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Abstract

In Rhizobia the Irr protein is an important regulator for iron-dependent gene expression. We studied the role of the Irr
homolog RSP_3179 in the photosynthetic alpha-proteobacterium Rhodobacter sphaeroides. While Irr had little effect on
growth under iron-limiting or non-limiting conditions its deletion resulted in increased resistance to hydrogen peroxide and
singlet oxygen. This correlates with an elevated expression of katE for catalase in the Irr mutant compared to the wild type
under non-stress conditions. Transcriptome studies revealed that Irr affects the expression of genes for iron metabolism, but
also has some influence on genes involved in stress response, citric acid cycle, oxidative phosphorylation, transport, and
photosynthesis. Most genes showed higher expression levels in the wild type than in the mutant under normal growth
conditions indicating an activator function of Irr. Irr was however not required to activate genes of the iron metabolism in
response to iron limitation, which showed even stronger induction in the absence of Irr. This was also true for genes mbfA
and ccpA, which were verified as direct targets for Irr. Our results suggest that in R. sphaeroides Irr diminishes the strong
induction of genes for iron metabolism under iron starvation.

Citation: Peuser V, Remes B, Klug G (2012) Role of the Irr Protein in the Regulation of Iron Metabolism in Rhodobacter sphaeroides. PLoS ONE 7(8): e42231.
doi:10.1371/journal.pone.0042231

Editor: Julian Rutherford, Newcastle University, United Kingdom

Received November 13, 2011; Accepted July 5, 2012; Published August 7, 2012

Copyright: � 2012 Peuser et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Deutsche Forschungsgemeinschaft (Kl563/25) (http://www.dfg.de). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Gabriele.Klug@mikro.bio.uni-giessen.de

Introduction

As cofactor of several enzymes and regulatory proteins iron is an

essential element for living organisms. However, since reduced

iron potentiates oxygen toxicity by the production of hydroxyl

radicals in the Fenton reaction, life in the presence of oxygen

requires a strict regulation of iron metabolism. Several regulators

of iron metabolism have been investigated in bacteria. In

Escherichia coli and in many other bacteria the Fur protein is a

major regulator for iron-dependent gene expression (reviewed in

e.g. [1]). Fur binds to DNA at a specific sequence (Fur box) [2] and

acts as transcriptional repressor in the presence of iron. Iron

regulation in alpha-proteobacteria mainly occurs by regulators

different from this type of Fur protein, namely by Irr, RirA and

IscR (reviewed in [3]). RirA and IscR both belong to the Rrf2

superfamily of transcriptional regulators. In E. coli IscR mainly

regulates the Fe-S cluster biogenesis genes (suf genes) [4,5]. To date

its function in alpha-proteobacteria has not been investigated.

RirA represses more than 80 transcriptional units in Rhizobium and

Sinorhizobium in high iron conditions [6,7]. Another Fur-like

protein detected in alpha-proteobacteria is rather involved in the

regulation of Mn2+ transport and was therefore designated ‘‘Mur’’

(manganese uptake regulator) [8,9,10,11]. In Rhodobacter sphaeroides

Mur has not only a role in manganese homeostasis but also affects

regulation of iron metabolism [12].

An important function in regulating iron metabolism in

Rhizobia could be attributed to the Irr protein (reviewed in [3]).

Irr proteins are found in members of the Rhizobiales, Rhodo-

bacterales and few other genera, and form a distinct sub-branch of

the Fur superfamily [13]. In Rhizobiales most iron-dependent

genes are regulated by Irr [14,15,16,17]. In all species investigated

to date Irr represses genes under iron depletion, which is opposite

to the function of RirA. Irr binds to conserved sequences, the so-

called Irr boxes or ICE motifs (iron control elements) close to the

promoters of its target genes. At high iron concentrations Irr is

degraded in Bradyrhizobium japonicum but not in Rhizobium

leguminosarum [18]. In B. japonicum this degradation is mediated

by its interaction with heme, whose intracellular concentration

increases with external iron availability [19]. Heme can directly

interact with the Irr protein but interaction is more efficient if

heme is delivered by the heme synthesis enzyme ferrochelatase

[20]. Reactive oxygen species (ROS) seem to promote the heme

dependent degradation of Irr [21].

R. sphaeroides is a facultative photosynthetic bacterium, which

can generate ATP by anoxygenic photosynthesis but can also

generate ATP from aerobic or anaerobic respiration. At high

oxygen concentration the formation of photosynthetic complexes

is repressed. When the oxygen tension in the environment drops,

photosynthesis genes are induced. Several proteins involved in

redox-dependent gene regulation have been identified in R.

sphaeroides [22,23] and also the response to different ROS has been

studied intensively [24,25,26,27,28,29,30,31]. A transcriptome

study revealed that many genes of iron metabolism are induced in

response to hydrogen peroxide [30]. Only a few of these genes are

under control of the intensively studied OxyR regulator [31].

Another transcriptome study revealed only very limited overlap of

the response of R. sphaeroides to iron limitation and to oxidative

stress [12]. The regulatory link between oxidative stress response
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and iron metabolism remains to be elucidated for alpha-

proteobacteria.

A bioinformatic analysis based on experimental data from

Rhizobia predicted iron responsive regulators and DNA target

sequences for such regulators in alpha-proteobacteria including

Rhodobacter [13] and suggested putative Irr (RSP_3179), Fur/Mur

(RSP_2494), Fur/Zur (RSP_3569) and IscR (RSP_0443) regula-

tors in R. sphaeroides. No RirA homolog is found in Rhodobacter-

ales. A strain lacking the Fur/Mur protein was clearly impeded in

growth by iron limitation indicating a role of Fur/Mur in

regulation of iron metabolism. This was supported by transcrip-

tome data [12].

Here we present an analysis of the role of the Irr protein

(RSP_3179) on iron metabolism and resistance to oxidative stress

in the photosynthetic alpha-proteobacterium R. sphaeroides.

Results

The Irr Protein of R. sphaeroides does not Influence
Growth Under Iron Limitation but Resistance to Oxidative
Stress

Exponential phase cultures of the R. sphaeroides wild type 2.4.1

and the 2.4.1Dirr deletion strain were subjected to iron limitation

as described previously [12]. R. sphaeroides was cultivated without

adding external Fe(III)citrate to the malate minimal medium but

with the iron chelator 2,29-dipyridyl. Cultivation was performed

under microaerobic conditions to exclude the possibility that

change in expression of genes for iron metabolism is caused by

oxidative stress as observed previously for R. sphaeroides [30].

Growth curves confirmed our previous observation [12] that the

wild type stops growing at an earlier time point during transition to

stationary phase when iron is limiting (Fig. 1). The growth of the

2.4.1Dirr mutant (Table S4) was similar to that of the wild type.

The mutant stopped growing a little bit earlier under iron

limitation but this difference was not significant (Fig. 1). The irr

deletion strain was clearly less impeded in growth by iron

limitation than the 2.4.1Dfur/mur mutant that was characterized

previously [12]. It can be excluded that the growth phenotypes are

due to dipyridyl toxicity because cultures grown under decreased

iron availability without added iron chelator are also impaired in

growth (data not shown). Excess amounts of iron (20 mM

Fe(III)citrate) did not influence the growth behavior of R.

sphaeroides (data not shown). Furthermore, the wild type and the

irr deletion strain were tested for porphyrin accumulation during

growth in iron-deficient media. Spectral analyses did not reveal

detectable levels of protoporphyrin in supernatants of R. sphaeroides

cultures grown under iron limitation (data not shown). These

results suggest that, in contrast to studies in Brad. japonicum and

Brucella abortus, R. sphaeroides Irr is not involved in the down-

regulation of heme biosynthesis under iron limitation. This view is

supported by real-time RT-PCR data for the hemB and hemH genes

(Fig. S1). R. sphaeroides Irr lacks the heme regulatory motif (HRM)

that is associated with binding to heme and the turnover of the

protein in Brad. japonicum. However, as heme can interact with an

Irr protein lacking this motif in Bru. abortus [32] and R.

leguminosarum [18], binding of heme to R. sphaeroides Irr was

analyzed. The absorption spectrum of heme in the presence and

absence of purified recombinant Irr was recorded. The 388 nm

absorption peak of heme shifted to 430 nm in the presence of Irr

(Fig. S2), supporting that heme binds to R. sphaeroides Irr under the

conditions tested. We also used the R. sphaeroides IscR protein,

which was purified with the identical protocol in this assay and did

not result in a shift of the heme absorbance.

The sensitivity of the 2.4.1Dirr mutant to hydrogen peroxide

and singlet oxygen was tested by zone inhibition assays. Singlet

oxygen was generated by applying methylene blue to the filter

disks and illumination. For both types of ROS the inhibition zones

were significantly smaller for the 2.4.1Dirr mutant, indicating

increased resistance (Fig. 2 A and B). When the irr gene was

expressed in trans in strain 2.4.1Dirr (pRKirr), a wild type-like

phenotype could be restored (Fig. 2 A and B, gray bars).

Paraquat was used to generate superoxide stress. However, the

inhibition zones were too diffuse for reliable quantification.

Therefore growth was followed in liquid cultures containing

250 mM paraquat. No significant difference in growth between the

wild type and the 2.4.1Dirr mutant was observed (data not shown).

Higher Resistance to ROS in the 2.4.1Dirr Mutant
Correlates with Elevated katE Expression Under Non-
stress Conditions

Catalases make a major contribution to resistance against ROS

since they rapidly detoxify hydrogen peroxide. In R. sphaeroides wild

type katE expression is strongly induced within one minute after

hydrogen peroxide addition, while katC does not respond to this

stress [29]. The katE gene (RSP_2779) is under control of the

OxyR regulator and a lack of OxyR leads to increased sensitivity

to hydrogen peroxide [29]. Our microarray analyses did not reveal

reliable data for katE expression (low A values). In order to see,

whether the increased resistance of the 2.4.1Dirr mutant correlates

with katE expression, real-time RT-PCR was applied to compare

katE expression levels to those of the wild type. When cultures were

grown under microaerobic conditions (approx. 30 mM oxygen)

without the addition of hydrogen peroxide, katE mRNA levels

were about 6 fold higher in strain 2.4.1Dirr compared to the wild

type. 20 min after addition of hydrogen peroxide both strains

showed almost identical katE expression levels (Fig. 3A). Fig. 3B

shows the change in katE expression in both strains after addition

of hydrogen peroxide. While katE mRNA levels in the wild type

where about 80 fold increased 20 min after hydrogen peroxide

addition compared to untreated cultures, katE levels were only

slightly increased in the 2.4.1Dirr mutant. We conclude that the

mutant lacking the Irr protein has already very high katE levels

under non-stress conditions, which are similar to the levels the wild

type reaches only after hydrogen peroxide addition. Additionally,

Figure 1. Growth curves of the R. sphaeroides wild type (black)
and the 2.4.1Dirr mutant (gray) under normal iron (continuous
line) and under iron limitation (dashed line) conditions are
shown. The optical density at 660 nm (OD660) of microaerobically
grown R. sphaeroides cultures was determined over time. The data
represent the mean of at least three independent experiments and
error bars indicate standard error of the mean.
doi:10.1371/journal.pone.0042231.g001
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the expression of bfd (RSP_1547), RSP_1090 and tonB (RSP_0922)

with and without added hydrogen peroxide was assessed using

real-time RT-PCR. The behavior of these OxyR-dependent genes

was similar to the expression pattern as described for katE (data not

shown).

Response of the Protein-coding Transcriptome of the
2.4.1Dirr Mutant to Iron Limitation

We have previously characterized the response of the wild type

transcriptome to iron limitation applying a high-density oligonu-

cleotide microarray [12]. In the study presented here the effect of

Irr on the transcriptome of R. sphaeroides was analyzed.

Under normal iron conditions, the abundance of 0.2% of the

genes with a reliable A value ($12) was changed by $1.75-fold

and of 44.6% by #0.57-fold in the 2.4.1Dirr mutant compared to

wild type cells under the same conditions (Table S1). Under iron

limitation, the abundance of 2.6% of the genes with a reliable A

value was changed by $1.75-fold and of 14.6% by #0.57-fold in

the 2.4.1Dirr mutant compared to wild type cells under the same

conditions (Table S1).

Under iron limitation, the abundance of 44.1% of those genes

with a reliable A value was changed by $1.75-fold and of 0.6% by

#0.57-fold in the 2.4.1Dirr mutant compared to mutant cells

under normal iron conditions (Table S1). Table 1 gives an

overview on those genes, grouped to functional categories, that are

differently expressed ($1.75 or #0.57) in the mutant strain and

also lists the changes previously determined for the wild type under

iron limitation [12].

When comparing expression in the wild type and the mutant

and the response to iron limitation three types of expression

patterns can be discriminated. Genes of group I show lower

expression in the mutant than in the wild type under normal

growth conditions. Iron limitation results in stronger induction in

the mutant and consequently expression levels are similar in both

strains under iron limitation. For group II genes expression in the

mutant is higher than in the wild type in presence or absence of

Figure 2. Sensitivity of R. sphaeroides wild type, 2.4.1Dirr
mutant and complemented mutant to (photo-) oxidative
stress. Inhibition of growth of the wild type (white bars), the irr
deletion mutant (black bars) and the complemented mutant (gray bars)
to hydrogen peroxide (A) and methylene blue (B) as determined by
inhibition zone assays. Each bar represents the mean of at least three
independent experiments and error bars indicate standard deviation.
Levels of significance are indicated as follows: *P#0.01.
doi:10.1371/journal.pone.0042231.g002

Figure 3. Relative expression of katE (RSP_2779) in R. sphaer-
oides wild type and 2.4.1Dirr mutant. (A) Real-time RT-PCR was
used to investigate the relative expression of katE in 2.4.1Dirr mutant
0 min (light gray bar) and 20 min (dark gray bar) after exposure to
1 mM H2O2 compared to the wild type. (B) Relative katE expression
20 min of 1 mM H2O2 in the R. sphaeroides wild type (white bar) and the
irr deletion mutant (black bar). Values were normalized to rpoZ and to
the control at time point 0. The data represent the mean of three
independent experiments and error bars indicate standard deviation.
Levels of significance are indicated as follows: *P#0.01; **P#0.05.
doi:10.1371/journal.pone.0042231.g003
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Table 1. Selection of iron-responsive genes in R. sphaeroides.

Ratio

Category and
RSP no. Gene

Dirr +Fe vs.
wild type +Fea

Dirr –Fe vs.
wild type –Fea

Dirr –Fe vs.
Dirr +Fea

wild type –Fe vs.
wild type +Feb Description

Iron uptake

RSP_0920 exbB (0.66) 1.09 14.82 4.29 Biopolymer transport protein

RSP_0921 exbD (0.56) 0.92 14.98 3.49 Biopolymer transport protein

RSP_0922 0.84 0.99 3.70 2.36 Putative TonB protein

RSP_1440 (0.75) 0.73 7.19 3.92 TonB dependent ferrisiderophore

RSP_1548 irpA (0.56) 1.25 19.66 4.05 Iron-regulated protein

RSP_1818 feoB 0.46 1.01 3.65 1.36 Fe2+ transport system protein

RSP_1819 feoA1 0.49 1.11 3.72 1.55 Fe2+ transport system protein

RSP_2913 (0.46) 0.96 13.21 3.22 ABC Fe3+ siderophore transporter

RSP_3220 (0.50) 0.70 (7.35) 1.91 ABC ferric siderophore transporter

RSP_6006 hemP (0.64) 1.27 34.65 5.18 Hemin uptake protein

RSP_6020 feoA2 0.43 0.86 4.03 1.28 Fe2+ transport system protein

RSP_7397 (0.31) 0.81 (4.85) 1.79 ABC Fe3+ siderophore transporter

Iron storage

RSP_0352 0.46 0.67 2.05 1.15 Probable ferredoxin

RSP_0850 mbfA 3.65 8.04 1.75 (1.47) Membrane-bound ferritin

RSP_1546 bfr (0.55) 1.27 4.52 1.99 Bacterioferritin

RSP_1547 bfd (0.49) 1.32 12.31 2.71 Bacterioferritin-associated ferredoxin

RSP_2424 0.67 0.77 1.76 1.51 Ferredoxin II

RSP_3342 bfr 0.54 0.70 0.90 1.01 Bacterioferritin

Iron utilization

RSP_0434 sufD 1.48 2.60 4.32 2.46 Fe-S cluster assembly/repair

RSP_0437 sufC 1.46 2.42 4.22 1.93 Fe-S cluster assembly/repair

RSP_0439 1.50 2.86 3.42 1.81 Hypothetical protein

RSP_0440 sufB 1.72 2.74 3.69 1.63 Fe-S cluster assembly/repair

RSP_0442 (0.74) 1.39 (3.92) 1.56 Putative aminotransferase

RSP_0443 (0.62) 1.34 (4.67) 1.77 Rrf2 family transcriptional regulator

RSP_2395 ccpA 0.90 1.80 2.32 0.78 BCCP, cytochrome c peroxidase

Stress response

RSP_0166 dksA 0.51 0.99 1.63 1.12 DnaK suppressor protein

RSP_0697 0.43 1.17 1.81 0.75 Universal stress protein

RSP_1172 dnaJ 0.50 0.68 1.40 1.09 Chaperone

RSP_1194 grxC 0.54 0.96 1.55 1.05 Glutaredoxin

RSP_1219 grpE 0.57 0.77 1.74 1.11 Putative chaperone protein GrpE

RSP_1529 trxA 0.56 0.82 1.70 1.07 Thioredoxin

RSP_1572 0.55 1.47 1.52 0.73 Heat shock protein. Hsp20 family

RSP_2310 groES 0.72 0.82 2.31 1.49 Chaperonin Cpn10 (GroES)
(protein folding)

RSP_2311 groEL 0.60 0.66 2.41 1.21 Chaperonin GroEL

RSP_2654 0.58 0.68 1.90 1.59 DnaK suppressor protein

RSP_2693 (0.42) 0.67 2.45 1.62 Superoxide dismutase (Fe-Mn)

RSP_2843 hfq 0.50 0.81 1.77 1.22 RNA-binding protein Hfq

RSP_4203 0.39 1.03 2.31 1.05 putative glutaredoxin family protein
/Thio-disulfide isomerase

Oxidative
phosphorylation

RSP_0100–0104 nuo (0.44)–0.56 0.83–1.15 1.21–1.86 0.90–1.05 Putative NADH dehydrogenase

RSP_1035–39 atp 0.45–0.54 0.43–0.62 1.89–2.41 1.23–1.75 F0F1 ATP synthase

RSP_2296–2300 atp 0.48–0.56 0.56–0.66 1.90–2.25 1.35–1.65 ATP synthase

Irr Protein in Rhodobacter sphaeroides
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iron and group III genes behave oppositely (lower expression in

mutant under both conditions).

Most genes with predicted function in iron uptake or iron

storage fall into group I. Genes for systems involved in the uptake

of iron include e.g. exbBD and tonB (RSP_0920–22, 3.7–15.0), hemP

(RSP_6006, 34.7), a gene encoding an iron-regulated protein

(RSP_1548, 19.7), and genes for Fe3+-siderophore transporters

(RSP_2913, 13.2; RSP_1440, 7.2). The genes RSP_3220 (7.4) and

RSP_7397 (4.9) encoding subunits of siderophore transporter were

also up-regulated in response to iron limitation, but did not pass

our filtering criteria. The expression of iron storage genes

encoding bacterioferritin bfr (RSP_1546, 4.5), bacterioferritin-

associated ferredoxin bfd (RSP_1547, 12.3) and ferredoxin

(RSP_0352, 2.1; RSP_2424, 1.8) was also increased under iron

limitation.

Genes involved in stress responses or proteolysis also showed the

group I expression pattern. They were weakly induced in the

mutant upon iron limitation, while induction in the wild type was

even less or not observed. As a consequence expression levels in

both strains were similar under iron limitation. Genes with

function in stress responses include e.g. genes encoding the DnaK

suppressor protein (RSP_0166, RSP_2654), a universal stress

protein (RSP_0697), chaperones like grpE, groES, groEL and hfq

(RSP_1219, RSP_2310-11, RSP_2843), the superoxide dismutase

encoding gene RSP_2693, and glutaredoxin and thioredoxin

encoding genes.

In contrast to other genes of iron storage, mbfA showed a

different expression pattern, that it shares with the suf genes

(RSP_0434–0443) which are involved in de novo assembly and/or

repair of iron-sulfur clusters (group II): expression levels in the

mutant are higher than in the wild type in presence or absence of

iron. mbfA (RSP_0850) encodes a membrane-bound ferritin and

showed about 8 fold higher expression in the mutant compared to

the wild type under iron limiting conditions. This results from 3

fold higher expression levels under normal growth and stronger

induction in the mutant strain in response to iron limitation (factor

Table 1. Cont.

Ratio

Category and
RSP no. Gene

Dirr +Fe vs.
wild type +Fea

Dirr –Fe vs.
wild type –Fea

Dirr –Fe vs.
Dirr +Fea

wild type –Fe vs.
wild type +Feb Description

RSP_2512–30 nuo 0.44–0.57 0.58–0.76 1.87–2.35 1.30–1.60 NADH dehydrogenase

Transporter

RSP_0371 0.50 0.88 1.84 1.10 ABC basic amino acid transporter

RSP_0372 0.55 0.75 1.55 1.18 ABC basic amino acid transporter

RSP_0910–12 dct 0.52–0.62 0.41–0.51 1.85–2.23 1.71–1.90 TRAP-T family transporter

RSP_1747 bztA 0.47 0.83 2.02 1.03 ABC glutamate/glutamine/aspartate/
asparagines transporter

RSP_1804 ccmD 0.53 1.00 1.72 1.08 Heme exporter protein D

RSP_2399 0.51 0.71 1.73 1.23 ABC putrescine transporter

RSP_2400 0.49 0.64 1.74 1.36 ABC putrescine transporter

RSP_3571 znuA (2.98) 0.93 (0.26) (1.62) ABC zinc transporter

Photo-synthesis

RSP_0261–63 bch (1.17)–1.38 2.35–2.73 0.48–0.53 0.67–0.85 Chlorophyllide reductase

RSP_0277 bchP 0.95 1.81 0.88 0.95 Geranylgeranyl hydrogenase

RSP_0279 bchG 0.71 1.81 0.95 0.65 bacteriochlorophyll a synthase

RSP_0314 pucB 1.30 3.16 0.51 0.57 LHII beta, light-harvesting B800/850
protein

RSP_0315 pucC 0.97 2.57 0.60 (0.89) Light-harvesting 1 (B870) complex
assembly

RSP_0317 hemN 0.38 0.83 2.10 0.94 Coproporphyrinogen III oxidase

RSP_6256 pucA 1.14 3.12 0.64 0.45 LHII alpha, light-harvesting B800/850
protein

RSP_0679 hemC 0.57 1.07 1.37 0.92 Porphobilinogen deaminase

RSP_0680 hemE 0.57 0.93 1.48 1.05 Uroporphyrinogen decarboxylase

RSP_0693–96 cco 0.44–0.47 0.63–0.66 1.53–2.21 1.03–1.22 Cbb 3-type cytochrome c oxidase

RSP_0699 hemZ 0.56 0.75 1.84 1.64 Coproporphyrinogen III oxidase

RSP_1556 puc2B 1.23 2.75 0.60 0.68 Light-harvesting complex, beta
subunit

RSP_6158 puc2A 1.08 2.34 0.70 0.56 Light-harvesting complex, alpha
subunit

aSignificant changes are in bold. Numbers in parentheses failed to meet the set A value criteria, while plain numbers show a lower fold change than $1.75 or #0.57.
Selected genes that missed the cut-offs are included in this table to fully represent functional groups discussed.
bValues are taken from Peuser and colleagues (2011).
doi:10.1371/journal.pone.0042231.t001
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1.8). Some suf genes showed slightly higher expression in the

mutant compared to wild type under normal growth and more

than two-fold higher expression under iron limitation due to the

stronger induction.

Most of the selected iron-responsive genes follow the group III

expression pattern. Genes for energy metabolism (glycolysis, citric

acid cycle, oxidative phosphorylation), fatty acid metabolism, some

genes for transporters, genes involved in transcription, RNA

processing, amino acid metabolism and translation or chemotaxis

showed lower expression levels in the mutant strain compared to

the wild type in the presence and absence of iron and showed

slightly increased expression in response to iron limitation in the

mutant (Table 1 and Table S2).

Interestingly, the ABC zinc transporter gene znuA (RSP_3571)

showed a different expression pattern. Its expression was about

three times higher in the irr mutant compared to the wild type

under normal iron conditions and did not change in the presence

of iron in the mutant strain compared to the wild type. All three

types of expression patterns (group I, II or III) can be observed

among the genes with a role in photosynthesis (Table 1 and Table

S2).

To validate the microarray data real-time RT-PCR was used

for the quantification of mRNAs transcribed from some selected

genes. On the one hand the ratio of the expression in the 2.4.1Dirr

mutant was compared to that of the wild type strain under normal

iron conditions (Fig. 4A), on the other hand the ratios of mRNA

levels for the mutant strain grown in normal medium or under

iron limitation were determined (Fig. 4B). Fig. 4B also includes the

respective relative expression values of the wild type. Increase or

decrease of expression levels as revealed by microarrays were

confirmed by real-time RT-PCR, the extent of change was

however different for some genes, mostly larger in the real-time

RT-PCR data set.

In addition to protein-coding genes, the expression of intergenic

regions (IGR) and small non-coding RNAs (sRNA) was analyzed

as they can contribute to iron metabolism regulation as well.

Northern Blot analysis was used to validate the expression levels as

determined by the microarray approach. A selection of five sRNAs

that showed altered expression in the microarray data in 2.4.1Dirr

mutant under iron limitation was used for Northern hybridization

(Fig. S3). The abundance of RSs0827 and RSs0680a were

increased in the wild type and in the mutant under iron limitation

(2.4 fold and 2.5 fold, respectively) as confirmed by Northern blot

analysis (2.9 fold and 2.1 fold, respectively). Northern blots

revealed that the abundance of RSs0682 and RSs2978 was not

altered in the irr deletion strain under iron starvation (0.9 fold and

1.4 fold, respectively), although microarray analysis gave a ratio of

about 4 fold and 2 fold, respectively. RSs2430 showed a higher

expression in the mutant under iron-limiting conditions in the

microarray analysis (about 3 fold), which could not be confirmed

by Northern Blot analysis (0.4 fold). All five sRNAs showed a

similar pattern in the wild type under iron limitation compared to

the mutant (Fig. S3). Thus, it was only possible to confirm the

microarray data of sRNAs in parts. It is conceivable, that the

discrepancy between both techniques is due to mis-hybridization

on the chip. In general, sRNAs have a size between 50 and 250 nt.

Consequently, in many cases only one or two 60nt-oligonucleo-

tides per sRNA or IGR could be designed for microarray analysis.

Irr Binds to Target Sequences in the Promoter Regions of
the mbfA and ccpA Genes

Rodionov et al. (2006) predicted binding sites for the Irr protein

in the upstream regions of the R. sphaeroides genes mbfA (RSP_0850)

and ccpA (RSP_2395). MbfA encodes a membrane- bound ferritin,

ccpA encodes a cytochrome c peroxidase. Iron limitation resulted

in weak up-regulation of mbfA (about 1.5 fold) and weak down-

regulation (factor 0.8) of ccpA in the wild type [12]. MbfA was

strongly up-regulated (about 9 fold) by hydrogen peroxide stress,

while ccpA was significantly down-regulated (about 5 fold) [30]. In

the irr deletion mutant mbfA shows about 8 fold higher expression

in comparison to the wild type under iron limitation and it is up-

regulated by iron limitation (factor 1.75). The expression of ccpA is

increased in 2.4.1Dirr under iron limitation (about twofold) and its

expression level is also higher in the mutant compared to the wild

type under iron limitation (factor 1.8) (Table 1).

To verify the binding of Irr to the upstream regions of mbfA and

ccpA Irr was purified after heterologous overexpression and

suitable DNA fragments were amplified for gel retardation

analyses. For both fragments the formation of a retarded DNA

protein complex was observed (Fig. 5 A+B). The presence of

manganese favored formation of the Irr complexes. Molar excess

of unlabeled DNA fragment decreased the amount of labeled

DNA in the complex (Fig. 5A lanes 14–16 and data not shown),

while the presence of molar excess of unspecific DNA (salmon

sperm DNA) did not compete with complex formation. From the

binding curves dissociation constants of 0.860.15 mM for mbfA

and 0.960.1 mM for ccpA, respectively, were determined (Fig. S4).

Figure 4. Validation of microarray data by real-time RT-PCR.
Relative gene expression (A) in 2.4.1Dirr under normal iron conditions
compared to the wild type under normal iron conditions and (B) in
2.4.1Dirr under iron limitation compared to normal iron conditions
(light gray bars) and in wild type under iron limitation compared to
normal iron conditions (dark gray bars). Values were normalized to rpoZ
and to the respective control treatment. The data represent the mean
of at least three independent experiments and error bars indicate
standard deviation. Numbers in parentheses show the fold change of
the respective genes as determined by microarray analysis.
doi:10.1371/journal.pone.0042231.g004
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The Irr protein did not bind to a DNA fragment from the

upstream region of sitA (Fig. 5 A lanes 12 and 13), which was

predicted as a target for the Mur protein in R. sphaeroides.

Furthermore, Figure S5 shows that the Irr protein neither binds to

the upstream region of katE nor to the upstream region of iscR

(RSP_0443). Taken together, these analyses confirmed a specific

interaction of Irr and the mbfA and ccpA upstream regions.

To verify that the Irr binding sites are located in an appropriate

distance from the transcriptional start, we performed 59 RACE to

determine 59ends of the mbfA and ccpA mRNAs. As indicated in

Figure 6 59ends were identified downstream of the Irr-box for ccpA

(Fig. 6 B), while for mbfA the 59end mapped within the Irr-box

(Fig. 6 A).

Discussion

The Irr protein was identified as an important regulator of iron

metabolism in several alpha-proteobacteria. A mutant of R.

sphaeroides lacking the predicted Irr homolog has a similar growth

phenotype like the wild type under normal iron and iron limitation

Figure 5. Binding of purified Irr to the promoter of mbfA and ccpA as determined by Electrophoretic Mobility Shift Assays. (A)
Binding of Irr to the promoter region of mbfA (180 bp). All reactions contain the same amount of 32P end-labeled DNA fragment (3.08 fmol/lane)
comprising the promoter sequence. Lanes 1–4 contain no Irr; lanes 3 and 4 contain 0.6 mg BSA; lanes 5 and 7 contain 0.1 mg Irr; lane 6 and 11–13
contain 0.6 mg Irr; lane 8 contains 0.2 mg Irr; lanes 9 and 14–16 contain 0.3 mg Irr; lane 10 contains 0.4 mg. Reactions contain 1 mM MnCl2 as indicated.
Lanes 14–16 contain non-labeled DNA fragment mbfA in excess amount as cold competitor. Lanes 12 and 13 contain radioactively labeled sitA DNA
fragment (180 bp) as unspecific DNA. (B) Binding of Irr to the promoter region of ccpA (168 bp). All reactions contain the same amount of 32P end-
labeled DNA fragment (3.68 fmol/lane) comprising the promoter sequence. Lanes 1–3 contain no Irr; lane 3 contains 0.6 mg BSA; lane 4 contains
0.1 mg Irr; lane 5 contains 0.2 mg Irr; lane 6 contains 0.4 mg Irr; lane 7 contains 0.6 mg Irr. Reactions contain 1 mM MnCl2 as indicated. All reactions
contain 1 mg of salmon sperm DNA as unspecific competitor. The asterisks and arrows show the location of free and Irr-bound 32P end-labeled DNA
fragments, respectively.
doi:10.1371/journal.pone.0042231.g005
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conditions. This suggests that Irr has no major function in the

adaptation to growth under iron-limiting conditions. This was also

observed for a mutant of Bru. abortus lacking Irr [32], while deletion

of the irr gene in Agrobacterium tumefaciens diminished growth under

iron limitation [33]. Furthermore, irr expression was not affected

by the presence of iron in the R. sphaeroides wild type. This was also

reported for irr expression of Bru. abortus [32]. Irr mutants of Brad.

japonicum, Rhizobium leguminosarum and Bru. abortus accumulate

protoporphyrin IX under iron limitation [11,19,32]. However, no

protoporphyrin accumulation was observed in the R. sphaeroides irr

deletion strain under iron-limiting conditions. Unlike the Rhizo-

biales species, R. sphaeroides requires protoporphyrin also as

precursor for bacteriochlorophyll synthesis. The Brad. japonicum

and the Bru. abortus Irr bind heme, although the latter does not

contain the heme regulatory motif (HRM) and conserves only two

histidines (HXH) of the second heme binding motif [34]. The

HXH motif is also found in R. sphaeroides Irr and heme bound to

the recombinant protein. In R. sphaeroides Irr and Irr proteins

classified to the same branch [13] a proline is positioned between

the two histidines, whereas in Bru. abortus Irr glutamine is the

middle amino acid of the heme binding motif. No other Irr proten

with a HPH motif has been analyzed in regard to heme binding up

Figure 6. Determination of 59 ends of mbfA (RSP_0850) (A) and ccpA (RSP_2395) (B) mRNA by 59 rapid amplification of cDNA ends
(RACE). Separation of 59-RACE products mbfA and ccpA obtained from RNA extracts of the wild type strain under normal iron conditions. PCR
products obtained after second PCR (nested) were separated on a 10% polyacrylamid gel and stained with ethidium bromide. Determined 59 ends
are indicated by an arrow. The putative translational start is indicated by an asterisk. The Irr-box (ICE, iron control element) is marked by a frame.
doi:10.1371/journal.pone.0042231.g006
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to now. Irr was identified in Brad. japonicum as a transcriptional

repressor of hemB (5-aminolevulinate dehydratase) in the heme

biosynthetic pathway [19]. However, hemB expression was not

changed in 2.4.1Dirr under iron limitation.

The view that Irr has no major function in iron regulation in R.

sphaeroides is supported by a transcriptome analysis of the mutant

strain. Many genes in strain 2.4.1Dirr showed a lower expression

level compared to the wild type in presence and absence of iron.

The difference was mostly in the range of a factor of two and the

affected genes fall into several different functional categories. It is

highly unlikely that Irr would directly target all these genes,

especially since no target sites are predicted [13]. Expression of

katE and other OxyR-dependent genes was higher in the mutant

compared to the wild type under non-stress conditions. Since

activation of OxyR depends on oxidative stress this is indicative of

a higher level of oxidative stress in the mutant. We hypothesize

that the lower expression level of many genes in the mutant is most

likely due to this increased oxidative stress in strain 2.4.1. Dirr. The

expression pattern of genes in the Irr mutant under non-stress

conditions is however partly different from the effect of hydrogen

peroxide on gene expression in R. sphaeroides [30]. The higher

resistance of the Irr mutant to oxidative stress is also in agreement

with the higher expression levels of genes for the oxidative stress

response. Thus, the cells are prepared to counteract oxidative

stress better than cells, in which the oxidative stress response still

needs to be mounted.

All genes for iron metabolism that we reported before to be

induced in response to iron limitation in R. sphaeroides wild type

[12] are also induced in strain 2.4.1Dirr. Indeed the induction in

the Irr mutant was mostly stronger than in the wild type. Thus, Irr

prevents even stronger induction of genes in response to iron

starvation in the wild type.

Our study also identified two sRNAs, which are induced upon

iron limitation. Irr had no influence on the expression of RSs0827,

but expression levels of RSs0680a were higher in the absence of

Irr. While the function of RSs0827 is unknown, RSs0680a is

induced in response to singlet oxygen and even more in response

to superoxide [25]. Thus, increased expression of RSs0680a in the

mutant strain is another hint to increased levels of oxidative stress

in the absence of Irr. Whether these sRNAs have a role in

regulation of iron metabolisms as reported for sRNAs in other

species [35,36,37] needs to be analyzed in the future.

Among the genes with reliable A value only mbfA (RSP_0850)

encoding a membrane-bound ferritin showed significantly higher

expression in the irr mutant compared to the wild type under

normal iron and iron limitation conditions. In addition the znuA

gene (RSP_3571) for an ABC zinc transporter showed higher

expression in the mutant under normal iron conditions compared

to the wild type. Expression levels where just below the A value but

real-time RT-PCR confirmed the higher expression level in strain

2.4.1.Dirr (Fig. 4 A). However, no Irr-box (also named ICE for iron

control element) was predicted in the promoter region of znuA

[13]. MbfA is one of the two genes of R. sphaeroides for which an Irr-

box was predicted [13]. A putative transcriptional start site for the

mbfA gene was determined within the Irr-box motif. This position

of the Irr binding site in relation to the transcriptional start is in

agreement with a repressor function of Irr as also demonstrated for

e.g. the bll6680 (bfr, bacterioferritin) and blr7895 (rubrerythrin-like

protein) genes in Brad. japonicum [14]. The affinity of Irr to these

ICE motifs in Brad. japonicum was very high with KDs of 7 to 19 nM

[15]. The KD of the R. sphaeroides Irr protein to mbfA as determined

by electrophoretic mobility shifts was about 800 nM, indicating a

much lower in vitro affinity. The mbfA gene was only weakly

induced by iron starvation in the Irr mutant (1.8 fold), similarly as

in the wild type (about 1.5 fold). Thus, Irr has no major role in

regulation of iron-dependent expression of mbfA.

The only other gene of R. sphaeroides for which an Irr-box in the

promoter region was predicted [13] is ccpA (RSP_2395) encoding a

cytochrome c peroxidase. This heme-iron protein reduces

peroxides, which are generated by oxidative stress. Its expression

level was similar in the wild type and the mutant under normal

iron conditions but was slightly increased in the mutant compared

to the wild type under iron limitation. Iron limitation resulted in

weak induction of ccpA in the irr mutant, while it had no significant

effect on ccpA expression in the wild type under the same

conditions. We demonstrated in vitro binding of Irr to the ccpA

promoter region with similar affinity as to the mbfA promoter

region. The putative transcriptional start site mapped around 40

nt downstream of the Irr-box. In Brad. japonicum 17 iron-regulated

genes with a putative Irr-box and a total of 172 ICE-like motifs

were identified [14]. This search applied a more variable motif

than the search by Rodionov et al. (2006), which predicted 23 Irr

binding sites for Brad. japonicum and only 2 for R. sphaeroides. in vitro

binding of Irr to these motifs was demonstrated for blr7895

(rubrerythrin-like protein) and for bll6680 (bfr) [14]. Only for few

of the Brad. japonicum iron-regulated genes with a putative Irr

binding site homologs with good similarity are found in R.

sphaeroides (e.g. acnA, leuC, lguL, fumC). None of these genes showed

a significant response to iron in R. sphaeroides. Our data imply

different roles of Irr in gene regulation in individual alpha-

proteobacteria. Table S3 summarizes the different features of Irr

and Irr mutants in R. sphaeroides and the Rhizobiales species, which

have been investigated in this regard.

Like the Irr mutants of Bru. abortus [38] and A. tumefaciens [33]

the R. sphaeroides mutant showed higher resistance to oxidative

stress, which is in agreement with increased katE expression under

normal growth conditions. Interestingly both genes with Irr-boxes

in R. sphaeroides, mbfA and ccpA have a function in oxidative stress

defense. MbfA (RSP_0850) shares good homology with blr7895

(rubrerythrin-like protein) and showed an increased expression in

the irr deletion strain compared to the wild type under non-stress

conditions. Rubrerythrin is a structurally and biophysically well-

characterized non-heme iron protein [39,40]. It is hypothesized

that rubrerythrin provides oxidative stress protection via catalytic

reduction of intracellular hydrogen peroxide [41,42,43], although

this function was disputed [44]. Since iron limitation causes

oxidative stress due to decreased levels of iron-sulfur proteins with

important roles in oxidative stress defense increased katE and

maybe also mbfA and ccpA expression levels help to counteract this

oxidative stress. A direct effect of Irr on katE expression is unlikely

since no Irr-box is present in the katE promoter region and no

in vitro binding was observed by gel shift experiments. Alternative-

ly, the lack of Irr, which causes an enhanced induction of genes for

iron uptake in response to iron starvation may cause the

generation of ROS, which consequently activate katE expression

and cause lower expression of many other genes. It is conceivable

that under microaerobic growth a limitation of the up-regulation

of genes in response to iron starvation is the biological function of

Irr in R. sphaeroides. It would thus contribute to a balance between

increase of iron-uptake systems, which counteracts iron limitation

and the formation of ROS by too much iron import.

Materials and Methods

Bacterial Strains, Growth Conditions and Iron Limitation
Strains and plasmids used in this study are listed in Table S4.

R. sphaeroides strains were cultivated at 32uC in 50 ml

Erlenmeyer flasks containing 40 ml malate minimal medium

Irr Protein in Rhodobacter sphaeroides
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[45] with continuous shaking at 140 rpm. This growth is

designated as microaerobic growth. At the chosen growth

conditions the cultures contain about 2% oxygen (approx.

30 mM oxygen).

Conditions of iron limitation were achieved by cultivating R.

sphaeroides without adding external Fe(III)citrate to the growth

medium but with the iron chelator 2,29-dipyridyl (30 mM; Merck).

A small aliquot of cells were transferred from normal cultivation

medium to iron-limited medium. The cells were grown overnight

and then transferred two times more into iron-limited medium.

Inductively coupled plasma mass spectrometry (ICP-MS) using

Agilent 7500ce confirmed that the iron content was drastically

reduced in iron-limited medium (from 140 mg/l to 16 mg/l) [46].

For gene expression studies cells were harvested at an OD660 of

0.4.

When required antibiotics were added to the liquid or solid

growth medium at the following concentrations: kanamycin, 25 mg

ml21; tetracycline 2 mg ml21 (for R. sphaeroides); and ampicillin,

200 mg ml21; kanamycin, 25 mg ml21; tetracycline, 20 mg ml21

(for E. coli).

Construction of an R. sphaeroides irr Deletion Mutant
R. sphaeroides strain 2.4.1Dirr was generated by transferring the

suicide plasmid pPHU2.4.1Dirr::Km into R. sphaeroides 2.4.1, and

screening for insertion of the kanamycin resistance cassette into the

chromosome by homologous recombination. Briefly, parts of the

irr gene (RSP_3179) of R. sphaeroides 2.4.1, together with upstream

and downstream sequences, were amplified by PCR using

oligonucleotides KO3179-Eco_A1 (59-CGA AGC GAA TTC

CCT GCC AGC C-39), KO3179-Pst_A2 (59-GAT TGC CGA

TCG CTG CAG CAT TCC-39) and KO3179-Pst_B1.3 (59- CGA

CAA CCA TCT GCA GTT CTA CTG GG -39), KO3179-

Pae_B2.3 (59- GGC AGT TCC GCA TGC GGG ATC TCG -

39).

The amplified PCR fragments were cloned into the EcoRI-PstI

and PstI-PaeI sites of the suicide plasmid pPHU281, generating

the plasmid pPHU2.4.1Dirr. A 1.3 kb PstI fragment containing the

kanamycin cassette from pUC4K [47] was inserted into the PstI

site of pPHU2.4.1Dirr to generate pPHU2.4.1Dirr::Km. This

plasmid was transferred into E. coli strain S17-1 and diparentally

conjugated into R. sphaeroides 2.4.1 wild type strain. Conjugants

were selected on malate minimal salt agar plates containing 25 mg

kanamycin ml–1. By insertion of the kanamycin cassette, 285 bp of

the 441 bp R. sphaeroides irr gene (RSP_3179) was deleted. PCR

analysis of chromosomal DNA was carried out to confirm the

double crossover event of the kanamycin cassette into the R.

sphaeroides chromosome (Fig. S6).

Complementation of the R. sphaeroides Deletion Mutant
2.4.1Dirr

For complementation of the irr deletion mutant of R. sphaeroides a

539 bp PCR fragment containing the entire irr gene (RSP_3179)

along with 57 bp of the upstream and 49 bp of the downstream

sequence of the irr gene was amplified by using the oligonucle-

otides 3179compl_fwd (59-GCC GTC TAG AAA ACA TGG

GTC TTT C-39) and 3179compl_rev (59-CTG CCC GCA GAA

TTC GCA GAC G- 39). Following digestion with XbaI and

EcoRI, the fragment was cloned into the corresponding sites of

pRK415, resulting in plasmid pRK2.4.1irr. To complement the irr

deletion in the wild type strain 2.4.1, the plasmid pRK2.4.1irr was

transferred into E. coli S17-1 and conjugated into the 2.4.1Dirr

strain by diparental conjugation.

Inhibition Zone Assays
For inhibition zone assays cultures were grown microaerobically

overnight at 32uC and then diluted to an OD660 of 0.2. Cultures

were grown to an OD660 of 0.4 and 200 ml of the culture were

mixed with 5 ml prewarmed top agar (0.8% (w/v) agar) and

layered onto malate minimal salt medium plates. A 0.55 cm filter

disk, containing 5 ml of hydrogen peroxide (100, 200 and

500 mM), was placed on the hardened top agar. Zones of

inhibition were measured after incubation for 72 h at 32uC in the

dark. Inhibition zone assays were also performed under a

fluorescent tube (model NL 36 W/860 daylight) with filter disks

containing 5 ml of 10 and 50 mM methylene blue to generate

singlet oxygen. The assays were performed at least three times.

Extraction of RNA and Quantitative Real-time RT-PCR
Cell samples from growth experiments (OD660 0.4) were rapidly

cooled on ice and harvested by centrifugation at 10 000 g in a

cooled centrifuge. Total RNA was isolated by the peqGOLD

TriFast TM Kit (Peqlab) as described by the manufactures

protocol. Samples were treated with 1 unit of RNase-free DNase

I (Invitrogen) per 1 mg RNA to remove contaminating DNA. After

DNase I treatment, the RNA was purified by standard procedures

using a mixture of phenol/chloroform/isoamyl alcohol and

chloroform/isoamyl alcohol before precipitating with sodium

acetate and isopropanol. Contamination with remaining DNA

was checked by PCR amplification of RNA samples using primers

targeting gloB (RSP_0799-A: 59-GAA CAA TTA CGC CTT

CTC-39, RSP_0799-B: 59-CAT CAG CTG GTA GCT CTC-39)

as described previously [26].

Oligonucleotides used for gene amplification are listed in Table

S5. Conditions for real-time RT-PCR were described earlier in

detail [26]. A final concentration of 4 ng ml21 of total RNA was

used in an one-step RT-PCR kit (Qiagen). For detection of double

stranded DNA SYBR Green I (Invitrogen) was added in a final

dilution of 1:50 000 to the master mix. For normalization of

mRNA levels the rpoZ gene was used, which encodes the v-subunit

of RNA-polymerase of R. sphaeroides [48]. Relative expression of

target genes was calculated relative to the expression of untreated

samples and relative to rpoZ [49]. PCR efficiencies were

determined experimentally using serial dilutions of RNA between

a final concentration of 8 and 0.5 ng ml21 (Table S6).

Microarray Analysis
Microarray experiments were performed as described previous-

ly [12]. In brief, total RNA from iron-limited and control cultures

grown under microaerobic conditions (OD660 0.4) was extracted

by the hot phenol method as described earlier [50,51]. Genomic

DNA contamination from RNA samples was removed by DNase

treatment (Invitrogen). After DNA digestion, RNA was purified on

RNeasyH MinEluteTM spin columns (Qiagen). All RNA prepara-

tions were tested for the lack of genomic DNA contamination by

PCR amplification using primers targeting gloB (RSP_0799) as

described previously [26].

High-density oligonucleotide R. sphaeroides microarrays (Agilent

gene chips corresponding to the whole 4.6-Mb genome) were used

for transcriptome profiling. The microarray contains probes

against 4.304 protein coding genes, 79 rRNA and tRNA genes,

and 144 intergenic regions; its construction and performance

analysis was performed according to the instructions of Agilent

(www.chem.agilent.com). Three antisense probes with a length of

60 nt were designed for hybridization to each gene. The ULSTM

Fluorescent Labeling Kit for Agilent arrays (Kreatech) was used

for RNA labeling and fragmentation. The RNA of three

independent experiments of R. sphaeroides wild type under normal
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and iron limitation conditions and the irr deletion mutant under

normal and iron limitation conditions was pooled and hybridized

to one array. Transcriptome profiles were analyzed on two arrays

(Dirr normal iron vs. wild type normal iron; Dirr iron limitation vs.

wild type iron limitation; Dirr iron limitation vs. Dirr normal iron)

including six biological replicates. Genechip hybridizations and

scanning were performed according to the specifications from

Agilent. Multiarray analysis was performed with the Bioconductor

package Limma for R [52,53]. Background correction and

normalization (Lowess, locally weighted scatterplot smoothing)

were performed as described previously [54,55]. To filter out

unreliably measured and unchanged genes, two criteria were used

as described previously [12]. (i) Genes were considered reliable if

the mean intensity (A value) was $12. (ii) A cut-off value was

applied, i. e., those genes were retained whose average expression

value (ratio) was either $1.75 or #0.57. The fold changes are

shown in the text in parentheses preceded by the RSP numbers of

their corresponding genes. When expression of several genes is

discussed, the lower and upper fold changes are shown, e. g., a

range of two- to fivefold increase is shown as ‘‘2.0–5.0’’. The

expression data obtained here were deposited in the Gene

Expression Omnibus (GEO) database of the National Center for

Biotechnology Information (www.ncbi.nih.gov/geo) under super-

series GSE33535.

Expression and Isolation of the R. Sphaeroides Irr Protein
Oligonucleotides 3179-His_fwd (59-GCGCCCGCAATGG-

GATGGATCCCATTTC-39) and 3179-His_rev (59-GCGGGAA-

TAAGCTTTCAGGTACGCTT-39) were used for amplifying the

coding region of irr. The 474-bp PCR product was ligated into the

pJET1.2/blunt cloning vector (Qiagen) which was transformed

into E. coli JM109. Afterwards the plasmid containing irr was

digested with BamHI and HindIII and the purified irr fragment

was ligated into the overexpression vector pQE30 (Qiagen) to

generate pQE2.4.1irr, which was transformed into E. coli JM109.

The correct construct was transformed into E. coli M15 (pREP-4)

for overexpression of His-tagged Irr. For this purpose M15 (pREP-

4/pQE2.4.1irr) was grown in 50 ml of Luria-Bertani medium to

an OD600 of 0.5 to 0.6 at 37uC. The cells were induced with

1 mM IPTG for 3 h at 37uC. Following harvest, cells were

resuspended in ice-cold lysis buffer (50 mM NaH2PO4, 300 mM

NaCl, 10 mM imidazole, pH 8.0) and disrupted by brief

sonication. The lysate was centrifuged at 13 000 rpm and 4uC
for 15 min. The clear supernatant was loaded onto Ni-NTA

agarose (Qiagen) and incubated at 4uC for 3 h. Proteins were

washed with washing buffer (50 mM NaH2PO4, 300 mM NaCl,

20 mM imidazole, pH 8.0) and eluted with elution buffer (50 mM

NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0). Aliquots

of the fractions were analyzed on 15% sodium dodecyl sulfate-

polyacrylamide gels, and fractions containing Irr protein were used

for the experiments described below.

Electrophoretic Mobility Shift Assays (EMSAs)
Binding of the recombinant Irr protein to the upstream regions

of RSP_0850 (mbfA) and RSP_2395 (ccpA) was determined by an

EMSA. As controls served DNA fragments containing the sitA

(RSP_0904), the katE (RSP_2779) and the iscR (RSP_0443)

promoter region, respectively. The following oligonucleotides

were used to generate DNA fragments containing the respective

promoter region by PCR. RSP_0850:0850up_fwd (59-GTC AAC

TTG CCG CAG GCG CTC C-39) and 0850up_rev (59-GCC

GGT TGA CAT AGG AGC GGT AG-39);

RSP_2395:2395up_fwd (59-CGG TCA ACC CTG GTC GCC

GCC GAA-39) and 2395up_rev (59-GCC GCG TCG ACG AGG

GCC GTC-39); RSP_0904:0904up_fwd (59-CAG TTA ACT

GCG AAC GGC TCG CAG A-39) and 0904up_rev (59-GAC

CGT TAA CGT CGT GGC GAC CT-39);

RSP_0443:0443up_fwd (59-CGC GGC GTA ATG TTG ACA

AAA ACG-39) and 0443up_rev (59-CGA CAC GTC GAC AAG

CGA GAC AAG-39). The PCR fragments with a length of 180,

168, 180 and 246 bp for mbfA, ccpA, sitA and iscR, respectively,

were cloned into pDrive cloning vector (Qiagen), and isolated

from the vector by using the restriction enzyme HincII. In the case

of katE the plasmid pkatEup was used that contains a 352 bp

fragment of the upstream region of katE [29]. The fragment was

isolated from the pDrive cloning vector by using the restriction

enzymes BamHI and PstI. The restricted DNA fragments were

then radioactively end-labeled with c32P ATP using the T4

polynucleotide kinase (Fermentas).

An appropriate amount of the purified Irr protein, ranging from

0.1 to 0.6 mg, was mixed with approx. 3 fmol c32P ATP-labeled

DNA probe (5000 c.p.m.) in a 15 ml reaction volume containing

20 mM TB (pH 7.8), 5% v/v glycerol, 1 mM DTT, salmon sperm

DNA (1 mg), and 0.1 mg/ml BSA. Binding incubations were

carried out for 30 min at 32uC before the samples were loaded

onto a 6% polyacrylamide gel in 0.5x TBE buffer (45 mM Tris-

HCl, 45 mM boric acid, 1.25 mM EDTA, pH 8.3) and run at

180 V for 3 h at 4uC.

Competitive assays were performed to determine the specificity

of the protein for the putative target site (Irr-box). In this case, the

c32P ATP-labeled DNA probes were mixed with a 1 to 100 fold

molar excess of the respective unlabeled DNA fragment before

adding to the binding reaction.

59 RACE
For the determination of 59 mRNA ends using 59 rapid

amplification of cDNA ends (RACE), 3 mg of total RNA isolated

from wild type cells cultivated under normal iron conditions were

reverse transcribed into cDNA by using avian myeloblastosis virus

reverse transcriptase (Promega) and gene-specific primers

(0850_RACE1 and 2395_RACE1; see Table S5). The 59RACE

protocol was performed as described previously [56].

Heme-binding Experiments
The interaction of Irr with heme was studied through the

spectral properties of heme. Hemin (C34H32ClFeN4O4; Sigma)

was dissolved in 0.1 M NaOH and binding studies were carried

out using an appropriate dilution in buffer (50 mM NaH2PO4,

300 mM NaCl, pH 8.0). The absorption spectrum of 8 mM heme

was recorded in the presence or absence of 8 mM Irr. As positive

control the absorption spectrum of 5 mM heme was recorded in

the presence and absence of 5 mM BSA. As negative control the

absorption spectrum of 8 mM heme was recorded in presence and

absence of 8 mM IscR.

Detection of Protoporphyrin IX in Supernatants of
R. sphaeroides Cultures

40 ml R. sphaeroides cells grown to saturation under iron limiting

conditions were harvested by centrifugation (4 600 g, 15 min, 4uC)

and the porphyrins from the supernatants were extracted with

10 ml ethyl/glacial acetic acid (3:1, v/v) at 18uC overnight with

shaking. Then, the ethyl acetate layer was washed with pure water

and concentrated at low temperature in a vacuum system. The

absorption spectrum of this extract was recorded between 350 and

650 nm with a Specord 50 spectrophotometer (Analytik Jena).
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Supporting Information

Figure S1 Relative gene expression under iron limitation

comparing aerobic and microaerobic conditions. Real-time RT-

PCR was used to investigate the relative expression of hemB

(RSP_2848), hemH (RSP_1197), mbfA (RSP_0850) and sufD

(RSP_0434) under iron limitation in R. sphaeroides 2.4.1Dirr (light

gray bars) and wild type (dark gray bars) under microaerobic

conditions (non-striped bars) and aerobic conditions (striped bars).

Values were normalized to rpoZ and to the respective control

treatment under normal iron conditions. The data represent the

mean of three independent experiments and error bars indicate

standard deviation.

(TIF)

Figure S2 Effect of Irr on the absorption spetrum of heme. (A)

Absorption spectrum of 8 mM heme was recorded in the absence

(dashed line) and in the presence (continuous line) of 8 mM

recombinant Irr. A scan of 8 mM Irr alone (dotted line) is also

shown. (B) Absorption spectrum of 5 mM heme was recorded in

the absence (dashed line) and in the presence (continuous line) of

5 mM BSA as positive control. A scan of 5 mM BSA alone (dotted

line) is also shown. (C) Absorption spectrum of 8 mM heme was

recorded in the absence (dashed line) and in the presence

(continuous line) of 8 mM recombinant IscR. A scan of 8 mM

IscR alone (dotted line) is also shown. Absorption peak

wavelengths are indicated.

(TIF)

Figure S3 The abundance of small RNAs under iron limitation

in the wild type and the 2.4.1Dirr mutant as determined by

Northern Blot analysis. After hot phenol extraction RNA was

separated on 10% polyacrylamide gels containing 7 M urea and

then transferred onto nylon membranes by semidry electroblot-

ting. 10 mg total RNA was loaded per sample. For detection of

sRNAs radioactively-labeled oligodeoxynucleotides were used.

Membranes were exposed on phosphoimaging screens and

analyzed with the 1D-Quantity One software (Bio-Rad). 5 S

rRNA served as loading control.

(TIF)

Figure S4 Determination of Irr affinity for Irr-box motif

containing DNA. (A) Binding of Irr to the promoter region of

mbfA. (B) Binding of Irr to the promoter region of ccpA. To

determine the dissociation constant (KD) of Irr-DNA binding, the

percentage of DNA bound to total labeled DNA was plotted

against increasing Irr concentrations. The KD was defined as the

protein concentration required to shift 50% of the probe.

(TIF)

Figure S5 Binding of purified Irr to the promoter region of katE

and iscR as determined by Electrophoretic Mobility Shift Assays.

All reactions contain the same amount of 32P end-labeled DNA

fragment (, 3 fmol/lane) comprising the respective promoter

sequence. (A) Binding of Irr to the promoter region of katE

(352 bp). Lanes 1 and 4–6 contain no Irr; lane 6 contains 0.6 mg

BSA; lanes 2 and 7 contain 0.1 mg Irr; lane 8 contains 0.2 mg Irr;

lane 9 contains 0.3 mg Irr; lane 10 contains 0.4 mg Irr; lanes 11

and 3 contain 0.6 mg Irr. Reactions contain 1 mM MnCl2 as

indicated. Lanes 1–3 contain radioactively labeled mbfA DNA

fragment (180 bp) as positive control. (B) Binding of Irr to the

promoter region of iscR (246 bp). Lanes 1 and 5 contain no Irr;

lanes 2 and 6 contain 0.1 mg Irr; lanes 3 and 7 contain 0.3 mg Irr;

lanes 4 and 8 contain 0.6 mg Irr. All reactions contain 1 mM

MnCl2. Lanes 1–4 contain radioactively labeled mbfA DNA

fragment as positive control. The asterisks and arrows show the

location of free and Irr-bound 32P end-labeled DNA fragments,

respectively.

(TIF)

Figure S6 Confirmation of the irr knock-out by PCR (A) using

oligodeoxynucleotides KO3179_Test-A (59-CCA CGC CGA

GCG CGA AGC CC-39) and KO3179_Test-B (59-GCA CCT

CGT CGG GCA GTT CCG-39) to amplify the irr locus with its

upstream and downstream regions (estimated product length: WT

(2 Kmr cassette): 1352 bp; Dirr (+ Kmr cassette): 2435 bp), (B)

using oligodeoxynucleotides KanR2_fwd (59-CAT GAA CAA

TAA AAC TGT CTG C-39) and KanR2_rev (59-GAA GAT

GCG TGA TCT GAT CC-39) to amplify the kanamycin

resistance cassette (estimated product length: 983 bp) and (C)

using oligodeoxynucleotides KanR2_fwd and KO3179_Test-B

(estimated product length: Dirr (+ Kmr cassette): ,1800 bp). Used

template for PCR: chromosomal DNA (wild type, WT; irr deletion

mutant, Dirr) and H2O as negative control. PCR products were

separated on an 1% agarose gel (1x TAE) and stained with

ethidium bromide. (D) Construction of R. sphaeroides 2.4.1Dirr.

Oligodeoxynucleotides used for cloning are indicated as black

arrows (A1, A2, B1, B2), oligodeoxynucleotides used for testing

knock-out candidates are indicated as red arrows (KO3179_Test-

A, KO3179_Test-B) and oligodeoxynucleotides for amplifying the

kanamycin resistance cassette are indicated as blue arrows

(KanR2_fwd, KanR2_rev).

(TIF)

Table S1 Gene expression changes in 2.4.1Dirr.

(XLS)

Table S2 Selection of iron-responsive genes in R. sphaeroides

grouped to functional categories.

(DOC)

Table S3 Summary of Irr features in R. sphaeroides and

Rhizobiales species.

(DOCX)

Table S4 Bacterial strains and plasmids.

(DOC)

Table S5 Oligodeoxynucleotides used for real-time RT-PCR

and 59RACE.

(DOCX)

Table S6 Primer efficiencies for real-time RT-PCR.

(DOCX)
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36. Massé E, Gottesman S (2002) A small RNA regulates the expression of genes

involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99:

4620–4625.

37. Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, et al.

(2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas

aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A 101: 9792–

9797.

38. Martinez M, Ugalde RA, Almiron M (2006) Irr regulates brucebactin and 2,3-

dihydroxybenzoic acid biosynthesis, and is implicated in the oxidative stress

resistance and intracellular survival of Brucella abortus. Microbiology 152: 2591–

2598.

39. LeGall J, Prickril BC, Moura I, Xavier AV, Moura JJ, et al. (1988) Isolation and

characterization of rubrerythrin, a non-heme iron protein from Desulfovibrio

vulgaris that contains rubredoxin centers and a hemerythrin-like binuclear iron

cluster. Biochemistry 27: 1636–1642.

40. Li M, Liu MY, LeGall J, Gui LL, Liao J, et al. (2003) Crystal structure studies on

rubrerythrin: enzymatic activity in relation to the zinc movement. J Biol Inorg

Chem 8: 149–155.

41. Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM, Jr. (2001)

Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel

oxidative stress protection system. J Bacteriol 183: 101–108.

42. Sztukowska M, Bugno M, Potempa J, Travis J, Kurtz DM, Jr. (2002) Role of

rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol

Microbiol 44: 479–488.

43. Weinberg MV, Jenney FE, Jr., Cui X, Adams MW (2004) Rubrerythrin from

the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent,

iron-containing peroxidase. J Bacteriol 186: 7888–7895.

44. Jean D, Briolat V, Reysset G (2004) Oxidative stress response in Clostridium

perfringens. Microbiology 150: 1649–1659.

45. Drews G (1983) Mikrobiologisches Praktikum. Heidelberg: Springer Verlag.

46. Peuser V, Metz S, Klug G (2011) Response of the photosynthetic bacterium

Rhodobacter sphaeroides to iron limitation and the role of a Fur orthologue in this

response. Environmental Microbiology Reports 3: 397–404.

47. Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for

insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:

259–268.

48. Gomelsky L, Sram J, Moskvin OV, Horne IM, Dodd HN, et al. (2003)

Identification and in vivo characterization of PpaA, a regulator of photosystem

formation in Rhodobacter sphaeroides. Microbiology 149: 377–388.

49. Pfaffl MW (2001) A new mathematical model for relative quantification in real-

time RT-PCR. Nucleic Acids Res 29: e45.

50. Janzon L, Lofdahl S, Arvidson S (1986) Evidence for a coordinate transcriptional

control of apha-toxin and protein-a synthesis in Staphylococcus aureus. FEMS

Microbiol Lett 33: 193–198.

51. von Gabain A, Belasco JG, Schottel JL, Chang AC, Cohen SN (1983) Decay of

mRNA in Escherichia coli: investigation of the fate of specific segments of

transcripts. Proc Natl Acad Sci U S A 80: 653–657.

52. Smyth GK (2004) Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:

Article3.

53. Smyth GK (2005) Limma: Linear models for microarray data. Bioinformatics

and Computational Biology Solutions using R and Bioconductor.

54. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, et al. (2007) A

comparison of background correction methods for two-colour microarrays.

Bioinformatics 23: 2700–2707.

55. Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods

31: 265–273.

56. Nuss AM, Glaeser J, Klug G (2009) RpoHII activates oxidative-stress defense

systems and is controlled by RpoE in the singlet oxygen-dependent response in

Rhodobacter sphaeroides. J Bacteriol 191: 220–230.

Irr Protein in Rhodobacter sphaeroides

PLoS ONE | www.plosone.org 13 August 2012 | Volume 7 | Issue 8 | e42231


