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A B S T R A C T   

Purpose: Absorbed dose calculation in magnetic resonance-guided radiation therapy (MRgRT) is commonly based 
on pseudo CT (pCT) images. This study investigated the feasibility of unsupervised pCT generation from MRI 
using a cycle generative adversarial network (CycleGAN) and a heterogenous multicentric dataset. A dosimetric 
analysis in three-dimensional conformal radiotherapy (3DCRT) planning was also performed. 
Material and methods: Overall, 87 T1-weighted and 102 T2-weighted MR images alongside with their corre
sponding computed tomography (CT) images of brain cancer patients from multiple centers were used. Initially, 
images underwent a number of preprocessing steps, including rigid registration, novel CT Masker, N4 bias field 
correction, resampling, resizing, and rescaling. To overcome the gradient vanishing problem, residual blocks and 
mean squared error (MSE) loss function were utilized in the generator and in both networks (generator and 
discriminator), respectively. The CycleGAN was trained and validated using 70 T1 and 80 T2 randomly selected 
patients in an unsupervised manner. The remaining patients were used as a holdout test set to report final 
evaluation metrics. The generated pCTs were validated in the context of 3DCRT. 
Results: The CycleGAN model using masked T2 images achieved better performance with a mean absolute error 
(MAE) of 61.87 ± 22.58 HU, peak signal to noise ratio (PSNR) of 27.05 ± 2.25 (dB), and structural similarity 
index metric (SSIM) of 0.84 ± 0.05 on the test dataset. T1-weighted MR images used for dosimetric assessment 
revealed a gamma index of 3%, 3 mm, 2%, 2 mm and 1%, 1 mm with acceptance criteria of 98.96% ± 1.1%, 
95% ± 3.68%, 90.1% ± 6.05%, respectively. The DVH differences between CTs and pCTs were within 2%. 
Conclusions: A promising pCT generation model capable of handling heterogenous multicenteric datasets was 
proposed. All MR sequences performed competitively with no significant difference in pCT generation. The 
proposed CT Masker proved promising in improving the model accuracy and robustness. There was no significant 
difference between using T1-weighted and T2-weighted MR images for pCT generation.   

1. Introduction 

Computed Tomography (CT) is one of the principal requirements in 
radiation therapy workflow, which provides three-fold benefits in 

radiation treatment planning. First and foremost, CT reflects informa
tion about electron density which is correlated with attenuation co
efficients that yield CT numbers in Hounsfield units (HUs), which is 
required for accurate dosimetric calculations by treatment planning 
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systems (TPSs). Next, subtle comparison of digitally reconstructed ra
diographs (DRRs) by means of CT with either on-board linear acceler
ator (Linac) cone-beam CT or megavoltage CT (MVCT) benefits image- 
guided radiation therapy (IGRT) and patient positioning. Finally, CT 
preserves the presence of bone signal, in contrast to magnetic resonance 
imaging (MRI), which is mandatory for dose calculation. MR images 
provide better soft-tissue contrast compared to CT images, which has 
prioritized its choice for contouring to enable accurate delineation of 
regions/volumes of interest and organs at risk (OARs). Accurate con
touring is essential when treating a patients presenting with brain tu
mors for precise delivery of radiation beams to small planning target 
volume (PTVs) and sparing of OARs [1,2]. In addition, MRI does not 
deliver extra non-therapeutic radiation dose to patients compared to CT 
[2,3]. 

In clinical practice, MR images are fused to CT images to take 
advantage of both imaging modalities. Image registration algorithms 
could result in 2–5 mm systematic error while transferring structures 
from MRI to CT in various treatment sites. These errors originate from 
variations in organs’ anatomical position between different imaging 
sessions and discrepancies in patient positioning during scanning with 
the different imaging modalities, such as neck flexion. Although the 
former is not frequent in brain scanning, since the brain is subject to very 
low anatomical variability, the latter could still be an outstanding source 
of error during the fusion process in the brain region. The dosimetric 
errors could be significant when irradiating tiny and sensitive targets, as 
is the case when treating brain tumors [2,4–6]. Considering these cir
cumstances, the errors might end up with a loss of tumor control 
probability and a reduction in patients’ quality of life. To overcome 
these challenges in radiotherapy workflow, pseudo CT (pCT) or syn
thetic CT (synCT) generation from MR images using deep learning al
gorithms could be a potential and practical approach in clinical setting. 
In addition, pCT generation facilitates MRI-only radiotherapy with MR 
Linacs. Nevertheless, the lack of fiducial markers on pCT may seem an 
impediment to instituting MRI-only radiotherapy, where pCT could be 
registered to the initial MRI performed with MR-compatible markers to 
pave the way for treatment setup. To sum up, pCT generation aiming at 
eliminating excessive CT scans in IGRT, enables to decrease patient ra
diation dose, scanning time, and cost without compromising treatment 
accuracy and potentially improving treatment outcome. 

Different approaches have been proposed to tackle pCT generation, 
which can be classified into three main groups. This includes 
segmentation-based methods which use bulk density assignment to each 
contoured region of MR images [7], atlas-based methods which utilize 
rigid and deformable registration for mapping MRI to CT [2,8,9], and 
finally learning-based methods that emerged through statistical 
modeling [10] and evolved to regression and machine learning models 
[3,11]. With the advent of artificial intelligence (AI)-based algorithms, 
recent research focused on the development of deep learning algorithms, 
particularly convolutional neural networks (CNNs) to address chal
lenges in medical image analysis [12–14]. Recently, increasing interest 
focused on variants of generative adversarial networks (GANs) including 
deep convolutional generative adversarial networks (DCGANs), condi
tional generative adversarial networks (CGANs) and cycle consistent 
generative adversarial networks (CycleGANs). These learning-based al
gorithms could be trained using paired and unpaired data. The training 
of most CNN models for image-to-image translation relies on minimi
zation of voxel-wise differences between pCT and ground truth image, 
which requires paired datasets. Using paired datasets, tiny voxel-wise 
misalignment of input and target images may result in blurring of syn
thesized images. To address this issue, Nie et al. [15] combined 
voxel-wise loss and an image-wise adversarial loss in GAN. However, 
there is still a voxel-wise loss term, which requires a paired dataset for 
training. 

GAN models are prone to overgeneralization and mode collapse 
where some generated modes should not exist and some modes are not 
well represented in the generated images even though the dataset 

supports these modes [16]. In practice, preparing clean and cured paired 
datasets is time-consuming, troublesome, and may not be a good choice 
for real-world problems due to the scarcity of cases that have undergone 
both imaging modalities. To tackle dataset preparation, the CycleGAN 
introduced by Zhu et al. [17] not only does not require pixel-wise 
alignment of images but is also able to use images of patients not 
necessarily scanned on both modalities. A number of studies reported on 
investigations in the pelvic region for proton [18] and photon [19] 
radiotherapy, as well as the head and neck region [20–22]. In this study, 
a CycleGAN model providing state-of-the-art performance for image 
generation using heterogeneous datasets was elaborated. To the best of 
our knowledge, this is the first work evaluating MRI-only radiotherapy 
workflow in 3D conformal radiotherapy (3DCRT). 

2. Materials and methods 

2.1. Image acquisition 

T1-weighted and T2-weighted MR images of 87 and 102 patients 
with brain cancer who had previously undergone radiation therapy were 
anonymously collected from three different radiation therapy centers. 
MRI and CT were acquired on 18 and 3 different scanners, respectively. 
The included scanner models and percentage of included studies from 
each one are illustrated in Fig. 1. Most of the included patients have 
undergone CT and MRI on Somatom Scope and Avanto scanners, 
respectively. T1-weighted and T2-weighted MR images acquired with 
different protocols, such as blade, gadolinium contrast-enhanced, dark 
fluid, flair, etc. are summarized in Table 1. 

Detailed information about MRI and CT image acquisition parame
ters can be found in Tables 2 and 3, respectively. The patients were a 
mixed bag of primary tumors (astrocytomas, meningiomas, gliomas, 
etc.) and secondary cancer (breast, lung, colon, etc.). MRI and CT 
transverse slices from 60 T1 (3315 slices) and 65 T2 (3655 slices) vol
umes were used as training set, whereas 10 T1 (411 slices) and 15 T2 
(603 slices) volumes served as the validation set. Seventeen T1 (670 
slices) and 22 T2 (882 slices) volumes were used as holdout test set. CT 
and MR image volumes had initial voxel sizes ranging from 0.48 × 0.48 
× 1 mm3 to 0.68 × 0.68 × 6 mm3 and from 0.48 × 0.48 × 1 mm3 to 0.68 
× 0.68 × 8 mm3, respectively. 

2.2. Image pre-processing 

Fig. 2 illustrates schematically the preprocessing steps. Initially, the 
Elastix open-source package was employed to register MR to CT images 
[23,24]. N4 bias correction was implemented using SimpleITK to 
compensate for the intrinsic inhomogeneities in the magnetic fields of an 
MRI machine and inhomogeneities of the fields created by the intro
duction of a patient. Since previously proposed adaptive thresholding 
approach showed deficiency in some CT slices in the presence of other 
objects adjacent to the head, a novel masker algorithm was developed to 
create binary head masks, excluding every pixel outer to the patient 
head, henceforth referred to as CT Masker. 

The proposed masker algorithm consists of adaptive thresholding to 
binarize the input image followed by a Sobel filter to make the edges of 
the body clear. Subsequently, the external body contours are defined. 
Points of body contours were used to assign inner pixel labels of one and 
zero for outer pixels. After masking structures, CT and MR images were 
resampled and resized to 0.5 × 0.5 × 2 mm3 voxels and 256 × 256 
matrix size, respectively. Data augmentation increased T1 and T2 
training set to 5216 and 5961 slices with cropped, rotated (up to 180◦), 
sheared, and horizontally/vertically flipped images. Lastly, all images 
were rescaled to − 1 and 1 prior to feeding the CycleGAN. CycleGAN 
trained using T1 and T2 images with and without CT masker are referred 
to as T1, T1 Masked, T2, and T2 Masked models, respectively. 
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2.3. Deep neural network architecture 

Fig. 3 shows the architecture of CycleGAN and workflow adopted in 
this study. The CycleGAN is composed of two cycles, called forward and 
backward cycles. Each cycle contains two networks, including a gener
ator and discriminator. The generator in the forward cycle (GMR→CT) 
takes MR images as input and translates to target domain (CT). The 
discriminator attempts to differentiate real and fake images synthesized 
by the generator and assigns 1 and 0 to each of them, respectively. 

Translating back the synthesized image (pCT) to the initial domain 
(MRI), backward cycle aims to verify MRI to CT mapping by calculating 
the loss between the initial MR image and the secondary MR image. In 
each cycle, the generator and discriminator compete to fool each other. 

A residual block was used in the generator to aid the training of deep 
CNNs through deploying skip connections which alleviates gradient 
vanishing/exploding problem in deep neural networks [25]. Each re
sidual block started with a reflection padding layer followed by a con
volutional layer. Instance normalization was applied after each 
convolutional layer. Thereafter, an activation function, reflection 
padding, convolutional layer, skip connection, and instance normali
zation, was exploited for the residual block. The right upper panel of 
Fig. 3 visualizes the residual blocks. 

In the generator, after reflection padding, a convolutional layer was 
applied to the input image followed by instance normalization and ReLU 
activation function. A downsampling block, consisting of a convolu
tional layer with doubled initial number of filters, instance normaliza
tion and an activation function was applied. The residual part was 
followed by an up-sampling block including transpose convolution, 
instance normalization, and activation function. Ultimately, the reflec
tion padding, a convolutional layer with one filter, and an activation 

Fig. 1. Percentage of included patients from different scanners.  

Table 1 
List of MRI sequences used for data acquisition of the datasets used in this study. 
Multiplanar reformation or reconstruction (MPR), Gadolinium-based MRI 
contrast agents (GD), spin echo (SE), Multi Echo Multi Planar (MEMP), fluid- 
attenuated inversion recovery (FLAIR), Periodically rotated overlapping paral
lel lines with enhanced reconstruction (PROPELLER), Pre contrast (PRE), 
Gradient Echo (GE), Turbo inversion recovery magnitude (TIRM), Fast or turbo 
spin echo (FSE/TSE), fat suppression (FS), BLADE: proprietary name for PRO
PELLER in MRI systems from Siemens Healthcare.  

MRI Sequences T1-weighted T2-weighted 

MPR GD 12 0 
TRIM 0 3 
TRIM DARK FLUID 1 17 
SE GD 14 0 
BLADE 0 7 
SE 27 0 
MPR P2 ISO 10 0 
TSE 6 44 
MEMP 2 0 
FLAIR 4 13 
PROPELLER 1 6 
PRE 1 0 
GE 1 1 
TRIM FLAIR 0 3 
FL2D 1 0 
BLADE DARK FLUID 0 1 
FIL 1 1 
FIL GD 1 0 
FLAIR FS 0 2 
TFE 1 0 
TSE GD 2 0 
SPACE P4 ISO 0 3 
TSE BLADE 0 1 
FSE GD 1 0 
FS 1 0 
Sum 87 102 

189  

Table 2 
Image acquisition parameters for the included MR images for both T1-and T2- 
weighted sequences.  

MRI acquisition parameter T1 T2 

TR (min,max,avg) [9, 6000, 891] [665, 9075, 5970] 
TE (min,max,avg) [2, 100, 10.60] [23, 383, 106] 
FA (min,max,avg) [8, 160, 75] [18, 180, 133.87] 
AT (min,max,avg) [11618, 234236, 

137519] 
[2123, 233044, 
132173] 

Matrix size (min,max,avg) [256, 551, 439] [192, 1024, 445.65] 
Magnetic Field Strength (min, 

max,avg) 
[1.5, 3.0, 1.54] [1.5, 3.0, 1.54] 

Slice Thickness (min,max,avg) [1, 8, 4.24] [1, 8, 5.08]  

Table 3 
Image acquisition parameters for the included CT scans.  

CT acquisition parameter  

kVp (min,max,avg) [80, 130, 109] 
Tube current (min,max,avg) [23, 341, 147] 
Matrix size (min,max,avg) [512, 512, 512] 
Slice thickness (min,max,avg) [1.0, 6.0, 2.20]  
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function was developed to prepare the output image (the structure of the 
generator is illustrated in Fig. 3 (Gen G and Gen F)). All convolutional 
layers had 3 × 3 kernel size except the first and last layer which had a 
kernel size of 7 × 7. For each downsampling and up sampling layers zero 
padding was applied to preserve the size of output feature maps after 
convolution operations. Rectified linear activation unit (ReLU) was used 
in all layers of the generator, except tanh for the last layer in the 
generator. 

In the discriminator, a convolutional layer, a leaky ReLU activation 
function and downsampling blocks followed by a final convolutional 
layer with one node were applied to the input image, respectively. A 
detailed illustration of the discriminator is presented in Fig. 3 (Disc X, 
Disc Y). The leaky ReLU was used as an activation function in all layers 
of the discriminator, except none in the discriminator. A number of 
important hyperparameters were optimized. In this context, different 
networks were trained to adopt an optimal number of residual blocks in 
the generator, down sampling blocks for the discriminator, filters, and 
loss function. A complete implementation of preprocessing steps and 
model architecture in TensorFlow library is available on the author’s 
GitHub. 

3. Evaluation 

3.1. Image quality 

The accuracy of pseudo CT images evaluation was performed using a 
number of 3D metrics, including the mean absolute error (MAE) defined 
as: 

MAE=
1
N

∑n

i=1
abs(CTi − SynCTi)

where i is the index of corresponding CT-MR slices and N is the number 
of slices for each patient CT volume. The peak signal-to-noise ratio 
(PSNR) was also calculated. It is defined as: 

PSNR= 10 × log 10
immax

2

MSE  

where, immax is the maximum possible pixel value in the image and MSE 
is defined as: 

MSE =
1
N

∑n

i=1
(CTi − SynCTi)

2 

Another metric that was utilized to quantify the similarity between 
pCT and the ground truth image was the structure similarity index 
metric (SSIM) defined as: 

SSIM (x, y)=
(
2μxμy + C1

)(
2σxy + C2

)

(
μx

2 + μy
2 + C1

)(
σx

2 + σy
2 + C2

)

where μx, μy, σx
2, σy

2, and σxy are the average of x, average of y, vari
ance of x, variance of y, and covariance of x and y, respectively. SSIM is 
an image metric relying on the luminance, contrast and degradation of 
structural information between two images [26]. Wilcoxon signed-rank 
two-sided test was performed on imaging metrics to assess whether the 
pCT images generated using T1 and T2 is statistically different with the 
standard of reference. For this purpose, the trained T1 model vs T2 
model and T1 Masked model vs T2 Masked model were compared. In 
addition, the performance of the proposed CT Masker was validated by 
means of the Wilcoxon signed-rank two-sided test and the comparison of 
T1 vs T1 Masked model and T2 vs T2 Masked model. 

3.2. Dosimetry analysis 

Regarding the limited transverse FOV coverage in MR images, pCTs 
would comprise smaller volumes. Hence, CTs were cropped to the cor
responding pCT volume to have the same scattering effect contributing 
to points of interest (POIs) on both images. Target volumes and OARs 
were contoured on CT images and reviewed by a radiation oncologist. 
The OAR and PTV contours delineated on CT images were exploited in 
this work. Beside to each patient’s real structures, simple geometries, e. 
g. spheres and cubes were used as OARs to compare the dose-volume 
histograms (DVHs). Dose calculation was performed on Core Plan 
3.5.05 as TPS with correction-based ETAR method, grid size of 3 mm, 
and Varian 2100CD as a Linac. All plans were prescribed with 40 Gy in 
25 fractions. Different numbers of beams with 6 and 18 MV energies, 
wedges, and bolus were used to optimize each plan (optimized plans 
were used for both pCTs and CTs). Gamma analysis at 3%, 3 mm, 2%, 2 
mm and 1%, 1 mm with 10% threshold of the prescribed dose was 
performed using the Slicer RT package [27]. Moreover, DVH key pa
rameters dose discrepancies, including D90, D10, mean dose, min dose, 
and max dose were measured in terms of MAE and ME to verify the 
target dose coverage and critical structures sparing. Ultimately, dose 
differences statistical significance level was calculated by the Wilcoxon 
test. All statistical analysis was performed on Python. 

Fig. 2. Image pre-processing steps implemented in this study protocol.  
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4. Results 

4.1. Image quality 

The calculated metrics to select the best loss function are shown in 
Table 4. Considering the better performance of MSE loss function with 
MAE of 79 HU over binary cross entropy (BCE) with MAE of 85 HU, MSE 
was used in this study. Fig. 4 depicts violin plots of MAE, PSNR, and 
SSIM for each method. The mean (±standard deviation, SD) MAE, PSNR, 
SSIM for each of the methods are listed in Table 5. T1, T1 Masked, T2, 
and T2 Masked models scored 79.51 ± 33.42 HU, 62.65 ± 30.72 HU, 
76.51 ± 18.41 HU, and 61.87 ± 22.58 HU on MAE, respectively. PSNR 
values were 23.62 ± 2.35 (dB), 26.95 ± 3.38 (dB), 23.43 ± 1.00 (dB), 

Fig. 3. Schematic workflow of the proposed CycleGAN. The upper panel of the figure depicts the training phase and architecture of the generators and discrimi
nators. The lower panel depicts pCT generation using test patients and predicted images evaluation. 

Table 4 
Performance of models using MSE and BCE loss functions on imaging endpoint 
metrics, including MAE, PSNR, and SSIM. HU= Hounsfield unit; dB = decibels.   

T1 Model (MSE) T1 Model (BCE) 

MAE (HU) 79.51 ± 33.42 85.44 ± 31.02 
PSNR (dB) 23.62 ± 2.35 22.01 ± 1.38 
SSIM 0.84 ± 0.06 0.82 ± 0.07  
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and 27.05 ± 2.25 (dB), respectively. Ultimately, these models scored 
0.84 ± 0.06, 0.87 ± 0.05, 0.81 ± 0.04, 0.84 ± 0.05 on SSIM. 

Fig. 5 provides visual comparison of real and predicted pCTs by T1 
and T1 Masked models in axial, sagittal, and coronal planes. The same 
information is provided in Fig. 6 for T2 and T2 Masked models. The 

patients presented in Fig. 6 for T2 and T2 Masked model correspond to 
an outlier and best achieved performance of the model, respectively. The 
results of the Wilcoxon test which assessed the influence of CT Masker by 
comparing T1 and T2 Masked and T2 and T2 Masked models for all 
metrics (p < 0.0001) are reported in Table 6. The findings of the Wil
coxon test comparing the quality of generated pCTs based on T1-and T2- 
weighted images are summarized in Table 7. Although the violin plots 
shown in Fig. 4 and imaging metrics summarized in Table 5 may seem to 
suggest that T2 sequence would slightly be a better option, statistical 
tests categorically refute this assumption since there is no meaningful 
differences between them. 

The training of CycleGAN is somehow different from conventional 
deep learning models. Considering the adversarial training concept 
behind GANs, generator and discriminator are trained competitively, if 
either of them outcompete the other one, the training process would not 
be successful. Moreover, an ideal training should not have large varia
tions in training metrics; otherwise, it is an indicator of failed training. 
The model was trained on an NVIDIA GeForce GTX 1080 GPU. On 
average, the model took 5.5 seconds to generate pCT images for each 
patient, which is very fast and suitable for deployment in clinical setting 

Fig. 4. Violin plots represent interquartile range and median of errors for MAE, PSNR, and SSIM calculated on the test set for the each model.  

Table 5 
Imaging endpoint metrics, including MAE, PSNR, and SSIM for the validation 
and test sets. T1/T2 = trained CycleGAN without CT Masker; T1/T2 Masked =
trained CycleGAN with CT Masker; HU= Hounsfield unit; dB = decibels.   

T1 T1 Masked T2 T2 Masked 

MAEval (HU) 80.11 ±
29.10 

60.47 ±
34.65 

75.00 ±
20.00 

66.04 ±
19.00 

MAEtest 

(HU) 
79.51 ±
33.42 

62.65 ±
30.72 

76.51 ±
18.41 

61.87 ±
22.58 

PSNRval (dB) 23.06 ± 1.85 26.90 ± 3.26 23.63 ± 1.04 27.10 ± 2.48 
PSNRtest 

(dB) 
23.62 ± 2.35 26.95 ± 3.38 23.43 ± 1.00 27.05 ± 2.25 

SSIMval 0.84 ± 0.07 0.88 ± 0.05 0.83 ± 0.07 0.82 ± 0.03 
SSIMtest 0.84 ± 0.06 0.87 ± 0.05 0.81 ± 0.04 0.84 ± 0.05  
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[19]. Fig. 7 shows the training loss of CycleGAN. 

4.2. Dosimetry analysis 

There was no statistically significant differences between T1 and T2 
images for the generation of pCT images. Therefore, the generated pCT 
images of the test set using T1 model was used for dosimetric assess
ment. Two patients with significant model failure depicted as outliers 
were excluded from the dosimetric comparison. Although few artifacts 
were noticed in some slices using T1 model, the dosimetric analysis was 

performed by avoiding the intersection between the beam and the ar
tifacts. The mean dose differences (Mean ± SD) in PTV for the mean 
dose, minimum dose, maximum dose, D90, and D10 were (0.61 ± 0.6)%, 
(− 1.744 ± 1)%, (0.5 ± 0.45)%, (− 0.943 ± 0.9)%, and (− 0.3 ± 0.3)%, 
respectively. The mean absolute dose differences (Mean ± SD) in the 
PTV for mean dose, minimum dose, maximum dose, D90, and D10 were 
(0.93 ± 0.40)%, (2.07 ± 0.33)%, (1.31 ± 0.39)%, and (0.71 ± 0.23)%, 
respectively. These metrics are shown in Table 8 for the other structures. 
The comparison of dose differences showed good agreement with actual 
CT images for various organs. Mean gamma pass rate of 1 mm/1%, 2 

Fig. 5. Visual representation of model performance for T2-weighted MR images with and without CT Masker. From left to right: input MR images, pCT, actual CT 
image, and absolute difference map (CT-pCT). 
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Fig. 6. Visual representation of model performance for T2-weighted MR images with and without CT Masker. From left to right: input MR images, pCT, actual CT 
image, and absolute difference map (CT-pCT). Note that the depicted patient for the T2 model is an outlier whereas the depicted patient for T2 Masked model reflects 
the best performance of the model. 

Table 6 
Statistical Wilcoxon signed-rank two-sided test performed for T1 vs. T1 Masked 
and T2 vs. T2 Masked models to evaluate the contribution of the proposed CT 
Masker.  

Wilcoxon T1 T1 Masked T2 T2 Masked 

MAE p-value <0.0001 <0.0001 
PSNR p-value <0.0001 <0.0001 
SSIM p-value <0.0001 <0.0001  

Table 7 
The quality of generated pCTs by T1 vs T2 and T1 Masked vs T2 Masked models 
was assessed using statistical Wilcoxon signed-rank two-sided test to analyze the 
suitability of T1 and T2 weighted images for pCT generation.  

Wilcoxon T1 T2 T1 Masked T2 Masked 

MAE p-Value 0.045 0.600 
PSNR p-Value 0.070 0.543 
SSIM p-Value <0.0001 <0.0001  
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mm/2%, 3 mm/3% criteria with 10% dose threshold were 90.1% ±
6.05%, 95% ± 3.68%, 98.96% ± 1.1%, respectively. The upper panel of 
Fig. 8 depicts DVH differences for a representative patient. The treat
ment plan and Gamma map of the same patient are shown in the lower 
panel of Fig. 8. 

5. Discussion 

In the present study, we developed a novel and fast pCT generation 
method based on a CycleGAN architecture using heterogeneous multi
center datasets for brain tumor patients. Regarding the computation 
time needed to provide paired datasets without missing alignments be
tween MR and CT images, the CycleGAN model would be a better and 
practical choice compared to other architectures. The model selection 
was based on previous works reporting the superiority of GANs, 
particularly CycleGAN. For instance, Kearney et al. [28] compared U-net 
and CycleGAN architectures and concluded that the later significantly 
outperformed the former. Emami et al. [29] reported the superiority of 
GAN over CNN. More importantly, CycleGAN is the model of choice 
because of its ability to work with heterogeneous (unpaired) data. In this 
study, we challenged the homogenous radiotherapy workflow by 
acquiring extremely diverse data sets. The inhomogeneity was intro
duced in every aspect to CycleGAN, i.e. scanners, T1-and T2-weighted 
images, MR sequences, voxel sizes, post/pre-operative radiotherapy 
patients, patient position on the couch, etc. Considering the above 
conditions, conventional deep learning models would not be an optimal 
choice for this complex scenario. This motivated us to opt for 

unsupervised learning. Supplementary Table 1 compares the image 
quality metrics, dose differences, and gamma pass rates with previous 
studies. 

Models’ performance was assessed by pixel-wise imaging and dosi
metric endpoints. Although almost all previous research and clinical 
studies used T1-weighted MRI sequences for the brain [2], there is no 
preferred MR sequence for pCT generation purpose, which is consistent 
with our findings (p > 0.05) in Table 7. CycleGAN with nine residual 
blocks, two downsampling, and two upsampling blocks, achieved the 
best performance over other hyperparameter choices. The better per
formance of CycleGAN using MSE loss function is in agreement with 
Mao et al. [30]. MR images were rigidly registered to CT scans in order 
to provide aligned images to the CycleGAN. The motivation behind 
registration was to ease the training for the CycleGAN to concentrate on 
other important variations and advanced features present in the dataset 
for the sake of generalizability by reducing the simple variations in the 
preparation step as much as we could and benefit from the whole ca
pacity of the models. Anyway, the CycleGAN benefited from unsuper
vised loss function term. 

The qualitative comparison of pCT images generated with and 
without the applied CT Masker (Supplementary Figs. 1 and 2) shows that 
removing the headrest and fixator significantly contributes to higher 
pCT image quality, which is revealed by the statistical tests (Table 6). 
Since the images were collected from different hospitals with various 
scanners and acquisition settings, such as, couches, headrests, …etc, this 
tended to confuse the models by focusing on features that introduced 
artifacts randomly in some slices (shown in Supplementary Figs. 1 and 
2). While removing outer objects (containing no useful information) is 
the potential approach to achieve good quality pCTs, in practice their 
presence is mandatory. Hence, the masked structures could be added to 
pCT at the end to address this issue. Although various masking algo
rithms were developed, known as skull stripping tools, they are not 
appropriate for pseudo CT generation. Previously developed algorithms 
were dedicated for brain tissue extraction without paying attention to 
outer structures. Yet, in pCT generation for radiotherapy, bony struc
tures are crucial for accurate dose calculation. Therefore, we have 
developed a new method suitable for this application. The proposed CT 
masker not only improved pCT overall quality but also was promising in 
blurring reduction which was addressed in previous studies [2]. 

Although CT Masker contributed to improve the quality of the 
generated pCTs, we performed a dosimetric validation using T1 model 
without CT Masker to assess the clinical performance of the worst model 
and ensure whether it is within the acceptable range of clinical dosi
metric uncertainties. Considering 3% error as an acceptable range in 
clinical setting, even the worst model would meet current standards. 
Given the evident contribution of CT Masker, better clinical dosimetric 
performance is expected for the models trained using CT Masker. 
However, future work will focus on the development of a deep learning- 
based CT masking model and perform a dosimetric validation for deep 
learning enabled masked models. The dosimetric evaluation performed 
for T1 was in agreement with previous studies [31]. Fig. 8 (upper panel) 
shows DVH differences for a patient where lower performance was 
achieved in terms of pCT generation in air bone interface (i.e. nasal 
cavity). While PTV, left eye, right eye, external structures, and 
pseudo-OAR2 show good agreement, there was a discrepancy in 
pseudo-OAR1 dose values. The pseudo-OAR1 dose values variation in 
this patient could be assigned to the lower performance of model in the 
corresponding region. 

Compared with previous works, such as Kearney et al. [28] their 
attention aware CycleGAN (A-CycleGAN) trained with 90 resampled 
and normalized [0, 1] image volumes scored better in terms of MAE and 
PSNR. However, our CycleGAN model scored better on SSIM and 
generated comparable and even better pCTs visually. Wang et al. [32] 
achieved MAE of 131 ± 24 for the overall region using U-net trained 
with rigid and deformable registration followed by histogram matching. 
Their images suffered from blurring in air-bone interfering structures. 

Fig. 7. Generators and discriminators adversarial training loss for 100 epochs.  

Table 8 
Mean absolute differences and mean differences for T1 model between some key 
DVH dosimetric points with respect to those calculated based on CT scans. * 
Wilcoxon test compared the dosimetric metrics between pCT and CT images. P- 
values for all metrics was insignificant. Note. D90% and D10% are defined as the 
minimum dose absorbed by 90% and 10% of volume, respectively.  

Structure Mean 
dose 

Min dose Max dose D90% D10% 

Average dose discrepancies mean ± SD (range) (%) (p-Value) 
PTVME 0.61 ±

0.60 
− 1.74 ±
1.0 

0.50 ±
0.45 

− 0.94 ±
0.90 

− 0.30 ±
0.30 

PTVMAE 0.93 ±
0.40 

2.07 ±
0.33 

0.72 ±
0.18 

1.31 ±
0.39 

0.71 ±
0.23 

Right 
EyeME 

0.20 ±
0.20 

0.10 ±
0.10 

0.20 ±
0.20 

0.15 ±
0.10 

0.17 ±
0.20 

Right 
EyeMAE 

0.29 ±
0.12 

0.18 ±
0.08 

0.28 ±
0.13 

0.21 ±
0.06 

0.21 ±
0.11 

Left EyeME 0.30 ±
0.20 

0.1 ± 0.20 0.29 ±
0.30 

0.30 ±
0.20 

0.27 ±
0.30 

Left EyeMAE 0.38 ±
0.18 

0.21 ±
0.11 

0.37 ±
0.20 

0.43 ±
0.16 

0.33 ±
0.22  
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Liu et al. [14] used 40 patients to train deep CNN model with rigid 
(Euler) and non-rigid (B-spline) transformations and assessed the quality 
of pCTs in VMAT planning. They tested their model on 10 patients and 
reported 75 ± 23 HU for MAE and 99.2% for 3%/3 mm gamma pass rate. 
Kazemifar et al. [22] used 70 patients resampled (equalized pixel and 
voxel spacing) data to train a GAN model and validate synCTs using 
VMAT. Their model averagely scored 48 HU for MAE, 98.7% ± 1.1% for 
2%/2 mm and 93.6% ± 3.4% for 1%/1 mm gamma pass rates. Although 
their model scored lower in MAE, the visual quality of the generated 
images and the dosimetric metrics (0.61% compared to 0.7% mean dose 
and 0.5% compared to 0.6% maximum dose) were in agreement or even 
better. 

There are two issues with some image quality metrics used for 
evaluation. The most important drawback of MAE is the lack of gold 
standard against which the results are to be compared, which might 
compromise its interpretability. Second, it is not clear if an increase in 
either of the metrics, such as MAE, would change the dose distribution. 
Addressing this issue would be quite challenging owing to differences in 
dose calculation algorithms and treatment modalities. However, as a 
simple comparison with previous studies, the worst and best reported 
MAE were 150 HU and 20 HU, respectively. Considering the heteroge
neity of the dataset, the reported metric is quite reasonable. The DVH 

discrepancies are within the accepted range of 3% in radiation therapy, 
where more than 95% of the pixels passed a gamma index of 3% and 3 
mm DTA (TG 119) [33]. Moreover, previous studies have shown sig
nificant variations in imaging metrics, which could be due to the 
different training data sets as well as models’ non-repeatability. Due to 
ethical issues, patients’ data sharing is not allowed to achieve consensus 
and objective comparison. Hence, two machine learning-based solu
tions, referred to as Federated learning [34] and reproducibility in deep 
learning [35] should be incorporated into pCT generation as well as 
other applications of AI in medicine. Federated learning introduced by 
google in 2016 [36] enables training models with decentralized data. As 
noted by Edmund et al. [2] in a previous review article, presently 
available performance metrics, such as MAE, do not embody the clinical 
endpoints. Hence, the development of objective metrics is needed. 
Considering the above-mentioned facts, dosimetric comparison is 
crucial. Currently, the best approach for comparing the results would be 
to focus on dosimetric metrics with respect to treatment modality and 
dose calculation algorithm. 

As suggested by previous studies, we have resized initial 512 × 512 
images to 256 × 256 matrix size. Converting back to the original size 
and comparing preprocessed CT volumes with reference CT volumes for 
each patient clarified that resizing as expected introduced dummy data 

Fig. 8. Representative patient with a tumor in the right temporal brain lobe showing in the upper panel similar isodose curves between CT (solid line) and pCT 
(dashed line). In addition, simple geometrical structures were contoured at various sites, named pseudo-OAR1 and pseudo-OAR2. In the lower panel of the figure, the 
generated plan on CT and pCT is presented. The Gamma index map for this patient is also depicted. 
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and consequently decreased pCT generation accuracy and treatment 
outcome. Nonetheless, training deep learning models with the original 
image size may be more precise. It is accompanied with higher 
computational costs, demanding GPUs with higher computational 
capability. To the best of our knowledge, we used the most heteroge
neous data set consisting of 87 patients with T1-weighted and 102 pa
tients with T2-weighted images. We employed T1 and T2 images 
comprising a wide range of MRI sequences and corresponding diverse 
CT scans from three radiation therapy centers. Altogether, images from 
more than twenty scanners were included in this study. Considering the 
wide range of CT and MRI acquisition parameters listed in Tables 1–3 
and Fig. 1, the proposed method is promising in handling multicentric 
datasets. This ensures that the model is highly generic besides resulting 
in acceptable performance. 

In addition, to the best of our knowledge, this is the first study 
implementing MRI-only radiotherapy in 3DCRT with correction-based 
ETAR dose calculation method since previous studies focused on 
intensity-modulated radiotherapy and volumetric modulated arc ther
apy with pencil beam, Monte Carlo, …etc. Future studies should 
investigate the validity of pCTs in tomotherapy with collapsed cone al
gorithm as a more accurate dosimetric approach. Although intensity 
correction is one of the rational and usual steps in medical image pro
cessing, Andres et al. [37] reported no improvement in dose metrics over 
models not incorporating any correction. In addition, comparing su
pervised models [37] with our unsupervised cycleGAN, it seems logical 
to expect the CycleGAN to handle intensity variations. 

There are some outliers for the test dataset in each model, some of 
them are depicted in Supplementary Figs. 3 and 4 for each model. 
Despite the generalizability of the model, these model failures on rare 
data warns unconscious use in the clinic. The trained model had biases 
for some MRI systems and sequences. This can be attributed to two 
potential reasons. First and foremost, insufficient training of images 
from a specific scanner or sequence. Second, the presence of data orig
inating from one or more inconsistent scanners/sequences with the rest 
of the datasets. The significant and wide range of discrepancies in voxel 
size of the initial MR images may hinder models’ convergence and 
optimal update of weights and biases in neural networks to some extent. 
In this regard, the most important issue is combining several MR im
aging protocols (for clinical and diagnostic purposes), which would alter 
the quantitative characteristics of images selectively in each anatomical 
region (tissue-based variation), e.g. white matter, gray matter, CSF, and 
air. This tissue-based variation seems to be challenging in pCT genera
tion process. For instance, one patient scanned on the Genesis Signa 
using the FLAIR FIL protocol is presented as an outlier for the T2 model. 
This is a good example reflecting changing the protocol and lack of 
training data. Although there are some patients scanned with FLAIR and 
FIL protocols separately in the training data set, the lack of combination 
of these images seems challenging for the deep learning model. 

Accordingly, analyzing the test results, the prospective challenges of 
feeding new data to the CycleGAN, from the easiest to the most chal
lenging cases, could be sorted out as follows. First, working with new 
tumor sizes and types. Second, starting with same sequences from a new 
scanner model. In this case, there would be either slight overestimation 
or underestimation in electron density prediction. Third, inputting 
rarely seen MR images. Likewise, unseen MR protocols that resemble the 
training datasets, for instance, training with either T2 or T2-Gd and 
inputting the other one in the test phase. Forth, handling MR images 
with completely different train and test protocols. Last, MR protocols 
with relatively new acquisition parameters, and the combination of 
different protocols. 

Adversarial training loss of the generator and discriminator are 
depicted in Fig. 7. The training of CycleGAN is different from conven
tional deep learning models. Considering the adversarial training 
concept behind GANs, the generator and discriminator are trained 
competitively, if either of them outcompete the other one, the training 
process would not be successful. Moreover, an ideal training should not 

have large variations in training metrics; otherwise, it is an indicator of 
failed training. Even though we have used axial slices as inputs and then 
sagittal and coronal planes were post generated using transverse planes, 
future studies should use either each or all other planes as inputs and 
even determine the best orthogonal plane for this task. Considering the 
errors present in soft-tissue, future studies could be devised to incor
porate deep learning-based segmentation of CT images into bone, air, 
and soft-tissue to feed the network. Stacking each image with the cor
responding Sobel filter to detect edges may be a practical solution to 
increase the accuracy in different tissue interferences. The small sample 
size and the lack of external validation dataset is one of the limitations of 
this study. We wished to have access to an independent dataset to 
objectively validate the results. Unfortunately, we had no access to extra 
datasets. However, we split the dataset and kept the test set unseen 
during modelling to reduce possible errors/biases. 

6. Conclusion 

A promising CycleGAN-based pCT generation algorithm was pro
posed which is capable of handling multicenter imaging datasets. All MR 
sequences performed competitively with no significant difference in pCT 
generation. The proposed CT Masker proved to be promising in 
improving the model’s accuracy and robustness. 
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