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1 Introduction

Arrays of automata can be understood as models for massively parallel com-

puters. By treating them as acceptors for formal languages their computational

power can be compared with other parallel and sequential computer models.

Under these aspects the automata arrays and various modi�cations have been

studied for a long time. Especially investigations concerning universality (often

combined with other properties) have been done e.g. in [1, 5, 10, 11, 13, 14].

A state-of-the-art survey on universality and decidability versus undecidability

in cellular automata and several other models of discrete computations can be

found in [9].

Due to the historical precedent for a �xed amount of memory per cell (un-

bounded) cellular automata have to be de�ned over an in�nite space in order

to obtain computational universality. Therefore, the number of required pro-

cessors depends on the length of input data and, additionally, may increase

during the computation. From a more practical point of view an in�nite num-

ber of processors seems to be fairly unrealistic. On the other hand Turing

acceptors are computationally universal devices which have one processor only

and additionally an in�nite storage tape. For this reason and due to the possible

speed-up gained in parallelism we investigate the pushdown cellular automata

PDCA where each cell is now a deterministic pushdown automaton [7, 8]. So

we obtain a computationally universal computer model where the number of

processors is bounded by the length of input data. Furthermore, in our opinion

the assumption of arbitrary large pushdown memory is less problematical than

the assumption of an arbitrary number of processors.

Clearly, a PDCA with at least two cells is su�cient in order to obtain an

universal device. But with an eye towards applications e.g. in diagonalization

proofs here we are interested in e�cient universal PDCAs.

The basic notions and the model in question are introduced in the next section.

Section 3 is devoted to the design of an e�ciently veri�able encoding of PDCAs.

Given the encoding of an arbitrary PDCA M and the encoding of an input

word w a universal PDCA has to simulate the behavior of M on input w.

Since in general w is independent of M at �rst it will be necessary to create

the encoding of the initial con�guration of M with respect to w. Subject of

Section 4 are encodings of con�gurations. The e�cient universal PDCAs are

presented in Section 5. The crucial point is the bounded number of cells such

that the encodings have to be stored into the stacks. This fact causes additional

expenses of time. On the other hand, the time complexity must not exceed a

certain magnitude in order to obtain tight hierarchies. Finally, in Section 6

the universal PDCAs are applied and tight time and stack-space hierarchies are

shown.

2



2 Basic Notions

We denote the integers by Z, the positive integers f1; 2; :::g by N and the set

N [ f0g by N0. The empty word is denoted by � and the reversal of a word w

by w
R. For the length of w we write jwj. We use � for inclusions and � if the

inclusion is strict. For a function f : N0 ! N we denote its i-fold composition

by f [i], i 2 N. [i](x1 � � � xn) = xi selects the ith component of a word or a vector.

A pushdown cellular automaton is a linear array of identical deterministic push-

down automata, sometimes called cells, where each of them is connected to its

both nearest neighbors (one to the right and one to the left). For convenience

we identify the cells by positive integers. They operate synchronously at dis-

crete time steps. The state transition of a cell depends on the current states of

its both neighbors, the current state of the cell itself and the current symbol

at the top of its stack. With an eye towards language recognition we provide

accepting and rejecting states. More formally:

De�nition 1 A pushdown cellular automaton (PDCA) is a system

hS;G; �s; �p; #;?; A; F+; F�i, where

1. S is the �nite, nonempty set of states,

2. G is the �nite, nonempty set of stack symbols,

3. # =2 S is the boundary state,

4. ? 2 G is the bottom-of-stack symbol,

5. A is the �nite, nonempty set of input symbols,

6. F+ and F�, F+ \ F� = ;, are the sets of accepting and rejecting states,

respectively,

7. �s : (S [ f#g)
3 �G! S is the local state transition function,

8. �p : (S [ f#g)
3 �G! f�g [G [G

2 is the local stack transition function

satisfying 8s1; s2; s3 2 S; g 2 G n f?g :

�p(s1; s2; s3;?) 2
�
g
0? j g0 2 (G n f?g) [ f�g

	
and

�p(s1; s2; s3; g) 2 f�g [ (G n f?g) [ (G n f?g)2:

The condition on the local stack transition function ensures that the bottom-of-

stack symbol appears at each cell exactly once (i.e. at the bottom of its stack).

At every transition step each cell consumes the symbol at the top of its stack

(if it is not empty) and pushes at most two new symbols onto it. Note that the

restriction of pushing at most two symbols at every time step neither reduces

the computation power nor slows down the computation itself [4].

Let M = hS;G; �s; �p; #;?; A; F+; F�i be a PDCA. A con�guration of M at

some time t � 0 is a description of its global state which is actually a mapping

ct : [1; : : : ; n] ! S � G
+ for n 2 N. The con�guration at time 0 is de�ned
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by the initial sequence of states and empty stacks. For a given input w =

a1 � � � an 2 A
+ we set c0(i) = (ai;?),1 � i � n. Subsequent con�gurations

are computed according to the global transition function �: Let n 2 N be

an arbitrary positive integer and c and c
0 be two con�gurations de�ned by

(s1; p1;1 � � � p1;m1
) � � � (sn; pn;1 � � � pn;mn

) and (s1; p
0

1) � � � (sn; p
0

n), then

c
0 = �(c) ()

s
0

1 = �s

�
#; s1; s2; p1;1

�
s
0

i = �s

�
si�1; si; si+1; pi;1

�
; 2 � i � n� 1

s
0

n = �s

�
sn�1; sn; #; pn;1

�
p
0

1 = �p

�
#; s1; s2; p1;1

�
p1;2 � � � p1;m1

p
0

i = �p

�
si�1; si; si+1; pi;1

�
pi;2 � � � pi;mi

; 2 � i � n� 1

p
0

n = �p

�
sn�1; sn; #; pn;1

�
pn;2 � � � pn;mn

Thus, the global transition function � is induced by �s and �p.

If the state set is a Cartesian product of some smaller sets S = S1�S2�� � ��Sk

we will use the notion register for the single parts of a state. The concatenation

of a register of all cells forms a track.

3 Encoding of Pushdown Cellular Automata

Needless to say, in general it is possible to encode PDCAs and their con�gur-

ations with any nonempty alphabet. But with an eye towards applications in

formal language recognition, we are interested in e�ciently veri�able encodings

that have to be chosen with respect to the processing universal PDCA. Later

on, the encodings in combination with the universal PDCA will determine the

tightness of the hierarchies of language families.

Let bin : N0 ! f0; 1g+ be the mapping that maps a natural number to its

binary representation without leading zeroes. Then the binary representation

with leading zeroes is for all k � 1 de�ned by bink : N0 ! f0; 1g+, n 7!

0k�jbin(n)jbin(n) if k � jbin(n)j. bink(n) is unde�ned for k < jbin(n)j.

S and G are �nite nonempty sets and we can assume total orderings on their

elements: S = fs1; : : : ; sjSjg and G = fg1; : : : ; gjGjg. W.l.o.g. let s0 be the

boundary state # and g1 be the bottom-of-stack symbol ?. The di�erent begin-

nings of the numberings have been chosen since for stack operations the empty

word � has to be encoded in addition. The ordering of the state set implies

orderings of F+ and F�.

The state and stack transition functions can be represented as a table with

seven columns. Each row is as follows:

si sj sk gl �s(si; sj ; sk; gl) [1](�p(si; sj ; sk; gl)) [2](�p(si; sj ; sk; gl))

We assume that the rows are in lexicographic order. If for certain si, sj, sk,

gl the corresponding row is missing then �s(si; sj; sk; gl) is de�ned to be sj and
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�p(si; sj ; sk; gl) is de�ned to be gl (i.e. neither the state nor the stack content

changes).

Let k = jbin(maxfjGj; jSjg)j and C = f0; 1; [; ]; +; -; bg.

1. The states, stack symbols and the empty word are encoded by

codeS : S [ f#g [G [ f�g ! C
k+3

p 7!

8>><
>>:

[bink(i)+] if p = si 2 S ^ si 2 F+

[bink(i)-] if p = si 2 S ^ si 2 F�

[bink(i)b] if p = gi 2 G _ p = si 2 S n (F+ [ F�)

[bink(0)b] if p = � _ p = #

2. An ordered subset F = ff1; : : : ; fmg � S is encoded by

codeF (F ) = codeS(f1) � � � codeS(fm)

3. coder encodes the rows of the transition table

coder (si; sj ; sk; gl; sm; gn; go) =�
[1](codeS(si)); [1](codeS (sj)); : : : ; [1](codeS (go))

�
...�

[k + 3](codeS(si)); [k + 3](codeS(sj)); : : : ; [k + 3]codeS(go))
�

4. Consequently, the whole table with m rows is encoded as follows

code� = coder(r1) � � � coder(rm)

5. Hence, a PDCA M is encoded by

code (M) =

[
7
�
[1](codeS(sjSj)); [1](codeS (gjGj))

�
...�

[k + 3](codeS(sjSj)); [k + 3](codeS(gjGj))
�

codeS(gjGj)codeF (F+)codeF (F�)code�(�)]
7

For easier reading we regard the encoding as a word over C7 (i.e. all the not

used registers are �lled with blanks).

Example 2 S = fs1; s2; s3; s4g, G = f?; g2g, F+ = fs2g, F� = fs3; s4g and

�s(s1; s1; s0; g1) = s2 and �p(s1; s1; s0; g1) = ? de�ne the only row of the tran-

sition table. The encoding is as follows:

It is not hard but a technical challenge to prove that the language fw 2 (C7)+ j

9 PDCAM : w = code(M)g of all PDCA encodings is recognizable by some

PDCA in real-time.
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Figure 1: Example encoding of a PDCA.

4 Encoding of Con�gurations

By designing an e�ciently veri�able encoding of PDCAs we have done the �rst

step towards an e�cient universal PDCA. Given the encoding of an arbitrary

PDCA M and the encoding of an input word w a universal PDCA has to

simulate the behavior of M on input w. Since in general w is independent of

M at �rst it will be necessary to create the encoding of the initial con�guration

ofM with respect to w. Since the universal PDCA has to handle PDCAs with

arbitrarily large state sets the space requirement may be arbitrarily large during

the simulation. Since the number of available cells is bounded by the length of

the input the encodings have to be stored into the stacks.

The following lemma solves a pattern transformation problem that will be util-

ized for the generation of initial con�gurations.

Lemma 3 Let A be an alphabet, b =2 A, w = a0 � � � an�1 2 A
+ and k 2 N.

Then there exists a PDCA that transforms a con�guration c0(i) = ai, 0 � i �

n � 1, and c0(i) = b, n � i � n + k, into the con�guration ct(i) = aimod n,

0 � i � n+ k, within t � 4(n+ k) time steps.

Proof. Assume for a moment n divides k. The PDCA M has three tracks

where the result is created at the �rst one. W.l.o.g. we may assume that initially

the �rst and second track each contain wb
k.

The content of the second track is shifted to the right as follows: an�1 moves

with speed 1
2
. The symbols at the left of an�1 are moving right whenever their

right neighbor becomes free (i.e. the corresponding symbol has moved to the

right one time step before).

During the �rst transition the cell that contains an�1 identi�es itself and marks

itself by an * on its third track. At time 1 cell 0 establishes a signal r that

moves to the right with speed 1. If the signal r passes through the cell marked

by *, a signal s is established that moves to the right with speed 1
3
.

Signal r meets the moving symbol an�1 after 2n time steps in cell 2n� 1. This

cell is also marked by an *. Moreover, it reects the signal r and establishes an

additional signal l that moves to the left with speed 1.

Signal l causes all the cells passed through to copy the (moving) content of

the second track to the �rst track if the �rst track is still empty. The moving

process on the second track is not a�ected.
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n

t = 2n

t = n
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*
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1
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w

n
�

1
r

s

Figure 2: Signals in the proof of Lemma 3.

At time 5
2
n the signals r and s meet in cell 3

2
n�1. Now signal s is dropped and

signal r is reected again. When r arrives at the cell 2n� 1 (which is marked

by *) at time 3n the whole process is repeated.

If n does not divide k the PDCA simply uses two more tracks that are the

folded extensions of the tracks one and two.

The PDCA needs 2n time steps for every concatenation of w and in addition

less than 2n+k time steps for the last signal l to get back to the left. It follows

t �
�
k
n

�
� 2n+

�
k
n

�
� n+ n �

�
k
n
+ 1

�
� 3n+ n � 3k + 4n � 4(n+ k)

2

The encoding of a single cell in a con�guration is an element from fbg�((C5)k)+

and, thus, well-suited for later processing. The �rst component is the current

state, the second one the stack content, which in term consists of the current

states of the cell itself and of its neighbors and the current stack content itself.

Let k = jcodeS(s)j be the length of the codes for states. For a cell i at time

t let ct(i � 1) = (sh; ph;1 � � � ph;mh
), ct(i) = (si; pi;1 � � � pi;mi

) and ct(i + 1) =

(sj; pj;1 � � � pj;mj
). Then the encoding of cell i at time t is
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.
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.

b b b [ b

b b b 0 b

b b b 1 b

b b b 0 b

b b b b b

b b b ] b

[ [ [ [ b

0 1 0 0 b

1 1 0 1 b

0 0 1 0 b

+ - - b b

] ] ] ] b

b

Figure 3: Example encoding of a cell.

codec (i; t) =

b;
�
[k](codeS(sh)); [k](codeS (si)); [k](codeS (sj)); [k](codeS (pi;1)); b

�
...�

[1](codeS(sh)); [1](codeS (si)); [1](codeS (sj)); [1](codeS (pi;1)); b
�

�
b; b; b; [k](codeS(pi;2)); b

�
...�

b; b; b; [1](codeS(pi;2)); b
�

�
b; b; b; [k](codeS(pi;3)); b

�
...�

b; b; b; [1](codeS(pi;mi
)); b

�

Consequently, the encoding of a con�guration ct is the concatenation of the

encodings of the cells:

codec(ct) = codec(1; t)codec(2; t) � � � codec(n; t)

Example 4 S = fs1; s2; s3; s4g, G = f?; g2g, F+ = fs2g, F� = fs3; s4g. Let

ct(i� 1) = (s2; g2?), ct(i) = (s3; g2g2?) and ct(i+ 1) = (s4;?) then codec(i; t)

is

b;

(]; ]; ]; ]; b)(+; -; -; b; b)(0; 0; 1; 0; b)(1; 1; 0; 1; b)(0; 1; 0; 0; b)([; [; [; [; b)

(b; b; b; ]; b)(b; b; b; b; b)(b; b; b; 0; b)(b; b; b; 1; b)(b; b; b; 0; b)(b; b; b; [; b)

(b; b; b; ]; b)(b; b; b; b; b)(b; b; b; 0; b)(b; b; b; 0; b)(b; b; b; 0; b)(b; b; b; [; b)

It will be stored in a single cell and its stack as depicted in Figure 3.
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5 Universal Pushdown Cellular Automata

This section is devoted to the construction of an e�cient universal PDCA. The

crucial point is the bounded number of cells such that the encodings have to

be stored into the stacks. This fact causes additional expenses of time. On the

other hand, the time complexity must not exceed a certain magnitude in order

to obtain tight hierarchies.

The following �rst construction yields a PDCA U that, given the encoding of a

PDCA M and the encoding of a con�guration ct of M, computes the encod-

ing of the successor con�guration ct+1 ofM. Thus, U transforms a con�guration

c
0

u(i) =�
[i](code(M));? if 1 � i � jcode(M)j

codec(i� jcode(M)j; t)? if jcode(M)j < i � jcode(M)j + jcodec(ct)j

within some r time steps into the con�guration

c
0

u+r(i) =�
[i](code(M));? if 1 � i � jcode(M)j

codec(i� jcode(M)j; t + 1)? if jcode(M)j < i � jcode(M)j + jcodec(ct)j

U simulates one transition step ofM in three phases. During the presimulation

phase some of the tracks are initialized. The successor states and stack symbols

of M are computed during the simulation phase. Subsequently, during the

postsimulation phase the valid con�guration c
0

u+r is computed such that the

next step of M can be simulated.

block FSSP
section FSSP

testing

code�

[

[

[

[

[

[

[

[

[

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

]

]

]
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]

]

[

[

[

[

[

[

[

[
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[
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[

� � � � � �

� � � � � �
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� � � � � �
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]

]

]
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]
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[
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[

[
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[

[

[

[
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Figure 4: An inner section after the presimulation phase.

Presimulation phase: U has �ve main tracks which may be divided into

subtracks. If in the sequel the lengths of some blocks do not divide the number

of cells or if the construction uses a constant number of cells beyond the borders

it is assumed that there exist another �ve main tracks that are used as the folded
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extensions of the corresponding tracks in order to cope with that (constant)

space problem.

The cell that contains the last symbol of code(M) can identify itself by the

situation ]
7
]
7. The same holds for the cell that contains the �rst symbol of

code�(�) by the situation ][
7.

The cells that contain codec(ct) are divided into sections of length jcode�(�)j

such that code�(�) is available on track 2 in each section. Each section is

divided into blocks of length jcodeS(s)j, lets say of length k. The result of the

presimulation phase is depicted in Figure 4.

By Lemma 3 the sections can be created by concatenations of code�(�). During

that process the inscriptions of track 4 and 5 can also be generated.

At the end of the presimulation phase a global FSSP is started on the �rst track

such that all the cells synchronously start the simulation phase. The presimu-

lation phase needs t � 4(jcode(M)j+ jcodec(ct)j)+2(jcode(M)j+ jcodec(ct)j) =

6(jcode(M)j + jcodec(ct)j) time steps.

Simulation phase: In the sequel all signals and labellings are realized on the

�rst main track (resp. its subtracks). The simulation is performed in all sections

in parallel. Therefore, it su�ces to explain the process for one section.

On the �fth track modi�ed FSSPs are performed. [ and ] are generals that

synchronize the cells in between them every k (i.e. codeS(s)) time steps. After

each other synchronization the process is one time step delayed.

During such a cycle all cells of codec(ct) with ]
7 on their second track are

working as follows (cf. Figure 5 for the general behavior).

During each time step the top-of-stack symbol is copied onto �ve subtracks of

the third track. At the same time the contents of the tracks 2 and 3 are shifted

to the right. Since on the second track there is the encoding of one of the rows

of the transition table the cell can successively test whether the row matches

its current situation.

After k time steps the FSSP �res and the contents of the second and third track

now are successively shifted to the left. Therefore, the cell can push its old state

and top-of-stack symbol back into its stack if the row did not match the current

situation, or the new state and top-of-stack symbol(s) otherwise. The test is

�nished when the FSSP �res again. During the delay step the contents of track

2 and 5 are shifted one cell to the right and the next cells will be tested during

the next 2k time steps.

The process has to be repeated until all cells of the section have been tested

with all blocks of code�(�). This needs jcode�(�)j � (2k + 1) time steps.

In order to recognize the end of the simulation phase on track 4 a FSSP is

performed that synchronizes the whole section. One transition of the FSSP is

computed at every time the block FSSP has �nished a test cycle. Thus, the

section is exactly synchronized after jcode�(�)j � (2k + 1) time steps.

Postsimulation phase: At the beginning of this phase the situation at the

top of the stacks is as depicted in Figure 6.
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]fed[

?

? ? ? ? ? [ d e f ] [ g h i ] ? ?
d e f ]

[

? ? ? ? [ d e f ] [ g h i ] ? ? ?
]fe

d
[

? ? ? [ d e f ] [ g h i ] ? ? ? ?
f ]

e

d
[

? ? [ d e f ] [ g h i ] ? ? ? ? ?
]

f
e

d
[

? [ d e f ] [ g h i ] ? ? ? ? ? ?

]
f
e

d
[

? ? [ d e f ] [ g h i ] ? ? ? ? ?

]
f
e

d
[

Figure 5: A test cycle in the simulation phase.

The process that updates the stack contents is similar to the simulation phase.

During k time steps the contents of the top of the stack of three adjacent cells

are successively copied onto the third track. Then during another 2k time steps

the stack content of the inner cell is updated appropriately.

The postsimulation phase needs k such update cycles, hence, k(3k + 1) time

steps.

Theorem 5 U simulates l transitions of a PDCAM within t � 6n+7ljcode�(�)j
2

time steps, where n denotes the length of the input of U .
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Figure 6: Stack content at the beginning of the postsimulation phase.

Proof. The theorem follows from the fact that the presimulation phase has

only to be performed once. Let k = jcodeS(s)j. From the construction we

obtain:

t � 6(jcode(M)j + jcodec(ct)j) + l(jcode�(�)j � (2k + 1) + k(3k + 1))

� 6n+ l(jcode�(�)j � 2k + jcode�(�)j + 3k2 + k)

� 6n+ l(2jcode�(�)j
2 + jcode�(�)j + 3jcode�(�)j

2 + jcode�(�)j)

� 6n+ l(5jcode�(�)j
2 + 2jcode�(�)j)

� 6n+ 7ljcode�(�)j
2

2

The PDCA U works �ne if its input is the encoding of a PDCA M and the

encoding of a con�guration of M. In the following this precondition is too

restrictive since for diagonalization proofs we need to consider the behavior of

PDCAs when they get their own encoding as input.

The following construction yields a PDCA V that, given the encoding of a

PDCAM, computes the encoding codec(c0) where c0 is the initial con�guration

of M with input code(M). Subsequently, V computes the encoding of the

successor con�guration c1 of M and so on.

The �rst task of V is to compute the encoding of the initial con�guration of

M. The second task is to simulate the universal PDCA U in order to compute

encodings of successor con�gurations of M.

The construction of U has been done under the assumption that code(M) is

located at the left of the encoding of the con�guration. This situation can be

emulated as follows. We assume that for each track there exists another one

which is regarded as the extension of the track. Both tracks are connected at

the left border. So it su�ces to write the mirror image of code(M) on the

extension. This can be done in jcode(M)j time steps.
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Subsequently, V simulates the presimulation phase of U where code�(�) is con-

catenated in order to initialize the sections. Parallel to this process all cells i

compute codec(i; 0) which completes the �rst task of V. This computation is

now explained for one of the stack registers.

During the presimulation phase code�(�) is moved across the cells. Cell i with

input si 2 C \knows" bin(i). When it receives a ] it waits for jbin(i)j time

steps and subsequently pushes 0s into the stack until it receives a [. Now it

pushes bin(i) into the stack.

If codeF (F+) and codeF (F�) are also moved across the cells, the encoding of si
can be completed simply by successively testing whether si belongs to one of

the sets and by pushing the appropriate symbol +, - or b followed by a [.

Theorem 6 V simulates l transitions of a PDCA M that operates on its own

encoding within t � 13n+7ljcode�(�)j
2 time steps, where n denotes the length

of the input of V.

Proof. From the construction follows: U needs jcode(M)j = n time steps

to create the mirror image of code(M). Subsequently, V simulates the pres-

imulation phase of U in which additionally the encoding of the con�guration

is computed. Since we are concerned with extended tracks the time has to be

doubled. Thus, this phase needs 12n time steps. After the presimulation phase

V simulates U directly and the theorem follows. 2

6 Tight Hierarchies of Language Families

Subject of this section are tight time and space hierarchies. Since the number

of cells is �xed by the length of the input the space complexity is measured as

stack-space.

De�nition 7 Let M = hS;G; �s; �p; #;?; A; F+; F�i be a PDCA. F+ [ F� is

the set of �nal states.

1. A word w 2 A
+ is accepted resp. rejected by M if at input w the left-

most cell of M becomes �nal and if its �rst �nal state is an accepting

resp. rejecting state.

2. L(M) = fw 2 A
+ j w is accepted by Mg is the language accepted by

M.

3. Let t : N ! N, t(n) � n, be a function. A PDCA is said to be t-time-

bounded or of time complexity t i� every input of length n after at most

t(n) time steps is accepted or rejected.

4. Let g : N! N be a function. A PDCA is said to be g-stack-space-bounded

or of space complexity g i� every input of length n is accepted or rejected

at some time t and for all t0 � t each of the stacks contains at most g(n)

symbols.
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The family of all languages which can be accepted by PDCAs with time com-

plexity t resp. space complexity g is denoted by Lt(PDCA) resp. gL (PDCA).

In order to prove in�nite tight hierarchies in almost all cases honest resource

bounding functions are required. Usually the notion \honest" is concretized in

terms of the computability or constructibility of the function with respect to

the device in question.

De�nition 8 A function f : N ! N is computable if there exists a PDCA

M with input alphabet A and constant stack-space complexity such that M

recognizes all w 2 A
+ in exactly f(jwj) time steps.

Thus, computability of f means that there exists a PDCA that for any input

w from A
+ can distinguish the time step f(jwj) without using its stack (i.e. a

classical cellular automaton). As usual here we remark that the class of such

functions is very rich [2, 3, 6, 12].

Now we are prepared to prove the tight time hierarchy.

Theorem 9 Let t : N! N and t
0 : N! N be two functions. If t is computable

and limn!1

t0(n)

t(n)
= 0 then there exists a language L such that

L 2 Lt(n)(PDCA) nLt0(n)(PDCA)

If additionally 8 n 2 N : t0(n) � t(n) then Lt0(n)(PDCA) � Lt(n)(PDCA).

Proof. Let W be a PDCA that works as follows. At �rst W checks whether

or not its input belongs to the language L0 = fuv j v 2 f0; 1g+ ^ 9 PDCAM :

u = code(M)g. Since the cell that contains the last symbol of u can identify

itself this veri�cation needs at most juvj time steps.

Subsequently,W performs two tasks in parallel. One is to simulate the compu-

tation ofM with input uv as has been shown by the construction for Theorems

5 and 6. The second one is to distinguish the time step t(juvj) since t is com-

putable.

W rejects its input if uv =2 L
0 or if after t(juvj) time steps the simulation of M

has not produced a decision. If, on the other hand, W recognizes during t(juvj)

time steps thatM did its decision, thenW rejects ifM accepts and vice versa.

Thus, L(W) 2 Lt(PDCA).

Contrarily to the assertion we assume that there exists a PDCA W 0 with u =

code(W 0) that recognizes L(W) with time complexity t0. By Theorem 6W needs

k1juvj+k2t
0(juvj)k23 time steps in order to simulate t

0(juvj) transitions ofW 0. k1,

k2 and k3 are constants that depend on W 0. W.l.o.g. we may assume t0(juvj) �

juvj. Therefore, the time complexity of W is k1juvj + k2t
0(juvj)k23 � k4t

0(juvj)

for a suitable constant k4. From the limes inferior we obtain a v
0 2 f0; 1g+

such that k4t
0(juv0j) � t(juv0j). Therefore, W can simulate t0(juv0j) transitions

of W 0 within t(juv0j) time steps. If W 0 accepts the input uv0 in t
0(juv0j) time

steps thenW rejects. IfW 0 rejects the input within t
0(juv0j) time steps then W

accepts. This is a contradiction to the assumption that W 0 accepts L(W) with

time complexity t
0. 2
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Without proof we state the tight space hierarchy:

Theorem 10 Let g : N ! N and g
0 : N ! N be two functions. If g is

computable and limn!1

g0(n)

g(n)
= 0 then there exists a language L such that

L 2 g(n)L (PDCA) n g0(n)L (PDCA)

If additionally 8 n 2 N : g0(n) � g(n) then g0(n)L (PDCA) � g(n)L (PDCA).
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