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Mapping child growth failure across low- and 
middle-income countries

Local Burden of Disease Child Growth Failure Collaborators*

Childhood malnutrition is associated with high morbidity and mortality globally1. 
Undernourished children are more likely to experience cognitive, physical, and 
metabolic developmental impairments that can lead to later cardiovascular disease, 
reduced intellectual ability and school attainment, and reduced economic 
productivity in adulthood2. Child growth failure (CGF), expressed as stunting, 
wasting, and underweight in children under five years of age (0–59 months), is a 
specific subset of undernutrition characterized by insufficient height or weight 
against age-specific growth reference standards3–5. The prevalence of stunting, 
wasting, or underweight in children under five is the proportion of children with a 
height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more 
than two standard deviations below the World Health Organization’s median growth 
reference standards for a healthy population6. Subnational estimates of CGF report 
substantial heterogeneity within countries, but are available primarily at the first 
administrative level (for example, states or provinces)7; the uneven geographical 
distribution of CGF has motivated further calls for assessments that can match the 
local scale of many public health programmes8. Building from our previous work 
mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-
spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and 
middle-income countries (LMICs), where 99% of affected children live1, aggregated to 
policy-relevant first and second (for example, districts or counties) administrative-
level units and national levels. Despite remarkable declines over the study period, 
many LMICs remain far from the ambitious World Health Organization Global 
Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large 
disparities in prevalence and progress exist across and within countries; our maps 
identify high-prevalence areas even within nations otherwise succeeding in reducing 
overall CGF prevalence. By highlighting where the highest-need populations reside, 
these geospatial estimates can support policy-makers in planning interventions that 
are adapted locally and in efficiently directing resources towards reducing CGF and its 
health implications.

Despite improvements in nearly all LMICs, stunting remained the 
most widespread and prevalent indicator of CGF throughout the study 
period. Overall, estimated childhood stunting prevalence across LMICs 
decreased from 36.9% (95% uncertainty interval, 32.8–41.4%) in 2000 
to 26.6% (21.5–32.4%) in 2017. Progress was particularly noticeable in 
Central America and the Caribbean, Andean South America, North 
Africa, and East Asia regions, and in some coastal central and western 
sub-Saharan African (SSA) countries, where most areas with estimated 
stunting prevalence of at least 50% in 2000 had reduced to 30% or less 
by 2017 (Fig. 1a, b). By 2017, zones with the highest prevalence of stunt-
ing primarily persisted throughout much of the SSA, Central and South 
Asia, and Oceania regions, where large areas had estimated levels of 
at least 40%, such as in the first administrative-level units of Nigeria’s 
Jigawa state (60.6% (51.5–69.7%)), Burundi’s Karuzi province (60.0% 

(51.4–67.5%)), India’s Uttar Pradesh state (49.0% (48.5–49.5%)), and 
Laos’s Houaphan province (58.3% (50.7–66.8%)) (Extended Data Fig. 1). 
In 2017, Guatemala (47.0% (40.2–54.6%)), Niger (47.5% (42.2–53.9%)), 
Burundi (54.2% (46.3–61.2%)), Madagascar (49.8% (43.2–57.2%)), Timor-
Leste (49.8% (43.4–56.2%)), and Yemen (45.4% (38.8–51.5%)) had the 
highest national-level stunting prevalence.

Even within the aforementioned regions where reductions were most 
evident, local-level estimates revealed communities in which levels 
still approached those seen in SSA and South Asia; areas in southern 
Mexico and central Ecuador had estimated stunting prevalence of at 
least 40%, and areas in western Mongolia reached at least 30%. Wide 
within-country disparities were apparent in several instances, indicat-
ing large areas left behind by the general pace of progress that require 
attention (Fig. 1a, b). Although most countries successfully reduced 
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stunting prevalence, subnational inequalities (disparities between 
second administrative-level units (henceforth ‘units’)) remained  
widespread globally—especially evident in Vietnam, Honduras, Nigeria, 
and India (Extended Data Fig. 2). Among the top quintile of widest dis-
parities, Indonesia experienced a twofold difference in stunting levels 
in 2017, ranging from 21.0% (16.2–27.0%) in Kota Yogyakarta regency 
(Yogyakarta province) to 51.5% (40.6–62.3%) in Sumba Barat regency 
(Nusa Tenggara Timur province). Stunting levels varied fourfold in 
Nigeria, ranging from 14.7% (9.1–21.0%) in Surulere Local Government 
Area (Lagos state) to 64.2% (54.2–74.6%) in Gagarawa Local Government 
Area ( Jigawa state) in 2017.

Evaluated from estimates of population-weighted prevalence for 
areas with the highest and lowest estimated prevalence of stunting 
(ninetieth and tenth percentiles, respectively), locations in central 
Chad, Pakistan, and Afghanistan, in northeastern Angola, and through-
out the Democratic Republic of the Congo and Madagascar had among 
the lowest annualized rates of change (AROC), indicating stagnation or 
increase over the study period (Fig. 1c); in 2017, these countries also had 
large geographical areas among the most highly prevalent for stunting. 
By contrast, areas scattered throughout Peru, northwestern Mexico, 
and eastern Nepal had among the highest stunting levels in 2000, but 
also the highest rates of decline; by 2017, many of these areas were 
subsequently no longer in the highest-prevalence decile.

The absolute number of children under five who were stunted 
was also unequally distributed (Fig. 1e, f), with a large proportion 

concentrated in a few nations in 2017; overall, 85.1% (84.4–85.7%)  
of all stunted children under five lived in Africa or Asia. Of the  
176.1 million (151.6–203.3 million) children who were stunted in 2017, 
just over half (50.1% (48.5–52.0%)) lived in only four countries: India 
(51.5 million (47.7–55.3 million) children; 28.6% (27.1–30.4%) of global 
stunting), Pakistan (10.7 million (9.3–12.1 million); 6.8% (6.7–6.9%)), 
Nigeria (11.8 million (10.7–13.0 million); 6.6% (6.4–6.8%)), and China 
(16.2 million (14.0–18.5 million); 9.0% (9.1–8.9%)). Although China 
had a low prevalence of national stunting (10.8% (9.1–12.6%)) in 
2017, the prevalence was high in India (39.3% (39.1–39.6%)), Pakistan  
(44.0% (38.4–49.9%)), and Nigeria (38.2% (34.5–42.0%)). Even with mod-
erate levels of stunting (10 to <20%)10, these highly populous coun-
tries would substantially contribute to the global share owing to their 
population size, and reducing their levels would markedly decrease 
the number of stunted children.

Childhood wasting was less widespread than stunting (Fig. 2a, b), 
affecting 8.4% (7.9–9.9%) of children under five in LMICs in 2000, and 
6.4% (4.9–7.9%) by 2017. Wasting reached critical levels (at least 15%)11 
nationally in 13 LMICs in 2000 and 7 LMICs in 2017, although only 
in Mauritania (20.7% (16.5–25.6%)) did all units exceed these levels 
(Extended Data Fig. 3). Critical wasting prevalence was concentrated in 
few areas across the globe in 2017, including the peri-Sahelian areas of 
countries stretching from Mauritania to Sudan, as well as areas in South 
Sudan, Ethiopia, Kenya, Somalia, Yemen, India, Pakistan, Bhutan, and 
Indonesia. Most LMICs reduced within-country disparities between 
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Fig. 1 | Prevalence of stunting in children under five in LMICs (2000–2017) 
and progress towards 2025. a, b, Prevalence of stunting in children under five 
at the 5 × 5-km resolution in 2000 (a) and 2017 (b). c, Overlapping population-
weighted tenth and ninetieth percentiles (lowest and highest) of 5 × 5-km grid 
cells and AROC in stunting, 2000–2017. d, Overlapping population-weighted 
quartiles of stunting prevalence and relative 95% uncertainty in 2017.  

e, f, Number of children under five who were stunted, at the 5 × 5-km (e) and 
first-administrative-unit (f) levels. g, 2000–2017 annualized decrease in 
stunting prevalence relative to rates needed during 2017–2025 to meet the 
WHO GNT. h, Grid-cell-level predicted stunting prevalence in 2025. Maps were 
produced using ArcGIS Desktop 10.6. Interactive visualization tools are 
available at https://vizhub.healthdata.org/lbd/cgf.

https://vizhub.healthdata.org/lbd/cgf


Nature | Vol 577 | 9 January 2020 | 233

their highest- and lowest-prevalence units between 2000 and 2017, 
most notably in Algeria, Uzbekistan, and Egypt (Extended Data Fig. 4). 
Even against a backdrop of national-level declines, however, broad 
within-country disparities in wasting remained in countries such as 
Indonesia, Ethiopia, Nigeria, and Kenya. An estimated ninefold dif-
ference in wasting prevalence occurred among Kenya’s units in 2017, 
ranging from 2.9% (1.6–4.9%) in Tetu constituency (Nyeri county) to 
28.3% (20.2–37.3%) in Turkana East constituency (Turkana county); 
higher-resolution estimates reveal areas with a wasting prevalence of 
at least 25%. High-prevalence areas in 2000 typically remained within 
the highest population-weighted decile for wasting in 2017, including 
the units of Rabkona county (Unity state) in northern South Sudan 
(27.8% (19.8–37.6%) in 2000; 17.3% (8.8–21.9%) in 2017), the Tanout 
department (Zinder region) in southern Niger (21.6% (17.3–26.7%)  
in 2000; 16.5% (11.3–23.3%) in 2017), and Alor regency (Nusa Tenggara 
Timur province) in southeastern Indonesia (16.4% (9.6–25.8%) in 2000; 
20.7% (12.8–30.3%) in 2017) (Fig. 2c).

The absolute number of children affected by wasting was unequal 
both across and within countries (Fig. 2e, f). Of the 58.3 million (47.6–
70.7 million) children affected by wasting in 2017, 57.1% (52.7–61.6%) 
occurred in four of the most populous countries: India (26.1 million 
(23.1–29.0 million); 44.7% (41.0–48.6%) of global wasting), Pakistan 
(3.5 million (2.8–4.3 million); 6.0% (5.8–6.1%)), Bangladesh (1.8 mil-
lion (1.2–2.4 million); 3.0% (2.6–3.4%)), and Indonesia (2.0 million  
(1.7–2.3 million); 3.4% (3.3–3.5%)). On the basis of standard thresholds11, 

these countries had serious levels of national wasting prevalence  
(10 to <15%), ranging from 12.2% (9.7–14.9%) in Pakistan to 15.7% (15.5–
15.9%) in India, and all but Bangladesh had areas with estimated wasting 
levels above 20%; increased efforts, especially in densely populated 
areas with high prevalence and absolute numbers, could immensely 
reduce global child wasting.

The prevalence of underweight—a composite indicator of stunting 
and wasting—followed the scattered pattern of high-stunting areas in 
SSA and spanning Central Asia to Oceania, and the high prevalence belt 
of wasting along the African Sahel (Extended Data Fig. 5a, b). Affecting 
19.8% (17.3–22.7%) of children under five across LMICs in 2000 and 
13.0% (10.4–16.0%) in 2017, reductions in underweight prevalence were 
most notable for countries in Central and South America, southern 
SSA, North Africa, and Southeast Asia. For example, by 2017, estimated 
underweight prevalence had decreased to less than or equal to 20% 
for nearly all areas in Namibia. By contrast, peri-Sahelian countries 
stretching from Mauritania to Somalia maintained an estimated under-
weight prevalence of at least 30% in many areas. Large geographical 
areas across Central and South Asia also maintained high prevalence 
of underweight during the study period; in particular, India, Pakistan, 
and Bangladesh sustained estimated prevalence of at least 30% in most 
locations. Although levels of child underweight had largely reduced 
since 2000, within-country disparities remained widespread; 71.4%  
(75 out of 105) of LMICs experienced at least a twofold difference across 
units in 2017 (Extended Data Fig. 6).
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Fig. 2 | Prevalence of wasting in children under five in LMICs (2000–2017) 
and progress towards 2025. a, b, Prevalence of child wasting in children under 
five at the 5 × 5-km resolution in 2000 (a) and 2017 (b). c, Overlapping 
population-weighted tenth and ninetieth percentiles (lowest and highest) of 
5 × 5-km grid cells and AROC in wasting, 2000–2017. d, Overlapping 
population-weighted quartiles of wasting prevalence and relative 95% 

uncertainty in 2017. e, f, Number of children under five affected by wasting, at 
the 5 × 5-km (e) and first-administrative-unit (f) levels. g, 2000–2017 annualized 
decrease in wasting prevalence relative to rates needed during 2017–2025 to 
meet the WHO GNT. h, Grid-cell-level predicted wasting prevalence in 2025. 
Maps were produced using ArcGIS Desktop 10.6. Interactive visualization tools 
are available at https://vizhub.healthdata.org/lbd/cgf.
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Prospects for reaching 2025 targets
We estimate that broad areas across Central America and the Caribbean, 
South America, North Africa, and East Asia had high probability (>95%) 
of having already achieved targets for both stunting and wasting in 
2017 (Extended Data Fig. 7). Exceptions to these regional patterns exist; 
areas with stagnated progress and less than 50% probability of having 
achieved the World Health Organization’s Global Nutrition Targets 
for 2025 (WHO GNTs) in 2017 were found throughout much of Gua-
temala and Ecuador for stunting and in southern Venezuela for wast-
ing (Figs. 1g, 2g, Extended Data Fig. 7). Even within countries that had 
achieved targets, there remain areas with slow progress; locations in 
central Peru for stunting and southwestern South Africa for wasting 
had not achieved targets in 2017 (less than 5% probability)—nuances 
otherwise hidden by aggregated estimates. Owing to stagnation or 
increases in prevalence, broad areas in SSA and substantial portions 
across Central Asia, South Asia, and Oceania (for example, in the Demo-
cratic Republic of the Congo and Pakistan for stunting; in Yemen and 
Indonesia for wasting) require reversal of trends or acceleration of 
declines in order to meet international targets (Figs. 1g, 2g).

Despite predicted improvements in AROC for 2017–2025, many 
highly affected countries are predicted to have areas that maintain 
estimated stunting levels of at least 40% or wasting levels of at least 
15% in 2025 (Figs. 1h, 2h). Accounting for uncertainty in 2000–2017 
AROC estimates, and with 2010 national-level estimates as a baseline 
for the 40% stunting reduction target, 44.8% (47 out of 105) of LMICs 
are estimated to nationally meet WHO GNT (>95% probability) for stunt-
ing by 2025 (Supplementary Table 13). At finer scales, 17.1% (n = 18) 
and 7.6% (n = 8) of LMICs will meet the stunting target in all first and 
second administrative-level units in 2025, respectively (Extended Data 
Fig. 8a, d, Supplementary Table 13). Similarly, 35.2% (n = 37) of LMICs are 
estimated to reduce to or maintain less than 5% wasting prevalence by 
2025 (>95% probability) based on current trajectories (Supplementary 
Table 13). Fewer countries were estimated to meet wasting targets in all 
first administrative-level (16.2% (n = 17)) or second administrative-level 
(9.5% (n = 10)) units (Extended Data Fig. 8b, e, Supplementary Table 13). 
Only 26.7% (n = 28) of LMICs will meet national-level targets for both 
stunting and wasting by 2025, and only 4.8% (n = 5) will achieve both 
targets in all units (Supplementary Table 13).

Discussion
Although commendable declines in CGF have occurred globally, this 
progress measured at a coarse scale conceals subnational and local 
underachievement and variation in achieving the WHO GNTs. Sup-
porting conclusions in the Global Nutrition Report12, our results show 
that most LMICs will not reach WHO GNTs nationally, and even fewer 
will meet targets across subnational units. Our mapped results show 
broad heterogeneity across areas, and reveal hotspots of persistent CGF 
even within well-performing regions and countries, where increased 
and targeted efforts are needed. In 2017, one in four children under 
five across LMICs still suffered at least one dimension of CGF, and the 
largest numbers of affected children were often in specific within-
country locations. Although the national prevalence of CGF was gener-
ally lower in Central America and the Caribbean, South American, and 
East Asian countries, there are communities in these regions in which 
levels of CGF remain as high as those in SSA and South Asia. Regardless 
of overall declines, many subnational areas across LMICs maintained 
high levels of CGF and require substantial acceleration of progress or 
reversal of increasing trends to meet nutrition targets and leave no 
populations behind.

To our knowledge, this study is the first to estimate CGF compre-
hensively across LMICs at a fine geospatial scale, providing a precision 
public health tool to support efficient targeting of local-level interven-
tions to vulnerable populations. Although densely populated areas 
may have relatively low prevalence of CGF, the absolute number of 
affected children may still be high; thus, both relative and absolute 
estimates are important to determine where additional attention is 
needed. To achieve international goals, more concerted efforts are 
needed in areas with decreasing or stagnating trends, without dimin-
ishing support in areas that demonstrate progress nor contributing to 
increases in obesity. In future work, we plan to determine how to stratify 
our estimates of CGF by sex and age, assess the double burden of child 
undernutrition and overweight, analyse important maternal indicators 
that affect child nutritional status outcomes (such as anaemia), and 
continue to monitor progress towards the 2025 WHO GNTs. These 
mapped estimates enable decision-makers to visualize and compare 
subnational CGF and nutritional inequalities, and identify populations 
most in need of interventions13.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-019-1878-8.

1. Dicker, D. et al. Global, regional, and national age-sex-specific mortality and life 
expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 
2017. Lancet 392, 1684–1735 (2018).

2. Victora, C. G. et al. Maternal and child undernutrition: consequences for adult health and 
human capital. Lancet 371, 340–357 (2008).

3. WHO & UNICEF. WHO Child Growth Standards and the Identification of Severe Acute 
Malnutrition in Infants and Children: A Joint Statement https://www.who.int/nutrition/
publications/severemalnutrition/9789241598163/en/ (2009).

4. Wang, Y. & Chen, H.-J. In Handbook of Anthropometry (ed. Preedy, V. R.) 2, 29–48 
(Springer New York, 2012).

5. Waterlow, J. C. et al. The presentation and use of height and weight data for comparing 
the nutritional status of groups of children under the age of 10 years. Bull. World Health 
Organ. 55, 489–498 (1977).

6. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based 
on length/height, weight and age. Acta Paediatr. 450, 76–85 (2006).

7. ICF & USAID. The DHS Program: Demographic and Health Surveys https://dhsprogram.
com/publications/Publication-Search.cfm?shareurl=yes&topic1=15&pubTypeSelected= 
pubtype_5 (accessed 13 September 2018).

8. Reich, B. J. & Haran, M. Precision maps for public health. Nature 555, 32–33 (2018).
9. Osgood-Zimmerman, A. et al. Mapping child growth failure in Africa between 2000 and 

2015. Nature 555, 41–47 (2018).
10. de Onis, M. et al. Prevalence thresholds for wasting, overweight and stunting in children 

under 5 years. Public Health Nutr. 22, 1–5 (2018).
11. WHO. Nutrition Landscape Information System (NLIS) Country Profile Indicators 

Interpretation Guide https://www.who.int/nutrition/nlis_interpretationguide_
isbn9789241599955/en/ (2010).

12. Development Initiatives. The 2018 Global Nutrition Report: Shining a Light to Spur Action 
on Nutrition https://globalnutritionreport.org/reports/global-nutrition-report-2018/ (2018).

13. Annan, K. Data can help to end malnutrition across Africa. Nature 555, 7 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons license, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons license and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41586-019-1878-8
https://www.who.int/nutrition/publications/severemalnutrition/9789241598163/en/
https://www.who.int/nutrition/publications/severemalnutrition/9789241598163/en/
https://dhsprogram.com/publications/Publication-Search.cfm?shareurl=yes&topic1=15&pubTypeSelected=pubtype_5
https://dhsprogram.com/publications/Publication-Search.cfm?shareurl=yes&topic1=15&pubTypeSelected=pubtype_5
https://dhsprogram.com/publications/Publication-Search.cfm?shareurl=yes&topic1=15&pubTypeSelected=pubtype_5
https://www.who.int/nutrition/nlis_interpretationguide_isbn9789241599955/en/
https://www.who.int/nutrition/nlis_interpretationguide_isbn9789241599955/en/
https://globalnutritionreport.org/reports/global-nutrition-report-2018/
http://creativecommons.org/licenses/by/4.0/


Local Burden of Disease Child Growth Failure Collaborators

Damaris K. Kinyoki1,2, Aaron E. Osgood-Zimmerman1, Brandon V. Pickering1, Lauren E. 
Schaeffer1, Laurie B. Marczak1, Alice Lazzar-Atwood1, Michael L. Collison1, Nathaniel J. 
Henry1, Zegeye Abebe3, Abdu A. Adamu4,5, Victor Adekanmbi6, Keivan Ahmadi7, Olufemi 
Ajumobi8,9, Ayman Al-Eyadhy10, Rajaa M. Al-Raddadi11, Fares Alahdab12, Mehran 
Alijanzadeh13, Vahid Alipour14,15, Khalid Altirkawi16, Saeed Amini17, Catalina Liliana Andrei18, 
Carl Abelardo T. Antonio19,20, Jalal Arabloo15, Olatunde Aremu21, Mehran Asadi-Aliabadi22, 
Suleman Atique23, Marcel Ausloos24,25, Marco Avila26, Ashish Awasthi27,28, Beatriz Paulina 
Ayala Quintanilla29,30, Samad Azari15, Alaa Badawi31,32, Till Winfried Bärnighausen33,34, Quique 
Bassat35,36, Kaleab Baye37, Neeraj Bedi38,39, Bayu Begashaw Bekele40,41, Michelle L. Bell42, 
Natalia V. Bhattacharjee1, Krittika Bhattacharyya43,44, Suraj Bhattarai45, Zulfiqar A. Bhutta46,47, 
Belete Biadgo48, Boris Bikbov49, Andrey Nikolaevich Briko50, Gabrielle Britton51, Roy 
Burstein1, Zahid A. Butt52,53, Josip Car54,55, Carlos A. Castañeda-Orjuela56,57, Franz Castro58, 
Ester Cerin59,60, Michael G. Chipeta61, Dinh-Toi Chu62, Michael A. Cork1, Elizabeth A. 
Cromwell1,2, Lucía Cuevas-Nasu26, Lalit Dandona1,28, Rakhi Dandona1,28, Farah Daoud1, Rajat 
Das Gupta63,64, Nicole Davis Weaver1, Diego De Leo65, Jan-Walter De Neve33, Kebede 
Deribe66,67, Beruk Berhanu Desalegn68, Aniruddha Deshpande1, Melaku Desta69,70, Daniel 
Diaz70,71, Mesfin Tadese Dinberu72, David Teye Doku73,74, Manisha Dubey75, Andre R. 
Durães76,77, Laura Dwyer-Lindgren1,2, Lucas Earl1, Andem Effiong78, Maysaa El Sayed Zaki79, 
Maha El Tantawi80, Ziad El-Khatib81,82, Babak Eshrati83,84, Mohammad Fareed85, Andre Faro86, 
Seyed-Mohammad Fereshtehnejad87,88, Irina Filip89,90, Florian Fischer91, Nataliya A. Foigt92, 
Morenike Oluwatoyin Folayan93, Takeshi Fukumoto94,95, Tsegaye Tewelde Gebrehiwot96, 
Kebede Embaye Gezae97, Alireza Ghajar98,99, Paramjit Singh Gill100, Philimon N. Gona101, 
Sameer Vali Gopalani102,103, Ayman Grada104, Yuming Guo105,106, Arvin Haj-Mirzaian107,108, Arya 
Haj-Mirzaian107,109, Jason B. Hall1, Samer Hamidi110, Andualem Henok41, Bernardo Hernández 
Prado1,2, Mario Herrero111, Claudiu Herteliu112, Chi Linh Hoang113, Michael K. Hole114, Naznin 
Hossain115,116, Mehdi Hosseinzadeh117,118, Guoqing Hu119, Sheikh Mohammed Shariful 
Islam120,121, Mihajlo Jakovljevic122, Ravi Prakash Jha123, Jost B. Jonas124,125, Jacek Jerzy 
Jozwiak126, Amaha Kahsay127, Tanuj Kanchan128, Manoochehr Karami129, Amir Kasaeian130,131, 
Yousef Saleh Khader132, Ejaz Ahmad Khan133, Mona M. Khater134, Yun Jin Kim135, Ruth W. 
Kimokoti136, Adnan Kisa137, Sonali Kochhar138,139, Soewarta Kosen140, Ai Koyanagi36,141, Kewal 
Krishan142, Barthelemy Kuate Defo143,144, G. Anil Kumar28, Manasi Kumar145,146, Sheetal D. 
Lad147, Faris Hasan Lami148, Paul H. Lee149, Aubrey J. Levine1, Shanshan Li105, Shai Linn150, 
Rakesh Lodha151, Hassan Magdy Abd El Razek152, Muhammed Magdy Abd El Razek153, Marek 
Majdan154, Azeem Majeed155, Reza Malekzadeh156,157, Deborah Carvalho Malta158, Abdullah A. 
Mamun159, Mohammad Ali Mansournia160, Francisco Rogerlândio Martins-Melo161, Anthony 
Masaka162, Benjamin Ballard Massenburg163, Benjamin K. Mayala1, Fabiola Mejia-
Rodriguez164, Mulugeta Melku40, Walter Mendoza165, George A. Mensah166,167, Tomasz 
Miazgowski168, Ted R. Miller169,170, G. K. Mini171,172, Erkin M. Mirrakhimov173,174, Babak 
Moazen33,175, Aso Mohammad Darwesh176, Shafiu Mohammed33,177, Farnam Mohebi178, Ali H. 
Mokdad1,2, Yoshan Moodley179, Ghobad Moradi180,181, Maziar Moradi-Lakeh22, Paula Moraga182, 
Shane Douglas Morrison183, Jonathan F. Mosser1, Seyyed Meysam Mousavi184,185, Ulrich Otto 
Mueller186,187, Christopher J. L. Murray1,2, Ghulam Mustafa188,189, Mehdi Naderi190, Mohsen 
Naghavi1,2, Farid Najafi191, Vinay Nangia192, Duduzile Edith Ndwandwe5, Ionut Negoi193, 
Josephine W. Ngunjiri194, Huong Lan Thi Nguyen195, Long Hoang Nguyen113, Son Hoang 
Nguyen113, Jing Nie196, Chukwudi A. Nnaji5,197, Jean Jacques Noubiap167, Malihe Nourollahpour 
Shiadeh198, Peter S. Nyasulu199, Felix Akpojene Ogbo200, Andrew T. Olagunju201,202, Bolajoko 
Olubukunola Olusanya203, Jacob Olusegun Olusanya203, Eduardo Ortiz-Panozo204,205, 
Stanislav S. Otstavnov206,207, Mahesh P. A.208, Adrian Pana112,209, Anamika Pandey28, 
Sanghamitra Pati210, Snehal T. Patil211, George C. Patton212,213, Norberto Perico214, David M. 
Pigott1,2, Meghdad Pirsaheb215, Ellen G. Piwoz216, Maarten J. Postma217,218, Akram 
Pourshams156, Swayam Prakash219, Hedley Quintana58, Amir Radfar220,221, Alireza Rafiei222,223, 
Vafa Rahimi-Movaghar224, Rajesh Kumar Rai225,226, Fatemeh Rajati215, David Laith Rawaf227,228, 
Salman Rawaf229,230, Rahul Rawat216, Giuseppe Remuzzi214, Andre M. N. Renzaho231,232, Carlos 
Rios-González233,234, Leonardo Roever235, Jennifer M. Ross1,138, Ali Rostami236, Nafis Sadat1, 
Yahya Safari215, Mahdi Safdarian224,237, Amirhossein Sahebkar238,239, Nasir Salam240, Payman 
Salamati224, Yahya Salimi191,241, Hamideh Salimzadeh156, Abdallah M. Samy242, Benn 
Sartorius2,243, Brijesh Sathian244,245, Megan F. Schipp1, David C. Schwebel246, Anbissa Muleta 
Senbeta247, Sadaf G. Sepanlou156,157, Masood Ali Shaikh248, Teresa Shamah Levy26, 
Mohammadbagher Shamsi249, Kiomars Sharafi215, Rajesh Sharma250, Aziz Sheikh251,252, 
Apurba Shil253, Diego Augusto Santos Silva254, Jasvinder A. Singh255,256, Dhirendra Narain 
Sinha257,258, Moslem Soofi241, Agus Sudaryanto259,260, Mu’awiyyah Babale Sufiyan261, Rafael 
Tabarés-Seisdedos262,263, Birkneh Tilahun Tadesse264,265,267, Mohamad-Hani Temsah266,267, 
Abdullah Sulieman Terkawi268,269, Zemenu Tadesse Tessema270, Andrew L. Thorne-Lyman271, 
Marcos Roberto Tovani-Palone272, Bach Xuan Tran273, Khanh Bao Tran274,275, Irfan Ullah276,277, 
Olalekan A. Uthman278, Masoud Vaezghasemi279, Afsane Vaezi280, Pascual R. Valdez281,282, 
John Vanderheide1, Yousef Veisani283, Francesco S. Violante284,285, Vasily Vlassov286, Giang 
Thu Vu113, Linh Gia Vu113, Yasir Waheed287, Judd L. Walson138, Yafeng Wang288, Yuan-Pang 
Wang289, Elizabeth N. Wangia290, Andrea Werdecker186,187, Gelin Xu291, Tomohide Yamada292, 
Engida Yisma293, Naohiro Yonemoto294, Mustafa Z. Younis295,296, Mahmoud Yousefifard297, 
Chuanhua Yu288,298, Sojib Bin Zaman299,300, Mohammad Zamani301, Yunquan Zhang302,303, 

Nicholas J. Kassebaum1,304,305 & Simon I. Hay1,2,305*

1Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA. 
2Department of Health Metrics Sciences, School of Medicine, University of Washington, 

Seattle, WA, USA. 3Human Nutrition Department, University of Gondar, Gondar, Ethiopia. 
4Department of Global Health, Stellenbosch University, Cape Town, South Africa. 5Cochrane 
South Africa, South African Medical Research Council, Cape Town, South Africa. 6School of 
Medicine, Cardiff University, Cardiff, UK. 7Lincoln Medical School, Universities of Nottingham 
& Lincoln, Lincoln, UK. 8School of Community Health Sciences, University of Nevada, Reno, 
NV, USA. 9National Malaria Elimination Program, Federal Ministry of Health, Abuja, Nigeria. 
10Pediatric Intensive Care Unit, King Saud University, Riyadh, Saudi Arabia. 11Department of 
Family and Community Medicine, King Abdulaziz University, Jeddah, Saudi Arabia. 12Evidence 
Based Practice Center, Mayo Clinic Foundation for Medical Education and Research, 
Rochester, MN, USA. 13Qazvin University of Medical Sciences, Qazvin, Iran. 14Health 
Economics Department, Iran University of Medical Sciences, Tehran, Iran. 15Health 
Management and Economics Research Center, Iran University of Medical Sciences, Tehran, 
Iran. 16King Saud University, Riyadh, Saudi Arabia. 17Health Services Management Department, 
Arak University of Medical Sciences, Arak, Iran. 18Carol Davila University of Medicine & 
Pharmacy, Bucharest, Romania. 19Department of Health Policy & Administration, University of 
the Philippines Manila, Manila, The Philippines. 20Department of Applied Social Sciences, 
Hong Kong Polytechnic University, Hong Kong, China. 21School of Health Sciences, 
Birmingham City University, Birmingham, UK. 22Preventive Medicine and Public Health 
Research Center, Iran University of Medical Sciences, Tehran, Iran. 23Department of Health 
Informatics, University of Ha’il, Ha’il, Saudi Arabia. 24School of Business, University of 
Leicester, Leicester, UK. 25Department of Statistics and Econometrics, Bucharest University of 
Economic Studies, Bucharest, Romania. 26Center for Research in Evaluation and Surveys, 
National Public Health Institute, Cuernavaca, Mexico. 27Indian Institute of Public Health, 
Gandhinagar, India. 28Public Health Foundation of India, Gurugram, India. 29The Judith Lumley 
Centre, La Trobe University, Melbourne, Victoria, Australia. 30General Office for Research and 
Technological Transfer, Peruvian National Institute of Health, Lima, Peru. 31Public Health Risk 
Sciences Division, Public Health Agency of Canada, Toronto, Ontario, Canada. 32Department 
of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada. 33Heidelberg Institute 
of Global Health (HIGH), Heidelberg University, Heidelberg, Germany. 34T. H. Chan School of 
Public Health, Harvard University, Boston, MA, USA. 35Barcelona Institute for Global Health, 
University of Barcelona, Barcelona, Spain. 36Catalan Institution for Research and Advanced 
Studies (ICREA), Barcelona, Spain. 37Center for Food Science and Nutrition, Addis Ababa 
University, Addis Ababa, Ethiopia. 38Department of Community Medicine, Gandhi Medical 
College Bhopal, Bhopal, India. 39Jazan University, Jazan, Saudi Arabia. 40Institute of Public 
Health, University of Gondar, Gondar, Ethiopia. 41Public Health Department, Mizan-Tepi 
University, Teppi, Ethiopia. 42School of Forestry and Environmental Studies, Yale University, 
New Haven, CT, USA. 43Department of Statistical and Computational Genomics, National 
Institute of Biomedical Genomics, Kalyani, India. 44Department of Statistics, University of 
Calcutta, Kolkata, India. 45Department of Global Health, Global Institute for Interdisciplinary 
Studies, Kathmandu, Nepal. 46Centre for Global Child Health, University of Toronto, Toronto, 
Ontario, Canada. 47Centre of Excellence in Women and Child Health, Aga Khan University, 
Karachi, Pakistan. 48Department of Clinical Chemistry, University of Gondar, Gondar, Ethiopia. 
49Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy. 50Biomedical 
Technologies, Bauman Moscow State Technical University, Moscow, Russia. 51Center for 
Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología 
(INDICASAT AIP), Panama, Panama. 52School of Public Health and Health Systems, University 
of Waterloo, Waterloo, Ontario, Canada. 53Al Shifa School of Public Health, Al Shifa Trust Eye 
Hospital, Rawalpindi, Pakistan. 54Centre for Population Health Sciences, Nanyang 
Technological University, Singapore, Singapore. 55Global Health Unit, Imperial College 
London, London, UK. 56Colombian National Health Observatory, National Institute of Health, 
Bogota, Colombia. 57Epidemiology and Public Health Evaluation Group, National University of 
Colombia, Bogota, Colombia. 58Gorgas Memorial Institute for Health Studies, Panama, 
Panama. 59Mary Mackillop Institute for Health Research, Australian Catholic University, 
Melbourne, Victoria, Australia. 60School of Public Health, University of Hong Kong, Hong 
Kong, China. 61Big Data Institute, University of Oxford, Oxford, UK. 62Faculty of Biology, Hanoi 
National University of Education, Hanoi, Vietnam. 63Department of Epidemiology and 
Biostatistics, University of South Carolina, Columbia, SC, USA. 64James P. Grant School of 
Public Health, BRAC University, Dhaka, Bangladesh. 65Australian Institute for Suicide Research 
and Prevention, Griffith University, Mount Gravatt, Queensland, Australia. 66School of Public 
Health, Addis Ababa University, Addis Ababa, Ethiopia. 67Department of Global Health and 
Infection, Brighton and Sussex Medical School, Brighton, UK. 68School of Nutrition, Food 
Science and Technology, Hawassa University, Hawassa, Ethiopia. 69Department of Midwifery, 
Debre Markos University, Debre Markos, Ethiopia. 70Faculty of Veterinary Medicine and 
Zootechnics, Autonomous University of Sinaloa, Culiacan Rosales, Mexico. 71Center of 
Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico. 
72Department of Midwifery, Debre Berhan University, Debre Berhan, Ethiopia. 73Department of 
Population and Health, University of Cape Coast, Cape Coast, Ghana. 74Faculty of Social 
Sciences, Health Sciences, University of Tampere, Tampere, Finland. 75World Food 
Programme, New Delhi, India. 76Medical Board, Roberto Santos General Hospital, Salvador, 
Brazil. 77Department of Internal Medicine, Bahia School of Medicine and Public Health, 
Salvador, Brazil. 78Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, 
New South Wales, Australia. 79Department of Clinical Pathology, Mansoura University, 
Mansoura, Egypt. 80Pediatric Dentistry and Dental Public Health, Alexandria University, 
Alexandria, Egypt. 81Department of Public Health Sciences, Karolinska Institutet, Stockholm, 
Sweden. 82World Health Programme, Université du Québec en Abitibi-Témiscamingue, Rouyn-
Noranda, Quebec, Canada. 83School of Public Health, Arak University of Medical Sciences, 
Arak, Iran. 84Center of Communicable Disease Control, Ministry of Health and Medical 



Article
Education, Tehran, Iran. 85College of Medicine, Imam Muhammad Ibn Saud Islamic University, 
Riyadh, Saudi Arabia. 86Department of Psychology, Federal University of Sergipe, Sao 
Cristovao, Brazil. 87Department of Neurobiology, Care Sciences and Society, Karolinska 
Institutet, Stockholm, Sweden. 88Division of Neurology, University of Ottawa, Ottawa, Ontario, 
Canada. 89Psychiatry Department, Kaiser Permanente, Fontana, CA, USA. 90Department of 
Health Sciences, A. T. Still University, Mesa, AZ, USA. 91Department of Population Health 
Medicine and Health Services Research, Bielefeld University, Bielefeld, Germany. 92Laboratory 
of Population Aging, Institute of Gerontology, National Academy of Medical Sciences of 
Ukraine, Kyiv, Ukraine. 93Department of Child Dental Health, Obafemi Awolowo University, Ile-
Ife, Nigeria. 94Gene Expression & Regulation Program, The Wistar Institute, Philadelphia, PA, 
USA. 95Department of Dermatology, Kobe University, Kobe, Japan. 96Department of 
Epidemiology, Jimma University, Jimma, Ethiopia. 97Department of Biostatistics, Mekelle 
University, Mekelle, Ethiopia. 98Endocrinology and Metabolism Research Center (EMRC), 
Tehran University of Medical Sciences, Tehran, Iran. 99Department of Medicine, Massachusetts 
General Hospital, Boston, MA, USA. 100Unit of Academic Primary Care, University of Warwick, 
Coventry, UK. 101Nursing and Health Sciences Department, University of Massachusetts 
Boston, Boston, MA, USA. 102Department of Biostatistics and Epidemiology, University of 
Oklahoma, Oklahoma City, OK, USA. 103Department of Health and Social Affairs, Government 
of the Federated States of Micronesia, Palikir, Federated States of Micronesia. 104Department 
of Dermatology, Boston University, Boston, MA, USA. 105School of Public Health and 
Preventive Medicine, Monash University, Melbourne, Victoria, Australia. 106Department of 
Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 
China. 107Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran. 
108Obesity Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 
109Department of Radiology, Johns Hopkins University, Baltimore, MD, USA. 110School of Health 
and Environmental Studies, Hamdan Bin Mohammed Smart University, Dubai, United Arab 
Emirates. 111Agriculture and Food, Commonwealth Scientific and Industrial Research 
Organisation, St Lucia, Queensland, Australia. 112Department of Statistics and Econometrics, 
Bucharest University of Economic Studies, Bucharest, Romania. 113Center of Excellence in 
Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. 114Department 
of Pediatrics, Dell Medical School, University of Texas Austin, Austin, TX, USA. 115Department 
of Pharmacology and Therapeutics, Dhaka Medical College, Dhaka, Bangladesh. 
116Department of Pharmacology, Bangladesh Industrial Gases Limited, Tangail, Bangladesh. 
117Department of Computer Engineering, Islamic Azad Univeristy, Tehran, Iran. 118Computer 
Science Department, University of Human Development, Sulaimaniyah, Iraq. 119Department of 
Epidemiology and Health Statistics, Central South University, Changsha, China. 120Institute for 
Physical Activity and Nutrition, Deakin University, Burwood, Victoria, Australia. 121Sydney 
Medical School, University of Sydney, Sydney, New South Wales, Australia. 122Department of 
Health Care and Public Health, Sechenov First Moscow State Medical University, Moscow, 
Russia. 123Department of Community Medicine, Banaras Hindu University, Varanasi, India. 
124Department of Ophthalmology, Heidelberg University, Heidelberg, Germany. 125Beijing 
Institute of Ophthalmology, Beijing Tongren Hospital, Beijing, China. 126Department of Family 
Medicine and Public Health, University of Opole, Opole, Poland. 127Department of Nutrition 
and Dietetics, Mekelle University, Mekelle, Ethiopia. 128Department of Forensic Medicine and 
Toxicology, All India Institute of Medical Sciences, Jodhpur, India. 129Department of 
Epidemiology, Hamadan University of Medical Sciences, Hamadan, Iran. 130Pars Advanced 
and Minimally Invasive Medical Manners Research Center, Iran University of Medical Sciences 
Tehran, Tehran, Iran. 131Hematology-Oncology and Stem Cell Transplantation Research 
Center, Tehran University of Medical Sciences, Tehran, Iran. 132Department of Public Health, 
Jordan University of Science and Technology, Irbid, Jordan. 133Epidemiology and Biostatistics 
Department, Health Services Academy, Islamabad, Pakistan. 134Department of Medical 
Parasitology, Cairo University, Cairo, Egypt. 135School of Medicine, Xiamen University 
Malaysia, Sepang, Malaysia. 136Department of Nutrition, Simmons University, Boston, MA, 
USA. 137School of Health Sciences, Kristiania University College, Oslo, Norway. 138Department 
of Global Health, University of Washington, Seattle, WA, USA. 139Department of Public Health, 
Erasmus University Medical Center, Rotterdam, The Netherlands. 140Independent Consultant, 
Jakarta, Indonesia. 141CIBERSAM, San Juan de Dios Sanitary Park, Sant Boi De Llobregat, Spain. 
142Department of Anthropology, Panjab University, Chandigarh, India. 143Department of Social 
and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada. 144Department of 
Demography, University of Montreal, Montreal, Quebec, Canada. 145Department of Psychiatry, 
University of Nairobi, Nairobi, Kenya. 146Division of Psychology and Language Sciences, 
University College London, London, UK. 147Department of Pediatrics, Post Graduate Institute 
of Medical Education and Research, Chandigarh, India. 148Department of Community and 
Family Medicine, University of Baghdad, Baghdad, Iraq. 149School of Nursing, Hong Kong 
Polytechnic University, Hong Kong, China. 150School of Public Health, University of Haifa, 
Haifa, Israel. 151Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, 
India. 152Radiology Department, Mansoura Faculty of Medicine, Mansoura, Egypt. 
153Ophthalmology Department, Aswan Faculty of Medicine, Aswan, Egypt. 154Department of 
Public Health, Trnava University, Trnava, Slovakia. 155Department of Primary Care and Public 
Health, Imperial College London, London, UK. 156Digestive Diseases Research Institute, Tehran 
University of Medical Sciences, Tehran, Iran. 157Non-communicable Diseases Research Center, 
Shiraz University of Medical Sciences, Shiraz, Iran. 158Department of Maternal and Child 
Nursing and Public Health, Federal University of Minas Gerais, Belo Horizonte, Brazil. 
159Institute for Social Science Research, The University of Queensland, Brisbane, Queensland, 
Australia. 160Department of Epidemiology and Biostatistics, Tehran University of Medical 
Sciences, Tehran, Iran. 161Campus Caucaia, Federal Institute of Education, Science and 
Technology of Ceará, Caucaia, Brazil. 162Public Health Department, Botho University-

Botswana, Gaborone, Botswana. 163Division of Plastic Surgery, University of Washington, 
Seattle, WA, USA. 164Research in Nutrition and Health, National Institute of Public Health, 
Cuernavaca, Mexico. 165Peru Country Office, United Nations Population Fund (UNFPA), Lima, 
Peru. 166Center for Translation Research and Implementation Science, National Institutes of 
Health, Bethesda, MD, USA. 167Department of Medicine, University of Cape Town, Cape Town, 
South Africa. 168Department of Propedeutics of Internal Diseases & Arterial Hypertension, 
Pomeranian Medical University, Szczecin, Poland. 169Pacific Institute for Research & 
Evaluation, Calverton, MD, USA. 170School of Public Health, Curtin University, Perth, Western 
Australia, Australia. 171Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal 
Institute for Medical Sciences and Technology, Trivandrum, India. 172Global Institute of Public 
Health (GIPH), Ananthapuri Hospitals and Research Centre, Trivandrum, India. 173Faculty of 
Internal Medicine, Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan. 174Department of 
Atherosclerosis and Coronary Heart Disease, National Center of Cardiology and Internal 
Disease, Bishkek, Kyrgyzstan. 175Institute of Addiction Research (ISFF), Frankfurt University of 
Applied Sciences, Frankfurt, Germany. 176Department of Information Technology, University of 
Human Development, Sulaymaniyah, Iraq. 177Health Systems and Policy Research Unit, 
Ahmadu Bello University, Zaria, Nigeria. 178Non-communicable Diseases Research Center, 
Tehran University of Medical Sciences, Tehran, Iran. 179Department of Public Health Medicine, 
University of Kwazulu-Natal, Durban, South Africa. 180Department of Epidemiology and 
Biostatistics, Kurdistan University of Medical Sciences, Sanandaj, Iran. 181Social Determinants 
of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran. 
182Department of Mathematical Sciences, University of Bath, Bath, UK. 183Department of 
Surgery, University of Washington, Seattle, WA, USA. 184Department of Health Management 
and Economics, Tehran University of Medical Sciences, Tehran, Iran. 185Health Management 
Research Center, Baqiyatallah Univeristy of Medical Sciences, Tehran, Iran. 186Federal Institute 
for Population Research, Wiesbaden, Germany. 187Center for Population and Health, 
Wiesbaden, Germany. 188Department of Pediatric Medicine, Nishtar Medical University, 
Multan, Pakistan. 189Department of Pediatrics & Pediatric Pulmonology, Institute of Mother & 
Child Care, Multan, Pakistan. 190Clinical Research Development Centre, Kermanshah 
University of Medical Sciences, Kermanshah, Iran. 191Department of Epidemiology & 
Biostatistics, Kermanshah University of Medical Sciences, Kermanshah, Iran. 192Suraj Eye 
Institute, Nagpur, India. 193General Surgery, Carol Davila University of Medicine & Pharmacy, 
Bucharest, Romania. 194Department of Biological Sciences, University of Embu, Embu, Kenya. 
195Institute for Global Health Innovations, Duy Tan University, Hanoi, Vietnam. 196Department 
of Sociology & Institute for Empirical Social Science Research, Xi’an Jiaotong University, Xi’an, 
China. 197School of Public Health and Family Medicine, University of Cape Town, Cape Town, 
South Africa. 198Mazandaran University of Medical Sciences, Sari, Iran. 199Faculty of Medicine & 
Health Sciences, Stellenbosch University, Cape Town, South Africa. 200UCIBIO, University of 
Porto, Porto, Portugal. 201Department of Psychiatry and Behavioural Neurosciences, McMaster 
University, Hamilton, Ontario, Canada. 202Department of Psychiatry, University of Lagos, 
Lagos, Nigeria. 203Centre for Healthy Start Initiative, Lagos, Nigeria. 204Center for Population 
Health Research, National Institute of Public Health, Cuernavaca, Mexico. 205School of Health 
and Welfare, Jönköping University, Jönköping, Sweden. 206Laboratory of Public Health 
Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, 
Dolgoprudny, Russia. 207Department of Project Management, National Research University 
Higher School of Economics, Moscow, Russia. 208Department of Respiratory Medicine, 
Jagadguru Sri Shivarathreeswara Academy of Health Education and Research, Mysore, India. 
209Center for Health Outcomes & Evaluation, Bucharest, Romania. 210Regional Medical 
Research Centre, Indian Council of Medical Research, Bhubaneswar, India. 211Krishna Institute 
of Medical Sciences, Deemed University, Karad, India. 212Department of Paediatrics, University 
of Melbourne, Melbourne, Victoria, Australia. 213Population Health, Murdoch Children’s 
Research Institute, Melbourne, Victoria, Australia. 214Istituto di Ricerche Farmacologiche Mario 
Negri IRCCS, Bergamo, Italy. 215Research Center for Environmental Determinants of Health, 
Kermanshah University of Medical Sciences, Kermanshah, Iran. 216Bill & Melinda Gates 
Foundation, Seattle, WA, USA. 217Department of Economics and Business, University of 
Groningen, Groningen, The Netherlands. 218University Medical Center Groningen, University 
of Groningen, Groningen, The Netherlands. 219Department of Nephrology, Sanjay Gandhi 
Postgraduate Institute of Medical Sciences, Lucknow, India. 220College of Graduate Health 
Sciences, A. T. Still University, Mesa, AZ, USA. 221College of Medicine, University of Central 
Florida, Orlando, FL, USA. 222Molecular and Cell Biology Research Center, Mazandaran 
University of Medical Sciences, Sari, Iran. 223Department of Immunology, Mazandaran 
University of Medical Sciences, Sari, Iran. 224Sina Trauma and Surgery Research Center, 
Tehran University of Medical Sciences, Tehran, Iran. 225Society for Health and Demographic 
Surveillance, Suri, India. 226Department of Economics, University of Göttingen, Göttingen, 
Germany. 227WHO Collaborating Centre for Public Health Education and Training, Imperial 
College London, London, UK. 228University College London Hospitals, London, UK. 
229Academic Public Health, Public Health England, London, UK. 230Department of Primary 
Care and Public Health, School of Public Health, Imperial College London, London, UK. 
231School of Social Sciences and Psychology, Western Sydney University, Penrith, New South 
Wales, Australia. 232Translational Health Research Institute, Western Sydney University, 
Penrith, New South Wales, Australia. 233Research Directorate, Nihon Gakko University, 
Fernando De La Mora, Paraguay. 234Research Direction, Universidad Nacional de Caaguazú, 
Coronel Oviedo, Paraguay. 235Department of Clinical Research, Federal University of 
Uberlândia, Uberlândia, Brazil. 236Infectious Diseases and Tropical Medicine Research Center, 
Babol University of Medical Sciences, Babol, Iran. 237Department of Neuroscience, Iran 
University of Medical Sciences, Tehran, Iran. 238Neurogenic Inflammation Research Center, 
Mashhad University of Medical Sciences, Mashhad, Iran. 239Halal Research Center of IRI, FDA, 



Tehran, Iran. 240Department of Pathology, Al-Imam Mohammad Ibn Saud Islamic University, 
Riyadh, Saudi Arabia. 241Social Development & Health Promotion Research Center, 
Kermanshah University of Medical Sciences, Kermanshah, Iran. 242Department of Entomology, 
Ain Shams University, Cairo, Egypt. 243Faculty of Infectious and Tropical Diseases, London 
School of Hygiene & Tropical Medicine, London, UK. 244Surgery Department, Hamad Medical 
Corporation, Doha, Qatar. 245Faculty of Health & Social Sciences, Bournemouth University, 
Bournemouth, UK. 246Department of Psychology, University of Alabama at Birmingham, 
Birmingham, AL, USA. 247Department of Food Science and Nutrition, Jigjiga University, Jigjiga, 
Ethiopia. 248Independent Consultant, Karachi, Pakistan. 249Department of Sports Medicine & 
Rehabilitation, Kermanshah University of Medical Sciences, Kermanshah, Iran. 250University 
School of Management and Entrepreneurship, Delhi Technological University, New Delhi, 
India. 251Division of General Internal Medicine, Harvard University, Boston, MA, USA. 252Centre 
for Medical Informatics, University of Edinburgh, Edinburgh, UK. 253Department of Public 
Health, Ben Gurion University of the Negev, Beersheva, Israel. 254Department of Physical 
Education, Federal University of Santa Catarina, Florianopolis, Brazil. 255Department of 
Medicine, University of Alabama at Birmingham, Birmingham, AL, USA. 256Department of 
Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA. 257Department of 
Epidemiology, School of Preventive Oncology, Patna, India. 258Department of Epidemiology, 
Healis Sekhsaria Institute for Public Health, Mumbai, India. 259Department of Nursing, 
Muhammadiyah University of Surakarta, Surakarta, Indonesia. 260Department of Public Health, 
China Medical University, Taichung, Taiwan. 261Department of Community Medicine, Ahmadu 
Bello University, Zaria, Nigeria. 262Department of Medicine, University of Valencia, Valencia, 
Spain. 263Carlos III Health Institute, Biomedical Research Networking Center for Mental Health 
Network (CIBERSAM), Madrid, Spain. 264Department of Pediatrics, Hawassa University, 
Hawassa, Ethiopia. 265International Vaccine Institute, Seoul, South Korea. 266Department of 
Pediatrics, King Saud University, Riyadh, Saudi Arabia. 267College of Medicine, Alfaisal 
University, Riyadh, Saudi Arabia. 268Department of Anesthesiology, Perioperative, and Pain 
Medicine, Stanford University, Palo Alto, CA, USA. 269Department of Anesthesiology, King 
Fahad Medical City, Riyadh, Saudi Arabia. 270Department of Epidemiology and Biostatistics, 
University of Gondar, Gondar, Ethiopia. 271Department of International Health, Johns Hopkins 
University, Baltimore, MD, USA. 272Department of Pathology and Legal Medicine, University of 
São Paulo, Ribeirão Preto, Brazil. 273Department of Health Economics, Hanoi Medical 

University, Hanoi, Vietnam. 274Molecular Medicine and Pathology, University of Auckland, 
Auckland, New Zealand. 275Clinical Hematology and Toxicology, Military Medical University, 
Hanoi, Vietnam. 276Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera 
Ismail Khan, Pakistan. 277TB Culture Laboratory, Mufti Mehmood Memorial Teaching Hospital, 
Dera Ismail Khan, Pakistan. 278Division of Health Sciences, University of Warwick, Coventry, 
UK. 279Department of Epidemiology and Biostatistics, School of Public Health and Nutrition, 
Umeå University, Umeå, Sweden. 280Department of Medical Mycology and Parasitology, 
Mazandaran University of Medical Sciences, Sari, Iran. 281Argentine Society of Medicine, 
Ciudad De Buenos Aires, Argentina. 282Velez Sarsfield Hospital, Buenos Aires, Argentina. 
283Psychosocial Injuries Research Center, Ilam University of Medical Sciences, Ilam, Iran. 
284Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy. 
285Occupational Health Unit, Sant’orsola Malpighi Hospital, Bologna, Italy. 286Department of 
Health Care Administration and Economics, National Research University Higher School of 
Economics, Moscow, Russia. 287Foundation University Medical College, Foundation University 
Islamabad, Islamabad, Pakistan. 288Department of Epidemiology and Biostatistics, Wuhan 
University, Wuhan, China. 289Department of Psychiatry, University of São Paulo, São Paulo, 
Brazil. 290University of Nairobi, Nairobi, Kenya. 291School of Medicine, Nanjing University, 
Nanjing, China. 292Department of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo, 
Japan. 293School of Allied Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia. 
294Department of Psychopharmacology, National Center of Neurology and Psychiatry, Tokyo, 
Japan. 295Health Economics & Finance, Jackson State University, Jackson, MS, USA. 296School 
of Medicine, Tsinghua University, Beijing, China. 297Prevention of Cardiovascular Disease 
Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 298Global 
Health Institute, Wuhan University, Wuhan, China. 299Department of Medicine, School of 
Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia. 
300Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, 
Bangladesh, Dhaka, Bangladesh. 301Student Research Committee, Babol University of Medical 
Sciences, Babol, Iran. 302School of Public Health, Wuhan University of Science and Technology, 
Wuhan, China. 303Hubei Province Key Laboratory of Occupational Hazard Identification and 
Control, Wuhan University of Science and Technology, Wuhan, China. 304Department of 
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA. 305These authors 
jointly supervised this work: Nicholas J. Kassebaum, Simon I. Hay. *e-mail: sihay@uw.edu

mailto:sihay@uw.edu


Article
Methods

Overview
Building from our previous study of CGF in Africa9, we used Bayesian 
model-based geostatistics14—which leveraged geo-referenced sur-
vey data and environmental and socioeconomic covariates, and the 
assumption that points with similar covariate patterns and that are 
closer to one another in space and time would be expected to have 
similar patterns of CGF—to produce high-spatial-resolution estimates 
of the prevalence of stunting, wasting, and underweight among chil-
dren under five across LMICs. Stunting, wasting, and underweight were 
defined as z-scores that were two or more standard deviations below 
the WHO healthy population reference median for length/height-for-
age, weight-for-length/height, and weight-for-age, respectively, for 
age- and sex-specific curves6. Using an ensemble modelling framework 
that feeds into a Bayesian generalized linear model with a correlated 
space–time error, and 1,000 draws from the fitted posterior distribu-
tion, we generated estimates of annual prevalence for each indicator of 
CGF on a 5 × 5-km grid over 105 LMICs for each year from 2000 to 2017 
and mapped results at administrative levels to provide relevant sub-
national information for policy planning and public health action. For 
this analysis, we compiled an extensive geo-positioned dataset, using 
data from 460 household surveys and reports representing 4.6 mil-
lion children. To ensure comparability with national estimates and to 
facilitate benchmarking, these local-level estimates were calibrated 
to those produced by the Global Burden of Disease (GBD) Study 20171, 
and were subsequently aggregated to the first administrative level (for 
example, states or provinces) and second administrative level (for 
example, districts or departments) in each LMIC. We also predict CGF 
prevalence for 2025 based on 2000–2017 trajectories and estimate 
the AROC required to meet the WHO GNTs by 2025. In addition, we 
estimate the 2017 absolute numbers of children under five affected by 
each CGF indicator in LMICs based on our prevalence estimates and 
the size of the populations of children under five15,16. Furthermore, we 
provide figures that demonstrate subnational disparities between each 
country’s second administrative-level units with the highest and lowest 
estimated prevalence for 2000 and 2017 (Extended Data Figs. 2, 4, 6). 
We re-estimate CGF prevalence for the 51 African countries included 
in our previous analysis9 using 28 additional surveys, and extend time 
trends to model each year from 2000 to 2017. Owing to these improve-
ments in data availability and methodology, the estimates provided 
here supersede our previous modelling efforts.

Countries were selected for inclusion in this study using the socio-
demographic index (SDI)—a summary measure of development that 
combines education, fertility, and poverty, published in the GBD study1. 
The analyses reported here include countries in the low, low-middle, 
and middle SDI quintiles, with several exceptions (Supplementary 
Table 3). China, Iran, Libya, and Malaysia were included despite high-
middle SDI status in order to create better geographical continuity. 
Albania and Moldova were excluded owing to geographical disconti-
nuity with other included countries and lack of available survey data. 
We did not estimate for the island nations of American Samoa, Feder-
ated States of Micronesia, Fiji, Kiribati, Marshall Islands, North Korea, 
Samoa, Solomon Islands, or Tonga, where no available survey data 
could be sourced. The flowchart of our modelling process is provided 
in Extended Data Fig. 9.

Surveys and child anthropometry data
We extracted individual-level height, weight, and age data for children 
under five from household survey series including the Demographic 
and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), 
Living Standards Measurement Study (LSMS), and Core Welfare Indica-
tors Questionnaire (CWIQ), among other country-specific child health 
and nutrition surveys7,17–19 (Supplementary Tables 4, 5). Included in our 
models were 460 geo-referenced household surveys and reports from 

105 countries representing approximately 4.6 million children under 
five. Each individual child record was associated with a cluster, a group 
of neighbouring households or a ‘village’ that acts as a primary sampling 
unit. Some surveys included geographical coordinates or precise place 
names for each cluster within that survey (138,938 clusters for stunt-
ing, 144,460 for wasting, and 147,624 for underweight). In the absence 
of geographical coordinates for each cluster, we assigned data to the 
smallest available administrative areal unit in the survey (termed a ‘poly-
gon’) while correcting for the survey sample design (16,554 polygons 
for stunting, 18,833 for wasting, and 19,564 for underweight). Boundary 
information for these administrative units was obtained as shapefiles 
either directly from the surveys or by matching to shapefiles in the 
Global Administrative Unit Layers (GAUL)20 or the Database of Global 
Administrative Areas (GADM)21. In select cases, shapefiles provided by 
the survey administrator were used, or custom shapefiles were created 
based on survey documentation. These areal data were resampled to 
point locations using a population-weighted sampling approach over 
the relevant areal unit with the number of locations set proportionally 
to the number of grid cells in the area and the total weights of all the 
resampled points summing to one16.

Select data sources were excluded for the following reasons: miss-
ing survey weights for areal data, missing sex variable, insufficient 
age granularity (in months) for calculations of length/height-for-age 
z-scores and weight-for-age z-scores in children ages 0–2 years, incom-
plete sampling (for example, only children ages 0–3 years measured), 
or untrustworthy data (as determined by the survey administrator 
or by inspection). We excluded data for children for whom we could 
not compute age in both months and weeks. Children with height val-
ues ≤0 cm or ≥180 cm, and/or with weight values ≤0 kg or ≥45 kg were 
also excluded from the study. We also excluded data that were con-
sidered outliers according to the 2006 WHO Child Growth Standards 
recommended range values, which were values <−6 or >6 length/height-
for-age z-score for stunting, <−5 or >5 weight-for-length/height z-score 
for wasting, and <−6 or >5 weight-for-age z-score for underweight3,4. 
Details on the survey data excluded for each country are provided in 
Supplementary Table 6. Data availability plots for all the CGF indicators 
by country, type, and year are included in Supplementary Figs. 2–16.

Child anthropometry
Using the height, weight, age, and sex data for each individual, height-
for-age, weight-for-height, and weight-for-age z-scores were calculated 
using the age-, sex-, and indicator-specific LMS (lambda-mu-sigma) 
values from the 2006 WHO Child Growth Standards3,4. The LMS meth-
odology allows for Gaussian z-score calculations and comparisons 
to be applied to skewed, non-Gaussian distributions22. We classified 
stunting, wasting, or underweight if the height/length-for-age, weight-
for-height/length, or weight-for-age, respectively, was more than two 
standard deviations (z-scores) below the WHO growth reference popu-
lation6. These individual-level data observations were then collapsed to 
cluster-level totals for the number of children sampled and total num-
ber of children under five affected by stunting, wasting, or underweight.

Temporal resolution
We estimated the prevalence of stunting, wasting, and underweight 
annually from 2000 to 2017 using a model that allows us to account for 
data points measured across survey years. As such, the model would 
also allow us to predict at monthly or finer temporal resolutions; how-
ever, we are limited both computationally and by the temporal resolu-
tion of the covariates.

Seasonality adjustment
Owing to the acute nature of wasting and its relative temporal transi-
ence, wasting data were pre-processed to account for seasonality within 
each year of observation. Across LMICs, large proportions of the popu-
lation live in rural areas and have livelihoods that rely on agriculture 



and livestock. Seasonality affects the availability of and access to food, 
sometimes owing to natural disasters or climate events (for example, 
floods, monsoons, or droughts) that vary by season. Generalized addi-
tive models were fit to wasting data across time using the month of 
interview and a country-level fixed effect as the explanatory variables, 
and the wasting z-score as the response. A 12-month periodic spline for 
the interview month was used, as well as a spline that smoothed across 
the whole duration of the dataset. Once the models were fit, individual 
weight-for-height/length z-score observations were adjusted so that 
each measurement was consistent with a day that represented a mean 
day in the periodic spline. The seasonality adjustment had relatively 
little effect on the raw data9.

Spatial covariates
To leverage strength from locations with observations to the entire 
spatiotemporal domain, we compiled several 5 × 5-km raster layers of 
possible socioeconomic and environmental correlates of CGF in the 
105 LMICs (Supplementary Table 7, Supplementary Fig. 17). Covariates 
were selected based on their potential to be predictive for the set of 
CGF indicators, after reviewing literature on evidence and plausible 
hypotheses as to their influence. Acquisition of temporally dynamic 
datasets, where possible, was prioritized to best match our observa-
tions and thus predict the changing dynamics of the CGF indicators. 
Of the twelve covariates included, eight were temporally dynamic and 
were reformatted as a synoptic mean over each estimation period 
or as a mid-period year estimate: these covariates included average 
daily mean rainfall (precipitation), average daily mean temperature, 
enhanced vegetation index, fertility, malaria incidence, educational 
attainment in women of reproductive age (15–49 years old), popula-
tion, and urbanicity. The remaining four covariate layers were static 
throughout the study period and were applied uniformly across all 
modelling years; growing season length, irrigation, nutritional yield for 
vitamin A, and travel time to nearest settlement of >50,000 inhabitants.

To select covariates and capture possible nonlinear effects and com-
plex interactions between them, an ensemble covariate modelling 
method was implemented23. For each region, three sub-models were 
fit to our dataset using all of our covariate data as explanatory predic-
tors; these sub-models were: generalized additive models, boosted 
regression trees, and lasso regression. Each sub-model was fit using 
fivefold cross-validation to avoid overfitting, and the out-of-sample 
predictions from across the five holdouts were compiled into a single 
comprehensive set of predictions from that model. In addition, the 
same sub-models were run using 100% of the data, and a full set of 
in-sample predictions were created. The three sets of out-of-sample 
sub-model predictions were fed into the full geostatistical model14 as 
the explanatory covariates when performing the model fit. The in-
sample predictions from the sub-models were used as the covariates 
when generating predictions using the fitted full geostatistical model. 
A recent study demonstrated that this ensemble approach can improve 
predictive validity by up to 25% over an individual model23.

Geostatistical model analysis
Binomial count data were modelled within a Bayesian hierarchical 
modelling framework using a logit link function and a spatially and 
temporally explicit hierarchical generalized linear regression model to 
fit prevalence of each of our indicators in 14 regions24 of LMICs (North 
Africa, western SSA, central SSA, eastern SSA, southern SSA, Middle 
East, Central Asia, East Asia, South Asia, Southeast Asia, Oceania, Cen-
tral America and the Caribbean, Andean South America, and Tropical 
South America; see Extended Data Fig. 10). For each region, we explicitly 
wrote the hierarchy that defines our Bayesian model.

For each binomial CGF indicator, we modelled the average number 
of children with stunting, wasting, or who were underweight in each 
survey cluster, d. Survey clusters are precisely located by their GPS 
coordinates and year of observation, which we map to a spatial raster 

location, i, at time, t. We observed the number of children reported to 
be stunted, wasted, or underweight, respectively, as binomial count 
data, Cd, among an observed sample size, Nd. As we may have observed 
several data clusters within a given location, i, at time, t, we refer to 
the probability of stunting, wasting, or underweight, p, within a given 
cluster, d, by its indexed location, i, and time, t, as pi(d),t(d).
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For indices d, i, and t, *(index) is the value of * at that index. The prob-
abilities, pi,t, represent both the annual prevalence at the space–time 
location and the probability that an individual child was afflicted with 
the risk factor given that they lived at that particular location. The 
annual prevalence, pi,t, of each indicator was modelled as a linear com-
bination of the three sub-models (generalized additive model, boosted 
regression trees, and lasso regression), rasterized covariate values, Xi,t, 
a correlated spatiotemporal error term, Zi,t, and country random effects, 
ϵctr(i), with one unstructured country random effect fit for each country 
in the modelling region and all ϵctr sharing a common variance param-
eter, γ2, and an independent nugget effect, ϵi,t, with variance parameter, 
σ2. Coefficients in βh in the three sub-models h = 1, 2, 3 represent their 
respective predictive weighting in the mean logit link, while the joint 
error term, Zi,t, accounts for residual spatiotemporal autocorrelation 
between individual data points that remains after accounting for the 
predictive effect of the sub-model covariates, the country-level random 
effect, ϵctr(i), and the nugget independent error term, ϵi,t. The residuals, 
Zi,t, are modelled as a three-dimensional Gaussian process (GP) in space–
time centred at zero and with a covariance matrix constructed from a 
Kronecker product of spatial and temporal covariance kernels. The 
spatial covariance, Σspace, is modelled using an isotropic and stationary 
Matérn function25, and temporal covariance, Σtime, as an annual autore-
gressive (AR1) function over the 18 years represented in the model. In 
the stationary Matérn function, Γ is the gamma function, Κv is the 
modified Bessel function of order v > 0, κ > 0 is a scaling parameter,  
D denotes the Euclidean distance, and ω2 is the marginal variance. The 
scaling parameter, κ, is defined to be κ v δ= 8 /  in which δ is a range 
parameter (which is about the distance where the covariance function 
approaches 0.1) and v is a scaling constant, which is set to 2 rather than 
fit from the data26,27. This parameter is difficult to reliably fit, as docu-
mented by many other analyses26,28,29 that set this to 2. The number of 
rows and the number of columns of the spatial Matérn covariance matrix 
are both equal to the number of spatial mesh points for a given model-
ling region. In the AR1 function, ρ is the autocorrelation function (ACF), 
and k and j are points in the time series where |k − j| defines the lag. The 
number of rows and the number of columns of the AR1 covariance matrix 
are both equal to the number of temporal mesh points (18). The number 
of rows and the number of columns of the  space–time covariance 
matrix, Σspace ⊗ Σtime, for a given modelling region are both equal to: (the 
number of spatial mesh points × the number of temporal mesh points).
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This approach leveraged the residual correlation structure of the 

data to more accurately predict prevalence estimates for locations with 
no data, while also propagating the dependence in the data through 
to uncertainty estimates14. The posterior distributions were fit using 
computationally efficient and accurate approximations in R-INLA30,31 
(integrated nested Laplace approximation) with the stochastic partial 
differential equations (SPDE)27 approximation to the Gaussian pro-
cess residuals using R project v.3.5.1. The SPDE approach using INLA 
has been demonstrated elsewhere, including the estimation of health 
indicators, particulate air matter, and population age structure9,32–35. 
Uncertainty intervals were generated from 1,000 draws (that is, sta-
tistically plausible candidate maps)36 created from the posterior-esti-
mated distributions of modelled parameters. Further details on model  
and estimation processes are provided in the Supplementary Infor-
mation.

Post estimation
To leverage national-level data included in the 2017 GBD study1 that 
were not within the scope of our current geospatial modelling frame-
work, and to ensure alignment between these estimates and GBD 
national-level and subnational estimates, we performed a post hoc 
calibration to the mean of the 1,000 draws. We calculated popula-
tion-weighted aggregations to the GBD estimate level, which was 
either at the national or first administrative level, and compared 
these estimates to our corresponding year estimates from 2000 to 
2017. We defined the calibration factor to be the ratio between the 
GBD estimates and our current estimates for each year from 2000 to 
2017. For some selected countries where GBD estimates were at the 
first administrative level, the calibration factors were also calculated 
at the lowest available subnational level. These countries included 
Brazil, China, Ethiopia, India, Indonesia, Iran, Mexico, and South 
Africa. Finally, we multiplied each of our estimates in a country-year 
(or first-administrative-year) by its associated factor. This ensures 
consistency between our geospatial estimates and those of the 2017 
GBD1, while preserving our estimated within-country geospatial and 
temporal variation. To transform grid-cell-level estimates into a range 
of information useful to a wide constituency of potential users, these 
estimates were aggregated at first and second administrative-level 
units specific to each country and at national levels using conditional 
simulation37.

Although the models can predict all locations covered by available 
raster covariates, all final model outputs for which land cover was clas-
sified as ‘barren or sparsely vegetated’ on the basis of the most recently 
available Moderate Resolution Imaging Spectroradiometer (MODIS) 
satellite data (2013) were masked38. Areas where the total population 
density was less than ten individuals per 1 × 1-km grid cell were also 
masked in the final outputs.

Model validation
We assessed the predictive performance of the models using fivefold 
out-of-sample cross-validation strategies and found that our preva-
lence estimates closely matched the survey data. To offer a more 
stringent analysis by respecting some of the spatial correlation in the 
data, holdout sets were created by combining sets of data at different 
spatial resolutions (for example, first administrative level). Validation 
was performed by calculating bias (mean error), variance (root mean 
square error), 95% data coverage within prediction intervals, and cor-
relation between observed data and predictions. All validation metrics 
were calculated on the out-of-sample predictions from the fivefold 
cross-validation. Furthermore, measures of spatial and temporal auto-
correlation pre- and post-modelling were examined to verify correct 
recognition, fitting, and accounting for the complex spatiotemporal 
correlation structure in the data. All validation procedures and cor-
responding results are included in Supplementary Tables 14–22 and 
Supplementary Figs. 24–41.

Projections
To compare our estimated rates of improvement in CGF prevalence 
over the last 18 years with the improvements needed between 2017 
and 2025 to meet WHO GNTs, we performed a simple projection using 
estimated annualized rates of change (AROC) applied to the final year 
of our estimates.

For each CGF indicator, u, we calculated AROC at each grid cell, m, by 
calculating the AROC between each pair of adjacent years, t:
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We then calculated a weighted AROC for each indicator by taking 
a weighted average across the years, where more recent AROCs were 
given more weight in the average. We defined the weights to be:

W t= ( − 2000 + 1)t
γ

in which γ may be chosen to give varying amounts of weight across the 
years. For any indicator, we then calculated the average AROC to be:
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Finally, we calculated the projections, Proj, by applying the AROC in 
our 2017 mean prevalence estimates to produce estimates in 8 years 
from 2017 to 2025. For this set of projections, we selected γ = 1.7 for 
stunting, γ = 1.9 for wasting, and γ = 1.8 for underweight1.

pProj = logit (logit( ) + AROC × 8)u m u m u m, ,2025
−1

, ,2017 ,

This projection scheme is analogous to the methods used in the 2017 
GBD measurement of progress and projected attainment of health-
related Sustainable Development Goals1. Our projections are based 
on the assumption that areas will sustain the current AROC, and the 
precision is dependent on the level of uncertainty emanating from the 
estimation of annual prevalence.

Although the WHO GNT for wasting was to reduce prevalence to 
less than 5%, the WHO GNT for stunting was a 40% relative reduction 
in prevalence. For our analyses, we defined the WHO GNT for stunt-
ing and underweight (for which no WHO GNT was established) to be 
40% reduction relative to 2010, the year the World Health Assembly 
requested the development of the WHO GNTs39.

Limitations
The accuracy of our models depends on the volume, representative-
ness, quality, and validity of surveys available for analysis (Supple-
mentary Tables 4, 5, Supplementary Figs. 2–16). Persistent data gaps 
in national surveys include a lack of CGF data or household-level char-
acteristics, such as hygiene and sanitation practices. The associated 
uncertainties of our estimates are higher in areas where data are either 
missing or less reliable (Figs. 1d, 2d, Extended Data Fig. 5d), and rely 
more heavily on covariates and borrowing from neighbouring areas for 
their modelling (Supplementary Table 7, Supplementary Fig. 17). Invest-
ments in improvements of health surveillance systems and including 
child anthropometrics as part of routine data collection for profiling 
population characteristics could improve the certainty of our estimates 
and better monitor progress towards international goals. In addition, 
measurement error in collecting anthropometric information, includ-
ing the child’s age, height, and weight, could have introduced bias or 
error in the data across different survey types. The accuracy of age 
data may be affected by differences in sampling approaches and self-
reporting bias, such as long recall period or selective recall. Weight and 
height measurements may be inaccurate owing to improper calibration 



of equipment, device inaccuracy, different measurement methods, or 
human error. We did not include a survey random effect to account for 
between-survey variability in data accuracy; given that most surveys 
represent a country-year, it would be difficult to distinguish these biases 
from temporal effects. Our calibration approach in the post-estimation 
process used only a ratio estimator and did not account for an additive 
effect, which may have introduced bias. Owing to the complexity of the 
boosted regression tree sub-model, we were unable to account for the 
uncertainty of our three sub-models in our final estimates (see Supple-
mentary Information section 3.2.2 for more detail). It is worth noting 
that our analyses are descriptive and do not support causal inferences 
on their own. Future research is required to determine the causal path-
ways for each CGF indicator across and within LMICs.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
CGF estimates can be further explored at various spatial scales 
(national, administrative, and local levels) through our customized 
online data visualization tools (https://vizhub.healthdata.org/lbd/
cgf). The full output of the analyses and the underlying data used in 
the analyses are publicly available via the Global Health Data Exchange 
(GHDx; http://ghdx.healthdata.org/record/ihme-data/lmic-child-
growth-failure-geospatial-estimates-2000-2017). Some data sources 
are under special licenses for the current study and are thus not publicly 
available. Supplementary Tables 4 and 5 show the incorporated data 
sources, and data with restrictions are marked with an obelisk symbol 
(†). All maps presented in this study are generated by the authors and 
no permissions are required to publish them.

The findings of this study are supported by data available in public 
online repositories, data publicly available upon request of the data pro-
vider, and data not publicly available owing to restrictions by the data 
provider. Non-publicly available data were used under license for the 
current study but may be available from the authors upon reasonable 
request and with permission of the data provider. Detailed tables and 
figures of data sources and availability can be found in Supplementary 
Tables 4, 5, and Supplementary Figs. 2–16.

Administrative boundaries were retrieved from the Global Admin-
istrative Unit Layers (GAUL)20 or the Database of Global Administra-
tive Areas (GADM)21. Land cover was retrieved from the online Data 
Pool, courtesy of the NASA EOSDIS Land Processes Distributed Active 
Archive Center (LP DAAC), USGS/Earth Resources Observation and Sci-
ence (EROS) Center, Sioux Falls, South Dakota40. Lakes were retrieved 
from the Global Lakes and Wetlands Database (GLWD), courtesy of 
the World Wildlife Fund and the Center for Environmental Systems 
Research, University of Kassel41,42. Populations were retrieved from 
WorldPop15,16. All maps in this study were produced using ArcGIS 
Desktop 10.6.

Code availability
Our study follows the Guidelines for Accurate and Transparent Health 
Estimate Reporting (GATHER; Supplementary Table 1). All code used 
for these analyses is publicly available online http://ghdx.healthdata.
org/record/ihme-data/lmic-child-growth-failure-geospatial-estimates- 
2000-2017 and at http://github.com/ihmeuw/lbd/tree/cgf-lmic-2019.
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Extended Data Fig. 1 | Prevalence of stunting in children under five in LMICs 
at administrative levels 0, 1, 2, and at 5 × 5-km resolution in 2017. 
Administrative level 0 are national-level estimates; administrative level 1 are 
first administrative-level (for example, states or provinces) estimates; 
administrative level 2 are second administrative-level (for example, districts or 

departments) estimates. Maps reflect administrative boundaries,  
land cover, lakes, and population; grey-coloured grid cells had fewer than ten 
people per 1 × 1-km grid cell and were classified as ‘barren or sparsely 
vegetated’15,16,20,21,40–42, or were not included in these analyses. Maps were 
produced using ArcGIS Desktop 10.6.



Extended Data Fig. 2 | Geographical inequality in the prevalence of child 
stunting across 105 countries. The bars represent the range of stunting 
prevalence in children under five in the second administrative-level units in 

each country. Bars indicating the range in 2017 are coloured according to the 
regions defined by the Global Burden of Disease (GBD)1. Grey bars indicate the 
range in 2000. The graph was produced using R project v.3.5.1.
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Extended Data Fig. 3 | Prevalence of wasting in children under five in LMICs 
at administrative levels 0, 1, 2, and at 5 × 5-km resolution in 2017. 
Administrative levels are as described in Extended Data Fig. 1. Maps reflect 
administrative boundaries, land cover, lakes, and population; grey-coloured 

grid cells had fewer than ten people per 1 × 1-km grid cell and were classified as 
‘barren or sparsely vegetated’15,16,20,21,40–42, or were not included in these 
analyses. Maps were produced using ArcGIS Desktop 10.6.



Extended Data Fig. 4 | Geographical inequality in prevalence of child 
wasting across 105 countries. The bars represent the range of wasting 
prevalence in children under five in the second administrative-level units in 

each country. Bars indicating the range in 2017 are coloured according to their 
GBD-defined1 regions. Grey bars indicate the range in 2000. The graph was 
produced using R project v.3.5.1.
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Extended Data Fig. 5 | Prevalence of underweight in children under five in 
LMICs (2000–2017) and progress towards 2025. a, b, Prevalence of 
underweight in children under five at the 5 × 5-km resolution in 2000 (a) and 
2017 (b). c, Overlapping population-weighted tenth and ninetieth percentiles 
(lowest and highest) of 5 × 5-km grid cells and AROC in underweight, 2000–
2017. d, Overlapping population-weighted quartiles of underweight 
prevalence and relative 95% uncertainty in 2017. e, f, Number of underweight 

children under five, at the 5 × 5-km (e) and first-administrative-unit (f) levels.  
g, 2000–2017 annualized decrease in underweight prevalence relative to rates 
needed during 2017–2025 to meet WHO GNT. h, Grid-cell-level predicted 
underweight prevalence in 2025. Maps were produced using ArcGIS Desktop 
10.6. Interactive visualization tools are available at https://vizhub.healthdata.
org/lbd/cgf.

https://vizhub.healthdata.org/lbd/cgf
https://vizhub.healthdata.org/lbd/cgf


Extended Data Fig. 6 | Geographical inequality in prevalence of child 
underweight across 105 countries. The bars represent the range of 
underweight prevalence in the second administrative-level units in each 

country. Bars indicating the range in 2017 are coloured according to their GBD-
defined1 regions. Grey bars indicate the range in 2000. The graph was 
produced using R project v.3.5.1.



Article

Extended Data Fig. 7 | Probability that WHO GNT had been achieved in 2017 
at the first administrative and 5 × 5-km grid-cell levels for stunting, wasting, 
and underweight. a–f, Probability of WHO GNT achievement in 2017 at the first 
administrative and 5 × 5-km levels for stunting (a, d), wasting (b, e), and 
underweight (c, f). Dark-blue and dark-red grid cells indicate >95% and <5% 

probability, respectively, of having met the WHO GNT in 2017. Given that there 
was no WHO GNT established for underweight, we based the underweight 
target on WHO GNT for stunting, as the conditions are similarly widespread 
and prevalent. Maps were produced using ArcGIS Desktop 10.6.



Extended Data Fig. 8 | Probability of meeting WHO GNT in 2025 at the first 
administrative and 5 × 5-km grid-cell levels for stunting, wasting, and 
underweight. a–f, Probability of WHO GNT achievement in 2025 at the first 
administrative and 5 × 5-km levels for stunting (a, d), wasting (b, e), and 
underweight (c, f). Dark-blue and dark-red grid cells indicate >95% and <5% 

probability, respectively, of meeting WHO GNT in 2025. Given that there was no 
WHO GNT established for underweight, we based the underweight target on 
WHO GNT for stunting as the conditions are similarly widespread and 
prevalent. Maps were produced using ArcGIS Desktop 10.6.
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Extended Data Fig. 9 | Flowchart of CGF prevalence modelling process. The 
process used to produce CGF prevalence estimates in LMICs involved three 
main parts. In the data-processing steps (green), data were identified, 
extracted, and prepared for use in the models. In the modelling phase (red), we 
used these data and covariates in stacked generalization ensemble models and 

spatiotemporal Gaussian process models for each CGF indicator. In post-
processing (blue), we calibrated the prevalence estimates to match 2017 GBD 
study1 estimates and aggregated the estimates to the first- and second-
administrative-level units in each country.



Extended Data Fig. 10 | Modelling regions. Modelling regions24 were based on 
geographical and SDI regions from the GBD study1, defined as: Andean South 
America, Central America and the Caribbean, central SSA, East Asia, eastern 
SSA, Middle East, North Africa, Oceania, Southeast Asia, South Asia, southern 

SSA, Central Asia, Tropical South America, and western SSA. ‘High income 
country’ refers to regions not included in our models owing to high-middle or a 
high SDI. The map was produced using ArcGIS Desktop 10.6.
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