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A B S T R A C T

NeuLAND, the New Large Area Neutron Detector, is a key component to investigate the origin of matter
in the universe with experimental nuclear physics. It is a core component of the Reactions with Relativistic
Radioactive Beams setup at the Facility for Antiproton and Ion Research, Germany. Neutrons emitted from
these reactions create a wide range of patterns in NeuLAND. From these patterns, the number of neutrons
(multiplicity) and their first interaction points must be reconstructed to determine the neutrons’ four-
momenta. In this paper, we detail the challenges involved in this reconstruction and present a range of
possible solutions. Scikit-Learn classification models and simple Keras-based neural networks were trained
on a wide range of input-scaler combinations and compared to classical models. While the improvement
in multiplicity reconstruction is limited due to the overlap between features, the machine learning methods
achieve a significantly better first interaction point selection, which directly improves the resolution of physical
quantities.
. Fundamental science with NeuLAND

One goal of the science program at the Facility for Antiproton
nd Ion Research (FAIR) [1,2], the Universe in the Laboratory, is to
nravel the origin and properties of matter in the universe. It is unclear
hich stellar explosion conditions are responsible for the production
f the different isotopes, especially those far away from stability. At
he Reactions with Relativistic Radioactive Beams (R3B) experiment
t FAIR, these exotic nuclei can be studied using various reaction
ypes and analysis methods. A radioactive ion beam is produced by an
ccelerator complex, where a relativistic primary beam hits a primary
arget and fragments into a wide range of different isotopes. The
Ragment Separator (Super-FRS) [3] selects the desired nuclei and
outes them to the R3B experiment, where they hit the secondary target
nd the reaction of interest can be studied. The target is surrounded
y detectors for light particles and 𝛾-rays. The large superconducting
agnet GLAD deflects charged particles from the original path of the

eam. Numerous tracking detectors gather information on the flight
aths of the ejectiles to determine their type and energy. Neutrons are
ot affected by the magnetic field and can be detected by the New Large
rea Neutron Detector NeuLAND located downstream at zero degrees.

Nuclear properties can be inferred from the gathered data in several
ays. For example, the invariant mass method is often used with this
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type of setup [4,5]. The relative energy 𝐸𝑟𝑒𝑙
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is a measure for the decay energy of unbound states. The four-momenta
𝐏𝑖 of all participating particles must be known with high precision.

NeuLAND [6,7] is dedicated to the simultaneous detection of up
to five neutrons with kinetic energies up to 1GeV. Here, the four-
momentum of each neutron is calculated from the time and position
of its first interaction in the detector. NeuLAND is built out of organic
scintillator bars with a square profile of 5 cm by 5 cm and a length
of 270 cm, including a 10 cm conical taper at both ends to which
photomultiplier tubes (PMTs) with a diameter of 2.54 cm are connected.
The bars are arranged to double planes with 50 horizontal bars in
front of 50 vertical bars. This creates a face area of 250 cm by 250 cm,
see Fig. 1. Each double plane is an independent unit with its own
electronics and voltage supply. These double planes can be arranged
in different detector configurations if needed. For most experiments,
however, the double planes are placed directly behind each other
to form a single, large detector, as the neutron detection capability
increases with detector depth. In its final configuration, the detector
consists of 30 double planes with a total of 3000 scintillator bars and
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Fig. 1. NeuLAND, the New Large Area Neutron Detector, in the experimental hall
t GSI/FAIR. Plastic scintillator bars with a thickness of 5 cm and a length of 2.7 m
re wrapped in black tape and arranged into detector modules. Each double plane
ontains 100 bars, 50 in vertical and 50 in horizontal orientation, creating a face area
f 2.5 m times 2.5 m. At the ends of each bar, photomultipliers are attached to detect
he light created in the scintillator. The high-voltage required for the photomultipliers
s provided by a distribution system at the bottom of the detector, while the signals
re digitized in electronics modules at the top.

000 data channels. At the time of writing, experiments have been
erformed with up to 12 double planes.

In this paper, we discuss the main challenges and several ideas to
econstruct the neutron multiplicity and the first neutron interaction
oints for the experiment as a whole and for each individual recorded
eaction (event-by-event). First, the main goals and challenges are
resented, followed by a detailed discussion of usable properties, called
eatures in machine learning terms. We present different approaches
rom classic cuts over elementary Bayesian statistics to machine learn-
ng with and without neural networks and compare their performance
or a specific test case.

. Goals and challenges

NeuLAND can deliver several types of information according to
he needs of the experiment: A binary detection condition for the
rigger, the overall multiplicity distribution, the multiplicity on an
vent-by-event basis, and the neutron interaction points on an event-
y-event basis are examples for such quantities in ascending order of
econstruction difficulty.

To reduce the amount of data recorded in the experiment, trigger
onditions are applied to the data acquisition. The trigger from Neu-
AND is based on the number of channels with signals from PMTs above
threshold. Typically, two signals above the threshold are demanded

or the NeuLAND trigger.
2

Deducing the number of neutrons that have been emitted is one
of the primary deliverables of NeuLAND. While detecting a single
neutron is straightforward, differentiating between multiple neutrons
is challenging. Of the neutrons impinging on the detector, only some
or even none might react, depending on the detector depth and the
neutron energy. The neutrons that do react in the detector do not
always exhibit an easily recognizable pattern as a charged particle
would. Instead, a large variety of reactions can occur, with a wide
range of deposited energy and distance between reactions within the
detector, see Fig. 2. For multiple neutrons, these statistical properties
are folded, and by adding conditions on a singular quantity (cutting),
ike the total deposited energy, the neutron multiplicity cannot be
xtracted unambiguously. The overall multiplicity distributions can be
pproximated as a linear combination of these individual distributions;
owever, this is rarely useful. Typically, the multiplicity must be known
or each event. We have investigated cuts in a multidimensional space,
probabilistic approach with Bayesian statistics, and several types of
achine learning and neural network approaches, see Section 5.

This high variance in interaction patterns also impedes finding the
irst interaction points of the primary neutrons, the second main deliv-
rable. From these coordinates, the four-momenta can be determined
ith high precision. Finding the correct interaction points is essential

or the invariant mass and other analysis methods [5].
Multiplicity and first interaction points are related but distinct: Even

f the multiplicity is given, the correct primary interaction points may
ot be obtainable. If no multiplicity limit is given, too many interaction
oints might be classified as primary.

The correct result of the reconstruction process is required before-
and for training and evaluation. In machine learning terms, this is
ften called the label. For NeuLAND, we define different stages in the
imulation process that can take the role of the label:

rimary Neutrons are the fast neutrons emitted in the reaction stud-
ied in the experiment directed towards the detector. Their num-
ber (multiplicity, 𝑁𝑃𝑁 ) and their kinetic energy are the main
quantities NeuLAND should deliver. Their number is also some-
times called the generated multiplicity.

rimary Points are the exact positions where the primary neutrons in-
teracted first during the Monte-Carlo transport. Not all incoming
neutrons will react, thus the number of points might be smaller
(𝑁𝑃𝑃 ≤ 𝑁𝑃𝑁 ).

rimary Hits are the positions where the first interaction is detected
after the digitization of the energy depositions. Not all primary
interactions will be detectable (𝑁𝑃𝐻 ≤ 𝑁𝑃𝑃 ) and their position
might differ from the actual interaction point.

rimary Clusters are the groups of hits (see Section 3.3) that include
primary hits. Primary clusters are easier to identify than primary
hits.

The number of primary neutrons is the desired multiplicity quantity.
s neutrons might pass through the detector without leaving any

race at all, there can be fewer primary hits than primary neutrons—
specially at limited detector depth. Here, we test the multiplicity
econstruction models with both quantities.

. Data generation and processing

For the calibration of the reconstruction algorithm (training the
odel in machine learning terms), a large amount of simulated data is

equired. Currently, the trained models are also evaluated on simulated
ata, either from a train–test–split of the same scenario or different sce-
arios. A scenario represents one detector configuration, characterized
redominantly by the number of double planes and distance, and one
eaction type, characterized by beam energy, fragments, and angular
pread.
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Fig. 2. Side view of hit patterns in NeuLAND, created by the interaction of one neutron with a kinetic energy of 600MeV. The grid represents the alternating horizontal and
vertical scintillator bars and the hit color represents the deposited energy in MeV. Neutrons can interact at different positions and via different reactions, which results in different
patterns: On the left, the incoming neutron scatters on a proton, which deposits its energy in a clearly defined track with the highest energy deposition at the end. In the middle,
energy is deposited close to the first interaction point. On the right, energy depositions by secondary particles create many hits distributed over a wide area. For more than one
incoming neutron, these patterns overlap.
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At later stages, we will apply models trained with simulated data
to experimental data. We expect that models will have to be retrained
for every experimental scenario, as changes in, e.g., the primary neu-
tron energy or emission angle distributions, result in different hit
distributions.

NeuLAND is implemented within R3BRoot, the software package for
the R3B experiment [8]. It is based on FAIRRoot and handles raw ex-
perimental data processing, simulation, raw simulation data processing,
data reconstruction, and data analysis [9]. In turn, FAIRRoot is based
on ROOT, an omnipresent software package in nuclear and particle
physics [10].

We have tested reconstruction solutions integrated into R3BRoot,
either directly as compiled code, indirectly by calling Python func-
tions from compiled code, or communicating with other services with
messaging protocols. Other solutions use external scripts connected
via non-ROOT storage such that (GPU-accelerated) systems without
ROOT can be used. Several different storage systems and formats are
available, for example, the hierarchical data format HDF5 [11], serial-
ized (pickled) tabular data like Pandas DataFrames [12,13], serialized
structured data formats like Google’s Protocol Buffers [14], or, what
we prefer due to speed and file size, the column-oriented Apache
Parquet [15] format.

3.1. Data flow in experiments and simulation

Experimental and simulated data are evaluated with the same rou-
tines. After calibration of the experimental and digitization of the
simulated data, the properties of both should match. For NeuLAND,
the main parameters are energy, time, and position in each bar, which
together form a hit. Reconstruction algorithms can then be applied to

set of hits. For simulated data, the result can be compared with the
nput, and thus the full data analysis stack can be constructed and tested
efore it is applied to experimental data, see Fig. 3.

During and after the experiment, raw data from the detectors is fed
nto the system through an unpacker, which translates the raw binary
ormats into data storage classes. From here on, R3BRoot passes the
ata through mapping and calibration stages. Data is grouped in so-
alled events, where all hits in all detectors recorded in a short time
indow should belong to a single nuclear reaction. A single experiment
ight create billions of events with storage requirements in the order

f TB, with varying degrees of quality. The resulting hit-level data with
hysical quantities is then reconstructed to extract the properties of the
etected neutrons for further use in the actual nuclear physics analysis.

Alternatively, data can be created with simulations. Monte-Carlo
ransport codes, a well-established example is Geant4 [16], implement
he physics of particles passing through and reacting with matter.
hese particle transport codes take a fixed virtual representation of
he detector geometry plus the initial particle configuration and then
3

Fig. 3. Generalized data flow scheme of R3BRoot. Raw experimental and simulated
data are processed to detector hits which are then reconstructed to extract the physical
data of interest. As the correct result is known in simulations, the effectiveness of the
reconstruction stage can be evaluated and optimized.

randomly process possible reactions as well as resulting reaction chains
in the material. Each random sample is an event, and sampling ten
thousand to several hundred thousand events is needed to gain sta-
tistical relevance. The particle transport codes provide position, time,
and deposited energy for interactions in the active detector material in
small steps. This simulated data needs to be processed to be equivalent
to measured experimental data, which includes processes in the detec-
tor material like light generation, the response of the PMTs and data
acquisition, and, not to forget, the calibration process, see Section 3.3.
In the FairRoot framework, this transformation is called digitization
(even though no analog signals are involved).

We have verified the older NeuLAND TACQuila electronics with
calibration data obtained with four double planes in an experiment at
RIKEN in Japan and found an acceptable agreement [17]. We do not
expect major algorithm-breaking differences for the new TAMEX-based
electronics. A calibration experiment with the new electronics and more
double planes will be performed at FAIR.

3.2. Simulation

For the results presented here, simulations were carried out with
R3BRoot based on FairSoft jun19p2 [18] (a software bundle with
Geant4 10.5.1. [16]) and FairRoot v18.2.1 [9].

The primary particles for both the training and test data set were
enerated for the decay of 132Sn into one to six primary neutrons and
he remaining heavy particle 132−nSn. All random number generators
perated with different seeds for each simulation run. Note that the
sage of similar primary trajectories for training and testing might not
roduce a universally applicable model, which is discussed later.

For the geometry, we used a simplified version of the R3B setup
hich only includes relevant parts. This includes the magnetic field

to bend the heavy fragments away) without the magnet itself, the
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steel vacuum exit window of the magnet, the air between the vacuum
window and NeuLAND, and NeuLAND itself. Models were trained and
tested on a split of simulated data for 12 and 30 double planes at a
distance of 15m from the target, a neutron energy of 600MeV, and an
𝑟𝑒𝑙 (see Eq. (1)) of 500 keV.

In the final R3B configuration at FAIR, NeuLAND can be moved
p to 34m from the target. This increase in flight distance leads to
n improvement of the time-of-flight energy resolution, which might
mprove the effectiveness of the models which use it as a feature, see
ig. 9.

The interactions simulated in the Monte-Carlo codes are based on
everal different models and implementations, assembled into so-called
hysics lists. In other investigations, it was found that they introduce
ome uncertainty [19]. In this paper, we restrict the discussion to the
GSP_INCLXX_HP physics lists [20,21].

.3. Digitizing and clustering

The simulated energy depositions are converted to hits with the
ame properties as real data.

Individual hits in NeuLAND are grouped in clusters. A single interac-
ion of a high-energy neutron can result in multiple associated hits—the
ost iconic case are Bragg-Tracks from secondary protons, as shown

n Fig. 2. Confining these physically related energy depositions in one
ntity simplifies the reconstruction process, as it reduces the number
f first interaction candidates. The properties as well as the number
f clusters are also useful for reconstruction purposes, as discussed in
ection 6.1.

A limit on the distance between hits can represent the physical
elation. This clustering condition is a trade-off between ensuring the
nclusion of correlated hits and avoiding the inclusion of uncorrelated
its. We found it sufficient to include only directly adjacent scintillator
ars, expressed as a multiple of the bar width 𝑑bar = 5 cm within a short
ime window:

𝛥𝑥| ≤ 1.5 ⋅ 𝑑bar ∧ |𝛥𝑦| ≤ 1.5 ⋅ 𝑑bar ∧ |𝛥𝑧| ≤ 1.5 ⋅ 𝑑bar ∧ |𝛥𝑡| ≤ 1 ns (2)

To ensure that all hits are assigned to the right cluster, we have
mplemented an algorithm dubbed handshake-chain-clustering. Here, the
nsorted list of hits is partitioned into a clustered and unclustered part.
t the start, the first hit in the list is the reference hit and all other hits

hat fulfill the clustering condition (those who can shake hands with the
eference cluster) are moved to the clustered part. Then the next hit in
he clustered part is used as a reference and so on until the cluster is
o longer growing and its end has been reached. Thus, all hits shaking
ands with other hits are clustered together.

The algorithm is implemented as a C++ template; thus, any list
f elements can be clustered if a binary clustering condition can be
ormulated. It does not scale well with the number of elements to
lusters, but as events seldom contain more than a hundred hits, see
ig. 5, this is not an issue in this application.

.4. Primary points and hits

Primary points and primary hits are obtained by tracing their origin
ack through the Monte-Carlo steps.

First, the primary neutrons are identified. The simulation can either
enerate neutrons directly or generate other particles which in turn can
roduce neutrons with nuclear reactions in a target like a beam would
n an experiment. In the case that the incoming neutrons are created
y the particle gun, e.g., when using precomputed input files, they can
e immediately identified by their ID. If the neutrons originate from a
article hitting a target, they must be traced back to this process and
iltered based on their four-vectors such that only neutrons impinging
n NeuLAND with enough kinetic energy are considered.

Second, the primary interaction points are identified. Each energy
eposition (point) in NeuLAND is associated with a primary neutron by
4

tepping back through the Monte Carlo tracks, starting with the track
hat created the specific energy deposition. Then the first point in time
s taken for each primary track.

Primary hits are identified similarly. Each point is associated with
hit, if possible, by comparing the ID of their detector element. Then

he first hit in time is taken for each primary track from the hits that
riginate from the points of this primary track using the point-to-track
elation from above.

The clusters can then be split into groups of primary and secondary
lusters by checking for the inclusion of a primary hit.

. Reaction probability

Neutrons, in contrast to charged particles, can only interact with
atter via nuclear reactions, including scattering. These randomly

ccurring processes can be described using probability theory.
For 𝑁𝑃𝑁 incoming neutrons, the probability 𝑃 for 𝑁𝑃𝐻 interactions

s expected to be a binomial distribution

=
(

𝑁𝑃𝑁
𝑁𝑃𝐻

)

⋅ 𝑝(𝑛DP)𝑁𝑃𝐻 ⋅ (1 − 𝑝(𝑛DP))𝑁𝑃𝑁−𝑁𝑃𝐻 , (3)

here the interaction probability 𝑝(𝑛DP) for a detector depth of 𝑛DP
ouble planes is given by

(𝑛DP) = 1 − (1 − 𝑝DP)𝑛DP . (4)

The double plane efficiency factor, i.e., the probability 𝑝𝐷𝑃 for a pri-
ary neutron interaction in one NeuLAND double plane, only depends

n the neutron energy and can be determined by simulations. A fit
f Eq. (3) to distributions from one to five incoming neutrons for one
o 50 double planes with 𝑝𝐷𝑃 as the only free parameter matches the
imulated distributions very well. In Fig. 4, the probability distributions
t a primary neutron energy of 600MeV are shown. The double plane
fficiency factor is proportional to the neutron reaction cross section
nd thus energy-dependent, ranging from 10% to 12.2%. At 600MeV,
𝐷𝑃 is 11.03(1)%.

While the binomial behavior is expected, it is important to be ex-
licitly aware of the implications for multi-neutron events: As expected
y the Lambert–Beer law for the attenuation of uncharged particles
n media, increasing the detector depth quickly leads to diminishing
eturns for the detection of a single neutron. However, for multi-
eutron detection, this marginal change enters a power law. If, for
xample, only seven double planes are used, four out of four neutrons
ill react only in 9% of all cases. This can be quintupled to 46% by
oubling the number of double planes. In addition, a larger detector
epth also results in fewer events where not all neutrons have reacted,
hich eases event reconstruction.

These basic considerations of the reaction probability show that
xperiments targeting the prestigious detection of four-neutron events
ill be quite challenging with less than half of the full detector depth—
ithout even looking at reconstruction efficiency. From this standpoint,

t seems well justified to target 30 double planes for the final detector
epth.

. Multiplicity

Determining the multiplicity event-by-event is a classification prob-
em.

We have investigated several classification methods for different
cenarios. The original design document included a method based on
eparating multiplicities by imposing hard cuts in a 2D histogram of
eposited energy and number of clusters. We found that the correlation
etween these quantities is not always sufficient for a clean separation.
n approach inspired by Bayesian statistics can give probabilities for
ach event with little effort by treating the individual 1D histograms of
he number of hits, the number of clusters, and the deposited energy
s likelihoods. Machine learning with predefined algorithms from the
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Fig. 4. (a) Neutron reaction probability distributions for four impinging neutrons as a
function of the number of double planes for 600MeV and (b) the double plane efficiency
factor 𝑝𝐷𝑃 as a function of the neutron energy. For 𝑁𝑃𝑁 incoming neutrons, the number
of reacted neutrons 𝑁𝑃𝐻 is extracted from Monte Carlo data for each number of double
planes 𝑛𝐷𝑃 . These simulated probabilities follow the expected binomial distribution
(Eq. (3)), which can be fitted with the free parameter 𝑝𝐷𝑃 . The intrinsic maximal
achievable performance of NeuLAND, i.e., where all incoming neutrons undergo a
reaction in the detector volume (𝑁𝑃𝑁 = 𝑁𝑃𝐻 ), strongly rises when increasing the
etector depth from 10 to 20 double planes, while at the same time suppressing
nwanted channels (𝑁𝑃𝐻 < 𝑁𝑃𝑁 ).

Fig. 5. Probabilities for total deposited energy, number of hits, and the number of
clusters for different numbers of incoming neutrons in 12 and 30 double planes for
a neutron energy of 600MeV. Note that while the average deposited energy and the
number of clusters are correlated to the number of incoming neutrons, the resolution
is not high enough to separate the individual channels event-by-event with cuts. The
reduced separation for fewer double planes is a convolution of a reduced probability
for all neutrons to react and a lower chance for complete energy deposition.

scikit-learn library [22] and neural networks with Keras [23] were also
investigated.

Before models can be trained, it is crucial to choose or engineer infor-
ative, discriminating, and independent features. For the multiplicity

econstruction, we constructed several different sets of features. These
ets have varying numbers of attributes and dimensions, indicated in
arentheses after their designation. This is often referred to as the shape
f the input in machine learning terms. For example, (𝑛𝐷𝑃 ⋅ 100, 2)
escribes a shape with 6000 values (for 𝑛𝐷𝑃 = 30 double planes)
rranged in two dimensions, also called matrix or rank-2 tensor.
5

Trifeature: (3) From the many individual hits in the detector, the
number of hits, the total deposited energy, and the number of
clusters are calculated. The distributions broaden for higher neu-
tron multiplicities, as they are convolutions of the one-neutron
distribution, see Fig. 5. All detailed information about patterns
in the detector and all-time information is discarded.

Bars: (𝑛𝐷𝑃 ⋅ 100, 2) For each of the up to 3000 scintillator bars, time
and energy are recorded. This format retains some position
information, as the position in the array corresponds to a specific
bar, which is always at a specific position. Note that most entries
will be zero for any given event.

ars+Tri: (𝑛𝐷𝑃 ⋅ 100 ⋅ 2 + 3) Like the Bars dataset, but with the Trifea-
ture set added to help the model along.

ixels: (50, 50, 𝑛𝐷𝑃 ⋅ 2, 2) As the bars have a square profile of 5 cm and
the position resolution within the bar is even better, one can
interpret the detector as a 3D image of 50 x 50 x 60 pixels
with the two ‘‘color’’ channels time and energy. This format is
inefficient and requires a significant amount of storage without
compression, as the overwhelming number of pixels will be zero.

Models were trained and evaluated on a train–test–split of data sim-
lated as described in Section 3 for one to four neutrons. An example
f the resulting confusion matrices is given in Table 1. To condense
he performance down to a single number, all models were evaluated
ith the balanced accuracy score (BAC) from scikit-learn, which is the
verage recall obtained for each class with possible imbalances of the
ataset taken into account. A perfect reconstruction would score 100%.
alanced accuracy scores and training time for a selection of models are
iven in Table 2.

.1. Overall multiplicity

In an experiment, the measured distributions 𝑃𝑒𝑥𝑝 for total deposited
nergy, the number of hits, and the number of clusters are accumulated
rom many events with varying numbers of incoming neutrons. Thus,
he experimental distributions can be expressed as a sum of the individ-
al distributions 𝑃𝑛 shown in Fig. 5 with experiment-specific weighting
actors 𝑎𝑛.

𝑐𝑎𝑙𝑐 =
𝑛𝑚𝑎𝑥
∑

𝑛=1
𝑎𝑛𝑃𝑛 (5)

These weighting parameters can be determined by minimizing the
squared differences between the measured and simulated distributions,
e.g.,

𝑓𝑚𝑖𝑛(𝑎1,… , 𝑎𝑛𝑚𝑎𝑥 ) =
∑

(

𝑃
𝐸𝑑𝑒𝑝
𝑐𝑎𝑙𝑐 − 𝑃

𝐸𝑑𝑒𝑝
𝑚𝑒𝑎𝑠

)2

+
∑

(

𝑃𝐻𝑖𝑡𝑠
𝑐𝑎𝑙𝑐 − 𝑃𝐻𝑖𝑡𝑠

𝑚𝑒𝑎𝑠
)2 +

∑
(

𝑃𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠
𝑐𝑎𝑙𝑐 − 𝑃𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑚𝑒𝑎𝑠
)2

(6)

An example is shown in Fig. 6. The weighting parameters reflect
the number of events with a specific multiplicity, which is one of
NeuLANDs key deliverables. They can also enter event-by-event mul-
tiplicity reconstruction as prior, see Section 5.3. This reflects that in an
experiment with, e.g., 10% 3n- and 90% 4n events, a single event is
much more likely to stem from four incoming neutrons.

5.2. Calorimetric method

The original method for event-by-event multiplicity reconstruction
is based on setting cuts in 2D-histograms where the number of clusters
is plotted against the total deposited energy [6,7]. For each multiplicity,
a designated zone in the histogram is created with cuts, see Fig. 7.
All events are classified by the multiplicity of the zone they fall into.

The placement of these cuts is optimized by minimizing the number of
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Fig. 6. Simulated histograms for an experiment with 20% 1n, 10% 2n, 30% 3n, and
40% 4n incoming neutrons (solid black). From these cumulative distributions, the
constituting parts (solid colored) can be extracted.

Fig. 7. Number of clusters versus the total deposited energy (𝐸𝑑𝑒𝑝) for 600MeV
eutrons on 12 double planes. Quadrants (a) to (d) show the individual simulated data
f neutron multiplicities between 1 and 4. In (e) the data of all neutron multiplicities
as been combined. The lines represent the conditions which are applied to distinguish
he different multiplicities, and are placed in a way to minimize false classifications,
ee Section 5.2.

isclassified events. This process can roughly be described as a sup-
ort vector regression (or SVM) with special restrictions. It is directly
mplemented into R3BRoot and uses ROOT files. We include it in the
ist of processes using the Tri-Dataset, although it uses only two of the
hree values.

We found that this calorimetric method achieves acceptable bal-
nced accuracy scores for the test case presented here and holds up
urprisingly well compared to other models, see Table 2. A problem
ith this solution is the minimization procedure: It requires settings,

.e., start parameters and limits for the parameters which match the
eam energy, and the minimization can fail. For example, due to the
lacement of the cuts at low energies, it does not handle two-neutron
eparation well.

The main limitation is the large overlap of the peaks in the his-
ograms. This is especially problematic if only 15 double planes are in
lace because then the accuracy drops due to the reduced calorimetric
roperties of the detector. One can also further criticize the sharp
ransitions between the zones, as an event with slightly varying energy,
.g., in the range of the energy resolution, might suddenly be classified
ith a different multiplicity.

.3. Bayesian statistics

A simple probabilistic approach can be implemented with Bayesian
tatistics. Here, probabilities 𝑃 for hypotheses 𝐻 are calculated under
he effect of data 𝐄 = {𝐸1,… , 𝐸𝑘}

𝑃 (𝐻|𝐄) = 𝑃 (𝐻)
𝑃 (𝐄|𝐻)

∑

ℎ 𝑃 (𝐄|𝐻ℎ)𝑃 (𝐻ℎ)
(7)

with

𝑃 (𝐄|𝐻) =
∏

𝐸𝑖 ∈𝐄
𝑃 (𝐸𝑖|𝐻), (8)

where 𝑃 (𝐻) is the probability before the consideration of data, called
prior ; 𝑃 (𝐻|𝐄) the probability of 𝐻 after 𝐄, called posterior ; and 𝑃 (𝐸|𝐻)

he probability of observing 𝐸 given 𝐻 , also known as the likelihood. a

6

able 1
onfusion matrices (neutron separation matrices) for up to three, four, and five primary
its (𝑁𝑃𝐻 ). Rows display the actual number of primary hits (the true multiplicity) and

columns the number of primary hits derived with the Bayes algorithm (the predicted
multiplicity). The correct assignments are highlighted in bold and the balanced accuracy
score is given below the method name. Values are given in percent. In addition, the
number of events used to evaluate the performance of the trained model is given.
Notice that the multiplicity range the algorithm is tasked to reconstruct has a significant
impact. If, for example, a multiplicity of five or higher can be excluded due to external
constraints like reaction mechanics or information from other detectors, a multiplicity
of four can be reconstructed more accurately. Neutrons were simulated with 600 MeV
and a relative energy of 500 keV with a 132−nSn fragment. NeuLAND with 30 double
planes was located at a distance of 15 m to the target. The distance between target
and NeuLAND was filled with air and a 4 mm steel window. Simulated with Geant4
using the QGSP_INCLXX_HP physics list.

Bayes Predicted Events Bayes Predicted Events
85 0 1 2 3 [103] 79 0 1 2 3 4 [103]

True

0 100 2

True

0 100 2
1 91 9 42 1 91 9 42
2 14 69 17 42 2 14 69 17 42
3 1 19 80 34 3 1 19 59 22 41

4 2 22 76 33

Bayes Predicted Events
74 0 1 2 3 4 5 [103]

True

0 100 2
1 91 9 42
2 14 69 17 42
3 1 19 59 21 42
4 2 22 51 25 40
5 3 23 73 31

Effectively, likelihoods can be multiplied with each other which, after
normalization, results in a probability for each possible outcome.

The multiplicity reconstruction problem can be translated to this
Bayesian domain language. Hypotheses are the desired neutron multi-
plicities:

𝐇 = {0𝑛, 1𝑛, 2𝑛, 3𝑛, 4𝑛, 5𝑛} (9)

The prior can be chosen from an external source, if available, see
Section 5.1. For the results presented here, we use the same prior for
all hypotheses. The number of hits, the number of clusters, and the
total deposited energy shown in Fig. 5 are the likelihoods entering the
calculations. For example, 𝑃 (𝐸dep = 100MeV|1𝑛), that is the likelihood
o find a deposited energy of 100MeV if one neutron has reacted, can be
irectly read off the histogram for the deposited energy for one neutron.
ote that in principle, the individual probabilities would have to be

ndependent, which is not fulfilled perfectly here.
This method has several significant advantages: Training and testing

f the basic dataset require only minimal computational resources due
o the highly optimized NumPy library [24]. In addition, there is no
inimization step that could fail, and the method requires no settings

r variable tuning. The whole process can also be easily converted and
ncluded in the C++ analysis software, which enables high throughput
hen analyzing millions of events. As it returns probabilities and can
irectly include priors, it is also well suited for usage with event-
ide multiplicity distributions, see Section 5.1. Finally, it only uses

he unscaled Tri dataset, so it is robust against changes to the hit
attern due to, e.g., changes in the neutron cone opening angle, and less
usceptible against simulation-related problems like imperfect physics
odels.

This method achieves a good, but not the best 30dp-4n-PH-BAC
erformance of 79% for the 600MeV scenario tested here.

.4. Simple machine learning with scikit-learn

Scikit-learn [22] is a widely used Python machine learning library
hat includes a wide range of classification, regression, clustering,

nd other models. Version 0.21.3 used here includes 32 applicable
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classifier models, 10 feature scalers including unscaled input, and 6
multi-model-classifiers.

Using the Tri, Bars, and Bars+Tri dataset as input, we tested all
possible dataset-scaler-model combinations with default settings. Some
models work better with or require scaled inputs. Others do not scale
well with the number of events, for some, the training time also
depends on the scaler used. As the training time can vary by orders of
magnitude, we applied a strict time limit to cancel and retry training
the specific combination with a tenth of the data.

To our surprise, we found that many models perform roughly the
same, at a level that is only slightly above Calorimetric or Bayes,
while requiring significantly more training time. A selection is given
in Table 2. All models performed worse when working with the thou-
sands of inputs of the Bars dataset than with the three values of the
Tri dataset. Usage of the combined Bars+Tri dataset did not lead to
better performance but required drastically more processing time. We
also found that some models, especially the Quadratic Discriminant
Analysis, perform significantly worse when trained on the number of
primary neutrons instead of the (actually detected) number of primary
hits.

5.5. Neural networks with Keras

The Keras framework [23] was used to build simple neural net-
works.

Configurations with dense Relu layers, Softmax (SM) activation,
Adam optimizer, and the Categorical Crossentropy loss function were
used, see [23]. At first, we tackled the hyperparameter optimization
with Keras-tuner, optimizing layer sizes of thousands of Relu nodes for
the Max-Abs scaled Bars and Bars+Tri datasets. However, we quickly
found that in our case these layer sizes lead to drastic overfitting with
training accuracies of 99% but decreasing validation accuracy. Instead,
configurations of two layers with 100 and 10 nodes (R100, R10, SM,
Adam), as well as a single 10 node layer (R10, SM, Adam) performed
as well as the best scikit-learn models.

The single most surprising result was that, without any Relu-layer at
all, just the Softmax-Layer with Adam optimizer (SM, Adam) achieved
a great balanced accuracy score of 83% for 4n on 30dp when recon-
structing PH on the unscaled Tri dataset. It is much faster to train and
run than all scikit-learn models. This performance is due to the highly
optimized TensorFlow code [25]. However, for best data-evaluation
performance it might be necessary to integrate the trained network
into R3BRoot without its Python API to avoid the slow (ROOT-) data
preprocessing in Python.

5.6. Summary

Evaluating the performance of the described model-scaler combina-
tions leads to some unexpected results, see Table 2.

First, a BAC of 83% seems to be the hard limit for the reconstruction
of the number of primary hits for one to four primary neutrons with
30 double planes (30dp-4n-PH-BAC) and 69% for 12 double planes.
This value is reached by several models and might originate from the
properties of the simulated interactions.

Second, the use of more features does not provide a guaranteed
advantage. For example, using the 3000 time and 3000 energy features
in the Bars dataset even leads to a significant under-performance for
all models, highlighting the need for feature engineering (or better-
designed models). Also, the combination of the derived features (Tri)
and the full detailed pattern (Bars) did not lead to outperformance, but
just to an increase in processing time. Due to this lack of performance,
the Pixel-Dataset was not tested for pure multiplicity reconstruction.

The calorimetric method held up surprisingly well, almost matching
the hard limit for deducing 𝑁𝑃𝐻 , only falling behind when predict-
ing the number of primary neutrons for 12 double planes. Its main
drawback is the fitting algorithm, which has parameters and can fail.
7

Fig. 8. Probability distributions (top) and importance of features (bottom) for the
Random Forest (left) and Ada Boost classifier (right) from the scikit-learn library. Note
that the impact of the features is quite similar for both classifiers. The energy from
time-of-flight 𝐸𝑇 𝑜𝐹 is by far the most important.

The simple Bayesian model performs admirably well, its main ad-
vantages are its simplicity and robustness. It also natively integrates
well to using prior knowledge from the overall multiplicity distribution.
We nominate it as the default model.

As expected, we observed highly mixed behavior ranging from total
failure to the hard limit for scikit-learn models. Scalers do have an
impact on, e.g., the SGD Classifier, where they drastically reduce train-
ing time; and the Linear Discriminant Analysis, where they drastically
improve accuracy (not shown in Table 2).

Note that the multiplicity determination accuracy also depends on
the maximum multiplicity. As shown in Fig. 5, the overlap between
the basic observables number of hits, number of clusters, and total
deposited energy is large. If the experiments can only produce up to
three neutrons, the option to reconstruct four and five neutrons can be
eliminated, which will lead to much higher accuracy.

6. First interaction points

The first interaction points are required to determine the four-
vectors of the primary neutrons. There are several possible approaches
to this problem. In an ideal case, one would simply use the full Bar or
Pixel shaped data as input (see Section 5), similar to a 3D image, and
the model would point out the exact positions, likely even with higher
precision as the intrinsic resolution of the scintillator would normally
allow for.

Here, we present a different approach. All detected interactions
are already represented by clusters, and the task is now reduced to
classify them into primary and secondary. As input for this binary
classification, either a 2D or 3D representation of the individual hits,
i.e., a subset of the full detectors, or derived features representing
meaningful attributes of the cluster can be used.

6.1. Cluster classification

Some properties of clusters might be good indicators for classifi-
cation between primary and secondary clusters. A pair plot of these
features is shown in Fig. 9. The details are discussed in the following:

Time-of-Flight 𝑇 The Time-of-Flight 𝑇 is the time from the start signal
(emission of the neutron) to the detected time of the first hit
in the cluster. In many reactions, neutrons are emitted with a
narrow kinetic energy window and thus arrive at the scintillators
in a narrow time window. It is unlikely that clusters with a larger
ToF stem from these primary neutrons. Note that the acceptable
ToF depends on the flight distance as can be seen in the 𝑇 -𝑍

pair plot. This is corrected for in 𝐸𝑇 𝑜𝐹 .
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Fig. 9. Relationships between features of primary (blue) and secondary (orange) clusters. Note that, for example, the 𝑋-𝑌 -distribution of primary clusters reflects the opening
angle of the incoming neutrons. The 𝑍-distribution reflects the exponential decrease in intensity (Lambert–Beer law). In the 𝑇 -𝑍 plot, the longer flight time of neutrons that react
in the back of the detector can be seen. The energy from time of flight 𝐸𝑇 𝑜𝐹 removes this dependency and is a good indicator.
C

Deposited Energy 𝐸𝑑𝑒𝑝 The cluster energy 𝐸𝑑𝑒𝑝 is the summed energy
of the individual hits (𝐸𝑑𝑒𝑝 =

∑

ℎ 𝐸ℎ). There is an overabundance
of secondary clusters with energies below 10MeV. Clusters with
an energy over 150MeV are likely primary, see Fig. 9.

Size 𝑁 The cluster size 𝑁 denotes the number of hits grouped in one
cluster. Smaller clusters are more likely to be secondary, with an
over-proportional number of both primary and secondary one-
hit clusters. The likelihood of larger secondary clusters drops
faster than for larger primary clusters, with a crossing at around
size 𝑁 = 7.

Energy from Time-of-Flight 𝐸𝑇 𝑜𝐹 Assuming the cluster is created by
a neutron stemming from the target, the time-of-flight, and the
position of the first hit in the cluster can be used to calculate
the neutron kinetic energy: 𝐸𝑇 𝑜𝐹 = (𝛾 − 1)𝑚𝑛𝑐2 with 𝛾 =
(1 − 𝑋2+𝑌 2+𝑍2

)−
1
2 and where 𝑚 is the neutron mass. In the
𝑇 2𝑐2 𝑛

8

physics cases simulated here, neutrons are emitted within a
narrow energy window (Full Width at Zero Intensity < 10%),
thus primary clusters must have a corresponding 𝐸𝑇 𝑜𝐹 . The
energy from time of flight is connected to the time-of-flight 𝑇 ,
however secondary clusters that would fall within the time-of-
flight acceptance interval are rarely located at positions that
match the required 𝐸𝑇 𝑜𝐹 . This makes the energy from time of
flight a better feature for further analysis and even a candidate
for a simple cut.

luster Energy Moment 𝑀 Energy depositions in the cluster are not
distributed evenly. A proton, for example, might deposit most of
its kinetic energy at the end of its flight path (Bragg peak). The
cluster energy moment 𝑀 can be defined as

𝑀 =
∑

ℎ
|

|

𝐱ℎ − 𝐱𝐸𝐶
|

|

𝐸ℎ with 𝐱𝐸𝐶 =
∑

ℎ 𝐱ℎ𝐸ℎ , (10)

𝐸𝑑𝑒𝑝 𝐸𝑑𝑒𝑝
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Table 2
Balanced Accuracy Scores (BAC) for the reconstruction of multiplicities for 1 to 4 incoming neutrons. Manually implemented,
default Scikit-Learn, and Keras-based Models were systematically trained and evaluated with all Dataset-Scaler combinations
on datasets with the same number of events for each multiplicity. Both the number of incoming neutrons (𝑁𝑃𝑁 ) and the
number of primary hits (𝑁𝑃𝐻 ) were separately used as label. Scikit-Learns Models with low performance are omitted. ‘‘All’’
scalers include Unscaled (Unsc), standard scaling (Std), min–max scaling (MM), max-abs scaling (MA), robust scaling (Rob),
power transformation: Yeo–Johnson (YJ), power transformation: Box–Cox (BC), quantile transformation: gaussian pdf (QG),
quantile transformation: uniform pdf (QU), sample-wise L2 normalizing (L2), see [22,26] for details. Not used were Power
Transformer Yeo–Johnson and Box–Cox. Intrinsic efficiency results are obtained using the known number of primary hits, which
leads to a perfect score when reconstructing itself, but as not all incoming neutrons will react in the detector, to a lower
score when trying to reconstruct the number of incoming neutrons. See text for details.

Model Input Scaler BAC [%]

12 dp 30 dp

𝑁𝑃𝑁 𝑁𝑃𝐻 𝑁𝑃𝑁 𝑁𝑃𝐻

Intrinsic efficiency – – 44 100 84 100

Calorimetric Tri Unsc 41 66 70 82
Bayes Tri Unsc 57 67 74 79

MLP Classifier Tri All 57 66 78 83
(Hist) Gradient Boosting Class. Tri All 57 66 78 83
Logistic Regression CV Tri All 56 66 76 83
Quadratic Discriminant Analysis Tri Std, Rob, QG, YJ 36 66 56 83
Quadratic Discriminant Analysis Tri Unsc, MA, L2, MM, QU 20 65 20 83
Linear Discriminant Analysis Tri QG, YJ 56 66 76 82

Keras (SM, Adam) Tri Unsc 56 67 76 83
Keras (R10, SM, Adam) Tri Unsc 57 66 76 83
Keras (R100, R10, SM, Adam) Tri Unsc 54 64 78 82

Bernoulli NB Bars All 56 62 67 70
MLP Classifier Bars SS, MA, MM 56 59 62 66
Extra Trees Classifier Bars QU, QG, L2, Unsc 59 59 65 65
Random Forest Classifier Bars QU, QG, Rob, Unsc 60 58 63 65

Keras (SM, Adam) Bars MA 56 62 50 54
Keras (R10, SM, Adam) Bars MA 58 63 71 74
Keras (R100, R10, SM, Adam) Bars MA 59 66 71 75
Keras (R3000, R50, SM, Adam) Bars MA 56 63 69 75

Linear Discriminant Analysis Bars+Tri QG 59 69 75 82
Bagging Classifier Bars+Tri All w/o L2 56 65 76 81
Extra Trees Classifier Bars+Tri MA, MM 60 64 75 80
Random Forest Classifier Bars+Tri All w/o L2 60 63 75 79
Nearest Centroid Bars+Tri MA, MM 52 63 72 77
MLP Classifier Bars+Tri QG 60 69 69 75

Keras (SM, Adam) Bars+Tri MA 59 67 76 82
Keras (R10, SM, Adam) Bars+Tri MA 60 69 77 83
Keras (R100, R10, SM, Adam) Bars+Tri MA 60 69 76 82
Keras (R3000, R50, SM, Adam) Bars+Tri MA 57 66 72 80
c
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where ℎ are the individual hits with energy 𝐸ℎ and position 𝐱𝐡.
Assuming the cluster is a Bragg track, 𝑀 is a measure for the
initial energy of the proton.

imespan 𝛥𝑇 The cluster timespan, which is the time difference be-
tween the last and the first hit in the cluster, behaves like
the cluster size. This is expected, as larger clusters are mostly
created by protons passing through the planes.

aximum Hit Energy 𝐸𝑚𝑎𝑥 The largest individual energy deposition
in the cluster.

osition 𝑋, 𝑌 ,𝑍 The 𝑋, 𝑌 , and 𝑍 position of the first hit in the
cluster. For horizontally oriented scintillator bars, 𝑌 is given
by the scintillator position and 𝑋 is calculated from the time
difference of the PMT signals. Vise versa for vertically oriented
bars. The 𝑍 position is always given by the scintillator position
and shows the expected logarithmic decline.

-Value The R-Value, defined as 𝑅 = |𝐸𝑇 𝑜𝐹−𝐸𝐵𝑒𝑎𝑚|

𝐸𝑑𝑒𝑝
, is a component of

the reconstruction method originally proposed in the technical
design report [6,7]. For the calculation of 𝑅, external knowledge
of the beam energy 𝐸𝐵𝑒𝑎𝑚 is required.

A similar broad search for the best classification process as in Sec-
ion 5 has been performed. Recent developments in the field of machine
9

learning include fully automating the process of finding the best model
with the best settings. Here, we also utilize Auto-Sklearn [27] and
ompare it to our manual search. In the first step, few far-away outliers
ere excluded. The reaction of primary neutrons can create several

econdary particles, which can react in different parts of the detector.
his results in up to four times more secondary than primary clusters. A
andom subset of secondary clusters was used to normalize the dataset,
hich was then split into train and test sets. The features have then
een used as input with different scaler-model combinations, results
re given in Table 3. Again, there seems to be a hard limit just above
1% accuracy with little variation between the best scikit-learn models
nd Keras-based neural networks of different sizes.

Note that there is only a small difference in accuracy between 12
nd 30 double planes. Most clusters originate in the front part of the
etector and have less than 10 hits, i.e., less than 5 double planes.
hus, there are only a few clusters where the reaction products leave
he shorter detector.

No clear winner can be identified, as most models achieve a bal-
nced accuracy score of 91%. For the application in an experiment,
he method with the fastest prediction function should be used. The
andom Forest Classifier might have the lead here, as unscaled data
an be used directly and the trained model can be transpiled to C code
ith sklearn-porter [28]. The Keras models are also small enough to
ot require GPUs and could be incorporated into our C++ analysis

framework. Classifying clusters was substantially slower with the model

Auto-Sklearn produced.
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Table 3
Balanced Accuracy Scores (BAC) for the reconstruction of primary clusters for 1 to
4 incoming neutrons. Before training and testing, the dataset was normalized to
include the same number of primary and secondary clusters. Default Scikit-Learn
were systematically trained and evaluated with all Dataset-Scaler combinations, Keras
was tested with the Robust Scaler. Only the best results are shown. ‘‘All’’ scalers
include Unscaled (Unsc), standard scaling (Std), min–max scaling (MM), max-abs
scaling (MA), robust scaling (Rob), quantile transformation: gaussian pdf (QG), quantile
transformation: uniform pdf (QU), sample-wise L2 normalizing (L2). Not used were
Power Transformer Yeo–Johnson and Box–Cox. See text for details.

Model Scaler 4n BAC [%]

12 dp 30 dp

Random Forest Classifier All 90.2 91.2
Extra Trees Classifier All 90.1 91.1
MLP Classifier All w/o L2, Unsc 90.0 90.9
SVC QU, Std, Rob 89.6 90.6
Ada Boost Classifier All 89.3 90.2

Auto-Sklearn – 90.5 91.4

Keras (SM, Adam) Rob 88.2 88.3
Keras (R10, SM, Adam) Rob 90.0 90.9
Keras (R100, R10, SM, Adam) Rob 90.6 91.4
Keras (R1000, R100, SM, Adam) Rob 90.6 91.4

Not all features contribute to the classification process. For the
andom Forest and Ada Boost Classifiers, the influence of the different

eatures and the probability distributions are shown in Fig. 8. Note
hat the energy from time-of-flight 𝐸𝑇 𝑜𝐹 has by far the most impact,

followed by the time 𝑇 and the deposited energy 𝐸𝑑𝑒𝑝. The energy from
time of flight is also the quantity used in physics analyses after the
reconstruction process. Surprisingly, the size of the cluster 𝑁 as well
s its direction 𝐸𝑀 play little to no role for both models, the timespan
𝑇 is only somewhat relevant for the Random Forest Classifier. This
s similar to the original procedure, where the clusters were ranked by
inimal 𝑅-Value.

6.2. Cluster selection

Cluster classification alone is not viable for multiplicity recon-
struction. For example, a BAC of 90% for classification results in a
multiplicity reconstruction BAC of 46% for 𝑁𝑃𝑁 and 56% for 𝑁𝑃𝐻 .

Thus, instead of binary classification, the clusters with the highest
robabilities are chosen based on the multiplicity determined before-
and with the methods described in Section 5. With this method,
n acceptable first interaction point reconstruction can be achieved.
his can be quantified by the Full Width at Half Max of the resulting
𝑟𝑒𝑙 spectra as defined in Eq. (1). In Fig. 10, an example is shown
here the different cluster ranking models were supplied with the same
ultiplicity. The original 𝑅-Value based method has a strong right tail,
hich results in a wider peak. While both Ada Boost and Keras fall short
f an optimal reconstruction, they produce significantly narrower and
igher peaks. This can significantly improve experimental sensitivity
nd thus lead to improved results.

. Summary and outlook

In this work, we have presented the New Large Area Neutron De-
ector NeuLAND and the associated challenges in data reconstruction.
hese mostly stem from the vastly different interactions neutrons can
ndergo in the material and the resulting energy deposition patterns.

Different approaches to obtain the multiplicity and the primary
nteraction points have been investigated.

For the multiplicity reconstruction, many feature-scaler-model com-
inations were tested. The classification models from the scikit-learn
ibrary and simple Keras-based models only slightly outperform the
lassical methods. In addition, the use of more features, e.g., data

rom all detector elements instead of consolidated quantities, only

10
Fig. 10. Relative energy spectra for 4 incoming neutrons on 30 double planes at 15m
distance. The correct multiplicity was provided for each reconstructed event to only
study the differences between the different cluster selection methods. As the peaks are
asymmetric with a strong right tail, the Full Width at Half Max (FWHM) was measured
instead of fitting a Gaussian distribution. Note that the 𝑅-Value method shows the
worst peak shape. Auto-Sklearn, Ada Boost, and Keras(100, SM) produce significantly
better peak shapes, where the peak created with Keras has the advantage in FWHM
but lower volume. None of the three methods come close to the optimal result.

marginally increases performance. Thus, for multiplicity reconstruc-
tion, we currently recommend using the Bayesian method due to its
simplicity, ease of use, and speed, or Keras models for slightly in-
creased accuracy if a balanced approach between all multiplicities is
desired. The calorimetric method shows similar performance; however,
its training phase requires optimization of fit parameters. This can be
an advantage if the goal of the experiment requires overweighting or
suppressing specific misidentified neutron numbers.

For the reconstruction of the first interaction points in the detector,
both scikit-learn- and Keras-based models perform significantly bet-
ter than ranking by 𝑅-Value, however, they still fall short of what
a hypothetical ideal reconstruction could achieve. These models re-
quire a well-tuned simulation that matches the experimental data and
thus exhibits the same behavior for the features that enter the neural
network.

It seems prudent to further investigate deep-learning-based ap-
proaches. The Keras-based models presented here are tiny compared to
typical neural networks with multiple layers and thousands of nodes,
but run fast on pure CPU systems, and deliver good performance in
both multiplicity and first interaction point reconstruction. So far, the
reconstruction process has been separated into these two steps, and
does not, for example, take advantage of the intercorrelation between
the clusters in an event. A well-crafted convolutional neural network
could take the 3D-pixel-image of an event, and directly return the first
interaction points. Alternatively, a Long short-term memory (LSTM)
network could be designed to take the cluster intercorrelations into
account. With the rise of AutoML methods, further developments could
also focus on improving and validating the inputs and leverage the
work that others have invested in optimizing model construction.

A detailed comparison of simulated to experimental data is nec-
essary for the more complex models. Some features like the number
of hits and the total deposited energy depend only slightly on the
physics lists used, and their distributions can be easily compared to the
actual experimental distributions. For models that analyze individual
patterns within the detector, e.g., the 3D- or LTSM networks, a high-
quality emulation of the experimental data is vital, as the description
of interactions in the detector can differ substantially between physics
implementations [19]. However, new models can be developed in

parallel to this task, and then retrained based on the results.
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