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Analysis of the Heterogeneous Vectorial
Network Model of Collective Motion

Jalil Hasanyan , Lorenzo Zino , Agnieszka Truszkowska , Alessandro Rizzo , Senior Member, IEEE ,
and Maurizio Porfiri , Fellow, IEEE

Abstract—We analyze the vectorial network model, a
stochastic protocol that describes collective motion of
groups of agents, randomly mixing in a planar space.
Motivated by biological and technical applications, we
focus on a heterogeneous form of the model, where agents
have different propensity to interact with others. By lineariz-
ing the dynamics about a synchronous state and leverag-
ing an eigenvalue perturbation argument, we establish a
closed-form expression for the mean-square convergence
rate to the synchronous state in the absence of additive
noise. These closed-form findings are extended to study
the effect of added noise on the agents’ coordination, cap-
tured by the polarization of the group. Our results reveal
that heterogeneity has a detrimental effect on both the con-
vergence rate and the polarization, which is nonlinearly
moderated by the average number of connections in the
group. Numerical simulations are provided to support our
theoretical findings.

Index Terms—Stochastic systems, stability of linear
systems, time-varying systems.

I. INTRODUCTION

COLLECTIVE motion is a widely studied phenomenon
across biology, physics, and engineering [1]–[3]. The

emergence of collective motion is often observed in animal
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groups, such as bird flocks, fish schools, and sheep herds.
Social animals have been shown to use locally controlled
interactions for decision-making that ultimately regulate their
coordination [1]. To capture these dynamics and better under-
stand the emergence of coordination, the physics community
has established a wide range of mathematical models of col-
lective motion for groups of particles [2]. In the engineering
community, the observations of spontaneous coordination of
biological systems and the mathematical models developed by
physicists have inspired the design and analysis of decentral-
ized control schemes for teams of autonomous robots [3].

The vectorial network model (VNM), originally proposed
in [4], [5], has emerged as a valuable paradigm to describe col-
lective motion due to its mathematical tractability and ability to
reproduce important features of more complex models. In the
VNM, each agent is characterized by its orientation on a pla-
nar space. Agents interact through a stochastically switching
network, through which they dynamically update their orien-
tation to synchronize with their neighbors. Such a dynamic
updating is affected by intrinsic noise. The VNM has been
initially proposed as a proxy of the classical Vicsek model
for self-propelled systems [6], whose complexity restricted
its analysis to numerical simulations [7]–[10] or case-specific
theoretical results [11]–[15]. In the limit of rapidly moving
particles, the VNM can capture several features of the richer
Vicsek model [4], [5], [16].

Early analyses of the VNM were performed in the ther-
modynamic limit of large-scale systems, through extensive
numerical simulations [4] and semi-analytical approaches [5].
These studies demonstrated the existence of a continuous
order-disorder phase transition, similar to the Vicsek model
in the case of rapidly moving particles that randomly mix at
every time step [6]. For small values of the added noise, the
agents are successful in coordinating their motion. The extent
of such a coordination smoothly decreases as the noise level
increases, until reaching completely disordered states when the
level of noise is above a critical value. Further insight into the
nature of the phase transition and its dependence on system
parameters can be found in [16], where a mean-field theory
of the VNM is developed and analytically investigated.

In [17], the VNM is analyzed without relying on the
thermodynamic limit, via a linearization process that allows
the VNM to be studied through the lens of consensus
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protocols [18], [19] — specifically, stochastic protocols on
switching topologies [20] and with additive noise [21]. This
linear analysis begot an array of closed-form results for
homogeneous groups of agents, that is, where agents are indis-
tinguishable in their ability to form connections with other
group members. These results helped elucidate the effect of
the population size, the number of connections of each agent,
and noise on the coordination of the VNM. Further studies
on the linearized VNM have shed light on various aspects of
the collective dynamics, such as the effect of leader-follower
interactions [22] and of specific choices of the noise inspired
by biological applications [23].

All these analyses are based on the assumption that all the
agents interact with the same number of individuals. Such
an assumption is not reflective on many real-world complex
systems. For instance, heterogeneity between the members of
a group is a typical feature of animal groups [24] and com-
plex coordination schemes between autonomous robots often
involve the cooperation of different models or generations of
robots [25]. Heterogeneity, indeed, has been shown to play a
key, nontrivial role in many coordination processes. On the
one hand, heterogeneous distribution of network connectivity
hinders network synchronization in small-world networks [26]
and convergence of stochastic consensus protocols [27]. On
the other hand, the emergence of ordered states in complex
networks may be favored by heterogeneous coupling [28]
and heterogeneity may facilitate convergence of stochastic
consensus protocols in the presence of leader-follower inter-
actions [29]. To the best of our knowledge, there is still a gap
in the theoretical understanding of the role of heterogeneity
in the VNM. Filling this gap is expected to bring insight into
collective motion of more complex models, thereby informing
the design of coordination strategies for engineering systems
and the understanding of real-world complex systems.

To this end, we examine the VNM in the general case where
each agent is characterized by a different propensity to form
time-varying, stochastic connections with other group mem-
bers. Similar to [17], we rely on a linearization of the VNM
about a synchronous state, and we present a toolbox of ana-
lytical results that capture the effect of heterogeneity on the
asymptotic behavior of the VNM. First, through stochastic
stability theory and eigenvalue perturbation methods, we estab-
lish closed-form results for the asymptotic convergence factor,
which determines the convergence rate in the absence of noise.
Our findings suggest that convergence to synchronous states is
hindered by the heterogeneity of the agents’ attitude to interact
with others, at least for moderate levels of heterogeneity. In
agreement with our intuition, this detrimental effect is mod-
erated by the number of connections, where synchronization
in denser networks is more robust to the effect of hetero-
geneity. Second, we study the polarization of the system [4],
which is a global observable that quantifies the level of coor-
dination between the agents. Following [17] and leveraging a
perturbation argument, we derive a closed-form approximation
for the polarization, which is exact in the small noise limit.
Such an expression corroborates our previous finding, con-
firming that heterogeneity is detrimental for the emergence of
ordered states, not only by slowing down the convergence,

but also by decreasing the level of coordination of the system.
Monte Carlo numerical simulations are provided to validate
our analytical findings.

II. PROBLEM STATEMENT

A. Notation

The set of real numbers and nonnegative integers are repre-
sented by R and Z

+, respectively. Given a vector x, we denote
its transpose by x�. The N-dimensional all-one (or all-zero)
vector is denoted as 1 (or 0), and the N-dimensional identity
matrix by I. The Euclidean norm of a vector is indicated by
|| · ||, the vectorization of a matrix by vec(·), the argument of a
complex number by Angle{·}, the expectation and the variance
of a random variable by E[ · ] and var[ · ], respectively. Matrix
operations denoted by ⊗ and � are the Kronecker product and
the Hadamard division, respectively. The spectral radius of a
matrix is indicated by ρ(·). We use Landau’s symbol O(xk) for
a generic function f (·) such that lim supx→0 ||f (x)/xk|| < ∞.

B. Heterogeneous VNM

We consider a system of N agents. Agent i ∈ {1, . . . , N}
is associated with the two-dimensional, unit-length vector
vi = eιθi with ι being the imaginary unit. With reference to the
Vicsek model [6], the vector represents the heading direction
of particle i. Each vector vi updates its orientation θi accord-
ing to a discrete-time process, as a consequence of interactions
with other vectors. Agents are heterogeneous in their attitude
to interact with others. Specifically, each agent i is charac-
terized by a constant ai ∈ Z

+ that measures the number of
interactions that agent i establishes at each time-step. These
constants are gathered in the interaction vector a. Similar
to [27], we express the interaction vector as a = K1 + σh,
where

K := 1

N

N∑

i=1

ai and σ :=
√√√√ 1

N

N∑

i=1

(ai − K)2 (1)

are the average number of interactions and its standard
deviation, respectively. Vector h ∈ R

N (which is uniquely
determined by vector a, being hi = (ai − K)/σ ) captures the
deviations from the average number of connections and is such
that 1�h = 0, and ||h|| = √

N. In the original formulation of
the VNM [4], [5], agents have homogeneous propensities of
interaction, that is, for ai = K, for i = 1, . . . , N.

At each time-step k ∈ Z
+, agent i connects with ai agents,

chosen at random, independent of one another. Such a stochas-
tic mechanism induces a switching topology — a growingly
popular research topic for the study of coordination and con-
trol of networks [20]. At each time step k, agent i establishes
ai connections with neighbors denoted by {i1(k), . . . , iai(k)}.
These interactions contribute an average appraisal of the group
orientation for agent i, given by

Ui(k) = 1

ai

ai∑

p=1

vip(k)(k). (2)

This vector is used as input to update the orientation of agent
i according the following stochastic dynamics:

θi(k + 1) = Angle{Ui(k)} + ηζi(k), (3)
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where the constant η ∈ [0, 1] is the noise intensity and
ζi(k) is a sequence of independent and identically distributed
(i.i.d.) random variables drawn from a uniform distribution
in [−π, π ].

III. PRELIMINARIES

A. Linearization of the VNM

We begin our analysis by linearizing Eq. (3) with respect to
the orientation around a synchronous state, θ0, where θi(k) =
θ0 + xi(k). We obtain

x(k + 1) = W(k)x(k) + ηζ (k), (4)

where x(k) = [x1(k) · · · xn(k)]� ∈ R
N is the state vector,

ζ (k) = [ζ1(k) · · · ζn(k)]� ∈ R
N is the additive noise, and

W(k) ∈ R
N×N is the state matrix. Matrices W(k)’s are a

sequence of i.i.d. random variables with common random vari-
able W. Matrix W is defined row-wise as follows. Row i of
W is the sum of ai i.i.d. vectors Vi1, . . . , Viai , with all entries
equal to 0, except one entry equal to 1

ai
, selected uniformly at

random. That is,

W =

⎡

⎢⎢⎢⎢⎢⎢⎣

ai∑
p=1

V�
1p

...
ai∑

p=1
V�

Np

⎤

⎥⎥⎥⎥⎥⎥⎦
. (5)

It is easy to check that: i) E[Wij] = 1
N , for all i, j ∈ {1, . . . , N},

and ii) W is row-stochastic, that is, W1 = 1.

B. Asymptotic Behavior

The linearized heterogeneous VNM is studied through the
disagreement dynamics of Eq. (4), that is, ξ(k) = x(k)− x̄(k)1,
where x̄(k) = 1

N 1�x(k) is the average state. The evolution of
the disagreement dynamics is given by

ξ(k + 1) = RW(k)ξ(k) + ηRζ (k), (6)

where R = I− 1
N 11� projects RN onto the subspace orthogonal

to 1.
Based on previous work [17], [30], [31], we study the evo-

lution of the disagreement dynamics in a mean-square sense.
Specifically, we examine the time evolution of the autocorrela-
tion matrix 	(k) = E[ξ(k)ξ(k)�]. Recalling that ζ and W are
i.i.d. random variables, that E[ζ ] = 0, and that E[ζζ�] = π2

3 I,
we compute

vec(	(k + 1))

= Gkvec(ξ(0)ξ(0)�) + η2

(
k−1∑

i=0

Gi

)
R ⊗ Rvec(E[ζζ�])

= Gkvec(ξ(0)ξ(0)�) + η2 π2

3

(
k−1∑

i=0

Gi

)
vec(R) , (7)

with

G = R ⊗ RE[W ⊗ W]. (8)

From Eq. (7), we observe that the time evolution of the
autocorrelation is fully determined by matrix G. In the absence

of noise (that is, η = 0), the mean-square asymptotic behavior
of Eq. (6) is determined by the spectral radius of G, which
is called asymptotic convergence factor r [32], [33]. If r < 1,
then the autocorrelation in Eq. (7) converges to a finite value
as k → ∞, yielding

vec(	∞) = η2(I ⊗ I − G)−1vec(R). (9)

The trace of 	∞ is called mean-square deviation and it
corresponds to the limit of E[||ξ(k)||2], which is equal to

δ∞ = η2vec(R)(I ⊗ I − G)−1vec(R). (10)

C. Order Parameter

The coordination of the agents is quantified by means of
a global observable called polarization [4], [5], which is
defined as

Pol := lim
k→∞E

[
1

N

∣∣∣∣
N∑

i=1

exp (ιθi(k))

∣∣∣∣

]
. (11)

Specifically, Pol = 0 indicates a completely disordered
state, while Pol = 1 indicates full alignment of the agents’
orientations.

We use the mean-square steady state deviation to approx-
imate the polarization for small levels of noise η 
 1,

following the analysis of the homogeneous VNM in [17]. To
this end, we introduce a linear approximation of the heading,
θi(k) = θ0 + xi(k), for i = 1, . . . , N, and expand up to the
second order to find

Pol ≈ 1 − 1

2N
δ∞. (12)

IV. MAIN RESULTS

Here, we analyze the linarized heterogeneous VNM, estab-
lishing closed-form expressions for the spectral radius ρ(G)

and the mean-square deviation δ∞, which determine the con-
vergence rate and the degree of coordination, respectively. We
begin by deriving the closed-form expression of matrix G in
Eq. (8) as a function of the interaction vector a. Our result is
summarized in the following proposition.

Proposition 1: Matrix G in Eq. (8) associated with the lin-
earized heterogeneous VNM in Eq. (4) with interaction vector
a is equal to

G = R ⊗ RE[W ⊗ W] = 1

N
vec(Rdiag (1 � a)R)vec(R)�.

(13)

Proof: We use a counting argument, similar to [17]. Due to
the structure of the Kronecker product, the matrix E[W ⊗ W]
has a block structure and its entries are in the form E[WijWst],
for i, j, s, t = 1, . . . , N. Using Eq. (5), we observe that these
entries can have three different expressions, depending on their
indexes: i) for i = s and j = t,

E[W2
ij] = E

⎡

⎢⎣

⎛

⎝
ai∑

p=1

(Vip)j

⎞

⎠
2
⎤

⎥⎦ = var

⎡

⎣
ai∑

p=1

(Vip)j

⎤

⎦
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+ E

⎡

⎣
ai∑

p=1

(Vip)j

⎤

⎦
2

= N − 1

N2ai
+ 1

N2
= N + ai − 1

N2ai
;

ii) for i = s and j �= t, we compute

E[WijWit] =
ai∑

p=1

ai∑

q=1

E
[
(Vip)j(Viq)t

]

=
ai∑

p=1

ai∑

q=1,q �=p

E[(Vip)j]E[(Viq)t] = ai − 1

N2ai
;

and, iii) for i �= s, we use the independence between the rows
of W to conclude

E[WijWst] = E[Wij]E[Wst] = 1

N2
.

Thus, we find

E[W ⊗ W] = 1

N
vec(diag (1 � a))vec(R)�

+ 1

N2
11� ⊗ 11�.

Finally, the premultiplication by R ⊗ R yields Eq. (13).

A. Convergence Rate in the Absence of Noise

The nontrivial structure of matrix G for the heterogeneous
VNM in Eq. (13) hinders the direct computation of its spectral
radius. To overcome this issue, we pursue a perturbation argu-
ment with respect to σ . Using the expression ai = K + σhi,
we write the matrix G in Eq. (13) as

G = G0 + σG1 + σ 2G2 + O(σ 3) (14)

where

G0 = 1

KN
vec(R)vec(R)�, (15a)

G1 = − 1

K2N
vec(R diag(h)R)vec(R)�, and (15b)

G2 = 1

K3N
vec(R diag(h2)R)vec(R)�, (15c)

where h2 is meant entry-wise. For σ = 0, the VNM reduces
to the homogeneous scenario with G = G0 studied in [17], in
which all agents establish K interactions at each time-step. The
simple structure of G0 (which is a symmetric rank-1 matrix)
allows to fully determine its spectrum, as summarized in the
following.

Lemma 1: The spectral radius of G0 is ρ0 = N−1
KN , with

associated unit-length eigenvector u0 = 1√
N−1

vec(R). All the
other eigenvalues are zero, that is, λ2 = · · · = λN2 = 0.

This implies that the rate of convergence in the homo-
geneous VNMs improves monotonically as the number of
interactions K grows. To elucidate the effect of heterogene-
ity, we recall a classical result on second-order perturbation
theory of simple eigenvalues, which is used to derive our
second-order approximation of the spectral radius ρ(G).

Proposition 2 [34, Ch. 6]: Given a matrix G in the form
of Eq. (14), if the spectral radius ρ0 = ρ(G0) is a sim-
ple eigenvalue of G0, then the spectral radius of G can be
expressed as

ρ(G) = ρ0 + σρ1 + σ 2ρ2 + O(σ 3). (16)

Fig. 1. Variation of the spectral radius of G with respect to the one for
the homogeneous VNM, r = ρ(G) −ρ0, for different levels of hetero-
geneity σ . The blue solid curves are the analytical predictions, computed
according to the second-order perturbation in Eq. (17); the red circles
are Monte Carlo numerical estimation of the spectral radius of Eq. (8)
over 100 independent realizations of the vector h, generated randomly
such that 1�h = 0 and ||h|| = √

N. In both panels N = 10; in (a) K = 4,
in (b) K = 8.

The perturbation terms are equal to

ρ1 = u�
0 G1u0 and ρ2 = u�

0 G1u1 + u�
0 G2u0, (17)

with u0 = 1√
N−1

vec(R) and

u1 =
N2∑

i=2

v�
i G1u0

ρ0 − λi
vi, (18)

where λ2, . . . , λN2 are the N2 − 1 eigenvalues of matrix G0
different from ρ0, and v2, . . . , vN2 are their corresponding unit-
norm eigenvectors.

Theorem 1: The spectral radius of the matrix G in Eq. (13)
of a VNM with interaction vector a is equal to

ρ(G) = N − 1

KN
+ σ 2 N − 1

K3N
+ O(σ 3). (19)

Proof: We observe that the following equalities hold: i)
vec(R)�G1 = 0, and ii) vec(R)�vec(R diag(h2)R) = N − 1.
From i), we conclude that the first-order perturbation ρ1 =
u�

0 G1u0 = 0, and the first summand of ρ2 in Eq. (17)
u�

0 G1u1 = 0. Using ii), we compute the second summand
in the expression of ρ2 in Eq. (17), which yields the claim.

Remark 1: For σ = 0, the expression in Eq. (19) reduces
to ρ(G) = N−1

KN , as observed in [17]. In the presence of
heterogeneity, the asymptotic convergence factor increases,
hindering mean-square convergence. Specifically, we find that
the increase in the spectral radius of G caused by heterogeneity
is proportional to the square of the standard deviation of the
interaction vector σ , while it decreases as the average number
of interactions increases, being inversely proportional to the
cube of K.

The comparison between our analytical approximation and
numerical computations of the spectral radius is illustrated in
Fig. 1. Our numerical results support the theoretical findings
in Theorem 1, suggesting that the second-order approxima-
tion derived in Eq. (19) provides an accurate estimate of the
spectral radius of the matrix G up to moderate levels of het-
erogeneity σ . The accuracy of the approximation seems to
increase with the average number of interactions K.
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B. Coordination in the Presence of Noise

Here, we put forward a similar perturbation argument on the
matrix G to derive a second-order approximation of the mean-
square deviation δ∞ in Eq. (10), which allows to approximate
the polarization as in Eq. (12). The results of our analysis are
summarized in the following theorem.

Theorem 2: The mean-square deviation δ∞ in Eq. (10) of
the heterogeneous VNM with interaction vector a in Eq. (12)
is equal to

δ∞ = η2 π2

3

KN(N − 1)

N(K − 1) + 1

+ σ 2η2 π2

3

N(N − 1)2

K(N(K − 1) + 1)2
+ O(σ 3). (20)

Proof: We write the term (I ⊗ I − G)−1 in Eq. (10) as a
power series and we expand G using Eq. (14), obtaining

(I ⊗ I − G)−1

= I ⊗ I +
∞∑

n=1

Gn

= I ⊗ I +
∞∑

n=1

Gn
0 + σ

∞∑

n=1

n−1∑

�=0

G�
0G1Gn−�−1

0

+ σ 2
∞∑

n=1

n−1∑

�=0

G�
0G2Gn−�−1

0

+ σ 2
∞∑

n=2

n−2∑

�=0

n−�−2∑

m=0

G�
0G1Gm

0 G1Gn−�−m−2
0 + O(σ 3). (21)

From the expressions of G0, G1, and G2 in Eq. (15), we
observe that G0G1 = G1G0 = G2

1 = 00�. Hence, the third
and the fifth terms in Eq. (21) are equal to 0. We substitute
the remaining terms of Eq. (21) into Eq. (10), obtaining three
contributions to the expression of δ∞, up to the O(σ 3) term.
Specifically, we have two zeroth-order terms and one second-
order term in σ , coming from the first, second, and fourth
summands in Eq. (21), respectively. The first two terms yield
the mean-square deviations for an homogeneous VNM with
K interactions, which is equal to η2 π2

3
KN(N−1)

N(K−1)+1 , as computed
in [17]. Finally, we compute

η2 π2

3
vec(R)�

(
σ 2

∞∑

n=1

n−1∑

�=0

G�
0G2Gn−�−1

0

)
vec(R)

= η2 π2

3
σ 2

∞∑

n=1

n−1∑

�=0

(
N − 1

NK

)n−1

vec(R)�G2vec(R)

= η2 π2

3
σ 2

∞∑

n=1

n

(
N − 1

NK

)n−1
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Remark 2: From Eq. (20), one can compute an approxima-
tion of the polarization in Eq. (12) that is valid for small level

Fig. 2. Variation of the polarization with respect to the homogeneous
VNM, Pol = Pol −Pol 0, where Pol 0 is the polarization of the homoge-
neous VNM, for different levels of heterogeneity σ . The blue solid curves
are the analytical predictions of Pol based on Eq. (12) and Eq. (20),
the red circles are Monte Carlo estimations of Pol from Eq. (11) over
100 independent runs of the nonlinear VNM. Parameters are N = 80,
K = 3, with (a) η = 0.1 and (b) η = 0.3. The interaction vectors a are
constructed for given values of σ such that 1�h = 0, ||h|| = √

N.

of added noise. For σ = 0, this expression reduces to the one
computed by [17] for the homogeneous VNM; for σ > 0, the
polarization decreases, such that the presence of heterogeneity
hinders coordination.

We compare the closed-form expression for the polarization
based on Eq. (12) and Eq. (20), with Monte Carlo estimations
of Eq. (11), computed by numerically simulating the nonlinear
VNM. Simulations are conducted for N = 80 agents, initial-
ized at θi(0) = 0, for i = 1, . . . , N. For each simulation, the
model is run for 5, 000 time-steps and the polarization is com-
puted by averaging the quantity in Eq. (11) over the last 4, 000
steps.

In Fig. 2, we investigate the effect of heterogeneity on the
polarization by comparing the difference with respect to the
heterogeneous VNM. Besides confirming our intuition that
heterogeneity hampers coordination, our results suggest that
the second-order approximation is accurate for moderate levels
of heterogeneity, that is, up to σ ≈ 0.5.

In Fig. 3, we compare the numerical estimation of the
polarization from the simulations and the closed-form approx-
imation, for different levels of the heterogeneity σ , noise η,
and average number of interactions K. Our results suggest
that the closed-form solution is able to accurately capture the
coordination of the heterogeneous VNM up to moderate val-
ues of η ≈ 0.5, after which the nonlinear model reaches the
completely-disordered state that cannot be predicted by a lin-
ear model. The heterogeneity has a secondary role on the
extent of the coordination, due to the fact that dependence
of the mean-square deviation Eq. (20) with σ 2 is moderated
by K(K − 1)2 for N  1.

V. CONCLUSION

In this letter, we investigated the effect of heterogeneity
on the vectorial network model, a stochastic protocol that is
used to examine collective motion of groups of agents. By
linearizing the dynamics about a synchronous state and lever-
aging techniques from stochastic consensus and eigenvalue
perturbation theories, we established closed-form results for
the asymptotic behavior of the model. First, we computed a
second-order approximation for the asymptotic convergence
factor, which governs the mean-square convergence of the
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Fig. 3. Polarization for different values of noise η. We consider N = 80 agents with three different levels of heterogeneity: σ = 0 (green), σ = 0.5
(blue), and σ = 1 (red) and three different average number of interactions (a) K = 3, (b) K = 5, and (c) K = 8. The solid curves are analytical
predictions and circles are Monte Carlo estimations over 100 independent runs of the nonlinear VNM. The interaction vectors a are constructed for
given values of σ such that 1�h = 0, ||h|| = √

N.

model in the absence of noise. Second, we derived an expres-
sion for the polarization of the system, which measures the
level of coordination between the agents.

Our results support the intuition that heterogeneity has a
detrimental effect on coordination, whereby both the conver-
gence rate and the polarization are reduced as heterogeneity
increases. However, the extent of this effect is nonlinearly
moderated by the average number of connections made by
the agents. From a biological point of view, the robustness of
the system to heterogeneity might be a gateway for the emer-
gence of differences in the individual traits of the group that
have been shown to beget advantages to life in groups [24]. In
linking the predictions of the vectorial network model to more
complex models of collective motion, future efforts should
explore the role of state-dependent stochastic dynamics.
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