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Abstract: The mitogen-activated protein kinase (MAPK) pathway is the canonical 

signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth 

Factor Receptor. Downstream of the receptors, this pathway involves the activation of a 

kinase cascade that culminates in a transcriptional response and affects processes, such as 

cell migration and adhesion. In addition, the strength and duration of the upstream signal 

also influence the mode of the cellular response that is switched on. Thus, the same 

components can in principle coordinate opposite responses, such as proliferation and 

differentiation. In recent years, it has become evident that MAPK signaling is regulated and 

fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously 

and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, 

important coordinators of the signaling response in cells. In this review, we summarize the 

recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) 

pathway scaffolders. We will not only review the well-known members of the family, such 

as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently 

identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, 

flotillin-1 and mitogen-activated protein kinase organizer 1. 
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1. MAP Kinase Signaling Cascade 

1.1. Components of the MAPK/ERK Signaling Cascade 

The process of signal transduction through receptor tyrosine kinases (RTKs) starts with an 

extracellular stimulus that activates its designated receptor and, thereby, initiates downstream signaling 

mechanisms. This can be established by a sequential phosphorylation of a three-tier kinase cascade, 

which conveys the signal to the nucleus, where a cellular response can be transcriptionally mounted. 

Protein kinases catalyze the transfer of a γ-phosphoryl group from ATP to a hydroxyl-group of a 

serine, threonine or tyrosine residue in the substrate protein. They are named after their substrate 

specificity, i.e., protein serine/threonine kinases, including dual specificity kinases, protein tyrosine 

kinases and tyrosine kinase-like proteins [1]. Since phosphorylation is a reversible process, 

phosphatases provide the counterpart to kinases [2]. 

A prime example for such a kinase cascade is the mitogen-activated protein kinase (MAPK) 

pathway, an evolutionarily highly conserved signaling mode that controls fundamental cellular 

processes, such as proliferation, cellular survival and differentiation. A deregulation of one component 

in this cascade can result in aberrant signaling events associated with a pathological outcome, e.g., 

cancerogenesis. Three protein families are central to this pathway, i.e., the extracellular  

signal-regulated kinase (ERK) family, the p38 kinase family and the c-Jun N-terminal kinase (JNK) 

family. The MAPK cascade itself is shaped by three major constituents that form the so-called  

“three-tiers”, MAPK kinase kinase (MAP3K), MAPK kinase (MAP2K) and MAPK (Figure 1). In 

addition, several other regulators, activators and scaffolding proteins can affect this cascade. 

Downstream of MAPK, both cytosolic and nuclear substrates can be phosphorylated. Located 

upstream of the MAPK tiers are, e.g., the transmembrane RTKs, integrins and G protein-coupled 

receptors (GPCR), which, upon activation, initiate the downstream signaling and therewith 

successively recruit the MAPK components to signalosomes. Ligand binding to monomeric 

transmembrane RTKs, such as epidermal growth factor receptor (EGFR), induces receptor 

dimerization [3] and results in transphosphorylation of the receptor molecules [4,5]. The link between 

the activated, phosphorylated EGFR and the GTPase Ras (p21), which resides immediately upstream 

of the starting point of the MAPK pathway, is established by two proteins, growth factor  

receptor-bound protein 2 (Grb2) and son of sevenless homologue (Sos) [6–9]. The adapter protein 

Grb2 utilizes its Src homology (SH) domains to bind to the phosphorylated tyrosine 1068 of EGFR 

(SH2 domains), as well as to a poly-proline region in Sos (SH3 domain) [10,11]. Sos is a guanine 

exchange factor (GEF) for Ras [12–14], whose GTP loading is essential for the Ras-dependent 

activation of the MAPK pathway, since dominant negative Ras mutants are unable to activate 

downstream signaling [15]. The GTP-bound, active form of Ras then directly binds to the Ras-binding 

domain (RBD) of the serine/threonine kinase Raf [16–20] and recruits it to the plasma  
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membrane [21–23]. Inactive Raf is bound to a regulatory protein, 14-3-3, in the cytosol [24], but upon  

Ras-induced membrane recruitment, Raf is released from 14-3-3 [25]. 

Figure 1. Schematic representation of the extracellular signal-regulated kinase 

(ERK)/mitogen-activated protein kinase (MAPK) cascade. Activation of receptor tyrosine 

kinases (RTK) results in recruitment of the adaptor, growth factor receptor-bound protein 2 

(Grb2) and the guanine exchange factor (GEF), son of sevenless homologue (Sos), which 

then interacts with and activates Ras. This results in activation of C-Raf and, thereby, the 

initiation of sequential phosphorylation steps of the MAPK cascade. Activated ERK can 

phosphorylate either cytosolic or nuclear substrates. 

 

Three different isoforms of the MAP3K Raf exist, namely C-Raf (also known as Raf-1), A-Raf and 

B-Raf, which provide the first tier in the MAPK cascade. Although Ras is involved in the canonical 

Raf activation, it is not essential for MAPK signaling. Some signaling pathways, e.g., protein kinase C 

(PKC) signaling, which can be activated with phorbol myristyl acetate (PMA), result in Raf activation 

without the requirement for the preceding activation of Ras [26,27]. Similar to a dominant-negative 

Ras, blocking Raf activity, e.g., by expressing a dominant negative mutant, results in an impairment of 

the activation of the MAPK pathway upon growth factor stimulation [28]. 

Upon its activation, Raf transmits the signal further downstream to MEK1/2 (MAPK/ERK  

kinases 1 and 2), which are the second tier in the MAPK cascade. MEK1/2 (also known as p45/p46) 

are activated by Raf-mediated phosphorylation at Ser218 and Ser222 (hMEK1) [29–32]. MEK1 and 

MEK2 are highly homologous dual specificity kinases, which are capable of phosphorylating both 

tyrosine and serine/threonine residues [33]. Astoundingly, however, their only known substrates are 

the MAPK ERK1/2 (p44/p42). MEK1/2 phosphorylate human ERK1 within the Thr202-Xaa-Tyr204 

motif [34–36]. Activated ERK1/2 are released from MEK1/2 and either phosphorylate target substrates 

in the cytosol or translocate to the nucleus [37–39]. In contrast to MEK1/2, ERK1/2 have a plethora of 
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substrates and are, therefore, effectors of many cellular processes, e.g., differentiation and  

proliferation [40,41]. 

1.2. Function and Regulation of ERK 

There are eight isoforms of the MAPK ERK, ERK1-8. In this review, we focus on ERK1 and 

ERK2, as their function has been extensively characterized and they represent typical components of 

the canonical MAPK signaling pathway. ERK1/2 are serine/threonine protein kinases [42] that prefer 

to phosphorylate their substrates at Ser/Thr-Pro motifs [43,44]. Recently, novel ERK1 splice variants 

that are cell-type specific and less abundant were described [45,46]. Due to their high degree of 

homology, ERK1 and ERK2 have been suggested to share most of their functions. Stimulation of cells 

generally results in activation of both ERK1 and ERK2, and it is, thus, under debate whether ERK1 

and ERK2 are functionally redundant when expressed in the same cell type or if they can indeed exert 

different functions [47–52]. Lefloch et al. suggested that functional differences between ERK1 and 

ERK2 would depend on their expression levels [48]. Von Thun et al. used a model system for tumor 

invasiveness to show that depletion of ERK2 impairs invasive migration of the cells. Strikingly, the 

invasive motility could only be rescued by ERK2, but not by ERK1, again implicating that the two 

ERK proteins exhibit functional differences [53]. However, the most striking hints for the distinct 

functions of ERK1 and ERK2 came from the respective knockout mice. While ERK1−/− mice are 

viable and exhibit relatively minor defects, e.g., in thymocyte differentiation [54], ERK2−/− mice 

already die at the embryonic stage, E8.5 [55]. This implies that in the ERK2 knockout mice, ERK1 is 

not able to compensate for the loss of ERK2. However, it has not been clarified if this is due to a lack 

of redundancy or a missing expression of ERK1 in certain cell types in the ERK2 knockout mice and, 

thus, failure to compensate for the non-existing ERK2 activity. 

The subcellular localization of inactive and active ERK1/2 reflects their broad functional effects. 

About 10–20 min after the cells are exposed to a growth factor/mitogen, active ERK1/2 translocate to 

the nucleus, where they induce gene expression and facilitate cell cycle entry. It is still under debate 

whether ERK translocates to the nucleus as a homodimer or in its monomeric form [37–39,56–58]. 

The nuclear translocation of ERK is either facilitated by passive diffusion or by an active transport 

mechanism [59]. The active translocation of ERK to the nucleus requires phosphorylation of two 

serines within its nuclear translocation signal (NTS), which is mediated by casein kinase 2 (CK2), 

binding to importin-7 and phosphorylation of nucleoporin 50 (NUP50) [60–63]. Recently, another 

protein of the nuclear pore complex, TPR (translocated promoter region) was identified as an ERK2 

substrate that influences nuclear translocation of ERK2 [64,65]. ERK is involved in several nuclear 

processes, including transcriptional regulation of gene expression. Transcription factors, such as the 

Ets-domain containing protein, Elk-1, can be phosphorylated by ERK1/2 [66–69], and the 

phosphorylated Elk-1 then initiates the transcription of immediate-early response genes (IEG), such as 

c-Fos [70,71]. Fos itself is able to subsequently activate delayed early genes (DEG), including the dual 

specificity Thr/Tyr MAPK phosphatase 6 (DUSP6). Together with some other members of the DUSP 

family, DUSP6 is known to dephosphorylate ERK1/2 with high specificity and, thus, functions as a 

negative feedback regulator of MAPK signaling [72–74]. 
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ERK1/2 do not only enhance gene transcription, but can also act as transcriptional suppressors by 

phosphorylating the Ets2 repressor factor (ERF) [75]. Furthermore, ERK1/2 can target and activate 

several nuclear receptors, e.g., estrogen receptor (ER), a receptor upregulated in breast cancer [76,77], 

or peroxisome proliferator-activated receptor gamma (PPARγ), a receptor involved in diabetes and 

obesity [78]. In addition, ERK1/2 regulate chromatin remodeling by activating DNA-binding proteins 

like poly-ADP-ribose polymerase 1 (PARP-1) [79] and modulate histone modification by phosphorylating 

mitogen and stress activated protein kinases 1 and 2 (MSK1/2) [80–82]. However, the activation of 

PARP-1 was shown to be independent of ERK2 kinase activity, as such; yet, it seems to depend on an 

active, phosphorylated ERK [79]. PARP-1 itself has been discussed to be an anchoring protein that 

would keep ERK in the nucleus and, thereby, facilitate the interaction of ERK with Elk-1 [79,83]. 

In addition to the manifold substrates of ERK in the nucleus, it also has cytosolic substrates and 

localizes to other subcellular compartments, such as endosomes, via the MP1-p14 complex, and 

mitochondria, via voltage-dependent anion channel 1, VDAC1 [84–88]. In the cytosol, ERK1/2 have 

several substrates, some of which will be discussed below. For a more detailed discussion of the topic, 

please see the recent reviews [41,89]. Recently, Asano et al. described the actin-binding protein, 

palladin, as a novel substrate for ERK and suggested an anti-migratory function for ERK [90]. Another 

cytosolic substrate and a scaffolder of ERK is paxillin, a protein found to associate with focal adhesion 

kinase (FAK) in focal adhesions upon stimulation of cells with hepatocyte growth factor (HGF) and to 

enhance cell spreading and adhesion [91]. Amongst the first described cytosolic substrates of ERK is 

the family of 90 kDa ribosomal S6 kinases (RSK), a group of Ser/Thr kinases. These proteins are 

downstream effectors of the MAPK cascade and involved in several cellular processes, e.g., cellular 

proliferation and differentiation [92,93]. 

The MAPK cascade is a multifaceted pathway that is involved in a plethora of cellular processes. A 

deregulation of this pathway results in pathologies, for instance, in cancerogenesis. Regarding the 

substrate specificities within this pathway, ERK and MEK are in great contrast to each other. While 

ERK1/2 are the only described substrates of MEK1/2 so far, ERK1/2 has a myriad of substrates in the 

cytosol and the nucleus. Therefore, a constant feedback mediated regulation of this pathway is 

important. There are two different regulatory mechanisms: a positive feedback mechanism, which 

results in an increase in ERK signaling, and a negative feedback mechanism by which ERK signaling 

is limited and returned to a basal level. For example, ERK1/2 is able to phosphorylate MEK1 at 

Thr292 and Thr386 in vitro [94,95]. In vivo, ERK1/2 phosphorylates MEK1 as part of a negative 

feedback regulation during integrin and growth factor signaling [94,96]. Recently, formation of 

MEK1-MEK2 heterodimers was reported, which was found to be negatively regulated by ERK1/2 by 

phosphorylation of Thr292 in MEK1, a residue that is not present in MEK2 [97]. Another ERK1/2 

mediated negative feedback regulation is the phosphorylation of Sos, which in turn interferes with the 

interaction of Sos and Grb2 [98]. In general, negative regulators of kinase activities are phosphatases. 

In particular, dual specificity Thr/Tyr MAPK phosphatases (DUSPs or MKPs) display a negative 

effect on ERK1/2 activity (for a review on DUSPs, please see [99]). Like ERK1/2, DUSPs can localize 

to both the cytosol and nucleus. For example, DUSP1 itself is a substrate of ERK1/2. However, 

phosphorylation stabilizes nuclear DUSP1, which ultimately can lead to a dephosphorylation of 

ERK1/2 [100,101]. On the other hand, cytosolic ERK1/2 phosphorylate DUSP6 on Ser159 and Ser197 

and target it for proteasomal degradation, providing a positive feedback on MAPK signaling [102]. 
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Aside from nuclear regulators of ERK, Sef is an example of a subcellular regulator of ERK, which is 

associated with membrane ruffles and the Golgi. Sef blocks the nuclear translocation of ERK1/2 by 

binding it when it is still in complex with MEK1/2 and, thus, inhibits the dissociation of ERK and 

MEK [103–105]. 

2. MAP Kinase Scaffolders 

2.1. MAPK Scaffolding Proteins—An Introduction 

The model postulating a free diffusion of signaling components in the cytosol comes along with 

several disadvantages (Figure 2). The probability for two consecutive kinases to meet in the cytosol is 

fairly low, and diffusion based signaling would be extremely inefficient. In addition, the signal needs 

to be transmitted to the corresponding subcellular region. Therefore, scaffolding proteins support 

signaling partners in propagating the signal and in directing it to the correct cellular location. Scaffolds 

are defined as proteins with several domains that bind two or more components of a signaling pathway 

simultaneously. They bring signaling partners in close proximity to each other, link them in a  

multi-enzyme complex and facilitate their functional interaction. Within this complex, the kinases are 

shielded from the deactivating phosphatases, and interference with other signaling cascades is 

minimized [106,107]. Since not all stimuli result in the same cellular response, different scaffolds 

anchor the signaling modules, with the assistance of various adapter proteins, to specific subcellular 

regions and enhance the signaling by providing a platform for the interaction with their respective 

substrates. Altogether, scaffolds enable a plethora of signaling variations by linking the same core 

kinases in a different subset of reaction partners, substrates and cellular surroundings. 

One main characteristic of scaffolds is combinatorial inhibition, an effect first described for the 

ERK/MAPK scaffold kinase suppressor of Ras (KSR) [108]. Combinatorial inhibition describes the 

stoichiometry of a scaffold and its signaling partners [109,110]. If the scaffold concentration is too 

low, the scaffold-dependent-enhanced binding of the kinase and its substrate is not given and, thus, the 

signaling is below optimum. On the contrary, if the scaffold is in excess, the kinase and its substrate 

will each bind to an individual scaffold. Hence, downstream signaling is impaired in the absence of a 

productive interaction. It is in most cases largely unknown how scaffolds themselves are regulated. In 

a recent review, Dard and Peter discuss mechanisms and modifications that seem to play a regulatory 

role during scaffold turnover. These mechanisms include oligomerization, conformational activation, 

nucleocytoplasmic shuttling and phosphorylation [111]. 

The first MAPK scaffold described was the yeast Ste5p protein. However, in this review, we will 

focus on MAPK/ERK scaffolds in mammalian cells, and thus, Ste5p, as well as the scaffolds of the 

JNK MAPK pathway, will not be discussed. For Ste5p and JNK scaffolds, we refer to some recent 

reviews on these topics [112–114]. Several scaffolding proteins for the ERK/MAPK cascade have 

been described, with KSR (kinase suppressor of Ras) and ß-arrestin being probably the best known 

ones. Lately, some proteins with scaffolding characteristics have been described, such as connector 

enhancer of KSR 1 and 2 (CNK1/2) and IQ motif containing GTPase-activating protein 1 (IQGAP1). 

However, these proteins appear to bind only to some of the core kinases of the MAPK pathway and 

are, thus, considered to be “nested scaffolds” [115]. IQGAP1, a multidomain protein with several 
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protein interaction motifs, was shown to interact with B-Raf, C-Raf, MEK1/2 and ERK1/2 [116–119]. 

In fact, IQGAP1 appears to be necessary for the growth factor-dependent activation of B-Raf [117] 

and to promote a MEK1-dependent signaling pathway [118,119]. In the following part, we will 

summarize the established ERK scaffolding proteins, such as KSR1, MEK-binding partner 1 (MP1) 

and ß-arrestin, but also shed light on some less studied or recently identified scaffolding proteins, such 

as mitogen-activated protein kinase organizer 1 (MORG1), fibroblast growth factor receptor substrate 2 

(FRS2) and flotillin-1. 

Figure 2. Characteristics of scaffolding proteins. (left) The model postulating a free 

diffusion of signaling proteins is not able to sufficiently explain the efficiency of signaling;  

(middle) scaffolding proteins contain several domains for the binding of their interactors 

and serve as platforms for efficient signal transduction; (right) local adaptors function as 

specific subcellular anchors for the scaffolding protein and its interactors to cellular 

subcompartments, such as the plasma membrane or endosomes. 

 

2.2. Kinase Suppressor of Ras 

Initially identified in genetic screens in Drosophila melanogaster and Caenorhabditis elegans as a 

modifier of activated Ras, KSR1 was found to be a positive regulator of MAPK signaling and 

represents one of the best characterized MAPK scaffolders so far [120–123]. In D. melanogaster, only 

a single ksr gene is present, which is essential for the viability of the organism. On the other hand, in 

mammals and C. elegans, two proteins, KSR1 and KSR2, are present and display a functional 

redundancy [122,124,125]. Whereas the loss of KSR is embryonically lethal in D. melanogaster, the 

loss of KSR1 has little effect in C. elegans [120–123]. Similarly, KSR1 knockout mice are viable and 

without any major developmental defects [126,127], suggesting a large degree of functional 

redundancy of the KSR isoforms. Functional implications for KSR1 were acquired by the fact  

that these mice display defects in T-cell activation and neuronal signaling [128,129] and a  

decrease in tumor formation caused by polyomavirus middle T (MT) or by treatment with  

12-O-tetradecanoylphorbol-13-acetate (TPA) [127,128]. Furthermore, in the absence of KSR1, the 
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induction of arthritis is impaired [130] and KSR1 knockout mice have enlarged adipocytes, indicating 

a possible role of KSR1 in adipogenesis [131]. The ksr1−/− mice are modestly glucose intolerant. 

Although they show a normal response to exogenous insulin, they display a three-fold increase in 

serum insulin levels in response to glucose challenge [126], demonstrating another important role of 

KSR1 in insulin-regulated glucose metabolism. Most importantly, in KSR1 knockout mice, the high 

molecular weight complexes containing KSR, MEK and ERK are lost [128]. All this unravels KSR1 as 

a molecular scaffold that is not strictly required for, but rather enhances, signaling via the MAPK 

signaling pathway. 

KSR1 is able to bind all three kinases of the MAPK pathway. Whereas it constitutively associates 

with MEK, it interacts with C-Raf and ERK only upon growth factor stimulation [132,133]. With this, 

it enables MEK to come in close proximity to the Raf kinase at the plasma membrane, which executes 

its phosphorylation. The domain organization of KSR proteins is similar to that of the Raf proteins, 

comprising five conserved regions, termed CA1–CA5. The CA1 domain of Drosophila KSR was 

shown to bind D-Raf (reviewed in [134]), but this region is absent from the KSR proteins of  

C. elegans. CA2 contains a proline rich region, whereas CA3 is a cysteine rich, atypical C1 domain, 

displaying homology to the one found in Raf proteins. The CA3 domain regulates the cellular 

localization of KSR and Raf by assisting in the membrane anchorage following growth factor 

stimulation or Ras activation [135]. Finally, the CA5 domain is closely related to the kinase domain of 

Raf proteins and seems to be important for constitutive interaction with MEK [108,136–138]. Upon its 

discovery, KSR1 was considered to be a pseudokinase that lacks catalytic activity, and up to date, the 

evidence for its catalytic activity is not completely unambiguous [123,135,137,139–142]. The lack of 

catalytic activity of KSR was suggested to rely on the fact that an invariant Lys residue, which is 

important for orienting ATP in Raf [143], is exchanged for an Arg in KSR1, and despite its similar 

character, the Arg seemed not to be able to complement the Lys as a catalytic residue [144]. However, 

recent studies have provided some experimental evidence for the catalytic activity of both KSR1 and 

KSR2 [145,146]. A KSR1 mutant that is not capable of binding ATP, but associates with both C-Raf 

and MEK1, fails to activate MEK1, implicating that KSR1 catalytic activity, or at least its ATP 

binding capability, is required for MEK1 phosphorylation [146]. Furthermore, recent findings have 

suggested that recombinantly expressed, purified wild-type KSR1, but not its mutant form, is capable 

of phosphorylating MEK1 in vitro [140]. It has been suggested that Raf kinases are important for the 

kinase activity of KSR by their virtue of binding to KSR and allosterically stimulating its catalytic 

activity. Hu et al. have recently shown that MEK1 phosphorylation by KSR1/C-Raf heterodimers 

requires KSR activity and cooperation with C-Raf [146]. Likewise, a kinase-deficient form of B-Raf 

was capable of stimulating MEK1 phosphorylation by KSR2, implicating that Raf activity may not be 

a prerequisite for MEK phosphorylation in this complex [145]. Thus, although these data suggest that 

KSR may be catalytically active, this appears to require some kind of cooperation, and most likely, 

dimerization with Raf kinases and the molecular details of KSR regulation will surely be an important 

aspect of future research. 

Depending on its phosphorylation state, KSR1 is found to be localized at the plasma membrane or 

in the cytoplasm. As with Raf, KSR is held in the cytoplasm by the bound 14-3-3 protein, but it 

translocates from the cytoplasm to the plasma membrane upon treatment with growth factors in a 

process regulated by Cdc25C-associated kinase 1 (C-TAK1). C-TAK1 is constitutively associated with 
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KSR1 and phosphorylates its Ser392 residue. Since Ser392 is the site that mediates the binding to  

14-3-3 proteins, phosphorylation of this residue by C-TAK1 governs cytoplasmic sequestration of 

KSR1 in unstimulated cells [133]. Upon growth factor stimulus, Ser/Thr protein phosphatase PP2A 

dephosphorylates KSR1 on the critical Ser392 residue, resulting in displacement of 14-3-3 and release 

of the inhibition imposed by 14-3-3. Thus, KSR1 is now free to promote MAPK pathway  

activation [147]. 

Apart from 14-3-3, another KSR1 inhibitor has been identified. IMP (impedes mitogenic signal 

propagation) inhibits signal propagation by disrupting KSR1 homo-oligomerization, which is 

necessary to join Raf with its substrate, since it seems that different complexes of KSR1-MEK,  

KSR1-C-Raf and KSR1-B-Raf exist in the cells (reviewed in [148]). Thus, IMP acts as a signal 

threshold regulator and uncouples C-Raf from KSR1 complexes [149]. 

2.3. MEK Partner 1/p14 Complex 

As already mentioned, the three tiers of the MAPK signaling cascade are initially activated at the 

plasma membrane. However, at later stages, the complexes are present in endosomes, which is 

required to achieve a proper signaling response. It seems that the endocytosis of the activated receptors 

and their associated signaling complexes is crucial for maximal MAPK activation, and activated Ras, 

C-Raf, MEK1 and ERK1 can be found on endosomes [138,150–153]. The reasons for the presence of 

the second MAPK activation phase, which takes place at the so-called signaling endosome, might be 

multiple. Endocytosis might enable a more controlled spatio-temporal resolution of the signaling 

cascade. Furthermore, it might also shield the signal during transmission over long distances, whereas 

slow protein diffusion and rapid protein dephosphorylation might interfere with it. 

MEK partner 1 (MP1) is a widely expressed small protein that was originally identified in a  

yeast-two hybrid screen using MEK1 as a bait and was correspondingly named after its ability to bind 

to MEK1 [85]. MP1 facilitates a transient binding of MEK1 to ERK1, thereby enhancing the activation 

of the MAPK signaling cascade, but it does not bind MEK2 or ERK2 [85]. The group of Huber 

identified the scaffold protein MP1 as a putative interaction partner of p14, which is a highly 

conserved protein of 14 kDa [86]. In different cell types, p14 was found to be localized at the cytosolic 

face of the late endosomes/lysosomes [86]. The interaction of MP1 with p14 was found to be important 

for the localization of the MP1-MAPK scaffold complex to late endosomes/lysosomes during the 

second sustained phase of MAPK signaling [154]. However, p14 was found to interact with MEK1 and 

ERK1 only indirectly via MP1, despite the incredibly similar structures of p14 and MP1, exhibiting a 

five stranded beta sheet flanked on each side by three helices [155]. 

Depletion of p14 and MP1 led to a pronounced inhibition of the MAPK signaling pathway. 

Interestingly, reduced ERK activation during the later stages of signaling was observed, while the early 

phase of ERK activation at the plasma membrane was unaffected. However, overexpression of p14 

was not sufficient to inhibit MAPK signaling, pointing to the fact that p14 does not disrupt the 

formation of signaling complexes in the way a highly overexpressed MP1 or other scaffolds do [154]. 

Consistent with its role in endosomal localization of MP1, p14 knockdown resulted in a 

mislocalization of MP1-MAPK scaffold complexes from late endosomes to the cytoplasm. However, 

p14 does not contain clearly identifiable membrane localization signals, yet it appears to be important 
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for the localization of the complex in the membranes. Later findings have shown that the endosomal 

localization of MP1/p14 complexes is facilitated by a small adaptor protein, p18, which is associated 

with lipid rafts by means of myristoylation and palmitoylation [84]. Interestingly, endosomal dynamics 

and endosomal association of MP1/p14 complexes were inhibited in cells depleted of p18. Mice 

lacking p18 expression show an early embryonic lethality due to an impairment of the development of 

the visceral endoderm and the resulting growth arrest. Cell lines established from the p18 knockout 

embryos display severe abnormalities in the endosomal/lysosomal compartments, associated with 

peripheral scattering of the normally perinuclear endosomal compartments. Since p18 is required for 

the endosomal localization of the MAPK scaffolding complex, MP1/p14, these data suggest that 

endosome-associated MAPK signaling may play a role in the regulation of the biogenesis of 

endosomes and lysosomes. Highly intriguingly, a mutation in the 3' untranslated region of the p14 

mRNA that results in reduced p14 expression was found to cause a human genetic disease that 

manifests as a primary immunodeficiency associated with albinism, short stature and defects in B-cell 

and cytotoxic T-cell function [156]. In fibroblasts lacking p14 expression, ERK phosphorylation was 

reduced, in line with the function of p14 in MAPK signaling. It appears that the molecular mechanisms 

of this disease rely on impairment of the function and cellular localization of lysosome-like organelles, 

again underscoring the importance of endosomal MAPK signaling in the biogenesis of  

lysosome-related organelles. However, not only in humans, but also in mice, an efficient MAPK signal 

transduction through the p14/MP1 complex appears to be important in the regulation of tissue 

homeostasis. Since a constitutive genetic ablation of p14 is embryonically lethal, conditional knockout 

mice lacking the expression of p14 in the epidermis were created. The live born mice die shortly after 

birth due to severe skin defects and rapid dehydration, reflecting the compromised terminal 

differentiation of the epidermis [157]. However, recent findings of the Sabatini group have revealed an 

unexpected role of the MP1/p14/p18 complex in signaling through the mammalian target of the 

Rapamycin (mTOR) pathway [158]. It was shown that this complex targets mTOR to lysosomes and is 

a prerequisite for amino acid-induced mTOR signaling. In light of these findings, one should thus be 

cautious when interpreting the results of gene knockdown or knockout studies of MP1/p14/p18 

complex proteins, as the observed effect may well be due to impairment of both MAPK and mTOR 

signaling pathways. 

2.4. ß-Arrestins 

The multifunctional adaptor proteins, ß-arrestins, were originally discovered as proteins that 

desensitize or terminate G protein coupled receptor (GPCR) signaling. Upon ligand stimulation, 

GPCRs are phosphorylated by the family of GPCR kinases (GRKs), and this event promotes the 

recruitment of ß-arrestins to the GPCRs. Consequently, the interaction with ß-arrestins sterically 

prevents a further coupling of GPRCs with the trimeric G proteins and disrupts the normal activation 

of the second messenger signaling cascade [159,160]. Later on, several other signaling pathways, e.g., 

Hedgehog, Wingless, Notch and TGFß pathways, were found to exploit the scaffolding functions of  

ß-arrestins (reviewed in [161]). 

Four members of the ß-arrestin family have been described so far, and they show different, but 

overlapping, expression patterns. Arrestin 2 (ß-arrestin 1) and arrestin 3 (ß-arrestin 2) are ubiquitously 
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expressed, whereas arrestin 1 (visual ß-arrestin) is localized to retinal rods and cones and arrestin 4  

(X-arrestin) is found only in retinal cones. All four members are highly similar, sharing 70% sequence 

identity, and they are highly conserved across species (reviewed in [162]). 

In addition to their role as desensitizers of GPCR signaling, ß-arrestins have been shown to mediate 

the clathrin-dependent endocytosis of seven transmembrane spanning receptors and to act as adaptors 

for different E3 ubiquitin ligases [163–166]. One of these is the E3 ligase, Mdm2, which catalyzes the 

ubiquitination of the ß2 adrenergic receptor (ß2AR) and of ß-arrestin 2 itself. Ubiquitination of ß2AR 

was found to be important for its degradation. Furthermore, ubiquitination of ß-arrestin 2 is 

indispensable for receptor internalization, since ubiquitinated ß-arrestin 2 is able to recruit certain 

components of the endocytic machinery, such as clathrin and activating protein 2 (AP-2) [165,167]. 

Moreover, the ubiquitination status of ß-arrestin 2 governs its association to the ß2AR and determines 

the stability of the ß-arrestin/GPCR complex. Permanently ubiquitinated ß-arrestin 2 does not 

dissociate from ß2AR, but internalizes with it to endosomes, whereas binding of the ß-arrestin 2 to the 

receptor is significantly increased after inhibition of deubiquitinating enzymes [164]. 

Following ß2 adrenergic receptor activation, the MAPK signaling cascade is activated in a biphasic 

way. The first phase of the activation is rapid and transient, with the signal peaking 2–5 min after 

stimulation. The second sustained phase is slower, lasting up to 30 min. The signal peaks 5–10 min 

after stimulation, and this phase of MAPK activation was found to be mediated by ß-arrestins [168,169].  

ß-arrestins can scaffold all three kinases (C-Raf, MEK1 and ERK1/2) of the MAPK signaling cascade, 

facilitating the phosphorylation and activation of ERK1/2 and, at the same time, retaining ERK1/2 in 

the cytosol and prolonging the signaling events [152,170,171]. On the other hand, ß-arrestin is  

subjected to a negative feedback mechanism, during which active ERK phosphorylates its crucial  

Ser412 residue [172]. Cytosolic ß-arrestin is constitutively phosphorylated at this residue. Rapid 

dephosphorylation of Ser412 takes place upon agonist stimulation when ß-arrestin is recruited to the 

plasma membrane. Although it was found not to be required for receptor binding and receptor 

desensitization, dephosphorylation of Ser412 was shown to be essential for clathrin binding and 

receptor internalization [173]. Apart from ERK, ß-arrestin 2 was found to facilitate the activation of 

another MAPK, JNK3, by acting as a scaffold that brings together angiotensin II type 1A (AT1A) 

receptor, JNK3 and its upstream kinases, ASK1 and mitogen-activated protein kinase kinase 4 

(MKK4), and clustering them together on endosomal structures after treatment with angiotensin II. 

Similarly to ERK, phosphorylated, active JNK3 then accumulates in the cytosol [174]. 

Having in mind all the aforementioned roles that ß-arrestins play in different signaling pathways, 

one would expect significant developmental defects after genetic ablation of the arrestins. However,  

ß-arrestin 1 knockout mice develop normally, but display increased cardiac contractility in response to 

adrenergic receptor agonists [175]. Similarly, ß-arrestin 2 knockout mice are viable and develop 

normally. Nevertheless, after administration of morphine, a prolonged analgesic effect in the knockout 

mice was observed. This was shown to be due to misregulated internalization and desensitization of 

the µ opioid receptor [176]. Although the single knockout mice models for ß-arrestin 1 and 2 appear 

healthy and normal, unless challenged, one can assume that ß-arrestins are functionally not completely 

interchangeable [161,177]. However, they can functionally compensate for each other in the 

developing mouse embryo to allow a normal development. 
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2.5. Fibroblast Growth Factor Receptor Substrate 2 

FRS2 owes its name to the major and the first described function of this protein as a substrate for 

the fibroblast growth factor (FGF) receptor [178], although it has later been shown to be an important 

docking protein for many different RTKs [178–183]. FRS2 regulates downstream signaling by forming 

molecular complexes with other adaptor proteins and tyrosine phosphatases, and it seems to be a 

critical mediator of sustained ERK activity [184]. Its molecular structure is identical to the homologous 

protein, FRS3. On their N-terminus, both FRS proteins contain a putative myristoylation site, which is 

important for their membrane localization [178]. This sequence is followed by a phosphotyrosine 

binding domain, an anchor for binding to specific peptides of certain receptor tyrosine kinases with or 

without tyrosine phosphorylated residues [185]. For example, the binding to neurotrophin receptors 

TrkA and TrkB is dependent on the activation of the specific receptor and mediated by the tyrosine 

phosphorylated peptides [185–187]. In contrast, FRS binding to the FGF receptor is constitutive and 

involves unphosphorylated amino acids at the juxtamembrane domain of the FGF receptor [185,188]. 

The C-terminus of FRS proteins contains multiple tyrosine phosphorylation sites (six Tyr residues in 

FRS2 and five Tyr residues in FRS3). These residues, when phosphorylated by specific RTKs, recruit  

SH2-domain containing proteins, such as the adaptor protein, Grb2, and protein tyrosine  

phosphatase Shp2 [178,189]. The recruitment of Grb2 will eventually result in a strong activation of 

phosphatidylinositide 3 (PI3) kinase signaling pathway and a moderate activation of ERK  

signaling [189,190], whereas the recruitment of Shp2 causes a strong activation of the ERK signaling 

pathway [189]. Furthermore, FRS2 does not only function as a platform for the recruitment of proteins 

responsible for signal activation, but also for those involved in signal attenuation. Its scaffolding 

function enables Cbl, an ubiquitin ligase for RTKs, to come in close proximity of the FGF receptor. 

Cbl then ubiquitinates both the FGF receptor and FRS2 and directs them to degradation [191]. 

Therefore, by playing a dual role in both signal stimulation and attenuation, FRS2 is an important 

factor in assisting the FGF receptor in the regulation of the developmental processes. In agreement 

with this, FRS2 is ubiquitously expressed, with the highest expression level in brain, lung, kidney, 

ovary and testis and can be detected at virtually every developmental stage of a mouse [192]. In line 

with its important function during development, FRS2 knockout mice display embryonic lethality due 

to severe problems in gastrulation [180,193]. 

2.6. MAP Kinase Organizer 1 

Whereas FRS2 plays a role in the most upstream part of the MAPK pathway by recruiting signaling 

components to the RTKs, MORG1 is a scaffold protein in the downstream part of the ERK  

cascade [194]. Interestingly, MORG1 was first isolated as a binding partner of MP1 [194], which is a 

very small scaffold protein without the capacity to independently facilitate the assembly of all the 

kinases in the ERK pathway [85]. Although MORG1 is composed of only 315 amino acids and 

exhibits a molecular mass of approximately 35 kDa, it is composed of as many as seven WD-40 

domains, which form beta-propeller structures and serve as docking sites for many MAPK signal 

transducers. In this respect, MORG1 associates with ERK1/2, MEK1/2, C-Raf and B-Raf and 

accelerates downstream signaling from G protein-associated receptors in response to lysophosphatidic 
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acid. Furthermore, it facilitates ERK1/2 activation when cells are stimulated with phorbol 12-myristate 

13-acetate (PMA) or serum. However, MORG1 is dispensable for the downstream signaling of major 

tyrosine kinase receptors, such as the epidermal growth factor (EGF) and platelet-derived growth 

factor (PDGF) receptors [194]. 

MORG1 was also shown to be important for the regulation of the stability of hypoxia-inducible 

factor-1 (HIF-1) [195]. As a part of a transcriptional complex, HIF-1 activates the transcription of 

genes involved in the cellular adaptation to low oxygen availability. HIF-1 is composed of two 

subunits, the oxygen sensitive alpha- and beta-subunits. Under normal oxygen levels, the alpha subunit 

is hydroxylated by a family of prolyl hydroxylases (PHD). This creates a signal for ubiquitin ligases to 

exert ubiquitination that will finally target the protein for proteasomal degradation. MORG1 was found 

to bind to PHD3, and this interaction was shown to activate or stabilize PHD3. In this way, MORG1 

assists PHD3 in the regulation of the protein levels of HIF-1α [195]. 

MORG1 is ubiquitously expressed, with the highest expression levels in heart, brain, liver, kidney 

and testis, while lower amounts were detected in lung, spleen and skeletal muscle [194]. MORG1 

knockout mice display an embryonically lethal phenotype, due to severe neuronal developmental 

defects, whereas heterozygous MORG1+/− mice are normal [196–198]. However, when compared to 

the wild-type littermates, heterozygous MORG1+/− mice are partially protected from renal and cerebral 

ischemia-reperfusion injury [197,198]. Furthermore, expression of MORG1 was found to be reduced 

in human brain tissue with ischemic damage, while astrocytes in the surrounding brain tissue showed a 

strong MORG1 expression [196]. Decreased MORG1 expression might be an intrinsic mechanism of 

the injured tissue to activate the genetic program, which would enable brain recovery with the help of 

the increased HIF-1alpha expression and adaptation to hypoxia. These observations put MORG1 into the 

class of putative therapeutic targets with the aim to limit renal or cerebral injury after ischemia-reperfusion. 

2.7. Flotillin-1, a Novel MAPK Scaffolding Protein 

Membrane microdomains, also known as lipid rafts, participate in cellular signaling events by 

providing a specialized surrounding where membrane receptors, their respective signaling partners and 

adaptor proteins meet to initiate downstream signaling. Due to their enrichment in sphingolipids and 

cholesterol, these microdomains exhibit a so-called liquid ordered state in the membranes and are able 

to float in low density fractions of detergent resistant membrane (DRM) preparations [199,200]. 

Proteins of the flotillin family (flotillin-1 and -2) constitutively associate with membrane 

microdomains [201,202] and are therefore frequently used as marker proteins for those microdomains. 

For our recent review on flotillin function, please see [203]. 

Structurally, flotillins are organized in two major domains. The N-terminal globular SPFH 

(stomatin/prohibitin/flotillin/HflK/C), also called PHB (prohibitin homology), domain contains acylated 

residues and hydrophobic stretches that, together with the C-terminal flotillin-domain, enable flotillins to 

firmly associate with membrane microdomains. In addition, the predicted coiled-coil structures in the  

C-terminus of flotillins are essential for proper homo- and hetero-oligomerization [204–210]. 

Subcellularly, flotillins localize to the plasma membrane, vesicular/endosomal structures and to the 

nucleus [209–215]. However, the subcellular localization of flotillins is rather dynamic and depends on 

the cell type and external stimuli. 
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Interestingly, flotillins are downstream transcriptional targets of ERK signaling. Their transcription 

is regulated not only by ERK, but also by the retinoic X receptor complexes, which is detectable as an 

enhanced activity of the flotillin promoter [216]. On the other hand, flotillins, especially flotillin-1, are 

important regulators of ERK signaling (see below). It is noteworthy that, upon transient depletion  

of flotillin-1 in HeLa cells, the expression of cyclin D1 upon growth factor treatment is  

impaired [217,218]. This correlates well with the observation of Lin et al., showing that a knockdown 

of flotillin-1 in breast cancer cells yields a reduced expression of cyclin D1 and results in an arrest of 

the cell cycle in the G1/S phase [218]. 

Flotillins have been functionally implicated to participate in several cellular processes, such as 

clathrin-independent endocytosis [212,219], organization of the actin cytoskeleton [208,209,220], 

cellular adhesion [209] and various signaling processes [209,217,221–224]. Stimulation of cells with 

growth factors, such as EGF, results in Src family kinase-mediated phosphorylation of flotillins and 

their translocation from the plasma membrane to late endosomes [204,225]. This process is dependent 

on the proper hetero-oligomerization of flotillins and the phosphorylation of Tyr163 in flotillin-2 and 

Tyr160 in flotillin-1, and a point mutation of Tyr163 into Phe results in constitutive localization of 

flotillin-2 to the plasma membrane [204,209]. 

Recently, our group and others found implications of flotillins in MAPK signaling pathways,  

for example, in EGF receptor [217], insulin receptor [226], TrkA receptor [223] or IgE receptor  

signaling [222]. Sugawara and colleagues investigated the GPCR-mediated p38/MAPK signaling 

pathway and showed that flotillins are Gαq binding proteins that positively modulate Gq signaling [224]. 

Furthermore, in the context of fibroblast growth factor receptor (FGFR)-mediated MAPK downstream 

signaling, flotillin-1 interacts with both members of the FRS family of scaffold proteins (FRS2 and 

FRS3) [227]. Upon growth factor treatment of cells, FRS2 is phosphorylated and serves as an adapter 

protein, which recruits several signaling proteins that induce Ras-mediated MAPK signaling. In addition, 

it has been suggested that ERK1/2 acts as a negative feedback regulator on FRS2 [193,228,229].  

Upon flotillin-1 depletion, tyrosine phosphorylation of FRS2 is increased, implicating that the  

flotillin-1/FRS2 signaling complex is required for proper growth factor signaling [227]. 

Recently, we described a dual role for flotillin-1 during EGFR activation and MAPK downstream 

signaling [217]. Early, after growth factor stimulation, transient loss of flotillin-1 results in a 

diminished activation of the receptor tyrosine kinases, as well as impaired ligand-induced receptor 

clustering prior to its internalization, which indicates an important role for flotillin-1 during receptor 

tyrosine kinase activation. Later on, flotillin-1 binds the core components of the MAPK cascade C-Raf, 

MEK1 and ERK2 simultaneously and independently of KSR1 (Figure 3). However, it is still unclear 

how exactly flotillin-1 associates with the said MAPK components and whether this association 

changes upon growth factor treatment. Nevertheless, the ability of flotillin-1 to bind the three tiers of 

the MAPK pathway simultaneously, modulate ERK activation and regulate transcriptional regulation 

downstream of ERK defines flotillin-1 as a MAPK scaffolding protein [216,217]. 
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Figure 3. Flotillins are novel scaffolding proteins for the ERK/MAPK pathway. Both 

flotillins associate with the epidermal growth factor receptor (EGFR) and are necessary for 

a proper activation of the receptor and its downstream MAPK signaling pathway.  

Flotillin-1, which is found in hetero-oligomers with flotillin-2, is a scaffolding protein for 

C-Raf, MAPK/ERK kinase 1 (MEK1) and extracellular signal-regulated kinase 2 (ERK2) 

independently of kinase suppressor of Ras (KSR1). A nuclear target gene of the flotillin 

scaffolded MAPK cascade is cyclin D1, but flotillins can also influence cytosolic  

ERK activity. 

 

3. MAP Kinase Scaffolders: What Are They Good for? 

Originally, a simplified view of signaling pathways with a linear flow and amplification was 

presented, which can still be found in many text books, etc. However, recent research efforts have 

revealed that rather than utilizing linear cascades, signaling proceeds through intertwining 

communication networks. The plethora of scaffolding proteins that have been identified in recent years 

are required for many aspects of signaling. Scaffolders not only increase the efficiency and specificity 

of signaling, but they also facilitate the crosstalk between different signaling pathways. For example, the 

MP1/p14 complex plays an important role in the crosstalk between Rac/p21-activated kinase 1 (PAK1) 

and ERK signaling pathways. It regulates the PAK1-dependent activation of MEK1 in response to 

adhesion, thus representing a point of convergence for integrating growth factor signaling and cell 

adhesion to extracellular matrix (ECM) [230,231]. Importantly, the kinetics (amplitude, duration, etc.) of 

a signaling response is extremely important in regulating the final cellular outcome of the signaling, as, 

e.g., MAPK activation can result in either proliferation or differentiation of the target cells. 
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But why do we need so many different scaffolding proteins for a single signaling pathway, such as 

the MAPK cascade? These scaffolds are usually part of and actually even vital for the formation of 

multiprotein signaling complexes, and they frequently even bind to the same cascade components. 

How can a specific function still be accomplished? Upon a closer look, the different scaffolds show 

many features that distinguish them from the others. Some scaffolds show a very specific cellular 

localization and may thus regulate or restrict the signaling in specific subcompartments, as, for 

example, the MP1/p14 scaffold in endosomes, Sef1 in the Golgi or GIT1 (G protein coupled receptor 

kinase interacting 1), RACK1 (receptor for activated protein C kinase 1) and paxillin in focal 

adhesions [232]. Furthermore, some scaffolds are constitutive, whereas others are stimulus-dependent. 

Even within one scaffold, different components may bind either constitutively or only after an 

extracellular stimulus. It may even be that some scaffolds only respond to specific stimuli, but not to 

others, as has been shown for MORG1 [194]. The scaffolds also differ in the number of signaling 

proteins they are able to bind. For example, the MP1/p14 scaffold is a two-component scaffolder that 

binds MEK1 and ERK1, whereas KSR1 and flotillin-1 can bind at least three signaling tiers. In the 

case of MP1, its specificity towards MEK1/ERK1 may facilitate specific cellular responses by means 

of activation of ERK1, but not ERK2 in endosomes. 

Some scaffolders, such as MORG1 and flotillin-1, appear even to be “superscaffolds” that are not 

only capable of binding to the MAPK components, but also to other scaffolds. For example, MORG1 

binds to Raf, MEK and ERK, but also associates with the MP1 scaffold in the endosomes [194], 

whereas RACK1 can bind Raf, MEK and ERK, but it also associates with MP1 [232]. Similarly, 

flotillin-1 directly associates with Raf, MEK and ERK, but it is also found in a complex with  

KSR1 [217]. Intriguingly, flotillin-1 also interacts with both FRS2 that has been implicated as a 

MAPK scaffold and with MORG1 (our unpublished data). However, it has not been studied so far if 

flotillin-1 is also capable of interacting with MP1, but its interaction with MORG1 may point to at 

least a functional, if not direct, interaction. Due to the fact that the localization of flotillin-1 changes 

during signaling in that it becomes endocytosed from the plasma membrane into endosomes upon 

growth factor stimulation, flotillin-1 may be capable of functioning as a mediator between different 

scaffolds that show a more specific and signal-independent localization in a certain cellular 

compartment. The molecular details of this potential flotillin-1 function still need to be clarified in 

detail, but it is plausible that flotillin-1 acts as a master scaffolder that plays an important role in the 

regulation of other MAPK scaffolds. 
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