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Abstract 
 
Land drainage is common in peatlands. Artificially drained blanket peat catchments 

have been shown to have a significantly greater soil pipe density than intact 

catchments. This paper investigates the role of surface land drains in the enhancement 

of soil piping in blanket peats. The density of piping was found to significantly 

increase in a linear fashion with the age of the drainage. Thirty five years after drains 

were cut, slopes would be expected to have twice the density of soil piping than an 

undrained blanket peat catchment. The rate of pipe erosion increases exponentially 

over time so that particulate carbon loss from subsurface pipes is greatest where 

drains are oldest.  
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Introduction 

Soil pipes have been reported on every continent, except Antarctica, and in a broad 

range of environments  (Roberge and Plamondon 1987, Nieber and Warner 1991, 

Tsuboyama et al. 1994, Elsenbeer and Lack 1996, Gutierrez et al. 1997, Carey and 

Woo 2000, Uchida 2004). Pipes are common in peatlands. For example they have 

been reported in the peatlands of Scandanavia, New Zealand, Tasmania, Indonesia, 

Canada, Siberia, Ireland and the UK (Jones 1981, Mark et al. 1995, Norrstrom and 

Jacks 1996, Jones et al. 1997, Holden et al. 2004, Holden 2005). Soil pipes consist of 

connected natural conduits often many centimeters in diameter, which transport water, 

sediment and solute through soil systems. These pipes can often be several hundred 

meters in length and typically form branching subsurface networks which undulate 

throughout the peat profile (Jones 1981, Holden et al. 2002, Holden and Burt 2003b, 

Holden 2004). They have been found to transport over 10 % of stream flow in blanket 

peats (Holden and Burt 2002) and 49 % in peaty podzols (Jones and Crane 1984).   

 

Peat pipes tend to form by removal of material, and not by compaction of the peat 

(Gilman and Newson 1980; Jones, 1981; Holden and Burt, 2002; Jones, 2004). Jones 

(2004) showed that for a catchment in Wales, the areas of piping yielded more 

sediment to the stream than the areas without piping. The production of sediment by 

pipes in peatlands may not only be important as a geomorphological process but also 

as a component of peatland carbon cycles. Peatlands are a huge pool of particulate 

organic carbon (Turetsky et al. 2002) storing between one third and one half of global 

soil carbon. Most research on particulate carbon loss from peatlands focuses on 

streambank or surface erosion (Tallis 1995, Warburton 2003, Evans and Warburton 

2005) and there is very little research on subsurface particulate erosion (Holden and 
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Burt 2002, Jones 2004). Pipes appear to be components of peatlands around the world 

and yet there are no data on how important pipes might be for peatland sediment or 

carbon budgets. It is therefore not possible to predict how disturbance of peatlands 

through environmental change may affect pipe development and the role of pipes in 

peatland carbon production. 

 

Soil pipe formation has been attributed to a number of factors including climate 

(periods of desiccation and periods of intense rainfall; Jones 1981), faunal activity 

(burrowing animals) decaying root channels, and can preferentially occur in soils that 

have particular combinations of soil chemical and pedological properties (see Jones 

1981). For example, pipes are often found in soils where there are sharp contrasts in 

hydraulic conductivity between soil layers. Peats tend to have large vertical and 

lateral differences in hydrological properties (hydraulic conductivity, bulk density) 

over very short distances (Holden and Burt 2003a) and this can encourage preferential 

flow paths to develop. Faunal activity is not an important factor in pipe formation in 

upland peats as the acidic environment deters such activity. In the Maesnant 

catchment of mid-Wales, Jones (2004) reported that desiccation cracking was the 

main initiator of the ephemerally flowing pipe networks in peaty podzols. However, it 

is not known whether desiccation is an important factor in deep peat soils. Peat soils 

do shrink and crack when they are dried and this could open up new routes for 

bypassing flow. Many peats can become hydrophobic if they become too dry and do 

not regain their initial moisture holding capacity (Eggelsmann et al. 1993). It might 

therefore be expected that any environmental change that encourages desiccation of 

peat, may also encourage soil pipe development provided that enough water is still 

supplied to the peatland to flow through the preferential flow paths and enlarge them.  
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Land drainage has been a common practice in peatlands throughout the world (Bowler 

1980, DeMars et al. 1996, Holden et al. 2004). It is still occurring in most of the 130 

countries that have peat soils so that the amount of intact peat is decreasing each year. 

In the UK, for example, peat drainage was at its peak between the 1940s and 1970s 

but it still actively continues, albeit on a much smaller scale. Holden et al. (2004) 

provided a detailed review of the history and practice of peatland drainage and can be 

consulted for further detail. Some peat drainage is associated with afforestation 

practice, but this present paper focuses on non-afforestation drainage. Severe erosion 

of peatland drain channels themselves has been reported (Mayfield and Pearson 1972, 

Holden et al. 2004) but not the erosion of subsurface pipes that are connected to drain 

systems. There has only been one study that has examined the role of peatland 

drainage in subsurface pipe development. Holden (2005) found during a ground 

penetrating radar (GPR) survey of blanket peat catchments that i) piping existed in all 

surveyed catchments and ii) piping was significantly greater where surface cut land 

drains were present. On the 57 slopes with drainage the mean density of piping was 

127.4 pipes per km of GPR transect (standard error = 6.2) compared to 56.6 pipes per 

km (standard error = 2.0) on the 263 undrained slopes. However, it is not known how 

quickly pipe networks develop on drained slopes. Given that pipe network expansion 

is also associated with the removal of particulate carbon from the peat mass it is 

important to understand the role of piping in peatland carbon loss. Therefore the aims 

of this paper are to determine i) the rate at which pipe networks develop in drained 

peats and ii) the contribution of piping to particulate carbon loss from drained peats. 

 

 

 5



 

Methods 

Holden et al. (2002) and Holden (2004) reported on the successful utility of GPR for 

surveying soil piping. This technique allows pipes to be remotely mapped in a non-

destructive manner and enables measurements of the frequency of piping in peatlands 

to be made. A GPR was used to survey 57 blanket peat slopes across the UK with 

surface land drains and 263 slopes without drains (Figure 1). On each slope three 

plots were surveyed consisting of 6 x 20 m transverse GPR transects spaced at 10 m 

intervals downslope. Thus each plot was 50 m x 20 m and a total of 115.2 km of GPR 

survey took place using 100 and 200 MHz antennae depending on peat depth. Signals 

were emitted at 10 cm intervals along GPR transects. GPR works by transmitting 

short pulses of high frequency electromagnetic energy by antennae through the 

ground surface. These pulses are reflected from boundaries between layers or from 

internal irregularities which have differences in electrical properties. The reflection is 

detected on the surface. Moving the transmitter and receiver antennae across the test 

area builds up a complete cross section of the site. GPR transmits energy through the 

ground in wide beam and so the antennae are therefore not detecting reflections from 

directly below but also to the front, back and sides. The GPR should therefore have 

detected features that were between the 10 cm sampling interval. Pipes were 

identified on radargrams and the number of pipes crossed per km of survey transect 

was calculated. Pipes smaller than 6 cm in diameter could not be detected using the 

GPR. 

 

A range of sources was used to determine the year in which land drainage took place 

on each slope, including landowner survey, air photos, published materials and parish 
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records. It was possible in all but two cases to get data on the year of drainage. In the 

two remaining cases the year was available +/- 2 years. It should be noted that drain 

spacing could influence the relationships. However, there were not enough samples to 

be able to examine this factor satisfactorily. Nevertheless, there were no significant 

relationships between drain spacing and age of drainage and so this could not be 

considered to bias the results.  

 

The density of pipes on each slope was estimated from the plot surveys by 

transforming pipes per km of GPR transect into an areal unit (km km-2). This was 

done by multiplying the mean number of pipes crossed per km of GPR transect by the 

plot length. This is a reasonable assumption because there were six GPR transects per 

plot and each transect ran across the slope. Pipes tend to run downslope. Hence while 

not all pipes will be connected down the whole of the plot slope, on average the pipe 

length within the plot will be equivalent to this value. To estimate the volume of pipes 

on each slope, the mean length of piping per plot was multiplied by the mean cross 

sectional area of pipes within each slope. Unfortunately GPR cannot provide 

information on pipe diameters. It was possible to measure pipe diameters at stream 

banks or ditch sides on each slope where pipe outlets could be located. However, pipe 

diameters can change dramatically over just a few cm of the length of the pipe 

(Terajima et al. 2000). Nevertheless there were no other available data on pipe 

diameters across the slopes and it was assumed that stream or ditch bank diameters 

were representative of pipe diameters on the slope.  

 

An estimate of cumulative carbon loss caused by pipe volume erosion was provided 

by multiplying the volume of pipes by the amount of carbon present within a unit 
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volume of intact peat. While the carbon content usually increases slightly with depth, 

pipes are known to undulate throughout blanket peat soil profiles (Holden and Burt 

2002, Holden 2004). Therefore the carbon content of the peat was sampled for the 

entire peat depth at each site. One 50 mm diameter core was taken from each GPR 

plot using a stainless steel corer. Bulk density and organic content were calculated 

through oven drying and loss on ignition and were determined for the core as a whole 

(without sub-sampling). The bulk carbon content of the peat at each site was then 

determined using a regression of the form C = 0.562 L – 0.167 where C is the carbon 

content (%) and L is the loss on ignition (%). This relationship was determined for 

UK upland peats by Bol et al. (1999). The carbon loss for each plot was then 

determined using the individual core carbon content for each GPR plot. The mean 

carbon loss value for each slope was then determined based on the three individual 

plot values. This site specific approach minimised errors as the alternative methods 

would have involved either i) using one value as a estimate of carbon content for 

peats (often simply expressed as 50 % of organic content; Worrall et al. 2003) or ii) 

using the mean carbon content of all cores and applying this mean value to the whole 

dataset. The peat depths at each site were determined by both the GPR and coring and 

so values for the proportion of peat mass lost to subsurface erosion could be 

established. Data were tested for normality and could be used in their raw form. 

Slopes were the unit of replication for statistical analysis.  Unpaired t-tests were used 

to test for difference in pipe diameter, loss on ignition and bulk density between 

drained and undrained slopes.  
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Results  

Figure 2 demonstrates a clear relationship between soil pipe density and age of 

drainage. The relationship is significant at p < 0.001 with an R2 of 74.9 %. The 

equation is pipe density (pipes km-1) = 41.6 + 2.10*age (years). The credibility of this 

equation can be given extra weighting given the closeness of the intercept (41.6 km-1) 

to the value for pipe density in undrained peats determined by Holden (2005) of 56.6 

km-1 (standard error = 2.0). Thirty five years after drains were cut, slopes would be 

expected to have approximately twice the density of soil piping than an intact 

undrained slope.  

 

Mean pipe diameter on undrained slopes (11.6 cm; standard error 0.6 cm) was 

significantly lower than that on drained slopes (15.9 cm; standard error 0.8 cm) at p = 

0.003. Figure 3 demonstrates that there is a linear increase in pipe diameter with age 

of drainage. While only 10.3 % of the variance in pipe diameter is explained by age of 

drainage, the relationship is significant at p = 0.009. Neither Figure 2 nor Figure 3 

indicate any sort of threshold beyond which pipe network development does not 

further develop. It may be that such a threshold exists but that the age of the drainage 

investigated is not sufficient for that threshold to have been reached.  

 

For undrained slopes the mean proportion of the peat mass volume occupied by pipes 

was 0.27 % (standard error = 0.03 %). This compares to 1.28 % (standard error = 

0.35) on drained slopes. Given the time dependency demonstrated by Figures 2 and 3, 

the volume of peatland occupied by soil pipes on a drained slope is likely to increase 

over time. This means that as time progresses since drainage, more subsurface 

sediment is removed from blanket peats.  
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There were no significant differences in loss on ignition (mean =  91.7 %, standard 

error = 0.3 %, maximum = 99.0 % and minimum = 73.5 %), bulk density (mean =  

0.118 g cm-3, standard error = 0.002 g cm-3, maximum = 0.260 g cm-3 and minimum = 

0.020 g cm-3), or estimated carbon content (mean =  51.3 %, standard error = 0.2 %, 

maximum = 55.5 % and minimum = 41.1 %) from the peat core samples between 

drained and undrained slopes. The carbon loss values were used independently for 

each drained slope to produce Figure 4, which demonstrates a significant positive log-

linear relationship with the age of peatland drainage (p < 0.001, R2 = 41.7 %) 

described by log C loss (log (kg C km-2)) = 5.02 (log (kg C km-2)) + 0.01*age (years). 

These data therefore indicate that the rate of particulate carbon loss from subsurface 

piping increases exponentially over time in drained catchments. Use of the carbon 

relationship developed above suggests that, on average, for slopes where drainage is 

40 years old there would be an extra 5.8 x 103 kg C km-2 yr-1 exported from 

subsurface pipe erosion alone over that 40 year period, compared to that from an 

undrained slope. This value would be in addition to any surface erosion related to 

ditch channel incision or other surface processes.  

 

Discussion 

The growth rate of peat pipes following ditch installation has been investigated. The 

density of piping and the size of pipes both significantly increase over time, with pipe 

density increasing at a rate of 2.1 pipes km-1 yr-1 and mean pipe diameter at a rate of 

0.09 cm yr-1. The combined effect of this pipe network and pipe size expansion on 

sediment and carbon loss from the peat mass is shown in Figure 4. The relationship in 

Figure 4 is log-linear and so the rate of pipe erosion increases over time following 
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open-cut drainage. Those slopes where drainage is oldest will have the fastest rate of 

subsurface peat erosion. Therefore if peatland restoration aims to reduce carbon loss, 

then resources should be targeted towards slopes where drainage is oldest as long as 

there is still a chance of some peatland recovery.  

 

It is important to place the magnitude of sediment or carbon loss found above into 

perspective. Turunen et al. (2002) estimated that during the Holocene carbon 

sequestration in peatlands was between 12 to 23 x 103 kg C km-2 yr-1. Hence pipe 

erosion exacerbated by drainage may be important. For example, the particulate 

carbon loss from pipes calculated for slopes where drainage is 40 years old was 5.8 x 

103 kg C km-2 yr-1. This compares with total particulate carbon loss from UK peatland 

rivers as determined from results in the literature shown in Table 1. Worrall et al 

(2003) examined particulate, dissolved and gaseous carbon components for a blanket 

peat catchment in northern England. The catchment was considered to be one of the 

healthier blanket peat catchments in the UK in terms of carbon sink potential. This 

intact catchment was estimated to export 3.7 x 104 kg C km-2 yr-1 riverine carbon 

(particulate and dissolved) but when gaseous exchanges were taken into account the 

catchment was a net carbon sink of 1.3 x 104 kg C km-2 yr-1. Thus the effects of land 

drainage on piping would be enough to approximately halve the carbon sink of the 

catchment. The additional pipe erosion alone would amount to one sixth of the 

riverine carbon export and one quarter of particulate export. In many catchments this 

may be enough to transform the catchment from a sink to a source of carbon. It should 

be noted that the particulate losses of carbon from piping alone would be in addition 

to those losses from drain erosion or expected increases in dissolved and gaseous 

carbon loss resulting from hydrological and biogeochemical change associated with a 
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reduction in saturation (Holden et al. 2004). These results assume that pipe erosion 

results in sediment and carbon losses from the system as a whole. However, it may be 

that sediment removed the pipe networks is deposited and stored on the peat surface, 

the stream bank or stream bed, at least in the short-term. Nevertheless, once peat is 

removed from the in situ peat mass, degradation of that eroded peat can be very rapid 

relative to the largely anaerobic peat mass, through biogeochemical weathering 

processes and through decomposition releases of solutional and gaseous carbon forms 

(Holden et al. 2004). However, the rate of recalcitrant humic molecules will depend 

on many factors including the environment in which they are deposited. Particulates 

deposited for any length of time on the anaerobic streambed may be much slower to 

decompose. 

 

The results of this research have shown that drainage induced desiccation is followed 

by rapid pipe network expansion through erosion of material along flowpaths. 

Desiccation processes therefore appear to be important drivers of pipe formation in 

peat catchments. Desaturation causes peat to shrink and crack. The exposed faces of 

open drains also allow summer surface peat desiccation and winter freeze-thaw 

activity to alter peat structure and to potentially encourage macropore flow. Water 

flow through newly created preferential flowpaths is then likely to enlarge the pipes 

and allow pipe networks to expand. This expansion continues at an exponential rate 

and data presented showed no evidence that pipe network development reaches a 

threshold beyond which its growth slows (although data were only available for 

artificial drainage systems up to 80 years old). Hence some form of intervention 

would be required to slow the rate of subsurface pipe erosion in disturbed peats.  
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Pipeflow in peats impacts streamflow and water quality (Jones 1981, (Holden and 

Burt 2002). The results therefore suggest that streamflow response to peat drainage 

may continue to change over long time periods as pipe networks expand. Studies 

which have investigated streamflow response to drainage in the immediate aftermath 

of drainage may not, therefore, be representative of the more lagged long-term 

response. This may partly explain the wide range of reported effects of peat drainage 

on streamflow (Holden et al. 2004). 

 

The British Isles has approximately 30 % of the world’s blanket peats (Tallis et al. 

1998), which typically form in wet oceanic regions. The blanket peats of the British 

Isles are typical of blanket peats found elsewhere in north-west Europe and parts of 

eastern Canada. However, further work is required to establish whether similar pipe 

and drainage relationships exist in other types of peat.  While this paper has focussed 

on artificial drainage as a desiccation mechanism, other environmental changes that 

result in increased desiccation may exacerbate pipe development and subsurface peat 

erosion. Such erosion may become a very important component of peatland carbon 

budgets under climate change in marginal peat forming areas or where human 

intervention results in enhanced desiccation. The important results presented in this 

paper should act as a trigger for further research.  

 

Summary 

Soil pipe density significantly and linearly increases with age of drainage in blanket 

peat. This is the first time such data has been reported and the research demonstrates 

that effects of drainage on peat properties and bypassing flow may alter over several 

decades. The cumulative volume of particulate carbon loss from the peat mass 
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through subsurface piping increases exponentially over time on drained slopes. Many 

peatland drains are now being blocked as part of wetland restoration schemes and if 

carbon loss is considered an important management issue then resources could be 

targeted towards slopes where drainage is oldest as long as there is still a chance of 

some recovery. However, it should be remembered that piping is also a natural 

process (Jones 2004) and is present in intact peatlands. Thus piping should be 

considered when preserving and restoring peatlands, as well as when analysing 

impacts of management on peat carbon and sediment budgets, landform development, 

and runoff mechanisms. 
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Table 1. Fluvial export of particulate carbon calculated for UK catchments 
Reference Fluvial export of 

particulate C, kg 
km-2 yr-1 x 103

Location Other comments 

Francis (1987) 34.0 Mid-Wales Catchment with 
gully erosion 

Labadz et al. (1991) 38.9 S. Pennines Catchment with 
gully erosion 

Hutchinson (1995) 31.3 S. Pennines  
Dawson et al. (1995) 0.12 N. Scotland Partially peat-

covered (64%) 
Dawson et al. (2002) 2.7 Mid-Wales  
Dawson et al. (2002) 1.9 NE Scotland  
Worrall et al. (2003) 19.9 N. Pennines  
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Figure captions 

Figure 1. Location of the field sampling sites 

 

Figure 2. Scatterplot of number of pipes crossed per length of GPR survey against age 

of drainage 

 

Figure 3. Scatterplot of mean stream bank pipe diameter against age of drainage 

 

Figure 4. Scatterplot of estimated cumulative particulate carbon loss from the peat 

caused by piping against the age of drainage 
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