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Table 1 Abbreviations 

[m/v] mass per volume 

[v/v] volume per volume 

7-AAD 7-Aminoactinomycin 

A549  human adenocarcinoma cell line 

A6 cells Xenopus laevis kidney cell line 

AD/DA analog-digital / digital-analog 

AECC American-European Consensus Conference on ARDS 

AMPK adenosine-monophosphate-activated kinase 

AQP5 aquaporin 5 

ARDS acute respiratory distress syndrome 

ATI / ATII alveolar epithelial cell type I and II 

CaMKK-β Ca2+-calmodulin dependent kinase kinase β 

CD90 cluster of differentiation 90 

cDNA complimentary deoxyribonucleic acid 

CFTR cystic fibrosis transmembrane conductance regulator 

CHO chinese hamster ovary cell line 

COS-7 fibroblast-like cell line derived from monkey kidney tissue 

Deg Degenerin 

DNA deoxyribonucleic acid 

E-cadherin epithelial cadherin 

http://en.wikipedia.org/wiki/Fibroblast
http://en.wikipedia.org/wiki/Cell_line
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ECL enhanced chemiluminescence 

EDTA ethylenediaminetetraacetic acid 

ENaC epithelial Na+- channels 

ER endoplasmic reticulum 

ERK extracellular signal-regulated kinase 

et al. et alii 

FACS fluorescence-activated cell sorting 

FBS fetal bovine serum 

FIO2 fracture of inspired oxygen 

GFP green fluorescent protein 

GRE glucocorticoid responsive element 

h hour 

H441 cells human lung adenocarcinoma epithelial cell line 

HA heme aggluttinin 

HEK-293 human embryonic kidney cell line 293 

HPRT hypoxanthin-phosphoribosyl-transferase 

HSC highly selective channels 

IAmi amiloride-sensitive current 

IFN-γ interferon-gamma 

IgG immunoglobulin G 

IKKβ inhibitor of nuclear factor kappa-B kinase subunit β 
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IL-1β interleukin-1β 

INa electrical current produced by transepithelial Na+-transport 

Isc electrical short circuit current 

IU international unit 

JNK c-Jun N-terminal kinase 

kDa kilo Dalton 

LB Luria broth 

LDH lactate dehydrogenase 

LPS lipopolysaccharide 

LSC low selective channel 

MAPK mitogen-activated protein kinase 

MDCK Madin-Darby canine kidney type 1 

MEC mechanosensory abnormality protein 

MG-132 proteasome inhibitor 

miRNA micro ribonucleic acid 

mmHg mm of mercury 

mRIPA modified radio-immunoprecipitation assay buffer 

mRNA messenger ribonucleic acid 

MSC mesenchymal stem cell 

N number of … 

n.s. not significant 
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NCBI National Center for Biotechnology Information 

Nedd4-2 neural precursor cell expressed developmentally down-regulated 

protein 4-2 

NET neutrophil extracellular traps 

NIH National Institutes of Health 

NKCC Na+,K+,2Cl- cotransporter 

P probability 

P0 open probability 

P38 p38-mitogenactivated proteinkinase 

Pa partial pressure 

PBS phosphate buffered saline 

PEEP positive end-expiratory pressure 

PKC-ξ protein kinase-C-ξ 

PY-motifs conserved proline rich sequence in all ENaC subunits  

RNA ribonucleic acid 

rpm rounds per minute 

rtPCR reverse transcription polymerase chain reaction 

SDS sodium dodecyl sulphate 

SEM standard error of the mean 

SGK1 serum- and glucocorticoid regulated kinase 

SNP single nucleotide polymorphisms 

SOC-medium salt-optimized with carbon (glucose)-medium 
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SP surfactant protein 

TAE Tris-acetate-EDTA-buffer 

TBS-T Tris buffered saline incl. tween 20 

TE-buffer Tris-EDTA-buffer 

TNF-α tumor necrosis factor- α 

U unit 

Ub ubiquitin 

UNC uncoordinated (protein) 

V5 epitope tag derived from paramyxovirus of simian virus 5 

VE-cadherin vascular endothelial cadherin 

VEGF vascular endothelial growth factor 

VILI ventilator-induced lung injury 

VT tidal volume 

WW-domain tryptophane rich sequence of a protein, here Nedd4-2 

YFP yellow fluorescent protein 

ZO-1 zona-occludens protein-1 
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1. Introduction 

1.1.  Acute Respiratory Distress Syndrome (ARDS) 

ARDS has first been described in 1967, as a life-threatening respiratory condition 

characterized by acute onset of tachypnea, hypoxemia and loss of compliance, induced 

by different stimuli, including severe trauma, viral infection and pancreatitis (Ashbaugh 

et al., 1967). Approximately 190,000 cases and 74,000 deaths each year (mortality ~ 40 

%) are estimated for the United States alone, underlining the clinical importance of 

ARDS (Rubenfeld and Herridge, 2007).  

Until now, intensive research has been done on the mechanism and treatment of ARDS. 

The initial definition was revised in 1994 by the American-European consensus 

conference on ARDS (AECC) (Bernard et al., 1994) and further modified in the “Berlin 

Definition” in 2013 to match clinical criteria and to improve diagnosis of ARDS. The 

current definition of ARDS includes the acute onset within one week of a known 

clinical insult or new / worsening symptoms, non-cardiogenic bilateral infiltrates and 

hypoxemia, with the severity based on the degree of hypoxemia calculated as the ratio 

of oxygenation (PaO2) to the fraction of inspired O2 (FIO2) (mild ARDS: 200 mmHg < 

PaO2 / FIO2 ≤ 300 mmHg; moderate ARDS: 100 mmHg < PaO2 / FIO2 ≤ 200 mmHg; 

severe ARDS PaO2 / FIO2 ≤ 100 mmHg). Since the oxygenation is dependent on the 

ventilation of patients, these criteria have to be applied when the patient is ventilated 

with a positive end-expiratory pressure (PEEP) higher than 5 cmH2O.  

The main causes of ARDS are categorized into direct and indirect. Direct risk factors 

include all conditions that directly target the lung, such as pneumonia, inhalational 

injury or near-drowning, whereas indirect risk factors can be quite diverse. Major 

trauma, non-pulmonary sepsis, severe burns or drug overdose can all trigger ARDS 

(Ranieri et al., 2012).   
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1.1.1. Ventilation during ARDS  

Currently, there are only supportive treatment options for the different kinds of ARDS. 

These include the mode of ventilation, conservative fluid management and prone 

positioning (Guérin et al., 2013; Wiedemann et al., 2006; Young et al., 2013). PEEP 

was recognized to be effective in reducing mortality in ARDS patients already in 1967, 

while only a small subset of patients improved with steroids, antibiotics or digitalis 

(Ashbaugh et al., 1967). Especially in combination with low tidal volume ventilation it 

is highly beneficial, as it prevents the alveoli from collapsing thus keeping the lung 

open (Hickling et al., 1994). Subsequently, oxygenation is improved, even more when 

combined with fluid management (Wiedemann et al., 2006). But mechanical ventilation 

is not only beneficial for the lung. When inadequate pressures are applied, the lung can 

be damaged, a condition called ventilator-induced lung injury (VILI) (Biehl et al., 

2013), leading to increased morbidity and mortality (Parsons et al., 2005; Ranieri, 1999; 

Ranieri et al., 2000). Optimal ventilation strategies are still under debate. Studies aiming 

to elucidate the effect of lower versus higher PEEP are controversial and a meta-

analysis in 2010 came to the conclusion that only patients suffering from severe ARDS 

benefit from higher PEEP levels (Briel et al., 2010). The authors who published the 

most recent meta-analysis conclude that high PEEP levels neither reduced mortality 

before hospital discharge, nor significantly increase the risk of barotrauma but improve 

oxygenation within the first seven days of treatment (Santa Cruz et al., 2013). But not 

only the level of PEEP should be considered when determining the optimal ventilation 

settings. Another important variable in ventilating patients is the tidal volume (VT). Low 

VT ventilation has been shown to be safe compared to conventional ventilation (6 vs. 12 

ml/kg predicted body weight) (Cheng et al., 2005), minimize damage to the lung, reduce 

mortality and increase the number of days without ventilator (The Acute Respiratory 

Distress Syndrome Network, 2000) and according to a recent clinical trial it also acts 

protective on the cardiovascular system (Natalini et al., 2013).   
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1.1.2. Permissive hypercapnia 

Lung-protective ventilation with low tidal volume and reduced minute-ventilation 

(volume of air inspired per minute) leads to a decreased elimination of CO2 from the 

alveolar space, ultimately resulting in systemic hypercapnia with or without acidosis. 

Under normal conditions humans exhibit a partial pressure of arterial CO2 (PaCO2) of 

35-45 mmHg, but during several pulmonary diseases it can even exceed 200 mm Hg 

(Connors et al., 1996; Feihl and Perret, 1994; Mutlu et al., 2002; Sheikh et al., 2011). 

Clinical studies suggest that slightly elevated CO2 levels are not detrimental for the 

patients and can be accepted (Hickling et al., 1994; The Acute Respiratory Distress 

Syndrome Network, 2000). Now, permissive hypercapnia as a consequence of lung 

protective ventilation is widely accepted, although not without reservation (Curley et 

al., 2011). Several clinical studies not only show hypercapnia is not harmful, but they 

even support a beneficial effect on the lung and on survival of patients (Ryu et al., 

2012). In a rat model of systemic sepsis induced lung injury for example, hypercapnia 

only reduced the severity of lung injury when accompanied by acidosis, while buffered 

hypercapnia failed to provide any benefit (Higgins et al., 2009). This is interesting, 

because in another infection-based lung injury model sustained hypercapnia worsened 

lung injury (O’Croinin et al., 2008). Generally, hypercapnia impairs lung host defense 

in different ways. It has been shown to alter the innate immune response (Sporn et al., 

2011), but also phagocytosis (Wang et al., 2010) and generation of reactive oxygen 

species (Gates et al., 2011). 

 

pH independent effects of hypercapnia 

Positive and negative effects of hypercapnia in vivo cannot be well investigated without 

any contribution of pH. But in several in vitro models pH-independent hypercapnia 

induced mechanisms have been identified that are highly detrimental in the context of 

ARDS. Hypercapnia was shown to inhibit epithelial cell wound repair and the inhibition 

was still present, when acidosis was buffered to normal pH (O’Toole et al., 2009). 

Highly relevant is the finding, that alveolar epithelial function is significantly impaired 

during hypercapnia. This process has also been proven to be pH independent and is 

discussed in detail later (Briva et al., 2007; Chen et al., 2008; Vadász et al., 2008; 

Welch et al., 2010). Another event that has been demonstrated to be pH independent is 

blunting of the immunological response (Helenius et al., 2009).  
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1.1.3. Pathophysiology of ARDS 

ARDS is characterized by dysregulated inflammation, inappropriate accumulation and 

activity of leukocytes and platelets, uncontrolled activation of coagulation and disrupted 

epi- as well as endothelial barrier function (Matthay et al., 2012). 

Inflammation by activation of the innate immune response is triggered by microbial 

products or cell injury-associated endogenous molecules that are recognized by pattern-

recognition receptors located on the surface of the lung epithelium and alveolar 

macrophages (Opitz et al., 2010). Dependent on the cause of the disease, several other 

mechanisms can contribute to the inflammatory process, such as formation of 

neutrophil extracellular traps (NET) (Caudrillier et al., 2012) or interaction of 

inflammatory and hemostatic cells (Looney et al., 2009). Since ARDS can be induced 

by many different stimuli, inflammatory processes are not good or bad per se, but need 

fine adjustment to clear pathogens from the lung without worsening the damage.  

Another important characteristic of ARDS is the disruption of the microvascular and 

epithelial barrier causing the accumulation of protein-rich edema fluid, as well as  

leukocytes and erythrocytes in the alveolar space thereby impairing gas exchange.  

Disruption of the endothelial barrier is caused by destabilization of its major component 

vascular-endothelial cadherin (VE-cadherin) by several factors like cytokines (TNF-α, 

and IFN-γ), lipopolysaccharide (LPS) (Herwig et al., 2013) or VEGF (Chen et al., 2012) 

that are associated with different models of ARDS. Not only increased permeability of 

the endothelium is a problem in ARDS. Clinical data link obstruction and destruction of 

the microvascular bed in the lung, assessed by the pulmonary dead-space fraction, to 

increased mortality of ARDS patients (Nuckton et al., 2002). When only the endothelial 

barrier is disrupted, with the epithelium still intact, no increased permeability was 

observed and the alveolar epithelial liquid clearance was normal, indicating that a loss 

of endothelial barrier function does not necessarily induce ARDS (Wiener-Kronish et 

al., 1991).  

Less is known about the mechanism of epithelial barrier damage. In patients that died 

from ARDS a variety of events are reported to happen at the alveolar epithelium, 

including cytoplasmic swelling, vacuolization and necrosis leading ultimately to a loss 

of epithelial cells (Bachofen and Weibel, 1977). Taken into account that the epithelial 

barrier is much tighter than the endothelial barrier (Taylor and Gaar, 1970) its 

disruption is an important event in the development of pulmonary edema. Besides 
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prevention of flooding of the airspace another critical function of the alveolar 

epithelium is the precise regulation of fluid transport.  

Maximal fluid clearance has only been observed in 13 % of ARDS patients which is 

highly relevant when considering, that the hospital mortality was 62 % when fluid 

clearance was impaired or submaximal, compared to a mortality of “only” 20 % in 

patients having maximal fluid clearance rates (Ware and Matthay, 2001).    

The resolution of ARDS is quite complex and different events have to be synchronized. 

The epithelial and the endothelial barriers have to be reestablished and edema fluid, as 

well as inflammatory cells and exudate, need to be cleared from the airspace.  

1.1.4. Alveolar epithelial barrier – function and repair   

The alveolar epithelium is comprised of two different cell types: Alveolar epithelial 

cells type I (ATI) and type II (ATII). ATI cells cover approximately 93 % of the 

alveolar surface due to their large, flat morphology, thus keeping the diffusion barrier 

thin to enable proper gas exchange (Wang and Hubmayr, 2011). ATII cells are 

cuboidal, twice as abundant as type I cells and cover approximately 7 % of the alveolar 

surface. They account for 16 % of the all alveolar cells and have half of the volume of 

ATI cells (Crapo et al., 1982). Main functions are absorbance of excess alveolar fluid, a 

process later described in detail and secretion of surfactant (Kawada et al., 1990; Press 

et al., 1982). Surfactant, short for surface active agent consists of different components 

(10 % proteins, 90 % lipids) some of which reduce surface tension (surfactant proteins 

B and C (SP-B, SP-C) and phospholipids). Others play a role in host defence (SP-A and 

SP-D), underlining the immunological importance of ATII cells (Günther et al., 2001). 

Unidirectional amino acid and protein uptake from the apical side has also been 

described (Buchäckert et al., 2012; Uchiyama et al., 2008). 

In the normal lung, proliferation of this cell-type is minimal, with a reported 

proliferative subpopulation of 0.5-1 % of all ATII cells (Kalina et al., 1993). In different 

models of lung injury in rats ATII cells have been reported to function as progenitors 

for type I cells, indicating their importance in reestablishing the alveolocapillary barrier 

following lung injury by proliferation and differentiation (Adamson and Bowden, 1974; 

Clegg et al., 2005; Evans et al., 1973). In the mouse model of hyperoxia-induced lung 

injury ATII cells have been identified to promote alveolar epithelial regeneration 

(Adamson and Bowden, 1974). This process seems to be activated generally upon 

injury of the epithelium, independent of the specific stimulus. 
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Lately, evidence for pluripotent stem cells that differentiate into alveolar epithelial cells 

is rising. Those cells have been found in the adult human lung and express markers of 

mesenchymal stem cells (MSCs) like CD90 as well as pro-surfactant protein-C that is 

associated with ATII cells but can also express aquaporin 5 (AQP5), a marker of ATI 

cells. Still, it is not known whether this cell type directly differentiates into ATI or ATII 

cells or both (Chapman et al., 2011; Fujino et al., 2011).    

Repopulation of the injured epithelium and restoration of the epithelial barrier function 

alone is not sufficient to resolve ARDS. Once the epithelium is tight again, the excess 

fluid needs to be cleared from the airspace.  

Under normal conditions the alveolar surface liquid volume is precisely regulated. By 

low temperature scanning electron microscopy of the rat lung an area-weighted average 

thickness of 0.2 µm was estimated (Bastacky et al 1995). The primary regulators of the 

alveolar liquid layer are ATII cells. For many years, ATI cells have been believed to 

represent only a physical barrier, but recently studies showed that ATI cells express 

molecules crucial for fluid reabsorption and that they can as well actively contribute to 

fluid clearance (Johnson et al., 2002).   

The regulation of alveolar surface liquid volume is controlled by an orchestrated active 

absorption and secretion of Na+- and Cl-- ions, which create an osmotic driving force for 

water to follow. Key elements are epithelial Na+- channels (ENaCs) and Cl- - channels 

for example cystic fibrosis transmembrane conductance regulator (CFTR), located in 

the apical surface of alveolar epithelial cells and the Na+,K+-ATPase, a cation 

transporter located in the basolateral membrane. 

Especially in the fetal lung Cl--transport is extremely important, since it drives 

distention of the lung, enabling growth and development (Olver and Strang, 1974). The 

mechanism is independent of pulmonary vascular filtration (Carlton et al., 1992a) 

indicating that it is taking place at the alveolar epithelium. This process is described to 

be secondary active, with Cl- being cotransported into the cell by the Na+,K+,2Cl- 

cotransporter (NKCC) located in the basolateral membrane and induced by the 

electrochemical Na+-gradient created by the Na+,K+-ATPase (Carlton et al., 1992b; 

Cassin et al., 1986). This results in an excess of Cl- in the cell that is then secreted 

apically into the airspace. Around the time of birth, the predominance of Cl--secretion 

fades and Na+-absorption takes over to clear the lung from excess fluid. 

The alveolar Na+-transport is mediated by ENaCs and the Na+,K+-ATPase. As 

mentioned above, the Na+,K+-ATPase pumps Na+-ions out of the cell in exchange for 



 Introduction 7 

 

K+, more precisely three Na+-ions and two K+-ions. The result is a Na+-gradient 

between the airspace and the interstitium. Early studies in the rabbit urinary bladder, 

another tight epithelium exhibiting Na+-transport similar to the lung, investigating the 

properties of the apical and the basolateral membrane conclude that the Na+-

conductivity of the apical membrane is limiting the transcellular Na+-flux (Lewis et al., 

1977). This also applies to the lung (Canessa et al., 1994). 

   

 

 

 

  Figure 1 Scheme of alveolar Na+-transport 

The Na+,K+-ATPase removes Na+ from the cytosol, creating a gradient for Na+ to enter the apical side of the 

alveolar cells. This is happening both in ATI and ATII cells. Water is following the osmotic gradient that is 

created.  The result is a reduction of alveolar surface liquid. 
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1.2.  Deg/ENaC superfamily 

ENaCs have first been reported from studies using frog skin and toad urinary bladder 

that were mounted in an Ussing chamber to measure transepithelial ion transport. ENaC 

or ENaC-like Na+-channels are widely distributed among different animal species. 

Molecules belonging to the Degenerin/ENaC-superfamily have been identified from 

different epithelia in nematodes (Lai et al., 1996), flies, several species of rodents 

(Canessa et al., 1994; Letz et al., 1995), frog, chicken (Goldstein et al., 1997), cow 

(Fuller et al., 1995), lungfish (Li et al., 1995) and man (Fronius et al., 2010) underlining 

the evolutionary importance of this protein family.  

1.2.1. Common structure 

All members of the Deg/ENaC superfamily share invariable topology: Two 

transmembrane domains are connected with a large extracellular loop, that contains 

cysteine-rich domains (Renard et al., 1994). The N- as well as the C-termini are located 

in the cytoplasm of the cells and represent only a small fraction of the full-length 

protein (Mano and Driscoll, 1999). Many proteins including ENaCs assemble in homo- 

or hetero-multimeric complexes with varying composition (Firsov et al., 1998; Kosari et 

al., 1998; Snyder et al., 1998).  

1.2.2. Various functions 

The functions mediated by members of the Deg/ENaC superfamily are as diverse as 

their regulation. Touch sensation in C. elegans has been shown to be dependent on the 

mechanosensory abnormality proteins (MEC-4 and MEC-10) that assemble in a 

heteromeric complex containing at least two copies of each subunit (Hong and Driscoll, 

1994; Huang and Chalfie, 1994). Proprioception is another sense that involves members 

of that family (uncoordinated (UNC-8) (Tavernarakis et al., 1997) and UNC-105 

(Garcia-Anoveros Garcia Liu)). 

Other functions of the Deg/ENaC superfamily involve neurodegeneration (Chalfie and 

Wolinsky, 1990) and sensing of protons (Chen et al., 1998). pH-dependency of ASIC 

channels in vitro required very low pH and the result was a rapidly inactivating cation 

current (Lingueglia et al., 1997; Waldmann et al., 1997). 

Most important for the elaborated study is the regulation of salt absorption controlled by 

ENaCs located in epithelial cells of the kidney, colon and lung. As published by Bentley 

in 1968 amiloride is a very potent inhibitor of ENaC (Bentley, 1968). Several types of 
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channels have been described, all of which are sensitive to amiloride namely highly 

selective channels (HSC) for Na+ and Li+ with a low conductance of 5 pS, and low 

selective channels (LSC) with a conductance of 9 pS and 28 pS (Palmer, 1992). 

1.2.3. Epithelial Na+-channels  

Four subunits have been identified in mammals, αβγδ-ENaC. The first subunit that was 

identified in the rat colon was α-ENaC (Canessa et al., 1993). When heterologously 

expressed in Xenopus oocytes, it showed characteristics that were found previously of 

channels expressed in native epithelia, namely high amiloride-sensitivity, high 

permeability for Li+ and no K+-conductivity. The only difference was that the currents 

were much smaller, compared to injection of whole colon RNA. Subsequently the 

authors searched for further subunits and found two more subunits, β- and γ-ENaC 

which, when expressed individually, did not form Na+-conducting, amiloride-inhibitable 

channels (Canessa et al., 1994). When β- and γ-ENaC were coexpressed together with 

α-ENaC, the current was more than 100 fold higher, compared to α-ENaC alone 

(Canessa et al., 1994), suggesting that α-ENaC is the pore-forming subunit whose 

properties are modulated by β- and γ-ENaC. 

δ-ENaC has been identified in 1995. This subunit shares some features with, but also 

exhibits some important differences to α-ENaC: Similar to α-ENaC, δ-ENaC expressed 

individually forms amiloride-sensitive channels and the current is increased by two 

orders of magnitude, when β- and γ-ENaC are coexpressed. Different to α-ENaC it is 

more permeable for Na+, than for Li+ and the sensitivity for amiloride was 

approximately 30 times higher (Waldmann et al., 1995). Closely related to δ-ENaC, 

functionally as well as structurally, is ε-ENaC a subunit that is exclusively expressed in 

the clawed frog  X. laevis (Babini et al., 2003).  

Although the structure of all ENaC-subunits is quite similar, the tissue expression 

pattern differs markedly. α- and β-ENaC are predominantly expressed in lung and 

kidney, whereas γ- and δ-ENaC are found in a variety of epithelial and non-epithelial 

tissues of different organs (Ji et al., 2012). δ-ENaC is expressed in heart, liver, brain and 

lung, but also found in pancreas, skeletal muscle and blood leukocytes (Su et al., 2004; 

Waldmann et al., 1995). 

The functions of β- and γ-ENaC are not as clear as for the other subunits. β-ENaC has 

been postulated to regulate trafficking of ENaC complexes to the plasma membrane. Its 

Clara cell specific overexpression in the mouse resulted in increased Na+-transport of 
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tracheal tissue that caused a cystic-fibrosis-like phenotype with mucus accumulation 

and postobstructive enlargement of distal airspaces, while overexpression of α- and γ-

ENaC did not affect Na+-transport (Mall et al., 2004). An explanation for this 

phenomenon might be that β-ENaC is normally the least abundant and thus limiting 

subunit in the lung (Farman et al., 1997; Talbot et al., 1999; Yue et al., 1995). Genetic 

knockdown studies on the other hand showed, that the fluid clearance in the lung is 

impaired, when β-ENaC expression is reduced (Randrianarison et al., 2008).  

Stochiometry of ENaC is still under debate. Generally it is believed that ENaC is a  

heterotetrameric complex composed of two α-, one β- and one γ-subunit (Firsov et al., 

1998). Using the very sophisticated approach of atomic force microscopy a trimer 

composed of one copy each of α-, β- and γ-ENaC or even a trimer-of-trimers was 

described (Stewart et al., 2011). Considering the discovery of δ- and ε-ENaC which 

might replace α-ENaC or could even be added to the conventional heteromeric complex, 

various subunit assemblies in native tissues and different in vitro models might explain 

the great variations that can be observed studying ENaC function. 

1.2.4. Regulation 

Since the control of Na+-transport is crucial to maintain proper water and salt 

homeostasis, ENaC function is tightly regulated on different levels by a variety of 

factors.  

Regulation of gene expression is limited to long term regulation and less important than 

acute effects. Significant changes of the single channel conductance due to regulatory or 

genetic changes could not be demonstrated. The predominant elements of acute ENaC 

regulation are the number of channels in the membrane (N) and their open probability 

(P0) which indicates the ratio of time the channel is in the “open” as opposed to the 

“closed” conformation (Butterworth, 2010). 

 Only a very small portion of all ENaC proteins is located in the plasma membrane. The 

vast majority is located in trafficking vesicle pools (Hanwell et al., 2002). When 

introduced into the plasma-membrane ENaCs form near-silent channels, which require 

activation by proteolytic processing of the α- and γ-subunit to be fully functional 

(Carattino et al., 2008; Sheng et al., 2006).  

Stimuli involved in ENaC regulation include hormones, especially aldosterone (Lee et 

al., 2008; Masilamani et al., 1999) and insulin (Blazer-Yost et al., 2003; Deng et al., 

2012) as well as estrogen and progesterone (Gambling et al., 2004).  



 Introduction 11 

 

Also, anorganic chemicals regulate ENaC activity. Na+ itself, for example, has a dual 

role on ENaC function. Intracellular Na+ has been shown to reduce proteolytic 

activation of the channel by rendering its cleavage sites inaccessible to proteases by 

changing the conformation of the complex. This process happens relatively slow (within 

minutes) and is called “feedback inhibition”. The physiologic function is to prevent the 

cells from Na+ overload and thus cell swelling (Knight et al., 2008; Komwatana et al., 

1996; Uchida and Clerici, 2002).  

Extracellular Na+ on the other hand triggers “Na+ self-inhibition”. When the 

extracellular Na+-concentration is increased rapidly, ENaC activity is impaired. In 

contrast to the feedback inhibition this response is happening within seconds, induced 

by a decrease of the open probability P0. This process can not be explained by saturation 

of Na+-transport, because increasing the Na+-concentration stepwise does not result in a 

comparable inhibition (Fuchs et al., 1977). The molecular principle of “Na+ self-

inhibition” has been shown to involve a conformational change in the proximal part of 

the extracellular loop of α- and ε-ENaC (Babini et al., 2003). Also other stimuli 

independent of Na+, like acidity, seem to act on ENaC via the “Na+ self-inhibition” as 

has been described for human ENaC (Collier and Snyder, 2009).  

Oxygen tension is an important factor in the conversion of non-seletive to high-selective  

channels. Culture of ATII cells with only 5 % O2 resulted in predominantly non-

selective channels. However after 2 h with 95 % O2 the majority of channels was highly 

selective (Jain et al., 2008). 

Chlorine has also been reported to reduce ENaC expression in the membrane and its 

activity, in the mouse as well as in isolated ATII cells (Lazrak et al., 2012).  

Further stimuli modulating ENaC activity are redox state (Downs et al., 2013; Helms et 

al., 2008) and physical factors such as shear stress (Fronius et al., 2010).  

1.2.5. Signaling pathways 

There are multiple signaling pathways that are known to regulate ENaC. Several 

steroids have been implicated in the translational regulation of ENaC, mediated 

probably via interaction with the glucocorticoid responsive element (GRE) located 

upstream of the promotor of α-ENaC (Dagenais et al., 2008). Recent studies show that 

translation of ENaC is modulated also by miRNA (Tamarapu Parthasarathy et al., 

2012). 
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Interleukin-1β (IL-1β), an important cytokine in ARDS, was shown to reduce ENaC 

mRNA levels via the P38 mitogen-activated protein kinase (MAPK) (Roux et al., 

2005). Another member of the MAP-kinase family, the extracellular signal-regulated 

kinase (ERK), is also a regulator of ENaC and has been associated with phosphorylation 

of β- and γ- ENaC. This phosphorylation is likely to enhance interaction with the E3-

ubiquitin-ligase neural precursor cell expressed developmentally down-regulated 

protein 4-2 (Nedd4-2) (Yang et al., 2006), a protein that directly attaches the small 

molecule ubiquitin to specific target proteins, leading to endocytosis and subsequent 

degradation (Kabra et al., 2008). Ubiquitination of ENaC is a highly complex 

mechanism to differentially regulate protein stability in the cytoplasm and in the plasma 

membrane. Nedd4-2 is the most prominent E3-ligase known to regulate ENaC, but there 

is evidence for other E3-ligases that interact with ENaC (Downs et al., 2013). Upon 

activation Nedd4-2, preferably its domains WW2 and/or WW3 (Itani et al., 2009), binds 

to the highly conserved PY-motifs, located at the C–terminus of all ENaC subunits, 

leading to ubiquitination of lysines located at the N-terminus of ENaC subunits, 

rendering proteins located in the cytosol susceptible for proteasomal degradation, 

whereas complexes containing αβγ-ENaC located in the plasma membrane appear to be 

targeted for lysosomal degradation (Staub et al., 1997).  

Another way of Nedd4-2 mediated ENaC regulation is a conformational change of the 

extracellular domain upon ubiquitination that impairs proteolytical processing, thus 

preventing activation of immature channels (Ruffieux-Daidie and Staub, 2010).   

Several pathways seem to converge in ubiquitination. The important effector of 

aldosterone the serum- and glucocorticoid regulated kinase (SGK1) (Debonneville et 

al., 2001; Lee et al., 2008) but also inhibitor of nuclear factor kappa-B kinase subunit β 

(IKKβ) (Edinger et al., 2009) and the metabolic sensor adenosine-monophosphate-

activated kinase (AMPK) (Almaça et al., 2009)  phosphorylate Nedd4-2, disrupting its 

interaction with ENaC.   
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1.3.  State of the art 

Elevated CO2 levels have been shown to reduce alveolar epithelial function 

independently of pH by downregulation of the Na+,K+-ATPase (Briva et al., 2007). 

Further studies elucidating the underlying pathway identified AMPK to be activated 

during hypercapnia and to be involved in endocytosis of the Na+,K+-ATPase (Vadász et 

al., 2008). The exact mechanism upstream of AMPK is incompletely understood, 

especially the sensor for CO2 is still unknown.  

AMPK phosphorylates Nedd4-2 thus promoting its translocation to the membrane 

where it ubiquitinates individual or all ENaC subunits (Almaça et al., 2009; Bhalla et 

al., 2006; Myerburg et al., 2010). Ubiquitinated channels are then retrieved from the 

membrane and degraded by either the lysosome or the proteasome (Lazrak et al., 2012; 

Malik et al., 2006).  

A pharmacological study elucidating the role of several AMPK-activators on alveolar 

epithelial Na+-transport provides evidence for a differential effect of AMPK on ENaC 

and the Na+,K+-ATPase (Woollhead et al., 2007). Specific modulation of ENaC and the 

Na+,K+-ATPase by AMPK could be relevant in the resolution of pulmonary edema.   

 

Detection of ENaC proteins in the lung is difficult. Antibodies against endogenous 

proteins are poor and often recognize either the full length form or the cleaved form of 

α- and γ-ENaC (Boncoeur et al., 2009; Downs et al., 2013; Jain et al., 1999). Even if 

both forms are recognized, antibodies against each cleaved fragment produce 

inconclusive protein sizes (Albert et al., 2008). Many investigators, especially in the 

field of nephrology are working with overexpression of modified ENaC-subunits that 

can be recognized better than the endogenous proteins, but reliable systems for 

detection of ENaC protein in lung cells are not well established.       
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The aim of the present study was initially to decipher the effect of CO2 on ENaC 

function according to the working hypothesis illustrated in Figure 2. Due to 

insufficiencies of the available systems a second aim was added later:  

Establishment of a system to detect and immunoprecipitate immature and mature ENaC 

proteins in lung epithelial cells.  

       

 

 

Figure 2 Proposed mechanism of CO2 regulated endocytosis of ENaC 

CO2 is indirectly activating AMPKα1 which is phosphorylating Nedd4-2. Nedd4-2 attaches ubiquitin (Ub) to membrane 

bound ENaC to target it for endocytosis and subsequent degradation or trafficking back to the membrane. 
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2. Methods 

2.1.  Cell culture 

2.1.1. Culture of A549 cells 

A549 cells show characteristics of alveolar epithelial cells and can be transfected easily. 

Cells were grown in 100 mm cell culture dishes. The full medium contained DMEM (4.5 

g/l glucose incl. stable L-glutamine) and 10 % [v/v] fetal bovine serum (FBS). No 

antibiotics were used and the cells were maintained in a humidified incubator at 37 °C, 5 % 

CO2, 100 % relative humidity.  

For treatment with high CO2-levels the medium had to be modified to compensate for the 

influence of CO2 on the pH. For that 3 ml of basal DMEM (4.5 g/l glucose incl. stable L-

glutamine), 1 ml F12-supplement and 0.5 ml of Tris-solution (0.5 M, pH 7.3 or pH 10 for 

normocapnia and hypercapnia respectively) and the solutions incubated in 5 % respectively 

18 % CO2 cell culture incubators to achieve an identical pH of 7.4 and PO2 but a PCO2 in the 

medium of either 40 or 110 mmHg, as published previously (Briva et al., 2007; Vadász et 

al., 2008). 

2.1.2. Transfection of A549 cells 

For transfection of plasmid DNA 6 x 105 A549 cells were plated on 60 mm cell culture 

plates in 3 ml of full medium. The following day 12 µl Lipofectamine 2000 were diluted in 

500 µl DMEM, incubated for 5 min, then 4 µg plasmid-DNA was added and the mixture 

incubated for 30 min. The transfection mixture was then directly added to the cells without 

aspiration of the medium. After transfection no media change was performed, since 

cytotoxicity was minimal and higher expression rates were obtained. Experiments were 

conducted 18-24 h after transfection.  

Transfection with siRNA was performed using Lipofectamine RNAiMAX. 6 x 105 A549-

cells were plated on a 60 mm cell culture dish in 2 ml DMEM. The next day cells were 

starved with preequilibrated DMEM (1.5 g/l glucose) without serum for 30 min. Per 

reaction, 17 µl siRNA and 17 µl Lipofectamine RNAiMAX were diluted in 250 µl 

OptiMEM medium each, mixed by pipetting and combined. After a 30 min incubation 

time, medium was aspirated from the cells and the 500 µl transfection solution applied to 

the cells. During a period of 4 h the cells were agitated every 15 minutes, before 1 ml of 
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OptiMEM was added. Cells were replated and transfected the next day with ENaC-

plasmids as stated above in this paragraph.    

2.1.3. Culture of H441 cells 

To elucidate the effect of hypercapnia on epithelial Na+-transport Ussing chamber 

experiments were conducted on H441 cells. H441 cells, in contrast to A549 cells, form 

polarized monolayers and are established as a model for investigation of Na+-transport in 

alveolar epithelial cells (Albert et al., 2008; Brown et al., 2008; Ramminger et al., 2004).  

The basal medium for subculturing H441 cells was RPMI 1640 incl. L-glutamine, 10 % 

[v/v] FBS, 100 IU/ml Penicillin, 100 µg/ml Streptomycin, 1 mM Na+-Pyruvat, 5 µg/ml 

Insulin, 5 µg/ml Transferrin, 5 µg/ml Na+-Selenit. 

For functional measurements cells were seeded on snapwell-inserts with a growth area of 1 

cm2. The following day the medium on the apical side was aspirated so that the apical 

compartment was exposed to air. Furthermore the medium on the basolateral side was 

supplemented with 200 nM dexamethasone. Experiments were performed 5-7 days later 

with the medium replaced every two days.  

2.1.4. Optimization of H441 cell transfection 

Transfection of H441 cells by Lipofectamine 2000 is not efficient, so another system had 

to be used. A new method designed for primary cells and hard-to-transfect cell lines is 

Nucleofection, a modified electroporation technique. Basic principle is the formation of 

pores in the plasma membrane as well as in the nuclear envelope by specifically combining 

solutions with different ionic compositions with electrical impulses of different 

frequencies, durations and intensities. The best combination has to be established 

empirically for every cell-type. 

Nucleofection was performed using a Lonza 4D-Nucleofector and preselected cell type-

specific solutions. For optimizing Nucleofection of cells in suspension H441 cells were 

cultured for 24 h. Cells were then trypsinized, counted and the appropriate amount of cells 

(1.5 x 105 cells per reaction) centrifuged at 90 g for 10 min. The supernatant was discarded, 

the cells resuspended in Nucleofection mixture (20 µl reaction: 16.4 µl Solution SF, 3.6 µl 

of supplement + 0.4 µg pMaxGFP Vector) and transferred to the Nucleofection cuvette. 

Nucleofection was conducted in the X-Unit of the device. After Nucleofection 80 µl of 

prewarmed medium was added into the cuvette to resuspend the cells and 50, 25 and 12.5 

µl of cell-suspension were plated in 150, 175 and 187.5 µl respectively of prewarmed 



 Materials and Methods 17 

 

medium in a 96-well plate. 24 h after Nucleofection efficiency and viability were estimated 

and the best program selected.  

2.1.5. Transfection of H441 cells 

For transfection of H441 cells in suspension the 4D-Nucleofector System and the SF Cell 

Line 4D-Nucleofector X Kit was used.  

Cells were plated such, that they reached not more than 50 % confluence 24 h later. The 

next day cells were washed with PBS, detached from the culture plate with trypsin, 

counted and the desired amount of cells (1 x 106 cells per reaction) was centrifuged at 90 g 

for 10 min. The supernatant was discarded and the cells were resuspended in nucleofection 

solution (82 µl solution SF, 18 µl supplement), combined with the desired amount of 

nucleic acid, e.g. 2 - 4 µg pMaxGFP Vector and transferred to the Nucleofection cuvette. 

The program used for Nucleofection was CM 138. Cells were then incubated at room 

temperature for 10 min, diluted in app. 300 µl of prewarmed medium and plated. For 

transwell supports and 60 mm cell culture dishes 1 x 106 cells were plated, 0.5 x 106 cells 

for 35 mm dishes. Analysis was conducted 24 - 48 h later. 

2.1.6. Isolation of primary rat alveolar epithelial cells 

Primary rat alveolar epithelial type II cells (ATII) were isolated as described previously 

(Buchäckert et al., 2012; Dobbs, 1990) and cultured in DMEM with 4.5 g/l glucose, 10 % 

[v/v] FBS and 100 IU/ml Penicillin, 100 µg/ml Streptomycin. 

2.1.7. Establishment of ATII cell transfection 

Transfection of ATII cells was performed by Nucleofection using a Lonza 4D-

Nucleofector and preselected cell type-specific solutions as recently published (Grzesik et 

al., 2013). For optimizing Nucleofection of primary ATII cells in suspension, cells were 

cultured for 24 h. Cells were then trypsinized, counted and the appropriate amount of cells 

(1.5 x 105 cells per reaction) centrifuged at 90 g for 10 min. The supernatant was discarded, 

the cells resuspended in Nucleofection mixture (20 µl reaction: 16.4 µl Solution P1 or P3, 

3.6 µl of supplement + 0.4 µg pMaxGFP Vector) and transferred to the Nucleofection 

cuvette. Nucleofection was conducted in the X-Unit of the device. After Nucleofection 80 

µl of prewarmed medium was added into the cuvette to resuspend the cells and 50, 25 and 

12.5 µl of cell-suspension were plated in 150, 175 and 187.5 µl respectively of prewarmed 

http://www.lonza.com/products-services/bio-research/transfection/nucleofector-devices/4d-nucleofector-system.aspx
http://www.biocompare.com/9956-Assay-Kit/1836576-SF-Cell-Line-4DNucleofectortrade-X-Kit-L/
http://www.biocompare.com/9956-Assay-Kit/1836576-SF-Cell-Line-4DNucleofectortrade-X-Kit-L/
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medium in a 96-well plate. 24 h after Nucleofection efficiency and viability were estimated 

and the best program selected.  

Further optimization revealed no loss of transfection efficiency, when using up to 3.5 x 106 

cells per 100 µl reaction. Attempts to transfect freshly isolated cells resulted in significant 

cell death.  

Some cell types that are cultured in high-calcium-medium (e.g. DMEM) require a recovery 

step after transfection to prevent an influx of calcium through the not yet closed pores in 

the plasma-membrane. For that step low-calcium-medium (e.g. RPMI 1640) is added 

directly to the Nucleofection cuvette and the cells are incubated at 37 °C for 10 minutes. 

This step proved not to be necessary for ATII cells. Also, removal of Nucleofection 

solution after transfection by diluting the cells in preequilibrated medium and subsequent 

centrifugation did not result in higher viability, nor transfection efficiency. 

2.1.8.  Final protocol for the Nucleofection of ATII cells 

For the optimized protocol freshly isolated rat AT II cells were plated in 60 mm cell 

culture dishes to recover from the isolation. The next day cells were washed with PBS, 

detached from the culture plate with trypsin, counted and the desired amount of cells (3.5 x 

106 cells per reaction) was centrifuged at 90 g for 10 min. The supernatant was discarded 

and the cells were resuspended in nucleofection solution (82 µl solution P3, 18 µl 

supplement), combined with the desired amount of nucleic acid, e.g. 3-5 µg pMaxGFP 

Vector and transferred to the Nucleofection cuvette. The program used for Nucleofection 

was EA-104. Cells were then incubated at room temperature for 10 min, diluted in app. 

300 µl of prewarmed medium and plated. For transwell supports and 60 mm cell culture 

dishes 3.5 x 106 cells were plated, 2 x 106 cells for 35 mm dishes. Analysis was conducted 

48 h later (day 3 after isolation). 

2.1.9. Flow cytometry 

For determination of transfection efficiency, cells were washed with PBS, trypsinized, 

centrifuged at 90 g and resuspended in FACS buffer (PBS without Ca2+ and Mg2+, 7.4 % 

EDTA, 0.5 % FBS, pH 7.2). To evaluate viability, cells were stained with 7-AAD (1:10) 

and incubated for 5 min prior to FACS analysis which was conducted with a LSR Fortessa 

and analyzed by FACS Diva Software.  
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2.1.10. Fluorescence microscopy 

GFP expression of transfected cells was visualized by fluorescence microscopy. Living 

cells were imaged in medium using a fluorescence microscope (Leica DMIL), a camera 

(Leica DFC 420C) and the software Leica application suite 330. 

2.1.11. Cytotoxicity assay 

Early cell death was evaluated by release of lactate-dehydrogenase (LDH) into the 

medium. Cells were transfected and plated on permeable supports as described above. The 

medium was collected at 4 h, replaced by fresh medium and collected again 24 h after 

transfection. The assay was performed as instructed by the manufacturer. Minimal cell 

death was measured in non treated cells, maximal cell death was determined by lysing cells 

with 1 % Triton X 100. 

2.2.  Ussing chamber measurements 

Ussing chamber experiments were conducted on H441 cells. For those experiments cells 

were plated confluent on snapwell permeable supports. One day after plating, medium was 

removed from the apical side to culture the cells at liquid-air-interface and dexamethasone 

200 nM was added to the medium. Measurements were conducted on day 7 - 9 after 

plating. 

Experiments were performed using a custom built Ussing chamber setup. The electrical 

signal was recorded and amplified by a voltage-clamp-amplifier (custom built; Institut for 

animal physiology Gießen), converted from analog to digital by an AD/DA-converter 

(MacLab Interfaces) and recorded by a two-channel chart-strip recorder (Kipp & Zonen, 

Netherlands) plus recorded digitally using an Apple-PC, (Macintosh, Apple) and the 

software Chart (Version 3.6.3, MacLab). Electrical interference was neutralized with a 50 

Hz filter that was included in the software. The relevant data where also noted manually.   

The regular perfusion solution contained in mM: NaCl 130, KCl 2.7 KH2PO4 1.5, MgCl2: 

0.5, CaCl2, D-glucose 10. Unless otherwise stated, 55 mM Tris base was added. For 

normocapnia (pCO2 ~ 40 mm Hg) and hypercapnia (pCO2 > 100 mm Hg) the solutions 

were continuously bubbled with 5 % CO2, 21 % O2, 74 % N2 and 20 % CO2, 21 % O2, 59 

% N2  respectively and the pH adjusted accordingly to obtain a final pH of about 7.4. 
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Figure 3 Scheme of the custom build Ussing chamber.  

Both chambers of the setting were perfused seperately so it was possible to specifically target the apical or 

the basolateral compartment.   

apical basolateral 

cells 

electrodes 
perfusion 

AD converter + computer 
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2.3.  Real-time rtPCR 

To study the expression of endogenous ENaC subunits on the mRNA level, real-time 

rtPCR experiments were performed. After incubating the cells in normo- versus 

hypercapnic conditions for 6 resp. 24 h, cells were lysed and mRNA isolated using the 

RNeasy-Kit according to the instructions supplied by the manufacturer. The mRNA was 

reverse transcribed (iScript cDNA Synthesis Kit (Table 2) and PCR performed with 

iTaqTM Sybr Green Supermix with ROX. The reaction composition is depicted in Table 

3. The expression of the housekeeeping gene hypoxanthin-phosphoribosyl-transferase 

(HPRT) was used to normalize the data.  

 

Calculation of data:  ΔCt = Ct housekeeping gene - Ct target gene 

             ΔΔCt = Ct CO2 – Ct control 

 

Table 2 Composition cDNA synthesis (20 µl reaction) 

component                        volume 

Reaction buffer (5x)      4 µl 

reverse transcriptase 1 µl 

RNA (1µg) x µl 

H2O to 20 µl 

  

Table 3 Composition real-time PCR (25 µl reaction) 

component volume 

iTaq Sybr Green Supermix with ROX      12.5 µl 

cDNA (1:5 diluted)            2.0  µl 

Primer forward 0.5 µl 

Primer reverse 0.5 µl 

H2O 9.5 µl 

 

Table 4 Real time PCR conditions 

initial denaturation 95°C   2:00    min 

denaturation 95°C   1:15    sec  

primer annealing + elongation 55°C   0:30    sec 

cool down   4°C      - 

35 cycles 
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Following primers were used for real-time PCR: 

Table 5 Real-time PCR Primer 

gene primer  primer-sequence reference-sequence 

α ENaC hscnn1a_F 5`-acttcagctaccccgtcagc-3´  NM_001038 

 hscnn1a_R 5`-gagcgtctgctctgtgatgc-3´  

β ENaC hscnn1b_F 5`-gcaccgtgaatggttctgag-3´ NM_000336.2 

 hscnn1b_R 5`-cggatcatgtggtcttggaa-3´  

δ ENaC hscnn1d_F 5`-cagcatccgagaggacgag-3´ NM_001130413.3 

 hscnn1d_R 5`-aggagcaggtctccaccatc-3´  

γ ENaC hscnn1g_F 5`-gctgcctactcgctccagat-3´ NM_001039 

 hscnn1g_R 5`-ttcctggacaaaggctcgat-3´  

HPRT HPRT_human_F 5`-cctggcgtcgtgattagtga-3´ NM_000194.2 

 HPRT_human_R 5`-atggcctcccatctccttc-3´  

 

2.4.  Generation of genetically modified ENaC-constructs 

The expression levels of ENaC-subunits are generally low. Furthermore the majority of 

ENaC proteins is located in submembranous vesicles and in the endoplasmatic reticulum, 

making the detection of functional ENaC proteins in the plasmamembrane even more 

challenging (Hanwell et al., 2002). To enhance the expression α, β and γ-ENaC were 

cloned into expression vectors. The generated constructs were genetically modified: 

Epitope-tags were added to increase the recognition for commercially available antibodies. 

eYFP-α-ENaC-Flag, β-ENaC-V5, and Myc-γ-ENaC-HA were generated (see Table 6). β-

ENaC was the first vector generated and cloned from the human cellline A549 (see 2.1.1). 

Later, α- und γ-ENaC were cloned from previously generated plasmids (pTNT-Oocyte 

expression vector; (Fronius et al., 2010)) tagged with the respective epitope-tags and 

ligated into expression vectors.  
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Table 6 Cloning primers and genetic modifications 

protein primer primer sequence destination-

vector 

tag 

α ENaC SCNN1A_for2 5`-catggaggggaacaagct-3‘   

 SCNN1A_rev2 5´-ccttggtgtgagaaacctctcc -3`   

α ENaC SCNN1A_for3 5`-gaattcaatggaggggaacaagctggagg-3‘ pE-eYFP eYFP 

 SCNN1A_rev 5´-ggatcccttgtcatcgtcatccttgtaatcggg` 

cccccccagaggac-3`1 

 Flag 

 

β ENaC SCNN1Bfor 5`-ctcggatccacatgcacgtgaagaagtacct-3` pcDNA3.1V5/ 

Hyg 

V5 

 SCNN1Brev 5`-gcactcgaggatggcatcaccctcactgt-3`   

γ ENaC SCNN1G_forHA 5`-aggcccgaattcatggcacccggagagaagat-3` pCMV-HA-C HA 

 SCNN1G_revHA 5`-gtagccggtaccgagctcatccagcatctggg-3`   

 SCNN1G_formyc 5`-gagatcggatccaatggcacccggagagaagat-3` pCMV-tag 3 Myc 

 SCNN1G_revmyc 5`-ccccccctcgagttaagcgtaatctggaacat-3`   

  

                                                
1 Highlighted is the sequence for the FLAG-epitope-tag that was added by PCR 
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2.4.1.  Subunit-specific cloning procedure 

2.4.1.1. β-ENaC 

For the cloning of β-ENaC, mRNA was isolated from A549 cells and reverse transcribed 

into cDNA. Amplification of the coding sequence with the appropriate restriction sites 

attached was performed with Pfu-Ultra DNA polymerase. The sequence of the primers 

used is provided in Table 6. The composition of the PCR-mix is listed in Table 7, the 

cycler-conditions are given in  

Table 8.  

 

Table 7 PCR reaction β-ENaC (25 µl) 

component volume 

H2O to  25.0 µl 

buffer        2.5 µl 

dNTP        0.4 µl  

primer forward        0.5 µl 

primer reverse        0.5 µl  

cDNA        1.0 µl  

Pfu DNA polymerase        1.0 µl 

   

 

Table 8 PCR conditions for cloning of β-ENaC 

initial denaturation 97°C 10:00    min 

denaturation 95°C   1:30    min 

primer annealing 65°C   0:30    min 

elongation 72°C   4:00    min 

final elongation 72°C 10:00    min 

cool down   4°C     - 

 

The PCR-product was analyzed in a 1 % agarose-TAE-buffer gel and the fragment size 

compared to the expected size of the amplicon. 

The PCR product was purified using the Wizard® SV Gel and PCR Clean-Up System. The 

product and the vector pcDNA3.1 V5/Hyg were then digested with XhoI und BamHI at 

35 cycles 
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37°C over night (Table 9) and again purified with the PCR Clean-up System. Complete 

digestion was verified by electrophoretical determination of the fragment size.  

Table 9 Restriction digestion for β-ENaC 

component volume 

H2O +  DNA   40.0 µl 

enzymebuffer B 10x     5.4 µl 

BSA acetylated     5.4 µl 

XhoI     1.4 µl 

BamHI     1.4 µl 

 

The digested vector and a two-fold excess of insert were ligated over night at 4°C with T4 

ligase. As a negativ control the ligation was performed without insert.  

 

Table 10 Ligation reaction 

component volume 

H2O   to  20 µl 

buffer 10x         2 µl 

vector     100 ng  

insert     140 ng 

T4 ligase (3 U/µl)         1 µl 

 

2.4.1.2. α-ENaC 

Since the α-subunit of ENaC undergoes proteolytical processing during maturation, the 

two major fragments were modified to contain individual epitope tags. The primers needed 

for the modification were relatively long with a brief overlap at the coding region of the 

protein, resulting in special conditions for the PCR. Increased difficulties arose from the 

sequence of the human α-ENaC being rich in the nucleotides guanine and cytosine, 

aggrevating the cloning process. 

Therefore the plasmid was cloned in two steps. First the coding region plus some overhang 

was amplified from a preexisting plasmid (pTNT-Oocyte expression vector (Fronius et al., 

2010)) with the newly distributed Q5 polymerase which has a higher fidelity and acuracy 

compared to the Pfu-polymerase used to clone the β-subunit. The primers were designed to 

only amplify the coding region and some overhang. The PCR product of this reaction was 
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then used as a template for the next reaction, that was performed with primers that included 

restriction sites and the tag to reduce non-specific annealing. The destination vector 

pEYFP-C1 contained the epitope-tag eYFP at the N-terminus. To add another tag at the C-

terminus of the fusion protein the sequence for the FLAG-tag (5´-gat tac aag gat gac gat 

gac aag-3`) was incorporated in the reverse-primer between the coding sequence and the 

stop codon (see Table 6 highlighted).    

 

Table 11 PCR reaction for α-ENaC (25 µl) 

component volume 

H2O 15.75 µl 

buffer   5.00 µl 

dNTP   0.50 µl  

primer forward   1.25 µl 

primer reverse   1.25 µl  

cDNA   1.00 µl  

Q5 DNA polymerase   0.25 µl 

 

Table 12 First PCR condition for cloning of α-ENaC 

initial denaturation 95°C 0:30    min 

denaturation 95°C 0:10    min 

primer annealing 65°C 0:30    min 

elongation 72°C 2:10    min 

cool down   4°C  - 

 

Table 13 Second PCR condition for cloning of α-ENaC 

initial denaturation 95°C 0:30    min 

denaturation 95°C 0:10    min 

primer annealing + elongation 72°C 2:10    min 

cool down   4°C  - 

 

The PCR product and the vector were purified and digested with fast-digest restriction 

enzymes at 37°C for 15 minutes (see Table 14) and purified again for ligation. 

 

 

35 cycles 

35 cycles 
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Table 14 Restriction digestion α-ENaC (40 µl volume)  

component volume 

H2O +  DNA   32  µl 

buffer FDgreen 10x     4  µl 

EcoRI     2  µl 

BamHI     2  µl 

 

For the ligation the insert and vector were mixed at a molar ratio of 3:1 and ligated with the 

T4 ligase kit. As a negative control ligations without vector were performed.  

 

Table 15 Ligation for α-ENaC T4 ligase kit (20 µl) 

component volume 

H2O   to  20 µl 

buffer 10x         2 µl 

vector     100 ng  

insert     140 ng 

T4 ligase (3 U/µl)         1 µl 

2.4.1.3. γ-ENaC 

Cloning of the double-tagged γ-ENaC was also performed in two steps: The coding 

sequence was first amplified, ligated in the vector pCMV-HA-C, containing the c-terminal 

HA-tag and transformed into bacteria (see 2.4.2). Successful transformation was controlled 

by colony-PCR with the primer-pair SCNN1G_for/revmyc. This step provided two 

benefits: Since one primer was designed to align to a region on the first destination-vector 

the stringency for the screening was increased. Additionally, the sequence of the plasmid 

containing the HA-tag was included in the PCR-fragment, so that the PCR product could 

not only be visualized electrophoretically, but also purified and ligated directly into the 

second vector pCMV-tag 3 that added a N-terminal Myc-tag. Both PCR-reactions were 

performed with the conditions given in Table 11 and Table 13. Restriction digestion was 

performed according to Table 14, ligation as described in Table 15.    
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2.4.1.4. Site directed mutagenesis α-ENaC 

Two single nucleotide polymorphisms (SNP) were included in the original α-ENaC 

plasmid that caused a change in the aminoacid sequence (A334T and T663A) compared to 

the reference sequence NM_001038. Although they were reported earlier (rs11542844 and 

rs2228576), site directed mutagenesis was performed to eliminate possible effects on the 

biology of the protein.  

 

Table 16 Primers for site directed mutagenesis 

primer  primer sequence 

A2365G_for 
A2365G_rev 
G3352A_for 
G3352A_rev 

 

 
 

5`-gtccctgatgctgcgcgcagagcagaatgacttc-3` 
5`-gaagtcattctgctctgcgcgcagcatcagggac-3` 
5`-ggggccagttcctccacctgtcctctggg-3` 
5-cccagaggacaggtggaggaactggcccc-3` 

 

 

The mutagenesis was performed with the QuikChange Site-Directed Mutagenesis Kit. The 

reaction conditions are described in Table 17 and Table 18. 

Table 17 QuikChange site directed mutagenesis reaction 

component volume 

H2O to 25.0 µl 

buffer       2.5 µl 

dNTP       0.5 µl  

primer forward      62.5 ng 

primer reverse     62.5 ng  

Pfu Turbo DNA polymerase (2.5 U/µl)       1.0 µl 

template ( ~ 20 µg plasmid)       1.0 µl 

 

Table 18 QuikChange site directed mutagenesis thermal profile 

initial denaturation 95°C 0:30    min 

denaturation 95°C 0:30    min 

primer annealing 55°C 1:00    min 

elongation 68°C 7:00    min 

cool down   4°C  - 

 

16 cycles 
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The parental, non modified vector was digested with 1 µl DpnI at 37°C for 1 h and the 

reaction with now only the modified plasmids directly transformed into XL1-Blue 

supercompetent cells, supplied with the QuikChange Kit. For that the cells were thawed on 

ice and a 25 µl aliquot transferred to a prechilled 14 ml polypropylene tube. One µl of the 

digested DNA was added and the bacteria incubated on ice for 30 minutes, before they 

were heat-shocked at 42°C for 45 seconds and placed back on ice for 2 minutes. To 

promote bacterial proliferation 250 µl prewarmed NZY+-broth medium were added and the 

bacteria incubated at 37°C for 1 hour with shaking at 225-250 rpm. Half of the bacterial 

suspension was then plated on LB-Agar plates as described in the next chapter (2.4.2).  

2.4.2.  Transformation  

To amplify the generated plasmids for endotoxin free transfection in alveolar epithelial cell 

lines the plasmids were transformed into E. coli JM-109 by heat-shock.  

Bacteria were thawed on ice and 50 µl of the suspension were transferred to a precooled 

reaction tube. Two to 5 µl of the ligation were added and the mixture incubated for 10 min 

on ice. Bacteria were then heat-shocked for 45-50 seconds at 42°C and immediately 

incubated on ice for another 2 minutes. Now, 450 µl SOC-medium were added and the 

bacteria incubated for 1 hour at 37°C, until 100 µl were plated on LB-agar plates 

containing the appropriate antibiotic (pCMV3A und pE-eYFP: kanamycin; pcDNA3.1: 

ampicillin) to select for successfully transformed bacteria.  

2.4.3.  Plasmid preparation 

The bacterial colonies that were obtained had to be screened for containing the right, non-

modified plasmid. Small liquid cultures were prepared in 15 ml polypropylene tubes by 

inoculating 5 ml of LB-medium with bacteria picked directly from the agar-plate with a 

pipette tip, incubated over night at 37°C. Colony PCR (see Table 19) was performed to 

test for integration of the right insert with the primers used for cloning. The liquid culture 

was stored at 4°C to be able to inoculate a large scale bacterial culture and to prepare 

glycerol stocks (1:1 [v/v], stored at -80°C) for further amplification. The PCR-products 

were electrophoretically analyzed for the right size. Plasmids of promising clones were 

isolated with the Qiaprep Spin Miniprep Kit from the small liquid cultures exactly as 

instructed by the manufacturer and sent to sequencing for validation (Seqlab, Göttingen, 

Germany).   

 



 Materials and Methods 30 

 
Table 19 PCR reaction colony-PCR (20 µl) 

Component volume 

H2O 14.4 µl 

buffer   2.0 µl 

dNTP   0.4 µl  

primer forward    0.5 µl 

primer revers   0.5 µl  

bacterial culture   2.0 µl  

Taq DNA Polymerase   0.2 µl 

 

To generate large amounts of plasmids that are needed for transfections 100 ml LB-

medium containing the appropriate antibiotic were inoculated with bacterial culture either 

from the stored mini-culture or from the glycerol stock and incubated over night at 37°C 

with shaking. Plasmids were isolated with the Qiagen Plasmid Maxi-Kit exactly as 

instructed by the manufacturer. Plasmid DNA was disolved in 200-300 µl TE-buffer, the 

concentration measured with a NanoDrop photometer and stored at -20°C.    
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2.5.  Western-Immuno-Blotting 

Quantification of protein levels was done using the western-immunoblot technique. Cells 

were treated as indicated and washed three times with ice-cold PBS incl. Ca2+ and Mg2+. 

After complete removal of PBS cells were lysed with 300 µl of lysis buffer (mRIPA: 50 

mM Tris pH 8.0; 150 mM NaCl; 1 % Igepal; 1 % Na+-deoxycholate) with protease 

inhibitor cocktail (complete; 40 µl/ml) on ice for 10 min. The cell lysate was collected and 

cleared by centrifugation (10,000 rpm/10 min). Protein concentration was determined with 

the Quick-Start Bradford-Assay. Equal protein amounts were diluted in 2 x sample-buffer, 

denatured under agitation (97 °C, 350 rpm; 7-10 min) and separated electrophoretically in 

a 10 % acrylamide-gel using standard techniques. Proteins were then transferred to a 

nitrocellulose membrane with a semi-dry transfer chamber (45-60 minutes, Biorad) and 

unspecific binding sites blocked with 5 % [m/v] skim milk powder in TBS-T for 1 hour. 

After removal of blocking buffer the membranes were incubated in the primary antibodies 

at 4°C over night (see Table 20).  

 

Table 20 Antibodies for Western-Blotting 

antibody buffer dilution species company 

V5 TBST + 5 % BSA 1:2000 mouse Invitrogen 

E-cadherin TBST 1:400 rabbit Santa Cruz 

Actin TBST 1:2000 rabbit Sigma 

GFP TBST 1:1000 mouse Roche  

HA TBST 1:1000 mouse Covance 

Myc TBST 1:2000 mouse Invitrogen 

Nedd4-2 TBST 1:1000 rabbit Santa Cruz 

Flag M2 TBST 1:1000 mouse Sigma 

tGFP TBST  1:5000 rabbit Evrogen 

 

The unbound primary antibodies were removed by washing the membrane in TBS-T three 

times for 10 minutes. Membranes were then incubated with the appropriate horse-raddish 

peroxidase linked secondary antibodies (rabbit anti-mouse IgG 1:5000; goat anti-rabbit 

IgG 1:2000). Excess antibody was removed again by washing the membrane as stated 

above, drained and incubated with chemiluminescent substrate (SuperSignal West Pico). 

The signal was quantified by exposing an autoradiography film (BioMax MR or 

Amersham Hyperfilm ECL) that was developed in a Curix 60 developer. Films were 
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scanned with a CanoScan LIDE 90 and densitometry was performed with ImageJ software 

(NIH).  

In some cases the signal intensity was too low to be detected by the standard protocol. In 

these cases the concentration of the secondary antibody was reduced to 1:50,000-100,000 

and the membrane incubated with the SuperSignal West Femto substrate to obtain maximal 

detection sensitivity. 

2.6.  Biotin-Streptavidin-Pulldown 

Discrimination between the total cellular amount of ENaC and the functional fraction 

located in the plasma-membrane was carried out with biotin-streptavidin-pulldown.  The 

underlying principle is the conjugation of a modified, membrane impermeable biotin to 

lysines located in the extracellular domains of membrane proteins and the subsequent 

pulldown with immobilized streptavidin that binds to biotin with high affinity (Gottardi et 

al., 1995).  

Briefly, cells were rinsed with PBS incl. Ca2+ and Mg2+ and incubated on ice with EZ-Link 

Sulpho-NHS-LC-biotin-solution (1 mg/ml in PBS) for 20 min. To quench unbound biotin 

cells were washed three times for 10 minutes with PBS containing 100 mM glycine. After 

a final washing with PBS cells were lysed as described in chapter 2.5. For each experiment 

equal amounts of protein (150-1000 µg) were incubated with 60-100 µl streptavidin-

agarosebeads at 4 °C over night in a rotator with the volume adjusted with mRIPA-buffer 

to obtain equal protein concentrations.  

The following day the beads were washed with the solutions indicated below to eliminate 

unbound proteins and proteins that were bound unspecifically. Washing solutions were 

applied, the tube inverted a couple of times, beads collected at the bottom of the tube by 

centrifugation in a mini centrifuge and the supernatant aspirated almost completely after 

each step.  

1 x solution A:   150 mM NaCl, 50 mM Tris pH 7.4, 5 mM EDTA 

2 x solution B:   500 mM NaCl, 50 mM Tris pH 7.4, 5 mM EDTA 

3 x solution C:   500 mM NaCl, 20 mM Tris pH 7.4, 0.2 % BSA [m/v] 

1 x solution Tris: 10 mM Tris, pH 7.4 

Finally the last washing solution was aspirated completely, sample buffer added and the 

samples were denatured at 99°C for 8-10 minutes. Analysis was performed as described 

above (chapter 2.5). To prove that changes were not caused by varying transfection 
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efficiencies, total cell lysate of every sample was subjected to western blotting without 

pulldown. 

2.7.  Pulse-chase-experiments 

To determine the stability of ENaC subunits located membrane, cells were biotinylated as 

stated above. After quenching the unreacted biotin with glycine cells were not yet lysed. 

Instead, preequilibrated medium was applied and cells put back in the cell culture 

incubator for up to 6 hours. After different time points the cells were washed with PBS, 

lysed with m-RIPA buffer supplemented with MG-132 (10 µM) and processed as 

described in chapter 2.6.   

2.8.  Immunoprecipitation of detergent insoluble fraction of ENaC 

The cell surface expression and composition of the ENaC-complexes are strongly 

dependent on the celltype and the underlying culture conditions. Especially for kidney cell 

lines it has been reported, that the subunits aggregate to complexes that are insoluble in 

several non-ionic detergents (Prince and Welsh, 1998). To test whether this also applies to 

alveolar epithelial cell lines the detergent soluble and insoluble fractions were analysed. 

 

A549 and H441 cells were transfected and cultured for 24-48 h in the presence of 

amiloride (10 µM) to prevent cell swelling when coexpressing all three ENaC-subunits. 

Next, cells were rinsed three times with PBS containing Ca2+ and Mg2+ before cells were 

lysed in Tris-buffered saline (TBS) containing 1% Triton X-100 [v/v] and protease 

inhibitors (complete, 40 µl/ml). The insoluble fraction was pelleted by centrifugation 

16,000 g for 10 minutes at 4 °C. Supernatant was collected in another tube and the pellet 

lysed in 100 µl of solubilization-buffer (50 mM Tris (pH 7.4); 2 % SDS [w/v]; 1 % β-

mercaptoethanol [v/v]; 1 mM EDTA) at 90°C for 5 min. After heating the samples were 

diluted in 1 ml TBS containing 1 % Triton X-100. ENaC subunits were 

immunoprecipitated from both fractions with subunit specific antibodies (FLAG M2, 0.5 

µg/reaction; GFP, 2 µl/reaction) and 100 µl protein A/G beads at 4°C over night.  

Samples were finally washed three times with TBS incl. 1 % Triton X-100, denatured in 

sample buffer and further processed as described in chapter 2.5.   
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2.9.  Statistical analysis and graphical illustration 

Data are presented as mean ± SEM, if not described otherwise. Statistical comparison 

between two groups was done using an unpaired Student`s t-test. Multiple data sets were 

compared by ANOVA and subsequent post hoc analysis. GraphPad prism 6 (GraphPad 

software, San Diego, CA) was used for the analysis and data presentation. Data obtained 

from Ussing chamber experiments were visualized with FreeHand 10.   
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2.10.  Materials  

Table 21  Electronic devices 

4D-Nucleofector System  Lonza, Köln, Germany 

BioPhotometer Biorad, München, Germany  

Developer Curix 60  Agfa, Mortsel, Belgium 

Electrophoresis system Biorad, München, Germany 

Galaxy MiniStar VWR, Bruchsal, Germany  

Hera Cell 150 incubator Thermo Scientific, Dreieich 

Heraeus Fresco 17 thermo centrifuge Thermo Scientific, Dreieich 

KNF Laboport Pumpe KNF Freiburg, Germany 

Magnetstirrer MR 3002 Heidolph, Schwabach, Germany  

Mettler H20T precicion scale Mettler Toledo, Gießen, Germany  

Milli-Q water purification Millipore, Schwalbach, Germany  

Mini-PROTEAN Tetra Cell  Biorad, München, Germany 

Msc-Advantage Thermo Scientific, Dreieich, Germany  

NanoDrop (ND-1000) Kisker-Biotech, Steinfurt 

Neubauer counting chamber Labor Optik, Friedrichsdorf, Germany 

PB303 DeltaRange scale Mettler Toledo, Gießen, Germany 

pH-Meter 766 Calimatic Knick, Berlin, Germany  

pipettes Gilson, Limburg-Offheim/Biohit, Rosbach, 

Germany  

Pipetus Hirschmann, Eberstadt, Germany  

Polymax 1040 Orbitalshaker Heidolph, Schwabach, Germany  

PowerPac Basic Biorad, München, Germany 

Stratagene MX 3000P Stratagene, Waldbronn, Germany  

Thermocycler Biometra T Personal Biometra GmbH, Göttingen, Germany 

Thermomix ME waterbath B.Braun Biotech, Melsungen, Germany  

Thermomoxer comfort Eppendorf, Hamburg, Germany  

Transblot SD Semi-Dry Transfer Cell Biorad, München, Germany 

VV3 vortex VWR, Darmstadt, Germany  

 

 
  

http://www.lonza.com/products-services/bio-research/transfection/nucleofector-devices/4d-nucleofector-system.aspx
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Table 22 Reagents 

β-mercaptoethanol Sigma-Aldrich, Steinheim, Germany 

2-propanol Merck, Darmstadt, Germany 

7-AAD Invitrogen, Darmstadt, Germany 

A549 cells LGC, Wesel, Germany 

Agarose  Fermentas, St. Leon-Rot, Germany  

Amersham Hyperfilm ECL GE life sciences, Freiburg, Germany 

Ammoniumpersulfat (APS)  Promega, Mannheim, Germany  

Ampicillin Sigma-Aldrich, Steinheim Germany 

BamHI Fermentas, St. Leon-Rot, Germany  

BioMax MR autoradiography film Kodak (distributed Sigma-Aldrich) 

Bovine serum albumin (BSA)  Sigma-Aldrich, Steinheim, Germany 

Bromphenolblue Merck, Darmstadt, Germany  

Complete Protease Inhibitor  Roche, Basel, Switzerland 

Cytotoxicity Detection Kit (LDH) Roche, Basel, Switzerland (#11644793001) 

Dexamethasone Sigma-Aldrich, Steinheim, Germany 

DMEM 1.5 g/l glucose, stable L-glutamine PAA, Cölbe, Germany 

DMEM 4.5 g/l glucose, stable L-glutamine PAA, Cölbe, Germany  

DNAse/RNAse free water Gibco, Darmstadt, Germany  

DPBS with Ca2+ and Mg2+ PAA, Cölbe, Germany 

DPBS without Ca2+ and Mg2+ PAA, Cölbe, Germany 

E. coli JM 109 Promega, Mannheim, Germany 

EcoRI Fermentas, St. Leon-Rot, Germany 

Ethanol 70 %, 96 % and 100 % Otto Fischer GmbH, Saarbrücken, Germany  

Ethylene-diamin-tetraacetic-acid (EDTA)  Sigma-Aldrich, Steinheim, Germany  

EZ-linked-sulpho-NHS-LC-biotin Thermo Scientific, Dreieich, Germany 

F12 supplement solution Gibco, Darmstadt, Germany 

Filter paper  Biorad, München, Germany 

Glycerol  Sigma-Aldrich, Steinheim, Germany  

Glycine Sigma-Aldrich, Steinheim, Germany 

Goat anti-rabbit IgG Cell signaling, Frankfurt am Main, Germany  

H441 cells LGC, Wesel, Germany 

HCl  Carl Roth, Karlsruhe, Germany  

Igepal Sigma-Aldrich, Steinheim, Germany 

iScript cDNA Synthesis Kit Biorad, München, Germany 

iTaq Sybr Green Supermix with ROX  Biorad, München, Germany 

ITS Sigma-Aldrich, Steinheim, Germany 

Kanamycin Sigma-Aldrich, Steinheim, Germany 

KCl  Merck, Darmstadt, Germany  
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KH2PO4 Merck, Darmstadt, Germany 

LB agar Invitrogen, Darmstadt, Germany 

LB-medium Invitrogen, Darmstadt, Germany 

Lipofectamine 2000 Invitrogen, Darmstadt, Germany 

Lipofectamine RNAiMAX Invitrogen, Darmstadt, Germany 

Methanol  Sigma-Aldrich, Steinheim, Germany 

Na+-deoxycholate Sigma-Aldrich, Steinheim, Germany 

Na+-Pyruvat Sigma-Aldrich, Steinheim, Germany 

Na+-Selenit Sigma-Aldrich, Steinheim, Germany 

Na2HPO4 Merck, Darmstadt, Germany 

Na3VO4  Sigma-Aldrich, Steinheim, Germany  

NaCl Carl Roth, Karlsruhe, Germany  

NaHCO3 Merck, Darmstadt, Germany  

NaN3 Carl Roth, Karlsruhe, Germany  

NaOH Carl Roth, Karlsruhe,Germany  

Natriumdodecylsulfat (SDS)  Promega, Mannheim, Germany 

Opti-MEM Gibco, Darmstadt, Germany 

P3 Primary Cell 4D-Nucleofector X Kit Lonza, Köln, Germany 

pcDNA3.1V5/Hyg Invitrogen, Darmstadt, Germany 

pCMV-HA-C Clontech, Saint-Germain-en-Laye, France 

pCMV-tag 3 Clontech, Saint-Germain-en-Laye, France 

Penicillin/Streptomycin-mixture PAA, Cölbe, Germany 

Pfu Ultra DNA polymerase Agilent, Böblingen, Germany 

Polypropylene reaction tube 14 ml BD Falcon, Heidelberg, Germany  

Primer Metabion, Martinsried, Germany  

Protein A/G agarose beads Santa Cruz, Heidelberg, Germany  

Q5 DNA polymerase New England Biolabs, Frankfurt am Main, 

Germany 

Qiagen Plasmid Maxi-Kit Qiagen, Hilden, Germany  

Quick-Start Bradford solution Biorad, München, Germany 

QuikChange Site-Directed Mutagenesis Kit Agilent, Böblingen Germany  

Rabbit anti-mouse IgG Thermo Scientific, Dreieich, Germany 

RNeasy-Kit Qiagen, Hilden, Germany 

RPMI 1640 Gibco, Darmstadt, Germany 

SafeSeal PCR reaction tubes 0.5 und 1.5 ml Sarstedt, Nümbrecht, Germany  

SF Cell Line 4D-Nucleofector X Kit Lonza, Köln, Germany 

Snapwell permeable supports #3801 Corning, (Sigma-Aldrich, Steinheim, Germany) 

SOC Medium Invitrogen, Darmstadt, Germany 

Streptavidin-agarose beads Thermo Scientific, Dreieich, Germany 

SuperSignal West Femto substrate Pierce, Bonn, Germany  

http://www.biocompare.com/9956-Assay-Kit/1836576-SF-Cell-Line-4DNucleofectortrade-X-Kit-L/
http://www.biocompare.com/9956-Assay-Kit/1836576-SF-Cell-Line-4DNucleofectortrade-X-Kit-L/
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SuperSignal West Pico substrate  Pierce, Bonn, Germany  

SYBR Safe  Invitrogen, Darmstadt, Germany 

T4 DNA Ligase Promega, Mannheim, Germany  

Tetramethylethylendiamin (TEMED)  Carl Roth, Karlsruhe, Germany  

Transwell supports #353090 BD Falcon, Heidelberg, Germany 

Tris Base  Sigma-Aldrich, Steinheim, Germany 

Triton-X 100  Sigma-Aldrich, Steinheim, Germany 

Trypsin/EDTA PAN, Aidenbach, Germany 

Tween 20  Sigma-Aldrich, Steinheim Germany 

Wizard SV Gel and PCR Clean-Up System Promega, Mannheim, Germany 
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Table 23  Buffers 

Running buffer westernblot 1 l        

30 g Tris     

144 g Glycin     

100 ml SDS (10 %)     

Adjusted with millipore water to 1 l         

      

Transfer buffer 1 l        

                  2.45 g Tris     

                 12.20 g Glycin     

                 20.00  %               Methanol [vol/vol]     

Adjusted with millipore water to 1 l      

      

Washing buffer Tris buffered saline TBS-T pH 7.6; 1 l              

                  1.00    ml            Tween 20      

                2.42 g Tris      

                 8.00 g NaCl      

Adjusted with millipore water to 1 l, pH corrected to 7.6    

      

Sample buffer 2 x; 50 ml   10 x   

5 ml Tris 1 M; pH 6.8 6.25 ml Tris 1 M; pH 6.8 

20 ml SDS (10 %)  2.50 ml SDS (20 %) 

10 ml Glycerol 5.00 ml Glycerol (99 %) 

  Bromphenol blue   Bromphenol blue 

Adjusted with millipore water to 50 ml         

      

Stripping buffer 25 ml   

2.5 ml Glycin 1 M    

22.5 ml H2O    

250 µl HCl (37 %)     

Incubation for 1 h at room temperature with agitation   

      

Blocking buffer       

5 g  Skim milk powder      

100 ml Washing buffer     
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m-RIPA lysis buffer 100 ml     

10 ml Tris 0.5 M; pH 8   

3 ml NaCl 5 M     

1 ml Igepal (NP-40 substitute)   

1 g Na+-Dexycholat    

Adjusted with millipore water to 100 ml       

 

Tris acetic acid EDTA buffer (TAE), DNA electrophoresis 1 l      

                    4.8 g Tris    

                  57.0 ml Acetic acid    

                100.0 ml 0.5 M EDTA pH 8    

Adjusted with millipore water to 1 l, pH 8    
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3. Results 

3.1.  Functional Ussing chamber measurements 

3.1.1.  pH changes of the buffer have no influence on alveolar 

Na+-transport  

To elucidate the impact of hypercapnia on alveolar Na+-transport, Ussing chamber 

experiments were performed. This technique measures the electrogenic transport of ions 

through flat tissue like bladder, frog lung, and skin or through artificial cell-monolayer.   

The electrical current detected (short circuit current (Isc)) is the sum of all ion transport 

processes. Applying pharmacological inhibitors specific for individual ion transporters or 

channels makes it possible to fractionate the Isc into different elements. Common inhibitors 

used to study Na+-transport are amiloride, that blocks epithelial Na+-channels and ouabain, 

which inhibits the Na+,K+-ATPase.   

Due to the effect of CO2 on the pH of the buffer, all solutions were buffered with Tris to 

compensate for changes of pH, when bubbled with CO2-containing gas-mixtures. Protons 

respectively acidification have been shown to regulate ENaC (Awayda et al., 2000; Collier 

and Snyder, 2009), so the first set of experiments was performed to show that the slight 

changes of pH caused by reperfusion of the solutions that were expected in this open 

system did not alter the amiloride-sensitive current IAmi. A drop of the pH from 7.4 to 7.2 

and an increase from 7.2 to 7.6 did not result in a significant change of IAmi (Figure 4). 

Controls received a constant pH buffer and time-matched amiloride applications. 
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Figure 4 Amiloride-sensitive current during pH variations 

The amiloride-sensitive current (IAmi) of polarized H441 cell monolayers was measured during different 

acidities of the Ringer‘s solution (pH: 7.2; 7.4; 7.6) in voltage clamp mode. Controls were perfused with 

Ringer‘s solution with a constant pH of 7.4 and received time-matched amiloride applications (bars show 

mean ± SEM; n = 4; *: P < 0.05). 
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3.1.2.  Hypercapnia reduces total INa 

Due to the complexity of this Ussing chamber-setting with every solution bubbled 

separately, hypercapnia could only be applied at one compartment at a time. When 

hypercapnic solution was administered at the apical compartment for 20 minutes, a 

significant decrease of IAmi was detected (Figure 5) that was absent when administered at 

the basolateral compartment (Figure 6).  

 

 

Figure 5 Apical application of hypercapnic solution 

H441 cells were exposed to normocapnic and hypercapnic Ringer‘s solution and the IAmi measured before 

and after 20 min (ami: amiloride 10 µM). Hypercapnic solution was administrated only from the apical side 

(graphs show mean ± SEM; n = 4; *: P < 0.05). 

 

 

Figure 6 Basolateral application of hypercapnic solution  

H441 cells were exposed to normocapnic and hypercapnic Ringer‘s solution and the IAmi measured before 

and after 20 min (ami: amiloride 10 µM). Hypercapnic solution was administrated only from the basolateral 

side (graphs show mean ± SEM; n = 4; *: P < 0.05).  
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3.1.3. Membrane-permeabilization experiments 

The epithelial Na+-transport is mainly the product of the activity of the Na+,K+-ATPase 

located in the basolateral membrane of polarized epithelial cells and the conductance of the 

Na+-channels, situated in the apical membrane. To locate the element(s) affected by 

hypercapnia, permeabilization studies were performed. To target only the basolateral 

membrane, all amiloride-sensitive channels were blocked, the apical membrane 

permeabilized by the antimycotic nystatin and the ouabain-sensitive current IOua measured 

after 20 min hypercapnia.  

 

 

 

 

 

 

 

During apical permeabilization a large decrease in IOua was detected indicating a strong 

inhibition of the Na+,K+-ATPase during hypercapnia (Figure 8). This is in line with 

previous findings (Briva et al., 2007; Vadász et al., 2008, 2012).  

 

Figure 7 Principle of apical and basolateral membrane permeabilization  

During apical permeabilization, Na+-channels are inhibited by amiloride and the apical membrane is 

permeabilized by nystatin, enabeling to directly measure the activity of the Na+,K+-ATPase, located in the 

basolateral membrane. During basolateral membrane permeabilization, the Na+,K+-ATPase is inhibited by 

ouabain and the basolateral membrane permeabilized by nystatin. Since the Na+,K+-ATPase usually creates 

the Na+-gradient, but is now deactivated, an artificial Na+-gradient has to be generated by the investigator. 



 Results 45 

 

 

Figure 8 Ouabain-sensitive Na+-transport during short-term hypercapnia.  

Amiloride-sensitive Na+-channels were blocked using amiloride and the apical membrane was permeabilized 

with nystatin. Next, control or hypercapnic solution was applied for 20 min and the ouabain-sensitive current 

IOua measured (graphs show mean ± SEM; n = 4; *: P < 0.05).  

 

Permeabilization of the basolateral membrane is more complex compared to 

permeabilization of the apical membrane. The Na+,K+-ATPase is inhibited by ouabain and 

the basolateral membrane permeabilized by nystatin. Since the Na+,K+-ATPase creates the 

driving force for Na+ to enter the cells, a Na+-gradient had to be generated artificially. To 

prevent a falsification of the current by Cl--ions and to stabilize the electrogenic gradients, 

Cl- -ions were substituted with the also negatively charged gluconate. The resulting IAmi, in 

the control as well as in the hypercapnia treated cells, was extremely small (Figure 9). No 

significant changes between control and hypercapnia-treated cells were detected, but due to 

the small current, an effect of CO2 can not be excluded. 
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Figure 9 Amiloride-sensitive Na+-transport during short-term hypercapnia 

Ouabain-sensitive Na+-transporter were inhibited with ouabain (1 mM) and the basolateral membrane 

permeabilized with nystatin (150 µM) and an artificial Na+-gradient was generated. 20 min later, control or 

hypercapnic solution was also applied for 20 min and the amiloride-sensitive current measured (graphs show 

mean ± SEM; n = 4; *: P < 0.05).  

3.1.4.  Long-term hypercapnia affects the apical Na+-

conductance 

To eliminate possible side-effects of the combination of additional Tris-base, artificial Na+-

gradient and Cl--substitution and to elucidate the effect of chronic hypercapnia, H441 cells 

were incubated in Normocapnia- or Hypercapnia-medium for 24 h and the 

permeabilization was repeated with the buffers published previously (Ramminger et al., 

2004; Woollhead et al., 2005) without any buffering and CO2. Interestingly, the IAmi of 

cells that were cultured in hypercapnic conditions was significantly reduced compared to 

control cells, even after approximately 30 min without CO2 (Figure 10).  

A reduction of the IAmi can either be caused by a reduced open-probability (Po) or a 

reduced number of channels in the membrane (N). Since the effect of 24 h hypercapnia 

was so stable, a change of Po alone is most unlikely. Thus the endocytic pathway was 

targeted to investigate a contribution of the change of retrieval of channels from the 

membrane. Endocytosis of ENaC has been reported to be mediated by the 5' adenosine 

monophosphate-activated protein kinase (AMPK). Attempts to use the AMPK-inhibitor 

compound C or the proteasome-inhibitor MG-132, that is also commonly used to block 

endocytosis of transmembrane proteins (Gentzsch et al., 2010; Malik et al., 2006) prior to 

subjecting the cells to hypercapnia resulted in significant cell death, probably because of 

the long incubation times of more than 24 hours.  
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Figure 10 Effect of 24 h CO2 on Na+-conductance  

H441 cells were incubated in normo- and hypercapnic conditions for 24 h. Apical permeabilization was 

performed immediately and the amiloride-sensitive current was determined (mean  ± SEM; n = 3; *: P < 

0.05).  
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3.2.  rtPCR: Transcription levels of ENaC during hypercapnia 

To rule out a regulation of ENaC-subunits on the transcriptional level H441 cells were 

exposed to normocapnia and hypercapnia and mRNA was isolated after 6 or 24 hours 

(Figure 11). Real-time rt-PCR revealed no change in transcription after 6 hours for all 

human ENaC subunits. After 24 hours only the expression of the γ-subunit was 

significantly decreased, although probably not to a biologically relevant extent (Figure 

12).  

 

Figure 11 Transcription levels of ENaC subunits after 6 h CO2 

Native H441 cells were exposed to control conditions (40 mm CO2) or hypercapnia (110 mm CO2), pH 7.4 

for 6 h prior to mRNA isolation and subsequent rtPCR (Graphs represent mean, whiskers mark the 5-95 

percentile (n = 3) no significant differences were detected).   
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Figure 12 Transcription levels of ENaC subunits after 24 h CO2 

Native H441 cells were exposed to control-conditions (40 mm CO2) or hypercapnia (110 mm CO2), pH 7.4 

for 24 h prior to mRNA isolation and subsequent rtPCR (Graphs represent mean, whiskers mark the 5-95 

percentile; n = 3; unpaired Student’s t-test compared to control; *: P < 0.05).  
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3.3.  Expression cloning of modified human ENaC constructs  

3.3.1. β-ENaC 

Since a pharmacological manipulation of H441 cells during 24 hours hypercapnia was not 

feasible in the Ussing chamber setting, a different model had to be established. Mall et al. 

reported that overexpression of β-ENaC is sufficient to increase the ENaC-complex 

membrane abundance and to cause a cystic-fibrosis-like phenotype in mice (Mall et al., 

2004). Thus, a modified β-ENaC was cloned and overexpressed in alveolar epithelial cells 

to enhance surface abundance of all ENaC-subunits. To improve the antibody recognition 

of the overexpressed β-ENaC construct, the epitope-tag V5 was added to the C-terminus 

(Figure 13).  

 

 

Figure 13 β-subunit of the human epithelial Na+-channel was cloned from human lung tissue  

The coding region corresponds to the NCBI Reference Sequence NM_000336.2. The epitope-tag V5 was 

added at the C-terminus, resulting in a predicted size of 96 kDa.  
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3.3.2.  Cell surface abundance of β-ENaC-V5 

To assess whether experimental difficulties using the buffered Ussing chamber solution 

rendered the effect of CO2 on ENaC invisible, the newly generated β-ENaC-V5 construct 

was transfected in A549 cells and the cell surface abundance and total cellular content was 

investigated by cell surface biotinylation. After one hour of hypercapnia no changes of the 

surface or total ENaC fraction were detected (Figure 14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Short-term effect of CO2 on β-ENaC-V5 

A549 cells were transiently transfected with β-ENaC-V5. 24 h later the cells were subjected to normocapnia 

or hypercapnia for 1 hour and the β-ENaC-V5-levels were determined. (A) Biotin-streptavidin pulldown was 

performed to assess cell surface abundance of β-ENaC-V5. (B) Whole cell lysate of the same samples was 

blotted to determine total β-ENaC-V5 content (n = 4). 

 

 

 

 

 

 

 

E-Cadherin 

β-ENaC-V5 

A 

E-Cadherin 

β-ENaC-V5 

B 



 Results 52 

 

In the functional studies a significant decrease of the INa was detected (Figure 10). 

Consequently, cell surface expression of β-ENaC-V5 was also investigated after 24 h 

hypercapnia. In line with the functional studies a marked decrease of the cell surface 

abundance could be observed that was not caused by generally lower total ENaC content 

(Figure 15). Pharmacological intervention using the endocytosis and proteasome inhibitor 

MG-132, the lysosome inhibitor chloroquine or the AMPK-inhibitor Compound C 2 hours 

before and during the 24 h hypercapnia incubation resulted again in significant cell death.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Long-term effect of CO2 on β-ENaC-V5 

A549 cells were transiently transfected with β-ENaC-V5. Four hours later, cells were subjected to 

normocapnic (control) conditions or hypercapnic (CO2) for 24 h. (A) Biotin-streptavidin pulldown was 

performed to assess cell surface abundance of β-ENaC-V5. (B) Whole cell lysate of the same samples was 

blotted to determine total β-ENaC-V5 content (n = 5; *: P < 0.05).  

 

 

 

 

 

 

co
ntro

l
CO2

0.0

0.5

1.0

1.5

*

E-Cadherin 

β-ENaC-V5 

A 

co
ntro

l
CO2

0.0

0.5

1.0

1.5
ns.

E-Cadherin 

β-ENaC-V5 

B 



 Results 53 

 

3.3.3.  Expression cloning of human α- and γ-ENaC 

Against the above mentioned evidence from the literature (chapter 1.3) no acute regulation 

of β-ENaC was observed. A possible explanation for that could be a different processing of 

individually expressed ENaC-subunits compared to a system in which all three subunits are 

expressed simultaneously, as reported for other cell types (Hughey et al., 2003). Thus, α- 

and γ-ENaC constructs were generated. Since both subunits undergo proteolytic processing 

during maturation, each subunit was tagged individually at the N-, as well as the C-

terminus with different epitope tags (Figure 16) to provide a powerful tool for studying all 

aspects of post-translational ENaC-regulation, including but not limited to ubiquitination, 

phosphorylation and binding to the E3-ubiquitin ligase Nedd4-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Overview about all ENaC-plasmids that were generated as part of this study  

Expected sizes are given of the full length (top) as well as of the mature fragments (bottom) with the genetic 

modifications. Modified from R. Hughey (Hughey et al., 2003) 
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Figure 17 Expression pattern of α-ENaC before and after site-directed mutagenesis 

The α-ENaC clone number 9 contained two single nucleotide polymorphisms (A334T, T663A), compared to 

the reference sequence NM_001038 (genebank, NIH), which were corrected using site-directed mutagenesis. 

The modified clone 9.2.1 contains a coding region identical to the reference sequence and does not exhibit 

alternative cleavage pattern when expressed individually in A549 cells (antibody used: anti-GFP, Roche).   

 

α, β and γ-ENaC could be expressed in A549 cells. The membrane abundance however 

was very variable and in many cases too low to be detected, even with the most sensitive, 

non-radioactive detection methods available for western-blotting. Further, cotransfection 

with plasmid amounts in the sublethal range resulted in only very low expression levels of 

α and γ ENaC.  

Trafficking of fully assembled ENaC-complexes to the cell membrane that are insoluble in 

the generally used non-ionic detergent-containing lysisbuffers were reported for different 

types of kidney cells (Prince and Welsh, 1998). Additionally a localization of ENaC in 

lipid rafts has been described in the mouse and frog kidney cells, also rendering it insoluble 

in the above mentioned buffers (Hill et al., 2007). An experiment was designed to evaluate, 

whether this was also the case for A549 cells, which exhibit formation of lipid rafts (Song 

et al., 2007). α-ENaC alone and α, β and γ-ENaC together were transfected in A549 cells 

and the abundance of α-ENaC in the soluble fraction was compared to the insoluble 

fraction.  
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As can be seen in Figure 18 α-ENaC was expressed when transfected alone and together 

with β and γ (A: lanes 2a, 3a; whole cell lysate, Triton X-100 soluble). An 

immunoprecipitation was performed to compare the abundance of α-ENaC in the Triton X-

100 soluble (b) and insoluble fraction (c) of the same cell lysate. Only faint bands were 

detected in the insoluble fraction (lane 2c), suggesting ENaC not to be present in lipid rafts 

in A549 cells. As a positive control for succesful immunoprecipitation also the soluble 

fractions were subjected to immunoprecipitation (b), which led to a distinct pull down (A 

and B; lanes 2b, 3b) that was detectable even after a brief exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 ENaC localisation in soluble fraction and in lipid rafts in A549 cells. 

 Cells were transfected without plasmid (1), α-ENaC-YFP alone (2) or α-ENaC-YFP, β-ENaC-V5, γ-ENaC-

HA combined (3) and lysed in TBS containing 1% Triton X-100. The insoluble pellet was boiled in 

solubilization buffer containing SDS and β-mercaptoethanol and diluted in TBS containing 1% Triton X-100. 

Total cell lysate is presented in the first three lanes (a, 50 µg protein). Immunopreciptation was performed 

either from the Triton X-100- (b, ~ 600 µg protein ), or the SDS-soluble fraction of the same amount of cells 

(c). Two different exposure times are shown to focus either on the total cell lysate (A) or the 

immunoprecipitated fraction (B). Depicted is a representative of three independent experiments.  
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Protein-turnover especially of ENaC is significantly influenced by the system used and the 

culture conditions. Before using the system to study the effect of CO2, the baseline stability 

of cell surface α-ENaC was determined by pulse-chase experiments. For that, all 

membrane proteins are labeled with the membrane impermeable EZ-linked-sulpho-NHS-

LC-biotin and the cells incubated again in preequilibrated medium for the duration 

indicated. After that the cells were lysed and remaining α-ENaC precipitated with 

streptavidin-agarose beads. A half-life of α-ENaC, inserted in the plasma-membrane of 

about 2 h was measured. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 19 Stability of cell surface α-ENaC-YFP transfected in A549 cells 

All proteins located in the plasma-membrane were labeled with biotin. The cells were then covered with 

preequilibrated medium and returned to the cell culture incubator. After the indicated time-points, cells were 

harvested, subjected to biotin-streptavidin pulldown and the remaining fraction of labeled α-ENaC-YFP was 

determined by western-blotting (means ± SEM, n = 3). 

 

If CO2 was a stimulus for ENaC to be retrieved from the plasma-membrane, decreased 

stability of the membrane fraction was to be expected. To adress this, membrane-proteins 

were biotinylated as described above, but the cells incubated in normocapnia or 

hypercapnia medium for 2 and 4 hours (Figure 20). 
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Observed was a slightly but not significantly decreased stability of α-ENaC during 

hypercapnia (Figure 20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Stability of surface α-ENaC during normocapnia and hypercapnia 

All membrane proteins were labeled with biotin. The cells were then covered with preequilibrated 

normocapnia (N) or hypercapnia (H) medium and returned to the cell culture incubator. After the indicated 

time-points, cells were harvested, subjected to biotin-streptavidin pulldown and the remaining fraction of 

labeled α-ENaC-YFP was determined by western-blotting (mean ± SEM, n = 3). 

 

 

Degradation of ENaC is catalyzed by the E3-ubiquitin ligase Nedd4-2 (Itani et al., 2009; 

Kabra et al., 2008; Malik et al., 2005), and therefore it is anticipated, that its genetic 

inhibition should increase the total levels of ENaC and prevent the accelerated degradation 

during hypercapnia.  
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As depicted in Figure 21, the genetic inactivation of NEDD4-2 was highly effective. 

 

 

 

 

 

 

 

Figure 21 Nedd4-2 dependent cell surface expression of α-ENaC-YFP 

(A) Nedd4-2 was efficiently downregulated by siRNA transfection (representative blot of 5 experiments).  

 

The faster degradation of α-ENaC-YFP during hypercapnia was completely abolished 

when Nedd4-2 was silenced. Still, degradation of ENaC located in the plasma membrane 

was observed and the rate of degradation did not differ from cells that were expressing 

Nedd4-2 (Figure 22) . This finding did not correspond to the efficiency of the knockdown, 

which was reproducibly highly efficient.  
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Figure 22 CO2 dependent stability of α-ENaC-YFP during silencing of Nedd4-2.  

The E3-ligase Nedd4-2 was silenced by siRNA transfection. The stability of α-ENaC-YFP was then 

compared after 4 hours of normocapnia or hypercapnia in the cell surface (A) and in the whole cell lysate (B) 

(mean ± SEM, n = 3).   

 

3.3.1. Transfection of H441 cells 

Compared to A549 cells, H441 cells are more widely used for studying Na+-transport 

(Albert et al., 2008; Ramminger et al., 2004). Transfection of H441 cells with a new high-

end 4D-Nucleofector-system was established to circumvent the poor antibodies raised 

against the endogenous ENaC subunits. The process called Nucleofection is based on 

electroporation and provides an elegant and fast technique for delivering nucleic acids 

directly into the nucleus.  

After optimization of the Nucleofection H441 cells could efficiently be transfected ( 

 

 

Figure 23). A mean transfection efficiency with the GFP control-plasmid pMaxGFP of  ~ 

60 % was achieved (Figure 24).   
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Figure 23 GFP expression of transfected H441 cells 

H441 cells (1 x 106 cells/reaction) were nucleofected with and without 4 µg pMaxGFP. Depicted is a typical 

of seven independent experiments. 
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Figure 24 Transfection efficiency of H441 cells achieved by nucleofection 

H441 cells (1 x 106 cells/reaction) were nucleofected with 4 µg pMaxGFP plasmid and the efficiency was  

determined by flow cytometry gating for GFP-positive cells (mean ± SEM; n = 3; ****: P < 0.0001 ).  



 Results 61 

 

 
 

 

 

 

Cotransfection of α, β and γ-ENaC was also succesful, as shown in Figure 26. Every 

subunit was detected in the same cell lysate using the subunit specific antibodies (α: GPF, 

β: V5, γ: HA). The transfection was transient, with fusion proteins being detectable after 

24 hours but with a marked decrease in whole cell protein levels already after 48 hours.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 Cotransfection of α β and γ-ENaC in H441 cells 

H441 cells were cotransfected without DNA (c) and with α-ENaC-YFP, β-ENaC-V5, γ-ENaC-HA (t) and  

lysed 24 h respectively 48 h later and analysed by western immunoblotting using antibodies against the 

respective epitope tags. 
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Figure 25 Viability of H441 cells after Nucleofection 

H441 cells (1 x 106 cells/reaction) were nucleofected with 4 µg pMaxGFP plasmid, stained with the dye 7-

AAD and the viability was  determined by flow cytometry  (mean ± SEM, n = 3).  
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However, detection of α and γ-ENaC in the cell membrane remained suboptimal. To 

optimize the cell surface expression of this two subunits, α and γ-ENaC constructs, both 

eGFP-tagged for recognition with the same antibody (Figure 27), were transfected in 

H441 cells and analyzed (Figure 28). Surface expression of α and γ-ENaC was evanescent, 

considering that the pulldown was performed from 1.8 mg total protein (surface) and the 

amount of total cell lysate that was loaded (50 µg / lane; (total)). The chemiluminescent 

signal was developed with the Supersignal West Femto substrate for maximal sensitivity. 

Treatment of the cells 5 days prior transfection and after transfection with dexamethasone, 

as well as aspiration of the apical liquid to expose the cells to air, did not increase the 

expression levels within the time-course of plasmid-expression (24 hours, data not shown).   

 

 

 

 

Figure 27 Scheme of the commercially available tGFP-tagged α- and γ-ENaC constructs (Origene) 

used in this study 

Predicted sizes are given of full length forms (top) and after proteolytical processing (bottom). 
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Figure 28 Expression pattern of α and γ-ENaC in the cell-surface of H441 cells 

Combinations of different ENaC-subunits were cotransfected in H441 cells and the cell membrane 

abundance compared  to the whole cell content of α and γ-ENaC (anti-tGFP). Shown is a biotin-streptavidin-

pulldown of 1800 µg total protein (membrane) and 50 µg whole cell lysate.   
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3.3.2.  Transfection of primary rat alveolar epithelial cells 

Primary cells are in many ways superior to immortilized or tumor cell lines and represent a 

more physiologic system to study Na+-transport. However, immunological detection of 

ENaC has always been difficult in primary cells. Another caveat is that genetic 

manipulation of primary cells by gene silencing and overexpression was usually associated 

with virus-mediated gene transfer, resulting in non-conventional experimental procedures 

that were limited by safety-regulations and complex and labour-intensive virus-production. 

As a proof of principle, ATII cells were transfected with Lipofectamine 2000 basically as 

described before (2.1.2). The amount of DNA per transfection was increased to achieve the 

same ratio of DNA to cells, as with Nucleofection. Subsequently, the amount of 

Lipofectamine 2000 was adjusted. The transfection resulted in only a few transfected cells, 

as depicted in Figure 29, confirming the dogma, that ATII cells can not efficiently be 

transfected by non-viral techniques.  

 

 

Figure 29 Lipofection of ATII cells 

ATII cells were plated on 60 mm cell culture plates and allowed to recover for one day. They were then 

transfected with 15 µl Lipofectamine 2000 without or with 5 µg of the vector pMaxGFP. GFP expression 

was assessed 2 days later by fluorescence microscopy (n = 3). 

 

Nucleofection is a transfection method, specifically designed for primary cells and other 

cells that are hard to transfect. This also applies to ATII cells, therefore a protocol was 

created to transfect them. For the first time a safe, reliable and efficient transfection 

procedure based on electroporation was established as part of this thesis to genetically 

manipulate primary ATII cells. Nucleofection proved to be dose-dependent, as depicted in 
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Figure 30 and Figure 31. The transfection efficiencies for 3, 5 and 8 µg pMaxGFP were 

32.4 ± 0.5, 39.6 ± 1.2 and 48 ± 0.7 % respectively (Figure 31). 

 

 

Figure 30 Nucleofection of primary rat alveolar epithelial type II cells. 

Freshly isolated ATII cells were allowed to recover over night on a cell culture dish. The next day 3.5 x 106  

cells were transfected with up to 8 µg pMaxGFP plasmid. The negative control was pulsed as all other cells, 

but without plasmid DNA and results were visualized 48 hours after transfection.  

 

Figure 31 Transfection efficiency of ATII cells  

Freshly isolated rat alveolar epithelial type II cells were allowed to recover on culture dishes over night, 

transfected with pMaxGFP (3-8 µg/reaction) and plated onto permeable supports at a density of 3.5 x 106 per 
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filter. Efficiency was assessed two days after transfection. (A) Scatter plot of GFP expression measured by 

FACS analysis. (B) Transfection efficiency of AT II cells transfected with the indicated DNA-amounts (bars 

indicate mean ± SEM; n = 2-3; ****: P < 0.0001 ). 

 

Cells transfected with 8 µg DNA took longer to attach to the transwell-membrane after 24 

h. To rule out early cell death due to the transfection procedure lactate-dehydrogenase 

(LDH) release was measured 4 and 24 h after transfection. After 4 h a strong release of 

LDH was detected only in cells that received the electrical pulse, which returned to 

baseline 20 h later. This LDH release is the result of the formation of pores in the cell 

membrane, which are the reason for delivery of nucleic acids by Nucleofection. At the later 

timepoint no significant LDH was measured (Figure 32). Counting the number of cells 

that remained on the permeable support 48 h after Nucleofection showed no significant 

differences (Figure 33). 

However, viability was not significantly decreased 48 h after transfection compared to 

control cells as assessed by flow cytometry (Figure 34) and the cells formed electrically 

tight monolayers with a resistance of about 1200 Ω * cm2, that did not differ from each 

other (Figure 35).  
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Figure 32 Evaluation of early cytotoxicity in transfected ATII cells 

ATII cells were transfected as indicated and plated onto permeable supports. Four (patterned bars) and 24 h 

(full bars) after transfection medium was removed, cleared from cells and subjected to a lactate-

dehydrogenase assay to screen for cell damage (mean ± SEM; n = 3; *: P < 0.05). 
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Figure 34 Viability of transfected ATII cells. 

Rat alveolar epithelial type II cells were transfected with pMaxGFP, plated onto permeable supports at a 

density of 3.5 x 106 per filter. Control cells were sham transfected without the vector pMaxGFP but 

otherwise received the same treatment as cells receiving the GFP vector pMaxGFP (3-8 µg / reaction). Two 

days after transfection cells were trypsinized, stained with 7-AAD and subjected to flow cytometry. (A) 

Scatter plot of flow cytometry showing live cell population (inside the box). (B) Viability of transfected cells 

(bars indicate mean ± SEM; n = 3-4). 
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Figure 33 Cell number 48 h after Nucleofection 

ATII cells were transfected as indicated, maintained for 48 h, trypsinized and the number of attached cells

counted for each experimental condition (mean ± SEM; n = 3). 
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Figure 35 Electrical resistance 48 h after Nucleofection 

Two days after Nucleofection the electrical resistance of the ATII cell monolayer was measured with an 

volt ohm meter (bars indicate mean ± SEM; n = 3). 
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3.3.3. ENaC transfection in ATII cells 

To translate the newly established system to the initial project of studying ENaC and its 

regulation during hypercapnia α- and β-ENaC individually and αβγ-ENaC together were 

transfected into ATII cells. In the first experiments expression was evaluated two days 

after Nucleofection, but no signals were detected (not shown). When the analysis was 

carried out already after one day, relatively strong expression of individually transfected α- 

and β-ENaC was detected and faint bands in the cotransfected sample. The low amount of 

protein that was available might explain the absence of γ-ENaC (Figure 36). Of note: Due 

to the low yield of protein the biotin-streptavidin pulldown was performed from only up to 

200 µg protein and only 10-16 µg protein of whole cell lysate was blotted, as opposed to 

1.8 mg that were used for the pulldown in H441 cells (chapter 3.3.1).  

β-V5          à 
α-tGFP      à 
E-cadherin à 

membrane       ǀ      whole cell lysate 

+   +   γ-tGFP 

+ + + + β-V5 

+         
+   + pMaxGFP 

α-tGFP + + + 

Figure 36 Pilot experiment for transfection of ENaC subunits in ATII cells 

Freshly isolated ATII cells were allowed to recover from isolation for 1 day. They were then transfected 

as indicated (equal ratios of subunits, total amount of DNA always 8 µg) and expression of recombinant 

ENaC subunits was monitored 24 h after transfection. Pulldown was performed from up to 200 µg protein 

and whole cell lysate shows 10 – 16 µg protein.  
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4. Discussion 

4.1.  Hypercapnia modulated regulation of alveolar Na+- transport  

The alveolar fluid transport is tightly regulated in the intact lung due to secondary active 

Na+-reabsorption creating an osmotic gradient for water to follow passively. The two key 

molecules involved in Na+-transport are the Na+,K+-ATPase that actively exchanges Na+ 

for K+, thus lowering the intracellular Na+-concentration. This drives Na+ from the alveolar 

space to passively enter the cells through ENaCs (Matthay et al., 2002).   

During different respiratory diseases ventilation is impaired leading to a reduced 

elimination of CO2 in the body, a condition called hypercapnia. Hypercapnia can also be a 

consequence of lung protective ventilation during ARDS (Hickling et al., 1994).  

Despite its immunoregulatory function hypercapnia has been reported to negatively affect 

alveolar fluid transport independent of pH. This finding has been reported from rats in 

vivo, isolated rat lungs as well as from isolated epithelial cells (Briva et al., 2007). The 

underlying mechanism is a CO2 - triggered rapid increase in cytosolic Ca2+. This leads to a 

Ca2+-calmodulin dependent kinase kinase β- (CaMKK-β) mediated phosphorylation of the 

α-subunit of AMPK. One of the distal elements of this signaling cascade is protein kinase-

C-ξ (PKC-ξ) which directly phosphorylates the α-subunit of the Na+,K+-ATPase at serine-

18, leading to its endocytosis (Briva et al., 2007; Vadász et al., 2008). Phosphorylation of 

serine-18 has been shown to induce ubiquitination of the α-subunit of the Na+,K+-ATPase 

during hypoxia, so this is likely also the case in hypercapnia (Dada et al., 2007). Activation 

of AMPK was also shown to be dependent on extracellular-signal regulated kinase (ERK) 

activation. 

In the present study, the effect of hypercapnia on Na+-transport in H441 cells has been 

tested in Ussing chamber experiments. To rule out any contribution of pH changes, an 

initial experiment was performed, showing that variations of pH in the range of 7.2 – 7.6 

did not influence the Isc. All other experiments were performed at a pH of 7.4. In line with 

the investigations mentioned above, hypercapnia resulted in a pronounced decrease in the 

total Na+-transport which was caused by a strong inhibition of the Na+,K+-ATPase activity, 

as assessed by membrane permeabilization, supporting the established role of the Na+,K+-

ATPase in hypercapnia. Interestingly this decrease was only present when hypercapnic 

solution was perfused in the apical compartment.  
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An explanation could be a distinguished difference in the CO2 permeability of the apical 

and basolateral membrane caused for example by different subsets of transmembrane 

proteins, in especially gas permeating channels. Aquaporin 1 (AQP1) was demonstrated to 

be a physiologically relevant candidate to conduct CO2 (Boron, 2010; Musa-Aziz et al., 

2009; Wang et al., 2007) but its significance as a gas channel is highly controversial. A 

study using AQP1 deficient mice did not yield any differences in the CO2 transport rate of 

the alveolo-capillary barrier (Fang et al., 2002). Additionally, AQP1 in the lung is 

predominantly expressed in endothelial cells (Jiao et al., 2002; King and Agre, 2001; King 

et al., 2002), so a potential differential expression pattern of AQP1 in the apical and 

basolateral membrane of H441 cells cannot be the reason for the absence of basolateral 

CO2 mediated modulation of INa. Other channels that conduct CO2 are AQP4 and AQP5 

and AQP 5 is indeed expressed in ATI cells (Verkman et al., 2000). Another possibility 

could be an interference of the permeable support with the exposition of the cells to CO2. 

These possibilities are currently under investigation in our laboratory.  

Interestingly, many elements of the signaling cascade that induces downregulation of the 

Na+,K+-ATPase are also known direct or indirect regulators of ENaC function. 

 
 Figure 37 CO2 induced signaling cascade leading to endocytosis of the Na+,K+-ATPase 

Elements proven to regulate ENaC are highlighted in red. 
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ERK has been shown to phosphorylate β- and γ-ENaC thereby mediating interaction with 

Nedd4-2 ultimately resulting in endocytosis and reduction of P0 (Shi et al., 2002). Also α-

ENaC expression and additionally alveolar Na+-transport have been shown to be regulated 

in an ERK dependent manner (Frank et al., 2003). 

PKC mediates liquid regulation in the rat lung (Soukup et al., 2012). Also other groups 

report PKC-dependent ENaC regulation (Awayda et al., 1996; Shimkets et al., 1998; 

Stockand et al., 2000), but the CO2-activated ξ-isoform has never been directly linked to 

ENaC. 

JNK on the other hand has been shown to phosphorylate the E-3 ligase Nedd4-2, which is 

known to ubiquitinate ENaC, causing its inhibition (Hallows et al., 2010). 

AMPK dependent ENaC regulation has been extensively investigated. Activation of 

AMPK leads to decreased ENaC function and thus alveolar fluid clearance (Albert et al., 

2008; Carattino et al., 2005; Myerburg et al., 2010; Woollhead et al., 2007). Two 

mechanisms seem likely to happen upon activation of AMPK: The classical way of 

interaction involves AMPK-dependent association of Nedd4-2 with ENaC subunits that 

induces retrieval of the channel from the membrane and thereby limiting Na+-transport 

(Bhalla et al., 2006; Carattino et al., 2005). Another way of AMPK-dependent ENaC 

regulation is a reduction of single-channel P0 rather than an effect on N as shown in H441 

cells (Albert et al., 2008).  

Since all these elements are activated during hypercapnia and are associated with ENaC 

regulation, the effect of CO2 on ENaC function was investigated as part of the present 

study. As mentioned above, total Na+-transport and activity of the Na+,K+-ATPase was 

reduced by CO2. Elucidating the effect on the apical Na+-permeability alone revealed no 

significant differences in normocapnia- versus hypercapnia-treated cells during up to 20 

min.  

However, when cells where incubated in normocapnic versus hypercapnic conditions for 

24 hours, a marked decrease of the apical Na+-permeability was detected, suggesting an 

immediate effect of CO2 on the Na+,K+-ATPase and a delayed effect on ENaC in this 

system as postulated previously (Woollhead et al., 2007). Further experiments revealed 

that no change of mRNA-levels of all ENaC subunits occurred after 6 and 24 hour, 

pointing to a post-translational regulation as opposed to a change in gene-regulation. 

Unfortunately a pharmacological intervention with the AMPK-inhibitor Compound C even 

in a four fold lower concentration as published by others (Albert et al., 2008) and the 

proteasome-inhibitor MG-132 was not successful due to the much longer incubation times, 
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so there were no tools left to continue with functional experiments. Efficient transfection of 

H441 cells was not yet established so another system had to be used to study the effects of 

CO2 on ENaC.  

4.2.  Molecular mechanism of CO2-regulated ENaC function 

The molecular basis of CO2-mediated ENaC regulation was characterized in A549 cells. 

These cells are derived from a human alveolar cell carcinoma and contain multilamellar 

cytoplasmic inclusion bodies and secrete surfactant similar to primary ATII cells (Lieber et 

al., 1976). A549 cells are not ideal for functional alveolar epithelial barrier studies, for 

example Ussing chamber experiments, since they exhibit low transepithelial electrical 

resistance due to a reduced synthesis of tight-junction proteins such as zona-occludens 

protein-1 (ZO-1) (Lehmann et al., 2011). But an extended range of mechanistic 

experiments is possible with this system, since genetic manipulation can be done easily.  

In the present study A549 cells were used as recipients for epitope-tagged ENaC plasmids, 

since endogenous ENaC-proteins are difficult to detect using standard western blot 

techniques. In initial suudies, only the human β-ENaC was cloned and modified with a 

small epitope V5-tag of the paramyxovirus of simian virus 5 (SV5) for better antibody 

recognition. Some evidence from the literature suggests, that regulation of only β-ENaC 

might be sufficient for a modulation of ENaC-function: In the human embryonic kidney 

cell line (HEK-293) activation of AMPK increased only the interaction of β-ENaC with 

Nedd4-2, leading to reduced Na+-transport (Bhalla et al., 2006). Further, overexpression of 

β-ENaC alone, but not α or γ in the mouse led to increased fluid reabsorption (Mall et al., 

2004). Thus the rationale of the experiments described now was to produce an ENaC 

subunit that could be detected easily and to generally increase the protein levels of all 

ENaC subunits in the plasma membrane.  

To investigate effects of hypercapnia, transfected cells were exposed to normocapnia and 

hypercapnia for 1 and 24 hours and the membrane as well as the whole cell abundance of 

β-ENaC was determined. In line with the Ussing chamber experiments no change of β-

ENaC was detected after short term exposure to CO2. After 24 hours of CO2 a marked 

decrease of β-ENaC in the cell membrane was observed that was not paralleled by a 

decrease of total β-ENaC levels.  

Also in line with the Ussing chamber experiments interference with the CO2 induced 

signaling cascade using different drugs in β-ENaC expressing A549 cells was not 

successful. Overexpression of single ENaC subunits compared to overexpression of the full 
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αβγ-ENaC might interfere with posttranscriptional modification and trafficking as reported 

by Hughey et al. for Chinese hamster ovary (CHO) and Madin-Darby canine kidney type 1 

(MDCK) cells (Hughey et al., 2003). To rule out effects of hypercapnia on the pore-

forming α- and the regulatory γ-subunit and effects that were limited to the fully functional 

ENaC complex, plasmids encoding these proteins modified with individual tags for the N- 

as well as the C-terminus were generated.  

The coding sequence for α-ENaC contained the two single-nucleotide polymorphisms 

A334T and T663A that were corrected before starting the actual experiments. Both 

polymorphisms are known, but especially T663A was important to correct, since 

degradation and activity of both polymorphisms seem to be different. A334T does not 

appear to change the physiologic properties of the channel (Tong et al., 2006; Yan et al., 

2006). As demonstrated in the present study both polymorphisms have no effect on the size 

and posttranscriptional processing of α-ENaC. 

Next, all three ENaC subunits were cotransfected in A549 cells. β-ENaC could be detected 

best, but the α- and the γ-subunit were hardly detectable, especially in the membrane. Now, 

the ENaC subunits could be recognized by antibodies, but the expression level was 

extremely low and in most cases below the detection limit. In the kidney cell lines COS-7 

and HEK-293 it has been demonstrated, that ENaC subunits form a complex that is largely 

insoluble in conventional detergent-based cell lysis buffers and that ENaC detection was 

largely improved, when the detergent-insoluble fraction was denatured in SDS and β-

mercaptoethanol containing buffer at 90 °C (Prince and Welsh, 1998). Also a trafficking of 

ENaC into lipid rafts in kidney cells of the mouse was reported, although the ratio of 

insoluble ENaC was smaller in that study compared to detergent-insoluble proteins (Hill et 

al., 2007).  

In this study, the detergent insoluble fraction of the cell lysate of A549 cells was denatured 

as published previously (Prince and Welsh, 1998), but an insoluble complex composed of 

αβγ-ENaC could not be detected. Also an incorporation of α-ENaC alone into lipid rafts 

that are solubilized by the protocol used could not be shown, indicating that differential 

solubility might be a feature of ENaC that is limited to renal cell lines.   

Coexpression of all three ENaC-subunits in A549 cells was not succesful. To test whether 

α-ENaC alone would be regulated during hypercapnia the half-life of α-ENaC located in 

the plasma membrane was determined by pulse chase experiments which revealed a half-

life of about two hours. Next, the stability of α-ENaC located in the membrane was 

compared during normocapnia and hypercapnia in which a clear trend to reduction in 



 Discussion 75 

 

hypercapnia, compared to normocapnia, was evident, although no statistical significance 

was apparent.  

Since the stability of ENaC is described to be markedly affected by its ubiquitin ligase 

Nedd4-2 (Kabra et al., 2008; Rotin and Staub, 2012; Staub et al., 2000) a genetic approach 

was chosen in which Nedd4-2 was downregulated by siRNA in A549 cells. α-ENaC was 

transfected two days later, to match its maximal expression with the time of best 

knockdown of Nedd4-2. Baseline degradation seems not to be critically dependent on 

Nedd4-2, since about 60 % of α-ENaC located in the membrane was degraded within four 

hours independently of the presence of Nedd4-2.  

To sum up all experiments involving hypercapnia and A549 cells: β-ENaC is down 

regulated after sustained hypercapnia by an unknown posttranslational mechanism, 

whereas α-ENaC might already be affected earlier, but definitive evidence is missing. 

Nedd4-2 does not seem to play an important role in ENaC degradation in A549 cells, 

neither under normal conditions nor during hypercapnia, at least not in the conditions that 

were used in this study. 

4.3.  Transfection of H441 cells – Seeking the right system 

After the addition of the 27 kDa eYFP tag, the full size α-ENaC has a predicted size of 

about 120 kDa and two fragments of approximately 60 kDa when cleaved. Interestingly, 

only the bigger of the two detected bands (~ 100 and 120 kDa) for α-ENaC matched the 

predicted size. To complement the experiments that were performed in A549 cells, another 

cell line was used for further studies. 

An alternative for A549 cells as recipients for genetically modified ENaC constructs are 

H441 cells. As mentioned above these cells were used for functional studies of ENaC 

activity, but transfection has been difficult and its efficiency in H441 cells has rarely been 

published. Low efficiencies of 5 – 10 % were achieved by Polyfect transfection agent 

(Lazrak et al., 2009). Virus-mediated gene transfer has been reported to work very well, 

since lentiviral transduction reached an efficiency of up to 100 % (Aarbiou et al., 2012). 

But virus mediated gene transfer is associated with strict safety regulations and it is very 

time and labour intensive.    

In the present study, a non-viral protocol was established to transfect H441 cells by 

Nucleofection. As shown by fluorescence microscopy and flow cytometry about 60 % of 

H441 cells expressed the eGFP encoded in the transfected control plasmid.  



 Discussion 76 

 

Using the generated ENaC plasmids encoding αβγ-subunits it was possible to transiently 

coexpress all three subunits in the same cells. Surprisingly the cleavage pattern of the α-

subunit (~ 45 and 130 kDa) was different from the one seen in A549 cells (~ 100 and 120 

kDa), although the exact same plasmid was used for transfection. The predicted sizes for 

the eYFP-tag containing cleaved and full length forms are ~ 60 and 120 kDa based on the 

observations from Hughey and Carattino (Carattino et al., 2006; Hughey et al., 2004), so 

the pattern found in H441 cells hints more to a proteolytically activated form of α-ENaC. 

Also the cleavage pattern of the γ-subunit was close to the predicted sizes of 76 and 97 

kDa, indicating that the posttranslational processing of ENaC in H441 cells was more 

likely to function properly compared to A549 cells. However, membrane expression in 

H441 cells especially of the α- and γ-subunit was extremely low, close to the detection 

limit, although large amounts of proteins were used for the pulldown. Despite extensive 

effort on optimization the system could not be fully applied to mechanistic experiments.        

Identification of ENaC on the protein level and its interpretation is generally difficult. 

Results vary widely dependent on the type of cells that is used and the culture conditions. 

And even in the same cell type the sizes for ENaC subunits can be different. Possible 

explanations are different states of glycosylation and proteolysis. A brief overview about 

endogenous ENaC sizes that have been published is provided in Table 24.  

Many investigators use overexpression of hetero- or homologous ENaC subunits, thus 

complicating the comparison of different studies. Westernblot results vary from many 

nonspecific bands and smears (Bhalla et al., 2006) to a single band for all forms of  

cotransfected αβγ-ENaC modified with the same epitope tag (Lee et al., 2009).  

 

Table 24 Reported sizes [kDa] of endogenous ENaC in different cell types (n.d.: not detected) 

Cell type Species α  β  γ Publication 

ATI/II Rat 180-200   (Johnson et al., 2002) 

H441 Human 65 / 67; 90-100 88  (Albert et al., 2008) 

ATII Rat 60; 90   (Frank et al., 2003) 

ATII Rat 65; 70-75; 97; 150 n.d. 150 (Lazrak et al., 2012) 

A6 Xenopus < 90 90 95 (Eaton et al., 2010) 

A6 Xenopus 75; 150; 180 97 95 (Weisz et al., 2000) 

A549 cells Human 100; 120 100   present work 

H441 Human 45; 130 100 76; 100  present work 

ATII Rat 120 100 n.d.  present work 
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4.4.  Novel technique for transfection of primary alveolar epithelial 

cells 

A549 and H441 cells are both immortalized cell lines that resemble alveolar epithelial 

cells, but show clear differences to freshly isolated primary cells (Lieber et al., 1976; 

Ramminger et al., 2004). So the most physiologic attempt to study the function of alveolar 

epithelia would be to use primary cells.  

To combine the generated ENaC constructs with the advantage of primary cells, a novel 

technique was established to genetically manipulate primary rat alveolar epithelial type II 

(ATII) cells.   

ATII cells are hard to transfect. This is basically due to two reasons: Primary alveolar cells 

do not proliferate, at least not to a significant extent and contain large amount of 

multilamellar bodies.  

Only a very small fraction (0.5-1 %) of freshly isolated ATII cells has been reported to be 

proliferative (Kalina et al., 1993). Many transfection methods are based on the exposure of 

the nuclear machinery to the cytosol during mitosis (Kirton et al., 2013). One example that 

was also used in this thesis for A549 cells is lipofection, a lipid based transfection 

procedure that works well in rapidly dividing cell lines. This technique incorporates 

nucleic acids into liposomes that fuse with the cell membrane, thereby releasing the nucleic 

acids into the cytosol (Felgner et al., 1987). As shown in the present thesis the transfection 

rate by Lipofection is minimal. 

Further, ATII cells contain a large amount of lamellar bodies. Even if siRNA or cDNA can 

be delivered to ATII cells, it is trapped and unable to translocate into the nucleus (Friend et 

al., 1996).  

Two publications suggest that freshly isolated ATII cells take up “naked” siRNA without 

any additional treatment (Jain 1999, Jain 2001), but this technique has not been applied and 

published any further.  

Adenovirus mediated gene transfer, the only efficient way to deliver nucleic acids to ATII 

cells, has been reported by several investigators (Berger et al., 2011; Factor et al., 1998; 

Roux et al., 2005; Vadász et al., 2012). The transfection efficiency ranges somewhere 

around 50 – 60 %. But virus infection is associated with increased safety regulations and 

the preparation of the reagents is expensive and time consuming.  

During the present study, an innovative transfection method has been established for ATII 

cells. The process called Nucleofection is based on electroporation and combines special 

nucleofection solutions with distinct electrical pulses to drive nucleic acids directly into the 
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nucleus of hard-to-transfect cell lines (Gresch et al., 2004). The best combination is 

specific for each cell type and has to be determined empirically.  

For optimization purposes an GFP expressing vector was used, so that the successfully 

transfected cells could be identified by flow cytometry and fluorescence microscopy. After 

optimization the transfection efficiency was approximately 50 %. The determination of the 

transepithelial electrical resistance showed no significant reduction of monolayer integrity 

of transfected compared to untransfected cells. Immediately after Nucleofection a transient 

release of lactate-dehydrogenase was observed in cells that received the electrical pulse. 

This LDH release was limited to the transfection procedure and can be explained by the 

formation of pores in the cell membrane that enable entry of nucleic acids (Gresch et al., 

2004). LDH release one day after Nucleofection showed no increased cell damage and also 

determination of viability two days after Nucleofection was not different from control cells 

as assessed by flow cytometry, indicating that the described procedure does not interfere 

with cell viability.     

Nucleofection of rat ATII cells has already been published before, but the transfection 

efficiency for cells harvested from adult animals, as in the present study, was only ~ 13 %. 

The authors were using an earlier device and different solutions and electrical pulses 

(McCoy et al., 2006). The present study, which has been recently published in part 

(Grzesik et al., 2013), demonstrates for the first time highly efficient transfection of 

primary rat alveolar epithelial type II cells and thus represents an important advance in 

studying physiology of primary alveolar epithelial cells. The non-viral procedure is highly 

efficient, non-cytotoxic, fast and since the electrical properties of the plated cells were not 

impaired, which indicates that nucleofected ATII cells can be used in a variety of 

experimental settings, including electrophysiology.  

The newly established Nucleofection protocol was finally used to transfect ATII cells with 

ENaC subunits. For convenience, the already described commercially available α- and γ-

ENaC constructs (Origene) were used. Preliminary results show that the cell surface 

abundance of at least α- and β-ENaC are drastically increased in ATII cells, compared to 

H441 cells. Thus, Nucleofection of epitope tagged ENaC-subunits into ATII cells could be 

the solution to overcome the poor detectability and low expression levels of ENaC in other 

systems.  
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5. Summary 

Acute respiratory distress syndrome is a life threatening condition triggered by a variety of 

pulmonary and extrapulmonary causes, that is characterized by pulmonary edema and 

subsequently impaired gas exchange. Due to lung protective ventilation strategies, its 

treatment is often associated with systemic accumulation of CO2, a condition termed 

permissive hypercapnia. Recent studies report a negative effect of CO2 on alveolar fluid 

clearance, a process mediated by its two key elements the Na+,K+-ATPase and epithelial 

Na+-channels (ENaCs). A reduced activity of the Na+,K+-ATPase during hypercapnia has 

already been demonstrated, but regulation of ENaC has never been directly linked to CO2. 

Many molecular signaling events that are activated during hypercapnia are known to 

regulate ENaC function, so the present study aimed to generate and subsequently apply 

techniques to investigate a possible contribution of ENaC to the reduction of alveolar 

epithelial fluid transport upon hypercapnia. 

ENaC function was studied in H441 cells  by Ussing chamber experiments which revealed 

no significant regulation during short term hypercapnia, but a clear reduction of ENaC 

function during sustained hypercapnia.  

To identify the signaling mechanism on the molecular level, epitope-tagged human ENaC 

constructs for the α-, β- and γ-subunit were cloned and initially expressed in A549 cells. 

Exposition to hypercapnia up to 4 hours did not significantly reduce cell surface expression 

of the ENaC-subunits, but after 24 hours, a significant decrease of β-ENaC was observed. 

Since the molecular sizes of α- and γ-ENaC expressed in A549 cells were differing from 

previously published studies, transfection of ENaC was continued in other cells. H441 cells 

are commonly used for ENaC studies, so their transfection was established, yielding an 

efficiency of about 60 %. The molecular sizes of transfected ENaC subunits matched the 

pattern that was expected, but expression levels were evanescent and too low for further 

experiments. Since ENaC detection in these two cell lines remained problematic, a novel 

methodology was applied. Since the primary site of ENaC expression in the lung are 

epithelial cells, rat primary alveolar epithelial cells type II were used as recipients for 

ENaC plasmids. Non-viral transfection of ATII cells has been inefficient in the past, but 

during the present study a protocol was generated to efficiently deliver nucleic acids to 

exactly this cell type. ENaC expression was largely increased in ATII cells, compared to 

the cell lines used, indicating that established system might be extremely useful for further 

studies involving ENaC turnover. 
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Thus, a new and highly relevant, non-viral transfection technique for primary alveolar 

epithelial type II cells was established, providing ground-breaking opportunities for future 

pulmonary research. 
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6. Zusammenfassung 

Das Atemnotsyndrom des Erwachsenen ist eine lebensbedrohliche Erkrankung,  ausgelöst 

durch eine Reihe von Faktoren, die direkt oder indirekt auf die Lunge einwirken . 

Charakteristisch für dieses Syndrom sind pulmonare Ödeme und daraus resultierend ein 

eingeschränkter Gasaustausch. Die daher benötigte künstliche Beatmung führt im Zuge 

von protektiven Beatmungsstrategien oft zu einer systemischen Anreicherung von CO2 

(Hyperkapnie). Einige Studien zeigen, dass erhöhte CO2-Level den Flüssigkeitstransport 

der Lunge einschränken. Dieser aktive Prozess wird maßgeblich durch zwei Komponenten, 

die Na+,K+-ATPase und epitheliale Na+-Kanäle (ENaCs), kontrolliert. Eine 

Beeinträchtigung der Na+,K+-ATPase durch CO2 gezeigt, für ENaCs ist dies bislang nicht 

bekannt. Einige bekannte Regulatoren von ENaCs werden jedoch während Hyperkapnie 

aktiviert. Das Ziel der vorliegenden Arbeit war, Methoden zu etablieren und anzuwenden, 

die einen möglichen Einfluss von CO2 auf ENaC zeigen. 

Funktionelle Versuche wurden an H441-Zellen mit Ussing-Kammer-Messungen 

durchgeführt. Während akuter Hyperkapnie konnte keine signifikante Regulation von 

ENaC nachgewiesen werden, jedoch war die ENaC-Funktion bei anhaltender Hyperkapnie 

deutlich verringert. 

Um die Signalwege auf molekularer Ebene zu untersuchen, wurde die α-, β- und γ-

Untereinheit des humanen ENaC kloniert, genetisch modifiziert und in A549 Zellen 

überexprimiert. Nach bis zu vierstündiger Hyperkapnie erfolgte keine Regulation von 

ENaC, jedoch wurde nach 24 Stunden eine deutlich verminderte Menge β-ENaC in der 

Zellmembran nachgewiesen. Da die Größen von α- und γ-ENaC von den bisher 

publizierten abwichen, wurden weitere Versuche in H441 Zellen durchgeführt. Die 

Transfektion dieser Zelllinie wurde etabliert und erreichte eine Effizienz von ungefähr 60 

%. Die posttranslationale Regulation der α- und γ-Untereinheiten, insbesondere die 

proteolytische Aktivierung funktionierten wie in der Literatur beschrieben, jedoch waren 

die Expressionslevel zu gering für weitere Versuche. In der Lunge werden ENaCs 

überwiegend in epithelialen Zellen exprimiert. Diese Zellen konnten bisher jedoch nicht 

effizient transfiziert werden, ohne Viren einzusetzen. In der vorliegenden Arbeit wurde 

jedoch eine effiziente Methode zur Transfektion von primären epithelialen Zellen der Ratte 

erarbeitet. Die Expression von transfizierten ENaC-Untereinheiten war in diesen Zellen 

deutlich erhöht, weswegen die  Etablierung dieses Systems ausschlaggebend für weitere 

Versuche ist. 
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Die vorliegende Arbeit beschreibt daher zum ersten Mal die nicht-virale, effiziente 

Transfektion von primären alveolaren Zellen und liefert damit ein bedeutendes neues 

Werkzeug für die Lungenforschung. 
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