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Abstract --The pathophysiology of Type 2 Diabetes Mellitus 
(T2DM) is modelled using a coupled system of non-linear 
deterministic differential equations.  An attempt is made to 
construct to a clinically plausible mathematical model that 
incorporates the homeostasis associated with endocrinological 
regulation of glucose and glycogen levels in the human body, by 
the hormones, insulin and glucagon. The model variables include 
the concentrations of glucose in the venous blood plasma, the 
concentration of glycogen in the liver/tissues, the concentration of 
the hormone glucagon, and the concentration of insulin in the 
venous blood plasma.  The physiological interactions between the 
model parameters are depicted by clinically measurable rate 
constants and biophysically quantifiable stoichiometric 
coefficients. The processes of gluconeogenesis, glycogenolysis, and 
pulsatile insulin secretion during type 2 diabetes are modelled 
using plausible auxiliary functions. Investigative computer 
simulations are performed to elucidate various hypothetical 
scenarios of glycemia, patho-physiology of T2DM and insulinoma 
associated hypoglycemia which results from excessive insulin 
production probably due to a tumor.  This study has 
demonstrated the necessity of simultaneous monitoring of plasma 
glucose, glucagon, insulin, and glycogen levels in the proper 
assessment of the pathophysiology of type 2 diabetes and during 
determination of the therapeutic efficacy of anti-diabetic drugs. 

Keywords--Mathematical modeling; diabetes mellitus; dynamics 
of glucose; glycogen; glucagon; insulin 

I. INTRODUCTION 
 Type 2 diabetes mellitus (T2DM) is characterized by 
insulin resistance, insulin hypo-secretion to β cell impairment 
and/or over production of glucose. A person is diagnosed as 
diabetic if the fasting venous plasma glucose concentration is 
greater than 126 mg/dL and/or the 2-hour post-glucose load of 
75g of anhydrous glucose yield a venous plasma glucose 
concentration of 200 mg/dL [1]. Alternative novel tests for 
diagnosis include the use of glycated hemoglobin (HbA1C) with 
suggested levels of about 6.5% [2]. 

 The pre-disposing historical high risk factors for T2DM 
include increasing age (old age), central obesity, dietary 
polyphagia of animal fats, carbonated drinks, lack of physical 
exercises, familial genetic factors, history of gestational 
diabetes, polycystic ovary syndrome, and severe mental 
illness, presence of hypertension, hyperlipidemia, ethnicity 

and cardio-metabolic factors. Recent emerging risk factors 
include sleep deprivation, drug-induced metabolic changes, 
environmental pollutants, low birth weight and fetal 
malnutrition [3, 4, 5, 6, 7].  

 Many mathematical models in the literature were devoted 
mainly to the dynamics of glucose in relation to the hormone, 
insulin. The basic model was proposed by Bolie [9], who used 
the following system of ordinary differential equations 

 

IaGa
dt
dI

PIaGa
dt
dG

43

21

−−=

+−−=         (1.1) 

where G = G(t) represents glucose concentration, I = I(t) 
represents insulin concentration, and P, a1, a2, a3, a4 are model 
parameters.  

 A clinically relevant minimal model of glucose-insulin 
dynamics was proposed by Bergman, Bowden, and Cobelli in 
[10]. De Gaetano Arino [11] constructed a dynamical model of 
insulin-glucose dynamics using an aggregated integro-
differential delay equations. Several other models were 
constructed by the following authors: Li et. al. [12], Cobelli 
and Tomaseth [13], Lam et. al. [14], Mari [8]. 

 The main objective of the research presented in this 
paper is to construct a clinically plausible model that depicts 
the homeostasis of glucose-insulin regulatory dynamics and 
the pathophysiology of T2DM.    

II. DEFINITIONS OF MODEL PARAMETERS  
 The explicit non-linear deterministic mathematical 
equations describing the patho-physiology of T2DM are 
presented in this section. 

)(1 tx :  the concentration of glucose in the blood plasma of 
the patient at any time t during T2DM. 

)(2 tx :  the concentration of glycogen in the blood plasma of 
the patient at any time t during T2DM. 

)(3 tx :  the concentration of glucagon in the blood plasma of 
the patient at any time t during T2DM. 



                                                                                                                                          297

)(4 tx :  the concentration of insulin in the blood plasma of 
the patient at any time t during T2DM. 

:)( ii xG   the rate constant depicting exogenous input into the 
ith compartment by either post-prandial uptake or 
intravenous (i.v.) infusion or by subcutaneous injection 

]4,3,2,1[ =i . 

:),( 431 xxS   the rate of hepatic glucose synthesis by 
gluconeogenesis 

:),( 432 xxS the rate of glycogen bio-synthesis. 

:),( 213 xxS  the rate of glucagon bio-synthesis in alpha cells 
of the pancreas. 

:),( 414 xxS  the rate of insulin bio-synthesis in beta cells of 
the pancreas.  

 In particular, the following homeostasis functions are 
used: 

41

31
431 1

),(
x

xcxxS
μ+

=
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:ik  the rate constant depicting catabolic degradation 
]4,3,2,1[ =i pertaining to exponential decay kinetics. 

ik0 : the rate constant depicting catabolic degradation 
]4,3,2,1[ =i pertaining to linear decay kinetics. 

:),( 4114 aa  stoichiometric kinetic constant involved in the 
action of insulin )( 4x  on glucose )( 1x .  

:2σ  stoichiometric kinetic constant involved in the 
production of glycogen. 

:),( 3223 aa  stoichiometric kinetic constant involved in the 
action of glucagon )( 3x  on glycogen )( 2x .  

:1σ  stoichiometric kinetic constant involved in the production 
of glucose. 

fi (t) = ⎡ ⎤ntsin represents pulsatile input function for each i 

]4,3,2,1[ =i . 

 

III. MODEL EQUATIONS FOR TYPE-2 DIABETES MELLITUS 

 In this section, an elaborate physiological description and 
mathematical formulation of the model equations are 
presented. 

A. The Glucose Dynamics Equation 
 The rate of change of glucose in the body is equal to the 
post prandial input ( )(11 tfG ), plus the rate of glucose 
production by gluconeogenesis (S1(x3, x4)) which is breakdown 
of pyruvate into glucose mediated by insulin and glucagon, 
plus the rate of glucose production by glycogenolysis 
involving action of glucagon on glycogen ( 321 xxσ ), minus 
the rate of loss of glucose during glycogenesis due to action of 
insulin on glucose ( 4114 xxa ), minus the rate of catabolism of 
glucose during glycolysis ( 11xk ), minus the linear rate of 
degradation of glucose by utilization during exercise and 
physiologic activity in the brain, skeletal muscles and cardiac 
muscles ( 01k ). The glucose dynamics equation is shown as 
below: 

0111411432143111
1 ),()( kxkxxaxxxxStfG

dt
dx −−−++= σ  

          (3.1) 
B. The Glycogen Dynamics Equation 
 Glycogen dynamical equation depends on the post-
prandial rate of glycogen input )(22 tfG ; the bio-synthesis of 
glycogen term S2(x3, x4) which is mediated by glucagon and 
insulin and stored in body tissues including muscle; the rate of 
de novo synthesis of glycogen due to action of insulin on 
glucose ( 412 xxσ ) and mediated by glycogen synthase; the 
rate of catabolism of glycogen by glycogenolysis in liver (

3223 xxa− ); rate of loss of glycogen by 
enzymatic/exponential degradation mediated by glycogen 
phosphorylase (–k2x2); and rate of linear degradation of 
glycogen (–k02). The catabolic breakdown of glycogen is 
mediated primarily by glucagon but there are other hormones 
that are involved. These include cortisol, somatotropin, and 
catecholamines. The glycogen dynamical equation thus takes 
the form: 

0222322341243222
2 ),()( kxkxxaxxxxStfG

dt
dx −−−++= σ

 (3.2) 
C. The Glucagon Dynamics Equation 

 The rate of change of glucagon in the body equals to the 
rate of exogenous input (G3f3(t)) by intravenous or intra-
muscular injection, plus rate of biosynthesis of glucagon and 
glycogen (S3(x1, x2)) mediated by the levels of glucose and 
glycogen, minus the rate of loss of glucagon during 
glycogenolysis (a32 x2 x3) in the liver, minus degradation of 
glucagon enzymatically (k3x3), and minus linear catabolism of 
glucagon (k03). The glucagon dynamical equation thus takes 
the following form:  
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0333323221333
3 ),()( kxkxxaxxStfG

dt
dx −−−+=  

   (3.3) 

D. The Insulin Dynamics Equation 

 The rate of change of insulin in the venous blood plasma 
is equal to the rate of exogenous input (G4f4(t)) by intra-
venous or sub-cutaneous injection, plus the bio-synthesis of 
insulin in the β-cells of the islets of Langerhans in the 
pancreas mediated by the relative concentrations of glucose 
and glycogen ((S4(x1, x2)), minus the rate of insulin catabolism 
during the mediation of conversion of glucose to glycogen (a41 

x1 x4), minus the exponential degradation of insulin (k4x4), 
minus the linear degradation of insulin (k03). Thus the insulin 
dynamical equation takes the form:  

0444414121444
4 ),()( kxkxxaxxStfG

dt
dx −−−+=

 (3.4)   
 

IV. COMPUTER SIMULATION RESULTS AND DISCUSSION 
 In this section, investigative computer simulations are 
performed to elucidate some aspects of T2DM 
pathophysiology using hypothetical clinical parametric 
configurations.  For all the simulations, the pulsatile input 
function fi(t) is defined by the formula: 

  fi (t) = ⎡ ⎤ntsin  where n = 24 

 The time scale for all simulations is hours. The values of 
rate constants are all estimated and are hypothetical. The units 
for variables x1, x2, x3, and x4 are as follow: x1(mg/dL),  x2(g),  
x3(pg/mL), and x4(μlU/mL). 
 

A. Hypothetical Patient #1 
TABLE I. PARAMETRIC CONFIGURATION Ρ1 

G1 = 90.0 
c1 = 0.25  
μ1 = 0.8 
σ1 = 0.25 
k1 = 2.85 
a14 = 0.50 
k01 = 10.50  
x10 = 90 

G2 = 20 
c2 = 0.975 
μ2 = 0.7  
σ2 = 0.35 
a23 = 0.1 
k2 = 0.95 
k02 = 0.75 
x20 = 80 

G3 = 20 
c3 = 10.5 
μ3 = 0.009  
a32 = 0.1 
k3 = 0.00001 
k03 = 0.00015 
x30 = 100 

G4 = 50 
c4 = 25.0 
μ4 = 0.085 
a41 = 0.15 
k4 = 0.0001 
k04 = 0.0025 
x40 = 20 

 
 
 

 

 

 

 

  

  

Figure 1. Simulation results using parametric configuration P1 

 As shown in Figure 1, the dynamics of glucose, 
glycogen, glucagon, and insulin in hypothetical patient #1 
seems normal. In particular, the steady status values are 
approximately 180 mg/dL for x1, 160g for x2, 40 pg/mL for x3, 
and 10~15 mIU/mL for x4.  Compared with the standard 
ranges, the patient's glucose, glycogen, glucagon and insulin 
levels are regulated by feedback homeostasis. 
 
 
 

B. Hypothetical Patient #2 
 

TABLE II. PARAMETRIC CONFIGURATION Ρ2 
G1 = 90.0 
c1 = 0.25  
μ1 = 1 
σ1 = 0.55 
k1 = 1.5 
a14 = 0.50 
k01 = 7.50  
x10 = 90 

G2 = 20 
c2 = 0.975 
μ2 = 1 
σ2 = 0.45 
a23 = 0.5 
k2 = 0.95 
k02 = 0.75 
x20 = 80 

G3 = 20 
c3 = 3.75 
μ3 = 1  
a32 = 0.0175 
k3 = 0.001 
k03 = 0.0015 
x30 = 100 

G4 = 50 
c4 = 3.85 
μ4 = 1 
a41 = 0.09 
k4 = 0.0001 
k04 = 0.0025 
x40 = 20 
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Figure 2. Simulation results using parametric configuration P2 

  
 An inspection of the dynamics of glucose, glycogen, 
glucagon and insulin in hypothetical patient #2 shown in 
Figure 2 reveals that this patient has hyperglycemia and low 
insulin levels. Thus the patient is either pre-diabetic or 
diabetic.  
 
 

C. Hypothetical Patient #3 
 

TABLE III. PARAMETRIC CONFIGURATION Ρ3 

G1 = 90.0 
c1 = 0.25  
μ1 = 0.95 
σ1 = 0.55 
k1 = 1.5 
a14 = 0.05 
k01 = 7.50  
x10 = 90 

G2 = 20 
c2 = 0.975 
μ2 = 0.85 
σ2 = 0.45 
a23 = 0.5 
k2 = 0.95 
k02 = 0.75 
x20 = 80 

G3 = 20 
c3 = 3.75 
μ3 = 0.75 
a32 = 0.0175 
k3 = 0.001 
k03 = 7.5 
x30 = 100 

G4 = 50 
c4 = 3.85 
μ4 = 0.70 
a41 = 0.09 
k4 = 0.0001 
k04 = 0.0025 
x40 = 20 

 
 

 

  

Figure 3. Simulation results using parametric configuration P3 

  
 The glucose, glycogen, glucagon, and insulin profile of 
hypothetical patient #3 shows that almost perfect homeostasis 
as shown in Figure 3. All the values are in the normal ranges. 
This this patient is free of diabetes.  
 
 
 
D. Hypothetical Patient #4 

 

TABLE IV. PARAMETRIC CONFIGURATION Ρ4 
G1 = 90.0 
c1 = 0.25  
μ1 = 0.8 
σ1 = 0.25 
k1 = 4.85 
a14 = 0.5 
k01 = 10.50  
x10 = 90 

G2 = 20 
c2 = 0.975 
μ2 = 0.7 
σ2 = 0.35 
a23 = 0.1 
k2 = 2.5 
k02 = 0.75 
x20 = 80 

G3 = 60 
c3 = 40 
μ3 = 0.000009 
a32 = 1.5 
k3 = 0.05 
k03 = 0.15 
x30 = 100 

G4 = 50 
c4 = 25 
μ4 = 0.0085 
a41 = 0.09 
k4 = 0.00001 
k04 = 0.0025 
x40 = 60 
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Figure 4. Simulation results using parametric configuration P4 

 In Figure 4, the hypothetical patient #4 exhibits the 
clinical manifestations of hypoglycemia which could be 
probably due to insulinoma that produces excessive levels of 
insulin that depletes the glucose levels by converting them into 
glycogen.   
 

V. CONCLUSION AND DISCUSSION 
 This research shows the relative importance of 
mathematical modeling in diabetes research. The major hurdle 
is how to acquire clinically relevant data to validate the model 
and perform simulations. The use of Michaelis-Menten type 
functions make it extremely difficult to estimate the values of 
the rate constants. In order to solve this problem, hypothetical 
estimates were used. In the future, more realistic parametric 
estimates will be used. Nevertheless, this model is one of the 
first to attempt to describe the pathophysiology of Type 2 
Diabetes Mellitus by incorporating most of the physiological 
aspects of the homeostasis of glucose, glycogen, glucagon and 
insulin. The computer simulations demonstrate the usefulness 
of the model equations in describing endocrinopathies 
associated with insulin and glucagon. 
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