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  Abstract  

The success of many space missions depends on astronauts’ performance. Yet, prior 

research documented that sensorimotor performance is impaired in microgravity, e.g. 

aimed arm movements are slowed down and are less accurate. Several explanatory 

approaches for this phenomenon have been discussed, such as distorted 

proprioception or stress-related attentional deficits. In the current work, sensorimotor 

performance was investigated during aimed joystick-controlled motions in a 

simulation. The task included rapid as well as fine matching motions. Results of two 

different studies were compared: 1) a study utilising a dual-task paradigm to 

investigate the impact of attentional distraction (N = 19) and 2) a study investigating 

the impact of microgravity during spaceflight (N = 3). In both studies, an overall 

slowing effect was found. However, results diverged when comparing feedforward 

vs. feedback-controlled parts of aiming. Reduced attentional resources mainly 

affected feedforward control, which was reflected in significantly longer response 

times and longer rapid motion times. Microgravity, however, did not affect response 

times at all, but rapid aiming times as well as fine matching times substantially 

increased. These findings provide evidence that impaired attention is not the main 

trigger behind the slowing effect, but rather it is distorted proprioception which 

impairs feedback-controlled motions.         

  Introduction  

Space agencies around the world are planning crewed lunar and Mars missions to be 

realised within the next decade (International Space Exploration Coordination Group, 

2018). Apart from the enormous technological challenges, these human space 

exploration missions would also critically depend on human capabilities and 

performance. It has been shown, however, that adaptation to the adverse space 

environment is challenging - even for astronauts who passed a hard selection and 

training process before starting their mission. Spaceflight has a substantial impact on 

human physiology (e.g. cardiovascular, vestibular and sensorimotor systems), sleep 

and circadian rhythms are disturbed, and psychological stressors such as isolation, 

confinement, high workload, etc. additionally compromise astronauts’ well-being and 

performance (see Kanas & Manzey, 2008 for an overview). 
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Furthermore, many basic functions like spatial orientation, oculomotor control, 

posture and locomotion (see Lackner & DiZio, 2000) as well as mass discrimination 

(Ross et al. 1986; Ross and Reschke, 1982) are affected by microgravity. Prior 

research repeatedly documented that human motor performance is also degraded in 

microgravity (see Bock, 1998; Lackner & DiZio, 2000). Impairments have been found 

across different task paradigms like aiming (e.g. Bock et al., 2001), tracking (e.g. 

Manzey et al., 1993) and force production (e.g. Mierau & Girgenrath, 2010). When 

performing rapid aiming movements in weightlessness, a general slowing-down effect 

was found, i.e. peak accelerations decreased and motion times increased accordingly 

(Berger et al., 1997; Bock et al., 2001; Crevecoeur et al., 2010; Mechtcheriakov et al., 

2002; Newman & Lathan, 1999; Ross, 1991; Sangals et al., 1999). Moreover, 

positional accuracy in tracking tasks decreases (Bock et al., 2003, Manzey et al., 1993, 

1995, 2000) and studies on isometric force production reported less accurate force 

regulation in weightlessness (Mierau, et al., 2008; Mierau & Girgenrath, 2010).  

Several explanatory approaches for the substantial deterioration of basic and 

indispensable sensorimotor skills in microgravity have been proposed. Frequently, 

researchers explain their findings by disturbed proprioception in altered gravity 

conditions (e.g. Bock et al., 1992, 1998; Fisk et al., 1993, Manzey et al., 2000). 

According to this approach, muscle spindle activity which is crucial for 

proprioception is altered by the weightlessness of the body and limbs (e.g. Lackner & 

DiZio, 2000). Consequently, the sensorimotor system is in a state of “sensorimotor 

discordance” (Bock, 1998) and has to adapt to the lack of valid proprioceptive 

feedback. Corrective motor responses would be delayed due to additional information 

processing. The general slowing-down effect for aiming tasks and time-delayed 

correction initiation during tracking (Manzey et al., 2000) support this notion. 

Moreover, weightlessness effects were stronger in dual-task performance compared 

to single-task performance in the early mission phase (Manzey et al., 2000) or during 

parabolic flight (Bock et al., 2003), providing evidence for higher resource demands 

in the initial phase of adaptation to microgravity.  

However, the impaired proprioception approach is not sufficient to explain the 

performance decrement in the early and late phases of the 20-days mission reported 

by Manzey and his colleagues (1995, 2000) during tracking tasks. The performance 

losses in the later phase were explained by prolonged work and the cumulative impact 

of general stressors of the mission. While higher cognitive functions (memory, 

reasoning etc.) are seemingly not impaired by spaceflight, attentional selectivity 

affects performance in weightlessness as revealed in dual-task paradigms (Bock et al., 

2003; Fowler et al., 2008; Manzey et al. 1993, 1995).  

Still, the specific contributions and relevance of both mechanisms to the overall 

microgravity effects on sensorimotor performance are difficult to determine and 

researchers attributed their results either to distorted proprioception (e.g. Bock, 1998), 

cognitive load (e.g. Fowler, 2008) or both processes (e.g. Manzey, 2000). Most studies 

investigating the degradation of sensorimotor performance in space utilised aiming 

(arm movement or device control), arm tracking, or unstable, compensatory tracking 

(joystick controlled) as experimental paradigms. Like any voluntary motion task, 

these tasks require feedforward motion planning as well as feedback-controlled 
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motion sequences, while the relative contribution of both control types is contingent 

on task demands. During rapid, aimed arm movement a major part of the movement 

has to be planned as a pre-programmed forward model that is corrected and updated 

by feedback loops integrating afferent information in the course of motion execution. 

During motor tasks requiring slow and precise closed-loop motions (e.g. tracking) the 

major part of motion control is based on visual and proprioceptive feedback 

(Desmurget & Grafton, 2000). Although optimal motion control relies on feedforward 

as well as feedback processes, they are two distinct mechanisms which are controlled 

by different brain structures. While cortical structures (e.g. primary motor cortex) 

have been identified to be mainly responsible for feedforward processes, subcortical 

structures (e.g. cerebellar regions) are associated with feedback control, as reported 

by Seidler and colleagues (2004), who analysed fMRI recordings during joystick 

controlled aiming tasks. In their study, the activation of these brain regions was 

moderated by task difficulty, i.e. cortical activity was positively correlated with 

increasing target size and subcortical activity was negatively correlated with target 

size.  

Distinguishing these two basic functions of motor control seems a promising approach 

to better understand the mechanisms behind sensorimotor performance losses in 

space. Provided that distorted proprioception is the main trigger of performance 

decrements, then it is obvious that the feedback-controlled parts of motion should be 

mainly affected. On the contrary, a potential attentional deficit should mainly interfere 

with feedforward control. Johansen-Berg and Matthews (2002), for instance, could 

show that attention distraction (counting back in threes as the secondary task) affects 

the activity in the motor cortical areas including the primary motor cortex when 

performing the primary target acquisition task. In another dual-task experiment, 

Taylor and Thoroughman (2007) also found evidence that corrective movements (i.e. 

feedback control) were not affected when performing arm reaching tasks with a 

manipulandum that introduced random perturbations. However, the secondary task 

(auditory discrimination task) did interfere with adjustments of the feedforward 

model.   

Based on this evidence and these considerations we designed an experimental aiming 

task, allowing a discrimination of feedforward and feedback controlled motor 

performance. In the present work, this experimental paradigm is pre-tested under 

terrestrial conditions to identify the impact of attentional distraction on performance 

during rapid, open-loop aiming and subsequent slow, terminal corrective adjustments. 

In a next step, the same aiming task is performed by cosmonauts in terrestrial and 

mission sessions on-board the ISS (2 weeks in space) to determine the effects of 

spaceflight.  

An overall increase of aiming times is expected when attention is distracted as well as 

during spaceflight. More specifically, however, it is hypothesised that: 

H1: Feedforward control is mainly affected by attentional distraction while 

feedback control is mainly affected by distorted proprioception during spaceflight. 

Thus, performance losses due to attentional deficits should primarily result in 

increased reaction times and rapid motion times (Fowler et al., 2000, Fowler et al., 
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2008). Performance losses due to proprioceptive deficits should be evident for fine 

motion times as reported by Fisk and colleagues (1993). 

  Methods  

  Study 1: The Effects of Attentional Distraction 

Sample. Nineteen subjects (5 females, 14 males; M = 24.6 (2.5) years of age) 

voluntarily participated in the study after having signed an informed consent 

document.   

Apparatus. Participants were seated at a table, in front of a notebook (Lenovo T61P-

6457) with a 15.4” TFT display showing the experimental GUI. The space qualified 

Joystick “Kontur-2” developed at the German Aerospace Center (Riecke et al., 2016, 

workspace of ±20° in each axis, angular resolution of 3.18°·10-3, see Fig. 1, left), was 

connected to the computer. For the present experiment, an upward motion scaling of 

1:2 was implemented, i.e. the required experimental workspace was fully covered 

with joystick deflections of ±10° for both axes. Data were recorded with a sampling 

rate of 100 Hz.  

Experimental Tasks. 

  

Figure 1. Joystick “Kontur-2” (left); Experimental GUI with cursor at starting position and 

the four different target positions (right).  

Primary Aiming Task: The experimental GUI showed black crosshairs on a grey 

background (see Fig. 1, right). The aiming trials were started by moving the black 

cursor exactly to the crosshair’s center. Upon reaching the center, the cursor turned 

green and a countdown was displayed on the screen. After holding the position for 2s 

the cursor turned orange and a green target ring was displayed at one of the four 

different target positions (see Fig. 1, right). The cursor had to be brought to the center 

of the target ring as quickly as possible and the final position had to be held for 0.5 

sec. Subsequently, the next trial was started and subjects moved back to the centre of 

the crosshairs. Please note that the order of the four target positions was randomly 

chosen to avoid anticipatory movements.  

Secondary Counting Task: During the aiming tasks, subjects had to count forwards in 

intervals of seven starting with 12 up to 103 and then backwards again (12-19-26-33-

…-103-96-89-82-….12). An acoustic signal (metronome sound) prompted the 

subjects to speak the next number aloud every 4 seconds.  
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Experimental Design. A within-subject design was utilised with all subjects 

completing a single-task condition (aiming task only) and dual-task condition (aiming 

and counting) while the order of both conditions was counter-balanced across 

subjects.    

Procedure. Chair height was individually adjusted by the participants so that their 

right arm rested comfortably on the joystick’s padded arm support. For reasons of 

standardisation, subjects also attached a strap around the right elbow, ensuring that 

arm orientation and position was comparable across participants but still allowing free 

motion in the required range of motion. Participants read the instructions that were 

displayed on the monitor. The two experimental conditions (single vs dual-task) were 

presented in a sequence, separated by a short break of 2–3 min. In each condition, two 

aiming trials were performed for training, and then the experimental trials were 

started. After having completed these trials, subjects were asked to rate their perceived 

workload (“Please rate your overall workload during the last task”, adapted from the 

OWS scale, Vidulich & Tsang, 1987; 20-point bipolar scale ranging from “very low” 

to “very high”).  

  Study 2: The Effects of Spaceflight 

Sample. The subjects were three male cosmonauts (42, 45, and 53 yrs.; two of them 

with space mission experience).  

Apparatus. The same joystick was installed on board of the Russian Zvezda service 

module of the ISS (see Figure 2). Body stabilisation was realised by rails on the 

module “bottom” and an additional grip for the left hand. The experimental GUI 

window was displayed on the 15.4” TFT display of the notebook (same as in Study 

1).  

 

Figure 2. Cosmonaut Andrei Borisenko at the experimental workstation on board the ISS. 
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Experimental Design and Procedure. All of the three cosmonauts performed the same 

aiming tasks as in Study 1 (without a secondary task) during a pre-mission training 

session three months before their mission launch, on-board the ISS (exactly two weeks 

after Soyuz docking) and during a post-mission session, two weeks after having 

finished their half-year space missions. The procedure (instruction, experimental 

workflow and questionnaire) was similar to the procedure in Study 1.  

Data analysis. Reaction times, rapid motion times and fine motion times were 

calculated for each aiming trial. Reaction time was defined as the time from task start 

until exceeding a pre-defined threshold velocity (in contrast to the positional threshold 

approach the authors utilised in a prior study; Weber et al., 2018). Rapid motion time 

was the time from exceeding the threshold velocity until the center of the cursor 

touched the green target ring. Fine motion time was the remaining time until target 

and cursor centers were precisely matched and constantly held for 0.5 sec. These 

temporal variables were averaged across all of the four targets. For Study 1 the single 

and dual-task conditions were compared using paired t-tests. Additionally, the effect 

sizes were calculated using Hedges’ g. In Study 2, only effect sizes were determined 

due to the small sample size. Results of both terrestrial conditions (pre- and post-

mission) were averaged and utilised as a comparison baseline for mission session. 

  Results   

Study 1. Performing paired t-tests on the average reaction times and rapid motion 

times revealed a significant increase in the dual-task compared to the single task 

condition (for both conditions, p < .05; see Table 1). A large effect was evident for 

reaction time (g =.82) and a moderate effect for rapid motion time (g =.68). No 

significant difference was found for fine motion times. Finally, the subjective 

workload rating was significantly increased in the dual-task condition (p <.001).  

The number of counting errors during the secondary task and the reaction as well as 

rapid motion times were positively correlated (rRT(19) = .50; p <.05 and rRMT(19) = 

.51; p <.05). Seemingly, no task switching occurred, but both primary and secondary 

task were influenced simultaneously. 

Study 2. A quite different result pattern was found in Study 2, comparing terrestrial 

conditions (1g) and microgravity (µg) conditions during spaceflight. When comparing 

both conditions, large effect sizes were evident for rapid motion (g =.80) and fine 

motion times (g =1.08). Regarding workload ratings, a small effect of microgravity (g 

=.27) was found, i.e. workload increased marginally.    
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Table 1: Performance Measures (M (SD), paired t-tests and Hedges' g for Study 1 and 2 

Study 1  (n =19) Terrestrial Dual-Task Experiment 

Measures Single 

Task 

Dual  

Task 

Sign. 

(t-test) 

Effect 

Size g 

Reaction Time           [s] 0.139 (0.064) 0.303 (0.271)  p < .05 0.82 

Rapid Motion Time   [s] 0.545 (0.167) 1.242 (1.419) p < .05 0.68 

Fine Motion Time     [s] 2.467 (0.969) 2.164 (1.139) n.s. 0.28 

Overall Workload     [1-20] 6.3 (4.0) 11.5 (4.1) p < .001 1.27 

Study 2  (n = 3) Space Flight Experiment 

Measures 1g µg Effect 

Size g 

Reaction Time           [s] 0.220 (0.077) 0.216 (0.010) 0.06 

Rapid Motion Time   [s] 0.394 (0.046) 0.503 (0.148) 0.80 

Fine Motion Time     [s] 2.351 (0.232) 3.020 (0.663) 1.08 

Overall Workload     [1-20] 4.3 (2.08) 5.0 (2.00) 0.27 

 

  Discussion  

The slowing of aimed arm movements in microgravity has been repeatedly 

documented by researchers since the early 1990s. However, this phenomenon 

remained enigmatic due to the substantially altered working conditions of spaceflight 

and multiple potential mechanisms triggering such sensorimotor performance losses.  

In prior research, two explanations for the slowing effect of microgravity have been 

discussed: distorted proprioception due to the lack of a gravitational force and 

attentional selectivity due to general mission-related workload. In the current paper, a 

simple joystick-controlled aiming task was utilised to explore the effects of reduced 

attentional resources and spaceflight on feedforward and feedback-controlled parts of 

motion.  

It was hypothesised that decreased attentional capacity would mainly affect 

feedforward control and deficient proprioception would mainly affect feedback-

controlled motions. Indeed, two substantially divergent result patterns are evident for 

both studies: When performing a concurrent counting task, motion planning and the 

early feedforward controlled aiming motion are significantly disturbed as reflected by 

increased reaction and rapid motion times compared to the single-task condition. No 

significant effect emerges for the feedback-controlled fine motion section. In contrast, 

the cosmonauts did not show any additional delay of reaction times in microgravity 

compared to the terrestrial baseline condition, but rapid motion and fine motion time 

increase. Note that the overall effect pattern is diametrically opposed. Reducing 

attentional resources has the strongest effect on motion initialisation, but disappears 

towards the end of motion. Regarding the impact of microgravity, the inverse pattern 

emerges: the effect increases the more feedback is required for motion plan 

corrections. Altogether, this confirms the formulated hypothesis and provides 

evidence that – in this case – a proprioceptive deficit is the main trigger behind the 

slowing effect of microgravity. The subjective ratings additionally provide further 

evidence that, in the present study, increased workload is not a plausible explanation 

for slowed aiming motions in microgravity. 
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Although a stronger impact of attentional distraction was expected for the rapid 

motion times, a similar slowing effect occurred during spaceflight. This result might 

be explained by the fact that the rapid, open-loop arm motion is not exclusively 

executed on basis of pre-planned forward models, but also integrates feedback during 

the ongoing motion. In line with this notion, Bock et al. (2001) also reported no effect 

of microgravity on aimed arm motions in the initial 80ms, but motions increasingly 

slowed down towards the end positions. Indeed, the minimal delay of proprioceptive 

feedback loops ranges between 80 and 100ms. Thus, internal feedback loops refine 

the initial motion plan even during rapid arm motions (Seidler et al., 2004).  

Additional analyses of the aiming trajectories recorded in Study 2 also revealed that 

cosmonauts show very irregular and unstable motion paths when moving their arm in 

the sagittal plane (i.e. vertical motion axis in the experimental GUI) in microgravity. 

The occurrence of this direction-specific effect (anisotropy) might also be an indicator 

of a proprioceptive deficit as documented in studies investigating aiming motions of 

patients without proprioception caused by large-fiber sensory neuropathy (e.g. Ghez 

et al., 1990).   

One major limitation of the current study is that no dual-task condition was 

implemented in Study 2, which actually was an integral part of a series of experiments 

pursuing a different research agenda. Thus, the question how attentional and 

proprioceptive processes interact during spaceflight cannot be answered with the 

present work. It is well conceivable, for instance, that a mismatch of internal motion 

models and afferent information also leads to increased attention demands as reported 

by Ingram and colleagues (2000).  

The comparison of two studies investigating attention distraction and microgravity 

effects on basic aiming tasks provides evidence that distorted proprioception seems to 

be the main mechanism underlying the slowing of voluntary aiming motions at least 

in the early phase of a space mission (two weeks in space). The question still is 

whether the terrestrial performance can be reached again after having completed the 

initial adaptation to the space environment. A recent study of the authors (Weber et 

al., 2019) investigating the effects of spaceflight on performance during a real 

telerobotic aiming task, provides evidence that performance is degraded even after six 

weeks of space travel, seemingly due to an altered motion strategy. For human space 

missions to be successful it is imperative to identify effective measures to attenuate 

these performance losses, e.g. by providing haptic assistance as part of the human-

machine interface, or intention-detection concepts.    
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  Abstract 

The present study aims to investigate whether spatial representation bias can be used 

to assess the trainee’s air skills. Spatial representations contribute in large part to the 

development of situational awareness (Endsley, 1996), making it a key factor in 

aviation performance and safety. Blättler et al (2011) have shown that a memory 

displacement of spatial representation is larger among pilots than novices. The 

purpose of this study was to provide evidence that spatial representation bias can 

discriminate novice from experienced pilots. Furthermore, several studies showed that 

not all the processes underlying displacement are automatic (Hayes & Freyd, 2002). 

The second objective of this study was to test whether experts share the same 

sensitivity to divided attention as novices in a task measuring displacement, since the 

expert’s automation makes processes specific to his activities more resistant to the 

effect of the dual task (Froger, Blättler, Dubois, Camachon, & Bonnardel, 2018; 

Strobach, Frensch & Schubert, 2008). This study was conducted to explore these 

questions in an experiment with 19 experienced glider pilots from the French Air 

Force and 25 novices. Participants were shown dynamic real-world landing scenes in 

ego-motion (Thornton & Hayes, 2004) during a representational momentum (RM) 

task. Gaze fixations data were also recorded to explore their potential relationship 

with spatial memory bias. This study provides evidence that spatial representation bias 

can discriminate novices from experienced pilots who only have a few hours of 

training. 

Introduction 

Spatial representation is crucial when flying an aircraft. Situational awareness, which 

includes anticipation and is based on spatial representation, is a key element of air 

safety. However, it is difficult to objectively evaluate the evolution of performance in 

spatial representation during student training. The objective of this study was to test 

whether a process underlying spatial representation was sensitive enough to be an 

appropriate measurement and analysis tool. The experiment performed here evaluated 

the spatial representation of natural glider landing scenes by experienced pilots and 

novices. 
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Understanding spatial representation is a major challenge since it is the result of the 

influence of multiple factors. Its understanding is essential for actors in the aeronautics 

world (industries, training schools, etc.) to design both human-system interaction 

interfaces and ad hoc training. It must de facto be studied through a rigorous protocol. 

A special case for studying spatial representation is that of the processes that underlie 

"Representational Momentum" (RM) (Freyd & Finke, 1984). Because of its 

properties, described below, this work is part of understanding how the cognitive 

system succeeds in learning to cope with complex dynamic visual situations. 

Representational momentum refers to a memory displacement for the final position 

of a previously viewed moving target in the direction of the target’s motion. Finke, 

Freyd and Shyi (1986) suggested that the properties of such a memory displacement 

could help observers anticipate the future positions of moving objects.  In the rest of 

the article, the term "displacement" will be used to refer to a displacement of the 

spatial position in memory of a moving object or scene.  

The variables that influence the direction and amplitude of displacement act in a 

similar way to the physical principles of movement. That is why studying 

displacement is a way of studying how the physical principles of movement are 

incorporated into mental representations. One of the experimental protocols (figure 1) 

conventionally used to show a displacement is that of Hubbard and Bharucha (1988). 

The authors presented participants with a target that moved continuously and linearly 

(to the left or right and up or down). After a few moments of animation, the target 

disappeared unexpectedly. As soon as the target disappeared, participants clicked on 

the place where they thought the target had disappeared. The results showed that 

participants recalled the position of the target, at the time of its disappearance, not at 

its exact location, but a little further in the direction of the target's trajectory. They 

suggested that, like a moving object that does not immediately stop but continues 

along its path under its own momentum, spatial representation does the same and 

shifts the last perceived spatial position in the direction of the motion.  

 

Figure 1. Material and results adapted from Hubbard & Bharucha (1988) 
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The distance between the actual disappearance position and the one recalled by the 

participants can vary in magnitude depending, for example, on the speed of a target's 

movement. The higher the speed, the greater the magnitude of the displacement (Freyd 

& Finke, 1985; Hubbard & Bharucha, 1988; de sá Teixeira, Hecht, & Oliveira, 2013). 

The analogies between physical motion and displacement are also spatio-temporal in 

nature. Freyd and Johnson (1987) varied the time between the disappearance of a 

moving target and the latency with which the participant gave his response (from 

10ms to 900ms). The results obtained showed an increase in displacement magnitude 

with the increase in encoding latency. This corresponds to what would happen 

physically, as the movement of an object lasts for a few moments if nothing prevents 

it. But it should be noted that when latency exceeded a certain threshold, in this case 

300 ms, this effect decreased as latency increased. This decrease after 300 ms suggests 

that the evolution of the displacement is similar to the movement that an object would 

actually have, namely stopping of movement over time. This similarity between real 

movement and displacement makes the latter a dynamic representation. Taken 

together, these results suggest that displacement is based on a spatio-temporal 

coherence similar to that of physical principles. Overall, displacement is described in 

terms of dynamic representations and thus, by analogy to real-world dynamics, 

Hubbard (2010) conventionalized it as the “momentum metaphor”, suggesting as said 

earlier that the principles of momentum are indeed incorporated into mental 

representation. 

The plurality of analogies from the physical world has motivated the prolific 

development of research protocols and since the 1980s, a significant number of 

variables that modulate displacement have been investigated (see Hubbard, 2005b, 

2018 for reviews). While some variables foster the development of a displacement in 

the direction of perceived movement e.g., speed (Freyd & Finke, 1985; Hubbard & 

Bharucha, 1988; de sá Teixeira, Hecht, & Oliveira, 2013), downward motion 

(Hubbard, 1990; Hubbard & Bharucha, 1988), and high contrast (Hubbard & Ruppel, 

2014), others foster a displacement in another direction e.g., representational gravity 

(de sá Teixeira, 2014; de sá Teixeira & Hecht, 2014; Hubbard, 1995b, 2005b; Motes, 

Hubbard, Courtney, & Rypma, 2008), reduce the magnitude of the displacement e.g., 

representational friction (Hubbard, 1995a, 1995b), or promote a displacement in the 

opposite direction of movement e.g., surrounding context (Hubbard, 1993), and 

memory averaging (see for example Hubbard, 1996). Thus, outside the laboratory, 

there is a set of different variables, with diverse, congruent or opposite influences, 

which are co-articulated and induce a result which is the spatial representation of a 

scene. For example, Hubbard and Bharucha (1988) showed that the position of a target 

moving in a straight line is recalled further in the direction of movement but also 

lower. Many replicates (Hubbard, 1990, 1995b, 1997, 2001) have determined that this 

result of a combination of a forward displacement effect and the effect of implicit 

knowledge of gravity (representational gravity) results in a downward displacement. 

In this vein, Hubbard (1995a; 2010) proposed a model that reflects this multiplicity of 

influences. In his "vector addition" model, each type of influence is matched by a 

vector that codes for the direction and magnitude of displacement. "Such vectors can 

be broadly construed as corresponding to magnitudes and directions of activation 

within a network architecture that preserve functional mapping between physical 

space and represented space" (Hubbard, 2010, p. 352). While many studies have 
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massively contributed to determining low-level influences (target shape, surrounding 

context, etc.), more recent studies show that displacement is also modulated by 

cognitive factors such as the expertise of observers and the allocation of attention 

resources. 

Blättler, Ferrari, Didierjean and Marmèche (2011) showed an effect of expertise on 

displacement in the aeronautical context. In their study the authors adjusted the 

Thornton and Hayes (2004) protocol. Dynamic simulated aircraft landing scenes were 

presented to participants who were either total novices to aeronautics or expert pilots 

(over 3000 hours of flight experience). The scenes were interrupted by the display of 

a black screen lasting 125 ms and then resumed in one of three conditions: a shift 

forward (with respect to the aircraft’s direction of motion), a shift backward (in the 

direction opposite to the plane’s motion), or no shift (i.e., at exactly the same point as 

before the interruption: the same-resumption condition). In the shift conditions, the 

size of the forward and backward shifts was manipulated (125 ms, 250 ms, 375 ms, 

and 500 ms). Participants had to compare the last image seen before the cut to the first 

image seen after the cut and decide whether the scene had shifted backward or 

forward. The results showed that only the expert pilots produced a forward 

displacement, while among the novices no displacement (either forward or backward) 

was obtained. After successive studies increasing the accuracy of the measurement, a 

significant displacement was obtained in the novices. The magnitude of the 

displacement was so short in the novices that it could not be observed with the 

accuracy measurement used to detect a displacement among the experts in the first 

study. This expertise effect resulted in an increase in the amplitude of the displacement 

in the direction of the perceived movement.  

Similar results have been obtained in the automobile context (Blättler et al., 2010; 

Blättler et al., 2012, 2013; Didierjean, Ferrari & Blättler, 2014) and in the sports 

context (Hiroki, Mori, Ikudome, Unenaka, & Imanaka, 2014; Jin et al., 2017; Chen, 

Belleri, Cesari, 2019; Gorman, 2015; Anderson, Gottwald, & Lawrence, 2019). Thus, 

the effect of expertise seems robust. However, the way in which expertise is 

manifested is not clearly established. Furthemore, the literature (see for review 

Gegentfurtner, Lehtinen & Säljö, 2011; Peißl, Wickens & Baruah, 2018; Reingold, 

Charness, Pomplun & Stampe, 2001; Ziv, 2016) show that systematic eye movement 

differences between experts and novices occur. Therefore, in accordance with the first 

objective of the current study, eye tracking data were collected, as part of an 

exploratory attempt to gain insight into the manifestation of the experience in the 

displacement. 

Another way in which the effect of expertise could manifest itself in the processes 

underlying the displacement is through the effect of automation of cognitive 

procedures. Hayes and Freyd (2002) showed that not all the processes underlying 

displacement are automatic (see also, Joordens, Spalek, Ramzy & Duijn, 2004). 

However, since the constitutive process of expertise development is automation 

(Logan, 1988), it is conceivable that the processes underlying the displacement if it 

shares the same property may gradually become automatic. Thus, the more 

experienced an individual is, the more automated specific processes of his activity are. 

This automation makes it more resistant to the effect of the dual task (Froger, Blättler, 
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Dubois, Camachon, & Bonnardel, 2018; Strobach, Frensch & Schubert, 2008). 

Experiments on divided attention (Hayes & Freyd, 2002; Joordens et al., 2004) show 

an increase in the amplitude of forward displacement when attention is divided during 

perception of the moving target. If the processes underlying displacement share the 

same properties as those associated with automation, the displacement of experienced 

individuals should be less sensitive to the dual task effect than that of novices. The 

second aim of this study was therefore to test whether experts share the same 

sensitivity to divided attention as novices in a task measuring displacement.  

In summary, the first purpose of this experiment was to determine whether 

displacement can be an index that would be sensitive enough to assess the progress of 

student pilots. The assumption is that experienced pilots will produce a greater 

displacement in the direction of movement than novices. Complementary to this goal, 

the eye tracking was used to explore the link between this displacement and gaze 

fixations of the experienced pilots. The second objective was to evaluate whether the 

processes underlying the displacement are sensitive to the automation process 

conventionally observed during the development of expertise. The hypothesis is that 

experienced pilots will be less sensitive than novices to a disturbance caused by a dual 

task. 

  Method 

  Participants 

Forty-four participants were recruited for the study, drawn from two distinct skill 

levels:  an experienced glider pilot group (n = 19) with 78.16 flying hours on average 

(SD = 177) and an average age of 23 years (SD = 5), and a second experimental group 

(n = 25) composed entirely of novices (Mage = 27 years, SD = 8). All participated were 

volunteers, had normal or corrected vision and were naive to the specific purpose of 

the study. 

  Material 

Following Blättler et al. (2011), 10 video sequences (figure 2) inside a Centrair 

Marianne C201B glider were used (24 frames/s). Each landing scene was filmed from 

the pilot's perspective (i.e., first-person view, with a small part of the cockpit visible 

and no view of the instruments). To ensure that the inclination, angle and approach 

speed were the same for all scenes or to ensure that all approaches were consistent 

compared to an optimal approach, an instructor was present on all flights. 

 

Figure 2. Scene example with, the left to the right: -250 ms. 0 ms and +250 ms condition. 
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The speed chosen for the landing was a standard speed for a glider (i.e., the distance 

a glider travels in 125 ms is about 3.125 meters at a speed of 90 km/h - 87.1 km/h 

without wind for an optimal run). The test stimuli were displayed on a Dell Precision 

7710 laptop computer (17.3 in. screen, refreshment 60 Hz, resolution 1920 x 1080). 

The participants were positioned 60 cm from the screen. Each scene (all of which had 

a different landing scenario) was used to make nine videos. Each of these nine videos 

was followed by a perceptual interruption (interstimulus interval, ISI) lasting 250 ms. 

After the cut, the trial resumed in one of nine conditions (Figure 3) that differed in the 

magnitude of the shift of the image (-250 ms, -187 ms, -125 ms, -62 ms, 0 ms, +62 

ms, +125 ms, +187 ms, +250 ms). There was a total of 90 different videos (10 scenes 

x 9 shifts = 90). 

 

Figure 3. Landing scene and conditions in accordance with Blättler et al., (2011). 

Eye position data were captured by an eye-tracker Tobii Pro X3 with a sampling rate 

of 120 Hz. The analyses used to examine the data were based on static exploratory 

areas to collect information on participants' eye movements and fixations. 

  Procedure 

Each trial (i.e., video stimuli) was displayed on the computer monitor for 3 seconds, 

followed by the 250 ms ISI. After the perceptual interruption, the trial was resumed 

with an image from one of the nine conditions. In the same-resumption condition (i.e., 

“no shift condition”), the video started up at exactly the same point as before the cut 

(a comparison between the two images shows that they are identical).  

In the forward-shift condition, the trial started after a forward shift of +62 ms, +125 

ms, +187 ms, or +250 ms. In the backward-shift condition, the trial resumed with an 

image corresponding to -62 ms, -125 ms, -187 ms, or -250 ms. From the moment the 

test started (i.e., when the image appeared) the participant had 15 seconds to respond. 

If he answered, or if the 15 seconds had elapsed, a black fixation cross on a white 

screen appeared for 2 seconds, followed by a new trial (Figure 4). 
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Figure 4. Material (top) and procedure (bottom). The video began with 3 s of a landing scene. 

Then a cut occurred with an interstimulus interval (ISI) of 250 ms. After the cut, the video 

resumed with a backward shift (upper left: backward shift of 250 ms), no shif (upper middle), 

or a forward shift (upper right: forward shift of 250 ms). 

The experiment was conducted in two successive phases; a task familiarization phase, 

followed by the experimental phase. Before the familiarization phase, the 

experimenter gave the participants the following instructions. 

  In the full attention condition:  

Participants had to compare the last image seen before the cut to the first image seen 

after the cut and decide whether the scene had shifted backward or forward. In line 

with previous studies, note that no information about the existence of same 

resumptions was given to the participants. Indeed, the PSE’s measure is showing the 

point of maximal uncertainty, in this particular design, if the possibility of same 

resumption is not introduced to the participants. That way participants must answer 

according to their representations and not according to their knowledge of possible 

answers. After reading the instructions, the participants became familiar with the task 

by completing 14 practice trials (7 in the divided attention condition, 7 in the full 

attention condition) on two scenes that were not used in the experimental phase. Then 

the experimental phase began. In this phase, 10 scenes were used, each giving nine 

resumption conditions. This made 90 trials (10 * 9), which were presented in a random 

order to all participants. 
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  In the divided attention condition:  

Participants performed the primary task as described in the first condition while 

simultaneously listening via headphones to an auditory recording of a continuous 

stream of four randomized individually presented digits during each landing scene. 

They were instructed to monitor this recording for the occurrence of even digits (2, 4, 

6 and/or 8), and to mentally keep track of the number of times that such runs had 

occurred to recall it. It should be noted that the presentations of the one to four even 

digit runs were not linked to the visual presentation of stimuli in any systematic way. 

This test condition showed the same clips as those displayed in the full attention 

condition. The clips were presented in a random order. 

  Results 

An analysis of RM magnitude was used to assess the magnitude of shifts and to 

compute the point of subjective equality (PSE) for each participant. This point is the 

theoretical value of the stimulus that the participant considers to be subjectively equal 

to the standard. It indicates the point of maximum uncertainty. This measure was 

computed by fitting the distributions of the percentages of each participant. Each PSE 

was calculated from this curve by taking all the responses of that participant into 

account. A positive PSE (i.e., significantly above zero) indicated a forward 

displacement (FD). A negative PSE (i.e., significantly below zero) indicated a 

backward displacement (BD) (see Figure 5 for the PSE mean by group). 

Table 1. PSE descriptive data. Full attention condition (FA); Divided attention (DA). 

Descriptive Novices FA Novices DA Pilots FA Pilots DA 

N 

Mean 

SD 

25 

-34.40 

52.62 

25 

-59.36 

77.05 

19 

-16.68 

44.28 

19 

3.342 

72.03 

An analysis of variance (ANOVA) was conducted with experience as a between-

groups factor (novices vs experienced pilots) and attention as a within-group factor 

(full attention vs divided attention). The experience factor was significant, F(1,42) = 

6.133, MSE = 34911, p < .05. Novices’ mean PSE was significantly lower than that 

of the experienced glider pilots. The attention effect was not significant, F(1, 42) = 

0.056, MSE = 131.6, p > .1. The interaction between experience and attention was 

significant, F(1, 42) = 4.658, MSE = 10925.7, p < .05.  

Hence, subsequent t-test comparisons were made. The analyses showed that the means 

of experienced glider pilots in FA, t(18)=-1.642, p =.118 and DA, t(18)=0.202, p=.842 

were not significantly different from zero, while they were significantly different from 

zero for novices in both, FA, t(24) = -3.269, p = .003, and in DA, t(24)=-3.852,p 

<.001. Moreover, while there was no significant difference between FA and DA for 

experienced glider pilots, novices’ mean PSE in FA was significantly larger than the 

novices’ mean PSE in DA, t(42)=2.029,p =.027. Hence, the pattern of the interaction 

in Figure 5 demonstrates that backward displacement was larger for novices in DA 

than in FA. Conversely, there were no backward displacement in DA or FA for 

experienced pilots. Therefore, the interaction shows that experience modulates the 

effect of attention allocation in the displacement process. Furthermore, in both FA and 
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DA, the experienced pilots’ mean PSE was significantly superior to the novices’ mean 

PSE ,t(42)=1.795, p=.045 and t(42)=3.559, p =.001, respectively. 

 

Figure 5. PSE mean in Full Attention (FA) and Divided Attention (DA) for each experience 

group (Novice vs Experienced pilot). 

To assess the validity of the divided attention condition, the average success rate of 

participants in the dual task was measured. The average success rate of participants in 

the dual task was 93.55%. The mean success rate was 94.60% (SD =3.75) for the 

experienced glider pilots and 92.67% (SD=6.75) for the novices. The experienced 

pilot’s mean PSE was significantly inferior to one hundred, t(9)=4.557, p<.01. The 

novices’ success rate was also significantly inferior to one hundred, t(11)=-3.765, 

p<.01. The experienced pilots’ mean success rate was not significantly superior to the 

novices’ mean success rate, t(20)= -0.798, p =.223. The results did not show any 

ceiling effect. 

  Eye fixation data 

Eye tracking data were recorded for twenty-two of the forty-four participants: 10 in 

the experienced glider pilot group with 125.8 flying hours on average (SD = 238) and 

an average age of 24 years (SD = 6.5), and 12 in the experimental group of novices 

(Mage = 27 years, SD = 6.5). We computed fixation duration in seconds on two main 

areas of interest; the upper part and the lower part of the screen. 

Expert pilots (French air force instructors) on the one hand tend to describe their visual 

behaviour as having a tendency to look as far as possible along the runway or beyond 

when flying. Secondly, the instruction of students follows this rule which has been 

established on the basis of the experience of these same instructors. As no data were 

available, we decided to explore this subjectively recalled behaviour by separating the 

screen during the experiment into these two main areas. The software used and the 

eye tracking device made it possible to monitor the time of fixation of the gazes in 

these areas. Thus, the scenes were divided into two equal areas of interest, (1) the 
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“upper part” (0x,0y; 1920x, 540y) and (2) the “lower part” (0x,540y; 1920x,1080y). 

The analyses were based on the average fixation duration in seconds. As a way to 

explore the link between information-gathering strategy and forward displacement it 

was decided to use correlation. Our assumptions include only experienced glider 

pilots because novices did not recall any flight experience, and therefore should not 

be affected by the type of gaze behaviour they employ. 

Table 2. Eye fixations Descriptive data. Full attention condition (FA); Divided attention (DA). 

Descriptive data 

Upper-part of the 

screen (s) 

Novices FA Novices DA Pilots FA Pilots DA 

N 

Mean 

Std. Deviation 

 

12 

0.358 

0.257 

12 

0.331 

0.393 

10 

0.426 

0.382 

10 

0.368 

0.379 

Descriptive data 

Lower-part of the 

screen (s) 

Novices FA Novices DA Pilots FA Pilots DA 

N 

Mean 

Std. Deviation 

12 

1.504 

0.416 

12 

1.53 

0.456 

10 

1.658 

0.496 

10 

1.743 

0.487 

 

Correlation analysis full attention (FA) trial block:  

Experienced pilot’s fixation data for the upper part were positively correlated to PSE,  

rs = 0.697, df=9, p =.016. Meaning that when pilots were looking at the upper part 

they recorded higher PSE score. Also, fixations on the upper part of the screen were 

positively correlated with the number of flying hours, r = 0.568, df = 9, p = 0.043. 

This measurement shows that pilots with the most flying experience were those who 

were looking at the upper part of the screen the most. 

Experienced pilot’s fixation data for the lower part were negatively correlated to PSE, 

rs = -0.564, df=9,p = 0.048. This indicates that when pilots were looking at the lower 

part they recorded lower PSE score. Also, fixations on the lower part of the screen 

were negatively correlated with the number of flying hours, r=-0.576, df=9, p = 0.041. 

This measure shows that pilots with less flying experience were those who were 

looking at the lower part of the screen the most. 

Correlation analysis divided attention (DA) trial block:  

No correlation in divided attention was reported, either among pilots or novices. No 

correlation between the number of flying hours and eye fixations was found.  
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  Discussion 

The displacement of the spatial representation of experienced pilots and novices, 

whose attention was divided, was evaluated for real dynamic scenes of glider landing. 

The first objective was to assess whether this protocol is sufficiently accurate to be 

used as a tool to assess the evolution of student pilots’ skills as well as to explore the 

relationship between experienced pilot’s visual features and the spatial memory bias. 

The second objective was to evaluate whether the processes underlying the 

displacement are sensitive to the automation process conventionally observed during 

the development of expertise. 

Our findings are in line with the literature (Blättler et al., 2010; Blättler et al., 2012, 

2013; Didierjean et al., 2014; Hiroki et al., 2014; Jin et al., 2017; Chen et al., 2019; 

Gorman, 2015; Anderson et al., 2019), indicating that there is an experience effect 

within the displacement process, here for natural dynamic glider landing scenes. It 

was found that novices have a significantly greater backward displacement than glider 

pilots even though, on average, the pilots only have 78 flight hours compare to 3000 

hours for the expert participants of Blättler et al. (2011). These results are consistent 

with the possibility of using such a protocol to evaluate the evolution of student pilots’ 

skills during their training. However, the fact that no group has any forward 

displacement should put this interpretation into perspective. According to Hubbard's 

(2010) vector addition model, it can be concluded that the device used here includes 

a "backward" factor that influences all groups. Thus, future studies will have to 

determine what this influence is in order to control it. 

The results obtained when attention is divided are in line with those of Gorman et al. 

(2018). Experienced pilots did not show sensitivity to the division of attention on 

displacement, while for novices the division of attention acted as a "backward" 

influence. It is currently impossible to conclude on the automation of the processes 

underlying spatial representation, but in this particular situation, it appears that there 

is an automation process that induces a reduction in the "backward" shift effect among 

experienced pilots, even if it is not yet highlighted. In these terms, the use of this dual-

task method, which modulates the direction and amplitude of the displacement, is an 

additional tool for evaluating performance evolution of student pilots during their 

training.  

The results obtained with gaze fixations present a link between gaze fixations and 

displacement in individuals who are familiar with the scene and are free to explore it 

visually when their attention is not divided. These results explore a gap between the 

research about the expert’s ocular behaviour and the expert’s anticipation, whereas 

Gorman's study (2018) suggests that differences in displacement of spatial 

representation are unlikely to be related to differences in visual behaviours. Second, 

these data show an effect of the division of attention among experienced pilots. This 

effect might point to a sensitivity of experienced pilots to the division of attention that 

can be mapped into measures other than displacement. Further studies exploring more 

directly the link between a particular position in the scene and spatial memory bias 

should be made before eye tracking data might be used as a complementary tool to 

evaluate the evolution of the performance of student pilots during their training. 
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In conclusion, this study contributes to a better understanding of spatial representation 

in aviation and of pilots’ visual interaction with a real-world environment. Our results 

have confirmed that trainees can be evaluated with the use of displacement 

measurement. Since gaze fixations also proved useful as a complementary index of 

pilots' anticipatory behaviours and experience, the use of eye tracking technology in 

addition to other data recording might assist in the comprehension and application of 

better training for situational awareness. Finally, the use of this evaluation 

methodology is expected to be useful in reducing the cost of training. Indeed, it should 

provide a way to assess the efficiency of simulation training (by evaluating 

anticipation scores) especially during critical phases as in landing scenarios. 
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Abstract 

During highly automated driving, drivers do not physically control the vehicle 

anymore, but they still have to monitor the driving scene. This is particularly true for 

SAE level 3 (SAE International, 2016), as they need to be able to react quickly and 

safely to a take-over request. Without such an (even partial) monitoring, drivers are 

considered out-of-the-loop (OOTL) and safety may be compromised. This OOTL 

phenomenon may be particularly important for long automated driving periods. The 

current study aimed at scrutinizing driver’s visual behaviour for a long period of 

highly automated driving (18 minutes). Intersections between gaze and 13 areas of 

interest (AOI) were analysed, considering both static (percentage of time gaze spent 

in one single AOI) and dynamic (transitions from one AOI to another) patterns. Then, 

a prediction of the self-reported OOTL level (subjective assessment) from gaze 

behaviour was performed using Partial Least Squares (PLS) regression models. The 

outputs of the PLS regressions allowed defining visual strategies associated with good 

monitoring of the driving scene and paved the way for an online estimation of the 

OOTL phenomenon based on driver’s spontaneous visual behaviour.  

Introduction 

In manual driving, drivers must gather information about the driving scene and the 

vehicle (perceptual process), interpret this information (cognitive process) and act 

appropriately (motor process), which in turn generate information. However, with the 

imminent deployment of highly automated vehicles on the roads (between 2020 and 

2030 depending on the organization (Chan, 2017)), where the operational driving task 

is performed by automation, drivers are likely to become supervisors of the driving 

scene. In this case, the perceptual-motor loop is neutralized, which has consequences 

on perception and cognition (Mole et al., 2019). This is referred to the out-of-the-loop 

(OOTL) phenomenon.  

In automated driving, the OOTL phenomenon was investigated by comparing the 

driver’s behaviour during automated and manual driving. In terms of gaze behaviour, 

automated driving leads to greater horizontal dispersion (Louw & Merat, 2017; 

Mackenzie & Harris, 2015), and a decrease of the percentage of glances to the road 

centre (Louw et al., 2015; Mackenzie & Harris, 2015). Similarly, in curve driving, 
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automated driving has been shown to enhance long-term anticipation (through look-

ahead fixations) to the detriment of the short-term anticipation used to guide the 

vehicle (Mars & Navarro, 2012; Schnebelen et al., 2019). 

The consequences of the OOTL phenomenon were also observed during level 3 

automated driving , where drivers had to take control of the vehicle when automation 

required it. Indeed, in response to a critical case, drivers had longer reaction times in 

automated driving than in manual driving (Feldhütter et al., 2017; Neubauer et al., 

2012; Saxby et al., 2013; Zeeb et al., 2015; Zeeb et al., 2017). Such changes in driver 

behaviour during takeover have been attributed to drivers being more OOTL during 

automated driving.  

Drivers’ performance during takeover is also affected by the duration of automation, 

with higher reactions times after a prolonged period of automation than after a short 

drive (Bourrelly et al., 2019; Feldhütter et al., 2017). Feldhütter et al. (2017) have 

shown, for instance, that a 20-minutes’ drive in automated mode is sufficient to 

increase the reaction time to a takeover request. Drivers experienced mind wandering, 

distracting themselves from the supervision task, which impaired the perceptual and 

cognitive processing of information. 

Recently, Merat et al. (2019) proposed an operational definition of the OOTL concept. 

It relies on two aspects: To be out-of-the-loop, drivers must not have physical control 

of the vehicle (no motor process), and must not monitor the driving scene 

(perception/cognition process). When the driver is in manual control, he is considered 

to be in-the-loop. An intermediate state, the on-the-loop (OTL) level, has been 

introduced to designate situations in which the driver correctly monitors the driving 

situation during autonomous driving. Thus, estimating the driver's ability to manage 

imminent takeover situations is a matter of determining whether the driver is OOTL 

or OTL based on the observation of his/her monitoring of the situation. However, the 

question of how to model and quantify what constitutes proper monitoring of the 

driving scene remains open. 

Two principal issues were addressed in the present study:  

• What is a good monitoring of the driving situation? In other words, can we 

identify the gaze behaviour characteristic of OOTL drivers?  

• Is it possible to predict the driver’s OOTL state from the observation of 

spontaneous gaze strategies? 

  

In the current study, participants experienced an 18-min drive of automated driving 

(similar to Fleurette et al., 2017) without any non-driving activities to perform. The 

assessment of the OOTL state was based on the self-reported time of mind wandering 

during the drive. The driver’s gaze behaviour was analysed considering 13 areas of 

interest, using static (percent of time on each AOI) and dynamic (transitions matrix 

from and to each AOI) patterns.  
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  Material and method 

  Participants 

This study involved 12 participants (N = 12; 3 females; 9 males), with a mean age of 

21.4 years (SD = 5.34).  Most of them were students from Centrale Nantes. They held 

a valid driver’s licence (average driving experience: 9950 km/year, SD = 5500) and 

signed written informed consent to participate in this study. 

  Experimental device 

The experiment took place on a driving simulator (Figure 1), consisting in 3 screens 

(120° Field of View), with one additional screen for the HMI. The eye tracker 

(SmartEye Pro v5.9) computed gaze intersections with the screens at 20 Hz. 

Most of the road was a 40 km two-lane dual carriageway, with a speed limit of 130 

km/h in accordance with French regulations. Occasional changes in road geometry 

(temporary 3-lane traffic flow; highway exits; slope variation) and speed limits (130 

km/h to 110 km/h) have been included to make driving less monotonous. In both 

directions on the highway, traffic was fluid, with 8 overtaking situations. 

 

Figure 1. Driving Simulator Setup. 

  Procedure 

After a presentation of the driving simulator and a short drive in manual driving mode, 

participants were trained to activate (pressing a button) and disactivate (pressing the 

button, pedals or steering wheel) the automated mode. Instructions corresponding to 

a level 3 (SAE) automated driving were given: Automated driving was available only 

for a portion of road, and drivers had to take over the system when required (auditory 

+ visual signals). Then, they experienced 4 takeover situations, with relatively long 
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(45 s; 2 situations) or short (8 s, 2 situations) time-to-collision. No collision occurred 

during the training session.  

Then, the experiment proper started. Participants activated the automated driving 

mode just before entering the highway. Gaze data were recorded as soon as the vehicle 

was correctly inserted in the lane and reached 130 km/h. No major driving events 

appeared for the first 15 min on the highway to let the driver enough time to become 

out-of-the-loop. The driver did not perform any secondary task during that time. A 

critical case occurred at the 18th minute, and the scenario ended thirty seconds after. 

Participants were then asked to report on a continuous Likert scale the proportion of 

time spent thinking at something else than the driving task throughout the trial. Since 

this paper focuses on the link between gaze behaviour and the OOTL scores, the 

results on the critical case will not be presented here.  

  Data structure and annotations  

  Definition of the OOTL score Y  

The evaluation of the percentage of time spent thinking about something else than the 

driving task may be considered as a self-assessment of the OOTL phenomenon. In 

that sense, the higher the percentage was, the more drivers estimated they were out-

of-the-loop. Percentages for all participants were stored in a vector with 12 elements, 

named OOTL score and denoted Y. 

  Definition of the matrix of gaze behaviour X  

The driving scene was divided into 13 areas of interest (AOI) (see figure 2): 

 

Figure 2. Division of the driving environment into 13 areas of interest. 

• The central screen contained six areas: The central mirror (area CM), the road 

centre (RC), defined as a circular area of 8° radius in front of the driver, and 4 

additional areas defined relatively to the road centre (Up, Left, Down, Right). The 

Percentage Road Centre (PRC) defined as the proportion of time spent in RC has 

been introduced by Victor (2005). A decrease of the PRC was found to be a good 

indicator of distraction during driving, as drivers reduced this time when visually 

or auditory distracted (Victor et al., 2005) 

• Each peripheral screen contained two areas: The lateral mirror (LM, RM) and the 

remaining peripheral scene (LS, RS) 
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• The dashboard (D) and the HMI (HMI) All gaze data directed outside of all the 

previous areas were regrouped in area Others. 

Drivers gaze behaviours for each participant were considered in this study as the 

combination of static (percentage of time in one AOI) and dynamic (transitions matrix 

between AOIs) patterns. Thus, a vector of 182 numerical indicators (= 13x13 

transitions + 13 percentage of time on each AOI) summarizes gaze behaviour for one 

participant. When considering all participants, the matrix of gaze behaviour was 

named X and its size was 12 (participants) x 182 (visual indicators).  

Due to the small number of observations (12) compared to the number of visual 

indicators (182), we used the PLS regression to predict the OOTL score from gaze 

behaviour. This method performed a decomposition of X and Y in orthogonal 

components in order to explain the maximum of the variance of Y. The components 

actually reflect the underlying structure of the prediction model.  

  Data analysis 

Two sequential stages composed the analysis (Figure 3):  

 

Figure 3. Multi-step approach for data analysis. 

• The first one (steps A and B) focused on selecting the best time window (T) to 

predict the OOTL score. To do so, 15 matrixes of gaze behaviour were computed 

and labelled Xt. It differed by the time on which visual indicators were computed, 

that varied from 1 to 15 minutes.  

• The selection was then based on the most stable (over time) and accurate (in 

terms of percent of variance explained) model of prediction. The second one 

(steps C & D) consisted of predicting the OOTL score using XT as predictors 

and the PLS regression model. After reducing the dimension of X to increase 
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prediction power (step C), the model was tested using the training and the 

validation data set (step D).  

The details of data analysis are presented in the results section. 

 

  Results 

  OOTL Score 

The OOTL scores (Figure 4) showed large variations between participants (range ~= 

75%). The median score was 43%. Even in the absence of a secondary task, some 

participants (9 to 12) declared that they spent 80% of the time thinking at something 

else than the driving task.  

 

 

Figure 4. OOTL scores reported by the participants.  

  Time window selection 

On the first step (A), the optimal number of components for each matrix Xt was 

obtained by minimizing the mean square error of prediction. This number of 

components, reflecting the structure of the prediction model, actually changed 

depending on the integration window (figure 5), but reached a stability level for time 

windows higher than 9 minutes. The most appropriate temporal window, labelled T, 

was selected (step B) as the one maximizing the variance of the OOTL score 

explained, among the stable models. All subsequent analysis referred to the matrix of 

gaze behaviour computed over T = 11 minutes of automated driving.  
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Figure 5. Optimal number of components of the PLS regression as a function of the integration 

window. The figure shows that model stability was achieved from the 9th minute. 
 

  Reduction of the number of visual indicators 

After selecting the most appropriate time window, the prediction model explained 

62.53% of the variance of Y, using the 182 visual indicators. Then, the aim was to 

reduce the number of visual indicators by selecting only the most relevant visual 

indicators. 

The PLS regression is a linear model: the variable to be estimated (�̂�) and the predictor 

(𝑋𝑇) are linked by a matrix of coefficients C: �̂� =  𝐶 ∗  𝑋𝑇. The relevant indicators 

were determined by the absolute magnitude of their coefficient: If the magnitude was 

close to zero, the contribution to the prediction was negligible. On the contrary, a high 

magnitude indicated a very important indicator for the prediction.  

In practice, the coefficients magnitudes were compared with an increasing threshold 

value. A new regression model was computed for each partial matrix (i.e. a matrix 

comprising only those indicators whose coefficient amplitude exceeded the threshold 

value). The threshold was increased by step of 0.005 until the percentage of variance 

of Y explained by the partial model stopped increasing. With our data, the maximum 

of explained variance was 85.64%, with only 8 visual indicators (Figure 6).  

On these 8 indicators, 5 contributed to an increase of the OOTL score (in red on Figure 

6): Taking the eyes off the central mirror to look away from the driving scene, taking 

the eyes off the road centre area to look down or away from the driving scene, 

spending too much time in the down area. By contrast, 3 indicators contributed to a 

reduction of the OOTL score (green arrows on Figure 6): Redirecting the gaze to the 
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road centre or to the left side of the driving scene from any area outside the driving 

scene, take your eyes off the road centre to check the left rear-view mirror. 

 

Figure 6. Visual indicators relevant for OOTL score prediction.  

  Final prediction of the OOTL score 

A final PLS model (step D) was computed to predict the OOTL score from the best 

partial matrix (containing the 8 visual indicators relevant for the prediction). The 

prediction of the model compared to real values of the OOTL score is presented on 

Figure 7. 

 

 

Figure 7. Correlation plot between the OOTL score and the prediction of the  

OOTL score by PLS regression. 

 

The PLS regression performed a good estimation of the OOTL score, with a low mean 

square error of prediction (0.13) and a significant positive correlation between the 

estimated and real values (r = 0.92, p<0.01). 
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  Discussion 

During automated driving, the OOTL phenomenon results from an incorrect 

monitoring of the driving situation (Merat et al., 2019). The alternative state, namely 

being OTL (on-the-loop), corresponds to passive drivers who satisfactorily monitor 

their driving environment. However, a more precise definition of what constitutes a 

great monitoring of the environment is still needed to distinguish OTL from OOTL 

drivers. This study investigated this issue in a highway driving context with the 

analysis of drivers gaze behaviour, with both static (percent of time in AOI) and 

dynamic (transitions between AOI) patterns. The methods consisted in using PLS 

regressions to identify the most characteristic elements of the gaze behaviour of OTL 

and OOTL drivers. The multi-step approach began with 182 visual indicators as an 

input matrix, and retained in the end only 8 relevant elements to predict an accurate 

OOTL score.  

The results revealed that drivers with a lower OOTL score made more transitions from 

the road centre to the left mirror. After spending time looking at area unrelated to 

driving (“others” area), they returned more frequently to the road (road centre area) 

or to the left screen where they could monitor traffic. Conversely, drivers with higher 

OOTL scores made more transitions from the road centre to areas irrelevant to driving. 

They spent more time and made multiple fixations in the lower part of the front screen. 

These findings may be interpreted in terms of the adequacy of the driver’s gaze 

strategy to maintain good situation awareness (Endsleigh, 1995) in autonomous mode. 

Situation Awareness (SA) during automated driving actually involved three levels: 

Perception, Comprehension and Projection (Merat et al, 2019). In the current study, 

OTL drivers remained dynamically aware of their surrounding by regularly checking 

the left lane and mirror. This certainly have helped to anticipate future hazards. They 

also remained attentive to the road well-ahead in time. In other words, these gaze 

strategies allowed to perceive, comprehend and project on the future state of the 

driving situation in an appropriate way, i.e. to have a good enough SA. On the other 

hand, the OOTL drivers’ gaze was more strongly attracted by irrelevant information 

inside or outside the simulator. Even when looking at the driving scene, the driver 

favoured the road immediately in front of them (down area), suggesting a lack of 

visual anticipation.  

In the current study, PLS regressions appear to be a relevant approach to predict the 

driver’s state from spontaneous gaze behaviour. Indeed, PLS regressions allowed 

finding one optimal temporal window, reducing the dimensions of the matrix of gaze 

behaviour from 182 to 8 relevant elements, but also indicated whether they 

contributed to increase or decrease the OOTL score. Then, the prediction of the OOTL 

score given by the model was accurate with a strong correlation between the predicted 

and the real values. However, a validation step (i.e. testing the model with another set 

of gaze behaviour data) is required to confirm the results presented here.  

In the current study, the OOTL score could be predicted from the driver’s spontaneous 

strategies over 11 minutes of automated driving. For further research, it may be 

interesting to apply this model on shorter durations of automated driving, and to apply 

similar methods to other driving contexts.  
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  Conclusion 

The current study used PLS regression to satisfactory predict driver’s state from their 

visual monitoring of the driving situation. The analysis of gaze behaviour proved that 

an appropriate gaze strategy for being on the loop requires to get information on the 

oncoming traffic as well as interleaving glances on the road centre. To provide a more 

accurate detection of the OOTL phenomenon during automated driving, the analysis 

of gaze behaviour might be coupled with other approaches, for example by 

incorporating physiological measurements or the analysis of the driver’s posture in 

the diagnosis. 
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  Abstract 

As level 2 automated driving systems (SAE partial automation) become more 

elaborate, the similarity to a level 3 system (SAE conditional automation), from a 

driver’s perspective, is gradually increasing. We examined differences in driver 

behaviour concerning level 2 and 3 automation in a driving simulator experiment with 

31 professional truck drivers. All drivers received specific instructions concerning 

differences in the driver’s role in both automation levels. Despite this, drivers had 

difficulties in adapting their behaviour to the different demands of level 2 vs. level 3 

driving. An analysis of driver reactions shows potentially critical lapses in attention 

during level 2 drives, when drivers were performing an engaging non-driving related 

task while driving. A comparison of drivers’ gaze distributions suggests that these 

lapses are likely due to a de-prioritisation of on-road glances during task performance. 

These results highlight the difficulties that may accompany improvements of level 2 

automation performance and underline the need for measures to assist drivers in 

adapting their behaviour accordingly. 

Introduction and previous work 

Advancing sensor technology and signal processing methods lead to a gradual 

improvement of automation performance in automated level 2 (SAE 2016) vehicles, 

resulting in fewer driving mistakes that vindicate the driver's supervisory role. From 

a layman's perspective, well-functioning level 2 systems more and more seem like 

level 3 systems (Campbell et al., 2018). These systems seemingly need no 

supervision, despite the fact that the driver is still considered a crucial safety factor by 

its designers (SAE 2016). 

In both partial (SAE level 2) and conditional automation (SAE level 3) the driver’s 

main task can be described in terms of a vigilance task (Davies & Parasuraman, 1982): 

In partial automation drivers monitor longitudinal and lateral control to detect and 

respond to silent automation failures. In conditional and higher automation modes, 

drivers detect and respond to requests to intervene, which are issued by the automated 

system when it approaches a system boundary. System designers may adjust the 

saliency of requests to intervene such that the signal detection task in level 3 
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automation and higher becomes relatively easy. For example, relevant design 

guidelines mandate the use of multimodal warnings and offer advice on colour, 

symbolism, and warning tones or messages (e.g., Campbell et al., 2018). No such 

control over signal saliency is available for level 2 driving: silent failures may take on 

the form of lane drifts or non-reactions (NTSB 2017). 

Previous work suggests that drivers may find it difficult to appreciate the demands of 

a (well-functioning) partially automated vehicle. For example, Omae et al. (2005) and 

Llaneras et al. (2013) found that drivers were more likely to engage in non-driving 

related tasks that restricted their monitoring ability such as interacting with a handheld 

electronic device. Such results may potentially be explained by assuming that drivers 

lacked exact information about the automated system’s capabilities or their 

monitoring duties and may be combated by appropriate instructions (Campbell et al., 

2018). 

The presented work directly compares the behaviour of instructed, professional truck 

drivers to examine whether the drivers are able to adjust to the differential demands 

of level 2 and level 3 automation. 

Materials and methods 

The study was conducted in MAN’s fixed-base, high-fidelity driving simulator with 

professional truck drivers. 

Participants 

Of 32 participants, one aborted the experiment whose data is excluded in the 

following. The remaining 31 participants of the study (all males, M=42.5 years, 

SD=14.6, range=22-70 years) were in possession of a valid driver’s license for trucks 

or busses (German C/CE or D/DE license, first issued on average 20 years ago, SD=13 

years). Most of the drivers were currently working full-time as professional truck or 

bus drivers (mainly long distance), 10 of the drivers were working in part-time. Half 

of the drivers reported a yearly mileage of more than 100.000 km, 11 participants a 

mileage between 10.000 up to 100.000 km and 4 participants between 500 and 10.000 

km.  

Procedure 

Upon arriving, participants were informed about the nature and duration of the 

experiment as well as the safety instructions for the simulator. All participants 

provided written informed consent before testing and received monetary 

compensation for their participation. Participants were equipped with electrodes for 

measuring heart rate and skin conductance. After these preparations, an initial 

questionnaire was filled out and participants were instructed how to perform the non-

driving related task in the experiment – a quiz task.  

The experiment consisted of a familiarisation drive and two test drives (L2, L3, 

counterbalanced) in the simulator. In the familiarisation drive, drivers received 

instructions on how to operate the vehicle and automation and were familiarised with 
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the Driving Activity Load Index (DALI) questionnaire. Each test drive was preceded 

by a short period to obtain a baseline for the physiological measures followed by 50 

minutes of automated driving in each automation condition. The L2 test drive was 

designed to resemble a drive with a partially automated vehicle (SAE level 2), the L3 

to resemble a drive with conditional automation (SAE level 3). During both test 

drives, participants experienced three non-driving related task conditions in 

randomized order: no task (none), an auditory quiz (auditory), and a visual-manual 

quiz (visual) for 10 minutes. After each condition, participants were asked to fill out 

the DALI questionnaire. A brief break was made in between both test drives. 

Automation levels 

The automation levels were implemented as follows: a peripheral detection/vigilance 

task (PVT) was embedded within the driving period as a proxy for a silent automation 

failure (partial, L2) or take-over request (high, L3). The PVT comprised of a small 

green rectangle that randomly appeared on the simulator screen (see Figure 1). In the 

high automation condition (L3), a short sound and a bright blue LED above the 

steering wheel (take-over cue) announced the appearance of the rectangle 10 seconds 

in advance. During partial automation (L2) no such cue was presented. Participants 

were instructed to respond to the PVT by pressing a button on the steering wheel as 

quickly as possible and to prioritize this task over others. 

To avoid potential confounds, missed PVT prompts did not result in any feedback to 

the driver and no particularly arousing or aversive situations, (i.e., potential crashes 

due to inappropriate take-over behaviour) was presented in the experiment. The rather 

abstract implementation of the automation HMI and of the required responses made 

sure that differences between the two automation conditions were reduced to the core 

distinguishing differences of both vigilance tasks. 
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Figure 1. Top: peripheral vigilance task (PVT) in the L2 condition. Bottom: PVT in the L3 

condition with the take-over LED near the steering wheel. 

Non-driving related Tasks 

The non-driving related task chosen in the current study is based on a quiz 

(Petermann-Stock et al., 2013). The quiz consisted of 240 questions covering the 

fields of common knowledge, proverbs, movies and TV shows, sports, geography, 

cars and trucks. The questions of the original quiz were adapted to reduce the skill 

level required and to cater to the targeted audience of truck drivers (e.g., by selecting 

trucking specific questions). For each question, three possible answers were presented 

whereas only one of them was correct. Two versions of the quiz were presented to 

engage the driver into tasks with similar characteristics to (hands-free) telephone 

conversation or using an electronic handheld device: In the auditory condition, the 

question as well as the answers were read to the participant. The participant was asked 

to provide a verbal answer. In the visual-manual condition, questions were presented 

visually on a tablet computer. In order to reveal a possible answer, the participant had 

to touch the screen where an indicator (A, B, C) was presented (Figure 2). 
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Figure 2. Visual-manual quiz. 

Driving simulator & roadway 

The study was conducted in the static driving simulator of MAN Truck & Bus AG. 

This simulator provides a 180° visual simulation as well as acoustic simulation of 

motor sounds and other vehicles. It is a mock-up of a full size TGX cabin built with 

aluminium profiles. The simulation software used was SILAB (Würzburg Institute for 

Traffic Sciences GmbH) which allows for the recording of vehicular data (e.g., 

velocity) as well as the integration of the physiological measurement equipment. The 

roadway implemented for the two test drives consisted of a 2-lane-highway with 

steady, but little traffic.  

Eye-tracking 

Two infrared video cameras (ON Semiconductor PYTHON1300, 1.3 MP) were 

installed in the simulator cabin near the A-pillar and centre console. Images were 

recorded throughout the experiment at a rate of 60 Hz. Processing of the images 

occurred off-line. Gaze direction information was computed using proprietary eye-

tracking software (SmartEye embedded SDK v0.8.2). From this, gaze heading and 

pitch angles were computed. Both values were normalized using the mean gaze 

heading and pitch angles that were computed for each participant for the L2 

automation drive without a non-driving related task. A road-centre region was defined 

with +/- 20° eccentricity and gaze information was classified as “on road” or “off 

road” based on this definition and the recorded, normalized heading and pitch angles. 

From this, the percentage of road centre gazes (PRC) for each condition was 

computed. 

Self-assessment of workload 

A self-assessment of workload was conducted using the Driving Activity Load Index 

(DALI). This questionnaire is designed for the assessment of workload during driving 

and addresses different factors such as perceptual load, mental workload and the 

driver’s state (Pauzié, 2008). All participants were asked to fill out the questionnaire 

during both test drives after each condition.  
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Physiology 

In addition, participants’ skin conductance and heart rate were recorded during the 

experiment, the analysis of which is omitted in the present paper. 

Data analysis 

Statistical data analysis was conducted using IBM SPSS (version 24.0) and R (version 

3.5.2). If applicable, data was analysed using repeated measures ANOVAs with the 

factors automation level (L2, L3) and task (none, visual, auditory). For post-hoc 

analyses, t-tests for repeated measures were performed. Results of the ANOVA were 

corrected according to Greenhouse-Geisser whenever the Mauchly test of sphericity 

indicated heterogeneity of covariance. In the case of a violation of requirements, non-

parametric ANOVAs (Friedman) and Wilcoxon Tests were used. Findings were 

considered statistically significant at p < 0.05. 

Results 

Monitoring ability 

Participants’ primary task consisted of an abstract detection task (PVT), which 

captured the core differences in terms of signal saliency between the two automation 

conditions (L2/L3). Figure 3 depicts the number of correct detection responses and 

missed signals per condition (three signals were presented per condition). Detection 

ability significantly differs between automation levels and groups (χ²(31)=80.22, p < 

0.001). In L3 most participants [77 – 90%] manage to react to all three out of three 

stimuli (3/3) which is significantly higher than in L2 (Z = [-4.48;-2.36], all p < 0.05). 

Here, only 11-63% of the participants are able to react to all three presented stimuli. 

In L2, there are significant differences between the three conditions. When drivers are 

engaged in the visual-manual task, fewer signals are detected in comparison to the 

auditory task condition (Z = -3.27, p < 0.01) or when participants performed no (none) 

non-driving related task (Z = -4.10, p < 0.001). The difference between the none and 

auditory condition is not significant (Z = -1.70, p = 0.09). In L3, differences are also 

found for the auditory and visual task condition (Z = -2.26, p < 0.05). 
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Figure 3. Number of correct responses to the detection task (PVT). 

Gaze behaviour 

Gaze behaviour was analysed by computing a percentage road centre (PRC) statistic 

per participant and drive based on angular gaze information. This analysis was 

performed for a subset of the 31 participants. Eight participants were excluded from 

this analysis either because of incomplete video recordings, issues with eye-tracker 

calibration and accuracy or because drivers partially made use of reading glasses. The 

following section presents the results for the data from the remaining 23 participants. 

The analysis shows a significant difference between automation levels (F(1,22) = 

41.8, p < 0.01), revealing that drivers are glancing at the roadway less frequently 

during L3 (Figure 4). The analysis also shows a significant main effect of the type of 

non-driving related task (F(2,44) = 268.6, p < 0.01). Bonferroni corrected post-hoc 

comparisons corroborate the assumption that drivers’ gaze is away from the road 

much more frequently during the visual-manual task condition in L3 in comparison to 

no activity (mean of difference = 0.34, t(22) = 14.9, p < 0.01). Importantly, drivers’ 

gaze is also off-road more frequently during the visual-manual task condition during 

L2 (mean of difference = 0.36, t(22) = 18.9, p < 0.01). The comparison of PRCs in the 

visual-manual condition between L3 and L2 shows a small (mean of differences = 

0.092) but significant difference (t(22) = 4.2, p < 0.01). 
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Figure 4. Percentage road centre (PRC) distributions. 

Self-assessment of workload 

For this analysis the data from one participant, who only partially completed all DALI 

questionnaires was removed. In general, the participants’ ratings range in the lower 

end of the DALI scale. Significant differences in self-assessed workload are found 

between automation levels (F(1,30) = 7.29, p < 0.05) as well as between tasks (F(2,60) 

= 11.15, p < 0.01). Post-hoc tests show that workload is considered higher in the 

visual-manual task condition compared to the none condition across both automation 

conditions (t(30) = [-4.50;-2.65], all p < 0.05). In addition, this condition is rated 

significantly lower in workload during L3 automation (t(30) = 4.0, p < 0.01). 

Individual DALI factor results are shown in Figure 6. Apart from an overall muting 

effect on all DALI factors, drivers’ responses in L3 in particular show a reduction of 

the stress factor, which in this automation condition seems to result in even lower 

stress ratings as the none condition. Note that the tactile factor was omitted in the 

present experiment. 
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Figure 5. Subjective workload assessment results (DALI questionnaire score). 

 

Figure 6. DALI factors. 
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  Discussion 

The present study investigated differences in professional truck drivers behaviour 

between level 2 (L2) and level 3 (L3) automated driving. Even though drivers received 

explicit instructions regarding their core, driving-related task, namely system 

supervision in L2 and reaction to take-over requests in L3, and despite explicit requests 

by the experimenter to prioritise this task, drivers showed marked lapses in monitoring 

performance during L2 – in particularly when they were engaged in a visual-manual 

non-driving related activity. For example, only two of the 31 drivers correctly 

responded to all three PVT (peripheral vigilance task) prompts that were presented as 

a proxy for a silent automation failure during the L2 condition when they were also 

engaged in the visual-manual quiz task. 

Failures to respond to PVT prompts (i.e., take-over requests) were also observed in 

L3 driving, albeit at a much smaller frequency. In interpreting the L3 response 

proportions, it must be noted that the system did not escalate the PVT prompt using 

e.g., additional or louder warning tones when drivers did not respond, as would be the 

case and easily feasible in a more comprehensive automation HMI (e.g., Llaneras et 

al., 2017). 

PVT targets were solely presented visually in the L2 condition, requiring participants 

to adapt their visual scanning behaviour: In this condition, participants should have 

prioritised the monitoring task in comparison to the L3 condition. Although the 

comparison of on-road glance distributions showed that drivers were looking at the 

road more frequently during L2, the difference to glance proportions in L3 was very 

small and comparatively low (ca. 30 % on average). This was the case despite 

participants noting the differential demands of both automation conditions as per the 

DALI questionnaire, where the visual task received lower workload ratings during L3 

in comparison to L2. 

Together, these findings highlight the fact that drivers seem to have difficulties in 

prioritizing their monitoring activity and non-driving related task adequately – despite 

clear instructions by the experimenter regarding the expected priorities. Reasons for 

this may be found in a lack of motivation regarding the primary monitoring task since 

the study was conducted in a driving simulator and not in a real vehicle. Yet, studies 

in real vehicles (e.g., Omae et al., 2005) and recent incidents in real traffic with L2 

vehicles (e.g., NTSB, 2016) suggest that drivers’ priorities may be similarly 

misguided. Granted, the latter results and incidents were observed for non-

professional drivers and it stands to reason whether professional drivers exhibit 

similar behaviour in a real vehicle. 

Instead of factors that pertain to drivers’ motivation due to the simulator setting, we 

suggest that the present results may be partially explained by a lack of drivers’ self-

awareness regarding their monitoring behaviour when performing a particularly 

engaging non-driving related activity. For example, time perception is known to be 

malleable by task characteristics (e.g., Hart et al., 1979), potentially skewing subjects’ 

perception of the time spent with one or the other task in a dual-task scenario. 
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Secondly, drivers may exhibit an incomplete understanding of what constitutes 

necessary monitoring performance, e.g., unrealistic beliefs about failure frequencies 

or detection ability. Such intuitions are hard to gather from instructions but are 

typically acquired through interactive experience and in particularly consequences of 

one’s action or inaction. In the present experiment, consequences (e.g., crashes) of 

failing to monitor properly were not presented purposely for other reasons, but it is 

also expected that an absence of performance feedback regarding the monitoring task 

is realistic. Technical advancements will gradually decrease failure rates of automated 

systems. In a well-working L2 vehicle, opportunities for a reinforcement of proper 

monitoring behaviour will thus become rarer. Ideally, such reinforcement is provided 

in terms of positive reinforcement, e.g. a system failure that is compensated for by a 

successful intervention by the driver. With decreasing failure rates, however, potential 

failures may unfortunately even lead to more fatal outcomes because drivers are 

encountering them unprepared. 

Unfortunately, past research has shown that drivers are more likely to take up non-

driving related activities while driving (monitoring) an automated vehicle, 

presumably simply to combat boredom (e.g., Omae et al., 2005, see also review by 

Cunningham & Regan, 2017). Taken together, these observations may be of relevance 

for the designers of automated vehicles and vehicle HMIs. For example, designers 

may strive to implement in-vehicle systems that offer and encourage safe non-driving 

related activities (i.e., auditory-verbal activities) or that facilitate transforming unsafe 

activities into safe activities, for example, by offering services to integrate a driver’s 

mobile devices into the vehicle’s infotainment system (e.g., by “pairing” a device, see 

NHTSA, 2013). Another possibility is the introduction of on-line driver monitoring 

and warning systems (e.g., Llaneras et al., 2017). These systems could for example be 

employed to raise drivers’ awareness concerning their monitoring duties and 

appropriateness of their glance behaviour. Such approaches may be of particular 

relevance in vehicles that offer multiple automation levels (i.e., L2 and L3), to assist 

drivers in adapting to the respective automation requirements.  
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  Abstract 

Advances in the technology of automated driving (AD) raises the question how AD 

might change driving in general. Especially the option for users to engage in other 

activities is seen as a major benefit. The aim of the presented study was to investigate 

which non-driving related activities (NDRAs) drivers want to engage in during 

conditionally automated driving and what proportion of the driving time they spend 

on these activities. In a driving simulator study, N=31 drivers used an L3-motorway 

chauffeur during six driving sessions which took place at six different days. Drivers 

were free to bring whatever they want to engage in during the drives and to use the 

AD function as they liked. Handling of the system, drivers’ state and drivers’ 

engagement with self-chosen side tasks was continuously annotated by the 

experimenter for all drives. After every drive, evaluation and acceptance of the system 

was assessed with a questionnaire. Drivers spend an average of 80% of the time the 

AD function was active on NDRAs. Only when they were fatigued this number 

decreased. The time spend on activities that involved both hands increased over the 

drives. By far the most popular activity was smartphone use. The relevance of the 

study findings is interpreted with regard to safety and societal benefits. 

  Introduction 

Automated driving is expected to yield benefits such as an increased travel comfort 

and a more productive use of travel time. When reaching the level of conditional 

automation, i.e. level 3 according to the SAE classification (SAE, 2018), drivers will 

not be required to monitor the system and are allowed to engage in secondary 

activities. Users want to spend the time travelling in an automated vehicle for activities 

such as private communication, route information, eating and drinking, entertainment, 

work, wellness and sleep (Dungs et al., 2016). The engagement in such side-activities 

or secondary activities is widely investigated in human factors research in terms of 

their distractive potential or the ability to take over the driving task when being 

engaged in side-tasks. This “new role” of the driver in highly automated driving is 

subject to investigation in many research projects. 

The work presented here is part of the research project L3Pilot 

(https://www.l3pilot.eu/). Two assessment areas in the L3Pilot project are potential 

safety impacts as well as socio-economic impacts of automated driving. For both of 
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these impact areas, drivers’ engagement in secondary tasks is relevant. High 

distraction due to side activities can cause drivers to react slower to take-over requests 

and thus provoke safety-critical situations. On a socio-economic level, when using a 

highly automated driving system, travel time could be used for work or otherwise 

being productive and thus create a societal profit. For both evaluation areas, it is 

important to know what kind of activities drivers engage in and for how long they 

execute the activities.  

  The distractive potential of side tasks 

The ability of drivers to respond to a take-over request (TOR) highly depends on the 

driver state before the TOR. The driver might, for instance, be fatigued or distracted 

and thus not immediately be ready to take over. 

The German consortium research project Ko-HAF investigated drivers’ ability to 

take-over control from automated driving when being engaged in different non-

driving related tasks (NDRTs). Befelein et al. (2017) showed that the type of NDRT 

has an impact on take-over times and the subjective criticality of take-over situations. 

For highly motivating tasks such as playing Tetris® take-over times were prolonged.  

In a Wizard-of-Oz driving study simulating a SAE level 3 vehicle, drivers experienced 

take-over situations when being engaged in natural NDRTs (Naujoks et al. 2019). The 

tasks were chosen such that different workload areas were addressed: Drivers were 

listening to an audio book (auditory workload), executed a search task where they had 

to turn around and reach for a bag at the central console (motoric workload), read a 

magazine (motoric, visual and cognitive workload) and played Tetris® on a tablet 

(motoric, visual and cognitive workload). Take-over times were longest in the search 

task and the reading task and the take-overs were subjectively evaluated as being more 

critical by the drivers. The authors conclude that tasks that involve a motoric 

component and tasks that require the driver to turn away from the driving scene 

require longer take-over times.  

In a meta-analysis of 129 studies with SAE level 2 or higher, Zhang et al. (2019) found 

side-tasks which involve hand-held devices as well as visual-motor tasks to increase 

reaction times to a TOR by 1.33 seconds and 0.29 seconds. When drivers had their 

eyes closed before the TOR, reaction times were increased by 1.19 seconds. 

Monotonous NDRTs can impact drivers’ take-over performance such that drivers get 

fatigued by the tasks and react slower to a TOR due to their fatigue (Jarosch et al. 

2019). On the other hand, an activating task can have a positive impact in that respect 

compared to executing no side-task (Vogelpohl et al. 2018). 

It can thus be concluded that NDRTs can have a negative impact on take-over 

performance especially when drivers engage in motoric side tasks. On the other hand, 

the engagement in side tasks can keep the driver activated and prevent them from 

becoming fatigued. 
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  The use of travel time in automated driving 

The use of travel time is also of interest in terms of productivity. While drivers are not 

occupied by executing the driving task, they have time for other activities like e.g. in 

public transportation. In a survey on rail commuters, reading for leisure, window 

gazing and people watching, text messages and phone calls, working, studying, 

listening to music and checking emails were among the most popular activities during 

the rail travel (Lyons et al. 2013). This might be transferable to the automated driving 

context, because – like in public transportation – the driver is rather a passenger. 

In an internet-survey, 5000 respondents from 109 countries were asked what 

secondary activity they would be willing to engage in while using a highly automated 

driving system. Most frequently chosen options were listening to the radio, interacting 

with other passengers, observing, eating, phoning and mailing (Kyriakidis et al. 2015). 

It should be noted that many of these activities are executed in manual driving as well. 

It was also found that, not surprisingly, the higher the automation level, the more 

drivers would be willing to engage in side activities. 

Another survey yielded similar results. 1500 respondents from the USA, Japan and 

Germany stated private communication, route information, eating and drinking, 

online information search, passive entertainment , shopping, organization, work and 

wellness (in that order) as the main activities they would execute if their vehicle would 

operate in level 3 automated mode (Dungs et al., 2016). In a follow-up survey 

respondents stated “sleeping and relaxing” as the most desired activity followed by 

“working and being productive”, “eating and drinking”, “entertainment” and “beauty, 

wellness and fitness” (Becker et al., 2018). 

A variety of side activities can be expected from drivers during automated driving. 

The aim of this study was to investigate what activities drivers engage in during an 

automated drive and what proportion of their travel time they use for side activities. 

Method 

N = 31 participants (mean age = 37, sd = 11.75) completed 6 drives in a high-fidelity 

driving simulator (see Figure 1). The simulator runs with the simulation software 

Silab® (WIVW GmbH, Veitshöchheim, Germany). The participants always drove on 

a simulated highway and had an L3 motorway chauffeur (L3MC) available. In all 

drives, drivers were free to use the L3MC as they liked, meaning they could activate 

and deactivate it and engage in NDRTs as they wished. They were instructed that they 

could use the function as they like but that they need to be able to take back control if 

requested by the system. For the description of the system and the responsibility of 

the driver, the wording of the German Road Transport Law on the driver’s 

responsibility when using an L3 automated driving system (BMJV, 2017) was used 

in the instruction. 

Throughout all drives, the experimenter continuously coded via a tablet application if 

the driver was engaged in secondary tasks. The coding on the tablet was saved 

synchronized with the rest of the data in one data log. Furthermore, subjective 

evaluation of the motorway chauffeur as well as drivers opinion on potential NDRTs 
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was assessed with a questionnaire developed within L3Pilot (see Metz, Rösener, 

Louw, Aittoniemi, Bjorvatn, Wörle et al. in prep.). 

  

Figure 1: High-fidelity motion-base driving simulator from the outside (left) and from the 

inside (right) 

Tested function 

The L3MC was implemented according to the “average” function tested in the L3Pilot 

project in the on-road driving tests. The system had a speed range of 0 – 130 km/h. It 

adopted the driven speed to the surrounding traffic as well as to speed limits along the 

road. The upper limit of the supported speed range was 130 km/h. This means that on 

sections with no speed limit, the system kept a speed of 130 km/h. The system was 

able to execute lane changes automatically and as a consequence was able to overtake 

slower vehicles. System limits were exits from and entrances to motorways, 

construction sites, sections with bad or missing lane markings and heavy rain. If a 

system limit was reached, the system issued a TOR with a take-over time of 15 

seconds (for a reference see Griffon, Sauvaget, Geronimi, Bolovinou, & Brouwer, 

2019). 

Experimental procedure  

Drivers were invited to participate in a study on long-term effects of an L3MC on user 

behaviour. The study consisted of six driving sessions. For an overview see Table 1. 

Before every session, drivers were asked to bring with them any items they would 

plan to use during an automated drive (e.g. smartphone, newspaper). At the beginning 

of the 1st session, they were informed about the study and gave their informed consent. 

Then, they completed an extensive pre-drive questionnaire (L3Pilot pre-

questionnaire). After that, every driver completed an introductory drive where they 

learned the system handling and where they experienced the behaviour of the vehicle 

at a TOR. Then, drivers completed their first 35-minute drive with the system. After 

the drive they filled in an extensive post-drive questionnaire (L3Pilot post-drive 

questionnaire). 

The following sessions all started with a short version of the pre-questionnaire. Then 

the drivers completed their test drives. During the six sessions, driving situations and 

environment differed with regard to traffic density (e.g. with and without traffic jam), 
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frequency and reasons for TORs and length and reason of sections outside ODD (e.g. 

construction site, highway intersection, heavy rain). After the drives, a short version 

of the post-drive questionnaire was filled in. Only in the 6th session after the test drive, 

all drivers completed the full version of the post-drive questionnaire. Then they were 

compensated for their participation.  

Table 1: Overview of study procedure 

Session Procedure 

1 Full pre-drive questionnaire 

Introductory drive 

35 minutes’ drive on motorway 

Full post-drive questionnaire 

 

2 35 minutes’ drive on motorway 

Short post-drive questionnaire 

 

3 1,5 hours’ drive on motorway 

Short post-drive questionnaire 

 

4 

 

 

5 

 

 

6 

35 minutes’ drive on motorway 

Short post-drive questionnaire 

 

1,5 hours’ drive on motorway 

Short post-drive questionnaire 

 

35 minutes’ drive on motorway 

Full post-drive questionnaire 

 

In all drives, the participants were instructed to use the system as they would use it in 

their real life. They were free to activate or deactivate the system and to attend to self-

chosen NDRTs. The 3rd and the 5th drive differed from the other 4 drives because they 

were longer and more monotonous. During one of the two drives, the drivers were 

sleep deprived, meaning that the drive started at 6 am and drivers had been instructed 

to sleep a maximum of 4 hours the night before the drive. The order of those two 

drives was balanced across drivers. To avoid that effects of driver state are mingled 

with effects of repeated usage, the session without sleep deprivation is always 

presented as 3rd session and the session with sleep deprivation as 5th session. 

Analysed parameters 

During all sessions a variety of parameters were logged, including questionnaire data, 

data from the driving simulator, eye tracking data and information coded by the 

experimenter. It was coded whether participants were engaged in NDRTs, whether 

the NDRT actively involved the driver’s hands (manual distraction, e.g. through 

browsing on a smartphone, holding food) and whether drivers closed their eyes for a 

longer time. From this coded data, the proportion of time with active L3MC spent on 

NDRTs, spent on NDRTs with active involvement of the hands and spent with closed 

eyes were analysed. Furthermore, it was coded which types of NDRTs were actually 

executed during the drives.  
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Before the first session, drivers rated how frequently they engage with various NDRTs 

in manual driving. After the sixth session, they rated how frequently they would 

engage in various NDRTs if they would be driving with L3MC. After each session, 

they filled in a short questionnaire assessing their evaluation of the L3MC. For 

statistical testing, ANOVAS with a within-subject design were calculated. 

Results 

Already during the first drive with L3MC drivers spent about 70% of time with the 

system active on various NDRTs. There was a large variability between N=2 drivers 

who did not engage in any NDRT at all and N=8, who spent more than 90% of the 

driving time on NDRTs. In the following sessions, all drivers used at least 10% of 

driving time for NDRTs or closing the eyes; on average about 80% of time was spent 

on NDRTs or closed eyes. There was a significant effect of session on the proportion 

of time spent on NDRTs (F(5, 145)=5.3386, p=.00016) which was caused by a drop 

in session 5 – drive with sleep deprivation - from about 80% of time to 60%. The drop 

went hand in hand with an increase of driving time with closed eyes from 0% in drives 

that were not monotonous to 27% on average during the drive with sleep deprivation.  
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Figure 2: Proportion of time driving with activated L3 ADF that was spent on NDRTs. The 

graph shows means and 95%-interval of confidentiality. 

A more detailed analysis showed a change in the type of NDRT with repeated usage: 

there was a significant rise of time spent on tasks that actively involved the hands 

(F(5, 145)=4.4653, p=.00082) from 30% of driving in the first session to 60% of time 

in the sixth session. The increase of time spent on NDRTs involving the hands was 

reflected in the answers given to the questionnaire item „ I would use the time the 

system was active to do other activities.” Already after the first session, there was a 

strong agreement with the statement and agreement significantly rose further in the 

following sessions (see figure 3, F(5, 125)=5.0505, p=.00030).  
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1 2 monoton 4 deprived 6

session

strongly disagree

neutral

strongly agree

 

Figure 3: Subjective agreement with the statement „ I would use the time the system was 

active to do other activities.” The graph shows means and 95%-interval of confidentiality. 
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Figure 4: Proportion of time spent on different NDRTs during the time driving with L3ADF 

active. The graph shows median, 20% until 80% interval and outliers. 

Analysis of the types of NDRTs actually done showed that drivers mostly attended to 

their smartphones with on average 60% of driving time over all drivers and sessions. 

The next frequent type of NDRT was reading (this included papers, magazines, books 

and e-readers). This type of NDRT was done less often but if it occurred, drivers 

sometimes spent more or less the whole drive reading. The same was the case for 



60 Wörle & Metz 

doing paper works and listening e.g. to music over headphones. N=5 out of 31 drivers 

attended to paper work during at least one drive. The rest of the sample never used 

their driving time in the experimental sessions for work related tasks. 

Figure 5 shows that in the questionnaire the order of various NDTRs based on their 

rated frequency remained in large parts the same between manual driving and assumed 

driving the L3MC. Drivers would attend most frequently to auditory tasks like 

listening to music or audiobooks followed by interaction with a passenger. The biggest 

difference between manual driving and potential driving with L3MC occurred for all 

NDRTs related to a smartphone (calling, texting, apps, internet, social media). Drivers 

expected that they would attend to those NDRTs way more frequently if they had the 

system available. The frequency of doing no NDRTs was expected to be lower with 

L3MC. NDRTs related to work were expected to be done on average every now and 

then. N=1 driver stated that he / she would do work tasks very frequently, 30% stated 

that they would work frequently and another 30% at least every now and then. 
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Figure 5. Subjective evaluation of the frequency with which various NDRTs are done during 

manual driving and would be done while driving the L3MC. 

Discussion 

Subjective ratings as well as actually measured driver behaviour show an increase of 

willingness to engage in NDRTs with repeated usage of the L3MC. It has to be noted 

however, that both subjective as well as objective measures started from an already 

high level in the first session and raised up to 80% of driving time spent on NDRTs 

during the following sessions. The main variation in how drivers spent their time with 

L3MC active can be explained by the manipulation of drivers’ state. When being 
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fatigued, drivers use less time to engage actively in NDTRs, instead they choose to 

close their eyes and use the time in the vehicle to relax and rest or even to sleep.  

It needs to be noted that in the instruction given to the drivers it was emphasized that 

they need to be ready to take control back if required by the L3MC in case of a TOR 

and that drivers experienced various TORs during all sessions. Nevertheless, they 

decided to use the driving time for resting when being tired. 50% of the sample stated 

that they would never sleep when driving with the system, but the other half of the 

sample can imagine to sleep at least sometimes, 10% would even sleep very frequently 

when driving with the system. This result supports the worry that drivers might misuse 

L3 systems to doze or sleep although this is clearly outside the allowed usage of L3-

systems. 

The two most frequent NDRTs in manual driving and also during hypothetical driving 

with L3MC could not systematically be studied within the presented experiment: 

neither was a radio or music system available in the simulator nor was a passenger 

present during the sessions. Nevertheless, since these two tasks are probably the two 

most common side tasks in manual driving, there is no reason to doubt that drivers 

would attend to them while driving with an L3MC. Compared to manual driving, all 

NDRTs related to a smartphone are rated as being much more frequent when driving 

with an L3 system. The ranking of potential NDRTs from the questionnaires is in line 

with what is known from the literature. For instance Kyriakidis et al. (2015) report 

that listening to music, interaction with passenger and eating and drinking were listed 

as the most likely side tasks in highly automated driving. 

This result from the questionnaires is supported by objective data: smartphone usage 

was the most frequent NDRT in the study. Also quite frequently drivers used the time 

in the vehicle to read (a task not included in the questionnaire). Sixteen percent of the 

sample used the driving time with the function active for work related tasks. 

Compared to the results of the questionnaires, it seems that drivers used the driving 

time in the experiment less frequently for work than they imagine they would do in 

real life. In the questionnaire, in total 63% of the sample stated that they would work 

while driving with the system at least every now and then if not more frequently. This 

figure fits the 65% of the sample, who stated in the pre-study questionnaire that they 

could do part of their work while travelling. This result is of special interest for 

researchers who evaluate the potential benefit of L3 systems for society. One potential 

benefit of L3 systems is that driving time can be used for new tasks and is no longer 

occupied with driving. The monetary value used in cost-benefits analyses for the 

spared driving time differs between time used for work and time used for leisure. 

Based on our results it can be assumed that drivers would use L3 systems to work in 

the car but that most of the time would be spent on leisure activities, like reading, 

listening to music or using the smartphone. 
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  Abstract 

The strong increase in momentum behind the development of automated systems is 

leading to a change in paradigm with regard to the distribution of control in human-

machine interaction. Therefore, in the context of automated driving, it is necessary to 

explore fundamental questions such as the interaction between driver and vehicle. 

However, the underlying automated driving functions are still under development and 

thus can only be used for studies to a limited extend. From a technical point of view, 

the introduction of automated systems results in an increased proportion of 

probabilistic components. Due to the resulting non-determined behaviour of the 

automation, it is difficult to perform studies in a systematic manner. A suitable method 

to study the effects of such “intelligent” probabilistic systems are Wizard of Oz 

(WoOz) setups, where a human simulates the behaviour of the system. The results 

obtained through WoOz studies are promising, but considering the system behaviour 

reproduced by the driving wizard researchers apply the method in different ways. 

Furthermore, there seems to be a lack of systematics regarding the experimental 

procedure, ethics and the guarantee of scientific quality. This article evaluates and 

systematizes published experimental approaches and proposes a specification 

language for the driving wizard’s behaviour. 

  Introduction  

The introduction of automated vehicles is leading to fundamental changes in the 

relation between vehicles, users and other traffic participants. To analyse this change 

in relation real automated vehicles can only be used to a limited extend, since the 

underlying driving functions are still under development. At the same time, 

developers of the technical system need input on human abilities and restrictions in 

interaction, which cannot simply be transferred from other domains like aviation or 

process control. Gasser et al. (2015) give a detailed overview of relevant questions 

related to level 3 automated driving. Additionally, the rise in automated driving 

functions within the vehicle system leads to an increased proportion of probabilistic 

components. However, from the perspective of human factors research, a more 

deterministic behaviour of the technical system, i.e. the automation, is necessary to 

evaluate human-machine interaction, since investigations could suffer from random 

effects in scene interpretation, environmental influences or surrounding traffic 

behaviour.  
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A comparable situation was given in the area of human-computer interaction when, 

for example, intelligent tutoring systems and speech or gesture recognition were 

mature to be introduced but had to be evaluated in a systematic way. Here, the Wizard 

of Oz (WoOz) paradigm was applied with great success and enabled research on 

human-machine interaction in parallel to technical development. Within the 

automotive research community, WoOz vehicles are also an established method for 

analysing the effects of “intelligent” probabilistic systems that have not been fully 

developed yet, such as automated vehicles.  

  Exemplary application of WoOz studies  

WoOz studies are used when complex systems have to be evaluated prior to becoming 

available. The systems are simulated by humans, the so-called wizards (Fraser & 

Gilbert, 1991), in a hidden manner. Ideally, this causes users to believe that they are 

interacting with the real technical systems rather than a simulated one (Bernsen et 

al., 1994). John F. Kelley invented the WoOz paradigm in 1975 to simulate a not yet 

functional speech recognition system (Green & Wei-Haas, 1985). Further studies 

have followed using the WoOz paradigm to simulate natural language recognition 

systems, such as Kelley (1983) simulating a software assistant to support users when 

interacting with a digital calendar programme or Gould et al. (1983) simulating a 

“listening typewriter”. From the early 1990s on the WoOz paradigm was also used to 

prototype multi-modal recognition systems. Hauptmann (1989) simulated a graphics 

programme that could be used to edit images through speech and gestural input, while 

Robbe et al. (1997) simulated a spatial planning programme that could likewise be 

controlled through speech and gestural input.  

In the automotive sector, the WoOz methodology is commonly used to design user 

interfaces (Pettersson & Ju, 2017), such as a multi-modal recognition system to 

control non-driving related vehicle functions (Stecher et al., 2018). However, the 

WoOz methodology can also be used to simulate automated vehicles. In this case, so-

called driving wizards (Baltodano et al., 2015), simulate the automation by driving 

the vehicle hidden from participants (Coelingh et al. 2018). When simulating natural 

language or multi-modal recognition systems, the wizards do not sit in the same room 

as the participants and the system to be simulated (Hauptmann, 1989; Stecher et al., 

2018). However, when simulating automated vehicles, driving wizards act as part of 

the test tool and are located within the test tool (Müller et al., 2019) allowing them to 

experience their actions in the same way as the participants.  

In 2006 Kiss et al. (2006) developed a WoOz vehicle for the first time to simulate 

driver assistance systems in real traffic conditions. In the same year, Schomerus 

et al. (2006) developed the theatre-system technique, which is set in a driving 

simulator and represents a special case: the deception used in WoOz studies can 

deliberately be lifted so that researchers can directly get in touch with participants 

(Schomerus et al. 2006). Fuelled by the development of the Ghost Driver 

methodology (Rothenbücher et al. 2015) and the RRADS vehicle setup (Baltodano et 

al., 2015), the WoOz paradigm is currently becoming more used to simulate 

automated vehicles in real traffic.  



 the Renaissance of Wizard of Oz  65 

  Common construction forms of WoOz vehicles  

Studies involving vehicle occupants as participants require complex vehicle setups to 

create the illusion of an automated vehicle. All these setups have in common that 

usually a participant, a driving wizard and an interaction wizard occupy the vehicle. 

The interaction wizard typically also acts as the investigator. The classification by 

Manstetten et al. (2019) does not cover all published WoOz vehicle setups. Therefore, 

a more systematized approach is proposed in the following.  

WoOz vehicle setups used for occupant studies can be divided into setups where the 

participant is seated in the front row or in the back row. Vehicle setups, where the 

participant is seated in the back (see Figure 1), are typically used for simulating level 5 

automation (Karjanto et al., 2018; Sandhaus & Hornecker, 2018; Sherry et al., 2018). 

The driving wizard operates the vehicle by using the serial driver workplace. An 

opaque partition obscures the vehicle controls and the driving wizard. Visibility to the 

front of the vehicle for participants can be realised by mounting a TV displaying a 

video of the environment (Karjanto et al., 2018) or by not covering the area between 

the headrests and the vehicle roof (Sherry et al., 2018).  

 

Figure 1: Common WoOz vehicle setup where participants are seated in the back row  

In case of participants sitting in the front row four different WoOz vehicle setups could 

be identified (see Figure 2). These can be divided into setups, where participants can 

drive the vehicle (Figure 2 bottom row) and ones where they cannot (Figure 2 top 

row).  

Setups where participants cannot drive the vehicle should be used for studying level 4 

or level 5 automation since Requests to Intervene (RtI) typically cannot be 

represented. One of these setups is based on a left-hand drive vehicle (see Figure 2 

top left). To ensure the disbelief, the driving wizard and vehicle controls are hidden 

using a partition between driving wizard and participant.  
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Figure 2. Common WoOz vehicle setups where participants are seated in the front row   
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Furthermore, the participant’s seat is equipped with a non-functional steering wheel. 

Baltodano et al. (2015) developed this setup called RRADS (Real Road Autonomous 

Driving Simulator). Another setup is based on a right-hand drive vehicle (see Figure 2 

top right). The seating position of participants on the (in most countries) usual driver’s 

side acts as a strong cue, that participants are not only passengers. To intensify this 

feeling, the driving wizard and vehicle controls are concealed using either a partition 

(Wang et al., 2017), a curtain (Weinbeer et al., 2017) or a hat with covers on the right 

side (Rittger et al., 2017). To simulate a level 3 automation, Wang et al. (2017) 

invented the Marionette system, where the driving wizard reproduces the exact input 

that participants perform using dummy control elements. Weinbeer et al. (2017) 

attached three displays to the dashboard that represented the highway lanes to simulate 

an RtI to which participants had to react using dummy control elements.  

In vehicle setups where participants are capable of driving themselves, they are always 

provided with the serial vehicle control elements, whereas the driving wizard uses a 

retrofitted driving environment. The driving wizard can sit either in the front row (see 

Figure 2 bottom left) or in the backrow (see Figure 2 bottom right). These setups can 

be used to simulate automation levels 2 to 4. Level 5 can be simulated with certain 

limitations since the serial driving workplace provides a strong cue of needing to 

control the vehicle at some point.  

A dual front row input can be realised by providing the driving wizard with another 

set of pedals and a hidden steering device integrated into the right door (Naujoks et 

al., 2019). In this case, there is no visibility barrier to ensure that the vehicle is always 

either controlled by the driving wizard or the participant during simulated RtIs. When 

using a retrofitted steering wheel as a steering option for driving wizards, a visibility 

barrier is installed to improve the illusion of an automated vehicle. However, to ensure 

safe transfers of control during RtIs, the driving wizard must be provided with a 

display of the current state of vehicle control (Sportillo et al., 2019). For WoOz 

vehicles where the driving wizard is seated in the back, a semi-transparent glass, that 

allows the driving wizard to view through the windscreen, separates the driving 

wizard and the participant (Jarosch et al., 2019). As a special feature of this vehicle 

setup, participants can sit completely by themselves in the front of the vehicle (Osz et 

al., 2018).  

Simulating automated driving behaviour  

To simulate automated driving behaviour, the driving wizard must be able to 

consistently reproduce an automated driving style. For this reason, it is advisable to 

define the automated driving style and instruct driving wizards accordingly. The most 

obvious instruction for driving wizards is to let them drive similar to their idea of how 

automated vehicles will behave (Wang et al., 2017). Moreover, it is possible to instruct 

driving wizards in a metaphoric way, e.g. by telling them to drive “similar to a 

professional limo driver” or to achieve a smooth and conservative driving style 

(Baltodano et al., 2015). Additionally, a qualitative description of the intended driving 

style can be used. Possible parameters to be defined include the accelerating and 

decelerating behaviour (Baltodano et al., 2015), the stopping behaviour (Ekman et al., 

2019), the distance to surrounding traffic (Ekman et al., 2019), the choice of lane 

(Naujoks et al., 2019), the lane change behaviour (Weinbeer et al., 2018), the choice 
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of gear (Ekman et al., 2019) as well as the position within a lane (Ekman et al., 2019). 

The most detailed way of instructing driving wizards is to specify driving strategies 

of automated vehicles by quantitative parameter sets. These can refer to the maximum 

velocity (Jarosch et al., 2019; Naujoks et al., 2019; Omozik et al., 2019; Weinbeer et 

al., 2018), a maximum lateral acceleration (Karjanto et al., 2018) or permitted ranges 

for longitudinal acceleration and deceleration (Ekman et al., 2019). To realize the 

predefined driving behaviour, Adaptive Cruise Control (ACC) and Lane Keeping 

Assistant can be used (Rittger et al., 2017). However, one must be aware that this 

holds the risk of unintentionally simulating a state-of-the-art system (Weinbeer et al., 

2018).  

  Methodology and good practices  

Through the presence of a human wizard, a variety of cognitively demanding tasks, 

that have not been implemented yet, can be simulated (Bernsen et al., 1994) to realise 

novel systems fast and without technical development (Kiss et al., 2006). The WoOz 

methodology allows for a timely user feedback as well as observations in a natural 

environment and is cost-efficient (Stevens et al., 2019). Compared with existing 

automated systems, the WoOz paradigm allows for less constrained experiments by 

using improvisation through the wizard, but also more systematically constrained 

experiments by omitting the limitations of an automated system (Osz et al., 2018). 

Since the later technical realisation of the system is unclear (Stevens et al., 2019), one 

methodological risk is to simulate the technical system in an idealistic way or to insert 

human deficits into the simulation of machine-like behaviour. Furthermore, the 

wizard is in a feedback loop with the surrounding traffic system. Compared to other 

WoOz realizations this is a novelty. In general, it seems challenging to ensure the 

scientific quality of results achieved using the WoOz paradigm. In this context, Müller 

et al. (2019) identified the following main methodological challenges related to 

WoOz:  

1. Participants must be under the impression that they are interacting with a real 

automated vehicle.  

2. The simulated automated vehicle must behave as if it were a real automated 

vehicle.  

3. One driving wizard must be able to reproduce the pre-defined driving style at 

different times.  

4. Different driving wizards must be able to reproduce the pre-defined driving style.  

As a result, when using the WoOz methodology, not only hypotheses considering the 

research questions have to be tested, but also considering the comparability of test 

drives and the believability of the illusion. Therefore, to ensure reliable and 

comparable results, WoOz requires investigators to record, analyse and report 

additional data compared to other research paradigms (Dillmann et al., 2019). These 

include the driving dynamics produced by the driving wizard, the speed and location 

of surrounding traffic participants, as well as the interface output displayed to 

participants. Interviews and video recordings are useful to evaluate how participants 

experienced the illusion created through WoOz (Maulsby et al. 1993). Moreover, not 

all kinds of research questions can or should be answered by employing the WoOz 

methodology. It should not be used for research questions where an input by the driver 
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triggers a system reaction and when an introduction of a specific system in the market 

has to be decided. In addition, take-over situations always have to be manageable and 

therefore cannot be examined in situations with high urgency (Feldhütter et al., 2017).  

  Need for research  

The authors propose an “inverted” Turing Test methodology to be able to validate 

different driving wizards related to the research question under investigation and in 

relation to the automation system under development. Furthermore, a taxonomy is 

needed to describe the wizard’s driving and decision behaviour in a qualitative and 

quantitative way. As it seems challenging to instruct and for the driving wizard to 

monitor quantitative values while driving, a qualitative description seems reasonable 

to instruct wizards in a metaphoric way on driving style and strategic behaviour on 

the manoeuvring level. A quantitative description of the wizard’s driving behaviour 

is necessary to enable a quantitative comparison between different data sets of one or 

more wizards and with the automated system under investigation. It is informative to 

compare different data sets using average values. However, a more differentiated view 

on values gathered before, during and after certain manoeuvres seems to be necessary. 

For this comparison, several metrics seem suitable, such as the minimum time to 

collision (TTC_min), the frequency of lane changes, the minimum gap size of a lane 

change as well as metrics quantifying the cooperation with other road users. Besides 

objective data regarding the manoeuvres, it also seems necessary to describe the 

environment at the time of the manoeuvre. This could be traffic density, number of 

road lanes and time of day as well as weather and road conditions. Currently, there is 

no criteria available to decide systematically between data sets produced by different 

driving wizards in similar contexts or by the same driving wizard in differing contexts. 

This problem is well known from field operational tests and naturalistic driving 

studies. Systematic comparison and selection criteria should be checked for a potential 

transfer. Additionally, it seems necessary to compare the simulated driving behaviour 

created by driving wizards with that of a real automated vehicle.  

  Conclusion  

The WoOz paradigm was invented in 1975 to prototype natural language recognition 

systems. Nowadays it is becoming increasingly more popular to simulate automated 

vehicles on real roads. Typical WoOz vehicle setups were identified, including a setup 

where participants are seated in the back, setups based on left-hand drive as well as 

right-hand drive vehicles and two setups where both the participant and the driving 

wizard can drive the vehicle. The identified strategies to instruct driving wizards can 

be divided into metaphoric, qualitative and quantitative instructions. Lastly, strengths 

and weaknesses of the WoOz paradigm were discussed, possible fields of application 

were evaluated and a further need for research to improve the scientific quality of 

WoOz studies was determined.  
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  Abstract 

Currently, trajectory behaviour as one part of the driving style of an automated car is 

mostly implemented as a lane-centric position. However, drivers show quite different 

preferences, especially in combination with oncoming traffic. A driving simulator 

study was conducted to investigate seemingly natural reactive driving trajectories on 

rural roads. 53 subjects, 30 experienced and 23 inexpereinced drivers, tested a static 

and a reactive trajectory behaviour. There were twelve oncoming traffic scenarios 

with vehicle variations in type (trucks or cars), quantity (one or two in a row) and 

position (with or without lateral offset to the road centre) in balanced order. Results 

show that reactive trajectory behaviour leads to significantly higher acceptance, trust 

and subjectively experienced driving performance among experienced drivers. 

Smaller lane width (2.75 m) and oncoming trucks result in lower perceived safety. 

Lateral offset to the road centre and the number of oncoming vehicles lead to lower 

safety ratings. Interestingly, for the group of inexperienced drivers, no significant 

differences between the experimental conditions could be found. Driving experience 

can hence be stated as being linked to driving style preferences in automated driving. 

Results help to design an accepted, preferred and trustfully trajectory behaviour for 

automated vehicles.  

  State of literature and knowledge 

Sensory and algorithmic developments enable an increasing implementation of 

automation in the automotive sector. Ergonomic studies on highly automated driving 

constitute essential aspects for a later acceptance and use of highly automated vehicles 

(Banks & Stanton, 2015; Elbanhawi et al., 2015). In addition to studies on driving task 

transfer or out-of-the-loop issues, there is not yet sufficient knowledge on how people 

want to be driven in a highly automated vehicle (Gasser, 2013; Radlmayr & 

Bengler, 2015; Siebert et al., 2013). First insights show that preferences regarding the 

perception and rating of driving styles are widely spread. Many subjects prefer their 

own or a very similar driving style and reject other driving styles that include e.g. very 

high acceleration and deceleration rates or small longitudinal and lateral distances to 

other road users (Festner, 2016; Griesche & Nicolay, 2016). Studies show that swift, 

anticipatory, safe and seemingly natural driving styles are prioritized 

(Bellem et al., 2016; Hartwich et al., 2015). In existing literature, trajectory behaviour 

as one part of the driving style is mostly implemented as a lane-centric position of the 
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vehicle in the lane. From a technical point of view this is a justifiable and logical 

conclusion, but drivers show quite different preferences, especially in curves and in 

case of oncoming traffic (Bellem et al., 2017; Lex et al., 2017). In manual driving, 

subjects cut left and right curves and react on oncoming traffic by moving to the right 

edge of the lane. When meeting heavy traffic, subjects’ reactions are even greater 

(Dijksterhuis et al., 2012; Mecheri et al., 2017; Schlag & Voigt, 2015). The 

implementation of this behaviour into an automated driving style includes high 

potential to improve the driving experience in an automated car. Previous studies 

(Rossner & Bullinger, 2018; Rossner & Bullinger, 2019) with experienced drivers 

showed tendencies to higher perceived safety, significantly higher driving comfort 

and driving joy as well as preferences for a seemingly natural reactive trajectory 

behaviour based on manual driving. Type of the oncoming traffic as well as lane width 

had an influence on perceived safety. A small lane width and oncoming trucks resulted 

in lower perceived safety. There was an effect of quantity and position of oncoming 

traffic, too. Vehicles with a lateral offset to the road centre led to lower safety ratings 

as well as more approaching vehicles. However, the question of driving experience’s 

influence has not yet been explored. To gain insights in the importance of driving 

experience, an experiment has been set up parallel to previous research, but with 

inexperienced drivers who have not yet developed an individual driving style. Results 

are compared between the different user groups and an outlook on further studies is 

provided.  

  Method and variables 

The aim of the study was to investigate seemingly natural reactive driving trajectories 

on rural roads in an oncoming traffic scenario to better understand people’s 

preferences regarding driving styles. A fixed-based driving simulator (Fig. 1) with an 

adjustable automated driving function was used to conduct a within-subject design 

experiment. 53 subjects, 30 experienced and 23 inexpereinced drivers, tested a static 

and a reactive trajectory behaviour on the most common lane widths in Germany: 

2.75 m and 3.00 m. This resulted in four experimental conditions that were presented 

in randomized order to minimize potential systematic biases. All subjects of the 

experienced group were at least 25 years old and had a minimum driving experience 

of 2.000 km last year and 10.000 km over the last five years. The inexperienced drivers 

had no to a few hours driving experience (see Table 1 for details). The static trajectory 

behaviour kept the car in the centre of the lane throughout the whole experiment 

whereas the reactive trajectory behaviour moved to the right edge of the lane when 

meeting oncoming traffic. 

      

Figure 1. Driving simulator with instructor centre (left) and an exemplary subject (right) 
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Figure 2. Variations of oncoming traffic, resultant lateral distances to the ego-vehicle on two 

different lane widths and in two different trajectory behaviour models 

There were twelve oncoming traffic scenarios that varied in type (trucks and cars), 

quantity (one or two in a row) and position (cars in the middle of the oncoming lane 

and cars with lateral offset to the road centre) in balanced order – see Fig. 2. The 

participants were required to observe the driving as a passenger of an automated car. 

During the drive subjects’ main feedback tool was an online handset control to 

measure perceived safety as shown in Fig. 3. This tool provides information about the 

occurrence of safety concerns in each location of the track and could be recorded in 

sync with video, eye-tracking, physiological or driving data (Hartwich et al., 2015). 

After each experimental condition subjects filled in questionnaires regarding 

acceptance (Van der Laan et al., 1997), trust in automation (Jian et al., 2000) and 

subjectively experienced driving performance (Voß & Schwalm, 2017) and were 

interviewed at the end of the study.  

 

Figure 3. Handset control (left) and visual feedback (right) to measure perceived safety while 

driving highly automated. Higher values indicate higher perceived safety. 

0                                                                            10 
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Table 1. Subjects characteristics 

 Number Age 
Driver’s licence holding 

[years] 

Mileage last five years 

[km] 

  M SD M SD M SD 

Experienced drivers 

female 12 29.8 7.9 10.6 4.2 40,083 32,745 

male 18 30.9 6.8 11.9 6.1 68,333 43,661 

total 30 30.4 7.1 11.3 5.3 54,208 41,501 

Inexperienced drivers 

female 14 16.8 0.4 / / / / 

male 9 16.9 0.3 / / / / 

total 23 16.8 0.4 / / / / 

 

  Results 

Ratings of acceptance, trust and subjectively experienced driving performance were 

compared performing two-factor ANOVAs with repeated measurements including 

lane width and trajectory behaviour. Fig. 4 shows the mean values of the dependent 

variables for all four drives, whereas Table 2 describes the overall and interaction 

effects of the two independent variables.  

Acceptance 

Within-subject tests show no difference for the usefulness scale, but significantly 

lower satisfaction ratings for the static trajectory behaviour, F(1, 29) = 8.038, p = .008, 

p
2 = .217, and for the 2.75 m lane condition, F(1, 29) = 5.193, p = .030, p

2 = .152, 

for experienced drivers. As seen in Figure 4, subjects tend to differentiate more 

between trajectory behaviours on the 2.75 m lane condition. No interaction effect 

between lane width and trajectory behaviour is found (Table 2). No significant 

differences between the experimental conditions are found for inexperienced drivers. 

Trust 

Within-subject tests show significantly lower trust ratings for the 2.75 m lane 

condition, F(1, 29) = 12.103, p = .002, p
2 = .294, and the static trajectory behaviour, 

F(1, 29) = 10.587, p = .003, p
2 = .267, for experienced drivers. As seen in Figure 4, 

subjects tend to differentiate more between trajectory behaviours on the 2.75 m lane 

condition. No interaction effect between lane width and trajectory behaviour is found 

(Table 2). No significant differences between the experimental conditions are found 

for inexperienced drivers. 
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                 Experienced drivers                                    Student drivers   

Usefulness scale (acceptance) rating from -2 to +2 

 

Satisfaction scale (acceptance) rating from -2 to +2 

 

Trust in automation rating from 0 to 7 

 

Subjectively experienced driving performance from 0 to 100 

 

static            reactive 

Figure 4. Mean values of acceptance (usefulness and satisfaction), trust and SEDP 
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Subjectively Experienced Driving Behaviour (SEDP) 

Within-subject tests show significantly lower SEDP ratings for the 2.75 m lane 

condition, F(1, 29) = 12.537, p = .001, p
2 = .302, and the static trajectory behaviour, 

F(1, 29) = 7.483, p = .011, p
2 = .205, for experienced drivers. As seen in Figure 4, 

subjects differentiate between all four experimental conditions. No interaction effect 

between lane width and trajectory behaviour is found (Table 2). No significant 

differences between the experimental conditions are found for inexperienced drivers. 

 

Table 2. Results of two-factor ANOVASs with repeated measurements including lane width 

and trajectory beahaviour 

Dep. variables  Independent variables F p ηp² 

Experienced driver 

usefulness scale  

(acceptance) 

Trajectory behaviour 

Lane width 

Trajectory behaviour x lane width 

3.399 

2.757 

.454 

.075 

.108 

.506 

.105 

.087 

.015 

satisfaction scale 

(acceptance) 

Trajectory behaviour 

Lane width 

Trajectory behaviour x lane width 

8.038 

5.193 

2.187 

.008 

.030 

.150 

.217 

.152 

.070 

trust 

Trajectory behaviour 

Lane width 

Trajectory behaviour x lane width 

10.419 

11.843 

2.205 

.003 

.002 

.148 

.264 

.290 

.071 

SEDP 

Trajectory behaviour 

Lane width 

Trajectory x lane width 

7.700 

13.044 

.113 

.010 

.001 

.739 

.210 

.310 

.004 

Inexperienced drivers 

usefulness scale 

Trajectory behaviour 

Lane width 

Trajectory behaviour x lane width 

.627 

1.980 

.071 

.437 

.173 

.792 

.028 

.083 

.003 

satisfaction scale 

Trajectory behaviour 

Lane width 

Trajectory behaviour x lane width 

.207 

.357 

.842 

.653 

.556 

.369 

.009 

.016 

.037 

trust 

Trajectory behaviour 

Lane width 

Trajectory behaviour x lane width 

2.461 

.080 

.626 

.131 

.779 

.437 

.101 

.004 

.028 

SEDP 

Trajectory behaviour 

Lane width 

Trajectory x lane width 

.199 

.778 

3.458 

.660 

.387 

.076 

.009 

.034 

.136 
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Handset control results 

For a detailed analysis, the handset control data was reversed and cumulated for all 

subjects to identify clusters that represent low perceived safety. Fig. 5 (experienced 

drivers) and Fig. 6 (inexperienced drivers) give an overview of the whole test route 

with its different types of oncoming traffic and show highlights for the absence of 

high perceived safety – hereafter stated as perceived safety concerns.  

The graphs show the static and the reactive trajectory behaviour in comparison on 

2.75 m (upper section) and 3.00 m (bottom section) lane width each. The maximum 

of perceived safety concerns is 300 (10 as maximum per subject x 30 subjects) for the 

group of experienced drivers and 230 (10 x 23) for the group of inexperienced drivers. 

For example, a data point of 80 can arise of 10 participants feeling complete unsafe 

or 20 people experiencing mid perceived safety.  

Remarkably, the data for the inexperienced drivers shows no tendencies. When 

looking at the distribution of the descriptive data for experienced drivers, several 

tendencies of perceived safety concerns are able to be observed that are conform to 

the questionnaire results. Wider lanes and reactive trajectory behaviour lead to higher 

perceived safety. The feedback of the handset control set allows a more detailed and 

situation-specific analysis. Position, type and quantity of oncoming traffic do also 

have an influence on perceived safety (assumption based on descriptive data, 

inference statistical evaluation in progress): 

1. More approaching vehicles lead to higher perceived safety concerns.  

2. Oncoming traffic with lateral offset to the road centre leads to more perceived 

safety concerns than lane-centric oncoming traffic. 

3. Heavy traffic (e.g. trucks in this experiment) lead to higher perceived safety 

concerns. Further analysis is going to include correlations between perceived 

safety concerns and number, type and positon of oncoming traffic as well as cross 

lane width evaluations.  
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Figure 5. Cumulated handset control feedback of perceived safety concerns for 

experienced drivers 
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Figure 6. Cumulated handset control feedback of perceived safety concerns for 

inexperienced drivers 
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Conclusion and outlook  

The aim of the study was to investigate seemingly natural reactive driving 

trajectories on rural roads in an oncoming traffic scenario to better understand 

people’s preferences regarding driving styles. The use of manual drivers’ trajectories 

as basis for implementing highly automated driving trajectories showed high 

potential to increase perceived safety (Bellem et al., 2017; Lex et al., 2017; 

Rossner & Bullinger, 2018; Rossner & Bullinger, 2019). Data from the experienced 

drivers revealed significantly higher acceptance (only satisfaction scale), trust and 

SEDP for the reactive trajectory. We also identified traffic density, lateral position 

and type of oncoming vehicles as factors that influence perceived safety during 

automated driving. In order to better understand the impact of these different 

aspects, further inference statistical and correlation analysis should be conducted. 

Based on the results so far, it is concluded that factors which influence perceived 

safety in manual driving (Lex et al., 2017; Dijksterhuis et al., 2012; Mecheri et al., 

2017; Schlag & Voigt, 2015) are also factors influencing perceived safety during 

highly automated driving. As drivers cannot react to oncoming traffic by shifting to 

the right edge of the lane, the automated vehicle has to do so to increase perceived 

safety and driving comfort of the passenger. Therefore, it seems most relevant to 

investigate manual trajectory behaviour in more detail to implement better reactive 

trajectories that include less negative side effects and lead to a better driving 

experience. For the inexperienced drivers, no effects for trajectory behaviour and 

lane width were found. A possible explanation is obviously the absence of driving 

experience which leads to the absence of a personal driving style. Without this 

personal driving style, preferences as a baseline against which the automated driving 

style can be compared, are missing. Additionally, witout driving experience critical 

driving situations can rather not be distinguished from uncritical driving situations. 

It is also possible that there exists more trust in automation within the group of 

inexperienced drivers. Another influencing factor might be the questionnaires that 

were developed to analyse the behaviour, attitude and perception of experienced and 

therefore older drivers. In sum, it can be concluded that the results provide an 

interesting outlook for the future when people may grow up with much more 

automation and devising driving styles will follow other paradigms than today. For 

the near future and thus for a set of experienced drivers, it is important to note that a 

positive driving experience has the potential to improve the acceptance of highly 

automated vehicles (Siebert et al., 2013; Hartwich et al., 2015) and therefore has 

both ergonomic and economic benefits.  
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  Abstract 

Discomfort and well-being of the driver and/or the passengers during automated 

driving as well as their acceptance and trust in the automation system are important 

criteria considering the usage of automated driving vehicles. Thereby, the driving 

behaviour of the automated vehicle plays an important role. For this contribution, we 

implemented three driving styles, which differ only regarding the tactical driving 

behaviour on the manoeuvre level. Trajectory planning and control was identical. One 

driving style contained only lane following on the right lane without lane changes. 

The other two driving styles varied according to their lane change decision behaviour. 

To evaluate the aforementioned criteria of the driving styles, a driving study (N=31) 

was conducted in real traffic on a highway with a test vehicle in which vehicle 

guidance was performed by an automation system. The results reveal that the well-

being of the drivers is not influenced by the driving style. On the contrary, trust and 

acceptance are influenced by the driving style. Overall, 97% of the participants would 

prefer a driving style including lane change manoeuvres. However, 61% had the 

highest feeling of safety while driving without lane changes.  

  Introduction 

Besides technical and legal questions, human-computer interaction is considered 

essential for the development of automated driving functions on all levels of 

automation which have been defined in the taxonomy for automated driving systems 

published by the Society of Automative Engineers (SAE, 2016), e.g. in Saffarian et 

al. (2012). So far, work in this domain mainly focused on concepts for the interaction 

between driver and automation (e.g. Albert et al., 2015; Flemisch, 2003; Flemisch et 

al., 2014; Hoc, 2000; Schreiber et al., 2009), control transitions and take-over requests 

(eg. Feldhütter et al., 2018; Gold, 2016; Gold et al., 2013; Petermann-Stock et al., 

2013; Zeeb et al., 2015), or the design of human machine interfaces (e.g. Albert et al., 

2015; Franz et al., 2012; Othersen, 2016). Furthermore, the way the vehicle behaves 

and its so called “driving style” is considered to have an important influence on trust, 

acceptance, and the experience of automated driving (Bellem et al., 2016; Elbanhawi 

et al., 2015; Festner et al., 2017; Oliveira et al., 2019). Following Griesche et al. 

(2016), the driving style is described by a set of parameters on the tactical and 

operational vehicle guidance layers, defined by Matthaei (2015). 
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However, there is no common knowledge about the precise configuration of the 

parameters that differentiate various driving styles. Most of the previous studies, 

comparing different driving styles during automated driving, focused on dynamic 

metrics such as velocity, longitudinal and lateral acceleration, jerk, and the duration 

of a lane change (Bellem et al., 2018; Festner et al., 2016; Hartwich et al., 2018; Lange 

et al. 2014). Regarding the accepted point in time at which the lane change should be 

initiated, research from a human factors perspective is sparse. Rossner and Bullinger 

(2019) compared three highly-automated driving styles during highway driving 

varying different factors. One of those factors, the inition time of the lane change 

manoeuvres, included the tactical lane change decision. Results show that people 

prefer a more comfortable driving style which is defined with a following distance to 

the leading vehicle of 2.9s, a maximum acceleration of 1.5m/s2, a maximum 

deceleration of -2m/s2, a duration of the lane change to the left of 9s and to the right 

of 8.5s and the distance to a leading vehicle with overtaking initiation of 130m.  

Nevertheless, by also varying these other factors, no conclusion can be made that the 

factor considering the initiation time of the lane change manoeuvres had the key 

influence on the perceived safety and comfort.  

All the previous mentioned studies have in common that they were all conducted 

under simulated settings (Bellem et al., 2018; Rossner & Bullinger, 2019) or on test 

tracks (Festner et al., 2016; Festner et al., 2017; Hartwich et al., 2018; Lange et al., 

2014) leaving aside important influences of real-world scenarios.  

The aim of this study was to overcome these limitations and to investigate different 

driving styles differing on the tactical vehicle guidance in real-world highway driving. 

Main focus and, thus, an exploratory research question was if the driving style has an 

influence on the aforementioned metrics perceived comfort, personal well-being, 

trust, and acceptance. Moreover, it should be examined what the preferred driving 

style is considering well-being and safety. 

  Method 

Test setup and equipment 

The driving study took place on the three-lane German highway A9 between the 

highway exits Lenting and Holledau. The test vehicle was an Audi A7, year of 

construction 2010. A prototypical level 3 (SAE, 2016) automation system was 

implemented in the test vehicle which completely performed the lateral and 

longitudinal vehicle guidance. However, the test vehicle only drove on the right and 

middle lane of the highway due to safety reasons. 

The participants were seated on the driver seat and were accompanied by two 

experimenters. One always sat on the passenger seat and was acting as a safety driver. 

This task was supported via a monitor containing information about the automation 

system, a second interior mirror, driving school mirrors as well as driving school 

pedals to be able to intervene in vehicle guidance in risky driving situations (referring 

to Cramer et al., 2018). This experimenter was able to adapt the driving function, for 

instance the target velocity or abort/initiate lane changes, only in exceptional cases if 

it was necessary. The second experimenter was seated in the back row and was 
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responsible for the questionnaires, functional variations, and providing the 

participants with instructions.  

The participants received visual information about the activation status, the current 

manoeuvre, and surrounding obstacles in front of the vehicle in the instrument cluster 

display. Data recording included vehicle data, internal data of the automation system, 

audio recordings, front camera, as well as driver observation camera.  

Driving styles 

Three driving styles were implemented in the test vehicle. The functional realization 

on the operational layer of the automation system (according to Matthaei (2015)) was 

equal for all driving styles. The trajectory planning was based on the approach of 

Werling et al. (2010) including adaptions by Heil et al. (2016). The decisions on the 

tactical layer of the automation system (according to Matthaei (2015)), in this case 

executing lane changes, were different for the driving styles. Considering the first 

driving style, the vehicle was not performing any lane changes, and thus was only 

driving in the right lane of the highway. The other two driving styles performed lane 

changes. Their execution was implemented considering different aspects according to 

Ulbrich and Maurer (2015). The aspects of dynamic traffic were implemented based 

on a fuzzy logic (cf. Du and Swamy (2019) for basic principles about fuzzy logic). 

For the two driving styles with lane changes, the shape parameters of the membership 

function for the deceleration of the rear vehicle (cf. Ulbrich & Maurer, 2015) are 

varied: 0.6 and 0.9m/s2 (dynamic driving style), or 0.38 and 0.63m/s2 (cautious driving 

style). Moreover, the time gap for the rear vehicle (cf. Ulbrich & Maurer, 2015) 

differed between the cautious (2.0s) and the dynamic (0.5s) driving style. These 

parameters were selected with developers of the automated driving function. 

However, the two driving styles with lane changes were called cautious and dynamic 

to distinguish them, both represented defensive driving behaviour. This can further be 

seen in Figure 1, 2, and 3, which represent the timely distributions of the lateral and 

longitudinal accelerations as well as the velocity for each driving style. The amount 

of performed lane changes depending on the driving style is presented in Table 1.  

Lane change aborts occurred quite often. One main reason was the limited rear sensor 

range (approximately 150m). 

Figure 1. Distribution (mean and standard deviation) of the longitudinal acceleration over 

the driving time for the three driving styles. 
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Figure 2. Distribution (mean and standard deviation) of the absolute lateral acceleration 

over the driving time for the three driving styles. 

Figure 3. Velocity distribution (mean and standard deviation) over the driving time for the 

three driving styles. 

Table 1. Amount (mean (M) and standard deviation (SD)) of lane changes (LC) and lane 

change aborts depending on the driving style. 

     Cautious  Dynamic 

 M SD LC abort  M SD LC abort 

Lane change left 3.33 1.65 
48.98% 

 5.13 2.11 
35.83% 

Lane change abort left 3.20 2.44  2.87 1.59 

Lane change right 2.60 1.48 
39.53% 

 4.77 1.94 
30.58% 

Lane change abort right 1.70 1.37  2.10 1.37 

Study design 

The driving study was conducted in German. At the beginning of the study, the 

participants received a verbal briefing on how to handle the test vehicle and what to 

expect during the driving study. Following, the participants drove manually on the 

highway and activated the automation system. The sequence of the driving study is 

presented in Figure 4. 

 

Figure 4. Sequence of driving study. 
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During the settling-in phase, for approximately the first 7 minutes, the automation 

system conducted no lane changes and started with these afterwards. Subsequently, 

the participants experienced the three driving styles in a randomized order. However, 

part 1 and 2 were a bit shorter as part 3 due to the fact that the turnaround at the 

highway exit was earlier. During the driving parts, the participants’ task was to speak 

all their thoughts out loud (think-aloud method, Ericsson & Simon, 1980) about the 

driving behaviour of the automation system. The evaluation of the participants’ 

comments is not part of this paper. At the end of every driving part, the participants 

answered a questionnaire about, for instance, trust and acceptance (cf. section results). 

Summing up, a short overall questionnaire was conducted. 

Processing and evaluation of the data 

The rating scales of the questionnaires were assumed as interval scaled variables 

because the answer scales were equidistant (Döring & Bortz, 2016). Furthermore, 

normal distribution of the data was expected if N>30 (Bortz & Schuster, 2010; Field, 

2012). For data evaluation, a repeated measures analysis of variance (ANOVA) with 

following post-hoc analysis using Bonferroni correction was conducted for the 

dimensions well-being, comfort, trust, and acceptance. The data was corrected, if 

Mauchly’s test for sphericity showed significance (Greenhouse-Geisser or Hunyh-

Feldt correction (𝜀 >0.75)). 

Sample 

N=32 participants were available for this driving study, whereby one had to be 

excluded from data evaluation due to bad performance of the automation system 

induced by bad weather. The sample (N=31) had a mean age of 36.1 years (SD=11.9, 

MIN=22, MAX =65) and was a variation of professional background and gender 

(22.6% technical female, 25.8% technical male, 25.8% non-technical female, and 

25.8% non-technical male). The median mileage per year was 15,001-20,000 km and 

the mean mileage per week was 265km (SD=203km) with on average 41% highway 

driving. 74% of the participants used adaptive cruise control, 77% lane keeping 

assistance, and 48% partially automated driving systems (e.g. traffic jam assistance) 

before. 

Results 

Well-Being 

The well-being of the participants during the study was evaluated by the short version 

A of the German multidimensional state survey (MDBF, Steyer, et al., 1997). This 

short form has 12 items on a five-point rating scale from 1 (“not at all”) to 5 (“very”), 

corresponding to the three bipolar dimensions good-bad mood, awake-tired, and 

calm-nervous. For every subscale, the values of the respective items were summed up 

leading to a value per subscale between 4 and 20, whereby a high value indicates a 

good mood, awakeness, and calmness and a low value a bad mood, tiredness, and 

nervousness. The participants were asked to rate their current well-being five times: 

in the beginning, after the settling-in phase, and after each driving style. No 

differences were found between the various times of measurement for either the 
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dimension good-bad mood (F(2.46)=1.34, p=.268, f=.21), awake-tired (F(2.89)=2.45, 

p=.071, f=.29), or calm-nervous (F(2.92)=1.32, p=.273, f=.21). All three subscales 

reached mean values between 15.8 and 18.5 out of a maximum of 20. Thus, the overall 

well-being of the participants during the experiment can be described as in a good, 

awake, and calm mood. The values for the mean (M) and standard deviation (SD) for 

all times of measurement and subscales can be found in Table 2. 

Table 2. Participants' mean ratings for the three dimensions of the MDBF  

 
Beginning 

 Settling-in 

phase 

 Only right 

lane 

 
Cautious 

 
Dynamic 

 M SD  M SD  M SD  M SD  M SD 

Good-bad mood 18.45 1.23  18.00 1.77  17.94 1.91  17.58 2.36  17.94 1.90 

Awake-tired 16.81 2.07  17.00 1.79  15.84 3.01  16.35 2.67  16.65 2.48 

Calm-nervous 16.39 2.62  16.48 2.11  17.35 2.76  16.55 2.80  17.00 2.07 

 

  Comfort 

To survey driving comfort, the subscales discomfort and comfort of the questionnaire 

to measure driving comfort and enjoyment developed by Engelbrecht (2013) were 

used. Hereby, the rating scale was adapted to seven anchors from 1 (“does absolutely 

not apply”) to 7 (“does absolutely apply”). The participants were asked to rate the 

previous car ride after each driving condition. The sample of the subscale comfort was 

reduced due to a mistake in the questionnaire for the first participants. The ANOVA 

revealed no differences for the perceived discomfort (F(1.52)=1.61, p=.214, f=.23) 

and comfort (F(1.35)=3.42, p=.063, f=.14) between the three different driving styles. 

Overall, the experienced discomfort during the automated car ride was rated low 

(mean values around 2) and the comfort high (mean values around 5.50). The values 

for the mean (M) and standard deviation (SD) for each driving style and subscale can 

be found in Table 3.  

Table 3. Participants' mean ratings for their perceived comfort and discomfort for the three 

driving styles (scale: 1≙"does absolutely not apply" - 7≙"does absolutely apply"). 

 Only right lane  Cautious  Dynamic 

 M SD  M SD  M SD 

Comfort (N = 23) 5.85 1.14  5.21 1.20  5.73 0.84 

Discomfort 1.78 0.99  2.07 1.90  1.77 0.79 

 

  Trust 

To assess the trust in the automation the questionnaire of Körber (2018) was used 

which is divided into six subscales with a range from 1 (“strongly disagree”) to 5 

(“strongly agree”). To determine the general trust in automation, the subscale 

Propensity to Trust was surveyed once before the study. In order to get the respective 

trust in the automation system of each driving style, the participants were asked to rate 

the corresponding items of the subscales Reliability/Competence, 

Understanding/Predictability, and Trust in Automation after each driving condition. 
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The evaluation of the Propensity of Trust scale showed a mean value of the sample of 

3.56 (SD=.53). The applied ANOVA indicated significant differences between the 

driving styles for the three subscales Reliability/Competence (F(1.67)=3.42, p=.049, 

f=.34), Understanding/Predictability (F(1.92)=10.90, p<.001, f=.60), and Trust in 

Automation (F(1.65)=5.43, p=.001, f=.43). The following post hoc pairwise 

comparisons did not reveal any significant difference for the dimension 

Reliability/Competence (p>.05). Considering the subscale Understanding/ 

Predictability, results of the post hoc analysis showed that the participants ranked the 

driving style only using the right lane with higher understanding and predictability in 

comparison to the dynamic (M1-3=0.36, p=.019) as well as the cautious driving style 

(M1-2=0.61, p=.001). Furthermore, the participants showed less trust in automation 

during the cautious driving style compared to the driving style only using the right 

lane (M1-2=.44, p=.044), and the dynamic driving style (M2-3=-0.32, p=.047). The 

results are represented in Figure 5. and Table 4. 

 

Figure 5. Participants' mean ratings for three dimensions of the questionnaire of Körber (2018) 

for the three driving styles (scale: 1≙"strongly disagree" - 5≙"strongly agree"; *p<.05, 

**p<.01). 
 

Table 4. Participants' mean ratings for three dimensions of the questionnaire of Körber 

(2018) for the three driving styles. 

 Only right lane  Cautious  Dynamic 

 M SD  M SD  M SD 

Reliability/Competence 3.64 0.73  3.35 0.79  3.53 0.60 

Understanding/Predictability 3.94 0.67  3.31 0.85  3.53 0.69 

Trust in Automation 4.00 0.80  3.56 0.92  3.89 0.65 

   

  Acceptance 

The acceptance of the driving style was evaluated by the questionnaire of Van der 

Laan et al. (1997) in the German version (Kondzior, n.d.). This questionnaire has nine 

items on a five-point rating scale from -2 to 2 in which the mean value of five items 

results in the usefulness scale (y-axis) and the mean value of the other four items in 

the satisfying scale (x-axis). The ANOVA revealed a significant difference between 

the driving styles for both the usefulness (F(1.84)=5.03, p=.012, f=.41) and satisfying 

scale (F(1.95)=3.28, p=.046, f=.33). Subsequently post hoc analysis showed a 
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significant higher usefulness for the dynamic driving style compared to the driving 

style only using the right lane (M1-3=-.42, p=.009). No other post hoc pairwise 

comparison showed a significant effect (p>.05). The scores with positive mean values 

point out that all driving styles were seen as useful and satisfying (Figure 6). The 

values for the mean (M) and standard deviation (SD) for each driving style and the 

two subscales can be found in Table 5. 

 

Figure 6. Evaluation of acceptance of the three driving styles (scale: five-point semantic 

differential; **p<.01) 

Table 5. Participants' mean ratings for the two dimensions usefulness and satisfying of the 

acceptance questionnaire of van der Laan (1997) for the three driving styles (scale: five-point 

semantic differential) 

 Only right lane  Cautious  Dynamic 

 M SD  M SD  M SD 

Usefulness 0.73 0.85  0.92 0.75  1.15 0.50 

Satisfying 1.05 0.78  0.95 0.93  1.32 0.63 

 

  Prioritisation 

After the participants had experienced all three driving styles, they were asked to 

choose one of them considering the following statements: 

• During which car ride did you feel the best well-being?  

• During which car ride did you feel the safest? 

• Which car ride’s driving style would you prefer for an automated vehicle driving 

on the highway? 
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For the factor well-being, nearly half of the participants (48.39%) preferred the 

dynamic driving style. Only four participants (12.90%) chose the driving style that 

was only using the right lane, and 12 (38.71%) the cautious driving style. In contrast, 

19 participants (61.29%) indicated that they felt the safest during the driving style 

only using the right lane and only seven (22.58%) during the cautious driving style, 

and five (16.13%) during the dynamic driving style. For their overall prioritisation, 

96.8% of the participants favoured a driving style including lane change manoeuvres 

(dynamic: 54.84%, cautious: 41.94%) and only one participant (3.23%) would prefer 

a driving style only using the right lane (Figure 7). 

 

Figure 7. Distribution of the preferred driving style considering well-being, safety, and an 

overall priority. 

Conclusion and Discussion 

Three different driving styles for conditionally automated highway driving with 

varying lane change behaviour were evaluated. Overall, over 60% of the participants 

felt the safest during the driving style only using the right lane of the highway as well 

as rated this driving style as the most predictable and understandable. An explanation 

for this result is that the absence of lane changes leads to the higher predictability and 

feeling of safety. Moreover, the lower velocity could also have influenced the feeling 

of safety (Figure 3). In contrast to this, the driving style only using the right lane was 

considered as less useful than the dynamic driving style. The overall priority clearly 

showed that the majority preferred a driving style including lane changes as only one 

driver voted for the driving style only using the right lane. However, the driving style 

did not influence the well-being of the participants. This metric was always evaluated 

after the test drive when the vehicle was parked and, thus, might have influenced the 

real well-being while driving. Evaluating the latter metric while driving should be 

considered. During the cautious driving style, the participants reported less trust in 

automation than during the dynamic driving style. A presumable reason for that could 

be the higher number of aborted lane changes during the cautious driving style. 

Overall, even if there are differences between the three driving styles, the participants 
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always perceived high well-being and comfort as well as high trust and acceptance. 

Furthermore, results indicate that the dynamic driving style is overall preferred, even 

though ratings in trust and safety were higher during a driving style only using one 

lane of the highway. 

As it is always important to have a look at real-world scenarios, this also has its 

limitations when it comes to the standardisation of the conditions. On a real highway 

among other vehicles, the behaviour of other drivers, the traffic, and the weather is 

not controllable as it is in simulated settings or on test tracks. Considering this, the 

study took place at the same times during the day to ensure similar traffic and it was 

avoided to drive when it was raining, but in real-world settings, some variances are 

not preventable. The study was voluntary, so most of the participants were interested 

in automated driving and not too anxious or sceptical about it. Consequently, this 

could have influenced the ratings.  

Much more research is necessary in this field to design a driving style for automated 

highway driving. One aspect for instance could be the influence of the motivation of 

the car ride or non-driving related tasks. Both aspects could have an important impact 

on the perception of different driving styles during automated driving.  
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  Abstract 

Partial and conditional automated driving allows the driver to transfer responsibility 

to the vehicle. While assistance systems are designed to deal with aspects of the 

driving task, currently no assistance systems are available to predict driver behaviour 

for take-over when the vehicle is handling the driving task. This is important as drivers 

might interpret driving situations differently than an activated automation function. 

This can cause self-initiated take-overs leading to a reduction of trust in the system. 

In theory, if a prediction is robust, an assistance system could also adapt based on this 

prediction. A new subjective complexity model addressing these situations is 

introduced. The subjective complexity model learns situations in which individual 

drivers have previously self-initiated control of the driving task. Based on exemplary 

sideswipe manoeuvres, the system concept is explained and simulated with a training 

and test dataset. Upon introducing this system, a discussion is initated on the 

difference between objective and subjective situation complexity. A distinction is 

drawn between mathematical descriptions based on vehicular sensor data and human 

interpretation of the environment. The proposed system also functions as a carrier 

technology for further investigations between the differences of objective and 

subjective complexities. 

  Introduction 

The driving task consists of many short-term decisions, e.g. steering to hold vehicle 

in lane, and long-term decisions, e.g. route navigation. Different factors need to be 

considered in order for the driver to successfully solve these tasks. Therefore, it is 

important to understand which aspects are considered complex. This can help to 

include, enhance or adjust assistance accordingly. At the same time, humans are 

decisively influenced by the environment, which they encounter and thereby confined 

in their range of interactions. With various developments in the field of automated 

driving, possibilities of directing attention away from the driving task will become 

possible. In Level 3 (SAE J3016, 2018) the driver can focus on non-driving related 

tasks, but needs to regain control of the vehicle when warned. Recent research 

regarding take-over behaviour has shown that environmental factors such as traffic 

density and time-budget (distance to objects) play a crucial role in successful take-

over capability for Level 3 (Gold, et al., 2016; Lotz, et al., 2019; Zhang, et al., 2019). 

There is a large variety of definable environmental factors, making it difficult to 
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pinpoint isolated factors to varying driver take-over behaviour. When revisiting traffic 

density as an exemplary factor, other environmental factors such as time to collision, 

number of lanes and colour of vehicles can form interaction effects. Multiple isolated 

environmental factors can merge to form singular driving situations through the 

relation of several of these factors over time. Arbitrary measures, such as low or high 

traffic density, also make a comparison difficult. However, the driving environment 

can be measured with a variety of different sensors mounted on a vehicle. Based on 

the chosen sensor setup, this creates a representation with a sensor-specific degree of 

detail of environmental factors or higher-level situations. As a driver also perceives 

the environment with her/his senses and develops a representation of the situation, 

influences of environmental factors such as traffic density on the driver can be 

compared and deduced. If a certain driver reaction is linked to an environmental 

factor, based on the sensor representation of the environment an assistance system 

could possibly predict driver behaviour. This information would especially be 

valuable in the abovementioned take-over situations, in which responsibility shifts 

from the machine to the human. The mathematical description of the environment 

could be attributed to subjective complexities, identifying scenarios that cause higher 

workload and situations in which the driver needs assistance. As there are possibly 

also inter- and intra-individual differences in perceived subjective complexity, an 

ideal assistance system would adapt individually and specific to different driving 

situations. This could lead to a better usability, correct allocation of assistance and 

acceptance of automated driving function. 

Sensors such as cameras, radars and lidars collect data that describe an abstraction of 

their perceived environment and allow interpretation either through humans or 

computational algorithms. In a simplistic form, this data collection is similar to the 

cognitive processing for the first perception phase towards building situation 

awareness (Endsley, 1995). In what terms does environmental complexity differ 

mathematically (objective complexity) to an individual perceived situation 

complexity (subjective complexity) and how can this be measured? The second part 

of this question will be addressed in this paper and a solution will be developed to 

enable the investigation of the first part of the question in future work. 

It is worth defining our interpretation of these two different versions of complexity, 

explicitly regarding driving environments. Objective complexity is the mathematical 

describable driving situation in which all objects within a predefined area are 

continuously referenced to an ego-vehicle. This mathematical description includes 

metrics such as the distances, velocities (relative and absolute) and the time to 

trajectory intersections. The mathematical composure of the factors can vary and yield 

different values of objective complexity depending on the interpretation of the 

mathematical description. In a practical example, the data would be obtained from 

singular or combinations of sensors, capturing information of environmental objects. 

This differs from general global descriptions of complexity such as the number of 

vehicles in the environment (Gold, et al., 2016), in which no references to an ego-

vehicle and driver are drawn. The problem with global descriptions, without reference 

to the driver in the environment, is that the dispersion of vehicles is not evident from 

the point of view of the driver. When listing the amount of vehicles surrounding the 

ego-vehicle, no information is given where all these vehicles are (front, behind, lane 
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etc.). Subjective complexity is the perceived complexity of a driving situation from the 

human’s perspective. This includes all stationary and moving objects relevant to the 

driving task. Abstract cognitive and psychological constructs such as driving situation 

familiarityaffect this complexity and are not measureable with similar accuracy as the 

metrics of objective complexity. This is mainly because measurements from 

designated sensors such as electroencephalography, skin conductance or any other 

psychophysiological measurement are not unambiguously linked to any of these 

constructs and quantification of human response is not possible. A scale for the 

subjective complexity is also arbitrary, relative to the psychological constructs and 

subject to individual differences. 

Previous research has focused on describing environmental factors specifically for the 

driving environment, such as the time to resume control and the quality of the 

transition depend on driver-vehicle-environment factors (Gold, et al., 2016). Early 

work resulted in a classification scheme of driving situations with three million unique 

situations (von Benda, 1977). This classification scheme was later simplified to 

incorporate only four major aspects; horizontal course, traffic density, special weather 

and hazards (Fastenmeier, 1995). Due to the high complexity of factors, different 

types of models have been introduced to predict driver transition behaviour. The first 

class of models utilizes mathematical models, e.g. regression models, to extrapolate 

data based on empirical findings post-hoc and explain correlations in the data 

(McDonald, et al., 2019; Zhang, et al., 2019). A second class of models provides 

online prediction based on data obtained through driver and environment monitoring 

(Nilsson et al., 2015; Braunagel et al., 2017; Lotz & Weissenberger, 2019). However, 

subjective driver interpretation is missing as input data. The problem with all of these 

models is that defined factors can interact, e.g. traffic density or driver experience, 

effects that cannot be investigated in isolation within one study. Therefore, the 

investigation of differences between objective and subjective complexity, as defined 

above, has been difficult in the past. The investigation was especially difficult as 

drivers continuously needed to control the vehicle, always generating a response at 

steering. This has now changed through automated driving. 

Subjective relevance is an important factor to predict individual behaviour. Ohn-Bar 

and Trivedi (2016) conducted research on the subjective relevance of objects in the 

driving environment, stating that spatio-temporal reasoning is needed to identify 

relevance by the driver. Therefore, the context of space and time in the driving 

situation of any automation level should be regarded when investigating 

environmental effects on the driver. 

Through recent technical advances of automated driving, it is possible for the driver 

to take their hands off the steering wheel and observe the environment. Automated 

driving, specifically Level 2 and Level 3, is an ideal enabling technology suited for 

the investigation of differences between objective and subjective complexity. 

Therefore, it is possible to gather data on subjectively perceived critical complexity 

where previously the driver continuously generated responses at the steering and the 

data were open for interpretation. A distinction of intended interventions was difficult, 

because drivers constantly had their hands on the steering wheel.  
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This paper introduces a conceptual advanced driver assistance system. The system is 

designed to learn situations in which the driver takes back control of the self-driving 

vehicle, when no request to intervene is issued. The assistance system thereby 

registers situations based on current objective complexity from the vehicular sensors 

and associates it with subjective complexity. The moment drivers reclaim control 

through self-initiated take-over, the objective complexities gathered by vehicle 

sensors can be identified in which no automated driving is desired. Thereby, the 

assumption is formed that the drivers consider the environment as subjectively 

complex. Hence, the automated vehicle can learn when the automation function itself 

can suggest take-over predictively.  

  Subjective Complexity Model 

The proposed subjective complexity model relies on the fact that the vehicle has a 

driver assistance system capable of simultaneous lateral and longitudinal control, i.e. 

without the need of having the hands on the steering wheel. Typically, this approach 

is only possible with advanced Level 2 or Level 3 systems. The objective of the 

proposed model is to make predictions when the surrounding driving complexity 

reaches a point in which the driver feels intervention is necessary. Thereby, a 

relationship between objective and subjective complexity can be investigated. The 

hypothesis is followed that the driver subjectively decides that complexity of the 

driving environment is too complex and external vehicular sensory data is recorded at 

intervention. Other reasons for self-initiated take-over are also possible, e.g. low 

satisfaction with vehicle control, and intention cannot be differentiated. It is worth 

noting, that the trust in the automated vehicle is affected by driving experience (Gold, 

et al., 2015). To show the functionality of the model, sideswipe manoeuvres were 

recorded with an advanced Level 2 automated truck and divided into a training and 

test dataset. These sideswipe manoeuvres were limited to vehicles crossing onto the 

ego-lane from the fast lane (left). 

 

Figure 8. Workflow of adaptive assistance system. Sensor data are split into regions of interest 

(left, ego, right). Kinematics of all perceived objects in these regions are calculated upon which 

the most critical objects is identified (see Figure 2). Output criticality is calculated based on 

previously recorded data. 
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  Concept 

The functionality of the subjective complexity model is presented in Figure 1. The 

model is split into four major components. First, the perception of vehicles in the 

periphery of an ego-vehicle are identified, including the calculation of kinematic 

relationships. Secondly, the most critical object is determined based on the previously 

calculated kinematics. Thirdly, situations in which the driver intervenes with the 

vehicle without a take-over warning being displayed, are recorded and saved in a 

database. Fourthly, the criticality of current driving situations is calculated based on 

the conformity parameter of current kinematics with saved situation kinematics. 

  Sensory perception and kinematics 

Sensory data of the surrounding vehicles are gathered and split into three possible lane 

positions. This includes the ego-lane as well as the lanes directly to the left and right. 

The raw data received from the sensors includes the lateral 𝐷𝑖𝑠𝑡𝑦 and longitudinal 

𝐷𝑖𝑠𝑡𝑥 position as well as the speed of each object relative to the ego vehicle 𝑅𝑒𝑙𝑆𝑝𝑑 

and object width 𝑊𝑖𝑑𝑡ℎ𝑦. This allows the calculation of lateral 𝑆𝑝𝑑
𝑦
 and longitudinal 

𝑆𝑝𝑑
𝑥
 speed of each object. Additionally, a safety corridor is defined through the width 

of the variable 𝐵𝑢𝑓𝑓𝑒𝑟, see Figure 2. In this version of the proposed model, a 

maximum of six vehicles could be perceived around the ego-vehicle, with a maximum 

of two objects per lane. It should be noted that different sensor setups can alter the 

outcome of the system dramatically. By adding different sensors, e.g. cameras for 

object classification, additional data can offer subsequent critical object identification. 

Based on available radar data with the current sensor setup, the following kinematic 

variables were calculated.  

𝑇𝑇𝑐𝑟𝑜𝑠𝑠_𝑏𝑜𝑟𝑑𝑒𝑟 = (
|𝐷𝑖𝑠𝑡𝑦| − (

1

2
(𝑊𝑖𝑑𝑡ℎ𝑦) + 𝐵𝑢𝑓𝑓𝑒𝑟)

𝑆𝑝𝑑
𝑦

)  (1) 

𝑇𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 =
𝐷𝑖𝑠𝑡𝑥

𝑅𝑒𝑙𝑆𝑝𝑑
                                                                  (2) 

𝑇𝑇𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 − 𝑇𝑇𝑐𝑟𝑜𝑠𝑠𝑏𝑜𝑟𝑑𝑒𝑟
                                     (3) 

𝐷𝑖𝑠𝑡𝑐𝑟𝑜𝑠𝑠_𝑏𝑜𝑟𝑑𝑒𝑟 = 𝑇𝑇𝑐𝑟𝑜𝑠𝑠_𝑏𝑜𝑟𝑑𝑒𝑟 ∗ 𝑅𝑒𝑙𝑆𝑝𝑑                              (4) 

In total, ten kinematic variables are taken into account with the available sensors, see 

Table 1. Every relevant object on any of the three lanes has a separate set of these ten 

variables. Further variables in following implementation versions could include 

crossing angles, further crossing times, trajectory predictions. 

  Identification of most critical object 

In the case of a self-initiated driver take-over, i.e. no request to intervene, either the 

complete constellation of the surrounding vehicles or a single object causing the driver 

to intervene needs to be identified. Here an assumption needs to be formulated, to 

differentiate between these two options. The proposed model assumes that one object 
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is the most critical in the environment and it can be defined as the object that would 

enter the safety corridor first, if all vehicles maintain their trajectory. This assumption 

corresponds to the smallest 𝑇𝑇𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛, see equation (3), of any of the six surrounding 

objects. Previous development versions of the adaptive model also incorporated 

multiple critical objects. However, as there is always one object which is hit prior to 

all the others, the assumption was made that the driver reacts primarily towards this 

object. If the constellation of all vehicles were to be recorded, a higher amount of 

constallations would be possible with less likelihood of reoccuring.  

  Recording self-initiated take-over situations 

If a driver intervenes with the automation function controlling the ego-vehicle, the 

currently most critical object is recorded to a database. Simultaneously, the model 

identifies where this most critical object was located for a certain amount of time 

previously to the take-over. The time is an adjustable parameter as well as the size of 

the search region, defined by a lateral and longitudinal measure. The two sets of ten 

kinematic variables, current and delayed, are saved with object lane positions resulting 

in 22 mathematical variables. Every time the driver regains control of the vehicle, the 

current situation with its delayed prior position is recorded to the database. As the 

driving environment can vary dramatically based on the type of road or national 

restrictions, the data and type of driving culture are completely adaptable. Similarly, 

the driver’s interpretation of situations may vary over time and compared to other 

drivers. As more and more data is recorded the model adapts over time, this enables 

learning of personalized self-initiated take-over. 

Table 2. Kinematic variables calculated from sensor data. 

Variable Name Definition 

𝑫𝒊𝒔𝒕𝒙 Longitudinal distance from front of ego-vehicle to rear of object. 

𝑫𝒊𝒔𝒕𝒚 Lateral distance from front of ego-vehicle to rear of object. 

𝑺𝒑𝒅𝒙 
Longitudinal speed of object relative to the longitudinal axis of the ego-

vehicle. 

𝑺𝒑𝒅𝒚 Lateral speed of object relative to the lateral axis of the ego-vehicle. 

𝑬𝒈𝒐𝑺𝒑𝒅𝒙 Speed of the ego-vehicle along its longitudinal axis. 

𝑹𝒆𝒍𝑺𝒑𝒅 Difference of longitudinal speed between the object and the ego-vehicle 

𝑻𝑻𝒄𝒓𝒐𝒔𝒔_𝒃𝒐𝒓𝒅𝒆𝒓 
The time required for the object to cross into the safety corridor. Only 

considered if the trajectories of the vehicles cross. 

𝑻𝑻𝒉𝒆𝒂𝒅𝒘𝒂𝒚 
The time required for the ego-vehicle to bridge the longitudinal distance 

to the object. 

𝑻𝑻𝒄𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 

The time required for the ego-vehicle to reach the point where the object 

crosses into the safety corridor minus the time required to reach that 

point. This measure considers the time to collision once the safety border 

is breached. 

𝑫𝒊𝒔𝒕𝒄𝒓𝒐𝒔𝒔_𝒃𝒐𝒓𝒅𝒆𝒓 
The longitudinal distance the object is from the ego-vehicle once the 

safety corridor is breached. 
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  Continuous Criticality Output 

Upon identifying a most critical object, the model relies on fuzzy logic (Ross, 2010) 

to compare current situations with previous unforced take-over situations from the 

abovementioned database. All kinematic variables are taken into account for the 

prediction method and a majority voting mechanism determines comparability of 

saved situations with the current driving environment. It is possible to adapt to this 

mechanism in the future. The model searches through all previous situations, 

comparing current kinematic variables to the saved situations. As it is highly unlikely 

that the exact situation appears twice during an self-initiated take-over, a confidence 

percentage in form of a conformity parameter is introduced. The definition of this 

confidence percentage has a profound influence on the precision of the model as 

discussed in the conclusion. 

 

 

Figure 9. Overview of distances and variables for kinematic calculations. The vehicle on the 

left lane requires ∆𝑇 time, corresponding to 𝑇𝑇𝑐𝑟𝑜𝑠𝑠_𝑏𝑜𝑟𝑑𝑒𝑟, to cross into the safety corridor on 

the ego-lane in front of the ego-vehicle. 

  Data Collection 

To present the functionality of the subjective complexity model, a small number of 

manoeuvres were recorded on a German two-lane federal road with speed restrictions. 

This dataset is too small to investigate the full potential of the system. However, first 

indications of the functionality can be examined. The sensors were mounted to a 

prototype Mercedes-Benz Actros with an Active Drive Assist (Daimler AG, 2019). 

Over the course of two hours, sideswipe manoeuvres from the left lane towards the 

ego-lane were recorded. This manoeuvre was an exemplary situation, which our 

fictive driver was uncomfortable in and chose to take-over. It can be expected that 

real-world traffic situations in which a driver intervenes with the automation function 

are seldom and would not deliver adequate data. The dataset was divided into a 

training and test dataset with proportions of approximately 90% to 10% respectively. 
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This resulted in a total of 105 training sideswipe manoeuvres, see Figure 3, and 13 

test manoeuvres. 

  Results 

The model is evaluated based on the self-initiated test manoeuvres that are examined 

qualitatively. These 13 test manoeuvres are not limited to sideswipes, they consist of 

take-overs due to a construction site, one sideswipe in a traffic jam at low speeds, five 

delayed take-overs due to sideswipes and six sideswipes from motorway entry-ramps, 

i.e. right side. A qualitatively comparison of vehicular signals synchronised with a 

dashcam video was realized for the model proof of concept. A quantitative analysis 

was not meaningful, as the data are limited. The complete model was simulated in 

MATLAB/Simulink, see Figure 4 and Figure 5, which depict the prediction value of 

the most critical object currently and delayed as well as the hands-on signal when the 

driver intervened. 

 

Figure 10. Exemplary sideswipe manoeuvres recorded in the training dataset. 
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Figure 11. Two exemplary self-initiated take-over situations that were not trained in the 

training set. Predicted sideswipe manoeuvres never reach a confidence greater 80%. 

Figure 5 displays the qualitative comparison of the five sideswipe manoeuvres, which 

the driver initiated with a varying delay. As shown in the graphs portraying the current 

similarity prediction, delayed similarity prediction of 0.5 sec and when the take-over 

was initiated (top to bottom), the snapshot of the actual sideswipe was predicted very 

accurately (vertical blue line). Overall, in four of the five delayed take-overs, the 

model correctly identifies a sideswipe manoeuvre with 100% confidence. The third 

depicted sideswipe take-over in Figure 5 with a delayed response shows a low 

prediction quality. It can also be seen, that sensor dropout appears quite frequently 

throughout the drives. 

The self-initiated take-overs that were not included in Figure 5 and consisted of the 

six take-overs from sideswipes at motorway entry-ramps, displayed a poor quality of 

prediction and are not depicted. Overall take-over prediction value by the model in 

these other eight situations never reached over 80%. Two of these eight exemplary 

situations are depicted in Figure 4. 
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Figure 12. Five sideswipe manoeuvres with delayed driver response. Trace data depicts 

confidence values for current and delayed most critical objects in the environment. The hands-

on signal generated by the driver is also depicted. The blue line indicates the point in time, to 

which the video-snapshot corresponds. 

  Conclusion 

The introduction of our subjective complexity model is an innovative solution of a 

learning and adaptive assistance system. By recording driver self-initiated unforced 

take-overs during automated driving, it is possible to monitor take-overs without 

interpretation of intent and behaviour. If proven reliable and beneficial, this system 

can predict preferences in which the driver does not trust the self-driving vehicle or 

feels the need to manage the driving situation. Trust is an essential component in the 

human-machine-interaction during automation, as drivers should be able to anticipate 
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system behaviour. If this is not possible, self-initiated take-overs are likely and the 

model offers assistance. Through continuous learning of relevant situations in which 

the driver wishes to control the vehicle, the vehicle itself can suggest take-over 

predictively. This offers different configurations of predictions for different drivers 

and roads. The functional layout of the model also allows the adjustment of sensors, 

where the effect on the predictability of take-over can be tested. 

Apart from being an adaptive driver assistance system, the model can function as a 

carrier technology for the investigation of objective and subjective complexity. 

Thereby, a solution for the second part of our research question is proposed. One of 

the main obstacles is that sufficient data are difficult to record for this theoretical 

comparison. On the brink of introducing automated driving to vehicles, previously the 

driver continuously held control of the vehicle. This made a differentiation difficult 

between instances, in which the driver considered the environment to be complex. 

Self-initiated take-overs are valuable for the interpretation of subjective complexity. 

These situations show that meaning of the temporal and spatial characteristics of 

surrounding objects from the drivers’ perspective was complex enough to motivate a 

take-over. It should be mentioned that self-initiated take-overs could also occur due 

to uncritical situations, e.g. terminating automation. In order to truly investigate the 

differences of subjective and objective complexities, the first part of the research 

question, a long-term data collection of individual drivers is required that needs 

documentation of driver intent. 

The results of the prediction accuracy of the model shows satisfactory results. While 

the sideswipe manoeuvres in the test dataset were identified prior to delayed take-over 

in four of the five instances, one unlearned situation was not identified, see Figure 5. 

However, there are several reasons and possibilities to improve prediction and the 

validation of the model. A filtering of the signal is required for subsequent versions 

to bypass sensor dropout and smooth the prediction value signals. Another 

shortcoming in our proof of concept are the high number of false positives. It should 

be investigated whether these false positives occurred, due to the low distinction 

between a sideswipe manoeuvre being initiated and vehicle continuing in their lane. 

Furthermore, the point in time in which the driver initiates take-over can vary 

dramatically, making it difficult for the system to reference the correct critical object 

to the situation. Reaction times of a driver must possibly be taken into account. 

Finally, the system can never abstract the data to new situations. Each situation has to 

have happened similarly in order for the model to predict the situation in the future. 

However, based on the introduced conformity parameter, see Figure 1, the model can 

parameterise to achieve different levels of generalisation. 

The model shows that this type of assistance system has promising applications in the 

driving context as well as research. An applied subject complexity assistance would 

require larger datasets, a higher variance of critical unrequested take-overs as well as 

seldom occurrences. The model could also be realized with a machine learning 

approach, however, the presented solution has the added benefit of clearly showing 

how and why the system functioned with specific predictions. In the future, a large 

dataset will be utilized as a basis for a parametrization of all variables as well as the 

expansion of vehicular sensor for further kinematic description of the environment.  
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  Abstract  

Research mostly focuses on the period of automated driving and the transition back 

to manual driving, while overlooking the period before the activation of a 

conditionally automated driving (CAD) function. Attempting to close this gap, factors 

influencing the intention to use CAD, such as the potential to engage in non-driving 

related activities (NDRAs), were analysed by performing a focus group discussion 

involving automated driving experts to anticipate drivers’ information needs 

regarding an activation of CAD. These information needs as well as the drivers’ 

expectations regarding the availability duration of CAD were investigated in an 

exploratory driving simulator study. For this purpose, participants (N = 15) 

experienced four scenarios with variable durations of availability regarding the CAD 

function in combination with NDRTs of different lengths. The information needs 

anticipated by the focus group were evaluated. Results show that before activating the 

automation, participants mainly desired to receive information on the availability 

duration, or otherwise, on the duration until CAD will be available. When CAD was 

not available, participants wanted to know the detailed reasons. The determined 

information needs are assumed to assist drivers in purposefully using CAD 

considering their planned NDRTs.  

  Introduction  

One advantage of SAE level 3 driving functions over SAE level 2 functions is that 

drivers do not have to monitor the system anymore while driving automated (SAE, 

2018). Consequently, drivers have the option to engage in non-driving related 

activities (NDRAs) while automation is active. However, L3-automated systems are 

not designed to work under all conditions. Therefore, users can only activate the L3-

automation when all conditions of its use are met. Moreover, the driver needs to be 

permanently prepared for a Request to Intervene (RtI) if system limitations are 

reached.  Thus, the driver is in control over the vehicle before and after a period of 

CAD. Which information do drivers need before activating an automated driving 

function purposefully? Why do drivers want to activate CAD and which reasons 

would discourage them from doing so? A focus group interview and an exploratory 

driving simulator study were conducted and analysed on a descriptive level to receive 

initial answers to these questions.  
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  Theoretical Background 

  Transitions to automation 

Transitions in the context of automated driving are mostly discussed when 

investigating the transition from automated to manual driving. This might be 

explained by this type of transitions’ criticality (Lu et al., 2016). Lu et al. (2016) state 

that the activation is trivial as it seems comparable to the activation of ACC. However, 

the authors also state that activations pose a risk when conducted at the wrong time. 

For the activation of CAD, specific conditions have to be met and therefore drivers 

need an appropriate mental model of the system’s functions and limitations in order 

to handle the automation safely (Forster et al., 2019). Mental models are mental 

representations of real objects or systems and include functionalities and logical 

relations (Bach, 2000). Forster et al. (2019) have evaluated two different approaches, 

namely working through an interactive tutorial and reading a manual before driving 

automated in a simulation and conducting various transitions. Results show that both 

concepts led to an increased understanding in comparison to a baseline group, which 

only received generic information about the system. Since mental models are prone 

to changes over time and learned system limitations can be forgotten when not 

experienced (Beggiato & Krems, 2013), this approach of educating the driver before 

usage is not considered sufficient.   

  Expectations and attitudes towards automated driving 

The possibility of conducting NDRAs is an important aspect of people’s expectations 

towards automated driving (Howard & Dai, 2013) and thus it is indicated to 

investigate which kinds of NDRAs are likely to be conducted while the user is driven 

automatically. Pfleging et al. (2016) found that people would like to talk to occupants, 

watch the road, read, text, sleep, watch movies and play games during their extra time 

while driving automated. Hecht et al. (2019) found that people spend most of the 

automated drive watching videos on a mounted tablet, watching the surrounding 

traffic and the landscape or conducting activities on their smartphones. Participants 

showed a high variance regarding their NDRAs and their average activity duration. 

Acceptance is a construct often used to express the willingness to accept new 

technologies, such as self-driving vehicles (Payre et al., 2014). According to Davis 

(1989) and his technology acceptance model (TAM), acceptance depends on 

perceived usefulness and perceived ease of use, which together predict the intention 

to use new technology. The possibility of conducting NDRAs free of interruptions is 

associated with perceived usefulness (Naujoks et al., 2017), which on the other hand 

is correlated with acceptance (Venkatesh & Davis, 2000). Therefore, the possibility 

of conducting NDRAs uninterrupted could be associated with the intention to use and 

thus activate CAD.  

  Information needs  

People desire driving task related information during manual driving and information 

related to transparency, system status and comprehensibility of system actions during 

CAD (Beggiato et al., 2015). These include information regarding current and next 
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manoeuvre as well as reasons for missed manoeuvres. Furthermore, time left in the 

current system status should be presented to the user. These information needs, 

especially the ones addressing transparency and comprehensibility, can differ between 

people depending on the individual trust and aim on building the same (Beggiato et 

al., 2015). Displaying the duration of the automated drive increases acceptance 

towards the system (Richardson et al., 2018) and improves take-over performance 

(Wandtner et al., 2018). None of the discussed information relates to a purposeful 

activation that would enable users to achieve their set goal by using CAD. Moreover, 

there are no findings in literature on information needs regarding CAD when the 

automation is not available. 

  Research questions 

Purposeful activation of CAD requires the driver to know what purpose he pursues by 

activating as well as the knowledge if an activation could help him serve this purpose. 

Consequently, a correct mental model of the system functionality is necessary. When 

planning to modify the mental model by giving information, it is helpful to know what 

concepts of automated driving are present in mental models today. Therefore, the first 

research question is: What do novices expect regarding the availability of L3-

automation? As it is assumed that these expectations require adjustment, the second 

research question is: What kind of information do potential users need before 

activating the automation? Furthermore, as conditions for availability are not 

necessary intuitively understandable, the third research question is: What reasons for 

non-availability do participants assume when automation is not available in the 

simulation and what information do they desire regarding the automation? Since 

these questions have not been addressed in research so far, this study aims on finding 

first answers to build hypotheses on. Moreover, the reasons why participants would 

or would not use CAD are questioned. 

  Method 

  Focus group discussion  

For obtaining first answers to the aforementioned questions, a focus group interview 

involving five automated driving experts from AUDI AG was conducted. The 

participants are considered experts for two reasons: firstly, they are involved in the 

technical development of automated driving functions (either as engineers or as 

human factor experts), and secondly, they all experienced automated drives with 

novices using prototype vehicles. The discussion lasted one hour and was recorded 

using audio equipment. Afterwards, the record was transcripted and analysed. A 

research associate from TU Munich moderated the discussion using an interview-

guideline prepared beforehand. The guideline consisted of four thematic blocks 

involving questions about their experiences with novices in automated vehicles, the 

novices’ expectations regarding the automation’s availability duration, how realistic 

these expectations are and what kind of information could help decrease the 

discrepancy between the expectations and actual functionalities at the time such a 

system is launched. The transcript was analysed with the focus on finding answers to 

these specific questions. The analysis was conducted following the approach of the 

qualitative content analysis with focus on deductive category assignment (Mayring, 
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2015). The categegories were: experiences with novices, novices’ expactations, 

estimations about how realistic thes expectations are, potential information needs.   

  Driving simulator study 

A driving simulator study was conducted to evaluate the information that emerged 

from the focus group discussion. Furthermore, the test persons’ expectations 

regarding L3-automations were examined.  

  Simulator and routes 

The study was carried out in a fixed-base driving simulator at AUDI AG. The driving 

tracks were simulated using the software Virtual Test Drive. For this study, one 

highway route was used which differed only regarding the availability of the 

automation, the traffic density or the motorway exit taken by the test persons. In all 

four drives, the participants started from a motorway lay-by. 

  Participants 

Overall, 15 participants took part in this study. The sample consisted of 4 women and 

11 men. The mean age was 27.5 years (SD = 3.1) and participants stated that they 

drove 12,214 km (SD = 13,009) per year on average. 20% of the participants reported 

that they have an ACC, 13% a lane assistance and 13% parking assistant in their own 

car but all of the participants had heard about these systems. 

  Procedure 

The participants were informed about the procedure and a written consent was 

obtained. After filling out a demographic questionnaire, all participants started with a 

five minutes test drive experiencing manual drives as well as transitions to L3-

automation and vice versa. In this way, the participants got to know the notification 

for availability and the RtI. Afterwards, the test persons completed four consecutive 

trips, filled out questionnaires and answered semi-standardised interview questions 

between the rides. The order of the four trips was randomised. The test persons started 

and ended the trips on a motorway lay-by. The automation was available during three 

of the four trips. Three trips took about 5 minutes each, while one trip took about 8 

minutes. When the automation was not available on the routes, it was due to a missing 

emergency lane. If test persons nevertheless tried to activate the automation, a pop-up 

appeared in the instrument cluster saying “automation not available: route section not 

appropriate”. After completing all four trips and qualitative interviews, the 

participants rated the information needs derived from the focus group discussion. 

Before the first trip, participants were instructed to imagine a drive home from work, 

which they want to use to watch a short video on a tablet mounted below the central 

information display. They were also instructed to take the next highway exit stopping 

at the lay-by. Test persons were not allowed to watch the video during manual drive 

and had to stop the video in case of an RtI. Automation was available after 20 seconds 

on the highway until about 15 seconds before the next highway exit. The video was 4 

minutes long, so the participants had the chance to finish it during the automated drive. 

This scenario illustrates the ideal situation in which a user is able to conduct an NDRA 

without interruption.  
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The instruction before the second trip was nearly the same. The only difference was 

that the test persons received instructions to not take the next highway exit but the one 

after that and were told to watch another video. This video took 8 minutes and 

therefore, the participants could not finish it before the RtI was issued at the first 

highway exit after 5 minutes. After passing this exit, the automation did not become 

available again and the participants drove to the next exit manually. This scenario 

illustrates the case where the user cannot conduct an NDRA without interruption and 

has no chance to finish it after being interrupted.  

The instruction before the third trip was the same as before the first trip but without 

the instruction to watch a video. The participants were told to drive as they wished – 

manually or automated. The traffic density was higher in this scenario to create an 

unpleasant and dull highway scenario without the chance to distract oneself by an 

NDRA. 

The instruction before the fourth trip was the same as before the first trip. The 

difference in this scenario was that the automation did not become available. Thus, 

this situation illustrates the case where an automation, which should apparently be 

available, is not without any notices. The route was the same as during the other trips 

but without an emergency lane, to examine whether the test persons were able to 

recognise reasons for non-availability.  

  Measures 

Participants rated the information needs that emerged from the focus group discussion 

on a five-point Likert scale indicating how important and useful a display of this 

information is considered. To answer the research questions a semi-structured 

interview of five to ten minutes was conducted after every test drive. The investigator 

noted the participants’ answers. 

  Results 

  Focus group discussion 

With regard to experiences with novices, the experts reported that people who have 

never had contact with automated vehicles often overtrust the automation after a short 

time. Furthermore, they feel disturbed by RtIs, do not understand and – in some cases 

– do not accept system limitations. The focus group participants stated that novices 

expect an automation to be available all the time even though they were informed of 

possible RtIs. When novices were told that an automation only works on motorways 

and its availability is dependent of further conditions, novices are still surprised when 

the automation is not available on the motorway for some time. Furthermore, experts 

reported that people often think they could sleep when the automation is active even 

though they know they have to act as fallback level. When asking how realistic the 

experts assess the novices’ expectations, they stated the expectations are not realistic 

or achievable within the next years when the first L3-automations enter the market. 

They also reported that periods of 30 to 40 minutes of automated driving on 

motorways are realistic, but interruptions will be most likely. The focus group 

participants assumed that the discrepancy between the expectations and technical 
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possibilities come from non-transparent system limitations and thus incorrect mental 

models. 

As a failure to achieve the goal – thus, discrepancies between people’s expectations 

and the outcome of an event – leads to frustration (Ochs et al., 2008), the experts were 

asked which information could be displayed in the HMI to lower this discrepancy and 

therefore frustration. Experts stated that a display of the availability duration before 

and after activation of the automated system would help adapt the expectations to 

realistic system capabilities and therefore prevent users from frustration. Furthermore, 

suggestions of NDRAs, which can be conducted within an availability period, are 

assumed useful. In addition, an overview of all route sections where automation is 

probably available could be presented to make it easier for the user to organise 

NDRAs on a trip. Moreover, a display when automation will be available if it is 

currently not available could prevent frustration especially if users expect the 

automation to be available without limitation, at least on a motorway. Table 1 shows 

the potential information needs anticipated in the focus group discussion.  

Table 1. Potential information needs anticipated in the focus group discussion 

Anticipated information needs when 

automation is available 

Anticipated information needs when 

automation is not available 

Estimated availability duration of the 

automation before activation 

Reasons for non-availability 

Certainty of availability duration Duration until automation is 

available 

Overview of availability periods on whole 

route 

 

Suggestions of NDRAs feasible during 

automated drive 

 

 

  Driving simulator study 

The test persons experienced four test drives in permuted order. However, the rides 

are referred to as first trip, second trip etc. analogue to the aforementioned 

descriptions.  

To answer the first research question, the test persons were asked how long they would 

have expected the automation to work. As this question is explicitly important when 

the participant conducts an NDRA, which is either feasible in the period of automated 

driving or not, it was asked after trips one and two. These trips represented the ideal 

and non-ideal situations in which the NDRA is either feasible (first trip) or interrupted 

due to an RtI (second trip). Seven participants experienced the first test drive before 

the second. On the first time asked, eight participants answered that they had expected 

the automation to be available infinitely long and therefore until they leave the 

highway. Figure 1 shows all answers and their quantities.  
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Figure 1. How long test persons expected the automation to be available. 

To answer the second research question, the test persons were asked what kind of 

information they wished to be displayed before activating the automation. Ten 

participants stated they wished for a display of the period or distance the automation 

would be available. Two test persons stated they did not wish for more information 

before activating the automation but a display of the automation period after 

activating. Figure 2 shows all answers to research question two. 

Figure 2. Information test persons wished to be displayed before activating the automation. 

Research question three was what kind of information test persons desire when 

automation was not available. Participants answered this question after experiencing 

test drive four during which the automation did not become available. Eight 

participants stated they wished to know when the automation would be available, in 

either time or distance. All answers are shown in figure 3. 
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Figure 3. Information test persons wished for when automation was not available. 

If participants tried to activate when automation was not available a pop-up message 

appeared. Eleven participants desired more detailed reasons, stating this feedback was 

not sufficiently understandable. Six participants tried to activate and saw the feedback 

while nine participants experienced it when the investigator instructed them to try to 

activate. When asked which reasons for non-availability the test persons assumed, six 

participants stated they believed the traffic density to be the reason while four thought 

some technical issues to be responsible for non-availability. None of the participants 

guessed the right reason, which was a missing emergency lane.  

 

 

Figure 4. Participants’ ratings of the potential information needs from the focus group. 
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Furthermore, it was investigated which reasons people have to activate CAD when 

available and what reasons would prevent them from doing so. Interview data showed 

that the main reason for activating is the desire to conduct an NDRA while the main 

reason for not activating was the desire to drive faster than an automation would. 

Another factor for the potential activation was driving pleasure with having fun while 

driving leads to no activation. After all trips the test persons were asked to rate the 

potential information emerged from the focus group discussion. Figure 4 shows the 

medians of the ratings. 

  Discussion and conclusions 

The present data suggests that potential users of future L3-automations have too high 

expectations regarding the availability periods of the automation and consequently the 

NDRAs feasible without interruption. They expect an automation to be available for 

an infinitely long time within the most apparent limitations, for instance on a highway, 

and do not expect further limitations leading to RtIs. Interview data showed that test 

persons mainly desired a display of time or distance the automation will be available 

for in order to be able to compare the estimated duration of their NDRAs with the 

duration of automated driving. Some test persons even stated they would not wish to 

activate CAD if their planned NDRA was not feasible during the automated drive. 

Furthermore, participants desire a display of the anticipated time until the automation 

will be available while it is not. This information need was not anticipated in the focus 

group but would be covered by a display of an overview of all availability periods as 

it would contain the time or distance between two of the same. Interestingly, when 

automation is not available, some participants desired an extra symbol indicating non-

availability while others explicitly stated they do not want an extra display for non-

availability, as this would be redundant, revealing individual differences. Another 

important result is the desire to know the reasons for non-availability. This may lead 

to a higher perceived understanding of the system as it does when RtIs come with an 

explanation (Körber et al., 2018). As participants desire to know why the automation 

is not available, a display explaining the reasons seems all the more important, as no 

participant was able to recognise the reason in the simulation by oneself. Investigating 

why participants would use the automation or not, answers mostly referred to either 

conducting NDRAs or driving faster than the automation would. This indicates, these 

two factors mainly influence the decision wheter to activate or not.  

Further research should validate the information needs reported in this study even 

though the information coming from the experts and from the novices mainly 

coincide. The focus of this study and thus of the study design was on NDRAs and 

conducting them free of interruptions and therefore the results may be biased in this 

direction. Moreover, a naturalistic driving study could lead to further results. There 

might be more information needs regarding the automation before activating the same. 

Generally, there is a gap in research concerning the activation of automated driving 

functions, which should be closed. This work suggests the activation of automated 

driving by the driver to be an important step, which should not be perceived as trivial, 

especially as wrong or purposeless activations and consequently not feasible NDRAs 

may lead to frustration or decreased acceptance and thus decreased usage.  
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  Abstract 

Highly automated driving will have a significant impact on our future mobility. When 

a driver uses a system that comprises different SAE levels (L0, L2 and L3) the Human 

Machine Interface (HMI) needs to support the mode awareness of the driver at all 

times. While in L2 the driver has to monitor constantly, in L3 he can spend time on 

non-driving-related-tasks. The publicly funded project TANGO (Technology for 

automated driving, optimized to the benefit of the user) enables the design of an 

“attention and activity assistant” for automated truck driving in L2 and L3. The HMI 

of the project provides information about the automation level through different 

modalities: visually (instrument cluster & LED strip), auditory (sounds and voice 

announcements) and haptically via a tactile seat matrix. By conducting a driving 

simulation study, the usability of the HMI was investigated. The goal was to determine 

the ability of the driver to differentiate cognitively three SAE levels with the support 

of the TANGO HMI. 

  Introduction 

The vision of automated driving stands for an increase in road safety and efficiency, 

a fatigue-free and stress-free driving experience as well as a safe use of built-in 

information and communication systems while driving. The fact that such a need 

exists among car drivers has already been sufficiently demonstrated in various studies 

(cf. Petermann-Stock et al., 2013; Wulf et al., 2012). However, the benefits of 

automation can also be beneficial for another group of users - professional drivers. 

They could be supported in their daily work routine by hours of monotonous journeys. 

The altered human-vehicle interaction has not yet been sufficiently examined in the 

field of trucks. 

Within the project of TANGO, the research project concentrates on SAE Level 2 (L2) 

and SAE Level 3 (L3) systems (SAE International, 2018) and their transitions. L2 

provides the driver with combined support in longitudinal and lateral guidance by 

means of an automated function. However, the driver must constantly monitor the 

driving situation and be prepared to intervene immediately. This monitoring function 
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is omitted in L3, where the system takes over the complete vehicle guidance in certain 

conditions (e. g. traffic jam or on motorways). In these situations, the driver no longer 

has to be “in the loop" and can therefore potentially turn to activities not related to 

driving. The driver only has to be ready for manual vehicle guidance within a period 

of several seconds when the system requests the driver to take over the vehicle 

guidance. 

Especially in these quite similar modes of automation, an adequate awareness of the 

situation and the system is mandatory in order to avoid errors and to achieve an ideal 

human machine interaction (Sarter & Woods, 1995; Kolbig & Müller, 2013). 

Situation awareness is defined as “the perception of the elements in the environment 

within a span of time and space, the comprehension of their meaning and the 

projection of their status in the near future” (Endsley, 1988a, p. 97). It is understood 

as a dynamic process in which errors but also corrections can take place at all three 

levels (Endlsey, 1988a, 1995a, 1995b). In the course of automated systems, situation 

awareness must also be enriched by system awareness. It can be understood as part of 

situation awareness and thus includes the same processes: the knowledge and 

understanding of system information and system-relevant environmental information 

as well as the anticipation of the information (Sarter & Woods, 1995; cf. Othersen, 

2016). If this system awareness is incomplete, the probability of mode confusion 

raises. Thereby, the system reacts differently than expected by the user. The user may 

behave inappropriately (e. g. monitoring activities in L3) or miss actions (e. g. missing 

monitoring activities in L2; Bredereke & Lankenau, 2002). Studies could identify the 

missing supervision and higher attention to side task or longer viewing distances from 

the road in L2 (cf. Buld et al., 2002). Petermann-Stock (2015) also identified 

uncertainties regarding the system status and the required action through increased 

focus on relevant displays. Above all, an over-confidence in low automation levels, 

where a lack of monitoring with the potential oversight of system errors occurs, should 

be prevented. 

The human machine interaction changes significantly through the use of automation, 

so that earlier actions are replaced by supervision or withdrawal from the driving task. 

The aim of efficient HMI should therefore be to provide important information for 

adequate awareness of the situation and the system as well as to prevent mode 

confusion as far as possible. The multimodal HMI developed in the TANGO project 

will be evaluated for the first time in a driving simulator study with professional 

drivers. The research questions of the study are as follows:  

• Do people know which SAE Level they are in? 

• Do people know their tasks according to the SAE level?  

• How efficient, effective and satisfyingly is the level change supported by the 

TANGO HMI?  

• How do people react to a critical driving situation? 
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Methodology 

Experimental setup  

The study took place at the vehicle ergonomics test facility at the research and 

teaching area Industrial Design Engineering of the University of Stuttgart. This fully 

variable model of a vehicle interior is based on a static, electrically adjustable seat box 

with driver and passenger seats. The driving simulation is shown on five monitors 

(Samsung, 1920 x 1080 pixels, 59") with a 210° field of vision covering, two side 

mirrors and a rear-view mirror. For simulation, the software SILAB (WIVW, Version 

5.0) was in use. The rides took place on a two-lane motorway with an emergency lane. 

During all automated rides, the vehicle’s speed was set to 100 km/h on the right lane. 

The vehicle was occasionally overtaken by other road users. 

The study design included two independent variables: One variable was automation 

level (L0, L2, L3), respectively transitions, as a within factor. Each participant 

experienced each automation level and possible transition. However, the order was 

counterbalanced in between two groups. The second independent variable was the 

arousal of a critical event (same situation, either in L2 or L3) as a between factor, 

which occurred at the end of test run two. The difference between the take-over 

situations before the critical situation was the fact, that in L2 no warning was given, 

whereas in L3 the system gave a take-over request (TOR) (for an overview of the ride 

see fig. 2 below).  

User centred HMI  

For promoting the mode awareness, the automation level state was supported by 

different HMI elements. A schematic layout of the vehicle cockpit is given in fig. 1. 

In this HMI, the L2-mode was called “Assistance Plus” (colour code: blue) and L3-

mode “Autopilot” (green). Orange and red were used for warnings. The HMI included 

an instrument cluster, a head unit display above the centre console and a detachable 

tablet placed on a holding to the right. A colour-coded LED strip showed the level 

colour and was positioned at the bottom edge of the windshield. For (de-)activating 

L3, two push-buttons (that lit up in green when the L3 was available) on the steering 

wheel had to be pushed simultaneously. One push-button on the centre console, which 

lit up in blue, (de-)activated L2. The push-button in the middle of the steering wheel 

was used for the Sign Detection Task (SDT; see chapter Data and analysis). A tactile 

seat matrix (TSM; Schwalk et al., 2015), was used for tactile feedback during the TOR 

and after activation of the automation. It consisted of a 4x4-matrix in the backrest and 

a 3x5-matrix inside the seating area. All processes were supported by voice 

announcements and icons within the instrument cluster. As soon as a change from L2 

to L0 was recommended, the driver had 2.2 s to deactivate Assistance Plus either by 

pressing the above-mentioned button or by driving related intervention (using the 

accelerator or brake pedal or oversteering). However, Intervention always resulted in 

a level change to L0. If the driver neither pressed the button nor intervened, the 

automation switched off. In L3 the driver had 15 s to react to a level change. If the 

driver did not react the system did a safe stop. 
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Figure 1. Simplified representation of the mounted HMI in the driver’s cockpit. The icons at 

the right bottom are displayed in the instrument cluster.  

Procedure 

At the beginning, participants received an introduction to the research topic, the 

detailed description of the system functionality and the different tasks they have to 

perform according to the SAE levels. Afterwards they answered demographic 

questions and went through an acclimatisation ride in which all SAE levels and all 

tasks could be experienced.  

One test ride consisted of three consecutive runs with automation and four transitions, 

with a total run time of approximately 90 min. Transitions were announced by the 

system according to the study setup. After each transition, questions were asked about 

the transition itself in terms of effort, mode awareness as well as the HMI without 

pausing the ride (see fig. 2). Participants answered all questions throughout the study 

verbally, which the investigator documented. In addition, the simulation was paused 

in the middle of each test drive (system freeze) for answering questions on the mode 

awareness. At the end of the first drive, the participants took a break during which 

they had to complete another questionnaire regarding the overall driving experience 

in this first half of the simulation. Subsequently, the second test drive took place – 

similar to the first one. However, at the end of the test drive, a critical event (system 

error) occurred, in which the driver had to take over. This critical event consisted of a 

traffic jam that suddenly occurred after a hill and therefore could not have been 

noticed early. In L2 the system did not brake on time. Therefore the drivers needed to 

initiate a transition and brake themselves to avoid a crash. However, in L3 the system 

announced a take-over within 15 s. After finishing the second ride, in addition to the 

same questions that were answered at the end of the first drive, another questionnaire 

referred to the perception of the critical event. 
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Figure 2. Schematic study design and procedure (two rides per person with two different test 

conditions as in between factor). 

Data and analysis 

A non-driving-related-task as well as a driving-related task assessed the mode 

awareness. The driving related task was supposed to measure the monitoring 

performance of the drivers and at the same time, assess the mode awareness. The 

drivers had to detect speed limit signs, which is called the Sign Detection Task 

(Lassmann et al. 2019). The design of the SDT is based on detection tasks of driving 

relevant stimuli that have been used for assessing vigilance and therefore monitoring 

performance (cf. Greenlee et al. 2017; Heikoop et al. 2017). In L2, the participant was 

supposed to press the SDT-button located on the steering wheel when a specified 

speed limit sign (100 km/h) could be seen on the roadside for 3.5 s. If the driver 

reacted to another road sign, this was considered as error. The SDT requires visual 

attention and could be compared to monitoring activity in terms of suddenly appearing 

obstacles in L2 (Lassmann et al. 2019). The hit rate and the response time to the 

stimulus were recorded. In case of pressing the SDT-button in L3 it was considered 

as a mode confusion since monitoring is not required in this level. In addition to the 

SDT, a secondary task (quiz, based on Petermann-Stock et al., 2013) was offered on 

the tablet to the right. The drivers could decide themselves if they interacted with the 

quiz (either in the fixed position or hand-held). It consisted of 262 questions in 

German with four answer options each. The quiz has been proofed as an engaging 

task for truck drivers in several studies within the TANGO project (e.g. Bieg et al. 

2019). 
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Another objective measure of mode awareness is a variation of the SAGAT (Situation 

Awareness Global Assessment Technique; Endsley, 1988b) survey method. The 

SAGAT record the respective situation-specific knowledge of the person via 

questions concerning perception, understanding and anticipation of the situation after 

freezing the simulation. In this study, the HMI was hidden or frozen after a transition 

instead of the entire simulation and questions were asked about the respective 

automation level and the distribution of responsibilities. Besides that, the Mode 

Awareness questionnaire from Benecke (2014) was used as subjective data. This 

includes the areas of perception, understanding and anticipation of the system status. 

In addition, individual items were asked for the critical event with regard to effort 

(Subjective Experienced Strain Scale; Eilers et al., 1986), subjective reaction quality 

and subjective criticality. All questions were implemented using a five-level Likert 

scale. 

For this purpose, mean value differences were calculated using the Wilcoxon rank-

sum test as well as variance statistical methods with and without repeated 

measurements for the factors measurement time and automation level at a significance 

level of α = .05. 

Participants 

The driving simulation was performed with 30 participants (aged 22 to 60 years, M = 

41.6, SD = 10.8). The group consisted of twenty truck drivers, three bus drivers and 

seven other frequent drivers with an average annual kilometrage of 85,500 

± 36,667 km (range 20,000 to 200,000 km). For 2.5 hours of simulated driving and 

questioning the participants received an incentive of 100 Euro. Due to measurement 

failures, motions sickness or language problems during the study, eight participants 

were excluded from the analysis, which leaves 22 subjects. 

Results 

Mode Awareness 

Sign Detection Task (SDT) 

Only in L2, people should perform the SDT. However, two participants hit the button 

continuously, three subjects once, while being in L3. The rest (77.0 %) performed 

correctly by not hitting the button. In L2 hit rates reached a mean of 77.6 % (16.9) 

with values ranging from 50 to 100 % with no change over time (F[2,42] = 1.900; p 

= .162; η2 = .083). Seven persons had a mean under 70.0 %, whereas the hit rate of 

three of them increased throughout the study. 15 had a hit rate of over 88 %. The mean 

of the reaction times of the hits was 1.95 s (.35). No change over time occurred either 

(F[2,42] = 1.042; p = .362; η2 = .047). 

Secondary Task – Quiz 

The results showed a shift of attention in higher automation level (F[2,20] = 103.33; 

p ≤ .001; η2 = .91) (see fig. 3). The drivers did less quiz questions during L0 

(ML0=1.33) than in L2 (ML2=34.77) and L3 (ML3=56.39). In addition, there was an 

effect of time (First, Second and Third Time in either L0, L2 or L3) for all three 
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automation levels (F[2,20] = 5.14; p ≤ .05; η2 = .34). All test persons performed less 

quiz questions over time (MM1=36.01; MM2=31.02; MM3=25.41).  

 

Figure 3. Performance frequencies on secondary task for the complete drive; Automation level: 

L0 – L3; time of measurement: M1-M3 (first, second and third Time in either L0, L2 or L3). 

The correlation of the performance frequencies of the quiz and the hit rates of L2 are 

negatively correlated (Spearman: r = -.488; p ≤ .05). Looking at the correlations of 

each measurement time, only a correlation of M3 exists: r = -.566 (p ≤ .01). 

Subjective Mode Awareness 

The analysis of the subjective evaluation of mode awareness showed that participants 

in the two groups did not differ in terms of mode awareness (F[1,20] = 0.004; p = .952; 

η2 = .000). However, there was an effect on the time of measurement (F[1,20] = 

10.664; p ≤ .01; η2 = .348). The mode awareness improved during the ride (Mbefore = 

4.47; Mafter = 4.68).   

During the freezing situation, 21 of 22 participants were able to reproduce the current 

automation level they were in, as indicated by the correct labelling of the automation 

mode (i.e. ‘Assistance Plus’/ ‘L2’), or the matching colour (i.e. ‘blue mode’). 

Participants in L2 and L3 were equally aware of the system mode during the freezing 

situation (MdnL2=5.00, MdnL3=4.83, W=70, p=.209). However, 31 % of the 

participants in L2 and 22 % in L3 were unsure about the correct tasks they had to 

perform.  

Concerning the system error that had to be detected either by the participants 

themselves in L2 or by a TOR by the system in L3, no significant differences could 

be found in the degree of effort (MdnL2=2.17, MdnL3=1.60; W=38, p=.125), the speed 

while overtaking (MdnL2=4.90, MdnL3=4.67, W=74, p=.220) and their confidence with 

the quality of their reaction (MdnL2=4.83, MdnL3=4.80, W=58, p=.882). Finally, both 
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groups evaluated the driving task as well adopted (MdnL2=4.83, MdnL3=4.90, W=64, 

p=.689), and quickly surveyed (MdnL2=4.83, MdnL3=4.80, W=58, p=.882).   

Transition and Critical TOR 

In the following section, only the transitions into and between automation levels (see 

fig. 4) are addressed. The change into L0 (critically and uncritically) is focused in fig. 

5. The analysis of the transitions shows that a few participants had problems changing 

levels. 22.73 % did not make the safe transition from L0 to L2 at the first attempt. 

They switched at least once to L2 and back to L0 due to another button, pedal or 

steering wheel operation. 18.19 % had the same problems transitioning from L0 to 

L3. The same number of participants did not change directly from L3 to L2. They 

changed into L0 before reaching the right level. There were no problems when 

changing from L2 to L3.  

The transition times of three participants were considered as outliners (3σ) and 

therefore excluded from statistical analysis. Each participant changed from L0 to L2 

and L3 once. They changed twice from L2 to L3 and L3 to L2 due to the study setup, 

without an effect of time of measurement (first or second time; L2 to L3: t(18) = 0.498; 

p = .624; L3 to L2: t(18) = 1.895; p = .074). Therefore the mean of both values was 

used for the following analysis. Reaction times differed in terms of transitions 

(F[2,253] = 8.480; p = .001; η2 = .320). The transition from L3 to L2 (ML3toL2 = 6.90) 

took more time than the changes from L0 to L2 (ML0toL2 = 4.28; p = .005) and L2 to 

L3 (ML2toL3 = 4.12; p ≤ .001). 

 

Figure 4. Transition times to automation and within automation modes (initiated via button 

press). 

The following results are displayed in fig. 5. Due to small in between group sizes (9 

and 10 participants), the data was not analysed statistically. After the request to change 

from L2 to L0, the automation was switched off after 2.2 s. No driver reacted via 

intervention or button press within this time. At this point, no statement can be made 

about the drivers’ handling of the situation. In the critical event, all drivers acted 

within 6.90 s with a mean of 4.54 s (onset: fastest transition minus 2 s reaction time) 



 driver’s experience and mode awareness in car automation 129 

by using the pedal or steering wheel intervention during the critical event. None of the 

participants collided with another vehicle. 

The uncritical transition from L3 to L0 was made within 3.20 and 11.32 s with a mean 

of 6.77 s, whereas in the critical situation, the reaction time decreased slightly to a 

mean of 6.22 s (range from 3.31 to 8.2 s). Without a critical event, 50 % used the 

buttons to change level. All other participants used pedal or steering wheel 

intervention. The buttons were used less in the case of the critical event (33 %). None 

of the participants provoked a safe stop (15 s after the announcement). 

 

Figure 5. Transition times for changing into L0 in an uncritical and critical situation (between 

factor). 

Discussion 

The study identified the influences of the various automation levels on mode 

awareness. According to the SDT, two subjects had a continuous task confusion. 

Seven people failed the monitoring performance, since they would not have detected 

important signs and reacted to them within 3.5 s in over 30 % of the cases in L2. There 

might be three factors which had influence on the SDT performance: distraction, task 

confusion due to insufficient knowledge about the tasks or mode confusion. The quiz 

was a visual distracting non-driving related task, which was available throughout the 

levels. Visual distraction leads to a bad performance for detecting obstacles (Lorenz 

et al. 2015) as well as in the SDT (Lassmann et al. 2019). This thesis is supported by 

the negative correlation of the SDT hit rates and the performance frequency of the 

quiz. Subjects who were rather involved in the quiz, missed road signs. Regarding the 

factors task and mode confusion, the objective data gathered during the freezing 

situation might help to explain the results. Overall 21 of 22 participants were able to 
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correctly reproduce the current automation level they were in, but 31 % of the 

participants in L2 and 22 % in L3 were unsure about the respective tasks. These results 

could actually be an indicator of mode confusion, which refers to a discrepancy of the 

participants’ belief about which aspects of vehicle performance are controlled by 

themselves and which are controlled by the automation at a particular instance 

(Cummings & Ryan, 2014).  

In terms of the transition, participants did fairly well. After having tried the transition 

once during the acclimatisation ride, most succeeded in transitioning at the first 

attempt within a few seconds. Most problems that occurred were due to the fact that 

people either still pressed a pedal, pressed the button for too long or did not trust the 

trajectory of the simulation. For most people this happened only once during a whole 

test ride. In addition, subjects did not change levels faster while doing it the second 

time which speaks for good usability at the first place. In summary, according to the 

results, the HMI supported the user during transitions well. Nevertheless, a quote of 

100 % transitions at first attempt would be desirable.  

For the changes from L3 into a lower level, people took more time, which is in line 

with the findings of Gold et al. (2013): the longer the possible time frame for take-

over, the longer the take-over takes. Even during the critical situation, take-over times 

did not change much, which supports the thesis, that people were rather trustful of the 

system. A timeframe of 2.2 s for the transition from L2 to L0 was not enough for 

drivers to react to the change and the readiness of the driver for take-over was not 

checked. This shows the danger of a L2-system: undertaking a transition from L2 to 

L0 without an explicit driver interaction, monitoring or a fallback action might lead 

to a situation of an unsupervised car in motion. For this reason a driver monitoring 

will be implemented in the TANGO system to check the driver’s readiness. However, 

all drivers became aware of the critical situation in L2 and reacted in time to prevent 

an accident, which leads to the assumption that drivers were aware of the monitoring 

task and also the mode. In terms of take-over from automation to manual driving, the 

intervention seems to be more intuitive for drivers than pressing a button. 

In summary, the results of the study seem divers. According to the findings of Lee 

and See (2004), the misbelief about the vehicle’s operation is a result of overtrust or 

undertrust in the automated system. In this context, it could be assumed that 

participants in L2 had overtrust in the automated system, as they incorrectly thought 

that they could fill in the quiz, despite being supposed to watch the traffic. Overtrust 

can lead to misuse of the automated system, where the driver applies the automation 

to a roadway environment that is outside of the automation’s operational scenarios. In 

the critical take-over situation, however, the drivers with L2 were able to update their 

situational awareness quickly enough so that there were no problems with out-of-the-

loop performance. On the contrary, participants in L3 had possibly distrust in the 

system, as they thought that they had to watch the traffic, despite the automated system 

taking over this task completely. Participants believed that the automation 

performance was less than it actually was, which leads to a disuse of the automated 

system and thus removing the possible benefits of the automation (Lee & See, 2004). 
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Conclusion 

This study on mode awareness with regard to different automation levels was able to 

show that the test persons could subjectively indicate the correct automation level, but 

made mistakes in indicating the tasks which they had to perform. This corresponds to 

the objective performance in the secondary task. On the one hand these results show, 

that the HMI succeeded to convey the information of different automation modes that 

were obvious to the driver. On the other hand the results could actually be an indicator 

for mode confusion which refers to a discrepancy between how the participants 

believed the vehicle to be operating and how the vehicle was actually operating during 

L2 and L3 – e.g. that monitoring the system could be achieved while performing a 

visual non-driving related activity. Therefore the tasks during automation should be 

emphasised more clearly – either by instruction or by the system - and internalised by 

the driver. However, in conclusion the TANGO HMI supports the driver well, 

especially in regard to transitions, but can be improved regarding assistance of mode 

and task awareness. 
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  Abstract 

The present study investigated the mental workload associated with driving a vehicle 

equipped with Lane Keeping Assistance System (LKAS). Specifically, an experiment 

was carried out with 16 participants driving with LKAS in four real-world scenarios. 

Effects on mental workload were evaluated with psychophysiological measures such 

as heart rate and skin conductance response (SCR). The driving performance, which 

is also a measure of evaluating mental workload, was assessed by measures such as 

steering reversal rate, variation of lateral position and steering effort. The result 

suggested that LKAS has reduced physical workload in the steering task. However, 

the lane keeping performance was not improved. Moreover, the NASA-TLX showed 

that participants perceived higher mental workload while driving with LKAS. This 

effect was mirrored in the SCR. The objective data showed that LKAS was associated 

with higher steering reversal rate, which might explain the reason of participants 

perceiving higher mental workload. Overall, it was suggested that the mental 

workload was higher with the tested LKAS.  

  Introduction 

The development of the Advanced Driver Assistance Systems (ADAS) has advanced 

a lot since the late 90s. From the passive Anti-lock Braking System (ABS) in 1987 

(Bosch), to the introduction of Adaptive Cruise Control (ACC) in 1999, various 

driving tasks in modern cars have been gradually delegated to automated control 

system (Bengler et al., 2014). Few years after the introduction of ACC, the Lane 

Keeping Assistance System (LKAS) was introduced by Honda in 2004 (Ishida & 

Gayko, 2004). In contrast to longitudinal motion managed by ACC, the LKAS is 

designed specifically for lateral control. The idea behind LKAS is simple: to support 

staying in a lane. The system constantly measures the distance to the lane marking via 

one or more camera, and applies steering torque to keep vehicle from leaving the lane.  

Discussions regarding the effect of vehicle automation on human can be found widely 

in the literatures. Stanton and Marsden (1996) stated a number of arguments favouring 

automation of the driver role, such as the automation could improve well-being, 

improve road safety, and enhance product sales. Ultimately, it may relieve the driver 

of excessive and complex driving activities. Brookhuis et al. (2001), however, pointed 

out that the ADAS may introduce these benefits, but the consequences (e.g. increasing 
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complexities of the cockpit, decreasing alertness and attention from the driving task, 

and negative effect on skills) should also be identified. Although in the context of 

Intelligent Vehicle-Highway System, Hancock and Parasuraman (1992) also 

commented that such assistive function might intend to mitigate the mechanical effort 

from the driver, yet it could also hypothetically increase driver's cognitive workload 

if monitoring the system is required.  

When a driver assistant system functions as expected, it has been reported in a review 

paper that the averaged self-reported workload (0% = minimum, 100 = maximum) 

decreased from 43.5% in manual driving to 38.6% in ACC driving (De Winter et al., 

2014). Furthermore, some evidences even suggested that lateral support relieves 

mental workload to a greater extent than ACC (Young et al. 2002; Carsten et al. 2012). 

In contrast, if automation does not behave as one anticipates, it could result in 

increasing driver’s mental workload. For instance, Banks and Stanton (2015) showed 

in a field study that participants reported higher subjective mental workload and lower 

trust when driving with automated vehicle (with longitudinal, lateral support and auto-

overtake system) in comparison to manual driving. The results indicated that the 

unexpected lane changes and unsafe auto-overtake offerings were possibly part of 

system’s weaknesses.  

As argued by Sarter et al., (1997), when a new automation is introduced into a system, 

new coordination demands between human and machine often come along. Moreover, 

it is particularly difficult for human to coordinate activities, when the intentions of 

machine agents are not clear. This observation is similar to the findings in our previous 

pilot study, in which the participants subjectively reported overall higher workload 

levels while driving with LKAS than driving without it. The paper concluded that the 

unexpected system failure, inconsistent feedback and lack of transparency were the 

main reasons of having this outcome (Schick et al., 2019).  

Similar to our pilot study, the primary purpose of this study is also to investigate the 

mental workload associated with LKAS. However, it differs in two ways. Firstly, only 

drivers who have had experience with LKAS were selected as participants. The 

experience with automation, as suggested in Stapel et al., 2017, is a prerequisite of 

reducing perceived workload. Secondly, the objective data (i.e. driving performance) 

were presented, which should reveal the driving behaviour when driving with LKAS. 

In total, four distinct real-world scenarios were designed, which consisted of various 

curviness of the route and driving velocity. The participants were asked to drive 

through all scenarios two times (with and without LKAS). The mental workload was 

assessed with objective and subjective measures.  

Based on the work mentioned above, two hypothesis have been formulated:  

H1: Drivers’ perceived mental workload would be higher with LKAS than without it. 

H2: Lane keeping performance would be better when driving with LKAS. 
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  Experimental Design 

To elicit different levels of workload with LKAS, four driving scenarios were 

designed based on the combination of cruising velocity and road geometry. The 

cruising speed was either at 120 km/h (Low-speed, L) or 160 km/h (High-speed, H), 

whereas the road geometry was either curvy (c) or straight (s). Hence, the four 

scenarios were abbreviated as Lc (Low-speed-curvy), Ls (Low-speed-straight), Hc 

(High-speed-curvy) and Hs (High-speed-straight).  

The scenario Lc was a 7 km rural road (B19, Waltenhofen – Oberdorf) that consisted 

of a number of minor curvy sections. The scenario Ls and Hs were each 5 km straight 

motorway sections (A980, Waltenhofen – Dreieck Allgäu). Essentially, these two 

scenarios shared the same motorway, but in opposite direction. Finally, the scenario 

Hc was a 10 km motorway (A7, Dreieck Allgäu – Oy-Mittelberg) which consisted of 

two high radius curves (each with a radius of approximately one km). The order of 

the scenarios was predefined, as driving through all scenarios in a randomized order 

would have taken too much time travelling between each scenario.  

For one complete lap, the participant first started with scenario Lc (go and back), 

followed by a single scenario Ls (go), then through scenario Hc (go and back), and 

finally finish in scenario Hs (back). Unless explicit speed limit encountered, the driver 

tried to maintain the speed at 120 km/h in scenario Lc and Ls, and at 160 km/h in 

scenario Hc and Hs. It took in total about 25 minutes to finish one lap. In order to 

investigate the effect of LKAS in different scenarios, the participant had to drive 

through all scenarios two times (laps) i.e. with and without LKAS. The order of 

introducing LKAS was counterbalanced. The routes are illustrated in Figure 1. 

 

Figure 13. Four real-world scenarios (Lc: Low-speed-curvy, Ls: Low-speed-straight, Hc: 

High-speed-curvy, Hs: High-speed-straight). The yellow star indicates the starting and ending 

of one complete lap. (Figure adapted from openstreetmap.org)  
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  Participants 

In total, 21 volunteers between 19 and 65-year of age participated in the experiment 

(M: 32.6; S.D. 13.5).  They had participated in a previous pilot study. All participants 

possessed a driving licence for at least three years, their self-reported average annual 

driving mileage was 16333 km (S.D. = 5365 km). The participants signed an informed 

consent form before taking part in the experiment. Due to adverse weather, traffic 

conditions and technical issues, the data of five participants were discarded.  

  Objective measures 

To assess mental workload, the skin conductance response (SCR) was taken as an 

indicator of the activity of sweat glands. In the literature, both the SCR and its tonic 

counterpart (skin conductance level, SCL) have been used for measuring mental 

workload (Gris et al., 2012; Zangróniz et al., 2017). In this experiment, the count of 

SCR per kilometre was taken as a workload indicator.  In addition, the heart rate (HR) 

and heart rate variability (HRV) were also taken as dependent variables. It has been 

shown that HR and HRV are sensitive to evaluate operators’ effort (Aasman et al., 

1987) and mental workload (De Waard & Brookhuis, 1991; Wilson & Eggemeier, 

1991). For HR, these measures in the time-domain were included: 

• Inter-beat-interval (IBI) 

• Root-mean-square of successive R-R interval differences (RMSSD) 

• Standard deviation of N-N intervals (SDNN) 

• Percentage of successive R-R intervals that differ by more than 50 ms (pNN50) 

To describe driver’s performance and behaviour, the standard variation of lateral 

position (SDLP) and the steering reversal rate (SRR) were used. Before computing 

SDLP, as suggested by Östlund et al. (2005), the distance-to-line was filtered with 

second order Butterworth 0.1 Hz high-pass filter to ignore the variation within 10 

seconds of observation window. In addition, the data that were 5 seconds before and 

after any lane-crossing events were excluded. The SRR was defined as the number of 

times per minute that the direction of steering movement was reversed through a small 

finite angle (3-degree). Finally, the steering effort was included to quantify the level 

of physical effort required to perform the steering task. It was calculated as the product 

of steering angle (degrees) and steering torque (Nm).  

The LKAS tested in this study was equipped in a premium class vehicle. The vehicle 

parameters were assessed with a data acquisition system (DEWE2-A4, Dewetron) 

installed in the rear trunk. The physiological data were recorded with a wireless 

wearable system (BioNomadix, BIOPAC Systems Inc.).  

  Subjective measures 

The NASA-TLX (Hart & Staveland, 1988) was used to measure subjective mental 

workload. A 21-point scale was used to map workload level from 0% to 100% for six 

subscales (mental demand, physical demand, temporal demand, effort, performance 

and frustration). The result (Raw-TLX, R-TLX) was obtained by averaging the ratings 

across subscales for four conditions (120/160 km/h x with/without LKAS).  
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  Protocol 

The experiment was conducted in late April until early May 2018 in the Allgäu region, 

Germany. Upon arrival, each participant was briefed about the routes and the goal of 

the study. Starting from the research centre, the driver used the first 8 km to become 

familiar with the test vehicle before the starting point (the yellow star in Figure 1). 

One research staff member sat on the passenger seat to operate the measurement 

devices. After finishing the first lap, the participant parked the car in a parking lot 

nearby and filled the questionnaire (NASA-TLX) before starting the second lap. The 

LKAS was then switched either on or off here. For safety reasons, the driver had their 

hands on the steering wheel all the time. In case of an unexpected system failure 

occurred, the driver should perform counter steering or any other measures to correct 

the vehicle’s trajectory. It took about one hour for each participant to finish one 

complete test run (two laps). A summary of the each scenario is listed in Table 1. 

Table 3. Experiment design for one complete lap (Lc-Lc-Ls-Hc-Hc-Hs). Each participant had 

to drive two laps: with and without LKAS. 

Scenarios LKAS Velocity Length (km) Route 

Lc 

with 

/ 

without 

120 km/h 

7 Curvy 

Lc 7 Curvy 

Ls 5 Straight 

Hc 

160 km/h 

10 Curvy 

Hc 10 Curvy 

Hs 5 Straight 

  Results 

For data analysis, the objective data were submitted to 2 (LKAS: ON, OFF) x 4 

(scenarios: Lc, Ls, Hc, Hs) analysis of variance (ANOVA) with repeated measures. 

Greenhouse-Geisser corrections were applied in case where the data failed to pass 

Mauchly-Test. Post-hoc test with pairwise comparisons were corrected by Bonferroni 

corrections. The p-value for significance test was 0.05. 

  Physiological measures 

In terms of HR, neither a main nor an interaction effect of LKAS was found. In 

contrast, a main effect of scenarios was found significant, F(3, 45) = 7.931, p < .005. 

The post-hoc pairwise comparison showed that the HR in scenario Ls (75.10 bpm) 

was significantly lower than the curvy scenarios (Lc = 76.67 bpm, Hc = 76.61 bpm), 

both p < .01. In other words, HR was in general higher in the winding route than on 

the straight motorway. For other dependent variables, only a significant main effect 

of scenarios on IBI was found, F(3, 45) = 7.65, p < .005.  

Apart from the effect of LKAS and scenarios, the learning effect between the HR with 

groups (between-subject effect) and number of trials (within-subject effect) was 

investigated. The data were submitted to a two-way mixed ANOVA. With respect to 

HR, a main effect of trial numbers was observed, F(2.1, 29.4) = 5.35, p=.01. In 
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contrast, the difference between groups was not significant. This result suggests that 

the group, which experienced LKAS in the first lap, showed a lower HR in the second 

lap. In contrast, the HR of another group (without LKAS in the first lap) remained at 

a similar level in the second lap where LKAS was switched on (Figure 2).  

 

Figure 14. The heart rate over scenarios in a chronological order (left to right). The group on 

the left started with LKAS, while the group on the right started without LKAS. (Lc: Low-speed-

curvy, Ls: Low-speed-straight, Hc: High-speed-curvy, Hs: High-speed-straight) 

For SCR, a main effect of LKAS on the average count per kilometre was found, F(1, 

15) = 4.62, p = .048. However, no difference was found with scenarios as well as their 

interactions. The result of average SCR / km over the scenarios is shown in Figure 3.  

 
Figure 15. Averaged SCR / km over all scenarios in a chorological order. (Lc: Low-speed-

curvy, Ls: Low-speed-straight, Hc: High-speed-curvy, Hs: High-speed-straight) 
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  Performance measures 

The analysis of SRR revealed a significant main effect of LKAS (F(1, 15) = 55.24, p 

< .005) as well as of four scenarios (F(3, 45) = 679.1, p < .005). An interaction effect 

was also found between LKAS and scenarios (F(1.7, 26.1) = 9.07, p = .002). A 

pairwise t-test showed that the SRR was always higher when driving with LKAS in 

the curvy scenarios (in Lc, t = 4.767, p<.005; and Hc, t = 5.475, p < .005), whereas 

the difference was not significant in straight scenarios (Ls and Hs). On the other hand, 

the SRR in curvy scenarios (Lc vs. Hc) was significantly different from each other 

irrespective of LKAS (all p < .005), while no difference between straight scenarios 

(Ls vs. Hs) was found. This result is illustrated in Figure 4a. 

In terms of steering effort, ANOVA showed that significant main effects of LKAS 

(F(1, 15) = 242.3; P < .005) and scenarios (F(1.74, 26.1) = 635.6, p < .005) were found. 

In addition, the interaction effect between two factors (F(1.45, 21.8) = 165.0, p < .005) 

was also significant. In contrast to SRR, the steering effort in every scenario was 

greater when driving without LKAS (p < .05), except of scenario Ls. However, when 

driving with LKAS, no significant difference was found between curvy scenarios (Lc 

vs. Hc), as well as between straight scenarios (Ls vs. Hs). Overall, the steering effort 

in the curvy scenarios (Lc and Hc) was significantly greater than straight scenarios 

(Ls and Hs). This observation is illustrated in Figure 4b. 

For SDLP, no difference was found between scenarios, and between LKAS. The post-

hoc paired-sample t-test indicated that the SDLP was only significantly higher in 

scenario Hc (M = .120 m) than scenario Lc (M = .107 m) when driving without LKAS. 

The rest comparisons were all not different from each other. 

 

Figure 16. Driving performance measures. a) Steering Reversals b) Steering Effort (Lc: Low-

speed-curvy, Ls: Low-speed-straight, Hc: High-speed-curvy, Hs: High-speed-straight) 
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  Subjective measures 

A two-way (LKAS x velocity) ANOVA was performed on the results of R-TLX. It 

was observed that the LKAS had a main effect on the subjective rating of mental 

workload (F(1, 60) = 6.17, p = .016). In contrast, no difference in mental workload 

was found between two velocity settings. There was also no interaction effect. The 

result of NASA-TLX is presented in Figure 5. 

 

Figure 17. These subjective ratings were collected after the each lap. Depends the order of 

introducing LKAS, the participant would answer in each lap for either LKAS ON or OFF, in 

both velocity conditions (120 and 160 km/h). For analysis, the R-TLX was obtained by 

averaging the score of subjective workload over six subscales. 

  Discussion 

The result of R-TLX shows that the participants rated their mental workload overall 

higher when the LKAS was switched on. This result supports H1 that the LKAS 

increases drivers’ perceived workload, which is also in line with our pilot study 

(Seidler & Schick, 2018). However, the perceived mental workload was not different 

in low and high-speed scenario. This different result might be due to a small sample 

size, or driver’s experience with automation (Stapel et al., 2017). Out of six subscales 

from the NASA-TLX, it can be seen in Figure 5 that the difference between two LKAS 

conditions (ON vs. OFF) was particularly huge in the subscale mental demand, effort 

and frustration. The reasons may be explained by the objective data.  

The analysis of SRR (Figure 4a) reveals that, in the curvy scenarios, drivers performed 

more counter-steering to correct the trajectory while driving with LKAS. This 

suggests that constantly correcting LKAS’s output might be annoying and disturbing, 

which results in frustration and mental effort, regardless of the steering effort under 

the same LKAS setting was actually lower (Figure 4b). This is an interesting result, 

as reducing physical workload is one of the goals of ADAS (Tanaka et al., 2000). 

However, this contradictory observation shows that the drivers might prefer applying 

more steering torque (manual driving) than having an assistance system that reduces 

physical workload but requires more mental effort. 
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In contrast to performance measures, the physiological data only partially supports 

the hypothesis H1 that driving with LKAS induces mental workload. On one hand, 

the SCR in Figure 3 demonstrats that the LKAS introduced a significant effect on the 

average SCR/km in different laps. On the other hand, the HR did not show a statistical 

difference between LKAS conditions (ON vs. OFF). Instead, it is only found that the 

HR was higher in the curvy scenarios (Lc, Hc) than the straight scenario (Ls). This 

result is however expected, because the task of keeping a vehicle between lanes 

depends highly on a psychomotor eye-hand coordination of the driver (De Waard, 

1996). Although the observation in Figure 2 could be another evidence that LKAS 

induces mental workload (as decreasing HR over time was not found in both groups), 

it is known that higher HR does not necessarily correlate with increasing mental 

workload, since HR is also sensitive to physical workload e.g. as a result of steering 

reversals (Jahn et al., 2005).  

In terms of driving performance (H2), the objective data reveals that LKAS did not 

improve the lane keeping performance. Even though the SDLP was significantly 

higher in the curvy scenario (Hc) than other three scenarios when driving without 

LKAS, it is difficult to conclude that the driver experienced more mental workload 

here, since the result of HR did not support this observation. Moreover, it is still an 

open question whether the measure SDLP could truly reflect mental workload in a 

field study, despite the fact that data during overtaking and lane changing events were 

excluded. As Östlund et al. (2005) points out, the width of the route and observation 

window may heavily influence the reliability of this measure. 

Finally, it is realized that certain driving performance measures e.g. SRR and SDLP, 

though may be helpful interpreting the driving behaviour, are not ideal for examining 

mental workload associated with LKAS. The argument is that LKAS’s performance 

(whether it applies enough torque or counter steers at the right time) is often associated 

with curves, in which the lateral position/control is heavily influenced by the system 

itself. This means that even if the performance measure can truly mirror the variation 

of mental workload, the interpretation would also not be easy. In this case, subjective 

measure (NASA-TLX) is a relatively robust way to assess mental workload. 

  Conclusion 

Overall, the steering effort has shown that the LKAS has reduced physical workload 

significantly, particularly in the curvy scenarios. However, the reduced physical effort 

did not result in a better lane keeping performance as no difference of SDLP was 

observed. Moreover, the result of NASA-TLX shows that drivers experienced higher 

mental demand and frustration while interacting with LKAS. This could be explained 

by the frequent steering reversals required to correct the driving trajectory while 

driving with LKAS, as shown in the SRR. This increasing physical activity possibly 

led to an increase in HR, which results in difficulties in assessing changes in mental 

workload from this psychophysiological measure. However, the difference in count 

of SCR suggests that the driver could be annoyed or surprised by the LKAS behaviour. 

Therefore, the results from this study suggests that mental workload is higher when 

driving with this tested LKAS. 
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  Abstract 

Motion sickness as a reaction to passive movement is a serious issue in various forms 

of transportation like cars. The goal of the study is to identify physiological changes 

that can be measured as a response to motion sickness in a real driving environment. 

The observed features were heart rate, pulse, respiration, skin temperature and 

electrodermal activity. Forty volunteers were passengers in a car while watching a 

movie. Meanwhile the car moved in a half-automated stop-&go-scenario, which 

represented the motion sickness stimulus. A remarkable part of the recorded data had 

to be neglected due to a high level of signal noise caused by the car environment. The 

minutely recorded subjective sickness feedback had a zero-inflated poisson 

distribution. Therefore a zero-inflated regression model was used to identify the 

relevance of each of the aforementioned features. The model shows that electrodermal 

activity and pulse were the most relevant features indicating an increase in motion 

sickness. The observation of physiological parameters in the car environment is a 

promising method to objectively determine motion sickness.  

  Introduction 

The issue of motion sickness (also called kinetosis) has a long history and occurs in 

all cultures, ages, and genders.  Being out of the loop regarding the driving task bears 

a higher risk of getting motion sickness (Diels, Bos, Hottelart, & Reilhac, 2016). With 

the ongoing development of fully automatic cars the risk of having more passengers 

experiencing motion sickness gets more attention. Passengers should be able to enjoy 

the given opportunities to fill the spare time i.e. with reading in automated cars. 

Currently, the process of evaluating countermeasures against motion sickness requires 

the subjective passenger’s feedback. The development of countermeasures that ought 

to reduce motion sickness illustrates the deficiency of objective motion sickness 

detection. Approaches vary from enhancing situation awareness (Yusof, 2019) to  

display concepts (Diels & Bos, 2015). In order to evaluate those countermeasures and 

objectively estimate the passengers’ state in terms of motion sickness, more work is 

needed. The aim is to have objective feedback through physiological measurement in 

the future. This study provides preparatory work regarding the opportunities coming 

from the relationship between physiology and self-rated motion sickness.  
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A short overview on some relevant research and findings, done so far, is given here. 

The idea of measuring physiological parameter to obtain objective motion sickness 

levels is decades old. Thereby only those features will be considered, which can be 

collected without making the customer (passenger in the car) feel less naturalistic or 

be restricted in any way (for example due to head-worn tracking systems). Some 

research groups focused on single items while others looked at multiple physiological 

features. In the following, some results are described. A rise in heart rate for motion-

sick participants was found by several studies; however, some of those changes were 

only weak and not significant (Yates & Miller, 1996; Yates et al. 1998; Graybiel & 

Lackner, 1980). A significant change in heart rate could be found in the beginning of 

the trial by Cowing (1985), whereas Holmes & Griffin (2001) found significant 

changes when strong nausea occurred. It has been observed that the respiration 

frequency, as a further physiological feature,  rises shortly before and while vomiting 

due to motion sickness (Yates et al., 1998). Deep breathing can be used to combat 

motion sickness (Jokerst et al., 1999). Nobel (2010) found that motion sickness leads 

to a dysfunction in the autonomous thermoregulation. His result supports the findings 

that body temperature is not a good indicator for motion sickness (Scott, 1988; 

Graybiel & Lackner, 1980). On the other hand, it could be shown that skin 

conductance is a robust and reliable predictor for motion sickness. The electrical skin 

potential rises when motion sickness increases (Crampton, 1955; Bertin, 2005; 

Meusel, 2014).Yates & Miller (1996) indicate that skin colour could play an important 

role when detecting motion sickness using physiological data, since pallor changes 

with sickness and is seldom a response to other stressors. Since pallor seems to 

proceed the onset of nausea (Crampton, 1955), it has a high potential of being a good 

indicator of motion sickness (Scott, 1988; Holmes et al., 2002).  

In short, some features show potential, but most features are not cause-specific: the 

change of a single feature cannot be traced back to motion sickness with certainty. 

Therefore, finding a pattern of multiple physiological changes is required. Such a 

pattern could detect or predict motion sickness more robustly and would not be as 

vulnerable to unexpected physiological behaviour of the individual. The aim of this 

investigation was to develop an objective rating method allowing the evaluation of 

countermeasures without using self-rated indicators by the help of multiple features. 

An approach in a real driving scenario is presented along with first results.  

  Method 

  Ethical Approval  

Participants read and signed an informed consent prior to participation. Any 

participants with one of the following conditions were excluded from the trial: 

cardiovascular weakness, hypertension, hypotension, epilepsy, balance disorder, 

pregnancy, other health impairments or of age younger than 18 years. For a conducted 

trial the participants received a voucher (value €20) as compensation regardless of the 

trial duration. All participants reported normal or corrected-to-normal visual acuity. 

The experiment was approved by the Ethics Committee of the Brandenburg 

University of Technology Cottbus-Senftenberg. To prevent participants from harm, 

those with a high risk of getting severe motion sickness (high susceptibility) were 
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excluded from the trials. The derivation of the participants’ susceptibility is explained 

in Table 1.  

  Participants 

Forty volunteers (20 women, mean age = 37.9 years, SD = 11.4 ranging from 21-57 

years) which were employees of the Volkswagen AG participated. They are not 

involved in motion sickness research and participated during their private time. The 

recruiting process contained an assessment of the participants’ susceptibility. By using 

the Motion Sickness Susceptibility Questionnaire – Short (MSSQ) (Golding, 1998) 

susceptible (n = 23) and non-susceptible (n = 17) participants for the trial were chosen. 

Therefore categories were defined using the MSSQ-Score (final score) and the item 

regarding the experienced motion sickness over the last 10 years in cars (interim 

score). The categorization can be found in Table 1.  

Table 1. Susceptibility Categories 

Category MSSQ-Score Interim Score Accounted as 

A Final score = 0  0 or 1 
Non-Susceptible 

B Final score > 0   1 

C Final score > 6 and < 11  2 or 3 
Susceptible 

D Finale score >11  2 or 3  

E Final score > 20  4 highly susceptible 

Interim code: never felt sick ‘1’, rarely felt sick ‘2’, sometimes felt sick ‘3’, frequently felt sick ‘4’  

  Materials and Set up 

The motion sickness stimulation during the trial was a stop-&go-scenario.Two cars 

drove behind each other and the participant sat in the rear car in the front passenger 

seat. A vehicle acceleration profile was created before the trial and replayed for the 

vehicle in front, while the participants’ car followed with adaptive cruise control. This 

should assure a constant motion sickness provocation in all trials for all participants. 

A trained security driver was in the driver seat and the experimenter in the rear 

passenger seat.  

The lead car was a VW Passat, while the rear car was an Audi A8 D5. During the 

experiment the participant had a display (Nanovision MIMO UM-1010S, 10.1" USB 

Multi-Touchscreen Display) fixed to the leg. They were asked to give feedback every 

minute about their motion sickness status on a seven-point scale ranging from zero - 

“no symptoms” to six - “unbearable” in German language. The scale, illustrated in 

Figure 1, was located on the bottom of the touch screen and the participants gave 

feedback by tapping on the screen.  
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Figure 1. Illustration of the Questionnaire 

Kinetosis appears more often if passengers are involved in tasks in which their eyes 

are off the street. Therefore participants were instructed to keep their eyes on the 

monitor during the whole drive. To ensure that participants would be watching the 

monitor, they had to count either jelly fish or clown fish (randomized over the trials) 

in a coral reefs film. The film was screened throughout the entire time on the upper 

part of the display above the questionnaire.  

The study was conducted in November and December 2018. All participants were 

able to get acclimated for several minutes after getting into the car, coming from the 

cold temperatures outside (approximately 5°C). The car temperature was set to 

constant 23°C, which is supposed to be the optimal temperature for measuring 

electrodermal activity (Boucsein, 2012). 

  Procedure 

Each participant completed two trials to increase reliability of the data which were 

organized on different days. After giving informed consent, participants were seated 

in the car. During the time given for acclimation, the sensors were attached to the 

participants. The first part of the experiment was a seven-minute session in the 

standing car, therein the recorded data was used to create a baseline. The baseline 

measures were followed by the actual trial, where participants would experience the 

stop-&go-driving scenario for a maximum of 20 minutes or until an abort criterion 

was reached. During both sections, the baseline and the drive, participants had the 

visual counting task. There was always only one participant at a time. After the trial, 

the vouchers were handed over,participants were provided refreshment and asked to 

stay at the location until the symptoms fully disappeared.  

  Physiological measurements 

The physiological data acquisition was carried out by the use of a ProComp Infinity 

encoder with ProComp Infinity Sensors and recording from the BioGraph Infinity 

Software (Thought Technology Ltd, 2019). Electrocardiac activity (ECG) and blood 

volume pulse (BVP) were recorded at 2048 Hz. Electrodermal activity (EDA), 

temperature and respiration were measured at a sampling rate of 256 Hz. The 

respiration sensor was placed in a stretch belt and placed around the chest. Skin 

conductivity was measured by placing sensors on the pointer and ring finger of the 

non-dominant hand, while ECG was recorded using wrist straps. The BVP sensor as 

well as the temperature sensor were placed on the middle finger of the non-dominant 

hand. Furthermore, a second measurement of temperature and pulse was derived from 
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the inner ear by using the device Cosinuss° One (Cosinuss°, 2019). The accuracy from 

the temperature in the inner ear is a constant offset to the body core temperature but 

dynamic changes can be recorded precise enough for most medical applications. Pulse 

oximetry in the external auditory canal is comparable to pulse oximetry on the finger, 

while it is more robust towards motion artefacts. (Kreuzer, 2009) The approach in 

measuring the features twice was realized to improve overall data quality. The 

dynamic environment could cause a low signal-to-noise-ratio which therefore requires 

a backup system.  

 

  Data Analysis  

On average the time series of the 70 trials per physiological parameter containing over 

2100 observations in total were used for the data analysis. Each of the parameters was 

statistically and visually screened for outliers and noise. Initial analysis for the heart 

rate signal included cascading high- and lowpass filtering, afterwards QRS complexes 

were detected using wavelet analysis. Downsampling processes were done for the 

blood volume pulse on the finger (finger pulse) as well as the temperature data. The 

finger pulse and the respiration signal were waveform data, wherein a peak was 

considered a beat or a breath respectively. Electrodermal activity was divided into 

tonic and phasic movement with a 0.5 Hz highpass filter. From the phasic component 

skin conductivity reactions (SCR) were extracted. SCRs were identified as responses 

with an amplitude of SCRs/min ≥ 0.03 μS. Rejection rate was set to 10 %, meaning 

that amplitudes SCRs/min < 0.003 μS were rejected. Almost all of the features were 

normalized using the baseline measurements and were averaged per minute. Only the 

SCRs were not normalized, since its appearance itself is an indicator for motion 

sickness (Golding, 1992).  

Since several physiological features were derived from the participants and a human 

body rarely shows any independent physiological changes, it has to be assured that no 

information is used in the analysis multiple times (multicollinearity). Multicollinearity 

describes the case when information is redundant in a set of variables and the 

redundancy gets apparent in a combination of several variables. Physiological 

reactions of humans are mostly dependent which increases the chance of 

multicollinearity in the data. To test that no harmful multicollineariy was present 

firstly pairwise correlation was calculated. Before calculating the correlations, the 

features need to be centred and scaled which led to lead to a mean of zero and standard 

deviation of one for all of the features. If the pairwise correlation shows high 

coefficents (Pearson’s r < 0.7) this is considered as indicator for severe 

multicollinearity. In addition, the variance inflation factor (VIF) was calculated. The 

VIF is a predictor of whether variables have a strong relationship to one or more 

variables. The calculation of VIF was necessary since multicollinearity can also 

appear, if pairwise correlations are low. A conservative threshold indicating harmful 

multicollinearity is VIF = 4 (Slinker& Glantz, 1985).  

In accordance to the rating distribution, a zeroinflated poisson regression model was 

computed. For the model all ratings of 4 were transformed to 3, because the amount 

of reported 4s was too little. Furthermore, only cases where recording of all features 

was successful, could be considered, resulting in 895 observations. The model 

consists of two separate processes: one considers the count part of the model. The 

count model examined how ratings evolve, if the participant experiences motion 
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sickness at some point (susceptible to the provocation). The second process contains 

a logistic regression considers those participants which are unsceptible to the stop&go 

scenario and reported only zeroes. The results of the zero-inflation model coefficients, 

shows the odds of reporting no motion sickness symptoms (Atkins, 2007). To verify 

the model, the combined probability of no symptoms (Rating = 0) were calculated and 

compared to the actual appearance of no symptoms.  

A 5 % significance level was accepted in all tests, data analysis and statistical 

calculation were carried out using Matlab 2016b and R 3.5.3.  

Results 

Correlation between Blood Volume Pulse on the finger (finger pulse) and inner ear 

was high (r = 0.78), therefore the ear pulse was not further used. Furthermore, skin 

temperature was not used, since the measurement showed high fluctuation which has 

most likely been caused by the airconditioning fan of the car, instead, the temperature 

derived from the inner ear was used. The measurement of the heart rate showed a low 

signal-to-noise-ratio, possibly due to the unsteady environment of the movement and 

electrical components in the car led to many artefacts. Therefore the heart rate was 

excluded from further analysis. The remaining features were the finger pulse, inner 

ear temperature, respiration rate and skin conductivity components (tonic and SCRs). 

Table 2 lists the features wherein all but the SCR-Peak were normalized by the 

baseline (substraction of baseline mean from each data point). 

Table 2. Normalized features used along variance inflation factor 

Measurement Derived Feature  Mean SD VIF 

Blood Volume 

Pulse 
Peak  [Counts per minute] 0.83 3.79 1.02 

Temperature Mean Temperature  [K] 0.58 0.88 1.06 

Respiration Peak  [Counts per minute] 0.35 2.97 1.06 

Skin 

Conductivity 

Mean Tonic Level  

SCR-Peak  

[μS]  

[Counts per minute]  

0.26 

2.22 

0.48 

1.79 

1.27 

1.37 

The listed measurements in Table 2. were used for the further analysis and have 

pairwise correlations r < 0.7. Each of the features has a VIF < 4, therefore none of 

them indicated harmful multicollinearity. For those remaining components, the 

correlations to the ratings are plotted in Figure 2. The displayed boxplots bring out the 

partial relationships between the dependent variable and the indented regressors. The 

negative SCR-correlations appeared, when particpiants showed a relieve in symptoms 

but SCRs still occurred. In the tonic part of the EDA a positive tendency can be 

observed. The correlation of respiration to rating has a negative tendency, while the 

residual parameters BVP and temperature have mainly positive correlations.  
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Figure 2. Boxplot of correlations of physiological features to sickness rating 

The given ratings plotted in a histogram (Figure 3) indicate that the distribution is not 

Gaussian, but tends to a Poisson distribution which was also found by Reason (1967) 

for a motion sickness rating. In total 1293 ratings were given during the provocation 

wherein 718 were ‘0 – no symptoms’ and 21 ratings were ‘4 – strong symptoms’. 

Testing a zeroinflation with the Score-Test from van den Broek (1995) reveals that 

the data have a zeroinflation (χ2 = 195,99, df = 1, p < .001).  

 

Figure 3. Histogram of the rating during the drivings 

The reported mean sickness development over all subjects are plotted in Figure 4. The 

‘+’ at rating 4 represents the break-off criterion of which 19 occured in total due to 

subjects reporting the level of 4. Two times participants reported a motion sickness 

level of 4 very early which was assumed a mistake until the rating was repeated. When 

a rating of 4 occurred, the remaining minutes were filled with 4 to enable the plot.  



154 Pham Xuan, Brietzke, & Marker 

 

Figure 4. Mean reported motion sickness development 

The resulting model is shown in Table 3. The unprocessed results of the modelling 

lead to numbers which are calculated using log link. Therefore the estimated slopes 

(Est) of the coefficients are on a log scale and shown along with their exponentiated 

values (Exp(Est)) to ease interpretation. The estimate of any coefficient in the count 

model describes how the rating changes if the respective coefficient changes one unit. 

Generally one outcome of the log link function is a non-linear relationship of the 

predictor variables with the result (Beaujean & Morgan,2016). The percentage of the 

rating change can be calculated using Equation (1).  

Percentage of Rate-Change  = 100x[exp(b0) x    (1) 

exp(b1 x ∆EDA, SCR) x exp(b2 x ∆EDA, tonic) 
exp(b3 x ∆Respiration) x exp(b4 x ∆Temperature) 

x exp(b5 x ∆BVP)] 

Therein b0 represents the intercept while b1-5 are the regression coefficients and ∆ are 

the changes in the respective predictors. The distance of the result to 1 can be 

interpreted as the increase or decrease of the percentage (Atkins et al., 2013). For a 

better understanding the influence of Blood Volume Pulse change shall be described 

as an example. The residual parameters are kept at an average level (as measured 

during the baseline condition). The coefficient calculated by the model for the 

influence on rating due to the change of BVP is 1.37 (exp(Est)), the BVP changes in 

the range of its standard deviation (1 unit, since the data were centred and scaled). The 

influence on rating can be calculated using Equation (1):  

Percentage of Rate-Change  = 100 x exp(0.01) x exp(0.31⁎1)    

  = 137.94 

Meaning that there is approximately 38% of increase in motion sickness rating, when 

the BVP changes one peak/minute.  
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Table 3. Zeroinflated poisson model 

Coefficient Est SE exp(Est) z-Value 
Exp(95% CI) 

p 
Lower Upper 

Count model coefficients 

Intercept  0.01 0.06 1.01 0.19 0.91 1.12 0.85  

EDA, SCR -0.12 0.05 0.89 -2.19 0.80 0.99 0.03 * 

EDA, tonic -0.00 0.06 1 -0.05 0.89 1.12 0.96  

Respiration -0.04 0.03 0.96 -1.21 0.9 1.03 0.23  

Temperature -0.30 0.07 0.74 -4.60 0.68 0.80 <0.001 *** 

BVP  0.31 0.04 1.37 8.41 1.28 1.45 <0.001 *** 

Zero-inflation model coefficients 

Intercept  -2.42 0.48 0.09 -5.07 0.02 0.24 <0.001 *** 

EDA, SCR 0.71 0.19 2.04 3.82 1.42 2.94 <0.001 *** 

EDA, tonic -3.68 0.60 0.03 -6.17 0.01 0.08 <0.001 *** 

Respiration -0.33 0.15 0.72 -2.17 0.51 0.95 0.03 * 

Temperature -2.66 0.62 0.07 -4.27 0.01 0.28 <0.001 *** 

BVP  0.33 0.17 1.39 1.93 0.97 2.06 0.05  

Note. Est: Unstandardized coefficient (log link), SE: Standard error, exp(Est): 95% CI confidence interval: 

Exponentiated regression coefficient. Log Likelihood: -978.5 (df = 12) 

The number of correctly and incorrectly predicted observations can be found in the 

confusion matrix (Table 4) along with the derived sensitivity (proportion of positive 

cases correctly predicted).  

Table 4. Confusion matrix 

Observed 

Predicted  
0 1 2 3/4 Total 

0 460 140 91 38 
729 

(81.45%) 

1 57 30 28 38 
153 

(17.10%) 

2 0 2 7 3 
12 

(1.34%) 

3 0 0 0 1 
1 

(0.11%) 

4 0 0 0 0 0 

Total  
517 

(57.77%) 

172 

(19.22%) 

126 

(14.08%) 

80 

(8.94%) 

895 

Sensitivity 88.97% 17.44% 5.55% 1.25%  
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  Discussion  

The conditions of the real driving experiment introduced confounding factors that 

cause notable noise as influence, which negatively affects the signals (i.e. temperature, 

influence of sun, driving conditions, car movements or technical artifacts). These 

factors as well as internal biological variations have an impact on the variance of the 

data (Scholz, 2006) and prevent a full use of all of the measurements. 

The rating data are derived from susceptible and non-susceptible participants. The 

non-susceptible participants are a source contributing only zeros to the rating, 

therefore the distribution of the rating results in a zeroinflation. The use of an zero-

inflated model is therefore appropriate. Each observed feature of the model is within 

the confidence interval. The models’ overall validity is therefore considered to be 

given. Interpretation of the slopes in Poisson models (which become multiplicative 

models) has to be done very carefully, it is described in more detail by Atkins et al. 

(2013). Generally, it is shown that Skin Conductivity Responses, temperature and 

Blood Volume Pulse have a significant explanation range regarding the rating. The 

negative relationship between sweat (SCR) and motion sickness is surprising. A 

calculation according to Equation (1) results in a decrease of the rating when the SCR 

rises 1 unit. It was expected that sweat activity rises along with a development of 

motion sickness. The findings, as in several studies, of a higher amount of perspiration 

as one of the characteristics of a motion-sick group compared to a non-motion-sick 

group, could not be found here (Crampton, 1955; Scott, 1988; Golding, 1992; Bertin 

et al., 2005). Temperatures seems to reduce as motion sickness rises. An increasement 

of temperature in a thermoneutral environment was also described by Nobel (2010). 

Contrarily in preceding studies temperature was behaving variable (Jarvis & Uyede, 

1985) or did not change significantly (Drylie, 1987). The significant effect found is 

therefore surprising. Further the model indicates that a rise of BVP leads to a rise of a 

motion sickness rating. This is in agreement with findings from literature (Crampton, 

1955; Dahlman, 2009). The output of the model dealing with the zeros would be 

interesting regarding the onset of motion sickness symptoms. This would require, the 

threshold of 0 - “no symptoms” to 1 - “beginning” symptoms was similar understood 

by all of the participants. Correct categorization of the participants’ motion sickness 

into the scale was assumed but due to subjective judgement it cannot be assured, 

especially when “beginning” symptoms were reported.  

  Conclusion 

The presented study examined the relationship between physiological data and 

reported motion sickness. Participants were situated in a stop&go-scenario, while 

being involved in a non-driving related task, which caused them to have their eyes off 

the street. This scenario was sufficient to provoke motion sickness over time: Out of 

the 40 participants 7 participants had severe motion sickness, while 27 participants 

had at least mild or a higher degree of motion sickness symptoms. The recordings 

were done in a real-driving scenario, where the challenge of transfering and 

reproducing results from laboratory environments in real-driving experiments became 

apparent. Physiological features were used to perform regression analysis in order to 

analyse the associations between a reported motion sickness level and physiological 

reactions. The distribution of the rating led to a zero-inflated poisson model.  
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The generated model revealed that sweat (SCR), temperature and Blood Volume 

Pulse changes significantly with the rise of motion sickness. Reversely these results 

indicate that sweat and blood volume pulse are good indicators for motion sickness. 

The model had a good sensitivity considering the predicition of ‘no symptoms’ 

(~89%). Ratings indicating the appearance of motion sickness (Rating > 0) were in 

average predicted lower than the observation. The significant features along with 

narrow confidence intervals substantiate that motion sickness expresses itself in 

physiological changes, which can be recorded during a real-driving scenario. This is 

considered a promising basis when continuing the work towards objective detection 

of motion sickness.  

  Future Strategy 

The model can be adjusted in two possible ways. One will be to change the general 

model. The zero-inflated poisson model considers the rating as an numeric value, 

while the numbers 0-4 represent the categories of having “no symptoms” to “strong 

symptoms”. Therefore an zeroinflated ordered probit regression model will be 

calculated, which does not assume the numbers 0-4 to be equidistant but still 

represents an ordered scale. Alternatively, a binary model will be computed, wherein 

ratings of 0 and 1 are grouped as “no symptoms” and ratings greater than 1 as 

“symptoms present”. This will allow to overcome the uncertainty of the onset of 

reported motion sickness. Comparison of the models will allow to choose the best fit.  

After choosing the best model the independent variables could be varied. According 

to literature motion sickness is influenced by several factors, for example personality, 

sex, age, exposed time to stimulus (Brietzke et al., 2017; Dahlman, 2009) or 

theoretically derived susceptibility via a questionnaire (MSSQ by Golding, 1998). 

Therefore including such parameters into the model should influence the outcome and 

informative value of any model. It is expected, in example, that the results from a 

model including data of self-assessed susceptible passengers are more precise in the 

outcome. The adjustments should confirm if the grouping factors significantly 

influence of the participants’ rating of motion sickness. This allows conclusions, 

whether the model can be built more accurately if certain groups are considered. 

Practically this includes assertions on how motion sickness is connected to physiology 

in people with a certain profile and which indicators are important. Adjusting the 

models towards the actual susceptibility (i.e. choosing people with a rating higher than 

2 – “mild symptoms”) would probably lead to the most reliable results. By taking the 

temporal development of the physiology with regard to the onset of motion sickness 

into account it could be feasible to recognize motion sickness even before the 

passenger is totally aware of it. In an additional step, it will be tested to what extent 

the accuracy of prediction can be enhanced using the aforementioned factors. In 

general the research question regarding the potential of objective motion sickness 

detection in cars is currently referred based on literature that mostly addresses the 

laboratory context. These results need to be proven relevant and feasible for 

implementation and application in the car. The presented work is one method towards 

transporting laboratory findings into the car. The approach of using multiple features 

in a mathematical model will leed to helpful results in the progress of evaluating the 

importance of physiology for objective detection of motion sickness in cars.  
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Abstract 

In the field of cyber-security, software performance optimization is a major focus of 

research to better prevent cyber threats. However, once threats are detected, they have 

to be managed by a human operator or more often by human operators’ joint actions. 

The purpose of this study is to show that in these collaborative situations, the 

interpersonal trust level between these actors shapes their handling of the threat. 

Forty-five participants performed, with twenty-eight different fictive teammates, a 

collaborative counting task that included aleatory phases of jamming. Each fictive 

teammate was described through two adjectives selected to induce a predefined level 

of interpersonal trust (low or high). The subject and his collaborator worked on 

different systems with different objects to count and different jamming phases. 

Nevertheless, each participant had the possibility of supervising his teammate’s work 

by checking out his task and modifying his answers (number of targets and jamming 

events reported) if required. The subject was responsible for validating the team’s 

final result. The experimental data show that, in this type of collaborative task, the 

interpersonal trust level has indeed an influence on the supervision strategy used and 

the team performance. 

Introduction 

In order to prevent the increase in the number of cyber-attacks, States are setting up 

cyber operations centers (C2Cyb). The operators of these C2Cybs, who monitor the 

state of systems and the information flows, are collectively responsible for detecting, 

correlating and analyzing the various indicators that can make sense of a cyber crisis 

(Boin, Busuioc, & Groenleer, 2014). These indicators, which are difficult to perceive 

but that predict perturbations in the system, are called weak signals (Saritas & Smith, 

2011) and are discrete, ephemeral, distributed and difficult to interpret. 

In a complex and highly interconnected cyberspace, the collection, detection, analysis 

and comprehension of weak signals requires aggregating information from various 

actors, both human and material, engaged in monitoring the global system. The 

amount and complexity of the information available in cyberspace makes it 

impossible for a single operator to compile all the information in a limited amount of 

time. The heterogeneous nature of the signals also increases the uncertainty of 

operators about how to interpret them. As a result, decisions made by the C2Cyb team 
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leader are based on information that is usually unverifiable and transmitted by his/her 

teammate. This information can sometimes contradict the leader’s information. A 

question therefore arises: how does the team leader in C2Cyb consider this 

contradictory information when making decisions in a situation of uncertainty? 

The decision-making strategies studied in psychology and economics are sometimes 

based on theories that adopt probabilistic visions. In particular, the dual-process 

theory presupposes the existence of two distinct rationality processes (De Neys, 2006; 

Evans, 2003; Evans, 2011; Kahneman & Frederick, 2007) used in optimizing 

decision-making. According to this theory, two systems, called system 1 and system 

2, coexist. System 1 is a fast, intuitive system that does not require the use of working 

memory (Evans, 2011). System 2 is used for tasks requiring thoughtful decision-

making, and, by extension, a calculation of the probabilities of possible futures 

generated by the decision. System 2 is slower than system 1 and requires greater 

cognitive resources and task-specific access to working memory (Evans, 2011). Thus, 

when a person uses system 2, s/he performs a conditional probability calculation in 

order to make the best decision.   

In the work underlying this theory, the probability distributions of the different options 

are usually clearly identifiable by the participant, assisting decision-making 

(Kahneman & Tversky, 1979). However, due to the abundance of information in 

cyberspace, no probability distribution seems to be applicable by the operator to 

analyze the veracity and the impact of weak signals. In fact, when a team leader has 

to make a decision, he can only do it based on his own information (the weak signals 

directly perceived) and the information transmitted by his teammates without being 

able to check it or to compare it with a probability distribution. In these cases, other 

mechanisms that facilitate decision-making should therefore come in play. Among 

these mechanisms, trust is often described as a uncertainty reducer (Meyerson, Weick, 

& Kramer, 1996) that facilitates decision-making (Bell, 1982). This article proposes 

to study in environments with high uncertainty, what the role of trust is in the leader’s 

decision-making when he cannot verify the data transmitted by his teammate and 

when these data are different from his own.   

Posten and Mussweiler (2019) established a trust predictability function, i.e. trust 

would allow us to anticipate the possibilities by calculating their probabilities of 

occurrence. This is what Gambetta indicated (1988: p. 217) when he defined trust as 

“a particular level of the subjective probability with which an agent assesses that 

another agent or group of agents will perform a particular action, both before he can 

monitor such action (or independently of his capacity ever to monitor it) and in a 

context in which it affects his own action”. Gambetta’s definition and, more generally, 

the research conducted in economics (Williamson, 1993) and sociology (Coleman, 

1990) link the phenomenon of trust to the notion of probabilistic evaluation and are 

thus in accordance with the dual-process theory approach. Trust can be considered as 

the calculation of the perceived cost-benefit (Williamson, 1993) of a relationship. In 

this calculative approach, “Trust emerges when the trustor perceives that the trustee 

intends to perform an action that is beneficial”  (Rousseau, Sitkin, Burt & Camerer, 

1998, p.399). Indeed, trust can only occur in relationships that bring rewards to both 
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parties (Lewicki & Bunker, 1995) and can be summarized, from an economic 

perspective, by a probability calculation (Williamson, 1993). 

This notion of probability calculation is the link between the literature on trust and the 

literature on decision-making. In theory, the decision corresponds to “a choice or a set 

of choices drawn from the available alternatives” (Bellman & Zadeh, 1970). Like 

trust, decision-making is the choice of the alternative that subjectively presents the 

best cost/benefit ratio. In this approach, decision-making is no more than the result of 

a probabilistic assessment of the consequences of different choices (Lowenstein, 

2003). In the decision-making process, the trust mechanism could therefore be seen 

as a readjustment of the probabilities perceived by an operator of the possible futures 

generated by different options, the option chosen by the operator being the option with 

the best cost/benefit ratio. This interpretation is consistent with Lewis and Weigert’s 

(1985, p.969) definition of trust when they describe it as “to trust is to live as if certain 

rationally possible futures will not occur”. In teams operating in uncertain 

environments such as cyberspace where operators cannot assign probabilities about 

future events generated by a decision (Duncan, 1972), trust may therefore facilitate 

decision-making. In cases where the leader cannot verify in situ the information 

transmitted by his teammate, and therefore assign a probability as to the accuracy of 

this information, the level of trust could be a determining factor in decision-making, 

in particular by facilitating acceptance by the leader of the information transmitted by 

his teammate. When the level of trust between a leader and his teammate is high, the 

information provided by the teammate should be perceived by the leader as probably 

more accurate than when the level of trust is low.  

Hypothesis 1: For a team leader, a high level of trust in his teammate leads to a greater 

acceptance of the unreliable information that the teammate transmits. 

In C2Cyb, weak signals reported by a teammate are often unverifiable by the leader. 

This impossibility of verifying the information means that it is impossible for the 

leader to assign an effective probability to these weak signals. When the leader cannot 

rely on actual probabilities, he has to assign a subjective probability (Kahneman & 

Tversky, 1972) to these weak signals. To do this, he can only rely on his own 

information, particularly the evaluation of the weak signals that he has himself 

received. He can therefore compare the weak signals he has perceived directly with 

those communicated to him; if all these weak signals correspond, they will be 

considered consistent. In this case, the leader should perceive the information 

transmitted by his teammate as probably more reliable than in the case of non-

consistent signals.  

According to the dual-process theory, in the case of weak consistent signals, decision-

making is fast and intuitive (system 1). In the case of non-consistent signals, because 

of the necessary probability calculation, the response is slower (system 2) (Hypothesis 

2). In this case, when the level of trust between team members is low, if the leader has 

not perceived any evidence of an attack “directly”, he may judge as unlikely the 

elements in favour of an attack that are provided by the teammate. In other words, a 

leader will be more inclined to accept the contradiction if he trusts his teammate 

(hypothesis 3). 
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Hypothesis 2: Consistent signals are processed more quickly by the leader than non-

consistent signals 

Hypothesis 3: The level of trust has an indirect effect on decision-making by 

modulating the consistency consideration 

Material and procedure 

Method 

To test these hypotheses, it is necessary to create an experimental context similar to 

that faced by cyber leaders. This environment must offer the participant (here, a team 

leader) a main task and a supervision task on which can be grafted one or more weak 

signals directly perceived by the leader or transmitted by a teammate. Despite the 

“weak” character, these signals must be sufficiently detectable. The leader has to make 

a decision based on these weak signals that he cannot verify in situations where he 

has a variable level of trust in his teammate and where these signals are not always 

consistent. 

The chosen task fulfils these conditions: it offers the participant a main task of 

counting aircraft on a photograph with the possibility of checking a similar task with 

a teammate. The teammate is fictional and only presented by a predefined and 

controlled level of trust (Bollon, Maille, Marchand, & Blättler, 2019). During this 

task, “jamming” (see Figure 1) constituting the weak signals may occur. The 

participant has to indicate the number of jamming events without being able to check 

the number indicated by his teammate. This consideration of the teammate’s data 

corresponds to a “blind” decision. It is this decision that is analyzed in this study and 

not the decisions related to the main task that can be checked on the teammate’s side. 

 

Figure 1. The picture on the left is an example of a photograph used in the experiment; the 

picture on the right is the jamming that can occur at any time. In the event of jamming, the 

image on the right appears for one second before disappearing.   

In order to test the impact of trust on acceptance of the information transmitted 

(hypothesis 1), it is necessary to induce different levels of trust in the participant, to 

check this induction and to test, for each level, the percentage of information 

transmitted by the teammate and accepted by the participant. The trust-level induction 

is an independent variable (IV) with two controlled levels (low and high) that will be 
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called “trust-levels” in the following section of this article. The percentage of 

information transmitted by the teammate and accepted by the leader (in %) is a 

dependent variable (DV) collected during the experiment that will be called 

“decision” in the following section of this article. 

In order to test the impact of consistency on the choice of decision system (system 1 

or system 2) (hypothesis 2), it is necessary to induce consistent and non-consistent 

signals and to compare the time taken by participants to validate a decision according 

to these signals. The consistent or non-consistent nature of the signals is an IV which 

will be called “consistency” in the following section of this article. The consistency 

distribution is controlled by the occurrence of the weak signals transmitted. The time 

taken by participants to validate a decision (in ms) is a DV, called “ time “, collected 

during the experiment. 

In order to determine the impact of trust on decision-making during consistent and/or 

non-consistent events (hypothesis 3), the two IVs explained above as well as the DV 

“decision” are used. 

Participants 

45 people (46.6% women and 53.3% men) with an average age of 22.7 years (SD: 

1.09%) participated in this study. All participants were second-year engineering 

students. No participants had any health problems; all had normal or corrected vision.  

Protocol 

Before the start of the experiment a briefing was carried out, and all participants 

completed an informed consent sheet. Following this, the participants carried out a 5-

minute training session before starting the experiment. The experiment was divided 

into 28 trials, each with 4 phases. For each trial the participant worked with a different 

teammate (computer simulated behaviour). 14 trials were performed with a 

trustworthy teammate (high trust) and 14 trials with a non-trustworthy teammate (low 

trust). In order to avoid an order effect, teammates’ profiles were randomly drawn. 

All participants therefore worked with all teammate profiles but in a different order.  

Participants performed the experiment in groups in computer rooms that did not allow 

them to see what was happening on the other participants’ screens. At each trial, the 

participant thought s/he was doing the task in collaboration with one of the other 

participants in the room, although in reality all the teammates were fictitious. Each 

participant performed the task on an ordinary desktop computer using the keyboard 

and mouse. The screens of all participants were similar in terms of resolution and 

brightness.  

The task was carried out in 4 phases. The first phase of each trial was designed to 

introduce to the participant the characteristics of his new teammate who was more or 

less trustworthy (IV “trust level”). The first display showed a pair of words 

characterizing this teammate (see Figure 2 “1”). This pair of words allowed the 

participant to induce a level of trust in his teammate, either low (thanks to rather 

negative elements: unreliable, disloyal, etc.) or high (thanks to rather rewarding 
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elements: professional, organized, etc.) (Bollon et al. 2019). These word pairs were 

obtained by following the protocol described by Bollon et al. (2019) which uses social 

psychology methods to identify social representations of trust in given social groups.  

In order to ensure that the participant had taken the teammate’s characteristics into 

account, he was asked, on a second display, to find these two characteristics among 8 

distractors (Bollon et al. 2019). 

 

Figure 2 . First display of phase 1. On this display the participant was informed of the 

instructions (similar throughout the experiment), the time allocated to the task (the time 

differed depending on the photograph) and the characteristics of his teammate (noted “1” on 

the image above). These characteristics induced a low or high level of trust in the participant. 

The second phase corresponded to the completion of the aircraft counting and 

jamming counting tasks. The participant had a control display that allowed him to see 

the countdown of the remaining time as well as the sum of the aircraft counted in the 

two photographs. This screen contained 4 buttons that allow the participant to (see 

Figure 3): 

1. Display the image on which s/he had to count the aircraft and jamming events  

2. Display his teammate’s image in order to check the count made by his teammate if 

necessary 

3. Modify the total score, if the participant considered that the number of aircraft 

counted in the two photographs was not correct  

4. Complete this task and move on to the next phase. This button was only active after 

the participant had validated the number of aircraft present in his photograph. 
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Figure 3. Main display of phase 2. On this display the participant can see the time remaining 

as well as the number of aircraft counted by his teammate. With the help of different buttons, 

the participant can access his own image (button “1”), access the image of his teammate 

(button “2”), modify the total score (button “3”) or complete phase 2 (interlocutor “4”) 

On the display allowing him to perform his own counting task, the participant found 

his photograph, the remaining time (see Figure 4 “1”) as well as 5 buttons that allowed 

him to:    

- Increment or decrement the count by the number of aircraft (see Figure 4 “2”), 

- Increase the number of jamming events detected (see Figure 4 “3”),  

- Validate his count of the number of aircraft (see Figure 4 “4”)  

- Return to the control display (see Figure 4 “5”). 

The teammate’s display was exactly the same as the participant’s one. However, on 

the teammate’s screen the buttons were not clickable (except for the button used to 

come back to the control screen). On the teammate’s display, the photograph was 

different from the one presented on the participant’s screen and s/he had to do the 

aircraft and jamming counting tasks on this other photograph. Moreover, on the 

teammate’s screen, it was impossible for the participant to see the jamming (jamming 

events were never displayed on the teammate’s screen). In this experiment, the 

participant was not aware that it was impossible for him to see the jamming events 

occurring on the teammate’s screen. 

The participant had to count the aircraft in his photograph and validate the team’s total 

result before the end of the time limit. If this was not the case, the trial was failed and 

an additional trial with a teammate of the same level of trust was added at the end of 

the session. The validation of the total score allowed the participants to move on to 

the next phase. 
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Figure 4. Display used by the participant in phase 2 to perform his counting task. On this 

display the participant can see the remaining time (“1”). Using different buttons, the 

participant can count the aircraft (button “2”), increment the interference counter (button 

“3”), validate his aircraft count (button “4”) or return to the main display (button “5”) (see 

Figure 3). 

The third phase was devoted to validation by the participant of the jamming events 

detected on the two photographs. The display showed the number of jamming events 

detected by the teammate (see Figure 5 “1”) and the number of jamming events 

detected by the participant (see Figure 5 “2”). Because no real jamming was displayed 

on the teammate’s screen, the participant could not see these jamming events and 

therefore could not assess the validity of the information transmitted by his teammate. 

Next to each of these numbers, there were 3 buttons to validate or invalidate the 

jamming (none, 1 or more). The participant had to make a decision on the number of 

jamming events to validate on the teammate’s photograph (see Figure 5 “3”) as well 

as the number of jamming events to validate on his own photograph. Once this was 

done, the participant could move on to phase 4. 

The different DVs used to test the 3 hypotheses were collected in phase 3. The 

“decision” DV used to test hypotheses 1 and 3 corresponds to the percentage of 

jamming events transmitted by the teammate and not validated by the participant (in 

%). The “time” DV used to test hypothesis 2 corresponds to the time taken by the 

participant to validate this third phase (in milliseconds). 

In order to control the IV “consistency”, in this experiment, the jamming events 

presented to the participant were linked to the jamming events transmitted by the 

fictitious teammate in order to obtain the following 4 cases: 

- No jamming was presented to the participant and the number of jamming events 

detected by the teammate was 0 (25% of cases) 

- 1 or 2 jamming events were presented to the participant and the number of jamming 

events detected by the teammate was 1 or 2 (25% of cases) 

- No jamming was presented to the participant but the number of jamming events 

detected by the teammate was 1 or 2 (25% of cases) 

- 1 or 2 jamming events were presented to the participant but the number of jamming 

events detected by the teammate was 0 (25% of cases) 
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Figure 5. Display used by the participant in phase 3. On this display the participant can see 

the number of jamming events detected by his teammate (“1”) and the number of jamming 

events he had himself indicated (“2”). The participant had to make a decision on the number 

of jamming events to be validated for the participant (button “3”) and for himself before he 

could complete phase 3 by clicking on the validation button (button “4”). 

The first two cases were the so-called consistent cases and the other two non-

consistent cases.  

Finally, Phase 4 was the subjective assessment of the participant’s level of trust in the 

results (number of aircraft) reported by his teammate. The purpose of this evaluation 

on non-segmented scales was to verify that the experimental trust induction equipment 

was working well and that the participant was working with teammates whom he 

perceived as trustworthy and others as less trustworthy (Bollon et al., 2019). As a high 

level trust induction should lead to a higher subjective evaluation by the participant 

of his teammate’s performance than a low level trust induction (Dirks & Ferrin, 2001), 

the smooth operation of the experimental protocol should therefore lead the 

participant to assign a high evaluation to teammates in whom he had high trust and a 

lower one to teammates in whom he had less trust. 

Results 

Data from the 45 participants were included in the analysis. Before analysing the 

results required for hypothesis testing, the verification of the induction of trust in the 

experimental protocol was performed. The subjective evaluation data of the results 

transmitted by the teammate (recovered in Phase 4) show that when the trust level was 

high (M = 5.68, SD = 2.33) the subjective evaluation of the teammate’s performance 

seem to be higher than when the trust level was low (M = 5.34, SD = 2.44). In order 

to validate these results, a one-way repeated measure ANOVA, with the IV “trust 

level” as a factor, has been carried out. The significant results (F(1,44) = 4.11, p = 

.04) validated the presence of two levels of trust (high and low). 
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In order to test the hypothesis that a high level of trust between team members leads 

to greater acceptance by the leader of the information transmitted by his teammate 

(hypothesis 1), the DV “decision” and the IV “trust level” were used. For each 

participant, the data obtained were averaged, for each level of trust. The data indicate 

(see Figure 6) that between the low trust level (M = 23.4%, SD = 35.7%) and the high 

trust level (M = 21%, SD = 33%) the performances are relatively similar. A one-way 

repeated measure ANOVA, with the IV “trust level” as a factor, has been carried out. 

The insignificant results (F(1,44) = 1.1, p = .30) do not support hypothesis 1. In other 

words, trust does not seem to have a direct effect on the validation of the results 

reported by the teammate. 

  

Figure 6 . Percentages of jamming events transmitted by the teammate and not validated by 

the participant according to the trust level 

In order to test the hypothesis that consistent signals are processed faster by the leader 

than non-consistent signals (hypothesis 2), the “time” DV and the “consistency” IV 

were used. For each participant, the data obtained were averaged, for each level of 

consistency. The results show that when the jamming events were consistent (M = 

3750.5 ms, SD = 1192.4 ms) the participants seem to validate phase 3 more quickly 

than when the jamming events were non-consistent (M = 4272.7 ms, SD = 1515.5 ms). 

In order to validate these results, a one-way repeated measure ANOVA, with the IV 

“consistency” as a factor, has been carried out. The significant results (F(1,44) = 

13.37, p <.001) validated hypothesis 2.  It would seem that the participants had a 

different perception of the consistency of the signals. 

In order to test the hypothesis that the trust level has an indirect effect on decision 

making through the modulation of the consistency consideration (hypothesis 3), the 

DV “decision”, the IV “trust level” and the IV “consistency” were used. For each 

participant, the data obtained were averaged, for each trust level, according to their 

consistency. The data show (see Figure 7) that when the information transmitted by 

the teammate was in line with the event perceived as the most likely (consistent case) 
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the leader seems to validate the information transmitted by his teammate, irrespective 

of whether the teammate was associated with a high (M = 21.3%, SD = 30.8%) or low 

(M = 18.5%, SD = 32%) trust level. However, when the information transmitted by 

the teammate supported an event perceived as unlikely (non-consistent cases), when 

the trust level was high (M = 20.6%, SD = 35.4%), the leader seem to validate the 

information transmitted by his teammate more easily than when the trust level was 

low (M = 28.4%, SD = 38.7%).  In order to validate these results, a two-way repeated 

measure ANOVA, with the IV “trust level” and the IV “consistency” as a factor, has 

been carried out. The results of the ANOVA showed an interaction effect (F(1,132) = 

4.86, p = .02 (eta-squared =.068))). A post hoc analysis performed with a Tukey HSD 

test indicated a significant difference in trust levels for non-consistent trials (p = .02) 

and no difference for consistent trials (p = .40). 

 

Figure 7. Percentages of interference transmitted by the teammate and not validated by the 

participant according to the trust level and the consistent or non-consistent character of the 

tests 

Discussion 

This study has investigated the relationship between interpersonal trust and decision-

making in uncertain environments. On the basis of the dual-process theory (De Neys, 

2006; Evans, 2003; Evans, 2011; Kahneman & Frederick, 2007), it is expected that 

decision-making can be supported either by a rapid and intuitive mechanism (system 

1) that requires few resources or by a slower mechanism (system 2) (Evans 2011) 

involving an assessment of probabilities in relation to the possible situations, risks and 

benefits of certain alternatives. Applied in a micro-world resulting from cyber crisis 

management, the experiment aimed to better understand the impact of trust between 

operators and the consistency of the information exchanged on the decision-making 
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mechanism (through the time taken to complete the task), but also on the decision 

itself (validation of the partner’s response). 

The results show that trust does not directly impact decision-making when it is made 

on unverifiable elements (hypothesis 1). This result seems to contradict existing 

models that link trust and decision-making (Kim, Ferrin, & Rao, 2008). However, the 

current literature studies trust in collaborative tasks where participants can at least 

access the teammate’s work to assess it (Bollon et al., 2019; Dirks, 1999), while the 

protocol presented here proposes a “blind” decision. It seems necessary to further 

study this type of situation and its impact on trust.  On the other hand, the consistency 

of the information exchanged directly modifies the time taken to take the decision 

(hypothesis 2). In other words, the consistency of the elements exchanged between 

operators appears to be the primary criterion that determines the mechanism 

underlying the decision-making process. Once system 1 or 2 has been chosen, trust 

comes into the decision to the extent that the system 2 leader agrees more with the 

teammate’s result when he or she has trust even if the information given is non-

consistent. Once system 1 or 2 has been chosen, trust becomes an important factor in 

the decision-making. In fact, the leader in system 2 accepts the teammate’s result to a 

greater extent when he trusts him even if the information given is non-consistent. 

(Hypothesis 3) (see Figure 8). 

 

Figure 8 . When the weak signals directly received by the leader and the weak signals 

transmitted by the teammate are perceived as consistent, decision-making is fast and intuitive 

(system 1) and is independent of the trust level. However, in the case of weak signals 

perceived as non-consistent, decision-making is slower (system 2) and involves the trust level. 

When the trust level is high, the leader’s decision-making is in line with the information 

provided by the teammate and when the trust level is low, the decision making is in line with 

the information he has himself perceived. 

Thus, the study shows that the result of the decision, in terms of the acceptance or 

non-acceptance of the teammate’s information, is linked both to the consistency of the 

information transmitted and to the level of trust between the operators. When the 

information received is consistent with the teammate’s observations, decision-making 

is intuitive and not linked to the level of trust between operators and all information 

is accepted by the leader. On the other hand, when the information is non-consistent 

and the leader uses system 2 to make his decision, then the level of trust in the 

teammate who gave him the information can change the decision; the more trust the 

leader has in his teammate, the more inclined he is to accept his information, whether 

the latter confirms or invalidates his observations. The level of trust appears therefore 

to have a significant impact on the probability that the leader will associate with the 

information received, which the literature has suggested since Gambetta’s (1988) 

work.  
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The direct impact of consistency is significant in the implementation of C2Cyb. 

Indeed, it is important in these safety-critical operations to better understand what can 

impact the way decisions are made. This can make it possible to adapt operator 

training by making them aware of the effect of consistency on their decision-making 

(rapid decision versus rational decision). These results can also contribute to a better 

understanding of how information is presented on the interfaces in order to help in 

better decision-making.  

In terms of trust, the experiment shows that in the context of a decision made by 

assessing the risks or costs associated with each choice, trust in the source of the 

information changes the decision. This result is also important from an applicative 

point of view because it shows that some weak signals sent back to the decision-maker 

could be taken into account differently in the decision depending on the relationship 

between the people. Trust between people therefore changes the trust placed in the 

data itself. It will therefore be important for socio-technical systems such as C2s to 

take this dimension into account to optimize its effect on the functioning of the system. 

One of the methodological contributions of this study is that we have confirmed 

experimentally the implementation of different decision-making mechanisms 

according to consistency, in accordance with the dual process theory. In other words, 

this micro-world may affect decision-making in either system 1 or system 2. However, 

the protocol used does not make it possible to check whether the time delay observed 

as a function of consistency corresponds to a probability calculation. A future study 

should make it possible to test this probability calculation by detailing how the 

decision-making process is carried out. It could use this micro-world to better 

understand the cognitive mechanisms really at work in each strategy. 

This study considered two factors, consistency and trust, which combine to modulate 

the decision-making mechanism and decision content in collaborative activities. It 

would now be appropriate to investigate how these results are related to the interaction 

between human operators or whether they are more general. Are the mechanism and 

decision similar if the operator acts in cooperation with an automated system or 

artificial intelligence? 
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  Abstract 

In manufacturing, the increasing automation leads to a rising demand for professionals 

fulfilling non-routine tasks like fault diagnosis of complex systems. Low reoccurrence 

rates of faults and working conditions, like shift work, hinder learning and make 

measures for knowledge support especially attractive. Additional information can be 

offered during the diagnosis process but the needs of the operators vary. One way to 

estimate the useful amount of information could be to recognize if the operator uses 

an associative, experience-based or an elaborate, structure-based strategy. In an 

attempt to identify reliable criteria to distinguish these strategies, we asked 40 

participants to operate a waste water treatment simulation and confronted them with 

six fault scenarios. All participants received intensive training on the start-up and 

operation of the simulation and practiced the fault diagnosis and documentation 

beforehand. Through gaze behaviour analysis, a strong preference for attention 

focussing emerged for participants with an associative approach. Additionally, 

significant differences between both strategic approaches were found for Need for 

Cognition and prior technical knowledge.  

  Introduction 

With the rise of cyber-physical production systems, the transformation of the 

workplace of human operators is proceeding (Müller, 2019). One core demand on 

humans in these systems is troubleshooting, or fault diagnosis. Fault diagnosis 

includes the detection and localisation of faults and is the prerequisite for an efficient 

and effective repair and a sustainable maintenance of the system (DIN EN 

13306:2018-02). Typical characteristics of fault diagnosis tasks are time pressure and 

a low reoccurance rate of faults. At the same time the systems are characterized by a 

lack of transparency which makes symptoms and their cause hard to detect. An 

unambiguous relation between symptom and cause is rare, more often the 

maintenance personnel is dealing with networks of reciprocal influence and estimate 

probabilities for various fault causes (Bergmann et al., 1997; Rothe & Timpe 1997). 

In conclusion, the cognitive demands for fault diagnosis on maintenance personnel 

are high. 

To reduce the demands of fault diagnosis, various measures can be imagined. Fault 

diagnosis is a knowledge-intensive task requiring declarative knowledge of the system 
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as well as procedural knowledge of the interaction with the system and the diagnosis 

itself. As will be seen, different fault diagnosis strategies relate to different knowledge 

requirements and thus are proposed as essential indicators to inform the choice of a 

measure. Since recognition of different strategies is challenging, the study presented 

here aims at analysing behaviour correlates, specifically of gaze behaviour, to 

facilitate strategy recognition. To this end, two classes of strategies shall be contrasted 

in the following.  

From a cognitive perspective, that task of diagnosis is often described in terms of 

reasoning and problem solving (e.g. Reed & Johnson, 1993; Schaafstal, 1993; 

Schmidt et al., 1990). An intensively discussed approach to describe the process of 

reasoning are dual-process theories. The underlying idea is the existence of two 

different processing types (Type I and Type II) while the specific characteristics vary 

between authors (e.g. Evans & Stanovich, 2013; Kahneman, 2012; Smith & DeCoster, 

2000). Evans and Stanovich (2013) describe defining features of both types: Type I 

processes do not require working memory capacity and are autonomous, Type II 

processes require working memory capacity and use cognitive decoupling or mental 

simulation. Typical correlates of Type I processes are high speeds, parallel processing, 

automatic and associative thinking and experience-based decision making. Type II 

processes are rather slow, processing takes place in a serial, rule-based manner while 

thinking is more abstract and controlled. Intuitive answers are created quickly and 

with little effort but can be misleading, especially when reasoners lack experience. 

Through the intervention of reflective Type II reasoning, these intuitions can be 

corrected. While the insufficiency of Type I answers has been studied widely, dual-

process theorists also stress the adaptivity of these answers (e.g. Kahneman, 2012). 

With regard to preconditions for different processing types, higher prior knowledge 

and experience (Smith & DeCoster, 2000) is expected to promote the use of Type I 

reasoning while thinking dispositions like Need for Cognition (NFC, Cacioppo & 

Petty, 1982; Stanovich et al., 2011) are expected to promote Type II reasoning (but 

see also Pennycook et al., 2017).  

Critics of the dual process approach take issue with the notion of two qualitatively 

distinct systems and pursue a unified theoretical approach for intuitive and deliberate 

judgement (e.g. Keren & Schul, 2009; Kruglanski & Gigerenzer, 2011). The latter 

proposed a framework which states that both types of judgement are rule-based, and 

even can use the same rules, but vary in their difficulty of application. The theory 

states that rule selection depends on individual memory constrains and processing 

potential, the task itself and the ecological rationality of the rule. The speed and 

accuracy of the rule execution are controlled by individual differences of cognitive 

capacities (Kruglanski & Gigerenzer, 2011).  

Rouse (1983) examined human problem-solving during system failures more 

specifically and contrasts context-specific pattern recognition with context-free search 

strategies. In his model of human problem solving, decisions are preferably based on 

state information, assessed by pattern-recognition, while structure information is 

included if this fails. Rouse (1983) builds on work of Rasmussen (1978) who 

distinguishes between symptomatic and topographic strategies. Important aspects of 

symptomatic strategies are the comparison with known abnormal system states; the 

interaction with the system is guided by previously experienced faults. A topographic 
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search implies comparisons against a norm planned system performance which is led 

by the structure of the system. The use of available information can be rather 

uneconomic. Due to the difference in necessary prior knowledge, topographic 

strategies are expected to be applied when encountering unknown situations. Ham and 

Yoon (2007) analysed existing literature regarding the potential of principle vs. 

procedural knowledge to improve fault diagnosis performance and distinguish 

between forward reasoning “along the direction of the causalities of the circuit” 

(p.280), which poses higher demands, and backward reasoning. Reed and Johnson 

(1983) observed various expert strategies for fault diagnosis including what they 

termed heuristic path following. The core aspect is the focus of attention on relevant 

parts of the material to reduce the search space. This is in line with work by Van 

Meeuwen et al. (2014) who extracted three visual problem solving from the literature, 

namely attention focusing (i.e. focusing on relevant information in the current 

situation), perceptual chunking (i.e. combining elements to reduce necessary effort 

and ignore details) and means-end analysis (i.e. starting from the goal working 

backwards). They could show differences in the eye movements between novices, 

intermediates and experts in the number of fixation, fixation duration, number of 

transitions and time to first fixation in accordance to their hypotheses. In specific, 

experts showed more perceptual chunking and followed less a means-end strategy. 

Also, they reduced the amount of information more strongly than other groups. 

Taken together, behaviour during fault diagnosis can be classified roughly into two 

classes: (1) a more associative, experience-based approach which is based on 

information reduction and includes pattern-recognition, and (2) a more elaborate, 

structured approach which is based on information exploitation. While no clear 

predictions regarding the fault diagnosis success can be made, cognitive and 

knowledge demands are expected to vary between theses approaches and influence 

strategy choice.  

In the following, an empirical study will be presented which confronted participants 

with a fault diagnosis task to elicit the application of individual strategies and analyse 

behaviour correlates. After outlining the design and method of the study, detailed 

hypotheses will be introduced and tested. Finally, conclusions will be drawn and 

discussed as to which behaviour correlates are associated with either the associative, 

experienced-based approach or the elaborate, structured approach to fault diagnosis. 

  The study 

  Design 

The aim of this study was to investigate behavioural correlates of fault diagnosis 

strategies, especially in gaze behaviour. To this end, the process control simulation 

WaTr Sim (waste water treatment simulation, Urbas & Heinath, 2007) was employed. 

In the first part of the study, all participants underwent a training for the start-up and 

operation of WaTr Sim as well as the procedure of fault diagnosis and reporting. In 

the second part of the study, participants were entrusted with the task of operating the 

simulation during nine simulated production weeks and asked to report and diagnose 

all faults that might occur during this time. The behaviour of the simulation was 

controlled by nine scenarios of which six contained faults. The order of the fault 

scenarios was randomized except of the final one. Behavioural data was gathered 
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throughout all nine productions weeks via eye tracking, screen and interaction 

recording as well as subjective questionnaires. In this contribution, the focus lays on 

the final production week, the analysis follows a between group approach. 

  Participants 

The present study included 40 volunteers of which ten had to be excluded because of 

technical issues (n=4), insufficient training performance (n=1) and failure to detect 

the fault during the last production week (n=5). Participant acquisition took place in 

the university’s environment. The remaining sample consisted of 19 men and 11 

women with an average age of M = 27.2 (SD = 8.6). Twelve participants practised a 

profession, 17 were students, one was unemployed. Most participants (n=20) had no 

prior knowledge on the task of fault diagnosis while six had high to very high prior 

knowledge (M = 2.1, SD = 3.5, 9-point Likert scale). Additionally, prior knowledge 

in related technical fields was assessed via a 9-point Likert scale (1 = none, 9 = 

excellent). The results show moderate technical knowledge (M = 4.1, SD = 1.7). All 

participants had no prior knowledge of the simulation WaTr Sim before the study and 

were compensated at the end of the study in the amount of €20. 

  Materials  

  WaTr Sim 

WaTr Sim (Urbas & Heinath, 2007) simulates a waste water treatment facility with 

waste water feeding in via truck deliveries and multiple stages of processing taking 

place until fresh water and a purified gas is produced. Altogether six stages can be 

distinguished: delivery, homogenisation, separation, an intermediate product 

repository, gas scrubbing, and a final product repository (see Figure 1, from top-left 

to right). While the first four stages and the sixth stage included automatic functions 

for information acquisition and analysis (cf. Parasuraman, Sheridan & Wickens, 

2000), mainly via an alarm function based on tank level thresholds, the fifth stage is 

fully automated when quality of production and valves settings of the previous stages 

are within the normative range.  

Operators are responsible for the start-up of the facility and a safe and efficient 

production, which maximises the amount of fresh water and purified gas and 

minimises the amount of waste produced. The interface allows, inter alia, for 

adjustments of set points of valves and heating systems and offers detailed views of 

component groups, information on current alarms and a trend visualisation for the 

final product. Fig. 1 shows the main control interface. Each run of the simulation 

consists of one production week with a predefined length measured in simulation 

steps. Each step lasts 2000ms. 
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Figure 1. Screenshot of WaTr Sim with valves (e.g. V1, V6), heaters (e.g. H1, W1) and tanks 

(e.g. Ba, Bc). 

  Scenarios 

The operation of the simulation was predetermined by nine scenarios: three control 

scenarios and six fault scenarios. The scenarios defined all set points at the first 

simulation step and lasted for either four or six minutes. Faults included fully and 

partially defective units and were visible through component observation, system 

alarms and/or a news ticker. For example, in the last scenario the heating unit of the 

gas scrubber fails, the output only reaches a temperature of 50°C instead of 70°C.  

  Training 

The training for operating the simulation WaTr Sim followed the principles of 

instruction (Merrill, 2002) and was guided by a handbook presented on a 10.8” tablet. 

All participants were trained to execute a specific start-up procedure; they gained 

knowledge on all components and their functionality and practiced the interaction 

with the interface and the fault report. The training was led by the experimenter who 

followed standardized instructions for the interaction with the participants. It 

concluded in two knowledge tests, one written test on declarative knowledge 

regarding the facility and one practical test on start-up, operation and fault diagnosis 

of the facility. Passing these tests was a prerequisite for participating in the second 

part of the study. Altogether, the training lasted about 60min. 

  Data Acquisition  

  Eye Tracking 

The experiment took place at the institute’s lab rooms with illumination held constant. 

The simulation was presented on a 24” LCD screen at a resolution of 1920x1080pi. 

Eye movements were recorded using an EyeLink 1000 Plus desktop eye tracker in 

head-free mode at a sample rate of 1000Hz (accuracy: 0.25-0.5°, spatial resolution: 

0.05). Parsing of eye data followed default thresholds. Participants were calibrated 

with a 9-point-calibration which was checked before every production week with a 

drift assessment and repeated if the deviation was 1° visual angle or higher. 
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  Questionnaires 

The study included multiple questionnaires, inter alia to assess demographic data, and 

prior knowledge, and a German version of the short scale on Need for Cognition 

(NFC, Beißert et al., 2014).  

  Fault report 

Participants were instructed to report each fault after detection via a button 

implemented in the simulation before they began searching for the cause. Description 

of the fault was done after the production week had finished. 

  Think-aloud interview 

After the last production week, the screen recording of this week was replayed for the 

participants and an interview following the think aloud method was conducted and 

recorded. During the interview, participants were encouraged to report on their actions 

and thoughts with questions from an unstructured interview guideline (e.g. “What are 

you doing at this moment?” or “Please describe your thoughts in more detail.”).  

  Data analysis 

Statistical analysis was conducted with R (R Core Team, 2018) and a significance 

level of α=.05. For directional hypotheses, one-tailed tests were used. The data was 

tested on deviation from normal distribution with the Shapiro Wilk test for each group. 

In case of a detected deviation, Wilcoxon rank sum tests were employed instead of t-

tests for independent samples. Because of unequal group sizes, the effect size was 

calculated with Hedge’s correction. 

For the analysis of eye tracking data, the screen was divided into multiple areas of 

interest (AOI) including the processes of delivery, gas scrubber and final repository 

as well as separate components and information sources. As the size of the areas 

varied, parameters like number of fixations (nfix) and fixation duration (tfix) were 

normed on the size of the current AOI. Eye movement data was included for a 30s 

time window before the fault report via button press. 

Recordings from the interviews were transcribed and, based on a guideline with 

category descriptions and examples, categorized into two classes of strategies: (1) an 

associative, experienced-based approach which is based on information reduction and 

(2) an elaborate, structured approach which is based on information exploitation. To 

ensure reliability, a third of the material was categorized by two raters. The agreement 

of the raters was acceptable with Cohen’s κ = 0.61. In a second step, participants were 

assigned to two groups (associative vs. elaborate) depending on the ratio of statements 

in each category. 

Accuracy of diagnosis was evaluated on a scale from 0 to 3 with a grading scheme 

including the ratio of the number of correctly vs. incorrectly identified symptoms and 

the correctly identified cause of the fault. 
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  Hypotheses 

Building on the insight of existing research, multiple hypotheses were deduced (Table 

1). 

Table 1. Overview over hypotheses  

 hypotheses  assessed behaviour indicators 

Participants 

with an 

associative 

approach 

show… 

…lower or higher NFC 

(H1)… 

…than 

participants 

with an 

elaborate 

approach. 

sum NFC scale  

…lower or higher prior 

technical knowledge 

(H2)… 

sum prior technical knowledge  

…more attention 

focussing (H3)… 

nfix on delivery lower 

tfix on delivery lower  

tfix on tank Bk lower 

…more backward 

reasoning (means-end) 

(H4)… 

more saccades to the left (sum) 

nfix on final repository higher 

tfix on final repository higher 

…more perceptual 

chunking (H5)… 

lower number of components 

fixated 

… no difference in fault 

diagnosis performance 

(H6)… 

accuracy of diagnosis equal 

 

  Results 

The strategy classification resulted in two unequally sized groups, 13 participants 

followed an elaborate approach while 17 followed an associative approach. 

In Table 2, results for all dependent variables are summarized. In accordance with H1, 

there is a significant difference between groups on NFC (t=3.948, df=16.7, p=.001, 

95% CI [-9.2, -2.8]). Figure 2 visualises the result. Participants with a more associative 

approach showed a higher NFC than participants with a more elaborate approach. The 

effect is large (gHedge’s=-1.5). H2 can be accepted as well with participants with an 

associative approach showing higher prior technical knowledge than participants with 

an elaborate approach (W=44, p=.006, 95% CI [-2.9, -0.4], see figure 3). The effect is 

large (gHedge’s=-1.8). Additionally, the results show strong support for H3, but only 

limited support for H4 and no sppurt for H5. There was no significant difference 

between groups regarding the diagnosis performance (W=131, p=.250, 95% CI [-2.0, 

0.0], the effect was small (gHedge’s=-0.5). Figure 4 visualises the data. The implications 

will be discussed in the following chapter. 
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Figure 2. Box-Whiskers-Plot for Need for Cognition. 

 

Figure 3. Box-Whiskers-Plot for prior technical knowledge. 

 

Figure 4. Box-Whiskers-Plot for accuracy of diagnosis.  
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Table 2. Overview over results 

hypothesis dependent variable t (df) / W p 95% CI gHedge’s 

H1 sum NFC scale 
t=3.948, 

df=16.7 
.001 -9.2, -2.8 -1.5 

H2 
sum prior technical 

knowledge 
W=44 .006 -2.9, -0.4 -1.8 

H3 nfix on delivery  W=78.5 .002 0.4, ∞ 1.7 

 tfix on delivery  W=85 <.001 204.3, ∞ 2.2 

 tfix on tank Bk  
t=2.100, 

df=4.4 
.049 5.6, ∞ 1.4 

H4 Sum saccades to the left  
t=-0.663, 

df=26.7 
.744 -4.6, ∞ -0.2 

 nfix on final repository 
t=1.479, 

df=22.5 
.076 -0.1 ∞ 0.5 

 tfix on final repository  W=130 .045 5.2, ∞ 0.6 

H5 
Number of components 

fixated 

t=0.640, 

df=25.6 
.264 -1.8, ∞ 0.2 

H6 Accuracy of diagnosis W=131 .250 -2.0 , 0.0 -0.5 

 

  Discussion and conclusion 

The aim of this study was to investigate behaviour correlates of fault diagnosis 

strategies. Based on a review of existing theory and research, two classes of strategies 

have been defined: an associative, experienced-based approach and an elaborate, 

structured approach. Participants were split into these two groups based on a content 

analysis of verbal reports. 

The results show large and significant differences between participants from both 

groups before the study, supporting the claim that strategy choice is influenced by 

individual differences of prior knowledge and motivation (e.g. Stanovich et al., 2011; 

Kruglanksi & Gigerenzer, 2011). It should be noted that all participants had no 

experience with the operation of WaTr Sim before the study and were exposed to the 

same scenarios – the knowledge gain during the study was thus dependent on the 

individual learning performance.  

With regard to attention focussing, the results strongly support the hypothesis, that an 

associative approach includes higher attention focussing. Participants with an 

elaborate approach spend more time fixating components of the first step of the 

process. Also, they fixate this step more often. During the final scenario, only parts of 

the gas scrubber and the final repository showed symptoms of the faults. Such 

behaviour can be understood as a more thorough use of information with the gaze 

being diverted from the more obviously affected components. This is also true for the 

tank Bk which is part of the final repository – in past scenarios, analysis of the tank’s 
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behaviour was not necessary for the fault diagnosis. Therefore, participants with an 

associative approach were not expected to spend attention on this component as 

experience taught them it is not necessary. The results agree with this expectation as 

participants with an elaborate approach spend more time fixating tank Bk. 

Backward and forward reasoning have been mentioned by various researches to 

describe diagnosis strategies, e.g. the topographic search described by Rasmussen 

(1978) which includes searching systematically through the system and which can be 

classified as elaborate approach. The results show that participants with an associative 

approach spend more time on the goal state of the system but there is only a marginal 

difference in the number of fixations on the goal state and no difference in the number 

of gaze switches to the left vs. to the right. Taken together a preference for means-end 

analysis seems to exists within the associative approach but the direction of the 

reasoning stays unclear. 

As chunking includes grouping of elements, the expectation was to find participants 

with an associative approach fixate less components but instead choosing 

representative components for different parts of the process. This expectation was 

disappointed. Possible reasons included insufficient training on the system as 

chunking is especially seen within experts (van Meeuwen et al., 2014). 

Various authors stress the claim that success of strategies depends on the task at hand 

and the performing individual, therefore a superiority of one class of strategies was 

not expected and also not found. Accordingly, Figure 4 shows equal medians in both 

groups, but a striking difference in the variance of the data. To understand this result 

better, analysis of supplementary data will be necessary. 

In conclusion, participants differed meaningfully in their attention focussing 

according to their strategic approach. Individual differences of motivation and prior 

knowledge seem to play an important role for strategy choice. To understand this 

relationship better, more insights on strategy development over time and specific use 

of knowledge are necessary. Nevertheless, the distinction between an associative and 

an elaborated approach has been proven useful and behaviour indicators emerged. 
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  Abstract 

Exoskeletons present interesting qualities for high demanding physical tasks, but their 

integration in companies is still a challenge. This study aims to evaluate the effects of 

exoskeletons on the completion of arm-elevated tasks. Three categories of dependent 

variables are studied in a lab experiment:  physical measurements (cardiac cost), 

performance indexes (quality and duration) and perceived benefits (reported by 

subjects on quantitative scales). The independent variables of the experiment are the 

presence (or not) of the exoskeleton, and the media used for the familiarization process 

of the subject before the use of the exoskeleton.  Two levels of familiarization are 

proposed to the subjects: brochure of the exoskeleton manufacturer, and live tutorial 

demonstration by a skilled experimenter. A laboratory study (n=36 participants) 

involving two arms elevated tasks was specifically designed to simulate industrial 

work situations. Results show that the use of the exoskeleton reduces cardiac cost, 

global and local perceived effort, number of errors, and increases task performance. 

Concerning the familiarization process, the live tutorial demo provides higher task 

performances and users acceptance, lower global and local perceived effort and the 

number of errors. These results confirm that user acceptance and integration of 

exoskeletons in companies require dedicated training supports.  

  Introduction  

Passive exoskeletons started to enter the market of New Assistive Technologies 

(NAT) in various industries where handling tasks are still involving human control 

and know-how. This growing interest forces companies to relate the claimed 

effectiveness of occupational exoskeletons as a solution that could release muscle 

activity and task-related strain. Even if functional effects have been established in 

reducing muscular demand (Huysamen et al., 2018; Theurel & Desbrosses, 2019) 

these exoskeletons are still facing ergonomics barriers such as discomfort (de Looze 

et al., 2016), movements limitations, low usability and acceptance of end-users. 

(Graham et al., 2009).This is why previous studies suggest a more holistic approach 

(Bosch et al., 2016) to investigate dimensions of usability, moreover on realistic work 

settings (Baltrusch et al., 2018). Recent studies suggest focusing on the actual use, to 

better understand expected and potential unexpected effects (Kim et al., 2018). This 

is why the evaluation of Human Exoskeleton Interaction (HEI) should focus on 
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Usability. Last years, Europe Technologies has been training future users and product 

managers to the use of exoskeleton, in order to enhance potential adoption. However, 

no evidence has been found on the effectiveness of a specific familiarization protocol 

on user’s acceptance and on task-related performance. Consequently, the main 

purpose of the current study is to validate the claimed positive effects of the 

exoskeleton prototype, as well as the effectiveness of a familiarization protocol on 

objective performance, perceived benefits and user acceptance. A second aim is to 

highlight specifications of human-exoskeleton interaction to guide further product 

development and familiarization program. The remainder of the paper is organized as 

follows. The second section presents the material and method and the description of 

the experiment. Results are presented in third section. The concluding section 

provides implications and perspectives for further work. 

  Materials and methods 

  Participants and ethics approval 

36 healthy participants (50% male, 50% female) with no current injuries / 

musculoskeletal disorders volunteered and gave written consent before the experiment 

according to the tenets of the Declaration of Helsinki. Current health status was 

evaluated using the Nordic questionnaire (Descatha et al., 2007). Their age span from 

20 to 65 years old with a range of height between 163 to 175cm. Participants had 

never been trained to use exoskeleton nor performing tasks. 

  Occupational exoskeleton 

 

Figure 1. Product architecture and the mechanical principle of operation of the tested 

exoskeleton. Flat springs in the back apply a progressive strength upwards. 

The exoskeleton used is a wearable passive system provided by our partner SkelEx 

(SkelEx, Rotterdam, The Netherlands). It was co-developed with this partner from 

various field studies and user’s feedbacks (Moyon et al., 2018).  As shown in figure 

1, its design is based on a backpack style with two flat springs in the back that can 

store kinetic energy when lowering the arms. Reversely, the spring strength is then 

applied upwards and help reducing upper body strain while performing arm-elevated 

tasks. This constitutes the first independent variable of our experiment with the two 

conditions (Exo/No Exo). Two versions of the prototype called Exo A and ExoB have 



 exoskeleton effects and familairization protocols on industrial tasks 189 

been tested for a secondary design purpose, so differences won’t be discussed here. 

All variables were tested for both versions, results are merged into an Exo condition. 

  Familiarization protocol 

In our observations of the spreading to exoskeletons in industry, we noticed that 

companies are starting to buy exoskeletons without considering the familiarization 

phase and potential fail of acceptance for occupational use. In order to protect future 

users, the French Institute of normalization is working on an agreement and a potential 

future norm about Human-Exoskeleton Interaction ergonomics. Europe Technologies 

takes actively part in this project, by sharing field insights. A global acceptance 

program has been designed to foster better integration of exoskeletons in companies. 

A key element of this program is a familiarization protocol (labelled F2), designed to 

optimize user’s performance and acceptance. It is based on our previous expertise to 

give users the best level of knowledge and practice in the shortest amount of time (to 

match real-time constraints). To do so, this protocol F2 is composed of the following 

steps: Demystification, Technics, Potential, Limits, Donning/Adjusting/doffing, Free 

experience (without industrial constraints). It aimed at providing certification of a 

level 4 based on a 1-7 scale of knowledge/practice (appendix). Level 4 means that 

participants are aware of basic technical, safety and usability principles, and know 

how to don/doff quickly the exoskeleton. In the following experiment, F2 is 

performed by a skilled experimenter and materialized by a written script. Another 

familiarization protocol, F1, corresponds simply to the manufacturer’s brochure, 

materialized by a paper brochure. The two familiarization protocols (F1 or F2) were 

administered to the participants before the execution of the task. This constitutes the 

second independent variable of our experiment. Between tasks, participants could 

adjust the exoskeleton again if needed. They could read the brochure F1 or ask the 

experimenter to repeat an item in tutorial F2. But the experimenter couldn’t take any 

additional initiative, to not distort the results.  

  Testing equipment 

The heart rate was measured in real-time during the tasks. We used a heart rate 

computer POLAR RS800CX and its dedicated professional software POLAR Trainer 

5. This system is composed of an emitter attachable on a thoracic belt. The data 

transfer was realized from the emitter to the software by an infrared USB adapter. For 

precision task performance, user lines were obtained by an interactive whiteboard 

SMART Board 800. This system projects and records automatically produced pixels. 

1 pixel = 1mm.  All tasks were camera recorded to help further interpretation of 

results. 

  Design of experiments 

For a secondary product design purpose, all participants tested two versions of the 

exoskeleton prototype called A and B, so as the NoExo condition. Concerning the 

familiarization protocol, given that protocol F2 is more informative than F1, it was 

irrelevant for the same participant to test protocol F1 after F2. For this reason, the only 

possible orders for the test were F1->F1, F1->F2 or F2->F2. To limit the number of 

experiments (two tests with two exoskeletons A and B), a balanced incomplete block 
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design was defined, presented in table 1. Six blocks were considered, with six 

participants in each block.  

Table 1. Experimental design for the two variables Exoskeleton and Familiarization protocol 

with two conditions (NoExo/Exo) and (F1/F2). The rows correspond to the first combination 

tested by the participants, the column to the second (for example, 6 participants tested first 

ExoB with protocol F1 (BF1), then ExoA with protocol F1 (AF1). 

 AF1 AF2 BF1 BF2 

AF1   6 6 

AF2    6 

BF1 6 6   

BF2  6   

 

  Previous analysis of industrial tasks 

Assembling tasks involve arm-elevated postures that could be assisted by an 

exoskeleton. The manufacturer SkelEx (SkelEx, Rotterdam, Netherlands) provided the 

model that was designed specifically to assist the strain related to this posture. 

Constraints of the real work situation such as average duration of steps, the weight of 

the tool, precision standards have been integrated into the lab experiments. 

Experiments took place between January and May 2019 on the site of LS2N 

laboratory, Nantes. 

  Lab tests 

From an analysis of the previous industrial tasks, a controlled laboratory experiment 

was built in order to not disturb the manufacturing process of the industrial. These 

tasks in a laboratory have furthermore the following advantages:  

• To measure more easily the effects of the exoskeleton and the familiarization 

protocol on user performance, perceived benefits, and acceptance with a 

reproducible procedure. 

• To involve more participants, with a larger diversity of profiles 

The idea was to create a simple laboratory protocol that could easily evaluate the 

potential of exoskeletons for repetitive and precision tasks.  

  Repetitive task (R) 

According to real constraints observed previously, a repetitive task was designed to 

reproduce arm-elevated posture (Figure 2). A board with eight lines of industrial nuts 

was placed vertically on the wall. The size and height of the board were adjusted so 

that any participants could reach at least 7/8 lines with a tool of 6kg. Setting 

movements were paced at 20 actions/min using a metronome. Participants had to set 

as many nuts as they can. They stopped when they experienced fatigue or high 
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discomfort or failed pace three times in total. Errors were observed: nuts should be 

correctly set, we tolerate a space of 5 millimetres corresponding to nut thickness. Data 

collected were: total time, time per line, number of nuts correctly set, number of 

errors/line. Four dimensions questionnaire including the following items: perceived 

exertion, fatigue, comfort, quality, performance, task-related usability assessment: 

perceived utility, easiness of use and move with the exoskeleton. 

 

Figure 2. (a) A participant without the exoskeleton performing the repetitive task R and with 

the exoskeleton (b).  

 

  Precision task (P) 

This task aimed at testing the potential benefits of wearing the exoskeleton (less 

perceived effort and fatigue, respect of quality and natural moves) while performing 

repetitive and accurate movements, as observed in the real work situation. A 

background of lines was projected on the wall by an interactive whiteboard system 

(Figure 3). The test consisted of redrawing the same signs with an interactive pen with 

maximum accuracy. Seven lines of ten signs each are displayed on the background. 

Participants started by the line at their eye-level and moved progressively upward to 

an overhead position.  They had to stand behind a line placed at 40cm from the wall 

but could move parallel to the wall. Distance from the wall was visually controlled so 

that arms elevated posture targeted by assistance would be respected. The test ended 

when participants experienced fatigue, discomfort or traced all signs. Movements 

were paced at 4second/sign using a voice recorded metronome. Data collected were: 

traced signs, time per line, number of completed signs, and number of errors/line.  
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Figure 3. (c) A participant performing the precision task P without exoskeleton (a) and with 

the exoskeleton (b). 

 

  Objective measurements 

  Familiarization performance of donning/adjusting 

Familiarization performance was measured by chronometer for doffing/donning 

procedure after the participant had experienced the brochure (F1) or the tutorial (F2).  

Measurements were organized as follows: 5 min to read the manufacturer’s brochure 

or to listen to the tutorial performed by a skilled experimenter, 3 min of testing alone, 

finally, the participant was challenged to install it and control adjustments. The 

recording was stopped above 3 minutes. This is the duration limit evaluated previously 

as a standard because operators have to be very quick at doffing/donning in a real 

situation in order to be flexible on other tasks. 

  Global physical workload 

This work situation has been previously targeted by an internal ergonomic study. 

Laboratory tasks were designed to approach real perceived effort with similar postures 

and duration constraints. The condition Exo/NoExo was measured on both tasks R 

and P, always in the same order and separated by a break while they seated.  A 

reference heartbeat (HR) was recorded while seating 5min before performing the task. 

Activity blocks were analyzed with the conditions Exo/NoExo. The measurements 

were separated by a 10 minutes break while operators remained seated. According to 

Meunier protocol (Meunier, 2014), in order to compare two different conditions of 

the activity (NoExo, Exo), we calculated the Absolute Cardiac Cost (ACC) according 

to the duration of the activity. ACC is the difference between the average heart rate 

(Ha) and the Reference Heart rate (Hr) and it is expressed in beat per minute (bpm). 

ACC*duration is expressed in heart rate (h) according to the duration of the task (in 

min). It represents the number of pulses ‘consumed’ during the task. The definition of 

the Absolute Cardiac Cost is represented in Figure. 4. 
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Figure 4. ACC*d is the difference between Reference Heart rate (Hr) and Average Heart rate 

(Ha) expressed in beat/min multiplied by task duration (min). 

  Tasks performance  

On the repetitive task R, the number of settings was observed and the duration 

recorded by chronometer. A speaker connected to a digital metronome indicated the 

rhythm to respect.  The performance of precision task P was measured by chronometer 

and counting the numbers of symbols. 

  Subjective measurements 

A four dimensions questionnaire (Cognitive, Occupational, Physical and Affective) 

built from a previous study (Moyon et al.) recorded user’s subjective effects of 

exoskeleton on tasks. The perceived musculoskeletal strain was evaluated with Borg 

Scale (CR-10) (Hill et al., 1992). We recorded on Likert scales (0-10) factors such as 

Easiness of learning, Evolution of perceived musculoskeletal effort, Perceived 

Usability for industrial constraints, Physical Comfort, Intention to use daily and 

Acceptance after use.  

  Data analysis 

To investigate significant differences in user performance, perceived benefits and 

acceptance between Exoskeleton, differences in means were analyzed by comparisons 

of NoExo (without exoskeleton)/Exo (with exoskeleton) using an ANOVA (mixed 

linear model, that considers the subject as a random effect and the factor 

“Exoskeleton” as a fixed effect) and a one-tail one-sample T-test was applied to 

determine a significative threshold for Exo condition subjective results according to 

the variables. Also, the effectiveness of the familiarization protocol (F1/F2 

conditions), was analyzed for the same variables and for Exo condition only, by a two-

samples two-sided T-test, which calculate the difference of means between the six 

groups. The statistical significance was set to p<0.05 (*) and p<0.001 (**). Statistical 

analyses were performed using XLSTAT 2019. For each dependent variable, the 

results for the different conditions are reported as means (with their standard errors) 

in original units. 
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  Results  

  Study of exoskeleton effects on Global physical workload 

The evolution of Absolute Cardiac Cost (ACC) with task duration (ACC*d) is 

expressed in number of heart rate (h). The results are shown in figure 5. For both tasks, 

the lowest values of ACC*d are found while wearing the exoskeleton (Exo). Without 

the exoskeleton (NoExo), ACC*d is increased by 32 h ± 2.9for the task R and by 27.1 

h ± 5.9 for the task P.  

 

Figure 5. Evolution of ACC*d (h) for Task R and task P with (Exo) and without (NoExo) 

exoskeleton 

Despite the weight and physical constraints produced by springs, the exoskeleton 

seems to reduce the cardiac cost for all tasks. 

  Study of exoskeleton effects on tasks performance 

Hypothesis: Performance is better when the participant is wearing the exoskeleton. 

For task R, the highest number of valid actions (45.5±1, p<0.0001) and the lowest 

number of errors (4.4±0.3, p<0.0001) is found when wearing the exoskeleton. A 

similar effect is found for task P: highest number of valid signs (49.6±0.9, p<0.0001) 

and lowest average number of errors (5.1±0.3, p<0.0001) were found when wearing 

the exoskeleton. We conclude that for all tasks, Human-Exoskeleton performance is 

better than NoExo condition with a higher number of actions and a lower number of 

errors. 
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  Subjective measures 

  Physical aspects: evolution of perceived musculoskeletal strain 

Hypothesis: perceived exertion could be reduced while wearing the exoskeleton. 

Global exertion for tasks R and P has been evaluated respectively with a mean of 

6.99/10 ± 0.21 and 6.45/10 ± 0.25 for NoExo condition and 4.22/10 ± 0,14 and 3.61/10 

± 1.16 for Exo condition. These results are represented by dotted lines in Figure 6. 

Results indicate that globally the strain is lower when wearing the exoskeleton, with 

a significant (p<0.0001) reduction of global strain respectively of 3.06/10 and 3.12/10 

for task R and task P. 

Perceived local strain shows lower scores when wearing the exoskeleton and an effect 

of transfer towards other parts of the body has shown in figure 8 (both tasks merged). 

Indeed, participants perceived a mean reduction of strain on upper parts of the body, 

on Shoulders (2.32/10; ± 0.15, p<0.0001), on Arms (2.93/10 ± 0.12, p<0.0001), 

Elbow/forearms (0.06/10 ± 0.16, p<0.0001), neck (1.41/10 ± 0.14, p<0.0001), in the 

Upper and lower back (0.79/10 ±0.09, p<0.0001 and 0.46/10 ±0.1, p<0.0001) and on 

legs (0.17 ±0.06, p<0.0001). Also, the perceived strain has been transferred to other 

parts of the body, with a small mean increased of 0.4± 0.16, p= 0.002 in the 

Elbow/Forearm part. 

 

Figure 6. Evolution of global and local perceived effort for specific parts of the body without 

(NoExo) and with Exoskeleton (Exo) for all tasks. A global effort is represented by the lines. 

We can conclude than the evolution of perceived exertion could be reduced globally 

while wearing the exoskeleton (Exo). However, we observed a transfer effect of local 

strains with a very small local decrease on Wrist/Hand and and a non-expected 

increase on Elbow/Forearm. 
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  Cognitive and Occupational aspects  

Regarding Affective aspects, no participant found that wearing the device was 

devalorizing. To check if the exoskeleton is suitable to perform simulated tasks 

constraints, we observe the evolution of focus demand, perceived quality and 

performance while wearing the exoskeleton.  

Questions (Likert scale 0-10):  

With the exoskeleton, I can perform the task with the same quality (strongly 

disagree- totally agree) 

With the exoskeleton, I feel (much less effective-much more effective) 

 

Two reverse questions:  

To use the exoskeleton involves an extra focus demand (strongly disagree- totally 

agree) 

To master the exoskeleton involves an effort (marginal – extremely important) 

 

For all results except the two last inverse sentences (Effort to master and Extra focus 

demand), results <5 are interpreted as a negative effect and results >6 are interpreted 

as a positive effect. A score between 5 and 6 corresponds to indecision or average 

effect. The effort to master and Extra focus demand, results <5 are interpreted as a 

positive average effect and results >4 are interpreted as a positive effect. A one-tail 

one-sample T-test was applied to determine a significative threshold according to the 

variable. Significant results are shown in Table 3. For both tasks in average regarding 

cognitive aspects, Perceived performance was positively significant with the 

exoskeleton (mean = 7.19, lower mark interval: 6.88, p<0.0001), participants reported 

that wearing the exoskeleton didn’t involve important supplementary focus demand 

(mean = 4.21, upper mark interval: 4.64, p=0.001) or involved an important effort to 

master (mean=4.07, upper mark interval: 4.39,p= p<0.0001). Also, they could 

perform the same quality standards (mean=7.17, lower mark interval: 6.84, 

p<0.0001). All differences in means between tasks were not significant (p>.05). We 

can conclude than the use of exoskeleton on the simulated industrial tasks does not 

disturb the respect of quality standards, perceived performance and doesn’t imply 

extra mental load concerning focus demand. 

  Effects of familiarization protocol (F1/F2) 

  Objective results 

  Donning performance 

Hypothesis: lowest donning duration performed with F2 protocol. Results showed a 

significant decrease of donning performance (adjustments included) with the lowest 

duration of 93.97±26.47s for F2 vs 171.97 ±26.36s for F1 as shown in figure 7. 

Donning performance is expressed in seconds, the full line indicates the limit duration 

expected by partners, the dotted line represents the maximum duration users have to 

reach to pass level 4 of familiarization on our internal scale (HEFL: Human 

Exoskeleton Familiarization levels). Otherwise, user certification is not delivered. 



 exoskeleton effects and familairization protocols on industrial tasks 197 

   

Figure 7. Evolution of donning/adjusting performance (s) according to familiarization 

protocol F1 or F2.  

F2 has a positive effect on donning performance. All participants who experienced F2 

reached a duration lower than 100s.  The manufacturer’s brochure F1 is much less 

efficient and not enough to reach the certification level (100s). 

 

Figure 8. Evolution of mean CCA*d (h) for Task R and task P according to familiarization 

protocol F1 or F2. 

  Global physical workload 

Hypothesis: F2 allows to have a lower physical strain by optimizing installation, 

adjustment, and use. If experiencing F2, ACC*d is reduced by 64.28 h ±80.3 for the 

task P with p=0.008. The decrease for task R is not significant, as shown in figure 8. 
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These results showed a higher reduction of global strain while experiencing F2 

protocol. We can conclude that F2 had a positive effect on global strain for both tasks. 

  Effectiveness on task performance 

Hypothesis: Performance is better when a participant has been familiarized with 

expert tutorial (F2). The evolution of the number of actions and error for the repetitive 

task R with familiarization protocol (F1 or F2) is shown in figure 9. The highest 

number of valid actions (49.22±7.62, p<0.0001) and the lowest number of errors 

(3.52±1.61, p<0.0001) were found when experiencing the expert tutorial F2. 

 

Figure 9. Task performance indicators and errors for repetitive task R according to 

familiarization protocol (F1 or F2). Brackets indicate significant differences between F1 

(manufacturer’s brochure) and F2 (expert tutorial) condition. 

Results for the precision task P with familiarization protocol (F1 or F2) are shown in 

figure 10. The highest number of valid signs (52.92±7.93, p<0.0001) and the lowest 

average number of errors (3.81±2.55, p<0.0001) were found when wearing the 

exoskeleton.  
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Figure 10. Task performance indicators and errors for precision task P according to 

familiarization protocol (F1 or F2).  

We conclude that for all tasks, F2 has given a better Human-Exoskeleton performance 

than manufacturer’s brochure F1with a higher number of actions and a lower number 

of errors.  

  Perceptive results 

  Physical, Cognitive and Occupational aspects  

Hypothesis: F1 protocol produces lower perceived benefits, usability and acceptance 

score than F2 protocol.  The effectiveness of familiarization protocol (F1/F2) on user’s 

perception is verified by two-samples two-sided T-test to compare the means of these 

two groups. The results are presented in Table 5. Higher scores given on Likert scale 

(0-10) have been found when participants experienced F2 familiarization protocol. 

The most significant differences were found in this order for easiness of learning 

(donning and adjusting) with an increased score of +4.15/10, comfort (+3.36/10), 

easiness to move with (+2.95/10), focus demand (+2.63/10). They are shown in bold 

in Table 2 with all variables. 
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Questions (Likert scale 0-10):  

To learn how to don/adjust the exoskeleton is easy (totally agree-strongly disagree) 

To master the exoskeleton is easy (totally agree-strongly disagree) 

For the tasks, the exoskeleton benefits are (marginal- extremely important) 

To learn how to move with the exoskeleton is easy (totally agree-strongly disagree) 

The exoskeleton is comfortable (extremely uncomfortable- extremely comfortable) 

With the exoskeleton, I need extra focus demand (strongly disagree-totally agree) 

With the exoskeleton, I feel (much less effective-much more effective) 

I can perform the task with the same quality (totally agree-strongly disagree) 

 

  User acceptance 

Hypothesis: the user’s acceptance score is higher when experiencing F2. Acceptance 

is scored through a three-dimensional question: Q1: ‘My global satisfaction for the 

exoskeleton is (extremely low- extremely high), Q2: ‘If needed, I would use the 

exoskeleton (Never-Everyday), Q3: I would recommend the exoskeleton to a 

colleague (Not at all- absolutely). The validity of three questions toward a global 

Acceptance dimension is verified by alpha’s Cronbach >0.80. 

Table 2. Descriptive statistics (mean, standard deviation, difference, p-value) and comparison 

of familiarization protocol (F1 or F2) on perceived benefits and acceptance dimensions (*p < 

.05). 

 

Dimension Brochure (F1) Tutorial (F2) Difference, 

 p value 

Easiness of learning  

(donning and adjust) 
4.38 (2.49) 8.18 (1.29) 4.15,  <0.0001 

Perceived support 
6.06 (2.22) 7.29 (2.02) 1.24,  0.001 

Master demand 
5.11 (2.33) 3.03 (1.92) 2.09, <0.0001 

Perceived global strain 
5.29 (1.57) 3.81 (1.37) 1.48, <0.0001 

Easiness to use 
5.81(2.28) 7.86(2.15) 2.04, <0.0001 

Easiness to move with 
4.91 (2.62) 7.86 (1.92) 2.95, <0.0001 

Comfort  
4.53 (2.10) 7.88 (2.23) 3.36, <0.0001 

Focus demand 
5.52 (3.03) 2.88 (2.67) 2.63, <0.0001 

Performance 
6.28 (2.31) 8.11 (1.77) 1.83, <0.0001 

Respect of quality 
6.34 (2.52) 8 (1.86) 1.65, <0.0001 

Acceptance 
6.42 (1.99) 8.25  (1.70) 1.82, <0.0001 
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We conclude that for all aspects presented (Cognitive, Occupational and Physical), F2 

protocol has given a better perceived performance, benefits and user acceptance than 

the manufacturer’s brochure (F1).  Human-Exoskeleton performance could be 

significative influenced by the familiarization experience that includes different type 

of knowledge and practice. 

  Discussion and Conclusion 

Firstly, some interesting contributions to Human-Exoskeleton Interaction on 

simulated industrial tasks have been found. Significant positive effects have shown a 

reduction in Global physical workload and perceived strain, an increase in task 

performance, in relation to positive effects on subjective benefits as perceived 

performance, the respect of quality standards and the lack of extra focus demand. 

These positive effects on physical, cognitive and occupational aspects are strategic to 

ensure occupational exoskeleton adoption in industries. Also, if the expected 

reduction of perceived strain is significant in targeted muscles (shoulder, arms), some 

muscular strain increased while wearing exoskeleton and highlights the possible 

influence of load transfer that should be investigated. A further study could aim at 

simulating muscle activation of the Human-Exoskeleton system to better understand 

this effect. Secondly, a key finding of this study is a significant positive effect of an 

expert familiarization protocol on perceived benefits, usability and user acceptance. 

These results suggest that the use of exoskeleton is not intuitive. A familiarization 

experience that includes specific knowledge and practice could help optimize Human-

Exoskeleton performance and user acceptance, that could eventually lead to a quicker 

adoption in companies. It is not easy to study the familiarization process as it is related 

to time. And long experiments would not be appropriated as they would involve 

participants to endure high strains. The suggested laboratory protocol is easily 

repeatable and allows the test of familiarization dimensions using a short duration of 

physio pathogenic activity. Further work could deal with the influence of panel 

diversity that has not been taking into account in this study. Also, differences of effects 

on all variables could be investigated, to bring manufacturer interesting feedbacks on 

the effect of claimed design improvements from Exo A to B prototypes. 
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  Appendix 

Human-Exoskeleton Familiarization Levels. According to our field expertise, a 

certified user should reach at least level 4. 
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  Abstract 

Suturing is a basic surgical skill that requires much training to achieve competency. 

Circular suturing is even more challenging, especially in minimally invasive surgery. 

In a radical prostatectomy procedure, circular suturing is performed to reconnect the 

bladder and urethra after the prostate has been removed. Task analysis of linear 

suturing and circular suturing, in laparoscopic and robot-assisted surgery, was 

performed and validated. Results revealed that circular suturing involves more 

motoric and perceptual constraints than linear suturing, requiring depth perception for 

proper alignment of two differently sized circular structures. Robotic surgical systems 

such as the da Vinci Surgical System can reduce some of these constraints by 

providing a stereoscopic view of the circular structures and increasing the 

manipulability of the needle and tissue, compared to the laparoscopic approach. These 

findings have implications for the design of training and assessment, as well as 

assistive tools to enhance the performance of circular suturing. 

  Background 

In surgery, suturing is performed to close incisions or gaps in the anatomy when 

diseased tissue has been removed. Suturing is one of the most difficult basic technical 

skills in surgery (Ghazi & Joseph, 2018). It requires hand-eye coordination, dexterity 

and precision to place evenly spaced stitches with equal tension to achieve good 

approximation of tissue (Secin et al., 2006). In minimally invasive surgery such as 

laparoscopic surgery, intracorporeal suturing is even more difficult due to the limited 

degrees of freedom in manipulation and constrained space (Cao et al., 1996). In 

laparoscopic surgery, 4 or 5 small incisions are made in the abdomen into which the 

laparoscopic instruments are inserted. The tools are long and thin in order to fit into 

small incisions while still reaching the desired points inside the body. The insertion 

point creates a fulcrum effect which forces the surgeons to move their hands in the 

opposite direction they want the end-effector of the tool to move. This skill is non-

intuitive and complicates the procedure for surgeons. The surgical site, provided by 

an endoscope which is also inserted into the abdomen through an incision, is displayed 

on monitors around the operating room for the surgical team. This 2D view of the 

surgical field makes it difficult to manoeuvre within a 3D space. Overall, these 

constraints can complicate many surgical tasks, especially intracorporeal suturing.  

 



206 Topolski, Dumas, Rigaud, & Cao 

In certain cases, suturing may be required around circular anatomical structures. For 

example, in urology, after a radical prostatectomy (complete removal of the prostate) 

is performed to reduce the risk of cancer or to mitigate the spread of cancerous cells, 

the urethra and bladder neck are joined together with sutures in a process called the 

urethrovesical anastomosis. This anastomosis involves circular suturing and is 

considered to be the most difficult part of the entire operation (Ghazi & Joseph, 2018).  

 

 

Figure 1. Illustration of four different stages of circular suturing in an urethrovesical 

anastomosis. As the surgeon progresses, the urethra (indicated by small white circle in A) and 

bladder neck (indicated by large white circle in A) are brought closer together (part B) and 

joined (part C) and secured (part D), thus completing the anastomosis. 

The urethrovesical anastomosis involves the joining of the ends of two tubular 

structures –the urethra and the bladder (see Figure 1). This means that the surgeon 

must suture around the outside circumference of both tubes to ensure the tissues are 

securely connected while still allowing fluid to pass through the lumen of the tubes. 

As this method differs from the more common linear suture where the stitches are 

made across a straight line, a drastically different technique is needed. The intricacies 

of these different tasks are outlined in many surgical texts but are not explained in 

detail. Novice surgeons have to rely on guided training with expert surgeons in order 

to fully grasp the concepts and methods of circular suturing that make it so 
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challenging. Not only is the task difficult to learn, it is also difficult to teach to novice 

surgeons, especially in the minimally invasive approach.  

 

Surprisingly, the robotic surgical system da Vinci (Intuitive Surgical, Inc.; Figure 2) 

that had been struggling to demonstrate value in laparoscopic surgery provided the 

solution to this difficult urological procedure. In fact, the use of the da Vinci Surgical 

System in urological procedures increased from 8% in 2004 to 67% in 2010 and is 

now used in more than 70% of prostatectomy procedures (Voilette et al., 2015).  

 

 

Figure 2. The da Vinci Surgical System includes a control console where the surgeon is seated 

(left) and surgical instrument dock that is positioned over the patient (right). Image from: 

https://www.franciscanhealth.org/health-care-services/robotic-assisted-surgery-334 

The robotic surgical system, da Vinci Surgical System, provides the surgeon with a 

stereoscopic view of the surgical field while being positioned in an ergonomic seat. 

The joysticks and pedals included on the control console allow the surgeon to control 

all of the tools connected to the surgical instrument dock quickly and easily.  

Additionally, the joysticks allow the surgeon to control more intricate movements of 

the surgical instruments such as graspers and scissors. With the da Vinci, these tools 

have more degrees of freedom than traditional laparoscopic tools (Figure 3). The 

wrist-like joints on the da Vinci-compatible tools allow the surgeon to more easily 

manipulate tissue or other medical equipment such as sutures (Chellali et al., 2014). 

Nevertheless, the task of suturing, and in particular, circular suturing, in the minimally 

invasive environment remains challenging. 
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Figure 3. Laparoscopic needle drivers (left) and da Vinci laparoscopic needle drivers (right) 

are similar in design, but the da Vinci tools have significantly more degrees of freedom with 

their included wrist-like joints. Images from: Microlap® Needle Drivers. ConMed 

https://www.conmed.com/products/laparoscopic-robotic-and-open-surgery/instruments/low-

impact-laparoscopic-instruments/low-impact-needle-drivers (left) Endowrist® MEGA™ 

Needle Driver. Intuitive Surgical https://www.intuitivesurgical.com/test-

drive/pages/endowrist-instruments.php (right) 

Nevertheless, the robotic system has not been able to completely nullify the 

difficulties inherent to the urethrovesical anastomosis, such as bimanual dexterity in 

instrument manipulation (Chen et al, 2018). While the da Vinci has no doubt 

improved many aspects of minimally invasive surgery (Ballantyne, 2002), the 

urethrovesical anastomosis still proves to be a challenging task for many surgeons.  

This study is the first step towards an understanding of the requirements and 

constraints in circular suturing for the purpose of surgical skills training, as well as 

for developing an objective assessment metric for circular suturing performance. 

Ultimately, an assistive tool may be developed to make explicit the requirements to 

augment the performance of novice and expert surgeons alike.  

  Materials and methods 

Data collection 

To gather initial information about circular suturing tasks, ten surgical texts and 

manuals were consulted and reviewed to learn the basic steps necessary to complete 

a urethrovesical anastomosis procedure (Croce & Olmi, 2000, Davis, 2016, Ghazi & 

Joseph, 2018, Hudgens, 2015, Johnson & Cadeddu, 2019, Joseph, 2008, Lierse, 1987, 

Secin et al. 2006, Sundaram et al., 2010, Yuh & Gin, 2018). Observation and 

recording of five robot-assisted radical prostatectomy surgeries procedures were 

completed at the Centre Hospitalier Universitaire de Nantes, supplemented by 12 

videos of the same surgery found online from other hospitals and training programs. 

The live procedures ranged from 1.5 hours to 6 hours in duration. The online videos 

were a mix of laparoscopic or robot-assisted radical prostatectomies; each video 

averaged around two hours long. Surgeon consent was obtained for the operating 

room observation portion of the process. Visual recordings of the live observations 

were taken from the da Vinci intraoperative camera; no patient data or audio were 

included in the recordings.  
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Four expert surgeons were interviewed. All surgeons consented to being video 

recorded as they were interviewed. The interview consisted of three main portions: 

review of a pre-selected video, a structured interview, and reviewing the hierarchical 

task analysis diagrams. First, the surgeons were asked to observe a video of an expert 

completing an urethrovesical anastomosis and make comments throughout the video 

relating to technique and procedure (Mollo & Falzon, 2004). Next, the interviewer 

asked questions about certain aspects of the procedure and the surgeon’s past 

experiences with the procedure. Finally, the surgeons were asked to review the four 

task analyses and verify the content and sequence of steps. 

Data analysis 

A task analysis was performed following the procedure in Cao et al. (1996) and four 

hierarchical task analysis (HTA) diagrams (linear and circular suturing, and 

laparoscopic and robotic suturing) were constructed to match the techniques observed 

in the operating rooms. All HTA were validated by four expert surgeons.  

A cognitive task analysis was performed by interviewing four expert surgeons at the 

Centre Hospitalier Universitaire de Nantes in Nantes, France. The transcripts of each 

of the interviews was synthesized to extract common themes based on the language 

used. This information was organized and classified to supplement the HTA. By doing 

this, it became easier to address the specific differences in each of the tasks and which 

steps of the tasks were more difficult overall. 

Results 

Hierarchical Task Analysis 

Figures 4-7 show the hierarchical decomposition of the four suturing tasks: 

laparoscopic linear suturing, laparoscopic circular suturing, robotic linear suturing, 

and robotic circular suturing. Comparing linear and circular suturing, the first sublevel 

of the task decomposition was similar; this sublevel contained six to seven steps. The 

only difference was between circular and linear suturing where two steps were needed 

to penetrate the tissue since there are two distinct structures to pass the needle through. 

Distinct differences appeared in the second sublevel of the task decomposition. 

Circular suturing was more complex than linear suturing, requiring more sub-tasks 

that were not necessary for the linear suture.  

When comparing the robotic approach with the laparoscopic approach, the task 

decomposition showed that in many of the second-level subtasks, the robotic approach 

was less constrained than the laparoscopic approach. In the robotic approach, it was 

not necessary for the needle to be set as meticulously as in laparoscopy since the robot 

wrist motions can adapt easily to different angles. While there were notable 

differences in the content of the subtasks, the procedure ultimately remained very 

much the same.  
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Figure 4: HTA of a circular suturing task using the laparoscopic approach. There are seven 

first-level subtasks and 37 second-level subtasks included in the diagram, all of which are 

necessary to perform a circular suture using this approach. 
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Figure 5: HTA of a circular suturing task using the robot-assisted surgical approach. The 

second level not only has 12 fewer subtasks than the laparoscopic approach, but the tasks are 

also simpler and less exigent. 
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Figure 6: HTA of a linear suturing task using the laparoscopic approach. There are 6 first-

level subtasks and 32 second-level subtasks necessary in order to complete a linear suture 

using this approach. 
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Figure 7: HTA of a linear suturing task using the robot-assisted surgical approach. This 

approach has 2 fewer subtasks than the laparoscopic approach and is lower in complexity in 

the “set the needle” task. 

 

Cognitive Task Analysis 
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Tables 1-3 summarize the results of the cognitive task analysis. Task requirements 

and constraints were abstracted from the interviews and classified into two levels of 

abstraction: execution (skills) and planning. The execution or skill of the surgeon was 

further broken down into two more levels: motor movements and perception. Table 1 

reveals the additional degrees of freedom that the robotic system afforded in 

manipulating tissue and orienting the needle. Table 2 reveals additional requirements 

for the circular suturing task, such as the changing orientation of the needle for each 

stitch, which align with the capabilities of the robotic system in Table 1. Finally, the 

need to visualize and plan extensively in circular suturing compared to linear suturing 

is summarized in Table 3. Notably, the placement of the stitches in circular suturing 

required mental imagery in planning, and constant adjustments during execution. 

 

Table 1. Comparing laparoscopic and robot-assisted suturing techniques. 

Laparoscopic Robot-assisted 

Few degrees of freedom – one axis of rotation 
More degrees of freedom – wrist motion 

extremely helpful for needle orientation 

Better for linear sutures, circular sutures become 

more difficult with changing angles of insertion  
Can easily adapt to linear or circular sutures  

Orientation of needle in grasping tool critical  
Orientation of needle in grasping tool not as 

important  

2D view of surgical field lacking depth for circular 

suturing  

High-definition and stereoscopic view of 

surgical field good for circular suturing  

Table 2. Comparing the execution tasks (motor movements) of linear and circular suturing.  

Linear Circular 

Angle of insertion remains consistent Angle of insertion changing 

Alignment of needle the same for each stitch  
Alignment and orientation of needle has to be 

varied precisely 

Easy alignment, no concern with twisting or 

stretching 

Different size circumference of openings 

complicates alignment 

Can most often use dominant hand to do majority 

of suture 

Required to use left and right hand with same 

amount of dexterity 
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Table 3. Comparing the planning tasks (perceptions) of linear and circular suturing.  

 

Discussion 

From the hierarchical task analysis alone, it is not clear why circular suturing is more 

difficult than linear suturing. Even though there are differences in the number of 

subtasks at the second level of task decomposition, the differences seem minor as the 

suturing tasks follow the same technique of needle insertion-needle pull through-

suture pull through-repeat needle insertion. Similarly, whether the suturing is 

performed laparoscopically or with the robotic system, the steps and subtasks are 

similar, further confirming that these different approaches follow the same technique 

in performing a suturing task.  

While the execution steps used in linear and circular suturing are essentially the same, 

the cognitive task analysis revealed marked differences at the execution and planning 

levels. As linear suturing involves working in one plane, the angle of needle insertion 

remains consistent for all stitches. In circular suturing, however, the angle of insertion 

changes with each subsequent stitch. This varying angle of the needle must vary with 

the tangent of the curve around the circular structure. 

Additionally, in urethrovesical anastomosis, the two structures being sutured together 

have different circumference which complicates the alignment process. Linear sutures 

which often bring two pieces of tissue together in the same plane are easy to align 

without any stretching or twisting. In circular suturing, the surgeon must also be able 

to use both the left and right tools with the same amount of dexterity. A linear suture 

can often be completed entirely with one hand, while both hands are need to achieve 

multiple angles of the needle in circular suturing.  

Not only is circular suturing more difficult in terms of motor control, but perceptual 

constraints also play a major role in how a circular suture is completed. In linear 

suturing, visualizing where the needle should be placed next, based on the position of 

the previous suture, is relatively easy. However, in the anastomosis task, the 

positioning of the structures, as well as the difference in size of the structures, makes 

it more difficult to determine where the next stitch should be placed. Circular suturing 

Linear Circular 

Visualizing placement of suture based on last 

stitch/set measurement (i.e. 0.5 cm) is very simple  

Placement of suture depends on size/shape of 

tissue and relative difference of size of 

openings  

Only have to use one needle  Using and monitoring two needles 

Can easily anticipate where needle emerges from 

tissue; mostly driving toward camera  

Difficult to see where needle will emerge 
especially when driving needle away from 

camera  

Can often be completed with one grasper, no 

alternative for manipulation around suture site  

Passing and manoeuvring the needle with both 

left and right graspers – must decide when to 

switch and how  
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most often involves using two needles and keeping track of these needles and sutures 

can become confusing. Additionally, visualizing these two needles around the 

circumference of the bladder neck can be difficult. As the surgeon has to drive the 

needle through the back of the bladder neck, away from the camera, to a point 

occluded by tissue, where the needle exits the tissue is often a matter of guessing.  

The planning process throughout all of these steps also changes between linear and 

circular suturing. For example, the spacing of stitches in a linear suture can be pre-

determined based on the length of the suture, such as 5 mm. For a circular suture, the 

spacing is different on each of the two structures to be joined, due to their size 

difference. The corresponding stitches on the bladder neck and the urethra must align 

to ensure an even and tight closure. The passing and manipulating of the needle also 

require more planning and adjustments in a circular suture. While a linear suture can 

be conducted simply with one grasper, a circular suture requires the surgeon to decide 

when to switch directions, when to switch needles, and when to switch hands and 

grasps to maintain the optimal physical control over the process.  

Clearly, many of these requirements are being addressed by the increased degrees of 

freedom in the surgical robot. Laparoscopic tools are very rigid compared to the 

robotic end-effectors; the wrist motion of the robotic tool allows for easier needle 

manipulation that is crucial in circular suturing. Laparoscopic instruments are 

adequate in linear suturing where the suture is only being applied across a single plane 

of tissue. However, in circular suturing where the plane of action is constantly 

changing, the wrist motion of the robotic tools allows the surgeon much more 

freedom. The setting of the needle in robot-assisted surgery is not as strict as it is in 

laparoscopic surgery because the wrist motion allows for rotation in different 

directions rather than just the one axis of rotation that the laparoscopic tools offer. 

Presumably, the increased degrees of freedom allow for more dexterity, hence 

usability (Chellali et al, 2014). Another major benefit of the robotic system is the 

stereoscopic view provided in the operational console. This stereoscopic view is 

useful in visualizing the circular structures. Laparoscopic screens display the surgical 

site in 2D only, not allowing the surgeon to have accurate depth perception within the 

surgical field. It is also possible that surgeons’ situation awareness may be limited by 

the 2D view. However, we did not examine this dimension of the problem. 

Considerations for future work 

What is not included in this analysis is the timeline of each approach for the suturing 

task. A separate timeline analysis, in combination with the task analysis, would more 

precisely reveal which subtask is time-consuming or which subtask is more difficult.  

Current teaching materials for minimally invasive linear suturing may be adequate for 

teaching the order of steps when adapted for circular suturing. However, it is clear 

that there are additional perceptual and motoric requirements that need to be included 

in the training instructions. More explicit instructions can be developed for training, 

as well as for evaluation of performance in circular suturing. 
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Conclusion 

In both laparoscopic and robot-assisted minimally invasive surgery, circular suturing 

is considered a challenging task to teach and to learn. The joining of the bladder and 

urethra after a radical prostatectomy procedure is just one example of this type of task. 

In this study, analysis of four different intracorporeal suturing approaches was 

conducted through observations of live surgeries, interviews, and video review with 

expert surgeons. The results of this analysis revealed that circular suturing requires 

depth perception and proper alignment of two differently sized circular structures, as 

well as additional motoric manipulations of needle and tissue. Utilizing robotic 

techniques can mitigate some of these constraints by providing a stereoscopic view of 

the surgical field as well as increasing the manipulability of both the needle and tissue. 

The ability to use mental imagery during the planning phase seems to be an important 

factor in the success of the task. These findings will inform future design of training 

and assessment methods, and assistive technologies for surgical performance. 
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  Abstract 

The Dynamic Safety Model (DSM, Rasmussen, 1997) constitutes an original 

approach to safety issues. The model posits that adverse events are caused mainly by 

pressures coming from work constraints that lead operators’ activity to migrate 

towards unacceptable limits of performance. In particular, Ramussen calls attention 

to the economic and workload pressures exerted on activity, insidiously pushing 

operators to tolerate risky behaviours as long as no critical event occurs. Recently, 

Morineau and Flach (2019) proposed to extend the DSM in order to integrate this 

model fully into the Cognitive Work Analysis (CWA) framework. More precisely, 

they suggested that the work domain analysis, the first stage of CWA, be replaced by 

the DSM. This use of the DSM would enable the analysis of intentional work systems 

involving loose coupling between work domain and organization. From this 

perspective, we present an analysis of the activity of a medical team confronted with 

a medical adverse event simulated in an emergency room.  

Introduction 

Research in cognitive systems engineering has developed a formative approach to 

analyse work systems. The basic assumption of this approach is that operators’ 

behaviours are mainly shaped by work constraints, in the same way as animals in an 

ecosystem must adapt their behaviours to environmental features. At the 

methodological level, Cognitive Work Analysis (CWA) is the framework commonly 

used to describe behaviour-shaping constraints (Rasmussen, 1986; Vicente, 1999). It 

involves five embedded stages of analysis, namely work domain analysis (WDA) 

describing  the constraints  arising from the objects (domain) on which the work is 

performed; control task analysis describing constraints produced by the requirements 

to perceive and act on the work domain features; strategy analysis describing how 

performing tasks can be embedded in specific strategies, notably to manage the 

workload; organizational analysis focusing on workload allocation between human 

and/or artificial agents; and competencies analysis focusing on the individual inner 

constraints required to perform tasks.  

Numerous studies have shown the relevance of CWA to apprehend work systems (e.g. 

nuclear plant, aviation, anaesthesia). Some studies indicate that this approach fits 
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particularly well with the analysis of causal work systems in which the work domain 

constraints directly drive the other embedded work constraints: tasks, strategies, team 

organization, and competencies (Hajdukiewicz et al., 1999; Wong et al., 1998). In a 

causal system, a tight coupling exists between work domain and work organization. 

In an intentional work system, outcomes particularly depend on how work is 

organized by operators through ad hoc decisions on priorities and adaptive processes 

to cope with the workload. In intentional systems, relationships between the work 

domain and the organization are mainly loosely coupled. Hence, in an intentional 

work system, a major issue for operators is to ensure efficient management of work 

constraints by coordinating the work requirements. This coordination will ensure that 

the organization’s activity stays synchronized with the requirements imposed by the 

work domain state. 

To analyse loosely coupled work systems, Morineau and Flach (2019) have proposed 

a new version of CWA, named “heuristic Cognitive Work Analysis” (hCWA). The 

specificity of this method resides in replacing the first stage of work domain analysis 

with a more modest, but heuristic, modelling of work constraints based on an extended 

version of the Rasmussen’s Dynamic Safety Model (DSM). After outlining the DSM, 

we introduce hCWA and a first application on observations collected during medical 

emergency scenarios simulated in a high-fidelity simulation setting.  

The Dynamic Safety Model  

The level of coupling of a work system with its work environment constitutes the 

cornerstone that led Rasmussen (1990) to propose the DSM as a framework to analyse 

performance and safety issues. The tighter this coupling is, the more dependency 

relationships exist between events occurring in the work system. 

At the lower level of human-machine interaction, tight links exist between operators 

and the work environment. Operators rely on the deterministic sequence of behaviours 

that the machine induces by its sequence of operations. At this level of granularity, 

sequential task analysis methods can be used to describe how users’ behaviours more 

or less follow expected sequences, considering that deviations potentially represent 

less efficiency, error, or accident. 

At the higher level of socio-technical systems, tight coupling can also be prominent if 

the work organization is based on a traditional way of working, whereby work 

processes are strictly decomposed as a set of sequences of discrete states to be reached. 

In this context, traditional accident analysis based on causal trees can be used to 

determine at which step operators violated some expectations, which led to the final 

accident or failure. 

However, in modern work systems, automation or high demands of flexibility in 

activity provide operators with more degrees of freedom. At a high level of 

automation, the operators’ job is to supervise automatic systems. When high 

flexibility in the work process is requested, the operators need to find ad hoc solutions. 

These degrees of freedom lead operators to use frequent decision making and 

implement adaptive strategies. Hence, the basic issue for operators is how to resolve 

numerous degrees of freedom in a space of possibilities bounded by a set of work 
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constraints that need to be complied with. In this space of possibilities, operators’ 

activity can be modelled as an operating point with a trajectory in a workspace 

bounded by work constraints. This is the core of the DSM proposed by Rasmussen 

(Figure 1). 

  

Figures 1 and 2: A synthesis of the Dynamic Safety model inspired from Rasmussen (1990 & 

1997, left side) and its extended version used in hCWA and applied to healthcare systems 

inspired from Morineau and Flach (2019, right side) 

Rasmussen has proposed different versions of the DSM. In his 1990 paper, Rasmussen 

presented the constraining boundaries as respectively referring to the “state of affairs” 

that corresponds to the state of the work domain, the “available means of work” (e.g. 

equipment), and the “individual resource profile”, which is composed of operators’ 

physiological and psychological capacities. These work constraints can produce 

pressures on operators that can potentially lead their trajectory to cross a boundary, 

leading to an accident or a problem. Based on these generic constraints, Rasmussen 

(1990) suggested to model activity respectively by identifying the space of possibility 

specific to the analysed work system, the subjective criteria used by operators to make 

decisions in order to solve degrees of freedom in their trajectories, the strategies used 

to synchronize with the work constraints, and the team organization aspects and the 

competencies needed to move the operating point within the workspace. 

In comparison with this first generic approach to the workspace that potentially 

allowed it to be used as a sketch for analysis in relation with CWA, Rasmussen went 

further in the specification of the DSM in his 1995 and 1997 papers. The constraining 

boundaries were specified as referring to acceptable performance (firstly named 

“acceptable state of affairs”), economic cost, and individual workload. Organizations 

seek to limit the economic cost of activity and operators, their level of workload. The 

combination of these two pressures may critically and insidiously lead the operating 

point to migrate towards a single safety margin located near the acceptable 

performance boundary. To reduce this risk, proposals in safety science can be 

deployed to increase the safety margin by augmenting the work system reliability, 

increasing the operators’ awareness of this risk, for instance through a safety 

management culture, or by making the boundary more visible, for instance with the 

ecological interface design (Vicente & Rasmussen, 1992). 
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In Cook and Rasmussen (2005), the DSM was used to interpret safety issues in 

hospitals. Through this modelling, the authors returned to the basic issue of model 

emergence by considering what happens if an adaptive modern work system uses tight 

coupling. 

Heuristic Cognitive Work Analysis (hCWA) 

Heuristic Cognitive Work Analysis is a methodological framework that is based on 

the first approach to the DSM proposed by Rasmussen (1990). The DSM is viewed as 

having a heuristic value for CWA. In hCWA, the first CWA stage of work domain 

analysis through an abstraction hierarchy is replaced with the DSM template. Rather 

than expanding the description of the work domain through an abstraction hierarchy 

that is particularly well-adapted for causal work systems, hCWA proposes to focus on 

the dynamics of activity triggered by the necessity to coordinate multiple conflicting 

constraints arising from the work domain and the organization, with multiple degrees 

of freedom to resolve in order to find the best adapted trajectory in the space of 

possibilities. 

Figure 2 shows the extended version of the DSM used in hCWA that is specifically 

applied to medical work systems. Previous research has identified the following three 

constraints as specific to healthcare systems (Morineau et al., 2017):  

- Patient Care is the work domain constraint for a healthcare system. Potentially, 

a patient can evolve towards a deteriorating state, thus putting pressure on the 

medical team; 

- Task Management is an organizational constraint. It involves the manipulation of 

drugs and equipment during care delivery. These elements induce the 

performance of specific tasks to prepare, control, restore, or store them. To 

manage drugs and equipment is a peripheral activity for professionals who have 

been educated and trained mainly to deliver care. However, if these tasks are not 

performed well, they will produce risky pressure on activity; 

- Information Processing represents the cost involved in processing information 

that is exchanged between operators and/or with information systems. Research 

in distributed and situated cognition has shown that much information processing 

and storage is performed in the work environment rather than exclusively in 

individuals’ minds (Hollan et al., 2000). Similar to task management, information 

processing involves resources used to adapt to the work domain constraint (care 

delivery), but it can also represent a supplementary constraint for the cognitive 

workload, requiring communicating, reading and writing digital or paper 

documents. Difficulties or noise in information processing can drastically weaken 

operators’ activity. 

All these constraints can function as attractors or repellors for operators; concretely, 

they may lead to avoidance (repellors) or attraction (attractors) in the course of 

activity. Contrary to the original version of the DSM, all the work domain constraint 

can exert pressure on trajectories in the space of possibilities; thus, several forms of 

migration towards risky margins can occur inside the workspace. Facing these three 

basic work constraints, operators need to use their inner resources to manage the 

trajectory of their operating point in the workspace.  
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In hCWA, the DSM identifies the problem operators need to solve. Modalities to solve 

this problem can be found in the next analysis stages of CWA, namely control task, 

strategies, work organization, and competencies analyses. 

Analysis of simulated medical emergency events with hCWA 

We analysed two episodes of care delivery simulated in a high-fidelity simulation 

room: handoff and bed lowering to facilitate cardiac massage. The patient was 

represented as a realistic and interactive mannequin, including physiological 

parameters accessible on a monitor. Participants were professional nurses and nursing 

aids in the context of training sessions (more details can be found in Morineau & 

Flach, 2019). 

Episode #1: Handoff and patient monitoring  

This first episode occurs at the beginning of the session, when nurse N1 performs the 

handoff with nurse N2 and nursing aid NA1. Four main events can be identified that 

describe the trajectory of the operating point in the workspace according to the 

attracting or repelling forces induced by the constraining boundaries: Patient Care, 

Task Management and Information Processing (Figure 3): 

1. Handoff at the entrance of the bedroom: Information processing attraction. 

2. Call from the patient who is stressed: Patient care attraction; 

3. The caregivers continue the handoff around the patient’s bed: Patient care 

attraction despite the necessity to perform the handoff; 

4. Nurse1 interrupts Nurse2 who was explaining stressful details of the next analysis 

to the already stressed patient: Patient care as repellor. Nurse2 must avoid to 

speak in front of the patient. 

 
Figure 3. Trajectory of the operating point during Episode #1 regarding the pressures exerted 

by the three boundaries: Patient Care, Task Management, Information Processing. 

Episode #2: Lowering the bed and performing cardiac massage 

This second episode covers the difficulties experienced by NA1 to lower the top part 

of the patient’s bed with the remote in order to facilitate the current cardiac massage. 

Ten main events can be identified (Figure 4): 

1. Nursing Aid1 wants to lower the bed. First, she wrongly raises the bed, then 

rapidly succeeds, but fails to lower the top part: Attraction from task 

management. 
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2. Nurse2 says: ‘You must lower the bed’ and pushes directly on the top part of the 

mattress, without any success. 

3. NA1 takes the remote but fails to lower the top part of the bed. 

4. NA1 assists her teammate to place the massage board under the patient. 

5. NA1 tries to lower the top part of the bed again, but instead produces a new 

lowering of the entire bed. 

6. NA1 asks N2: ‘Can you lower the bed, please!’ 

7. N2 lowers the bed while regulating the oxygen flow: Both patient care and task 

management exert an attraction. 

8. While she is massaging, NA1 asks N2 ‘Again, please’. 

9. N2 says: ‘It is at the max.’: Bed management is considered as a repellor by the 

nurse. 

10. While waiting for defibrillation, NA1 succeeds in lowering the bed: a waiting 

stage in patient care is used for bed management. 

 

Figure 4. Trajectory of the operating point during Episode #2 regarding the pressures exerted 

by the three boundaries: Patient Care, Task Management, Information Processing. 

In these two episodes, the caregivers engage resources in terms of task control, 

strategies, work organization, and competencies.  

Task control 

Task control refers to an adaptive process based on control loops (e.g., regulation, 

exploration, anticipation) to coordinate the work constraints. In this context, the 

normative descriptions of tasks through instructions and procedures can be considered 

as landmarks to assist implementing these control loops and to avoid violating the risk 

margins. 

Episode 1: The handoff represents an anticipatory process. This process is interrupted 

and modified by the stressed patient, which triggers regulations among caregivers by 
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responding to the patient’s questions and filtering the information communicated to 

the patient, when N2 stops N1 in her description of details concerning the clinical 

examination that will be endured by the patient. 

Episode 2: A global loop of exploration is engaged by NA1 to work out how to lower 

the bed with the remote during the highly critical moment of cardiac massage. Failures 

lead to a set of regulations inside this exploration loop, with the support of N2. 

Strategies 

Strategies to perform tasks in loosely coupled work systems involve balancing 

priorities and values in order to manage the workload. Selecting between possibilities 

of multitasking or sequential task performance must be made rapidly. 

Episode 1: First, a sequential activity begins during handoff, then the necessity to 

manage the patient’s interruptions leads to a multitasking configuration of work 

beside the patient’s bed. 

Episode 2: This episode is markedly interrupted, which leads to multitasking through 

time-sharing, when NA1 stops care delivery and tries to lower the bed and when N2 

tries to lower the bed to assist NA1, or through parallel activity, when N2 lowers the 

bed and regulates the oxygen flow. 

Work organization 

Work organization concerns allocation and redistribution of the workload among 

teammates. It also refers to the spatial and temporal organization of the work 

environment with the purpose of reducing the workload. 

Episode 1: This episode addresses the issue of where and how the handoff must be 

performed. Integrating the patient into the handoff becomes problematic. 

Episode 2: This episode deals with the need to engage the maximum of human 

resources on patient care, instead of being occupied in trying to lower the bed. 

Ergonomic solutions to simplify this action upon the patient’s bed could be proposed. 

Competencies 

Expertise allows operators to decrease the workload involved in their adaptive 

processes to work constraints, notably through changes in their level of cognitive 

control; these changes can be based on knowledge (mental model), rules (heuristics), 

or skills (Rasmussen, 1986). 

Episode 1: Handoff mainly involves knowledge-based behaviours through the 

communication of a mental model of the situation to the next team. This level is 

particularly sensitive to interruptions that can lead to omissions in the handoff content.  

Episode 2:  Performing cardiac massage is a motor skill that demands considerable 

physical effort and requires caregivers to adopt a specific posture in order to perform 

a successful massage. Using the bed remote involves a rule-based control of 
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behaviour: users need to know how to use the device. If the functioning rules are 

complex, operators will forget them, as occurred in this episode. 

Conclusion 

In Cognitive Systems Engineering, some concerns about the possibility of applying 

CWA on intentional low coupled work systems have been raised (Wong et al., 1998). 

Low coupled work systems are governed mainly by constraints emerging from the 

ways operators organize their work and find solutions to resolve the multiple degrees 

of freedom that they must deal with. 

By considering the constraints arising from both the work domain and the work 

organization, hCWA proposes an alternative to the traditional CWA that is focused 

on the work domain constraints. It could deal with the ergonomic issues posed by 

intentional work systems. hCWA is a heuristic analysis framework since it searches 

for the basic work requirements that structure the work system and fundamentally 

shape the operators’ behaviours. Rather than describing exhaustively the work domain 

properties, as the abstraction hierarchy technique does, hCWA points out the 

consequences of the conflicting interactions between the basic work constraints. 

These interactions must be dynamically solved by operators in the course of their 

activity. Such an analysis could be put in relation with the notion of ‘elementary 

structure’ developed by the anthropologist Claude Levi-Strauss (1945) or the notion 

of ‘simplexity’ proposed by the physiologist Alain Berthoz (2009). 
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Abstract 

Most important purpose of understanding Human Behaviour in Complex Systems is 

the making of personalized Human-Artificial dialogs for task-oriented co-operation. 

Among complex systems are teams of Museum' works that cooperate to build the 

museum visitors experience (VX), as user experience (UX), to enhance the learner 

experience (LX). Until now, museums’ artworks were passive things people cannot 

interact with. The “CULTE” project is to offer visitors the possibility to dialogue with 

connected artworks displayed in the Museum through I.O.T. Thus, as connected 

objects, Museums’ artworks become Smart Things by enriching the visitor experience 

through trans-media dialogs. We report the rationale for our approach: a problem-

solving based approach that is used for designing a smart personalized dialoguing 

system integrating (i) the context of Museum’s complex system, (ii) an ontology of 

the “what’s about” and (iii) the three necessary dialogs components that are the 

Pragmatic, meta-cognitive and, - as the core of the dialog -, the cognitive components. 

For the purpose of modelling, from less to more situated, the COGNITION 

component is embedded in the METACOGNITION component that is in turn 

embedded in the PRAGMATIC/SEMANTIC component. 

Introduction 

As User Experience, quoted UX, a concept introduced by Don Norman in the 90th to 

cover all aspects of the experience the person is having with the system (Norman, 

2013), Visitor Experience, quoted VX, refers all aspects of the experience the person 

has with the artwork (Dubois et al., 2011).  

As a consequence of technological innovations, VX increases because museums are 

expanding their system of communication with visitors: before, during and after the 

visit. Inside and outside the museum walls, visitors can get much more information 

with the artworks that are connected objects (IOT) and have richer personalized 

experience. However, if museums deliver this additional information by taking into 

account the visitor interest, they do it in a way that this is the museum that is talking 

to the visitor (when and what). The visitor is not talking to the museum and there is 

no dialogue between a visitor and a given artwork. 
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CULTE1 (Cultural Urban Learning Transmedia Experience) is a research project2 

funded by the French National Agency for Research (ANR) about an innovative 

transmedia pervasive Game which anchors the visitor experience with an in-situ 

application for Smartphone and an online post-visit platform beyond the museum’s 

wall, in a continuum of visit. The game is also connecting the visitor with others 

museum's digital tools, which contribute to enhance its experience. 

One of the most challenging dimensions of the visitor experience that will make 

people witnessing an innovative visitor’s experience (VX) would be the possibility of 

dialoguing with any of the artwork connected objects of the Museum as being what 

we might define as Smart things. This both fundamental and applied research is in the 

line of research about dialogs with digital media (Bosser et al., 2007; Vandi & 

Djebbari, 2011; Astic, I., 2014; de los Rios, 2015; Holken et al., 2017). 

In this article, we first define what smart things are, what they are made of and then 

how to design the dynamic interactive dialog of interaction of Smart Things with their 

users. This new kind of an interaction should be based on a dialogue that is embedded 

in the dynamic of the visitor route, taking dynamically into account their emerging 

interests while the process of dialoguing with artworks is evolving. To do so, we are 

developing the Verbal Interaction with Smart Things model (VIST) which is a general 

framework of interaction mode that can be used for any subcategory of Smart Things, 

although the use case reported here is the one of connected artworks in museums.  

What are Smart Things?  

First, Smart Things are Things which means that they are bearer of properties: “A 

thing is always something that has such and such properties, always something that 

is constituted in such and such a way. This something is the bearer of the properties; 

the something, as it were, that underlies the qualities.” (Heidegger, 2017). A set of 

properties from which a typology was made: surface, structural, functional, procedural 

and behaviour properties (Cordier & Tijus, 2001). A typology that can be used for the 

design of intelligent, companionable objects, such as those designed by Chen et al. 

(2015) for the Smart Classroom. 

In addition, Smart Things are objects that are connected (IOT) and dedicated for 

making people daily life simpler. “Because Smart Things are taking decision for 

people and, for doing so, have to be adapted to their users, they are made of cognitive 

technologies that are technologies that include knowledge about human and about 

human cognition in order to process the data users are providing when interacting 

with Smart Things” (Tijus, Rougeaux, & Barcenilla, 2016). In short, “take the idea of 

 

1 This work was performed within the Project CULTE supported by French state funds managed by the 

ANR, under reference  ANR-13-CORD-018-01. 
2 CULTE Partners are  MQB (Musée du Quai Branly) - Jacques Chirac, Paris, France which is a well-

known ten years old museum dedicated to the meeting ground of worldwide past cultures, CEDRIC 

Laboratory, Centre National des Arts et Métiers, Paris, France, a Game Design research laboratory; 
LUTIN, Cité des Sciences et de l’Industrie,  Paris, France, a usability dedicated research laboratory for 

digital tools and MAZEDIA, Nantes, France, a multimedia agency, leader in France in the design of 

multimedia devices for museums. 
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a human-centred approach to technology and run with it ” (Norman, 2014). Based on 

"affordance", - that is to say the direct coupling of Action to Perception which is what 

the interface displays as actionable objects for command that seems to match the 

user’s goal (Gibson, 1986; Norman, 2009) -, as well as object’s usability based on 

categorization, reasoning and problem solving (Poitrenaud, Richard & Tijus, 2005, 

Tijus et al., 2014). 

What are things made of? 

First of all, things as objects have surface features (colour, texture, size, shape...). 

Although of objective evidence based on instruments to measure these visible 

properties (spectroscope for colour wavelength, etc.), these surface properties can 

match a user’s mental representation positively providing affordance or negatively 

providing false alarm kinds of errors. Thus, for usage, surface properties can be more 

or less useful.  

Things are made of structural properties: their parts and relations between parts and 

whole that determines in turn functional properties and procedural properties. Thus, 

things can be used as agent to act on another objects (procedure), realizing some 

functions that will transform this patient object. Functional properties (what for) as 

well as procedural properties (how) being properties attributed by knowledge or 

inference. Notice that automatic systems are things in which parts are acting on each 

other to realize some complex functions. This working machinery have behaviour 

property. These relations have to be used when dialoguing with users; particularly 

when things have to be Smart. 

Relations do exist between these types of properties (Zibetti & Tijus, 2005). On one 

side, relations exist between structural, functional and procedural properties. On the 

other side, relations exist between surface and behavioural properties. Both can be 

used for inducing the adequate functions and procedures, then to trigger action, for 

instance for the “putting into place of affordances”: indicating the where, when, how 

and on what to act. In opposite, no relation at all will decline accessibility, usability 

and learnability. Thus, our theory is that smartness comes from smart relations among 

properties: the relations that increase the guidance of the interaction with the smart 

thing. 

What are Smart things made of? 

Smart things can be either physical objects (a robot) or virtual entities (an avatar). In 

addition, there is smartness: the properties of automatic systems with autonomy, 

decision-making and adaptation behavioural robotic properties: “the smart thing can 

trigger functions and apply procedure to be autonomous, to take decision and to be 

adapted while having a given appearance and a given behaviour at will. It follows 

that smartness is the set of relations between "functional - procedural" properties and 

"surface – behaviour" properties” (Tijus, Rougeaux & Barcenilla, 2016).  

Notice that interaction with smart things can be engaged and sustained mainly by 

appearance and behaviour. Thus, the design of a smart dialog systems, - as part of a 

whole Smart Thing-, might be based on appearance and behaviour (Levillain & 
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Zibetti, 2017). We argue that these properties, their relations, and the underlying 

logical arguments should be used for the design of smart things dialogs. 

Interacting with museum artworks as Smart Things 

With content based on the typology of properties of a given Smart Thing, this new 

kind design of verbal interaction should be based on a dialogue that is embedded in 

the dynamic of the visitor route, taking dynamically into account their emerging 

interests while the process of dialoguing with artworks is evolving. 

Our approach is based on problem solving of explanation (Tijus, Ganet & Brézillon, 

2006) in order to design dialog-based intelligent tutoring systems (e.g., D’Mello & 

Graesser, 2013). Although there are dimensions of dialogue such as emotion, empathy 

and sympathy, our proposal is about the three necessary components of a dialog: The 

Pragmatic dimension, the metacognitive dimension and the cognitive dimension.  

More precisely, the core of the dialog is the cognitive dimension: the knowledge 

transmission from the Smart Artwork to the visitor according to her interest. For the 

purpose of modelling, from less to more situated, there is the COGNITION 

component that is embedded in the METACOGNITION component that is in turn 

embedded in the PRAGMATIC component (figure 1). 

 

Figure 1. For a dialog-based intelligent tutoring system, the COGNITION component 

(knowledge to be delivered through dialog), which is the core of the dialog, is embedded in 

the METACOGNITION component (meta-knowledge about the purpose of the dialogue and 

its context), which is in turn embedded of the pragmatics of dialoguing (needs of an interested 

person, a start and end of the dialog, in a place and at a time for doing so). 

In this brief paper, we shall first introduce the necessary dimensions of an epistemic 

dialog, which is a dialogue for knowledge transmission and the ontology of 

knowledge about objects that is to be transmitted, as well as examples of dialogs made 

by smart artworks in museums. 

What is a dialogue for a smart thing? 

People come to museums to meet things: to see them, to learn about them and to 

discover new domains of knowledge. Notwithstanding the fact that many works of art 

are sculptures in human form, it would be “smart” that people can discuss with the 
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artworks in the museum, as one of the possibilities of interaction. Such an epistemic 

dialogue would be more than profitable: it might enhance the visitor experience (VX). 

Artworks in museums are already connected in a such way visitors can get 

supplementary information through interaction with some Smartphone (e.g., de los 

Rios et al., 2015). For instance, thanks to CULTE project, partners developed a 

transmedia editorial platform, which makes it possible for any museum to develop its 

own transmedia pervasive devices. Now, partners are going to extend the devices 

inter-operability and the space and time relationship between the visitor and the 

museum by adding an off-site mobile application. In that direction, Smart museum 

Artworks might be capable of discussion with the visitor; as well as being the trigger 

of the discussion with the visitor than as being triggered by the visitor for discussion. 

Because till now, much of interactions with museum artworks are determined only by 

the possibilities offered to the visitor (ask for [that] by doing [this]), such an 

interactive behaviour would be far from what exists. 

Such smart things must be based on cognitive technologies that are technologies that 

include knowledge about human and about human cognition for cognitive processing 

in order to process the data that visitors are providing when interacting with them. 

Cognitive computing makes it possible the set of inferences on which dialogue can be 

built. For the online building of an epistemic dialogue with the purpose of knowledge 

transmission, the model needs the three embedded components as in Figure 1. 

As display in Table 1, although not mandatory, the PRAGMATICS and 

METACOGNITION components [C-] shall be used to manage the epistemic 

dialogue. Many different sentences that match these components content can be used. 

For instance, when by image recognition “a particular person is a possible target for 

dialogue” [C-1.1], saying “Hello” [C-1.1.1], “Are you interested by me” [C-1.1.1.1], 

“I think you are because you are a pupil coming in this museum with your class and 

your professor” [C-2.1], “You have already seen other similar Artworks” [C-2.2.1], 

“but now you are facing something different” [C-2.2.2], and “I’m the last artwork in 

your visit” [C-2.2.3]. “So, you already know the country where I come from” [C-2.3], 

“what do you want to know about me? I have so much to say!” [C-2.3.1], “First of 

all...” [C-2.3.2],  “... as other artworks in this room” [C-1.2.1], “such as the one in 

your back” [C-1.2.2], “we are talking for long” [C-1.3.1], “ and you already see so 

many things” [C-1.3.2], “the museum is going to close” [C-1.3.2], “maybe we shall 

say goodbye” [C-1.1.2]. 

The tree of categories of the PRAGMATICS and METACOGNITION components 

can be used to build adapted sentences, as well as to interpret the sentences produced 

by the visitor. The cognitive computing refers here as the categorization process of 

affecting visitors’ sentences to the pragmatic and metacognitive categories of human 

dialog. Note that these categories can be used to question the visitor when 

interpretation fails. Thus, the tree of categories of the PRAGMATICS and 

METACOGNITION components can be used to build adapted sentences. 
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Table 1. the tree of categories of the PRAGMATICS and METACOGNITION components can 

be used to build adapted sentences 

C-1. - The PRAGMATICS components are the know-how about the dialogue process.  
 C-1.1. - Get [Someone] for dialoguing  

  C-1.1.1 - Have a [Starting dialog] 

    C-1.1.1.1 - Beware of and control [Sustained attention] 

   C-1.1.1.2 - Use the [METACOGNITION] component 

  C-1.1.2. - Have an [Ending dialog] 

 C-1.2. - Use Information about [Place] 

  C-1.2.1 - About [What’s around] 

  C-1.2.2 - About [Context]  

 C-1.3. - Beware and control [Time] 

  C-1.3.1 - Use Information about [What’s before] 

  C-1.3.2 - Use Information about [What’s now] 

  C-1.3.3 - Use Information about [What‘s next] 

C-2. - The METACOGNITION components is the knowledge about the dialogue content 

 C- 2.1. - Use Information about [What do I know about visitor] 

 C-2.2. - Use Information about [its current visit] 

  C-2.2.1 - About [Before] 

  C-2.2.2 - About [Now] 

  C-2.2.3 - About [After] 

 C-2.3. - Use Information about [What does the visitor know about me] 

  C-2.3.1 - Beware of and control [Sustained dialog] 

  C-2.3.2 - Use the [COGNITION] component 

 

The following discussion is extracted from the dialog an artwork of the MQB (Musée 

du Quai Branly) is having a visitor. The name of the museum artwork is “Ashura”. 

The related categories of the PRAGMATICS and METACOGNITION components 

are provided. " Hello! " [C-1.1.1], “I am impressed with the idea of sharing with you” 

[C-2.3.1], “will you talk to me” [C-2.3.1] “about Fertility?” [C-2.3.2], "During your 

initiation, you learn that you should not trust appearances” [C-2.2.1]. Then is 

“COGNITION” [C-2.3.2]. “But according to you” [C-1.1.1.1], “do I have a link with 

the costume Gourgecha to my right?” [C-1.2.1]. 

Thus, the epistemic talks entail the METACOGNITIVE component that entails the 

PRAGMATIC components. In the next section, we introduce the ontology of what 

could be known about a thing that can behave smartly when discussing about itself. 

What a smart thing can tell about itself ? 

There are basic questions about knowledge of things, such as "Who, what, when, 

where, why, how". However, they are not organized in a hierarchy of categories. To 

do so, we first consider that a thing is a bearer of properties (Heidegger, 1967) and 

these properties are the components of the COGNITION MODULE. There are 

extrinsic properties [C-3.1] and intrinsic properties [C-3.2].  
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Extrinsic properties do not belong to the thing. Thus, Place (Where) [C-3.1.1] and 

Times (When) [C-3.1.2] are extrinsic properties that provide the space and time 

context of the thing. This contextual knowledge (e.g., where and when the thing was 

built) provides relational spatial and temporal properties with other things (are from 

the same/different country, were made at the same/different time). Other extrinsic 

properties are causal properties [C-3.1.3]: what are the causes of the thing (e.g., the 

author, the contingences...).  

In opposite, intrinsic properties are own real properties of the thing. Among intrinsic 

properties, there are surface properties [C-3.2.1] that are related to perception (e.g., 

colour, texture, shape...) and structural properties [C-3.2.2] that are related to physics: 

substance (made of) and materials (the parts that composes the thing and how these 

parts are nested to form a given structure). There are also cognitive attributed 

properties [C-3.2.3]: functional, procedural and behavioural properties that are linked 

to the usage of the thing and rely on structural properties. Finally, there are semantic 

properties [C-3.2.4] as the thing’s name, or other analogical or metaphorical attributes 

of the thing. 

The followings are sentences for a Mask artwork named Ashura Mask: “I am an 

Ashura Mask” [C-3.2.4]. “My teeth are made of bone fragment” [C-3.2.2]. “I come 

from the oasis of the Algerian Sahara” [C-3.1.1] “in which there were happy 

masquerades in order to celebrate the Ashura festival” [C-3.1.3], “on the 10th day of 

the first month of the Muslim calendar” [C-3.1.2]. “It was at the time of an ancient 

agrarian fertility rite that has survived in some areas since Islamized” [C-3.1.2]. “I 

am of the types of Ashura masks that are called Zalouciou mask” [C-3.2.4] because 

Zalouciou means "Acolyte" or "companion" [C-3.2.4]. They were made and worn by 

young unmarried men who accompanied a man dressed in his nocturnal wanderings 

in Gourgecha [C-3.1.3]. 

Conclusion 

Smart things that are connected objects (IOT) are dedicated for making simpler 

people's daily life. They are of help for decision-making and problem solving. A 

number of objects are resources for teaching and learning. As smart things, they will 

have dialogue competencies and capabilities. Based on a categorization theory, we 

propose a model and an ontology to design the on-line building of an epistemic dialog. 

Although done for Museum’s objects, the model, its components and the properties 

that define categories could be of use for designing a large number of types of smart 

things dialogs (inside a car, with a group of Smart things 
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  Abstract 

There are many reasons for the implementation of human-robot collaboration (HRC). 

HRC enables flexibility of increasingly complex production sites. In contrast to this, 

the economic aim of process efficiency is threatened by workers’ fear and mistrust in 

collaborative robots. Fenceless heavy-load collaborative robots have associated risks 

and so under- or overtrust in automation may result in injuries. An experiment with 

25 participants and a heavy-load industrial robot was conducted in a pseudo real-world 

test environment. Interaction level and robot trajectory were used as within-subject 

independent variables. Additionally, temporal position of first-failure was varied 

between participants. Emotional experience and trust were dependent variables. 

Interaction level, robot trajectory and position of the first-failure did not reveal 

practical relevant effects on fear or trust. While participants showed short-term 

responses to first-failure events, following scenarios were not influenced by first-

failure regarding emotional experience or trust. Overall, negative emotions were 

poorly detected and trust in automation was high. These results are in line with 

findings in the literature regarding overtrust in automation.  

  Introduction 

Reasons for the implementation of human-robot collaboration (HRC) are diverse. 

HRC offers new possibilities in the design of ergonomic workplaces. It is also 

expected that HRC enables the flexibility of increasingly complex production 

facilities (Oubari et al., 2018). Process efficiency is assumed to increase based on the 

combination of robots’ repetitive accuracy and workers’ ability to solve ill-defined 

problems (ISO/TS 15066, 2016). On the other hand, fenceless heavy-load robots 

increase the risk of injury. Misconduct or technical problems may result in physical 

contact between workers and robots. Heavy-load robots have carrying capacities up 

to 500 kg and above. While moving, these robots are capable of exerting forces far 

beyond the maximum permissible limits associated with the biomechanical threshold 

of different body parts (see ISO/TS 15066, 2016). Therefore, ISO/TS 15066 (ISO/TS 

15066, 2016) specifies strict safety regulations for HRC within shared workspaces. 

However, little is known about the effectiveness of regulations on the perception of 

safety by workers and their resulting behaviour. Workers could have concerns simply 

because of the physical appearance of robots or specific movements. Mental strain, 

such as negative emotions and mistrust, are likely to occur in these situations (e.g. 

Arai et al., 2010).  
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Emotions are characterised by a specific feeling as well as observable physiological 

and behavioural reactions (Schmidt-Atzert, 1996). Apart from other emotions, fear as 

a specific negative emotion is important in the context of HRC. Various studies have 

shown that direct cooperation with a robot results in increased feelings of fear in the 

workplace (Brending et al., 2016). Fear is also called state anxiety and is defined as 

“transitory emotion characterised by physiological arousal and consci-ously perceived 

feelings of apprehension, dread, and tension” (Endler & Kocovski, 2001, p. 2). 

Behavioural reactions of fear entail bending forward and running for cover to escape 

from danger (Grèzes et al., 2007). Fearful movements are character-ised by high 

dynamics (McColl & Nejat, 2014). These sudden movements can lead to physical 

contact between robots and workers, which may result in worker injury. It is therefore 

important to study fear in the context of HRC with heavy-load robots. 

HRC is only efficient if humans and robots work together to combine their particular 

strengths. Therefore, another important concept associated with HRC is trust in 

automation (TiA). TiA is defined as “…the extent to which a user is confident in, and 

willing to act on the basis of, the recommendations, actions, and decisions of an 

artificially intelligent decision aid” (Madsen & Gregor, 2000, n.p.). High trust reduces 

cognitive complexity in the face of highly automated systems and mistrust leads to 

rejection of automation (Lee & See, 2004). Consequently, one could infer that high 

TiA is associated with an efficient robot collaboration. In contrast, it has been shown 

that overtrust can also cause critical outcomes. Overtrust characterises inappropriate 

trust calibration that exceeds the capabilities of the automated system. This 

inappropriate trust may lead to overreliance and misuse of the system (Lee & See, 

2004). Reduced situation awareness as a consequence of overtrust (Hancock et al., 

2011) may again result in physical harm of workers in the event of system automation 

failure. Hancock and colleagues (2011) conclude that an appropriate level of trust that 

neither includes under- or overtrust is necessary for a safe and efficient interaction of 

humans and robots. Unfortunately, there has been no clear definition or specification 

of this appropriate level to date. 

The relationship between fear and trust in automation is insufficiently researched 

(Stokes et al., 2010). Lee and See (2004) cautiously summarise that emotional 

reactions seem to be a critical contributor of trust. Both constructs should therefore be 

researched in context of HRC. 

Various factors influence trust and emotional experience in HRC and are important 

for ensuring safe and efficient collaboration. Some of the characteristics of robot 

motion, such as speed, distance to robot (Arai et al., 2010; Desai et al., 2013) and 

unexpected movements (Desai et al., 2013; Dragan et al., 2015), were found to be 

important factors influencing people’s fear. Nevertheless, theoretical concepts of 

concrete robot motion trajectories are rare. Dragan et al. (2015) suggest a distinction 

between predictability and legibility of trajectory. Both are defined by human 

inferences in collaborations. “Predictable motion is functional motion that matches 

what the collaborator would expect, given the known goal. (…) Legible motion is 

functional motion that enables the collaborator to quickly and confidently infer the 

goal” (Dragan et al., 2015, p. 51). As a result, predictable motion requires know-ledge 

of the robot’s target position, while legible motion enables the user to infer the goal 

directly from robot’s first movements even if the target position is unknown. Legible 
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robot paths were preferred by users and resulted in higher trust than predict-able 

trajectories (Dragan et al., 2015). Therefore, legibility also shows the potential to 

reduce negative emotions. To date, trajectories have only been examined with 

lightweight robots and the transferability of results to heavy-load robots is unknown. 

In general, people expect automated systems to perform well and as a result, 

complacency is often observed when interacting with an automated system 

(Parasuraman & Manzey, 2010). It was even possible to transfer the so-called 

positivity bias found in social psychology to interactions with automated systems. 

These studies have shown that people expect good performance prior to interaction, 

even without any detailed information of the system (Dzindolet et al., 2003). All 

automation systems still have their limitations and it is widely known that failures of 

automated systems affect TiA (e.g. Parasuraman & Manzey, 2010). The concept of 

first automation failure is most important in this area of research and it is also referred 

to as first-failure effect (Wickens & Xu, 2002). Firstly, a reduction of trust level after 

occurence of the first failure of a seemingly perfect automation is postulated. 

Secondly, trust only slowly recovers and often remains on a lower, probably more 

appropriate, level of trust (Lee & Moray, 1994). One reason for mixed results in first-

failure literature is attributed to prior information about system reliability. Wickens 

and Xu (2002) conclude that without this prior information, a reduction of trust is 

likely to occur. The first-failure effect was particularly observed in driver-vehicle 

interaction with automated systems. Strong reduction in trust was found when no 

information about potential system limitations was given prior to usage (Beggiato & 

Krems, 2013). 

Effects of failures were also observed in human-robot interaction and according to 

literature in this context, even showed effects of the temporal position of failures. An 

early automation failure in interactions caused a greater reduction of real-time trust 

than a late event (Desai et al., 2013). Trust decreases even if system failures do not 

directly contribute to system performance loss (Muir & Morey, 1996). In most 

literature, failures are simulated as software conditioned automation breakdown. 

People miss the occurrence of automation breakdown due to overreliance and reduced 

situation awareness (see Hancock et al., 2011), resulting in performance loss. To date, 

no research examining the effects of first automation failure in HRC with heavy-load 

robots is known to the authors – a critical research gap. Most robot control systems 

work with point-to-point movements, where trajec-tories between points are not 

completely pre-programmed. System malfunctions can therefore result in varied robot 

paths. Given the fact of fenceless interaction and reduced situation awareness while 

working with automated systems, the risk of physical contact between robot and 

worker increases. While working fenceless with heavy machines, robot hardware 

malfunctions can also cause harm or at least result in fear and reduced trust from near-

misses without physical consequences. 

Another increasingly important novel factor for heavy-load robots is interaction level. 

Bdiwi, Pfeifer and Sterzing (2017) introduced a classification of four HRC-levels of 

fenceless collaboration, structured by the specification of the shared task. 

• HRC-level 1:  No shared task (e.g. because of limited space) 

• HRC-level 2:  Shared task, no physical interaction (e.g. robot as simple “third 

arm” without movement in the shared workspace) 
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• HRC-level 3:  Shared task, “handing-over task” (e.g. robot hands over an object 

or robot reacts to motion of the humans’ hand; still no physical 

contact during robot movement) 

• HRC-level 4:  Shared task, physical interaction (human forces are applied 

directly on the robot) 

To date, HRC-level 4 with heavy-load robots is poorly viable due to technical 

inadequacy and safety reasons. Therefore, comparison of HRC-levels 1 and 3 is 

desirable as they represent the most different and technical feasible levels of interaction. 

HRC-level 1 is often realised with a physical barrier between the robot and worker (e.g. 

an assembly table), resulting in some distance between them. In contrast, realization of 

HRC-level 3 necessarily results in a low distance to the robot. Furthermore, the robot is 

moving while workers are within the collaboration zone. As distance is an important 

predictor of trust (see Arai et al., 2010) and robots can produce high forces, it is probable 

that direct interaction with a moving robot in HRC-level 3 causes higher fear and less 

trust than HRC-level 1.  

Three research questions arise that should give further insight in HRC: 

Research Question 1: What effect has HRC-level on fear and trust in automation with 

heavy-load robots? 

 

Research Question 2: What effect has robot trajectory on fear and trust in automation 

with heavy-load robots? 

 

Research Question 3: What effect has first-failure on fear and trust in automation with 

heavy-load robots? 

 

To study research question 1 to 3, an experiment that varied interaction level, robot 

trajectory and temporal position of first-failure was designed. The experiment took 

place in a novel pseudo real-world test environment realised at Fraunhofer IWU 

Chemnitz. 

 

  Method 

Test environment 

An industrial KUKA robot (Quantec prime KR 180), classified as heavy-load robot, 

was used. The subjects’ task was modelled after a real workplace from the automotive 

industry. The demo-task consisted of assembling eight hook-and-pile tapes on a front 

axle carrier. A flexible layout equipped with zone-based robot control (Bdiwi, 

Krusche & Putz, 2017) was implemented to create two different interaction levels (see 

Figure 1). In both interaction levels, participants remained at an equal distance from 

the robot outside of the collaboration zone while the robot moved with a speed of 1000 

mm/s.  

• HRC-level 1 was realised by placing an assembly table in a robot cell that acted 

as physical barrier. Therefore, the subjects had no physical contact or interaction 

with the robot. A certified gripper for front axle carriers was unavail-able as the 
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specific workplace with HRC does not currently exist in the real-world (the task 

is done with a handling device instead). To overcome this limitation, the robot 

never put the component down onto the table. The robot only simulated 

placement of the component on the table as well as its storage. To enable the 

assembly task, one front axle carrier was lying on the table and another was fixed 

to the robot flange all the time (see Figure 1 left and middle).  

• In contrast, HRC-level 3 was realised by direct assembly at the front axle carrier, 

located at the robot flange. Additionally, subjects were able to adjust the 

assembling height through camera-based gesture control (Bdiwi, Pfeifer & 

Sterzing, 2017) for better ergonomics. A vision sensor tracked the palm of the 

subject’s hand and the robot arm reacted to upward or downward hand move-

ments accordingly. Thus, subjects were able to control the robot directly at a 

minimum distance but without physical interaction. It should be mentioned that 

gesture control showed some unintended problems during a few of the trials. 

    

Figure 1. Real scenario (left), comparison of HRC-level 1 (middle) and HRC-level 3 (right). 

Pictures taken from participants’ view in a virtual environment. In HRC-level 1, the robot 

moved to a waiting position after simulated placing of front axle carriers on the table (see 

middle).  

Both interaction levels contained the same two explorative robot trajectories (see 

Figure 2). Based on Dragan and colleagues (2015), we defined a legible trajectory 

“from side” (below head-level, robot arm stretched to side) and a predictable 

trajectory “from above” (above head-level, robot arm angled, downward movement 

to the assembly position). 

 

Figure 2. Comparison of trajectories “from side” (row 1 and 3) and “from above” (row 2 

and 4) over time in front and aerial view. After storage of the front axle carrier at the right 

position of the pictures, the robot returned 270° for the admission of the next component. 

The robot system was capable of simulating a system failure. Because of safety 

requirements, sudden unexpected or abrupt movements of the robot were not included. 
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Instead, failure was implemented as the opening of a compressed air valve, resulting 

in an abrupt and loud noise to simulate hardware technical failure. For participant 

safety, failure occurred at the beginning of the subjects’ assembly task, when the robot 

had already stopped moving. 

Due to safety requirements, participants were objectively located outside of the robot 

cell at all times whilst the robot was moving with high speeds of 1000 mm/s. To still 

maintain realistic perception, the cell was visually enlarged by boundary lines on the 

ground and partition walls.  

  Sample 

Twenty-five subjects participated in the experiment. Participants’ mean age was 30.2 

years. Fifteen participants were male, ten were female. The sample was characterised 

by a medium to high affinity for technology. Two thirds of the participants had 

previously interacted with an industrial robot. One third of all participants worked at 

the time or had worked in the production industry before. Participants received 

financial compensation for their participation. 

  Experimental design 

A 2 (interaction level) x 2 (robot trajectory) x 2 (temporal position of failure) mixed-

design was applied. Interaction level (HRC-level 1 vs. 3) and trajectory (“from above” 

vs. “from side”) were within-subject factors. Position of system failure (“early” - after 

part 1 vs. “late” – after part 2 of the experiment) was conducted as a between-subject 

factor. All participants completed two parts of experiment that were determined by 

the interaction level and randomised across participants. Each interaction level started 

with a baseline assessment as the zero reference. Participants practiced the assembly 

task but without movement of the robot (in accordance with Bortot et al., 2013). After 

each baseline, the trajectory was varied in a randomised order within each interaction 

level. The experimental design resulted in seven scenarios that occurred in partly 

randomised order within test blocks 1 to 7 (see Table 2 for two exemplary orders). 

Table 2. Exemplary experimental variations 

Test block (temporal position) Subject A Subject B 

1 Baseline HRC level 1 Baseline HRC level 3 

2 HRC level 1: from side HRC level 3: from side 

3 HRC level 1: from above HRC level 3: from above 

4 Baseline HRC level 3 Early Failure Scenario (HRC 3) 

5 HRC level 3: from above Baseline HRC level 1 

6 HRC level 3: from side HRC level 1: from side 

7 Late Failure Scenario (HRC 3) HRC level 1: from above 

 

  Measurements 

Control variables (pre-survey). Demographic information such as sex, age, as well 

as experience with industrial robots and production work, was captured in a pre-

survey. Additionally, trait anxiety (STAI-T; Spielberger, 1989; α = .80) and Affinity 

for Technology Interaction (ATI; Franke et al., 2018; α = .92) were assessed.  
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Outcome measures (post-scenario). Outcome measures were assessed after each of 

the seven scenarios/test blocks. Mean Cronbach’s alphas over all seven test blocks are 

given in brackets. The STAI-S (Spielberger, 1989; α = .90) was assessed to measure 

state-anxiety. TiA was measured via German translation (Pöhler et al., 2016) of the 

Jian-Scale. Pöhler and colleagues suggest using two distinct scales; trust and mistrust. 

Exploratory factor analysis revealed superiority of a two-factor model in all seven test 

blocks (varimax rotation; see Table 1). Reliability for the factor trust (6 items) 

revealed an α = .90 and for the factor mistrust (5 items) α = .80. 

Table 1. Exemplary fit-indices of two competing factor-models modelling Jian-Scale for 

baseline 1 

 RMSA TLI RMSEA BIC χ² df χ²/df 

1-factor 

model 

.11 0.728 .21 -70.67 70.96 25 2.84 

2-factors 

model 

.06 0.921 .15 -69.68 39.76 25 1.59 

Note. RMSA = root mean square of the residuals; TLI = Tucker Lewis Index; BIC = Bayesian 

information criterion. 

 

  Procedure 

In advance, subjects were informed about the procedure of the experiment through 

participant information. After the subjects were welcomed, an informed consent was 

signed and they filled in a pre-survey on a touchscreen tablet. Subsequently, subjects 

watched two videos as a cover story (enlargement of existing workplace through 

HRC). Video1 showed the real workplace with handling device and Video 2 showed 

an exemplary robot movement in our test environment to lower tenseness of 

participants. Afterwards, subjects were instructed about the assembly task. 

Participants were told that they were only allowed to leave their start position, and 

consequently enter the collaboration zone, if the robot stopped moving. They learned 

the gesture control of the robot for HRC Level 3. Following this, subjects went 

through seven test blocks (2 baselines, 5 experimental conditions), each lasting around 

two minutes and containing three assembly cycles. The test blocks were followed by 

short post-scenario surveys to measure outcomes via touchscreen tablet. 

  Data Analysis 

Statistic Software R (R Core Team, 2018) was used for data analysis. Due to small 

group sample sizes and non-symmetric distribution of data, nonparametric data 

analysis was applied. If not specified otherwise, the Wilcoxon Signed-Rank Test was 

used. The nonparametric effect size, r, was calculated according to Tomczak and 

Tomczak (2014).  

For simplification of results, failure scenarios of HRC-Level 1 and HRC-Level 3 were 

combined as these did not reveal significant differences between scenarios in outcome 

measures. For group comparisons, relative values of outcomes were calculated by 

subtraction of participants’ first baseline assessment to control for basic differences 

of groups.  
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  Results 

  Overall results 

State-anxiety was low across conditions. The highest difference in means was 

between scenario “HRC-level 1/from side” (M = 27.49) and “HRC-level 3/from side” 

(M = 32.69). The value of the failure scenario was in between (M = 29.94). 

Accordingly, Friedman’s Rank Sum Test showed a significant effect across five 

experimental conditions (baselines left out; χ² = 12.54, p = .014). 

The baseline (BL) of HRC-level 1 showed higher state-anxiety in comparison to both 

experimental conditions of HRC-level 1 (.010 ≤ p ≤ .074), resulting in small effect 

sizes (.253 ≤ r ≤ .364). There was no significant difference in baseline (BL) of HRC-

level 3 compared to experimental conditions of HRC-level 3.  

 

Figure 3. State-anxiety across scenarios (BL = baseline). 

Trust was high across all scenarios with means ranging between M = 5.11 (scenario 

“BL HRC-level 2”) and M = 5.90 (scenario “HRC-level 1/from side”; see Figure 4). 

Accordingly, results for mistrust (same scale range as trust) showed low means across 

scenarios ranging between M = 2.33 and M = 3.02. For both trust and mistrust, 

significant differences to baseline occurred only in HRC-level 1 with medium effect 

sizes (.502 ≤ r ≤ .531). Friedman’s Test showed a significant effect across five 

experimental conditions for both trust and mistrust (baselines left out;  

χ² = 19.49/17.35, p < .001). 
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Figure 4. Trust across scenarios (BL = baseline). 

  Effect of HRC-Level 

Mean state-anxiety was marginally higher in HRC-level 3 than in HRC-level 1 (see 

Figure 3). Paired comparisons of HRC-levels did not show significant differences in 

trajectory “from above” (Z = -1.05, p = .294, r = .148, |Mdiff| = 2.17). In contrast, for 

trajectory “from side”, HRC-level 3 resulted in significantly higher state-anxiety with 

medium size of effect (Z = -2.60, p = .009, r = .367, |Mdiff| = 5.20).  

Figure 4 shows differences of means for HRC-levels regarding trust. As so, for 

trajectory “from above”, trust was significant lower in HRC-level 3 than in HRC-level 

1 (Z= -2.45, p = .014, r = .347, |Mdiff| = 0.59). Similar results were found for trajectory 

“from side” (Z= -3.35, p < .001, r = .474, |Mdiff| = 0.75), and adequately for mistrust, 

where mistrust was higher in HRC-level 3 than in HRC-level 1.  

  Effect of robot trajectory 

Mean state-anxiety was marginally higher for trajectory “from side” in comparison to 

“from above” (see Figure 3). Paired comparisons of trajectories did not show 

significant differences in HRC-level 1 (Z = -0.46, p = .648, r = .065, |Mdiff| = 0.40) or 

HRC-level 3 (Z = -1.38, p = .167, r = .195, |Mdiff| = 2.63).  

Figure 4 shows no differences in trust between trajectories. Accordingly, paired 

comparisons of trajectories did not show significant differences in HRC-level 1  

(Z = -1.01, p = .313, r = .143, |Mdiff| = 0.07) or HRC-level 3 (Z = -0.62, p = .532,  

r = .088, |Mdiff| = 0.08). Similar results were found for mistrust.  

  Interaction of HRC-level and robot trajectory 

Figure 5 shows interaction plots of HRC-level and robot trajectory for state-anxiety 

and trust. The interaction plot for mistrust is very similar to the interaction plot of 

trust. Visually, an interaction effect for state-anxiety is probable while there is no 

effect for trust. Trajectory seems to be irrelevant in HRC-level 1. In contrast, trajectory 
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“from side” compared to “from above” seems to result in higher state-anxiety in HRC-

level 3. The general linear model shows no significant interaction effect of HRC-level 

and robot trajectory regarding state-anxiety (F = 1.65, p = .211). 

 

Figure 5. Interaction plots for state-anxiety (left) and trust (right). 

  Effect of first failure 

To analyse effects of first-failure, a dataset sorted chronologically (in comparison to 

a dataset sorted by scenarios) was used. The dataset was divided into groups 

experiencing “early failure” (after first part) and “late failure” (at the end of the 

experiment). After automation failure occurence, two trends are predicted:  

• increased state-anxiety and decreased trust for following test blocks within group 

“early failure” and  

• increased state-anxiety and decreased trust in group “early failure” in comparison 

to according test blocks in group “late failure”.  

Figure 6 shows the results for state-anxiety for both temporal positions of failure. 

Mean state-anxiety was not increased after failure occurrence in group “early failure”. 

Also, state-anxiety in test blocks following failure scenario in group “early failure”, 

was not higher than according test blocks in the group “late failure”. Overall, the trend 

in Figure 6 suggests a decrease of state-anxiety with the time of interaction. Only late 

system failures resulted in an increase of state-anxiety compared to the test block 

preceding the failure scenario. Still, state-anxiety in the failure scenario was lower 

than in baseline 1 for both groups.  

 

Figure 6. Effect of first automation failure on state-anxiety for two temporal positions of 

failure. Means are relative values to test block 1 of participants.  

Figure 7 shows results of trust for both temporal positions of failure. Mean trust is not 

reduced after failure occurrence. In contrast, mean trust following automation failure 

is slightly reduced in comparison to group “late failure”. Overall, Figure 7 also 

suggests a slight increase of trust over time of interaction. Early failure only slightly 
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reduced trust while late failure resulted in a strong decrease of trust compared to the 

previous test block. 

 
Figure 7. Effect of first automation failure on trust for two temporal positions of failure. 

  Discussion 

Overall, the effect of interaction level was found to be inconsistent with expectations 

for state-anxiety, and consistent for trust. It is also possible that technical problems 

with gesture control in the test environment could have influenced the effect of HRC-

level on trust and mistrust. Questionnaire items of trust and mistrust included 

statements about system functionality. Here, gesture control malfunctions may have 

confounded ratings of trust and mistrust in HRC-level 3. Although the effect of HRC-

level on trust was significant, the practical implication of the absolute differences in 

means is questionable. 

Results for robot trajectory are not in line with the findings of Dragan and colleagues 

(2015). It is possible that our definitions of legible and predictable trajectory differ 

from these researchers. Another possible explanation is general transferability. At 

similar speeds, lightweight robots span smaller distances than heavy-load robots. This 

leads to reduced time for mental anticipation and processing of lightweight robot 

trajectories. It can be concluded that difference in legibility and predictability may 

have less relevance, for both state-anxiety and trust, in the case of heavy-load robots. 

With regards to the effects of the temporal position of first-failure on state-anxiety 

and trust, the fact of small group sample sizes should be considered. Therefore, 

random effects may have caused the differences in results between both groups. In 

general, relative deviations from baseline 1, shown in Figure 6 and 7, are small. State-

anxiety levels remained low and trust levels remained high, which further supports 

research on positivity bias and overreliance on automation. 

  Limitations of experimental design 

The experimental design allowed systematic variation of different independent 

variables. As expected, limitations with regard to the transferability of experimental 

results for real-world industrial settings, exist. Firstly, the assembly task was designed 

without time constraints. It is probable that pressure due to time constraints would 

influence emotional experiences of the subjects (e.g. Cœugnet et al., 2013). 

Additionally, the scenario-based design impedes the subjective experience of 

workflow and this may lower emotional attachment and presence in the situation. 

Each scenario/test block lasted only about two minutes, and due to post-scenario 

surveys, subjects may have been aware of experimental variations and expected some 
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manipulation. Experimental manipulations should therefore be better researched 

without scenario pausing to create assembly flow. 

As previously mentioned, the missing certified gripper required that front axle carriers 

could not be placed on the assembly table in HRC-level 1. This could again result in 

the perception of an artificial situation. Unintentional background noises occurring in 

the research factory of Fraunhofer IWU may have influenced subjects’ perception of 

the intended experimental system failure. This could have lowered the effect of system 

failure. Specific emotions other than fear should also be examined in further research. 

Participants were located outside of the production cell when the robot was moving. 

Results should be confirmed with subjects remaining inside the collaboration zone. 

Finally, participants of the study were young and had an affinity for technology. 

Effects of age on emotional experience and trust when working with heavy-load 

robots could not be assessed with this sample. 

  Conclusion 

The aim of this paper was to study the effects of HRC-level, robot trajectory and 

temporal position of first-failure on emotional experience and trust, while working 

with a heavy-load industrial robot. An experiment in a pseudo real-world test 

environment was therefore designed. Inconsistent effects of HRC-level were found 

for state-anxiety. In contrast, effects due to trust were in line with expectations. Trust 

was lower in HRC-level 3, characterised by direct interaction between the human and 

the robot. Unfortunately, this effect may have been confounded by technical system 

functionality. Therefore, the effects of HRC-level remain unclear. The present study 

was not able to transfer results regarding effects of trajectory (Dragan et al., 2015) to 

heavy-load robots. No differences regarding state-anxiety and trust were found 

between a novel designed legible (“from side”) and predictable (“from above”) robot 

path. First insights for transferability of first-failure effect (Wickens & Xu, 2002) to 

HRC with heavy-load robots were found. Although some of the observed effects were 

significant and resulted in medium effect sizes, the observed absolute differences in 

means between scenarios or test blocks were rather small. In accordance with Schäfer 

and Schwarz (2019), we concentrate on observed absolute deviations. It is clear that 

robot movements and their determinants like HRC-level and system failure are 

important factors for consideration in workplace design, especially for anxious 

individuals. Still, the present study did not show practical relevant effects on 

emotional experience and trust in automation.  

It was found that state-anxiety decreases, and trust increases over time of interaction. 

In combination with the overall low levels of state-anxiety and high levels of trust, 

these results are in line with the literature regarding overtrust effects in automation 

(see e.g. Lee & See, 2004; Dzindolet et al., 2003). Overreliance and overtrust can 

result in injuries while working with heavy-load robots. Consequently, research on 

the strategies to maintain situation awareness and sensitisation for limitations of 

automation is important to reduce overtrust-effects and to ensure workplace safety. 

Additionally, effects of reduced situation awareness and overtrust on process 

efficiency should be examined. 
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