10|72|1

BC3DH{HH0 1|1|720 1|20|36 20|1|36 – 20|36|1

BC3DH{CH0 1|1|720 1|10|72 10|2|36 – 20|36|1

Crossing schemes with selection in the final BC generation

BC2DH{CC 1|1|360 1|10|72 – – 10|36|1

BC2DH{HH 1|1|360 1|20|36 – – 20|18|1

BC2DH{CH 1|1|360 1|10|72 – – 10|(2|18)|1

BC3DH{CCC 1|1|360 1|10|36 10|1|72 – 10|36|1

BC3DH{HHH 1|1|360 1|20|18 20|1|36 – 20|18|1

BC3DH{CHH 1|1|360 1|10|36 10|2|36 – 20|18|1

Crossing schemes with increasing population sizes

BC3DH{HHH� 1|1|180 1|20|18 20|1|27 – 20|18|1

BC3DH{HHS� 1|1|180 1|20|18 20|1|30 – 20|(5|3)|1

Basic crossing schemes

BC2S2{C 1|1|360 1|10|36 – 10|36|1 10|36|1

BC2S2{H 1|1|360 1|20|18 – 20|18|1 20|18|1

BC3S2{CC 1|1|360 1|10|36 10|1|36 10|36|1 10|36|1

BC3S2{HH 1|1|360 1|20|18 20|1|18 20|18|1 20|18|1

BC3S2{CH 1|1|360 1|10|36 10|2|18 20|18|1 20|18|1

Crossing schemes with high selection intensity

BC3S2{CC0 1|1|720 1|10|72 10|1|72 10|72|1 10|72|1

BC3S2{HH0 1|1|720 1|20|36 20|1|36 20|36|1 20|36|1

BC3S2{CH0 1|1|720 1|10|72 10|2|36 20|36|1 20|36|1

Crossing schemes with selection in the final BC generation

BC2S2{CC 1|1|360 1|10|36 – 10|1|36 10|36|1

BC2S2{HH 1|1|360 1|20|18 – 20|1|18 20|18|1

BC2S2{CH 1|1|360 1|10|36 – 10|2|18 20|18|1

BC3S2{CCC 1|1|360 1|10|36 10|1|36 10|1|36 10|36|1

BC3S2{HHH 1|1|360 1|20|18 20|1|18 20|1|18 20|18|1

BC3S2{CHH 1|1|360 1|10|36 10|2|18 20|1|18 20|18|1

Crossing schemes with increasing population sizes

BC3S2{HHH� 1|1|180 1|20|18 20|1|27 20|1|18 20|18|1

BC3S2{HHS� 1|1|180 1|20|18 20|1|23 20|5|4 100|1|4

The total population size in generation g is defined as ntot~npop|nsel|ng . npop : number of sub-populations in generation g{1; nsel : number of individuals selected
from the sub-populations in generation g{1; ng : population size per sub-population in generation g.

doi:10.1371/journal.pone.0092429.t002
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Very high values of Sw1000 segments were observed for the basic

crossing schemes BC2S2{C and BC2S2{H. These crossing

schemes had on average N~1 additional donor segment per IL

compared to the corresponding DH crossing schemes. However,

they were also characterized by incomplete homozygosity

(Figure 3B). The S2 crossing schemes with selection in the final

backcross generation required 360 individuals and HT assays less

then the corresponding DH crossing schemes (Tables 2 and 3).

Nevertheless, the differences between DH and S2 crossing schemes

then diminished. For example, scheme BC3S2{HHH resulted in

similar values for most measures as the corresponding scheme

BC3DH{HHH (Table 3).

The differences in the total donor genome proportion Dt

between selection for complete donor chromosomes and selection

for donor chromosome halves ranged only between 0.1–0.7% for

the same number of backcross generations and generations of

selection. However, substantial differences were observed for the

donor genome proportion of the carrier chromosomes Dc and the

donor genome proportion of the target segments Ds. For selection

for complete donor chromosomes, high values for Dc of up to 48%

were observed. They were clearly visible in the graphical

genotypes for schemes BC2S2{CC and BC3DH{CC
(Figure 3B and C). For selection for donor chromosome halves,

the values for Dc were much lower and did not exceed 42%

(Table 3). Without selection in the final backcross generation,

selection for donor chromosome halves resulted in substantially

reduced values for Ds. For example, the basic crossing schemes

BC3DH{HH and BC3S2{HH resulted in values for Ds of only

94% and 90%. Moreover, the ranges for Ds for these crossing

schemes were substantially greater (Figure 4 for S2 crossing

schemes, for DH data not shown).

The basic crossing schemes BC3DH{CH and BC3S2{CH
which combined selection for complete donor chromosomes and

selection for donor chromosome halves resulted in similarly low

values for Ds of 93.7% and 89.9% as selection for donor

chromosome halves only (Table 3). In addition, the combined

strategies CH and CHH resulted in high values for Dc of up to

45.9%. The low values for Ds and the high values for Dc were

reflected in the graphical genotype of scheme BC3DH{CH, e.g.

in ILs 47 and 54 (Figure 3A).

Doubling population sizes ntot from 360 to 720 individuals in

the crossing schemes with high selection intensity reduced the total

donor genome proportion Dt from 5.0–5.1% to 3.6–3.8%

compared to the basic DH crossing schemes, and from 5.3–

5.7% to 4.3–4.4% compared to the basic S2 crossing schemes

(Table 3). The donor genome proportion of the carrier chromo-

somes Dc was reduced by about 4.2–7.5% for the DH crossing

schemes, and by about 0.9–6.9% for the S2 crossing schemes. The

reduction of the donor genome proportion of the target segments

Ds in combination with increased ranges that was observed with

selection for donor chromosome halves in the basic crossing

schemes was not observed in the crossing schemes with high

selection intensity (Table 3 and Figure 4). Ds was increased by

5.2% for crossing scheme BC3DH{HH0 and by 8.6% for

crossing scheme BC3S2{HH0 compared to the basic crossing

schemes BC3DH{HH and BC3S2{HH. However, these

improvements were only achieved with 2160 HT assays compared

to 1080 HT asssays in the basic crossing schemes (Table 3).

The crossing schemes with selection in the final backcross

generation resulted in values for Dt that were 1.1–1.2% higher for

the DH crossing schemes und 0.6–1.4% higher for the S2 crossing

schemes compared to the crossing schemes with high selection

intensity. The ranges of Ds for selection for donor chromosome

halves were about the same size as for the crossing schemes with

high selection intensity (Figure 4). The average values for Ds were

0.5% lower for scheme BC3DH{HHH and 0.3% lower for

scheme BC3S2{HHH (Table 3). The number of required HT

assays was reduced by 360 for the DH crossing schemes and by

720 for S2 crossing schemes compared to the crossing schemes

with high selection intensity. For the crossing schemes with

selection in the final backcross generation, selection for donor

chromosome halves was the most advantageous selection strategy

with respect to the genetic background and to the target segments.

Most notably, the crossing schemes BC3DH{HHH and

BC3S2{HHH resulted in the lowest values for the donor genome

proportion of the carrier chromosomes Dc. Compared to the most

efficient basic crossing schemes BC2DH{C and BC3DH{CC,

the crossing schemes BC2DH{HH and BC3DH{HHH result-

ed in small improvements of both the genetic background and Ds.

However, in both cases 720 additional HT assays had to be

invested. For the S2 crossing schemes with selection in the final

backcross generation, high values of Dc of 38.1–48.3% were

observed. Large donor chromosome segments on the carrier

chromosomes were also visible in the graphical genotypes for

schemes BC2S2{CC and BC3S2{HHH (Figure 3B and D). The

high values for Dc were associated with a considerable reduction of

the number of disjunct genome segments S of w200 segments for

the BC2 crossing schemes and of 100–200 segments for the BC3

crossing schemes compared to the basic S2 crossing schemes

(Table 3).

The crossing schemes with increasing population sizes reduced

the number of required HT assays for DH crossing schemes by

360 in comparison to the crossing schemes with selection in the

final backcross generation and constant population sizes. The

crossing schemes BC3DH{HHH� and BC3DH{HHS� result-

ed in similar values for most measures as the crossing scheme

BC3DH{HHH. However, Dc and Ds were slightly reduced for

crossing scheme BC3DH{HHS�. Compared to the most efficient

basic crossing scheme BC3DH{CC, crossing scheme

BC3DH{HHH� required 360 additional HT assays, but reduced

Dc by 1.9% and increased Ds by 0.6%. The crossing scheme

BC3S2{HHH� resulted with 38.0% in a much higher Dc than

the crossing scheme BC3S2{HHS� with 30.4%. For crossing

scheme BC3S2{HHS�, the average Ds was only 96.2% and the

range for Ds was higher than for the crossing schemes

BC3S2{HHH� and BC3S2{HHH (Figure 4). However, Dt

and Dc were the lowest for all investigated crossing schemes, with

the exception of the crossing schemes with high selection intensity

and ntot~720 (Table 3). The clear-cut separation of the target

segments is also visible in the graphical genotype (Figure 3F).

Figure 1. Schematic representation of crossing scheme BC3DH{HHH�. Crossing scheme BC3DH{HHH� is characterized by increasing
population sizes in the backcross generations and selection for donor chromosome halves in the final backcross generation. The parts highlighted in
gray represent one branch of the crossing scheme. Sub-populations are indexed by BCg , BCg:c:h and BCg:c:h:s , where g is the respective backcross
generation, c is the respective chromosome, h is the respective chromosome half, s is the respective target segment; sBCg:c:h and sBCg:c:h:s denote
individuals selected for the respective selection regions.
doi:10.1371/journal.pone.0092429.g001
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Discussion

Measures for Characterizing Introgression Populations
Measures for the description of introgression populations should

allow to distinguish between introgression populations of different

structure. Complete donor genome coverage O is desirable in

order to make the complete genetic variation of the donor

available for the breeding process. However, high values for O can

also be caused by donor segments outside the target segments

which could not be removed from the genetic background. O is

therefore only informative if interpreted in relation to measures

which reflect the distribution of the donor genome in the

introgression population. A distinctive description of introgression

populations is possible with the total donor genome proportion Dt,

the donor genome proportion on the carrier chromosomes Dc and

the donor genome proportion of the actual target segments Ds.

A high total donor genome proportion Dt is often associated

with a high number of disjunct genome segments S. S determines

the resolution R, which is an important parameter for the accuracy

of QTL detection. However, if S is greater than the number of

ILs, the problem of overparameterization arises with classical

linear model approaches. This issue has only in part been resolved

by using statistical methods which pre-select a reduced number of

ILs for the linear model [23].

High values for the donor genome proportion on the carrier

chromosomes Dc and the depth of donor genome coverage T
reflect undesired donor segments attached to the actual target

segments. Such large donor segments which overlap between ILs

have been reported to increase the risk of false-positive effects in

QTL detection and reduce the power of QTL detection [24]. This

is mainly a problem if linkage maps with large distances between

adjacent markers of 10 cM or more are employed, because QTLs

located between the last marker of the target segment and the next

marker outside the target segment are incorrectly assigned to the

target segments. With dense marker maps which are now available

this problem should be overcome. However, large donor segments

also increase the risk of linkage drag in the breeding process and

often require further steps of separation [24].

Low values for the donor genome proportion of the target

segments Ds indicate a loss of target segments and potentially

useful alleles. This is a problem that arises with small population

sizes as were investigated in the present study [16]. Even if the

missing target segments are present in the genetic background of

other ILs, this might impair QTL detection and the further use of

the ILs for the breeding progress.

We therefore argue that short non-overlapping target segments

in a clean recipient background are advantageous also with dense

marker maps. For 20 cM target segments and a genomic model of

10 equally sized chromosomes of 200 cM length, this corresponds

to Dt~1%, Dc~10% and Ds~100% in the ideal case. The effort

and time required for developing introgression populations with

such characteristics is beyond the scope of most breeding

programs. With the limited population sizes and number of HT

assays investigated in this study, these ideal values could not be

achieved with two or three backcross generations (Table 3). We

therefore considered those crossing and selection schemes as

efficient which with a given limited resource input resulted in the

highest coverage of target segments Ds in combination with low

overlap of target segments reflected in Dc and T and a low total

donor genome proportion Dt.

With respect to QTL detection, it can be expected that the

optimal values for the suggested measures will depend on the

statistical method and the genetic architecture of the trait. They

could be determined for a given statistical method by including

QTLs of different number and effect in future simulation studies.

We plan further investigations in this area of research.

Crossing Schemes
BC3 crossing schemes had 2–3% lower values for the total

donor genome proportion Dt than BC2 crossing schemes (Table 3),

even if no selection for the genetic background was conducted in

generation BC3. Selection in generation BC2, as was investigated

with the crossing schemes BC2{CC, BC2{HH and BC2{CH,

only resulted in a reduction of Dt of 0.4–1.4% compared to the

basic crossing schemes BC2{C and BC2{H (Table 3). An

explanation for this comparatively small reduction is that the

limiting factor for the reduction of Dt is the number of

recombinations during meiosis. Hence, even though BC2 crossing

schemes have a time advantage, the effect of a third backcross

generation cannot be compensated by investing in additional

marker analyses. We therefore conclude that BC3 crossing

schemes result in introgression populations with an improved

structure, and that the time investment in the additional backcross

generation is worthwhile.

DH crossing schemes were for most measures superior to the

corresponding S2 crossing schemes. The differences were most

pronounced in the number of disjunct genome segments S. Even

though the S2 schemes on average had a slightly higher number of

donor segments per IL N, it seems that the very high values for S
that were observed especially in the BC2{S2 crossing schemes

mainly had to be attributed to incomplete homozygosity

(Figure 3B). It can be expected that introgression populations

with Sw1000 segments in 100 ILs (Table 3) are not suitable for

effective QTL detection. We therefore conclude that the DH

method is essential for short crossing schemes with only two

backcross generations.

A drawback of the DH method is that with current protocols of

in vivo DH induction of maternal haploids, only a very limited

number of viable DH lines can be derived from one backcross

individual. We expect that our assumption of one DH line per

backcross individual is a conservative, but realistic estimate. In

contrast, with selfing, many progenies can be derived from one

selected backcross individual. In the S2 crossing schemes, it is

consequently comparatively cheap and easy to conduct selection in

the final backcross generation. For the DH schemes, selection in

the final backcross generation could only be conducted if

population size in this generation was higher than the desired

number of final DH lines. As a result, the S2 crossing schemes with

selection in the final backcross generation required 360 HT assays

less than the corresponding DH schemes (Table 3). Moreover, the

selected fractions of best backcross individuals were much greater

for the DH than for the S2 crossing schemes (Table 2). This

resulted in a lower selection intensity for both the selection region

of the final backcross generation and the genetic background in

Figure 2. Schematic representation of crossing scheme BC3S2{HHS�. Crossing scheme BC3S2{HHS� is characterized by increasing
population sizes in the backcross generations and selection for target segments in the final backcross generation. The parts highlighted in gray
represent one branch of the crossing scheme. Sub-populations are indexed by BCg , BCg:c:h and BCg:c:h:s, where g is the respective backcross
generation, c is the respective chromosome, h is the respective chromosome half, s is the respective target segment; sBCg:c:h and sBCg:c:h:s denote
individuals selected for the respective selection regions.
doi:10.1371/journal.pone.0092429.g002
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the DH crossing schemes. We therefore suggest that a comparison

of DH and S2 crossing schemes should take the distinctive features

of both methods into account. The evaluation of efficiency should

also be based on the number of required HT assays. Considering

this, S2 crossing schemes which exploit their selection advantages

represent economic and easy-to-handle alternatives to DH

crossing schemes.

Selection Strategies for Small and Constant Population
Sizes

For a given genetic model and crossing scheme, the selection

strategy is the most important factor that influences the structure

of the resulting introgression population. In the following

paragraphs, different aspects such as the length of the selection

Table 3. Measures evaluated for introgression populations resulting from different crossing and selection schemes.

Scheme O T S R N L Dt Dc Ds HT

Basic crossing schemes

BC2DH{C 99.9 8.3 691 2.9 6.2 28.7 8.3 38.9 98.7 720

BC2DH{H 100.0 8.9 751 2.7 6.4 29.2 8.9 37.3 94.1 720

BC3DH{CC 99.2 5.1 457 4.4 3.8 29.8 5.0 35.2 97.8 1080

BC3DH{HH 99.8 5.2 487 4.1 3.9 29.8 5.1 33.3 94.2 1080

BC3DH{CH 99.6 5.2 469 4.3 3.8 30.5 5.1 35.1 93.7 1080

Crossing schemes with high selection intensity

BC3DH{CC0 99.3 3.6 389 5.1 3.0 27.8 3.6 27.7 98.8 2160

BC3DH{HH0 99.9 3.8 406 4.9 3.0 29.7 3.8 29.1 99.4 2160

BC3DH{CH0 99.6 3.9 399 5.0 3.0 30.0 3.8 29.9 99.0 2160

Crossing schemes with selection in the final BC generation

BC2DH{CC 99.9 7.8 676 3.0 5.9 28.7 7.8 41.0 98.9 1440

BC2DH{HH 100.0 8.1 716 2.8 6.0 29.0 8.1 38.9 99.3 1440

BC2DH{CH 99.9 8.5 679 2.9 6.0 30.4 8.5 43.7 98.8 1440

BC3DH{CCC 99.1 4.9 457 4.4 3.7 30.2 4.8 35.8 98.0 1800

BC3DH{HHH 99.9 4.8 464 4.3 3.6 31.0 4.7 33.9 98.9 1800

BC3DH{CHH 99.6 4.8 450 4.4 3.5 31.4 4.7 35.0 98.5 1800

Crossing schemes with increasing population sizes

BC3DH{HHH� 99.9 5.0 492 4.1 3.8 29.7 5.0 33.3 98.4 1440

BC3DH{HHS� 99.8 4.9 484 4.1 3.8 29.4 4.8 32.5 97.5 1440

Basic crossing schemes

BC2S2{C 100.0 11.4 1021 2.0 7.3 26.4 9.3 41.4 97.6 720

BC2S2{H 100.0 11.4 1073 1.9 7.4 25.9 9.3 36.3 90.4 720

BC3S2{CC 99.3 6.9 684 2.9 4.5 27.7 5.7 39.2 97.0 1080

BC3S2{HH 99.9 6.3 702 2.8 4.4 26.3 5.3 33.0 90.3 1080

BC3S2{CH 99.7 6.4 681 2.9 4.3 26.9 5.3 35.0 89.9 1080

Crossing schemes with high selection intensity

BC3S2{CC0 99.5 5.1 585 3.4 3.6 26.6 4.3 32.3 98.8 2160

BC3S2{HH0 99.9 5.1 591 3.4 3.5 27.8 4.4 32.1 98.9 2160

BC3S2{CH0 99.7 5.2 581 3.4 3.5 28.2 4.4 33.4 98.4 2160

Crossing schemes with selection in the final BC generation

BC2S2{CC 99.3 10.5 795 2.5 6.5 27.2 8.3 48.3 98.0 1080

BC2S2{HH 99.9 9.7 785 2.5 6.2 27.0 7.9 42.8 98.8 1080

BC2S2{CH 99.8 9.7 761 2.6 6.1 27.6 7.9 45.9 98.4 1080

BC3S2{CCC 98.3 7.1 588 3.4 4.2 30.5 5.7 44.6 97.5 1440

BC3S2{HHH 99.7 5.9 510 3.9 3.7 31.0 5.0 38.1 98.6 1440

BC3S2{CHH 99.3 6.0 509 3.9 3.7 31.3 5.0 39.5 98.2 1440

Crossing schemes with increasing population sizes

BC3S2{HHH� 99.7 5.8 508 3.9 3.8 30.7 4.9 38.0 98.7 1440

BC3S2{HHS� 99.8 5.1 596 3.4 3.7 26.1 4.3 30.4 96.2 1400

O: donor genome coverage in percent; T : depth of donor genome coverage; S: number of disjunct genome segments; R: resolution; N : number of donor segments per
IL; L: length of donor segments per IL in cM; Dt : total donor genome proportion in percent; Dc : donor genome proportion of carrier chromosomes in percent; Ds : donor
genome proportion of target segments in percent; HT: the required number of HT assays. Measures are arithmetic means over 1,000 replications.
doi:10.1371/journal.pone.0092429.t003
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regions, the number of generations of selection and the required

population sizes for effective selection are discussed.

Selection strategies which pre-select individuals carrying com-

plete donor chromosomes reduce the number of simultaneous

backcross programs to the number of chromosomes [16]. They are

therefore suitable for breeding programs with limited resources.

However, for long chromosomes of 200 cM length, selection for

complete donor chromosomes preserved large donor chromosome

segments on the carrier chromosomes up to line development

(Figure 3C and B). This was reflected in high values for the

proportion of donor genome on the carrier chromosomes Dc of up

to 48% (Table 3). The selection regions for selection in the

backcross generations were therefore reduced to donor chromo-

some halves for selection strategies H, HH and HHH. In all four

series of simulations, selection for donor chromosome halves

resulted in the desired reduction of Dc compared to selection for

complete donor chromosomes (Table 3). Other measures for the

genetic background were approximately equivalent. We therefore

conclude that for crop species with long chromosomes such as

maize, wheat or rapeseed, selection for donor chromosome halves

reduces the length of the donor segments attached to the actual

target segments and the risk of linkage drag.

However, for crossing schemes without selection in the final

backcross generation and constant population sizes of ntot~360
individuals, selection for donor chromosome halves resulted in a

considerable reduction of the donor genome proportion of the

target segments Ds of up to 7%. Moreover, the estimated values

for Ds were less reliable for these crossing schemes, e.g., in schemes

BC2S2{H and BC3S2{HH (Figure 4). These findings have to be

attributed to the small population sizes ng in the sub-populations

and the structure of the selection index i. In generation DH or S2,

population sizes were reduced to ng~18 individuals with selection

for donor chromosome halves (Table 2). Without selection in the

final backcross generation, around 50% of the ILs developed from

the backcross individuals are expected to carry no donor allele at a

given locus within the respective target segment. The probability

to find five ILs with complete donor target segments for the

introgression population was therefore even further reduced. As

the selection index i~tszbs weighed the target segments and the

genetic background equally, a clean genetic background some-

times outweighed a reduced Ds and led to the observed loss of

target segments in these small sub-populations. We therefore

conclude that a sufficiently large population size is the crucial

Figure 3. Graphical genotypes of introgression populations resulting from six different crossing schemes. A: BC3DH{CH; B:
BC2S2{CC; C: BC3DH{CC; D: BC3S2{HHH; E: BC3DH{HHH� ; F: BC3S2{HHS� . The graphical genotypes display the chromosomes 3 to 7 of
ILs 41–70 and are examples from one simulation run. Chromosome segments which stem from the donor are displayed in blue, whereas
chromosome segments which stem from the recipient are displayed in yellow. The graphical genotypes illustrate the differences between the
alternative crossing schemes with respect to their suitability to create introgression populations with complete donor genome coverage and clearly
separated, evenly distributed target donor chromosome segments.
doi:10.1371/journal.pone.0092429.g003

Figure 4. Donor genome proportion of target segments Ds for all investigated S2 crossing schemes. The boxplots represent the
distribution over 1,000 replications of the simulations. The basic crossing schemes BC2S2{H, BC3S2{HH and BC3S2{CH which select for donor
chromosome halves are characterized by higher ranges for Ds.
doi:10.1371/journal.pone.0092429.g004
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factor for the successful application of selection for donor

chromosome halves.

A loss of target segments caused by small population sizes was

also observed for the basic combined selection strategy CH which

selected for complete donor chromosomes in generation BC1 and

for donor chromosome halves in generation BC2. In addition, the

combined strategies CH and CHH resulted in high values for the

donor genome proportion on the carrier chromosomes Dc of up to

45% (Table 3). This can be explained by the efficient selection for

complete donor chromosomes from the comparatively large BC1

population of ng~ntot~360 individuals (Table 2). The pre-

selected complete donor chromosomes are in large part preserved

up to line development. The combination of missing target

segments with large donor chromosome segments on carrier

chromosomes was also reflected in the graphical genotype for

scheme BC3DH{CH, e.g., in IL 47 and 54 (Figure 3A). The

selection strategies CH and CHH therefore combine the

drawbacks of both selection for complete donor chromosomes

and selection for chromosome halves. They are not suitable for

crossing schemes with small and constant population sizes, in

which the population sizes ng in the sub-populations are

subsequently reduced over the backcross generations. We

conclude that for for small breeding programs with a constant

population size of ntot~360 and a limited number of HT assays

for selection, selection strategies which only select for complete

donor chromosomes in the backcross generations should be

employed in both DH and S2 crossing schemes to avoid the loss of

target segments.

Finding more Carriers of Donor Target Segments for Line
Development

To employ selection for donor chromosome halves effectively

for reducing the donor genome proportion of the carrier

chromosomes Dc without losing the target segments, it is necessary

to increase the frequency of carriers of donor target segments for

line development. Using larger population sizes is a straightfor-

ward solution for this problem, which in addition can improve the

overall structure of introgression populations. The crossing

schemes with high selection intensity and double population sizes

of ntot~720 individuals resulted in small improvements of the

total donor genome proportion Dt of about 1–1.5% compared to

the basic crossing schemes (Table 3). The desired increase in the

donor proportion of the target segments Ds was achieved. For

selection for donor chromosome halves, Ds was increased by 5.2–

8.6%. Selection for donor chromosome halves was then even

superior to selection for complete donor chromosomes. Moreover,

the donor genome proportion on the carrier chromosomes Dc was

reduced by up to 7.5%, indicating an improved separation of

target segments. The observed improvements were greater for the

DH than for the S2 crossing schemes. Nevertheless, the

comparatively small improvements of the introgression popula-

tions required 1080 additional HT assays. We therefore conclude

that such large population sizes are only suitable for breeding

programs with access to DH technology, less stringent resource

restrictions and high requirements with respect to the genetic

background. If the requirements concerning the structure of the

introgression population are not that high, it might be more

economic to increase population size only in the final backcross

generation and/or to invest in additional HT assays only in this

generation.

For crossing schemes with selection in the final backcross

generation, the total donor genome proportion Dt was similar to

the values of the basic crossing schemes, and about 1% higher

than for the crossing schemes with higher selection intensity

(Table 3). However, the average values for the donor genome

proportion of the target segments Ds were similar to the crossing

schemes with higher selection intensity (Table 3) and the ranges

were effectively reduced (Figure 4). Moreover, the number of

required HT assays was reduced by 360 for the DH crossing

schemes and by 720 for S2 crossing schemes compared to the

crossing schemes with higher selection intensity (Table 3). The

decision for doubling population sizes requires the same resources

as would be required for generating an additional introgression

population. This large effort seems not to be justified by the

relatively small improvements compared to the basic crossing

schemes. We therefore conclude that selection in the final

backcross generation is the more efficient solution for both DH

and S2 crossing schemes.

Selection for donor chromosome halves was the best strategy

with selection in the final backcross generation for both DH and

S2 crossing schemes (Table 3). However, for the DH schemes, only

small improvements for schemes BC2DH{HH and

BC3DH{HHH were observed compared to the most efficient

basic crossing schemes BC2DH{C and BC3DH{CC (Table 3).

For these small improvements, 720 additional individuals and HT

assays had to be invested. For the S2 schemes, considerable

reductions in S of 174 and 236 segments were observed for

schemes BC2S2{HH and BC3S2{HHH with selection in the

final backcross generation compared to the basic crossing schemes

BC2S2{C and BC2S2{CC. Dt was only slightly reduced.

However, the donor genome proportion on carrier chromosomes

Dc was in general very high for the crossing schemes with selection

in the final backcross generation with 38–48%. This indicates a

fixation of the selection regions of the final backcross generation

(Figure 3B and D). In schemes BC2S2{CC and BC3S2{HH,

complete donor chromosomes and donor chromosome halves still

appear as blocks around the target segments. These blocks lead to

an overlap of donor segments between ILs that reduces the

effective resolution of the introgression population for QTL

detection. The overlap also hampers the further use of the ILs in

the breeding process, as further steps of separation of the target

segments by backcrossing are required. We therefore conclude

that the crossing schemes with selection in the final backcross

generation have the potential to improve the resulting introgres-

sion populations at moderate cost. However, for the DH crossing

schemes, the number of required HT assays and individuals has to

be reduced. For the S2 crossing schemes, the fixation of large

donor chromosome segments has to be avoided. Optimizations of

the respective crossing schemes are presented in the following.

Increasing Population Sizes Over Backcross Generations
With constant population sizes of ntot~360 individuals, the

population size in generation BC1 was large in relation to the

genetic gains that could be achieved by selecting a comparatively

small fraction of 10 or 20 individuals (Table 2). Starting with

smaller population sizes in generation BC1 and gradually

increasing population sizes in the following backcross generations

was therefore an efficient option to reduce the overall number of

required individuals and HT assays for selection in the final

backcross generation. Larger population sizes in generation BC3

also enabled selection for target segments, which was investigated

as an option to avoid the fixation of large donor chromosome

segments especially for the S2 crossing schemes.

The schemes BC3DH{HHH� and BC3DH{HHS� resulted

in similar values for all measures (Table 3). However, Dc and Ds

were slightly lower for scheme BC3DH{HHS�. We therefore

conclude that selection for target segments already in the final

backcross generation is not efficient for DH crossing schemes. In
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comparison to the best but also very expensive scheme

BC3DH{HHH with selection in the final backcross generation,

scheme BC3DH{HHH� can be considered equivalent, but

required 360 individuals and HT assays less. In comparison to the

more economic basic crossing scheme BC3DH{CC, scheme

BC3DH{HHH� improved Dc and Ds and thus the separation of

target segments. This is also visible in the graphical genotype

(Figure 3). The investment in the additional 360 HT assays seems

therefore worthwhile (Table 3).

The scheme BC3S2{HHS� resulted in better values than the

schemes BC3S2{HHH and BC3S2{HHH�. Most notably, it

resulted in a much lower Dc of 30% compared to 38%. Scheme

BC3S2{HHS� resulted in a Ds that was 2.4% lower compared to

schemes BC3S2{HHH and BC3S2{HHH� and the ranges for

Ds were higher (Figure 4). Nevertheless, it resulted in the lowest

values of Dt and Dc and the best separation of target genes of all

investigated DH and S2 crossing schemes with comparable

population sizes. The comparatively high value of S of 596

segments in combination with reduced values for Dt can in this

case be explained by a greatly improved separation of target

segments compared to the other S2 schemes with selection in the

final backcross generation. The improved separation of target

segments is also visible in the graphical genotype (Figure 3F). This

was achieved with 40 HT assays less (Table 3). We therefore

expect that scheme BC3S2{HHS� will result in an improved

power of QTL detection, and recommend selection for target

segments in the final backcross generation for S2 crossing schemes.

Compared to the best but expensive comparable DH crossing

scheme BC3DH{HHH, the S2 crossing scheme BC3S2{HHS�

resulted in similar values and required 400 HT assays less. Overall,

we conclude that increasing population sizes over backcross are

advantageous and economic for both DH and S2 crossing

schemes. Moreover, crossing scheme BC3S2{HHS� can provide

a cheap alternative to comparable DH crossing schemes.

Conclusions
Our study has shown that introgression populations with

complete coverage of the donor genome and reasonably clean

recipient background can be developed with a limited number of

backcross individuals and HT assays. It has provided further

insight on how different crossing and selection schemes influence

the structure of the resulting introgression populations. The

guidelines which have been derived for maize are transferable to

other crop species with similar number and length of chromo-

somes. For crops with different genome size, some considerations

are discussed in the following.

Rapeseed is a crop with a large genome of 19 chromosomes, for

which efficient protocols of microspore culture are available for

DH production. For the large genome of rapeseed, it can be

expected that the values for the total donor genome proportion Dt

will be lower than those observed for the smaller genome of maize.

With the investigated selection index i, the selection pressure on

the carrier chromosomes will be reduced with increasing genome

size and number of chromosomes. It might therefore be an

interesting option for rapeseed to put more weight on the

background markers on the carrier chromosomes to achieve an

efficient reduction of Dc. As with microspore culture many DH

lines can usually be derived from one backcross individual, the

advantages of DH production should be more pronounced than

for maize. However, the optimal selection strategies for DH

crossing schemes in rapeseed should then be similar to those for

selfing in maize.

Sugar beet is a crop with a small genome of 9 chromosomes, for

which the guidelines for selfing should be most relevant. In smaller

genomes, equivalent values of Dt can usually be reached with

smaller population sizes and with fewer backcrosses. However, the

average length of the chromosomes in cM is also much shorter

than in maize. This implies that fewer crossovers occur per

meiosis, and that it might require more individuals and backcross

generations to effectively separate the target segments. The

combined effects of genome size and chromosome length will also

depend on the desired number and length of the target segments.

Simulations can considerably facilitate the planning process for

the development of introgression populations in different crop

species. The derived guidelines can help breeders and geneticists

to enhance the genetic variation of narrow based breeding

populations of crops.
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Chapter 6

General discussion

Relative cost-efficiency of HT and SM assays

Without DNA markers, a backcross program for the introgression of one

target gene was usually completed after six backcross generations (Allard,

1960). Simulations have shown that background selection with DNA mark-

ers can save up to four backcross generations, but at the cost of thousands

of marker data points which could not have been managed with SM assays

(Frisch et al., 1999a). For the introgression of one dominant target gene in

maize, I estimated that approximately 16,000 marker data points are required

to recover 96% of recipient genome in two backcross generations (Herzog &

Frisch, 2011). In a CMS conversion program in rapeseed, 33,000 marker data

points would have been required to recover 96% of recipient genome in two

backcross generations (Herzog & Frisch, 2013). With SNP chips, both appli-

cations of MABC would have required about 150 HT assays per backcross

generation. It can therefore be expected that with the emergence of HT as-

says many applications of MABC which previously were not economic have

now come into reach. Most notably, it is now possible to exploit the time-

saving potential of background selection for fast and complete restoration of

the recipient genotype. The focus of the four studies presented in this thesis

was therefore on short backcross programs with only two or three backcross

generations.



General discussion

Using HT assays for background selection was cheaper than using SM

assays for a wide range of cost ratios of one HT assay compared to one SM

assay (HT:SM), both for gene introgression (Herzog & Frisch, 2011) and

CMS conversion of seed parent lines (Herzog & Frisch, 2013). The relative

costs of using HT assays instead of SM assays were comparable for both

applications for genomes of comparable size. HT assays reduced the cost of

marker analysis by 10-55% for cost ratios of HT:SM of 50:1-100:1 and marker

densities of one marker every 10 cM (Herzog & Frisch, 2011; Herzog & Frisch,

2013). SM assays were only cheaper than HT assays for high cost ratios of

HT:SM of 100:1-200:1 in combination with low marker densities, and in crops

with small genomes such as rye.

The relative costs of HT assays were lowest in short two-generation back-

cross programs with high marker densities of one marker every 5 cM, which

aimed at the recovery of high levels of recipient genome. For these scenar-

ios, SM assays were always more expensive. For example, using HT assays

for recovering 98% of recipient genome in a two-generation CMS conversion

program in sunflower reduced the cost of marker analysis by 44-94% for cost

ratios of 100:1-10:1 (Herzog & Frisch, 2013). In three-generation backcross

programs, the relative cost-efficiency of HT assays decreased compared to

two-generation programs (Herzog & Frisch, 2011). This has to be attributed

to increasing marker fixation in advanced backcross generations. The ef-

fects of marker fixation for the optimum breeding designs in MABC will be

discussed in detail in the following chapters.

HT assays have the potential to increase the relative efficiency of back-

ground selection for many applications of MABC. It can be expected that

this effect will be even more pronounced in the future, as the costs of HT

marker analysis are further decreasing. The biggest advantage of HT assays

over SM assays is that they allow to run highly intense, short backcross pro-

grams with many background markers also in crops with large genomes such

as sunflower, rapeseed or wheat.
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Optimal breeding designs for HT assays

In older simulation studies based on SM assays, the most efficient selection

strategies were those which reached a given level of recipient genome with

the fewest marker data points (Frisch et al., 1999a; Frisch & Melchinger,

2001c; Falke et al., 2009; Prigge et al., 2009). With HT assays such as SNP

chips, it is possible to genotype all markers on the linkage map in one assay.

The efficiency criterion for these HT assays is therefore not the number of

required marker data points, but the number of individuals subjected to

background selection (Herzog & Frisch, 2011; Herzog & Frisch, 2013). The

most important difference between SM and HT assays is that with SM assays

only those markers are analyzed in advanced backcross generations which are

not yet fixed for the recipient alleles. With HT assays, all markers included

in one assay have to be analyzed in every generation as long as some markers

are segregating. These different characteristics of SM and HT assays have

implications on several aspects of the optimal breeding designs.

Number of backcross generations

For the recovery of recipient genome in MABC, there is a trade-off between

the number of backcross generations and the required resource input. A de-

sired level of recipient genome can usually be recovered with fewer markers

and considerably smaller population sizes if an additional backcross genera-

tion is taken into account (Herzog & Frisch, 2011; Herzog & Frisch, 2013). A

central question for MABC therefore is ’Speed at any cost?’ (Stam, 2003). For

a CMS conversion program in sugarbeet, it was possible to recover 99% re-

cipient genome in three backcross generations with 1,400 marker data points

(Herzog & Frisch, 2013). If the same level of recipient genome was to be

recovered in two backcross generations, the required number of marker data

points was increased ten-fold to 14,000. It therefore seems sensible for SM

assays to conduct an additional backcross in order to reduce the financial and
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logistic efforts of marker analysis. This principle held also true for HT as-

says, but the reduction in the number of required assays with an additional

backcross was smaller than with SM assays. The increase in the required

number of assays would only have been fourfold, and the backcross program

could have been completed with 240 HT assays. As in plant breeding the ac-

celerated release of superior cultivars often translates into economic benefits

(Morris et al., 2003), it can be expected that the investment in additional HT

assays will pay off. A reduction of the number of backcross generations at

the expense of more marker analyses is therefore advantageous if HT assays

are used.

Variations in population size

Due to increasing marker fixation in advanced backcross generations, the

optimum backcross designs for SM assays were characterized by increas-

ing marker densities and population sizes (Frisch et al., 1999a; Frisch &

Melchinger, 2001c; Prigge et al., 2009). With the less flexible HT assays,

it is difficult or impossible to add markers once an assay has been devel-

oped. For constant marker densities, I observed a limit of recipient genome

recovery which could not be exceeded by further increasing population sizes

(Herzog & Frisch, 2013; Herzog et al., 2013). This limit depended on genome

size and the degree of marker fixation. In general, it is reached with smaller

population sizes in crops with smaller genomes, and in advanced backcross

generations when the number of segregating marker loci and the variance

of recipient genome are decreasing. Increasing population size beyond the

limit of recipient genome recovery is not economic. Population size should

therefore be optimized for every generation of a backcross program. The op-

timum breeding designs for HT assays are characterized by constant marker

densities and decreasing population sizes over backcross generations.
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Marker density

With SNP markers, densely covered linkage maps with marker densities of

one marker every 5 cM or higher can now be established and genotyped at

reasonable costs. However, for most genetic models, marker densities higher

than one marker every 10 cM resulted in only marginal improvements of

recipient genome recovery (Herzog & Frisch, 2011; Herzog & Frisch, 2013).

Only if recipient genome levels of 98-99% were to be achieved in two backcross

generations for the large genomes of sunflower and rapeseed, a marker density

of one marker every 5 cM was warranted. Beyond this marker density, no

further gains in recipient genome recovery were observed for any investigated

genetic model. An explanation is that the limiting factor for the recovery

of the recipient genome is not the precise estimation of the proportion of

recipient genome. Rather, it is the limited number of crossovers per meiosis

in short backcross programs with only two to three generations (Frisch et al.,

1999a).

However, with marker types that were less abundant in the genome such

as AFLPs and SSRs, it was often not possible to evenly cover the genome

with polymorphic markers. The effect of the resulting gaps in marker spacing

has been studied in simulation studies either by including a random marker

distribution, or by using published linkage maps with incomplete marker

coverage (Hospital et al., 1992; Frisch et al., 1999a; van Berloo et al., 2001;

Herzog & Frisch, 2011). A random marker distribution results in reduced

levels of recipient genome even if the number of markers corresponds to an

average marker density of one marker every 5 cM (Herzog & Frisch, 2011).

The reason is that in uncovered chromosome regions, the content of recipient

genome cannot be estimated precisely (Frisch & Melchinger, 2005). The

main advantage of SNPs and HT assays for MABC is therefore not primarily

that linkage maps with very high marker densities of up to one marker per

1 cM can be generated. Rather, the abundance of SNPs greatly improves the

efficiency of MABC by guaranteeing that maps with sufficient density and

even marker spacing can be generated.
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Selection strategies combining SM and HT as-

says

Pre-selection on carrier chromosomes

The number of individuals to be genotyped has consistently been identi-

fied in simulation studies as the most important factor for the efficiency of

MABC (Hospital & Charcosset, 1997; Frisch et al., 1999a; van Berloo et al.,

2001; Ribaut et al., 2002). In gene introgression studies based on SM as-

says, the most efficient breeding designs employed selection strategies which

pre-selected a subset of individuals for a few markers located on the chromo-

somes carrying the target genes (Frisch et al., 1999a; Frisch & Melchinger,

2001c; Prigge et al., 2009). Only this smaller subset of the original backcross

population was then subjected to background selection, which resulted in a

considerable reduction of the required number of marker data points of up

to 75%.

This concept is also valid for HT assays, but only cost-efficient if the

pre-selection steps can be conducted with SM assays. In gene introgression

programs, preselecting carriers of the target gene in MABC in a two-stage se-

lection strategy will per expectation already reduce the number of HT assays

for background selection by 50%. A further reduction in the required num-

ber of HT assays can be achieved if an additional selection step at markers

flanking the target gene is conducted before background selection.

With such a three-stage selection strategy, the risk of linkage drag is

decreased, as tightly linked flanking markers will result in a reduction of

the donor chromosome segment attached to the target gene. This donor

segment is responsible for the major part of donor genome remaining in the

recipient background in gene introgression programs and can still be quite

large even in advanced backcross generations (Stam & Zeven, 1981; Young &

Tanksley, 1989). While selection at very tightly linked flanking markers will
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result in short donor chromosome segments, it can also lead to a reduction

of recipient genome recovery, especially in short backcross programs with

only two or three generations. The reason is that a high selection intensity

on the carrier chromosome can lead to a reduced selection intensity on the

non-carrier chromosomes which form the major part of the genome (Hospital

et al., 1992; Frisch et al., 1999a; Frisch & Melchinger, 2001a). Three-stage

selection therefore entails further design decisions.

In order to reduce selection intensity on the carrier chromosomes, selection

at flanking markers can be conducted in two steps (Young & Tanksley, 1989;

Hospital & Charcosset, 1997). In the first generation of three-stage selection,

all individuals are pre-selected with recombination between the target gene

and at least one flanking marker. In the second generation, individuals with

recombination between the target genes and both flanking markers are pre-

selected. This approach reduces the number of HT assays, but increases the

number of required SM assays and requires more logistic effort in the lab than

conducting three-stage selection only in one backcross generation (Herzog &

Frisch, 2011).

If three-stage selection was only conducted in one backcross generation,

selection in generation BC1 led to a greater reduction in the number of re-

quired HT assays than three-stage selection in generation BC3 (Herzog &

Frisch, 2011). This can be explained by the fact that more individuals with

recombination between the target gene and both flanking markers were found

for background selection in advanced backcross generations. As the recov-

ered levels of recipient genome were approximately equivalent, three-stage

selection in generation BC1 was the more cost-efficient strategy.

The optimal positioning of flanking markers is crucial for efficient con-

trol of the donor chromosome segment attached to the target gene (Hospi-

tal, 2001; Frisch & Melchinger, 2001a). In general, I considered the small-

est distance of flanking markers which had no negative effect on recipient

genome recovery as optimal (Herzog & Frisch, 2011). For constant popula-

tion sizes ranging between 40 and 200 individuals, this was achieved with
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flanking marker distances of 20-10 cM. Three-stage selection in generation

BC1 with these optimum distances of flanking markers reduced the overall

cost of marker analysis by approximately 20% compared to two-stage selec-

tion, irrespective of population size and cost ratio of HT:SM.

A lower marker distance of 5 cM resulted in a reduced recovery of recipient

genome compared to two-stage selection. If a reduction of the donor chro-

mosome segment attached to the target gene has high priority, for example

because of alleles with negative effect in close proximity, more proximal flank-

ing markers can be chosen in advanced generations (Hospital et al., 1992).

The same effect can be achieved by increasing population size in the gen-

eration in which three-stage selection is conducted. Larger population sizes

increase the probability to find a backcross individual with recombination

between both flanking markers and the target gene plus a high proportion

of recipient genome (Frisch et al., 1999b). Doubling population size in the

generation of three-stage selection shifted the effort in the lab from HT to

SM assays and reduced the cost of marker analysis for recovering 99% recip-

ient genome by approximately 20-25% for cost ratios of HT:SM of 200:1-20:1

(Herzog & Frisch, 2011).

It can be concluded that combining SM assays for pre-selection at flanking

markers with HT assays for genome-wide background selection is an elegant

strategy to efficiently reduce the risk of linkage drag and handle large popu-

lations at low cost.

Combining HT and SM assays for background selection

on non-carrier chromosmes

For many applications of MABC, a small set of reasonably positioned markers

is sufficient for efficient background selection in early backcross generations

(Hospital et al., 1992; Visscher et al., 1996; Herzog & Frisch, 2013). Recently,

it has been suggested that an efficient option to reduce the required number
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of the still costly HT assays would be to pre-select a certain set of individuals

with a few SM assays at background marker loci. Only this subset is then

subjected to background selection with HT assays (Septiningsih et al., 2013).

This option has not yet been investigated in simulation studies, but seems

promising for CMS conversion without introgression of target genes.

HT assays such as SNP chips have the advantage of very high through-

put, but are only cost-effective if the major proportion of markers is not

yet fixed for the recipient alleles. Simulations have shown that background

markers get rapidly fixed at the high selection intensities which are typical

for backcross programs, the fixed markers then becoming useless (Hospital

et al., 1992). In the studies on gene introgression and CMS conversion, over

90% of the background markers got fixed in the first two backcross genera-

tions (Herzog & Frisch, 2011; Herzog & Frisch, 2013). From generation BC4

on, selection on non-carrier chromosomes in gene introgression programs is

no longer efficient, as 99% of background markers outside the carrier chro-

mosome are fixed (Hospital & Charcosset, 1997; Herzog et al., 2013). The

few remaining segregating marker loci can be genotyped with SM assays at

low cost. It was therefore suggestive to study selection strategies in which

HT assays are used for genome-wide background selection in early backcross

generations, and SM assays in advanced backcross generations.

A prerequisite for this combination of HT and SM assays is that a flexible

marker system exists which can be genotyped with both types of assay. KASP

is a flexible assay which allows cost-effective genotyping also of small sets of

SNPs (Chen et al., 2010). Furthermore, it can be used in combination with

HT assays such as SNP chips, given that a set of versatile SNP markers is

available which can be converted from HT assays to KASP. Such a marker

set has recently been developed for maize (Mammadov et al., 2012).

Using HT assays for background selection in generation BC1 and SM as-

says in the following backcross generations reduced the total cost of marker

analysis compared to using only HT assays. The cost reduction ranged
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from 1-44% in two-generation backcross programs and from 7-61% in three-

generation backcross programs for cost ratios of HT:SM of 50:1-200:1 (Herzog

& Frisch, 2011). If HT assays were used in generations BC1 and BC2 and

SM assays in generation BC3, the costs were reduced by 18-33%, depending

on the genome size of the studied crop species (Herzog & Frisch, 2013).

It can be concluded that combinations of HT and SM assays have the

potential to considerably reduce the cost of marker analysis. HT assays are

suitable for short, intense backcross programs. SM assays are efficient for

pre-selection at a few marker loci, and in advanced backcross generations

when the major proportion of marker loci is already fixed for the recipient

alleles.

SSR multiplexes: Selection strategies for an

intermediate level of throughput

Beside SNP chips, which allow genotyping ten-thousands of markers in one

assay, different kinds of HT assays with a lower level of throughput are also

available (Appleby et al., 2009). An example is multiplex PCR for SSR mark-

ers, which has been suggested to considerably reduce the cost of PCR-related

reagents (Merdinoglu et al., 2005). With chromosome-wise SSR multiplexes

for background selection, I investigated an example from practical resistance

breeding in grapevine in cooperation with the Julius Kühn Institute (JKI),

Institute for Grapevine Breeding Geilweilerhof (Herzog et al., 2013). One

multiplex comprised all markers located on one chromosome. This resulted

in multiplexes of 5 to 11 loci, depending on the chromosome length.

In order to reduce the number of multiplexes, a selection strategy was

developed which pre-selected backcross individuals with the highest num-

ber of chromosomes completely fixed for the recipient alleles. This selection

strategy reduced the number of required multiplexes by about 7%, but only
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in backcross programs with four or more backcross generations. For shorter

backcross programs, it was more advantageous to select for the highest pro-

portion of recipient alleles at all background marker loci. An explanation

is that in early backcross generations the number of individuals with a high

number of chromosomes completely fixed for the recipient alleles was very

low. Only this very small subset was evaluated at all background markers,

which resulted in overall losses of recipient genome.

Frisch et al. (Frisch et al., 1999a; Frisch & Melchinger, 2001c) observed

in accordance with my results that selection for the highest proportion of

recipient alleles at all background marker loci leads to the highest recov-

ery of recipient genome in two-generation backcross programs. In advanced

backcross generations, the differences between different selection strategies

diminish considerably, as early gains or losses in recipient genome are bal-

anced by the higher carry-over rate of recipient genome recovery in advanced

backcross generations.

The general conclusion that can be drawn from investigating marker sys-

tems with different levels of throughput is that the optimal selection strate-

gies and breeding designs are determined by the number of markers included

in one assay, their assortment with respect to genome location, and the du-

ration of the backcross program.

Selection indices for HT assays combining fore-

ground and background selection

Combinations of marker assays with different levels of throughput in one

backcross program require additional effort in the lab and may not be possible

in every breeding program. In these cases, HT assays can be used to analyze

both foreground and background markers in one assay. This does not only

increase the speed and convenience of marker analysis, but allows also more
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flexible selection decisions with respect to the donor genome content on the

carrier chromosomes in introgression programs.

With pre-selection at flanking markers, the length of the donor chromo-

some segment attached to the target gene can only be evaluated with respect

to the distance of the flanking markers. High marker densities in proximity

to the target gene allow more differentiated selection decisions (van Berloo

et al., 2001). It is then possible to preselect the individuals with the shortest

donor segments attached to the target region. Moreover, the selection pres-

sure against the donor genome on the carrier chromosomes of target genes

decreases with increasing genome size. Hence, it might be advantageous for

crops with large genomes to put higher weight on the markers on the car-

rier chromosomes. This approach allows to discriminate between individuals

with identical background marker scores in order to select individuals with

better carrier chromosomes (Hospital & Charcosset, 1997). The described

increase in flexibility can be achieved by combining foreground and back-

ground selection with HT assays in one selection index. I investigated this in

the context of the development of maize introgression populations (Herzog

et al., 2014). The development of introgression populations had previously

only been investigated with SM assays and pre-selection strategies in several

steps (Falke et al., 2009).

The selection index in my study was defined as the sum of the donor

genome proportion in a selection region plus the recipient genome propor-

tion in the rest of the genome outside the selection region. This index was

used to develop introgression populations of 100 introgression lines with tar-

get regions of 20 cM length in a genome of 2000 cM length with population

sizes of 360 individuals per backcross generation (Herzog et al., 2014). Af-

ter generation BC1, in which 360 backcross individuals were generated, the

population size was divided into sub-populations of equal size, depending on

the length of the selection region. Selection regions could be complete donor

chromosomes, chromosome halves or target segments. Selection for complete

donor chromosomes from a large BC1 population of 360 individuals resulted
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in a high donor genome proportion on the carrier chromosomes which was

often preserved in the final introgression lines. Selection of introgression lines

carrying the 20 cM target segments from sub-populations of 18 individuals

with the selection index, on the other hand, often resulted in a complete loss

of the target segments.

An explanation for the efficiency of comparatively large selection regions

is that very stringent selection criteria in early backcross generations usu-

ally also require high population sizes (van Berloo et al., 2001). Equivalent

recipient genome levels can usually be recovered with much smaller popula-

tion sizes if selection intensity is not too high in early backcross generations.

Theoretical solutions for the minimum population sizes required to find with

high probability an individual with the desired genotype in the target region

are available (Frisch et al., 1999b). However, to combine this with the re-

quirements for a high recipient genome proportion in the rest of the genome

is not straightforward with mathematical models. The optimal length of the

selection region should therefore be determined with simulations for every

generation of the crossing scheme. For the large chromosomes of maize, the

best strategy was selection for donor chromosome halves during the backcross

generations and selection for the target segments at the stage of introgression

lines (Herzog et al., 2014). The most important criterion for the efficiency of

a selection index for HT assays was to find a balance between the length of

the selection region and population size.

Conclusions

In this thesis, novel strategies for MABC with HT assays have been de-

veloped. The results of my simulations suggest that HT assays have the

potential to increase the efficiency of MABC both with respect to the costs

of marker analysis and selection gain per unit time. HT assays were cheaper

than SM assays for genome-wide background selection for a wide range of

cost ratios of HT:SM and genetic crop models.
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The optimum breeding designs for HT assays differed from those for SM

assays with respect to marker density, selection strategy and population size

due to the different characteristics of both types of assay. In contrast to

SM assays, the number of required marker data points is only of secondary

importance for HT assays. Rather, the most important cost factor for HT

assays is the number of individuals to be genotyped.

Depending on the level of throughput, the optimum breeding designs for

HT assays were determined by the number of markers included in one assay,

their assortment with respect to genome location, and the duration of the

desired backcross program. HT assays with very high throughput, such as

SNP chips, were most efficient in short, highly intense backcross programs

with only two or three backcross generations.

Nevertheless, SM assays were more cost-efficient whenever the analysis of

only a few marker loci was required. This was the case in foreground selection

for target genes, selection at flanking markers for the control of linkage drag,

or for background selection in advanced backcross generations when only

very few background markers remained segregating. Combining SM and HT

assays for different stages of a MABC program consequently further reduced

the cost of marker analysis compared to using only HT assays.

Using HT assays for foreground and background selection in one combined

index allowed more differentiated selection decisions with respect to the donor

genome proportion on carrier chromosomes. This was especially useful for the

development of introgression populations with a limited number of backcross

individuals and HT assays.
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Summary

Marker-assisted backcrossing (MABC) is the most successful application of

DNA markers in plant breeding. While foreground selection for a few loci

of interest with single-marker (SM) assays has become a routine application

in breeding programs, the large-scale implementation of genome-wide back-

ground selection for the recovery of the genotype of the recipient has lagged

behind expectations due to the high costs of marker analysis. It has been

hypothesized that this problem will be overcome by high-throughput (HT)

marker assays which enable genotyping a high number of marker loci at com-

paratively low cost per individual marker data point. The optimal backcross

designs for HT assays have previously not been investigated. The objective

of the present study was therefore the development of novel selection strate-

gies for the efficient use of HT assays in different applications of MABC. For

this purpose, computer simulations were employed to investigate backcross

programs for different crops.

Gene introgression for maize and conversion of seed parent lines to cy-

toplasmic male sterility (CMS) for rye, sugarbeet, sunflower and rapeseed

were simulated with HT and SM assays. Using HT assays for background

selection was cheaper than using SM assays for a wide range of cost ratios

of one HT assay compared to one SM assay, both for gene introgression and

CMS conversion of seed parent lines. The cost-efficiency of HT assays was
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greatest in short, highly intense backcross programs, while it decreased with

increasing marker fixation in advanced backcross generations.

With SM assays, only those background markers have to be analyzed

in advanced backcross generations which have not been fixed for the recip-

ient alleles in previous backcross generations. Due to the increasing degree

of marker fixation in advanced backcross generations, the optimal breed-

ing designs for SM assays were characterized by increasing marker densities

and population sizes. With HT assays, all markers in the assay have to be

analyzed in every analysis step as long as some marker loci remain segre-

gating. Moreover, it is difficult to add additional markers once an assay has

been developed. The optimal breeding designs for HT assays in the present

study were consequently characterized by few backcross generations, constant

marker densities and decreasing population sizes.

A three-stage strategy which employed SM markers for selection for the

target gene and at flanking markers, and HT assays for genome-wide back-

ground selection reduced the overall cost of marker analysis by about 20%.

This strategy also enabled the handling of large population sizes for efficient

reduction of the linkage drag by tightly linked flanking markers at low cost.

Conducting background selection with HT assays in early backcross gener-

ations and with SM assays in advanced backcross generations also reduced

the total cost of marker analysis. This was most pronounced when HT as-

says were the most expensive. Selection strategies which combine SM and

HT assays at different stages of a backcross program are therefore an elegant

way to further reduce the cost of MABC.

A gene introgression program in grapevine was investigated with HT as-

says with an intermediate level of throughput. The optimal selection strate-

gies for chromosome-wise SSR multiplexes depended on the duration of the

backcross program. Pre-selection of individuals with complete recipient chro-

mosomes reduced the costs of marker analysis by 7% in backcross programs

with four or more backcross generations, but not in shorter backcross pro-

grams. The optimal selection strategies for a given level of throughput are
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consequently determined by the assortment of markers in the assay and the

duration of the backcross program.

Combinations of SM and HT assays in one backcross program increase

the effort in the laboratory and may not be possible in every breeding pro-

gram. In these cases, HT assays can be used to analyze both foreground

and background markers in one assay. This was investigated with a selection

index for the development of introgression populations in maize. The index

was defined as the sum of the donor genome proportion in a selection region

plus the recipient genome proportion in the rest of the genome outside the

selection region. The index allowed more differentiated selection decisions

with respect to the ratio of the donor genome proportion on the carrier chro-

mosomes and the recipient genome on non-carrier chromosomes. The most

important criterion for the efficiency of this selection index for HT assays was

to find a balance between the length of the selection region and population

size.

It can be concluded that HT assays have the potential to increase the

relative efficiency of background selection for many applications of MABC,

as was demonstrated for gene introgression in maize and grapevine, CMS

conversion in rye, sugarbeet, sunflower and rapeseed, and the development

of introgression populations in maize.
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Zusammenfassung

Markergestützte Rückkreuzung ist bislang die erfolgreichste Anwendung von

DNA-Markern in der Pflanzenzüchtung. Während Vordergrundselektion für

einige wenige Zielgene mit Einzelmarkeranalysen mittlerweile routinemäßig

in Zuchtprogrammen eingesetzt wird, ist die Anwendung der genomweiten

Hintergrundselektion zur Wiederherstellung des Genotyps des Rezipienten

lange Zeit hinter den Erwartungen zurückgeblieben. Die Ursachen lagen in

den hohen Kosten und dem hohen Aufwand begründet, der für die Viel-

zahl der benötigten Einzelmarkeranalysen erforderlich ist. Eine Lösung für

dieses Problem stellen Hochdurchsatzanalysemethoden wie SNP-Chips dar.

Mit diesen Hochdurchsatzmarkeranalysen kann eine hohe Anzahl von Mar-

kern zu vergleichsweise geringen Kosten pro Markerdatenpunkt genotypisiert

werden. Die optimalen Selektionsstrategien für Hochdurchsatzmarkeranaly-

sen wurden bislang noch nicht untersucht. Das Ziel der vorliegenden Arbeit

war es daher, neue Strategien für den effizienten Einsatz von Hochdurch-

satzmarkeranalysen in verschiedenen Anwendungen der markergestützten

Rückkreuzung zu entwickeln. Zu diesem Zweck wurden Computersimulatio-

nen markergestützter Rückkreuzungsprogramme in verschiedenen Kulturar-

ten durchgeführt.

Genintrogression bei Mais sowie die Einlagerung cytoplasmatisch-

männlicher Sterilität (CMS) bei Roggen, Zuckerrübe, Sonnenblume und
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Raps wurden sowohl mit Hochdurchsatz- als auch mit Einzelmarkerana-

lysen simuliert. Hochdurchsatzmarkeranalysen reduzierten die Kosten der

Hintergrundselektion für eine große Bandbreite an Kostenverhältnissen von

Hochdurchsatz- zu Einzelmarkeranalysen. Dies galt sowohl für Genintrogres-

sion als auch für die Einlagerung von CMS. Die Kosteneffizienz war am

größten in kurzen Rückkreuzungsprogrammen mit dem Ziel hohen Selek-

tionsgewinns in nur zwei Rückkreuzungsgenerationen, nahm jedoch mit zu-

nehmender Markerfixierung in fortgeschrittenen Rückkreuzungsgenerationen

ab.

Bei der Verwendung von Einzelmarkeranalysen werden in fortgeschritte-

nen Rückkreuzungsgenerationen nur die Marker analysiert, die noch nicht für

das Rezipientenallel fixiert sind. Effiziente Züchtungsschemata für Einzelmar-

keranalysen sind daher durch ansteigende Markerdichten und Populations-

größen gekennzeichnet. Bei der Verwendung von Hochdurchsatzmarkeranaly-

sen wird der komplette Markersatz in jedem Analyseschritt analysiert, solan-

ge noch Marker segregieren. Darüber hinaus ist das Hinzufügen neuer Mar-

ker zu einem einmal entwickelten Hochdurchsatzchip nicht einfach umsetz-

bar. Optimale Züchtungsschemata für Hochdurchsatzmarkeranalysen waren

in der vorliegenden Arbeit daher durch wenige Rückkreuzungsgenerationen,

konstante Markerdichte und abnehmende Populationsgrößen charakterisiert.

Eine dreistufige Selektionstrategie, die Einzelmarkeranalysen für die Se-

lektion am Ziellocus und an flankierenden Markern nutzte, und Hochdurch-

satzmarkeranalysen für die genomweite Hintergrundselektion, senkte die Ge-

samtkosten für die Genotypisierung um etwa 20%. Diese Selektionsstrate-

gie ermöglichte auch den Einsatz großer Populationen zur Reduktion des

Donorchromosomensegments am Zielgen durch eng gekoppelte flankierende

Marker zu niedrigen Kosten. Der Einsatz von Hochdurchsatzmarkeranalysen

für die Hintergrundselektion in frühen Rückkreuzungsgenerationen und von

Einzelmarkeranalysen in fortgeschrittenen Rückkreuzungsgenerationen redu-

zierte ebenfalls die Kosten für die Genotypisierung. Selektionsstrategien, die

den Einsatz von Einzel- und Hochdurchsatzmarkeranalysen in verschiedenen
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Phasen eines Rückkreuzungsprogramms kombinieren, sind daher eine ele-

gante Möglichkeit, die Kosten der markergestützten Rückkreuzung weiter zu

reduzieren.

Ein Genintrogressionsprogramm bei Reben mit einem Markeranalysesys-

tem mit mittlerem Durchsatz wurde ebenfalls untersucht. Die optimalen Se-

lektionsstrategien für chromosomenweise SSR-Multiplexe wurden durch die

Dauer des Rückkreuzungsprogramms bestimmt. Die Vorselektion von Indi-

viduen mit kompletten Rezipientenchromosomen reduzierte die Kosten der

Markeranalyse um etwa 7% in Rückkreuzungsprogrammen mit vier oder

mehr Generationen, nicht aber in kürzeren Rückkreuzungsprogrammen. Die

optimalen Selektionsstrategien für ein bestimmtes Durchsatzniveau werden

folglich durch die Anordnung der Marker im Assay sowie durch die Dauer

des Rückkreuzungsprogramms bestimmt.

Kombinationen von Einzel- und Hochdurchsatzmarkeranalysen in einem

Rückkreuzungsprogramm erhöhen den logistischen Aufwand im Labor und

sind nicht immer umsetzbar. In diesen Fällen können sowohl Vordergrund-

als auch Hintergrundselektion mit einem Hochdurchsatzchip durchgeführt

werden. Dies wurde anhand eines Selektionsindexes für die Entwicklung

von Introgressionspopulationen bei Mais untersucht. Der Index war als die

Summe des Donorgenomanteils innerhalb einer bestimmten Selektionsregi-

on und des Rezipientengenomanteils im Rest des Genoms definiert. Der In-

dex ermöglichte differenziertere Selektionsentscheidungen in Hinblick auf das

Verhältnis von Donorgenomanteil auf den Trägerchromosomen der Zielseg-

mente und Rezipientengenomanteil im Rest des Genoms. Das wichtigste Kri-

terium für die Effizienz des Selektionsindexes war das Finden einer Balance

zwischen der Länge der Selektionsregion und der Populationsgröße.

Wie an den Beispielen der Genintrogression bei Mais und Reben, der

CMS-Einlagerung bei Roggen, Zuckerrübe, Sonnenblume und Raps sowie der

Entwicklung von Introgressionspopulationen bei Mais gezeigt wurde, können

Hochdurchsatzmarkeranalysen die Effizienz vieler Anwendungen der marker-

gestützten Rückkreuzung im Vergleich zu Einzelmarkeranalysen erhöhen.
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Amaizing team: Priv.-Doz. Dr. Christin Falke, Dr. Thomas Presterl, Dr.

Daniela Scheuermann and Dr. Milena Ouzunova.

Many thanks to my office mate Nina Hofheinz for being excellent company

on travels around the world and suffering and celebrating with me through

the ages.

Many thanks to my colleague Carola Zenke-Philippi for proof-reading.

Thanks to Dr. Gabriel Schachtel for awakening my interest in biometry.

Thanks to Mrs. Renate Schmidt for being of great help in organisational

matters.

Last but not least, I would like to thank all my colleagues, family and friends

for their encouragement and support.



Eidesstattliche Erklärung

Ich erkläre:
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