
 

 

 University of Groningen

Studying dimerization of Roco proteins in living cells
Nederveen-Schippers, Laura

DOI:
10.33612/diss.207599709

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Nederveen-Schippers, L. (2022). Studying dimerization of Roco proteins in living cells: a tool to better
understand Parkinson's Disease. [Thesis fully internal (DIV), University of Groningen]. University of
Groningen. https://doi.org/10.33612/diss.207599709

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-09-2023

https://doi.org/10.33612/diss.207599709
https://research.rug.nl/en/publications/308c4136-f987-48ff-a68d-1d6aad4e727e
https://doi.org/10.33612/diss.207599709


STUDYING DIMERIZATION OF 
ROCO PROTEINS IN LIVING CELLS 
A tool  to better  understand Park inson’s Disease

Laura Nederveen-Schippers



About the cover: This is a schematic representation of a focused light beam with in the 
middle the confocal volume, illuminating a sample containing monomeric and dimeric 
LRRK2 proteins. As LRRK2 is linked to Green Fluorescent Protein (not drawn), protein 
molecules entering the blue light beam emit green light and have therefore been given 
a green color in this cartoon. Protein structures of LRRK2 have been published by 
Mayasnikov et al. (2021) Cell 184: 3519. For this thesis these were retrieved from the 
RCSB Protein Data Bank (PDB 7LHW and 7LHT) and formatted in PyMOL to create 
high resolution images viewed from different angles. The seize of the molecules on the 
cover is not to scale.

The research described in this thesis was carried out at the Department of Cell 
Biochemistry of the Groningen Biomolecular Sciences and Biotechnology institute 
(GBB) of the University of Groningen, and was funded by a Vidi grant from NWO, 
awarded to Prof. Arjan Kortholt.

Cover design: 	 Ilse Modder  |  www.ilsemodder.nl
Layout design:	 Ilse Modder  |  www.ilsemodder.nl
Printed by: 	 Gildeprint Enschede  |  www.gildeprint.nl

© 2022 Laura M. Nederveen-Schippers. All rights reserved. No part of this publication 
may be reproduced, stored in a retrieval system, or transmitted, in any form or by 
any means, electronic, mechanical, photocopying, recording, or otherwise, without the 
prior permission in writing from the proprietor.



 

Studying dimerization of Roco 
proteins in living cells

A tool to better understand Parkinson’s Disease 
 
 
 
 

Proefschrift 
 
 
 
 

ter verkrijging van de graad van doctor aan de 
Rijksuniversiteit Groningen

op gezag van de
rector magnificus prof. dr. C. Wijmenga

en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

dinsdag 5 april 2022 om 16.15 uur

door
 
 

Laura Myrna Schippers

geboren op 17 december 1988
te Leeuwarden



Promotores
Prof. dr. P.J.M. van Haastert
Prof. dr. A. Kortholt

Beoordelingscommissie
Prof. dr.  G. van den Bogaart	
Prof. dr.  A.J.M. Driessen	
Prof. dr.  C. Beta	



Table of Contents

Abbreviations	

Chapter 1	 Introduction: The unconventional G-protein cycle of 
		  LRRK2 and Roco proteins
		  Aim of the thesis					  
	
Chapter 2	 A homologue of the Parkinson’s disease-associated 
		  protein LRRK2 undergoes a monomer-dimer transition 
		  during GTP turnover		

Chapter 3	 Complex analysis of fluorescence intensity fluctuations of 
		  molecular compounds

Chapter 4	 Combined FCS and PCH analysis to quantify protein 
		  dimerization in living cells

Chapter 5	 Using Brightness and Diffusion Global Analysis to study 
		  the dimerization of Parkinson’s Disease-related Roco 
		  proteins in living Dictyostelium and HEK293 cells

Chapter 6	 Summary and Discussion	

Addendum	 Nederlandse samenvatting
		  Acknowledgements
		  List of publications
		  Curriculum vitae
		

9

11

25

55

71

111

147

158
164
168
169





Abbreviations

PD				    Parkinson’s disease
LRRK2			   Leucine rich repeat kinase 2
Roco4			   Roc-of-complex proteins 4
FKBP12			  FK506 binding protein 12
GFP			   green fluorescent protein
diGFP			   tandem-dimer GFP
Roc 			   Ras of complex proteins
COR			   C-terminal of Roc
GAD			   G-proteins activated by nucleotide dependent dimerization
GEF			   G-nucleotide exchange factor
GAP 			   GTPase activating protein
GDP 			   Guanosindiphosphate
GTP			   Guanosinetriphosphate
GppNHp		  5’-Guanylyl imidodiphosphate
Ct			   Chlorobium tepidum
Mb 			   Methanosarcina barkeri
Hs			   Homo sapiens
Dictyostelium		  Dictyostelium discoideum
HEK cells		  Human embryonic kidney cells	
SEC			   size exclusion chromatography
SAXS			   small angle X-ray scattering 
MALS 			   multi-angle light scattering 
MS 			   native mass spectrometry
AUC 			   analytical ultracentrifugation
EM 			   electron microscopy
FFS			   fluorescence fluctuation spectroscopy
FCS			   fluorescence correlation spectroscopy
FIDA			   fluorescence intensity distribution analysis
PCH			   photon counting histogram
ACF			   autocorrelation function
PCD			   photon counting distribution
PCA			   principle component analysis
BDGA			   brightness and diffusion global analysis
SD			   standard deviation
CI			   confidence interval
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Abstract

Mutations in the human Leucine- Rich Repeat Kinase 2 (LRRK2) are the most frequent 
cause of hereditary Parkinson’s Disease (PD). LRRK2 belongs to the Roco family of 
proteins, which are characterized by the presence of a Ras-like G-domain (Roc), a 
C-terminal of Roc domain (COR), and a kinase domain. Despite intensive research 
much remains unknown about activity and the effect of PD associated mutations. 
Recent biochemical and structural studies suggest that LRRK2 and Roco proteins are 
non-canonical G-proteins that do not depend on Guanine nucleotide exchange factors 
(GEFs) or GTPase activating proteins (GAPs) for activation. In this review we will discuss 
the unusual G-protein cycle of LRRK2 in the context of the complex intramolecular 
LRRK2 activation mechanism.

Keywords
Leucine- Rich Repeat Kinase 2 (LRRK2), Roco proteins, G-proteins activated by 
nucleotide dependent dimerization (GAD), Parkinson’s disease
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Introduction

One of the most frequently mutated genes in hereditary PD is LRRK2 [1]. LRRK2 is 
a large, ~280 kD, multi-domain protein and belongs to the Roco family of complex 
proteins [2]. The catalytic core region consists of a Ras-of-complex proteins (Roc) 
G-domain, a C-terminal-of-Roc (COR) dimerization domain and a kinase domain. This 
region is flanked by protein-interaction domains: armadillo repeats (ARM), ankyrin 
repeats (ANK), a leucine rich repeats (LRR) at the N-terminus, and a WD40 repeat 
domain at the C-terminus [3]. One of the major challenges is that despite a vast amount 
of research on LRRK2 was conducted in the past years, the cellular and pathological 
functions are largely unknown. Several auto-phosphorylation sites within LRRK2 have 
been identified [4,5], however for a long time no other kinase substrate could be 
validated. Importantly, Steger et al. [6] recently identified a subgroup of Rab proteins 
as the first bona fide kinase substrate. Another caveat to study LRRK2 on a molecular 
level was the lack of reasonable amounts of high quality purified protein. Initially, our 
work with related Roco proteins from lower organisms provided the first important 
progress in the structural understanding of LRRK2. In the meanwhile Guaitoli et al. [7] 
are now able to purify the full-length protein, so more insights are to be expected. 

PD-linked mutations in LRRK2 are found in nearly every domain, but are primarily located 
in the catalytic core of the protein (RocCOR-Kinase) [8]. Several of the PD-mutations 
have been linked to a decrease in GTPase and/or an increase in kinase activity [9–19]. 
However, it is not well understood how LRRK2 activity is regulated and how mutations 
in nearly every domain of the protein can alter the protein activity and function. Several 
lines of evidence suggest that the nucleotide binding state (GDP/GTP) of the Roc 
domain influences the kinase activity [9,20,21], and auto-phosphorylation by the kinase 
domain influences the GTPase activity of the Roc domain [22,23]. In this review we 
focus on the recent progress in the biochemical and structural characterization of the 
G-domain of LRRK2 and related Roco proteins and discuss the implications for the 
LRRK2 activation mechanism. 

The Roc domain cycle is non canonical

The Roc domains of Roco proteins are homologous to proteins of the Ras superfamily 
and always appear in tandem with the COR domain. Like other G-Proteins, LRRK2 Roc 
is able to cycle between a GDP-bound state and a GTP-bound state [24]. Classical 
G-proteins depend on guanine nucleotide exchange factors (GEFs) for their GDP/GTP 
exchange because of their high affinity to the nucleotide and slow dissociation (Figure 
1A). For example, the nucleotide dissociation of H-Ras (2 * 10-5 s-1) is accelerated by 
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105 fold by its GEF Cdc25 (3.9 s-1) [25]. A number of studies have found that Roco 
proteins have a relatively low affinity for nucleotides (in the µM range), as well as a fast 
dissociation of nucleotides [16,20,26–28]. Recently Rudi et al. [11] performed GTP 
binding assays with purified human LRRK2 Roc-COR-kinase fragments and measured 
a Km of 343  μM, indicating that also LRRK2 has a low nucleotide affinity. The Roc 
domain alone has a nucleotide affinity of 553 µM [16]. These findings suggest that 
Roco proteins including LRRK2 do not need GEFs for their nucleotide exchange. The 
thus far only reported GEF for LRRK2, ARHGEF7 [29], has only a minor effect on 
nucleotide exchange and does not directly bind to the Roc domain, suggesting that it 
does not act as a classical GEF for LRRK2. 

Figure 1: Classical (A) and proposed (LRRK2) RocCOR (B) G-protein cycle. The Arginine finger is 
highlighted in red. (GAP: GTPase activation protein; GEF: Guanine-nucleotide exchange factor; GTP: 
Guanosine-triphosphate; GDP: Guanosine-diphosphate; Pi: free inorganic phosphate; Roc: Ras of 
complex proteins; COR: C-terminal of Roc.)

The hydrolysis of GTP by conventional G-Proteins is stimulated by GTPase activating 
proteins (GAPs). The intrinsic GTPase activity is usually limited by the lack of catalytic 
residues or a non-optimal conformation. Often, the missing residue is an arginine which 
is then provided by the GAP (Arg-finger, Figure 1B) [24]. However, some G-proteins 
possess all required catalytic residues but need the GAPs to stabilize the catalytic 
machinery and the transition state of the hydrolysis reaction. Ran and RanGAP1 
are such an example: Ran provides the catalytic residues, but requires RanGAP1 to 
position the catalytic glutamine correctly [30]. 

Roco proteins and LRRK2 can form dimers via the C-terminal subdomain of the COR 
domain. In 2008, the dimeric structure of the RocCOR tandem from Chlorobium tepidum 
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(Ct) was solved by Gotthardt et al. [26]. Moreover our recently published structural 
model of full-length LRRK2 [7] and pull-down experiments with various truncated 
LRRK2 constructs [28] confirmed that the C-terminus of COR is most likely the most 
important dimerization interface (also reported in [31]). However, in addition several 
other LRRK2 domain-domain interaction have been identified that might contribute to 
the stability and activity of the LRRK2 dimer [7,32]. Dimeric LRRK2 has a hydrolysis 
rate that is significantly faster than that of monomeric Roc domain (RocCOR-Kinase: 
kcat = 48 s-1, [11]; Roc: kcat = 1.2 s-1 [16]). Similarly, Roco proteins from lower organisms, 
such as Mechanosarcina barkeri (Mb) and Ct, also depend on dimerization (reviewed 
by Gilsbach et al. [33], [26]) and have a rather high intrinsic hydrolysis when dimerized. 
A truncated monomeric form of Mb Roco hydrolyses GTP significantly slower than 
the dimeric RocCOR construct [28]. Our structural studies suggested that the active 
site of one protomer is complemented by a residue from the other protomer [26,28]. 
Consistently, mutating the corresponding arginine in both prokaryotic Roco proteins 
impairs GTP hydrolysis [26,28]. 

Together this suggests that Roco proteins including LRRK2 belongs to the GAD 
(G-proteins activated by nucleotide dependent dimerization) class of molecules. 
The COR domain allows formation of a stable dimer, while Roc dimerization enables 
complementation of the active site and the subsequent hydrolysis of GTP to GDP and 
inorganic phosphate. Binding of effector or GTPase co-regulators, including ARHGEF7 
[29], ArfGAP1 and RGS2 [21,34,35] might modulate the hydrolysis reaction. 

The role of the Roc domain in LRRK2 activity and 
function

So far it remains to be determined if the kinase, the Roc domain or both regulate the 
output signal of LRRK2 [13,17,36]. Nevertheless the Roc, COR and kinase domains 
and their associated activities appear to be the key players in regulating LRRK2 function 
[37]. There is clear evidence that the LRRK2 R1441H/G/C mutations have reduced 
GTPase activity [16–19] and in addition some studies suggest that these mutations also 
result in increased kinase activity in vitro [9,17]. Furthermore, it has been consistently 
and independently shown by several different groups that the kinase activity of LRRK2 
is dependent on the guanine nucleotide binding capacity of the Roc domain. Disruption 
of nucleotide binding results in reduced kinase activity of LRRK2 [20,38–40]. However, 
it is not entirely clear if the nucleotide state of the Roc domain influences kinase activity. 
For canonical G-proteins, the GDP-bound state is the inactive state and the GTP-
bound state is active. In the GDP-state the switch regions are flexible and cannot be 
recognized by effectors [24], while in the active GTP-state the switch regions bind 
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to the γ-phosphate of the nucleotide and thereby adapt distinct conformations that 
are recognized by effectors. Liao et al. [16] suggested that also the GTP bound form 
of Roc domain is the active conformation that can stimulate LRRK2 kinase activity, 
either through direct binding via the switch regions or indirectly via conformational 
change in the protein [16]. In contrast, several other studies showed that LRRK2 kinase 
activity did not change upon addition of GDP, GTP, or non-hydrolysable GTP analogues 
[40,41], while others suggested that an intermediate state during hydrolysis presents 
the active state of LRRK2 [11,21]. In the latter case this would imply that, similar to the 
GAD protein MnmE [42], the G-protein needs to cycle between the GTP bound and 
GDP bound state in order to be able to fully activate the kinase. In MnmE, dissociation 
of the G-domain induces major conformational changes that drive the function of the 
protein. Rudi et al. [11] could show that within the dimer the flexibility of the Roc domain 
differs depending on the nucleotide bound, but that there are no major conformational 
changes. This might suggest that stabilization of a specific conformation, rather than 
major structural rearrangements, stimulates the activity of Roco proteins [11]. Recent 
data suggest that the cross-talk between the G-domain and kinase domain might be 
mediated by the N- and/or C-terminal domains of LRRK2 [7]. The first structural model 
for full-length LRRK2 implies that the protein has a very compact folding in which both 
the N-terminus and C-terminus are in close proximity to the kinase domain. 

Recently it was shown that the Roc domain not only regulates the kinase domain, 
but that vice-versa the kinase domain also regulates the LRRK2 G-protein cycle. 
Mutants with increased kinase activity have normal GTP binding affinity [9,10,13,14], 
but reduced GTPase activity [41], while mutants with reduced kinase activity have 
increased GTPase activity [43]. In contrast to that, Taymans et al. [40] found that LRRK2 
auto-phosphorylation of residues within the Roc domain increases the GTP-binding 
and thereby the activity of the Roc domain, suggesting that Roc functions downstream 
of the kinase domain [40]. Also, Webber et al. [22] found that auto-phosphorylation in 
the Roc domain stabilizes the GTP bound state and speculated that the two catalytic 
domains stimulate each other via a feed-forward loop, in which the domains are both 
upstream and downstream of each other. 

Effect of PD-mutations in the G-domain and 
therapeutic opportunities

Four of the common LRRK2 mutations that were shown to segregate with PD are located 
in the RocCOR domain: R1441H/G/C and Y1699C. The R1441H/G/C substitutions 
were found to prolong the active GTP-bound state of the Roc domain by reduction 
of the GTPase activity [11,16–19] and by a 2-fold increase in GTP binding affinity [16]. 
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Daniëls et al. [44] could show that the Y1699C mutation resulted in a stronger RocCOR 
interaction along with a weaker COR-COR dimer interaction and reduced GTPase 
activity. Structural studies with prokaryotic Roco protein revealed that both mutations are 
located in the conserved hydrophobic cleft between the Roc and COR domain [26,28]. 
Rudi et al. [11] investigated the dynamic changes in conformations upon mutation in 
the Ct RocCOR tandem model in more detail and could show that the dynamics of the 
Roc domain changes. They postulated that these changes in dynamics influence the 
RocCOR interface and thereby the GTP hydrolysis reaction [11].

Since PD-mutations in the Roc and COR domain have been linked to reduced GTPase 
activity, the G-domain might represent a good therapeutic target. Developing GTPase 
inhibitors may be of special interest, since most of the identified LRRK2 specific kinase 
inhibitors seem to have dramatic side effects in primates and rodents [45–47]. Targeting 
the G-domain could be done by using small compounds that increase the GTPase 
reaction or bind to the nucleotide binding site to block the G-protein cycle. It has 
been a major challenge to identify such compounds for the canonical G-protein Ras. 
However, since LRRK2 has a much lower nucleotide affinity and the GTPase activity 
most likely is regulated by dimerization, the non-canonical LRRK2 G-domain may 
provide a better therapeutic target. In this perspective it is very promising that Li and 
colleagues [48] demonstrated a beneficial effect of inhibitors of LRRK2 GTP-binding, 
reducing degeneration in PD cell- and mouse-models. These inhibitors did not alter the 
activity of the kinase domain directly, but do target the activity of the full-length protein. 

Conclusions and Outlook

Based on the biochemical and structural data discussed in this review, we postulate 
a model for the activation mechanism of LRRK2 (Figure 2): LRRK2 can exist as a 
monomer in the cytosol and as an active kinase dimer/oligomer at the membrane [49]. 
Dimerization is mainly mediated via the COR domain. In this model, the Roc domain 
of one protomer can complete the catalytic site of the other Roc domain presumably 
via an arginine finger, thereby stimulating the GTPase activity. Thus only the dimeric 
protein at the membrane is able to complete the processive G-protein cycle, which 
might be required for optimal LRRK2 kinase activity. Because of the low nucleotide 
affinity of LRRK2, the nucleotide off rate is fast and there is no need for a GEF. Since 
the GTP concentration is approximately 10-fold higher than the GDP concentration 
[50] this also would imply that the monomeric LRRK2 protein in the cytosol is mainly 
GTP-bound. Additionally, auto-phosphorylation by the kinase domain may regulate the 
Roc domain activity [22]. Important questions that need to be answered include: how is 
oligomerization of LRRK2 regulated? Does the monomeric and presumable GTP-loaded 
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LRRK2 form has an additional cellular function? How does the Roc domain regulate 
kinase activity and ,vice versa, the kinase domain the GTPase activity? How does each 
PD-mutation interfere with these properties? And how can we therapeutically target 
LRRK2? To answer these questions and further understand the complex intramolecular 
LRRK2 activation mechanism, detailed biochemical data and high resolution structures 
of full-length protein and domain structures will be instrumental. 
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Figure 2: Schematic drawing of LRRK2 activation. When active as a dimer, the Roc domain does 
not need a GEF for nucleotide exchange and is able to hydrolyze GTP in the dimer. The kinase is also 
activated and can phosphorylate LRRK2 or its substrate(s). The kinase downstream targets are a 
subgroup of Rab proteins (possibly among others). Auto-phosphorylation might serve as a feed-
forward/-back loop to increase LRRK2 activity. 
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Aim of the thesis

Aim of this thesis is to develop and use techniques to study the dimerization of LRRK2 
in living cells. In Chapter 2 we demonstrate that dimerization is an integral part of 
the activation cycle of Roco proteins in vitro. While this work was done with purified 
proteins and cell lysate, measurements in living cells would shed light on the regulation 
of dimerization in a cellular context. However, measuring monomer-dimer equilibria 
in living cells is a challenging task, often involving low signal-to-noise ratios or two 
different fluorophores that are difficult to align. In chapter 3-5 of this thesis, we have 
exploited a technique called Fluorescence Correlation Spectroscopy (FCS), in order 
to distinguish single-color fluorescently labelled monomers from dimers at the particle 
level. In Chapter 3, a method was explored to analyze these FCS data without fitting 
the data to a theoretical model, but using a Principle Component Analysis (PCA) 
instead. In Chapter 4, a still more sophisticated and accurate methodology was 
developed, which we named Brightness and Diffusion Global Analysis (BDGA). BDGA 
enabled us to quantify the proportion of monomer and dimer, as was demonstrated 
by comparing monomeric GFP and dimeric diGFP in the amoeba Dictyostelium 
discoideum. In Chapter 5, BDGA was further adapted for the use of complex proteins, 
using Roco4 in Dictyostelium as a model Roco protein. A two-component analysis 
enabled us to distinguish freely diffusing monomeric particles from slowly diffusing 
oligomeric particles, which were likely vesicle/membrane bound. Finally, the developed 
methodology was applied to Parkinson’s Disease (PD)-related LRRK2, expressed in 
HEK293 cells. The obtained results are in agreement with the model that LRRK2 is 
monomeric in the cytosol and dimeric at membranes. As discussed in Chapter 6, the 
BDGA methodology developed in this thesis is now ready to be deployed to study the 
LRRK2 activation cycle in more detail, by exploring the influence of relevant mutations 
and upstream regulatory proteins, as well as dimerization modifying compounds, on 
the monomer-dimer equilibrium of LRRK2 in living cells.
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Abstract

Mutations in LRRK2 are a common cause of genetic Parkinson’s disease (PD). LRRK2 is 
a multi-domain Roco protein, harbouring kinase and GTPase activity. In analogy with a 
bacterial homologue, LRRK2 was proposed to act as a GTPase activated by dimerization 
(GAD), while recent reports suggest LRRK2 to exist under a monomeric and dimeric 
form in vivo. It is however unknown how LRRK2 oligomerization is regulated. Here, 
we show that oligomerization of a homologous bacterial Roco protein depends on the 
nucleotide load. The protein is mainly dimeric in the nucleotide-free and GDP-bound 
states, while it forms monomers upon GTP binding, leading to a monomer-dimer cycle 
during GTP hydrolysis. An analogue of a PD-associated mutation stabilizes the dimer 
and decreases the GTPase activity. Importantly, FCS data from HEK cells expressing 
GFP-RocCOR suggest that oligomerization of LRRK2 is also nucleotide-dependent. 
This work thus provides insights into the conformational cycle of Roco proteins and 
suggests a link between oligomerization and disease-associated mutations in LRRK2. 
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Introduction 

Mutations in the gene encoding leucine-rich-repeat kinase 2 (LRRK2) are the most 
common genetic cause of Parkinson’s disease (PD) [1,2]. LRRK2 mutations account for 
5-6 % of familial PD cases, and are identified as a risk factor for sporadic forms of the 
disease [3]. LRRK2 is a large (2527 amino acids) multi-domain protein, belonging to the 
Roco protein family. This protein family is characterized by the presence of a GTPase 
domain, called Roc (Ras of complex proteins), fused to a COR domain (C-terminal 
of Roc) [4,5]. In many cases this Roc-COR module is preceded by a leucine-rich-
repeat (LRR) domain and followed by a protein kinase domain. In LRRK2 a number 
of additional protein-protein interaction domains are present [6,7]. The pathogenic 
LRRK2 mutations mainly cluster in the catalytic Roc-COR and kinase domains, and the 
most prevalent mutations result in decreased GTPase activity and/or enhanced kinase 
activity [8–13]. This coupled phenotype may point towards an intramolecular regulatory 
mechanism between the Roc and kinase domains, thus underscoring the central role 
of the Roc GTPase cycle in PD pathology. 

Significant progress in our understanding of the structure and mechanism of the Roc-
COR module of LRRK2 comes from studies with related Roco proteins from prokaryotes 
and lower eukaryotes [7,14–16]. Most importantly, the model that LRRK2 functions as 
a GAD (G protein activated by nucleotide-dependent dimerization) is heavily based 
on the crystal structure of the dimeric Roc-COR module of the Roco protein from 
Chlorobium tepidum [14,17,18]. This model implies that the COR domain acts as a 
permanent dimerization device and that the stimulation of GTPase activity depends 
on reciprocal complementation of two Roc active sites [7,14,15,17,19]. Similar to the 
prokaryotic Roco proteins, various studies report that LRRK2 can also form dimers 
through its Roc-COR domain in vitro [15,20–22], although some other studies suggest 
that the protein is mainly monomeric [23]. A number of recent results indicate that 
in vivo functional LRRK2 cycles between a predominantly monomeric kinase-inactive 
form in the cytosol and a dimeric kinase-active form at the plasma membrane [24,25]. 
However, so far the mechanisms regulating these changes in LRRK2 translocation and 
oligomerization are poorly understood. 

Here, we show that Roco proteins cycle between a monomeric and dimeric form during 
GTP turnover. Using small angle X-ray scattering (SAXS), multi-angle light scattering 
(MALS), native mass spectrometry (MS), analytical ultracentrifugation (AUC) and electron 
microscopy (EM), we demonstrate that the C. tepidum Roco protein is mainly dimeric in 
the nucleotide-free and GDP-bound states, while it is mainly monomeric when bound 
to GTP. Moreover, using time resolved FRET and EM we show that the GTP-induced 
monomerization occurs on a catalytically relevant time scale and that the monomer-
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dimer cycle occurs concomitant with GTP turnover. A mutation linked to PD decreases 
the GTPase activity by interfering with the monomer-dimer equilibrium. Furthermore, 
FCS analysis on cell lysates from HEK cells expressing human GFP-RocCOR suggest 
that this nucleotide dimerization mechanism is conserved in LRRK2. Together these 
results shed new light on a long-standing discussion regarding the oligomeric state 
of Roco/LRRK2 proteins, and propose a model for their GTP hydrolysis mechanism.

Results

GppNHp binding induces monomerization of the Roc-COR module 
Like most prokaryotic Roco proteins, the Roco protein from Chlorobium tepidum 
(CtRoco) consists of an N-terminal LRR domain (a.a. 1 – 411), a central Roc-COR 
module (a.a. 412 – 946) and a C-terminal region of unknown structure and function 
(a.a. 947 - 1102) (Supplementary Fig. 1) [4,14,15]. A crystal structure of the Roc-COR 
domain construct of CtRoco (CtRoc-COR) was solved, with the Roc GTPase domain in 
a nucleotide-free state [14]. This structure shows the protein as a homodimer, for which 
most of the contacts between the subunits are mediated via COR domain residues. 
To investigate the influence of nucleotide binding on the conformation of CtRoc-
COR we set out to perform small angle X-ray scattering coupled to size-exclusion 
chromatography (SEC-SAXS) experiments with the protein in either the nucleotide-free 
state or saturated with GDP or the GTP mimic 5’-guanylyl imidodiphosphate (GppNHp) 
(Supplementary Fig. 2). The scattering profile of the nucleotide-free protein is in excellent 
agreement with the symmetrical CtRoc-COR dimer of the crystal structure (pdb 3DPU, 
Gotthardt et al. 2008), and a comparison of the experimental and theoretical scattering 
profiles yields a χ²-value of 0.9 (Fig. 1a). Moreover, a good agreement is found between 
the ab initio molecular envelope based on the SAXS profile and the CtRoc-COR 
crystal structure (Fig. 1b). However, when CtRoc-COR is saturated with either GDP 
or GppNHp conformational changes are taking place, as the experimental scattering 
curves yield a worse fit with the theoretical scattering curve based on the nucleotide-
free crystal structure (translated in a χ² = 1.6 and χ²= 6.0 for GDP- and GppNHp-bound 
protein respectively). To obtain further insights in the nature of these conformational 
changes we calculated the estimated molecular masses based on the Porod volumes. 
For both the nucleotide-free and the GDP-bound form, a molecular mass around 120 
kDa is found, which is in good agreement with the expected molecular mass of the 
dimer (theoretical MMdimer = 130 kDa) (Fig. 1c). In the GppNHp-bound state an average 
molecular mass of 90 kDa is found in between the values expected for a monomer 
and a dimer. This indicates a monomer/dimer equilibrium with overlapping peaks in the 
chromatogram at the concentration used in SEC-SAXS (50 µl of an 8 mg/ml protein 
solution injected on the column). Such a shift in oligomerization is also translated in the 
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pair-distance distribution functions, where an overlay shows that the curves overlap for 
the nucleotide-free and GDP loaded protein, while a shift toward on average smaller 
distances is found for the GppNHp-bound protein (Supplementary Fig. 2d). 

Next, we performed multi-angle light scattering coupled to size-exclusion 
chromatography (SEC-MALS) and sedimentation velocity analytical ultracentrifugation 
(SV-AUC) experiments to determine the molecular mass of CtRoc-COR in different 
nucleotide states (Fig. 1c,d). For the SEC-MALS experiments, 10 µl of 8 mg/ml 
protein solutions were injected on the SEC column. For the nucleotide-free and GDP-
bound forms a molecular mass of 120 kDa and 125 kDa is obtained respectively, 
again corresponding to a dimer. For the GppNHp-loaded protein SEC-MALS yielded a 
molecular mass of 78 kDa, just slightly above the expected value of a monomer. The 
SV-AUC experiments were performed at an even lower protein concentration (0.3 mg/
ml, 4.6 µM) (Fig. 1c and Supplementary Fig. 3). Again, for nucleotide-free and GDP-
loaded CtRoc-COR molecular masses of 121 and 115 kDa are obtained (sedimentation 
coefficients of 4.7S and 4.8S, respectively). In the presence of GppNHp the monomer-
dimer equilibrium is almost completely shifted to the monomer, clearly seen as a shift in 
sedimentation coefficient from around 4.8S (dimer) to 3.6S (monomer), corresponding 
to a molecular mass of 69 kDa. 

Finally, to resolve monomeric and dimeric species we performed native-MS experiments 
(Fig. 1e). The mass spectrum of nucleotide-free CtRoc-COR shows exclusive dimeric 
species (MMexp = 130 kDa). Also with GDP dimeric species dominate, while a very 
small amount of monomer appears (MMexp = 65 kDa). However, in agreement with our 
previous data, we observe a clear shift toward the monomeric species in the presence 
of GppNHp, resulting in an approximately 50:50 monomer/dimer ratio under the 
conditions used in this experiment. 

In conclusion, all these experiments show that while the CtRoc-COR is mainly a 
dimer in the nucleotide-free and GDP-bound form, the GTP mimic GppNHp induces 
monomerization in a concentration dependent manner. 
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Figure 1: The Chlorobium tepidum Roc-COR domain monomerizes upon binding of a non-
hydrolysable GTP analogue (GppNHp). (a) Pairwise-comparison using CRYSOL of the theoretical 
scattering curve derived from the crystallographic dimer model of CtRoc-COR (PDB 3DPU, grey line) 
with the experimental scattering curves of CtRoc-COR in the absence of nucleotides (black dots) or in 
the presence of GDP (green dots) or GppNHp (red dots). (b) Superposition of the crystallographic CtRoc-
COR dimer model (Roc in red and COR in blue) on the ab initio SAXS envelope, constructed starting 
from the scattering curve of CtRoc-COR in the absence of nucleotides. (c) Overview of the molecular 
masses obtained via SAXS (based on Porod volume/1.7) SEC-MALS and SV-AUC for CtRoc-COR in 
different nucleotide-bound states. The theoretical molecular mass of the monomer is given in between 
brackets. (NF = nucleotide-free) (d) SEC-MALS data for CtRoc-COR in the absence (black) or presence 
of nucleotides GDP (green) or GppNHp (red). (e) Native mass spectra of CtRoc-COR for the three different 
nucleotide states: nucleotide-free (NF), GDP-bound and GppNHp-bound. Peaks corresponding to 
dimeric and monomeric species are labeled with two circles and one circle, respectively.
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GppNHp binding shifts the equilibrium toward the momomeric state in full length 
CtRoco 
Considering the GppNHp-induced monomerization observed in the CtRoc-COR 
construct, we next collected SAXS data for the full length CtRoco protein, either in 
the absence of nucleotides or bound to GDP or GppNHp (Supplementary Fig. 4). As 
there is, thus far, no crystal structure available of the full length CtRoco protein (nor 
of any other Roco protein), no fitting of the SAXS data on a theoretical curve could 
be performed. However, visual inspection of the scattering curves clearly shows that 
conformational changes occur in both the CtRoco GppNHp- and GDP-bound states 
compared to the nucleotide-free state (Fig. 2a and Supplementary Fig. 4e). Docking 
of the CtRoc-COR crystal structure into the ab initio envelope generated from the 
SAXS data of the nucleotide-free CtRoco protein show additional features at the N- 
and C-terminus of CtRoc-COR presumably corresponding to the LRR and C-terminal 
domains (Fig. 2b). 

Molecular mass calculation from the Porod analysis of the SAXS curves, from SEC-
MALS and from SV-AUC (Fig. 2c,d and Supplementary Fig 5), yields values between 
240 and 290 kDa for the nucleotide-free and GDP-bound forms, close to the 
theoretical value expected for a dimer (theoretical MMdimer = 254.2 kDa). In the presence 
of GppNHp, SEC-SAXS (50 µl of an 8 mg/ml protein solution injected on a column) 
gives a molecular mass of 209 kDa and SEC-MALS (10 µl of an 8 mg/ml protein 
solution injected on a column) a molecular mass of 173 kDa, while SV-AUC (protein 
at 0.6 mg/ml, 4.5 µM) gives a broader distribution with a molecular mass at the peak 
of 158 kDa (sedimentation coefficient of 4.9S) (Supplementary Fig. 5). As for CtRoc-
COR this indicates that GppNHp induces monomerization, with the protein existing in 
a concentration dependent monomer/dimer equilibrium. Finally, native-MS spectra of 
CtRoco show mainly dimeric species (MMexp = 256 kDa) with a very small amount of 
monomers (MMexp = 128 kDa) for nucleotide-free and GDP-loaded protein and a 50:50 
monomer-dimer ratio for the GppNHp loaded protein (Fig. 2e).

It might seem remarkable at first sight that despite the difference in molecular mass 
the nucleotide-free, GppNHp- and GDP-bound CtRoco proteins elute at approximately 
the same volume in SEC (Fig. 2d). Correspondingly, Guinier analysis of the SAXS data 
shows that the radius of gyration (Rg) even increases upon going from the nucleotide-free 
state, over the GDP-bound state to the GppNHp-bound state (Supplementary Fig. 4). 
This could be explained by a conformational change occurring in the CtRoco subunits 
upon monomerization or upon nucleotide binding. Indeed, as is the case for the CtRoc-
COR construct, the SAXS pair-distance distribution function of CtRoco shows a shift 
toward shorter average inter-atom distances in the presence of GppNHp compared to 
GDP or nucleotide-free states, indicative of monomerization (Supplementary Fig. 4d). 
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However, the curve of the GppNHp-bound CtRoco protein also shows a tailing toward 
longer maximal distances. This strongly suggests the occurrence of a GppNHp-bound 
monomer that is more elongated than the corresponding subunits in the nucleotide-
free dimer. Also in the GDP-bound state tailing of the pair-distance distribution function 
is observed indicating that already some conformational changes occur in the dimeric 
nucleotide-bound protein. These conformational changes also explain why the 
observed monomer/dimer equilibrium would probably be missed when assessed only 
with size-exclusion chromatography. 

Since we observe a monomer/dimer equilibrium in nucleotide-bound CtRoco, we 
next determined the dissociation constant of this equilibrium under the different 
nucleotide conditions, using sedimentation equilibrium AUC (SE-AUC) experiments 
(Supplementary Fig. 6). Global analysis of the data using a single species model 
indicated predominantly dimeric species for the nucleotide-free (239 kDa) and the GDP-
bound CtRoco (225 kDa), whereas a clear shift to the monomeric state for GppNHp-
bound CtRoco (177 kDa) is observed. Fitting the data for GDP- and GppNHp-bound 
CtRoco using a monomer/dimer model results in an approximate KD of 2 µM for GDP-
bound CtRoco and 30 µM for GppNHp-bound CtRoco (exclusively dimers are found 
for nucleotide-free CtRoco) (Supplementary Fig. 6). Since protein concentrations used 
for the SEC-SAXS, SEC-MALS, SV-AUC and native MS experiments range between 
approximately 4.5 and 16 µM, these dissociation constants generally agree with the 
predominantly dimeric form observed for CtRoco bound to GDP and the shift to the 
monomeric form upon GppNHp binding. 

Finally, to further characterize the observed nucleotide-induced changes in 
oligomerization we turned to negative stain electron microscopy (EM). Thereto, CtRoco 
was applied on grids at a concentration of 0.01 mg/ml (0.08 µM) either in a nucleotide-
free state or pre-incubated with 1mM GDP or GppNHp (Fig. 2f and Supplementary Fig. 
7). In the nucleotide-free state a rather uniform population of “X-shaped” particles is 
observed, displaying seemingly a two-fold symmetry. We interpret these particles as 
being the dimeric form of CtRoco. In contrast, in the presence of GppNHp a uniform 
population of more elongated “worm-like” particles is observed lacking the two-fold 
symmetry. We interpret these particles to correspond to the monomeric form of the 
CtRoco, in agreement with the SAXS, SEC-MALS, native MS and AUC experiments. 
For the GDP-bound state a mixture of particles corresponding to dimers and monomers 
is observed. 

In conclusion, we show that nucleotide binding also induces monomerization of CtRoco 
in a concentration dependent manner, with the GTP mimic GppNHp having a much 
stronger effect than GDP.
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Figure 2: Binding of a non-hydrolysable GTP analogue (GppNHp) to the Chlorobium tepidum 
Roco protein shifts the equilibrium toward the monomeric form. (a) Scattering curves of CtRoco 
in the absence (black dots) or presence of nucleotides GDP (green dots) or GppNHp (red dots). (b) 
Superposition of the crystallographic CtRoc-COR dimer model (Roc in red and COR in blue) onto the 
ab initio SAXS envelope, constructed starting from the scattering curve of CtRoco in the absence 
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of nucleotides. The envelope shows clear additional features corresponding to the N-terminal LRR 
domain and the C-terminal domain, which are not present in the CtRoc-COR crystal structure. (c) 
Overview of the molecular masses obtained via SAXS (based on Porod volume/1.7), SEC-MALS 
and SV-AUC for CtRoco in different nucleotide-bound states. The theoretical molecular mass of the 
monomer is given in between brackets. (NF = nucleotide-free)  (d) SEC-MALS data for CtRoco in the 
absence (black) or presence of nucleotides GDP (green) or GppNHp (red). (e) Native mass spectra 
of CtRoco for the three different nucleotide states: nucleotide-free (NF), GDP-bound and GppNHp-
bound. Peaks corresponding to dimeric and monomeric species are labeled with two circles and 
one circle, respectively. (f) Top panels: negative-stain EM images (scale bar: 50 nm) of CtRoco in the 
nucleotide-free state (black border), bound to GDP (green border) or bound to GppNHp (red border). 
Middle panels: 4x enlargements of boxed particles in top panels (from left to right). Bottom panels: 
representative class averages (box size: 18.2 x 18.2 nm) for CtRoco in nucleotide-free state (black 
border), or bound to GDP (green border) or GppNHp (red border). See also Supplementary Fig. 7 for 
an overview of all class averages.

Monomerization occurs on a time scale relevant for GTP turnover
In order to be relevant for the CtRoco-catalysed GTP hydrolysis reaction, the observed 
monomerization should occur within a time frame that is consistent with the time of a 
full GTP turnover cycle. The kcat value for GTP hydrolysis of CtRoco and CtRoc-COR is 
0.1 min-1 (Supplementary Fig. 8), meaning that it takes a protein molecule, on average, 
approximately 10 minutes to travel through an entire GTPase cycle under conditions of 
substrate saturation. For the CtRoc-COR construct the rate of monomerization could 
be measured using time-resolved FRET experiments making use of a site-specific single 
cysteine mutant of this protein construct [19]. A CtRoc-COR variant containing a single 
cysteine residue at position 928 in the COR domain (S928C) was randomly labelled with 
a Cy3/Cy5 FRET pair using maleimide-chemistry (Fig. 3a). Statistical incorporation should 
result in 50% incorporation with the donor/acceptor pair. Subsequently, this nucleotide-
free protein was rapidly mixed in a stopped flow apparatus with either buffer or 50µM 
GDP, GppNHp or GTP, and the decrease in FRET signal linked to monomerization was 
followed (Fig. 3b). Compared to the buffer control, a very small and slow decrease in 
FRET signal is observed with GDP. In contrast, a fast decrease in FRET signal is observed 
upon mixing the protein with an excess of either GppNHp or GTP. The decrease in signal 
and thus the monomerization is significantly faster upon mixing with GTP compared 
to the GTP mimic GppNHp. While monomerization reaches a steady state within less 
than 25 seconds with GTP, equilibrium is only reached after more than 100 seconds 
with GppNHp. Such differences between physiologically relevant nucleotides and 
nucleotide analogues were described before [26]. In any case, the observed time for 
monomerization is significantly faster than the GTP turnover time of about 10 minutes 
meaning that monomerization happens on a catalytically relevant time scale. 

Since cysteine-free full length CtRoco could not be obtained, we turned to time-
resolved EM measurements to estimate the time frame of monomerization. Hereto, 
CtRoco was mixed with an excess of GppNHp or GTP and samples were taken 
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every two minutes and immediately spotted on grids. In agreement with the FRET 
experiments nearly full conversion of CtRoco from the “X-shaped” dimers to the “worm-
shaped” monomers is observed at the 2 minutes time point (Fig. 3c), while a significant 
amount of monomerization has even taken place within the dead time (2 minutes) of 
the experiment. These experiments thus confirm that GTP-induced monomerization of 
CtRoco is fast and occurs within the time frame of a catalytic cycle of GTP turnover.

Figure 3: GppNHp- and GTP-induced monomerization of the Chlorobium tepidum Roco protein 
occurs in a time scale relevant for GTP turnover. (a) Two different views of the dimeric CtRoc-COR 
crystal structure with amino acid 928 colored green and yellow for protomer A and B, respectively. 
Within the dimeric protein these residues are separated by a distance of 20 Å allowing them to be 
used for Cy3/Cy5 FRET experiments. The Roc and COR domains are colored red and blue (dark for 
protomer A and light for protomer B), respectively. (b) Stopped-flow FRET traces of labelled CtRoc-
COR upon mixing with different nucleotides to follow monomerization in time. The FRET signal of Cy3/
Cy5-labeled CtRoc-COR (S928C) over time is shown after rapid mixing with buffer (black), or 50 µM 
GDP (green), GppNHp (red) or GTP (blue). (c) Monomerization of CtRoco followed via time-resolved 
negative stain EM. CtRoco was mixed with 1 mM of GppNHp or GTP and samples were taken every 
2 minutes. Representative EM images of the samples just before adding nucleotide and for each time 
point are shown. (scale bar: 50 nm)

MONOMER-DIMER TRANSITION DURING GTP TURNOVER  |  35

2 2



CtRoco completes a monomer-dimer cycle during GTP turnover
Considering that GTP-induced formation of CtRoco / CtRoc-COR monomers is fast 
compared to a complete GTP turnover, we subsequently assessed whether the protein 
undergoes a monomer-dimer cycle coupled to GTP turnover. We therefore resorted to 
single turnover kinetic measurements (1 µM protein + 1 µM GTP), such that a complete 
single GTPase cycle can be monitored. 

Reverse-phase HPLC measurements show that, under the experimental (non-
saturating) conditions, it takes about 6000 seconds for 1 µM CtRoc-COR to completely 
convert 1 µM GTP to GDP (Fig. 4a). In turn, stopped-flow measurements where 1 
µM of fluorescent 2’-(or-3’)-O-(N-methylanthraniloyl)-GTP (mant-GTP)  is mixed with 
1µM of CtRoc-COR show a fast increase in fluorescence, coupled to mant-GTP 
binding and the associated conformational changes, that occurs in a time frame of 
about 250 seconds (Fig. 4a). This fast binding phase is followed by a slow decrease in 
fluorescence coupled to mant-GTP hydrolysis and return to the initial conformation. In 
agreement with the data obtained from the reverse-phase HPLC measurements, the 
total GTPase cycle is finished within about 6000 seconds. Subsequently we followed 
the monomerization of CtRoc-COR during single GTP-turnover using our time-resolved 
FRET approach. 1 µM Cy3/Cy5-labelled CtRoc-COR (S928C) was rapidly mixed with 
1 µM GTP and the FRET signal was followed over time (Fig. 4b). These traces show 
a fast decrease in the FRET signal associated with monomerization, followed by a 
slow increase in signal associated with dimerization. This shows that the GTP-induced 
monomerization is reversible and re-dimerization occurs upon GTP hydrolysis. The 
FRET signal reaches a minimum at about 250 seconds. This time point of maximal 
monomerization corresponds to the time point of maximal GTP binding as determined 
from the fluorescence stopped-flow experiments with mant-GTP. After this point the 
FRET signal increases in a time frame that corresponds to GTP hydrolysis and probably 
also GDP release (note that for CtRocCOR KD(GDP) = 30.2 µM and KD(GppNHp) = 0.33 
µM, while a concentration of 1 µM is used here [14]). 

Finally, we also assessed the oligomeric state of full length CtRoco during single 
turnover GTP hydrolysis using time-resolved negative stain EM measurements. Hereto, 
1 µM of CtRoco was mixed with 1 µM GTP and samples were taken at different time 
points (0, 120, 240, 360, 1500, 3000 and 4500 seconds) (Fig. 4c and Supplementary 
Fig. 9). Under these single turnover conditions a large fraction of CtRoco molecules are 
converted from a dimeric into a monomeric form after 240 seconds. This is expected 
for a single turnover experiment where a mixture of unbound, GTP-bound and post-
hydrolysis GDP-bound CtRoco molecules co-exist. After that time point the fraction 
of dimeric protein is again increasing due to GTP hydrolysis, and after 4500 seconds, 
when all GTP is hydrolysed, a dimeric population reforms.  
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Thus, together these experiments clearly show that during the GTPase cycle, 
CtRoco undergoes monomerization concomitant with GTP binding and subsequent 
dimerization coupled to GTP hydrolysis and GDP release.

Figure 4: The Chlorobium tepidum Roco protein undergoes a monomer-dimer cycle during GTP 
turnover. (a) Single turnover (mant-)GTP hydrolysis by CtRoc-COR (S928C) followed by stopped flow 
fluorescence (black curve) and reverse-phase HPLC (red data points; each data point is the average (± 
s.d.) of 3 independent measurements). Rapid mixing of 1 µM mant-GTP and 1 µM unlabeled CtRoc-
COR (S928C) in a stopped-flow apparatus yields a rapid increase in fluorescence (time frame 1- 250 
seconds), followed by a slow decrease in a time frame of 6000 seconds. Following production of 
GDP from GTP in time via reverse-phase HPLC shows that the increase in fluorescence occurs prior 
to GDP production while all GTP is converted in the time scale of 6000 seconds. A split time axis is 
used  to highlight the two phases: fast fluorescence increase associated with GTP binding and slow 
fluorescence decrease concomitant with GTP hydrolysis. (b) Stopped-flow FRET signal obtained by 
mixing 1 µM of Cy3/Cy5- labeled CtRoc-COR (S928C) with 1 µM GTP. The traces show relatively fast 
monomerization (first phase from 1 – 250 seconds) followed by a slow return to the dimeric state after 
GTP hydrolysis.  (c) Single GTP turnover of CtRoco followed by time resolved EM. 1 µM CtRoco was 
mixed with 1µM GTP and samples were taken at the indicated time points. Representative images for 
each time point are shown (see also Supplementary Fig. 9). (scale bar: 50 nm)

An analogue of a PD-associated mutation stabilizes the CtRoco dimer
PD-associated mutations in LRRK2 are mainly located in the kinase and Roc-COR 
domains. Mapping of the Roc-COR mutations (LRRK2 I1371V/R1441C/Y1699C) onto 
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the C. tepidum Roc-COR crystal structure showed that the bacterial analogues of these 
mutations (L487A/Y558A/Y804C) are all located in the conserved interface between the 
Roc and COR sub-domains [14]. Since, in our hands, the Y558A and Y804C mutants 
show significant aggregation when analysed on size exclusion chromatography, we 
focused on the L487A mutant and analysed its effect on the oligomeric state of the 
CtRoco and CtRoc-COR proteins using SEC-MALS. Residue L487 corresponds to 
I1371 in LRRK2 and is located in the Roc domain, in the C-terminus of Switch 1, at the 
interface of the Roc and COR domains. In their nucleotide-free and GDP-bound states, 
both the CtRoco and CtRoc-COR proteins that contain the L487A mutation are entirely 
dimeric, as was also observed in the wild-type counterparts (Fig. 5a,b). However, while 
in the GppNHp-bound form the monomer-dimer equilibrium of the wild-type CtRoc-
COR and CtRoco is clearly shifted toward the monomeric form, the corresponding 
proteins harboring the L487A mutation remain nearly completely dimeric (Fig. 5a,b). 
Thus we find that the PD-associated L487A mutation stabilizes the dimeric form of 
the CtRoco protein. The same behavior is observed when we compare the SAXS 
curves of wild-type and L487A CtRoco in different nucleotide states (Supplementary 
Fig. 10,11). While the scattering curves, the normalized Kratky plots [27] and the pair 
distance distribution function of the wild-type and L487A proteins nearly overlap in the 
nucleotide-free and GDP states, the curves of both protein variants clearly differ in the 
GppNHp-bound forms. This again indicates that, while the L487A mutation does not 
cause any large-scale conformational changes in the nucleotide-free and GDP-bound 
dimers, it does stabilize the dimeric form of the protein in the GppNHp-bound state. 

Subsequently, we measured the GTPase activity of the wild-type and L487A CtRoc-
COR proteins under single-turnover conditions and find that the L487A mutation causes 
a 4-fold decrease in the single-turnover rate constant (Fig. 5c). This is in agreement with 
previous reports that show that the PD mutations in the Roc-COR domain of LRRK2, 
as well as the counterparts in CtRoco, decrease the GTPase activity [10,12,28–30]. We 
thus speculate that monomerization of the Roco protein, which we showed to be an 
integral part of the GTPase cycle, is hindered by this PD-analogous mutation, thereby 
causing the pathological decrease in GTPase activity. Hence, our data present a link 
between the Roco monomer-dimer transition, the rate of GTP turnover and disease. 
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Figure 5: Effect of a PD-analogous mutation on the CtRoco and CtRoc-COR monomer-dimer 
equilibrium. (a) SEC-MALS data for the CtRoc-COR L487A mutant (left panel) and the CtRoco L487A 
mutant (right panel) in the absence (black) or presence of nucleotides GDP (green) or GppNHp (red). 
(b) Overview of molecular masses determined by SEC-MALS for CtRoc-COR wt, CtRoc-COR L487A, 
CtRoco wt and CtRoco L487A in absence and presence of GDP or GppNHp. The theoretical molecular 
masses of the monomers are given in between brackets. (NF = nucleotide-free). (c) Single turnover 
GTP hydrolysis of CtRoc-COR wt (black) and CtRoc-COR L487A (orange) using 1 µM protein and 1 
µM GTP. GDP formation is followed using reverse-phase HPLC. The observed rate constants (kobs) ± 
s.e. for wild-type and mutant CtRoc-COR are indicated. Each data point is the average (± s.d.) of 3 
independent measurements.

Nucleotide binding also influences the monomer-dimer equilibrium of hsLRRK2 
Roc-COR
Next we analysed if also human LRRK2 has a nucleotide dependent monomer-dimer 
cycle. For this we turned to fluorescence correlation spectroscopy (FCS). Cell lysates 
of HEK293 cells transfected with GFP-RocCOR (of hsLRRK2) were supplemented 
with excess GDP, GppNHp (a non-hydrolysable GTP analogue), or EDTA (resulting in 
nucleotide-free protein), and the average brightness per particle was determined using 
FCS (Figure 6). The brightness of GppNHp bound RocCOR was similar to monomeric 
GFP, while the brightness of nucleotide free and GDP bound RocCOR was significantly 
higher, indicating a shift to the dimeric state. These results confirm that HsLRRK2, like 
CtRoco, monomerizes in the presence of GppNHp. More elaborate brightness analysis 
methods would be required to quantify the kinetics of dimerization. 
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Figure 6: FCS Brightness analysis of HsRoc-COR-GFP oligomerization in HEK cell lysates. 
HEK293 cells transiently expressing GFP or Roc-COR-GFP from hLRRK2 were lysed in the presence 
of 10 mM EDTA, 0.5 mM GDP or 0.5 mM GppNHp. The total fluorescence signal (photons/sec) was 
divided by the average number of particles in the confocal volume and normalized for the brightness 
of GFP, yielding the average number of GFP molecules per particle/complex. Data are mean ± SEM, 
based on two biological replicates. GFP, n = 29; RocCOR +EDTA, n = 11; RocCOR +GDP, n = 12, 
RocCOR +GppNHp, n = 14. *, p < 0.05; ***, p < 0.001; N.S., non-significant.

Discussion

In the current study we show that the oligomerization of the Chlorobium tepidum Roco 
protein depends on its nucleotide state. In contrast to previous suggestions, we find that 
the protein is mainly monomeric when bound to GTP and dimeric in the nucleotide-free 
state, while an intermediate situation is observed in the GDP state. Moreover, we show 
that the CtRoco protein cycles through the dimeric and monomeric conformations 
during a round of GTP hydrolysis, meaning that these changes in oligomerization are 
an integral feature of the GTPase catalytic cycle. Consequently, although many details 
still need to be resolved, a mechanism as outlined in Figure 7 can be proposed based 
on our results. The reaction cycle starts with the rapid binding of a GTP molecule to the 
Roc domains, followed by monomerization of the protein as observed in SEC-MALS, 
SEC-SAXS, native MS, AUC and EM (Fig. 1,2&3). Inter-domain and inter-subunit 
conformational changes leading to monomerization are likely triggered via changes 
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in conformation of the switch regions. The crystal structure of CtRoc-COR shows 
that especially switch II is ideally positioned to transfer GTP-induced conformational 
changes from the Roc domain to the COR domain within the same protomer as well 
as to the adjacent COR domain [14]. The monomerization step is followed by slow 
GTP hydrolysis concomitant with protein dimerization (Fig. 4). Considering that single 
turnover GDP production, as monitored via reverse-phase HPLC, occurs on the 
same time scale as dimerization (Fig. 4), we assume GTP hydrolysis to be the rate-
limiting step in this process. Finally, GDP is released, which may occur either after 
or concomitant with protein dimerization since we find CtRoco to be in equilibrium 
between a monomeric and dimeric state in the presence of GDP.

Figure 7: Proposed monomer-dimer transitions during the GTP hydrolysis cycle of CtRoco. In 
its nucleotide-free state the protein is dimeric. GTP binding induces conformational changes that lead 
to fast monomerization. In the monomeric state the protein hydrolyses GTP to GDP. Depending on the 
protein concentration, protein dimerization could take place either after or before release of GDP. After 
GDP is released, the cycle can restart. In the cartoon of CtRoco, the LRR domain is colored yellow, 
the COR domain blue, the Roc domain dependent on the nucleotide state grey (nucleotide-free), green 
(GDP-bound) or red (GTP-bound).  

Our observation that GTP hydrolysis occurs after monomerization contrasts with the 
current model that assumes that Roco proteins, including LRRK2, function as GADs 
[17,18,31]. This latter model is based largely on the crystal structure of the nucleotide-
free Roc-COR module of the C. tepidum Roco protein, being the only available structure 
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of a full Roc-COR tandem domain [14]. This structure shows a Roc-COR dimer where 
the dimer contacts are formed by the COR domain and with the GTP binding sites 
of the Roc domains juxtaposed. This observation has led to the hypothesis that GTP 
binding induces dimerization of the Roc domains, with the reciprocal complementation 
of the active sites finally leading to catalysis of GTP hydrolysis. We show here, using the 
exact same protein, that GTP binding induces monomerization and that GTP hydrolysis 
occurs after the monomerization step. So far, it remains unclear whether Roco 
monomerization is a strict requirement for GTP hydrolysis to occur or whether GTP-
induced monomerization and GTP hydrolysis are two uncoupled phenomena. However, 
both EM and SAXS indicate the occurrence of secondary inter-domain conformational 
changes in the CtRoco monomers compared to the dimers, with the protomers in the 
monomeric arrangement being more elongated compared to the dimers (Fig. 2 and 
Supplementary Fig. 4d). High resolution structural information of the monomeric states 
could shed further light on the mechanism of GTP hydrolysis. A second question that 
is triggered by our findings concerns the role of dimerization within the reaction cycle. A 
potential scenario would be that dimerization of the Roco subunits leads to a decrease 
in the affinity for GDP, thus enhancing the rate of GDP release.

Since the presence of the Roc-COR module is highly conserved throughout all Roco 
proteins, our current findings also throw new light on LRRK2 functioning. However, apart 
from the Roc-COR and LRR domain, LRRK2 also contains a kinase domain and a number 
of domains typically involved in protein-protein interactions, which potentially can have 
an additional influence on oligomerization [21,32]. Detailed and quantitative biophysical 
studies with LRRK2 to determine its oligomeric state remain highly challenging since 
purification yields are low, and purified LRRK2 is very heterogeneous and prone to 
degradation. However, it has been shown that LRRK2 can form dimers via its Roc-COR 
domain [15,20–22], while other studies indicate that LRRK2 can also exist as a monomer 
[18,20,23]. Both observations can be reconciled with our model. Consistently, our FCS 
experiments on the cytosolic fraction of cell lysates expressing human LRRK2 GFP-
RocCOR confirm that oligomerization of the Roc-COR domain of LRRK2 is taking place 
in the GDP and nucleotide free states, while the GTP-bound state is mainly monomeric.

Interestingly, recent data suggest that LRRK2 can exist as either a monomer or a dimer 
in the cell, where the monomeric form prevails in the cytosol and the dimeric form is more 
prominently present at the membrane [21,24,25,33]. A higher prevalence of a monomeric 
GTP-bound form under multiple GTP turnover conditions such as present in the cytosol 
(GTP concentrations in the cell are in a range of 1-1.6 mM [34,35]) corresponds to our 
in vitro observation in EM (Fig. 3). Following the same argument, LRRK2 would exist in a 
more GDP-bound form at the membrane. Apart from these considerations it is likely that 
additional regulatory factors, such as phosphorylation or interaction with other proteins, 
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influence the monomer-dimer equilibrium of LRRK2 in vivo [36]. 

A number of point mutations in the Roc (R1441C/G/H) and COR (Y1699C) domains 
of LRRK2 are directly linked to PD [1,37,38]. These mutations have been related to a 
reduced GTPase activity [10,12,28–30], but so far no widely-accepted consensus on 
the effect of PD mutations on homodimerization exists [22,29,39], [33]. According to our 
model, whereby the CtRoco protein needs to cycle through a monomeric and dimeric 
state, stabilization of either could lead to a reduced GTPase activity. We show that the 
L487A mutation in the Roc-COR interface (analogous to I1371V in LRRK2) decreases 
the GTPase activity by stabilizing the dimer interface (Fig. 5). Our results thus provide a 
direct link between oligomerization, GTPase activity and disease phenotype. 

Because the kinase activity of LRRK2 is directly responsible for neuronal toxicity 
[9,40], most efforts for therapeutic intervention are focussed on the development of 
kinase-inhibitors [41,42]. However, long-term inhibition of LRRK2 by many of these 
inhibitors increases the risk for morphological changes in lungs, similar to what has 
been observed in LRRK2 knock-out models [43–45]. Our findings now show that either 
increased dimerization or increased monomerization could lead to changes in GTPase 
activity and might form an appealing target for future drug development.

Methods

Protein expression and purification
The DNA fragments coding for CtRoco (a.a. 1-1102) and CtRoc-COR (a.a. 412-946) 
were cloned in the pProEX plasmid with N-terminal His-tags [14]. The plasmids were 
transformed in E. coli BL21 (DE3) cells. Cells were grown at 37 °C in Terrific Broth medium 
with 100 μgml−1 ampicillin. Once an optical density at 600 nm (OD600) of 0.7 was 
reached, 0.1mM β-D-1-thiogalactopyranoside (IPTG) was added and the temperature was 
dropped to 28 °C. After overnight incubation, the cells were harvested by centrifugation 
and resuspended in buffer A (20mM Hepes pH7.5, 150mM NaCl, 5mM MgCl2, 5% 
glycerol, 1mM DTT) with 50 μgml−1 DNAse, 0.1 mg ml−1 AEBSF, 1 μgml−1 leupeptin, 
and 200 μM GDP. Afterwards the cells were disrupted using a cell disruptor (Constant 
systems) and the soluble fraction was separated from the cell debris via centrifugation. 
As a first purification step, an immobilized metal affinity chromatography (IMAC) step was 
performed. The supernatant containing the soluble protein was loaded on Ni+2-NTA 
sepharose resin. The resin was extensively washed with buffer A and subsequently the 
protein was eluted using buffer A including 300mM imidazole. The obtained protein was 
subsequently dialysed against 20mM Hepes pH 7.5, 150mM NaCl, 5% glycerol, 1mM 
DTT (buffer B). Before the final size exclusion chromatography purification step, 1mM 
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EDTA was added to the sample and the mixture was incubated for 1 h at 4 °C. Finally 
the sample was loaded on a Superdex S200 26/60 column (GE Healthcare) equilibrated 
with buffer B. Fractions containing the protein were supplemented with 5 mM MgCl2 and 
the nucleotide-load was determined using reversed-phase chromatography coupled to 
HPLC (see further).

Size Exclusion Chromatography Small-angle X-ray scattering (SEC-SAXS) and 
Multi-angle light scattering (SEC-MALS)
SAXS experiments were performed on the BM29 beamline at the ESRF (Grenoble, 
France) and the SWING beamline at SOLEIL (Paris, France), always with an inline 
HPLC set-up. 50 µl of an 8 mg/ml protein sample was injected on a Bio SEC-3 HPLC 
column (Agilent, 3 µm 300 Å) equilibrated with 20 mM Hepes pH 7.5, 150 mM NaCl, 
5 mM MgCl2, 5% glycerol and 1 mM DTT (assay buffer). For data collection in the 
presence of nucleotides, the nucleotide-free proteins were pre-incubated with 1mM of 
the nucleotide, and 200µM (= molar excess) of the nucleotide was added to the assay 
buffer. Initial processing of the data was done with DATASW [46]. PRIMUS was used for 
determination of the radius of gyration (Rg) using the Guinier approximation [47], and 
GNOM for the calculation of the pair distance distribution function P(r) [48]. Modelling of 
missing loops in the crystallographic dimer model of the CtRoc-COR was done using 
ModLoop [49] and the missing N- and C-terminus were added with CORAL [50]. The 
final dimer model was compared with the experimental data using CRYSOL [51]. Ab 
initio envelopes were calculated using DAMMIN (average of 19 runs for CtRocCOR and 
20 runs for CtRoco) [52] followed by DAMAVER [53]. The final model was generated 
using one round of DAMMIN [52], starting from the damstart model generated by 
DAMAVER. Docking into the envelope was performed with Supcomb [54]. For docking 
into the CtRoco envelope, the position of the CtRoc-COR dimer structure was manually 
adjusted. The molmap command in chimera was used to convert the ab initio bead 
models into 20 Å density maps [55]. In overview of the experimental and modelling 
parameters is provided in Supplementary Tables 1, 2 and 3.

For the SEC-MALS experiments, the samples were prepared and run in the same way 
as for the SEC-SAXS experiments. 10 µl of an 8 mg/ml protein sample was injected 
on a Bio SEC-3 HPLC column (Agilent, 3 µm 300 Å). A Dawn Heleos detector (using 
9 angles) and Optilab T-rEX detector (Wyatt technology) were attached to a HPLC 
(Shimadzu). The molar masses were calculated with the ASTRA 5.3.4.20 software.

Native mass spectrometry
Protein samples were exchanged to a buffer containing 150 mM Ammonium Acetate 
pH 7.5 using micro Bio-spin columns (Bio-gel P6, Bio-rad). For measurements in the 
presence of nucleotide (GDP or GppNHp), samples were pre-incubated with 500 µM 
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nucleotide and 100 µM nucleotide was added to the Ammonium Acetate buffer. Final 
protein concentrations ranged between 12.5 µM and 16 µM. Samples were introduced 
into the vacuum of the mass spectrometer using nanoelectrospray ionization with in-
house-prepared, gold-coated borosilicate glass capillaries with a spray voltage of +1.4 
kV. Spectra were recorded on a quadrupole TOF instrument (Q-TOF2, Waters) modified 
for transmission of native, high-m/z protein assemblies, as described elsewhere [56]. 
Critical voltages and pressures throughout the instrument were 120 V and 25 V for the 
sampling cone and collision voltage respectively, with pressures of 10 and 2E−2 mbar 
for the source and collision cell.

Analytical ultracentrifugation
Sedimentation velocity (SV-AUC) experiments on CtRoco  and CtRoc-COR  were 
carried out at 20°C in 20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl2, 5% Glycerol 
and 100 µM of the respective nucleotides on a Beckman Coulter ProteomLabTM XL-I 
analytical ultracentrifuge using the absorbance at 280 nm. Samples were prepared at a 
concentration of 0.57 mg/ml (4.5 µM) for CtRoco and 0.3 mg/ml (4.6 µM) for CtRoc-COR. 
Standard double sector centrepieces were used. The cells were scanned every minute and 
in total 200 scans were collected. The data was analysed using SEDFIT 15.01b [57] with 
the continuous c(s) distribution model. Solution density ρ, viscosity η and partial specific 
volumes 

� 

n  were calculated using SEDNTERP [58] (ρ =1.02061 g/l; η = 0.01197kg/(s*m), 
 (CtRoco) = 0.7446,  (CtRoc-COR) = 0.7398). The c(s) analysis was carried out with an 

s range of 0 to 15 with a resolution of 200 and a confidence level of 0.68. In all cases, fits 
were good, with root mean square deviation (rmsd) values ranging from 0.005 to 0.012. 
Results were prepared for publication using GUSSI 1.2.1 [59].

Sedimentation equilibrium experiments (SE-AUC) on CtRoco were conducted on the 
same instrument and under the same buffer conditions as SV-AUC experiments using 
an Epon six-channel centrepiece and measurement of the absorbance at 280 nm. Each 
sample was used at three different concentrations (0.9 mg/ml, 7.2µM/ 0.58 mg/ml, 
4.5µM and 0.35 mg/ml, 2.7µM). Samples were centrifuged at 1164, 3407 and 9757 x g 
until sedimentation equilibrium was reached. Three scans were taken at 280nm at each 
point. The data was analysed with a SEDPHAT [60] software using either monomer-
dimer or single-species model. Figures were generated using GUSSI 1.2.1. [59].

Förster Resonance Energy Transfer (FRET) and fluorescence stopped flow 
analysis
The S928C mutant was generated in a cysteine-free variant of CtRoc-COR using 
quick-change mutagenesis, as described earlier [19]. 10 mg of completely reduced 
pure CtRoc-COR S928C protein was loaded on a S200 16/60 column equilibrated 
with a degassed buffer composed of 20 mM Hepes pH 7, 150 mM NaCl, 5 mM MgCl2 
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and 5% glycerol. Peak fractions were used to perform the labelling reaction with 8 µM 
protein, 36 µM maleimide-Cy3 (Lumiprobe) and 36 µM maleimide-Cy5 (Lumiprobe) 
in a total volume of 5 ml. After incubation at room temperature for 2 hours, the 
unreacted fluorophores were separated from the labelled protein using size-exclusion 
chromatography on a S200 16/60 column equilibrated with 20 mM Hepes pH 7.5, 
150 mM NaCl, 5 mM MgCl2, 5% glycerol and 1 mM DTT. Labelling stoichiometry was 
spectrophotometrically determined to be approximately 30% for each fluorophore. To 
determine the monomerization rate, 0.2 µM double labelled protein was mixed with 
100 µM nucleotide in a stopped flow apparatus (Applied Photophysics). To follow 
monomerization during single GTP-turnover, 2 µM Cy3/Cy5-labelled CtRoc-COR was 
rapidly mixed with 2 µM GTP. The Cy3 fluorophore was excited at 540 nm and change 
in Cy5 emission was monitored using a cut-off filter of 645 nm. 

mant-GTP binding and hydrolysis was followed in a stopped-flow apparatus (Applied 
Photophysics) by rapidly mixing 2 µM of protein with 2 µM of mant-GTP. The mant-
fluorophore was excited at 360 nm and emission was followed through a cut-off filter 
of 405 nm. All experiments were performed at 25°C and at least 3 time traces were 
averaged.

Negative stain Electron Microscopy
For negative stain electron microscopy, 2 µL of a 0.01 mg/ml protein sample was 
applied on a glow discharged carbon-coated copper grid. After three short wash and 
blot steps with MilliQ water, the grids were stained with a 1% uranyl formate solution. 
Grids were visualized with a JEOL JEM-1400 electron microscope operating at 120 kV 
and equipped with a LaB6 cathode. Images were recorded on a CMOS TemCam-F416 
camera (TVIPS, Germany) at a nominal magnification of 80 000, a defocus of 
approximately 2 μm and a corresponding pixel size of 1.42 Å. 

For imaging the different nucleotide-bound states, 0.01 mg/ml CtRoco protein solutions 
were pre-incubated with 1 mM GDP or GppNHp. In the multiple turnover experiment, 
1 mM GTP/GppNHp was added to 0.01 mg/ml CtRoco protein. For the single turnover 
experiment, where turnover of 1µM GTP by 1µM CtRoco was followed, samples were 
diluted to 0.01 mg/ml right before spotting. In both experiments samples were taken 
at the following time points: 0, 2, 4, 6, 25, 50 and 75 minutes. The time-resolved EM 
experiments were performed at 25°C. For the calculation of class averages, 11,571 
particles for the nucleotide-free state, 9620 particles for the GDP-bound state and 
11,164 for the GppNHp-bound state were selected using e2boxer [61]. Further 
classification was done with SPARX [62].
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GTP hydrolysis assays
GTP hydrolysis experiments were performed at 25°C in 20 mM Hepes pH 7.5, 150 
mM NaCl, 5 mM MgCl2, 5% glycerol and 1mM DTT. The GTP-GDP mixture was 
separated using a C18-reversed phase column (Phenomenex, Jupiter 5µm C18 
300 Å) coupled to a HPLC system (Waters), using 100 mM KH2PO4 pH 6.4, 10 mM 
Tetra butyl-Ammonium-Bromide and 7.5% acetonitrile as a mobile phase. Nucleotide 
elution was followed using absorbance at 254 nm. The area of GDP was converted to 
concentration using a standard curve. 

Time points for the single turnover experiments with 1 µM protein and 1 µM GTP were 
0, 2, 6, 13, 20, 30, 40, 60, 80 and 100 minutes. For the multiple turnover steady state 
experiments 0.2 µM protein was incubated with different concentrations of GTP (25, 
50, 100, 175, 250µM) and samples were taken after 0, 30, 60, 90 and 120 minutes. 
Kinetic parameters were determined by fitting the data to a single exponential (single 
turnover) or the Michaelis-Menten equation (multiple turnover) using GraphPad Prism 
6. All experiments were done in triplicate. 

FCS analysis
HEK293 cells were maintained at 37 °C in tissue culture treated Greiner flasks in 
Dulbecco’s Modified Eagle medium (DMEM) supplemented with high glucose, 4mM 
L-Glutamine, 10% fetal bovine serum, 1% antibiotics (Penicillin and Streptomycin), and 
5% CO2. Approximately 0.5 x 106 cells were seeded per well in 6-well plates for 24 hours 
and transfected for 48 hours with 2.5 µg plasmid per well (pEGFP LRRK2_RocCOR or 
pCDNA 3.0 GFP, the latter diluted 50x with empty pCDNA 3.0) using Lipofectamine LTXTM 
reagent (Invitrogen, Waltham, Massachusetts, USA) and incubated for 48 hours. The 
cells were washed in the well in 50 mM Tris buffer (pH 7.5, 100 mM NaCl, 5 mM MgCl2 
and 5% Glycerol), resuspended, pelleted and lysed for 30 min on ice with lysis buffer (50 
mM Tris, pH 7.5, 100 mM NaCl, 5 mM MgCl2 , 5% Glycerol, 1% Triton X-100, protease 
inhibitor P2714 PrIn (Sigma-Aldrich, St. Louis, Missouri, United States)), supplemented 
with 10 mM EDTA, 0.5 mM GDP or 0.5 mM GppNHp. Cell debris was cleared from the 
lysate by centrifugation (10 min, 20,800× g, 4 °C). Lysates were further diluted in lysis 
buffer supplemented with 0.5 mM GDP/GppNHp to a concentration of 3–5 molecules 
in the confocal spot (N) (accordingly to the estimates reported by the ZEN acquisition 
software (Zeiss, Jena, Germany)). FCS measurements of the lysates were performed 
on a LSM710 ConfoCor 3 microscope (Zeiss, Jena, Germany) and analyzed globally 
using the FFS data processor 2.6 software (SSTC, Department of Systems Analysis 
and Computer Modelling, Belarussian State University, Minsk, Belarus, www.sstcenter.
com), as described in more detail in Chapter 4 of this thesis (FCS global analysis without 
PCH). The total measured fluorescence signal (photons/sec) was divided by the average 
number of particles in the confocal volume (calculated by FCS) and normalized for the 
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brightness of GFP, yielding the average number of GFP molecules per particle/complex.

Data availability
All data supporting the findings of this study are available from the corresponding 
author upon reasonable request. All SAXS data and derived models were deposited 
in the SASDB (CtRocCOR NF: SASDCB2, CtRocCOR GDP: SASDCC2, CtRocCOR 
GppNHp: SASDCD2, CtRoco NF: SASDC82, CtRoco GDP: SASDCA2, CtRoco 
GppNHp: SASDC92, CtRoco L487A NF: SASDCG2, CtRoco L487A GDP: SASDCE2, 
CtRoco L487A GppNHp: SASDCF2)
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Abstract

A method is proposed for the complex analysis of fluctuations in the fluorescence 
intensity of molecular compounds, which allows determining the structural 
composition of protein oligomers. The idea of the method is to analyze the photon 
counting histograms of experimental measurements using principal component 
analysis to assess the presence of oligomeric compounds, and to perform hierarchical 
cluster analysis, to determine the data classes corresponding to various molecular 
compounds, followed by selecting cluster medoids to determine the oligomeric 
composition of protein complexes. The efficiency of the analysis algorithms developed 
within the framework of the proposed method was confirmed on simulated and 
experimental photon counting histograms of the measured fluorescence intensity 
fluctuations of monomeric and dimeric forms of green-fluorescent protein (GFP).

Keywords 
Fluorescence intensity fluctuation, photon counting histogram, molecular compounds, 
protein oligomers, data mining, principal component analysis, hierarchical cluster 
analysis, green-fluorescent protein (GFP).
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Introduction

Fluorescence fluctuation spectroscopy is widely used to study the diffusion of 
proteins and their interactions in living cells [1–3]. In the course of the experiment, the 
fluorescence of molecules bound or freely moving in a solution or a cell is recorded in 
a certain small volume (up to 10–18 m3) formed by an extremely focused laser beam.
Fluctuations in fluorescence intensity are primarily due to changes in the number and 
location of molecules in the recorded volume, as well as their interaction and the 
properties of the medium. The oligomeric composition of a protein compound can be 
determined by analyzing the amplitude of fluctuations in fluorescence intensity over 
time (methods for analyzing the distribution of fluorescence intensity — PCH (photon 
counting histogram) [4] and FIDA (fluorescence intensity distribution analysis) [5]). 
In the PCH and FIDA methods, a histogram of the number of photocounts (PC) is 
plotted at a given recording time interval to determine the concentration of a protein 
freely emitting or labeled with a luminescent dye. The recorded fluorescence intensity 
of the sample is directly proportional to the number of fluorescent molecules that 
form the studied molecular complex, which makes it possible to estimate the number 
of molecules inside the protein complex and the size of the complex [6, 7].

To analyze the distribution of the number of photocounts, various mathematical 
models [4–7] and optimization methods are usually used, among which the least 
squares method with Levenberg–Marquardt optimization [8] is used most often, which 
makes it possible to obtain information on the diffusion and structural properties of 
the studied protein compounds in the first approximation. However, the classical 
iterative algorithms for data analysis have a number of significant limitations. They do 
not allow one to accurately determine the number and type of molecular oligomers, 
perform a local rather than global search for model parameters, and require significant 
computational costs for data analysis. An alternative approach to solving this problem 
is the use of mining algorithms and large multidimensional data, the essence of which 
is the simultaneous global analysis of the entire data set as a whole [9–12].

In the present work, we propose a method for the complex analysis of fluorescence 
intensity fluctuations and the PCHs based on them using intelligent analysis algorithms 
in order to determine the oligomeric composition of molecular compounds.
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Methodology

The developed method is based on the hypothesis of the separability of a set of 
multidimensional experimental data in a certain information space into several populations 
representing various molecular oligomeric compounds [10]. A small measurement volume 
is considered, in which molecular compounds of the same type prevail in a series of short 
time intervals. A normal distribution of the measured attributes is assumed for molecular 
compounds of the same type in the allocated space. For example, protein monomers 
can form a cloud or spherical Gaussian cluster of data in a multidimensional space based 
on measurable attributes. If, however, protein oligomers are added to the monomeric 
forms of the protein, then the cloud is extended or divided into two parts along a certain 
line connecting the centers of the two populations. In the extreme case, two clouds 
or clusters of these monomers and oligomers are expected. Thus, if groups of data 
are divided into clusters in a multidimensional space of attributes, this confi rms the 
presence of several forms of protein compounds. Tasks of this kind are solved using data 
mining algorithms such as data dimensionality reduction and cluster analysis [10, 13, 14]. 
Dimensionality reduction algorithms allow switching to a low-dimensional space without 
losing the essence of information [15, 16]. Cluster analysis algorithms make it possible to 
determine clusters of data specified in varying degrees of similarity, the number of which 
may be associated with aggregates of molecular compounds. Thus, applying principal 
components analysis (PCA) will make it possible to carry out such a rotation, as a result 
of which the axis of the first principal component coincides with the diagonal of the 
data cloud in multidimensional space [17]. Therefore, the relative fraction of the scatter 
attributable to the first principal component for two types of molecular compounds (an 
elongated ellipsoid or two spherical data clouds in a multidimensional space of attributes 
is expected) should differ significantly from that for a monomer solution (one spherical 
cloud). It should be noted that the scatter diagram of the first two principal components 
is informative in the sense of defining the data structure in two-dimensional space.

The idea behind the method of complex analysis is to calculate the PCH based on the 
recorded fluorescence intensities (it is possible to use other attributes, for example, 
the autocorrelation function or factorial cumulants of the distribution of the number of 
photocounts [18]), the use of the PCA to assess the presence of oligomeric compounds 
and hierarchical cluster analysis to determine groups of data, corresponding to various 
molecular compounds, followed by the isolation of cluster medoids (PCHs having the 
smallest average distances to the remaining objects of the corresponding clusters) 
to assess the parameters of the oligomeric composition of protein complexes. 
Comprehensive analysis requires the availability of experimental data for the reference 
(monomers) and tested (oligomeric forms) samples. The block diagram of the developed
method is shown in Fig. 1 consider the main stages of the method.
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Calculation of the PCH
We calculate N of the PCH based on the registered sets of fluorescence intensities Si,
i = 1, 2, ..., N, and form objects n1, n2, ..., nN, characterized by attributes X1, X2, ..., XK, 
— histogram channels representing the frequencies of occurrence fj of the number of 
photons l = ( j – 1), j = 1, 2, ..., K, during a certain (short) time interval Δt. As a standard 
or reference sample, we use the experimental data of the monomer solution, and as a 
test sample — data for the oligomeric forms of the protein. 

Data Dimensionality Reduction
The PCA method is applied to datasets of reference and test samples. In the PCA, 
such a linear transformation is defined, as a result of which the initial data X1, X2, ..., 
XK are expressed by a set of principal components Z1, Z2, ..., ZK, where the first M 
principal components (M << K) provide the required fraction γ of the variance of groups 
of attributes. In expanded form, the principal component Zj is expressed through the 
attribute vectors X1, X2, ..., XK:

 (1)

where αij are the loading parameters of the principal components. The relative 
proportion of the scatter (%) attributable to the principal component Zj is:

 (2)

where D(Zj) is the variance of the component Zj. If the relative proportions of the scatter 
in the reference and the tested samples, which fall on the first principal component Z1, 
are the same, then to assume that there are no oligomers means to stop the algorithm. 
Otherwise, permit the presence of oligomers and continue the algorithm.

Hierarchical Cluster Analysis of the Reference Sample (HCARS)
A hierarchical cluster analysis of the histograms of the reference sample 
is performed in the space of initial attributes. In this case, it is necessary to specify a 
method for comparing objects to each other (or a measure of similarity, for example, 
Euclidean, Minkowski, correlation distance). In the developed method to eliminate 
inter-experimental inhomogeneities associated with separate measurements of the 
reference and test samples, we propose to use the standardized Euclidean distance 
(invariant to inhomogeneity in the data) [10]:

(3)
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of the reference and test samples, we propose to use the standardized Euclidean distance (invariant to inhomogeneity in the 
data) [10]:
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connection distance (or threshold) d1 on the dendrogram, at which the data are combined into one cluster. The maximum 
connection distance d1 is used as a threshold for fi nding the number of oligomer clusters on the dendrogram for the test data.

Hierarchical Cluster Analysis of the Test Sample (HCATS). A hierarchical cluster analysis of the histograms of the 
tested sample T
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Nn  is performed in the space of initial attributes. Using the threshold d1 found in the previous 
step of the algorithm, we select data clusters on the dendrogram. Assume that one cluster belongs to monomers, and the 
other(s) — to oligomeric forms.

Determination of Cluster Medoids. Clusters of monomers and oligomers are displayed on the scatter diagram of 
the fi rst two principal components. Datasets are formed by calculating medoids in each cluster to accurately determine the 
parameters of molecular compounds using PCH and FIDA methods.

Materials and Methods. Consider simulated and experimental data. The simulated data make it possible to 
qualitatively assess the performance of the method and explore the limits of application. The experimental data are used to 
confi rm the fundamental possibility of applying the developed approach to solving real problems of experimental research.

Fig. 1. Block diagram of the method (a) and diagram of the results of its main stages (b) 
for studying fl uctuations of the fl uorescence intensity of molecular compounds using 
data mining algorithms.

Figure 1: Block diagram of the method (a) and diagram of the results of its main stages (b) for studying 
fluctuations of the fluorescence intensity of molecular compounds using data mining algorithms.

where χil and χjl are coordinates of objects ni and nj;  is the variance of the attribute Xl. 
We determine the maximum connection distance (or threshold) d1 on the dendrogram, 
at which the data are combined into one cluster. The maximum connection distance d1 

is used as a threshold for finding the number of oligomer clusters on the dendrogram 
for the test data.

Hierarchical Cluster Analysis of the Test Sample (HCATS)
A hierarchical cluster analysis of the histograms of the tested sample  
is performed in the space of initial attributes. Using the threshold d1 found in the previous 
step of the algorithm, we select data clusters on the dendrogram. Assume that one 
cluster belongs to monomers, and the other(s) — to oligomeric forms.

Determination of Cluster Medoids
Clusters of monomers and oligomers are displayed on the scatter diagram of the first 
two principal components. Datasets are formed by calculating medoids in each cluster 
to accurately determine the parameters of molecular compounds using PCH and FIDA 
methods.
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Materials and Methods

Consider simulated and experimental data. The simulated data make it possible to 
qualitatively assess the performance of the method and explore the limits of application. 
The experimental data are used to confirm the fundamental possibility of applying the 
developed approach to solving real problems of experimental research.

A simulation model of the photocount flow with a given distribution of the number of 
photocounts is presented in [19]. The number of photons emitted by the molecule 
during the observation time T is approximated by the Poisson distribution with the 
intensity

                                             (4)

where  is the brightness, or the average number of photons emitted by one molecule 
per unit of time; B(r) is the exposure profi le function; r(x, y, z) is the radius vector of 
the molecule. A three-dimensional Gaussian distribution is used as a function of the 
exposure profile B(r). The number of molecules in solution in a certain volume obeys the 
Poisson distribution with the parameter

                                             (5)

where  is the average number of molecules of the test sample per unit volume; 
V0 is the exposure volume. For each molecule, the coordinates of the location in 
the volume V0 (according to the uniform distribution law) and the number of emitted 
photons (according to the Poisson distribution with the intensity λf) are generated. If 
a mixture of molecules of different types is simulated, then it is necessary to perform 
photon generation cycles for each type of molecule. The generation cycle is repeated 
iteratively until the accumulation of the number of photons, at which a PCH with a given 
signal-to-noise ratio is formed. To take into account the effect of scattering of data or 
“blurring” of PCH clusters caused by the influence of various distortions, such as the 
presence of unremovable impurities that quench or stimulate fluorescence of molecules, 
high background noise, flare and degradation of dyes, we use modeling of model 
parameters that have a normal distribution with a given mathematical expectation and 
standard deviation σ. Variation of σ makes it possible to control the scatter of data or 
the blur of clusters of PCH curves in a multidimensional space of time samples.

The simulated data is an example of an idealized system of two types of 
molecules: a monomer (M) and a dimer (D) of a certain protein (for example, GFP 
in solution), separately generated PCHs of which are characterized by the average 
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number of molecules in the recording volume and their average brightness 
. Observation interval is  

T = 5⋅10–5 s. Modeling was carried out with σ = 0.02 and 0.2 of the absolute values of 
the parameters . 

Experimental data — well-known monomeric and dimeric forms of the green fluorescent 
protein GFP S65T [20] — were provided by the Cell Biochemistry Laboratory of the 
University of Groningen (Netherlands). Reference samples: GFP protein in buffered lysis 
solution (50 mM Tris, 50 mM NaCl, 5 mM DTT, 5 mM MgCl2, 1% PI mix, 1% Triton 
X-100); separate measurements of the monomer (mGFP) and the stable dimer (diGFP, 
synthesized by liganding the pDM313 vector into pDM334 at the SpeI/XBaI binding 
sites) of GFP protein in lysates of Dictyostelium cells. A test sample is a mixture of 
equal proportions of low concentrations  of mGFP and diGFP proteins in 
Dictyostelium cell lysate. The measurements of the first sample were performed using a 
Leika TCS fluorescence confocal inverted microscope equipped with a lens immersed in 
oil (100×, 1.4NA) and a PicoHarp 300 (PicoQuant) photocount counting and recording 
system. The second and third samples were examined using a scanning inverted 
confocal microscope LSM 710 (Carl Zeiss) equipped with a lens immersed in water 
(100×, 1.2NA) and a Confocor3 measurement system (Carl Zeiss). The fluorescence of 
the samples was excited at λ = 488 nm and recorded in the λ = 505–610 nm range. 

The simulated data make it possible to investigate the applicability of the developed 
method in the case of different separability of data clusters (varied by the parameter 
σ) corresponding to protein compounds. The data representing the GFP protein in the 
buffer solution and the cell lysate are experimentally confirmed and make it possible 
to check the effi ciency of the method using examples of real model data. A mixture of 
monomeric and dimeric forms of the GFP protein is an example of a dataset specifically 
containing various forms of protein aggregation. Assuming that molecules of the same 
type were predominantly found in the observation volume, the PCHs of the experimental 
samples were constructed over a time interval of 5⋅10–2 s or less in one measurement 
of fluorescence intensity fluctuations with a duration of 120 s.

The algorithms were implemented in the Matlab mathematical programming environment 
using the pdist, linkage, cluster, and eig functions, which integrate algorithms for 
hierarchical cluster analysis and PCA [21]. The hierarchical method of cluster analysis 
was used, and the most common method for calculating the distance (standardized 
Euclidean) and the measure of cluster similarity (Ward) were investigated [13]. The data 
centering procedure is applied in the PCA. To assess the error ε of restoring the PCHs 
of various types of molecules, the ratio of incorrectly determined PCHs to the total 
number of PCHs (in %) was considered.
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Results and Discussion

The results of the analysis of the simulated datasets using the algorithms of the 
integrated approach are shown in Fig. 2 and in Table 1. The analysis of the simulated 
data was carried out separately for monomers and dimers (Fig. 2a and 2b). The relative 
proportion of the scatter α1 for the first principal component is 54.6 and 58.8% for 
monomers and dimers, and the data clouds in the space of the principal components 
have a spherical Gaussian shape. The threshold value of the similarity measure, at 
which molecules form a single cluster d1 = 15, is a criterion for determining clusters of 
different molecular shapes. The connection distance of the resulting clusters into one 
is <2, which indicates a significant similarity of the combined clusters.

The application of the algorithms of the developed method to the analysis of the 
combined set of simulated data makes it possible to accurately determine the samples 
of monomeric and dimeric forms of proteins (error ε = 0), which is confirmed by the 
high relative fraction of the scatter falling on the first principal component, α1 >98% 
(for monomers 54.6%), clear separability of data into two clusters in the space of the 
principal components Z1 and Z2 (Fig. 2c), long connection distances of the resulting 
clusters into one (>50), which confirms the importance of the difference between 
clusters. It should be noted that the method successfully works under the conditions 
of the considered example of blurring and partial overlapping of data clusters (σ = 0.2, 
ε = 1.5%; Fig. 2d), which is typical for molecular systems such as a mixture of GFP 
monomers and dimers in a cell lysate. Samples of monomeric and dimeric forms of 
proteins were determined: the relative proportion of scatter α1 = 99%, the data form 
two clusters in the space of the principal components Z1 and Z2 (Fig. 2d), the line length 
of the unification of the resulting clusters into one is >30.

In the course of the study, together with the standardized Euclidean distance, three 
additional measures for calculating the similarity between objects, invariant to data 
heterogeneity, such as Mahalanobis, correlation and Spearman were considered 
[9, 13, 14]. The best results were obtained for the distances of the standardized 
Euclidean distance and Mahalanobis. However, the Mahalanobis measure requires the 
computation of the covariance matrix of the input data, which can be costly in the case 
of analyzing large datasets (N  ∞, K  ∞).
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Fig. 2. The results of the analysis of the simulated data using the developed method, based 
on the algorithms of the principal component method (data centering is performed) and 
hierarchical cluster analysis (the standardized Euclidean measure of similarity of objects 
and the Ward connection distance for combining clusters are implemented); modeling 
parameters: MN〈 〉  = 2, Mq〈 〉  = 5⋅104 and DN〈 〉  = 1, Dq〈 〉  = 105; a) monomers, 
σ = 0.02; b) dimers, σ = 0.02; c and d) combined sets of monomers and dimers with 
σ = 0.02 and 0.2; 1) photon counting histograms on a logarithmic scale in the space of 
the initial attributes X1, X2, …, XK; 2) dendrograms of photon counting histograms PCHs, 
d is the measure of cluster similarity; 3) photon counting histograms in the space of 
principal components Z1, Z2, …, ZK, fjZ — linearly transformed frequencies of occurrence 
of the number of photons in the coordinates of principal components; 4) histograms of 
photon counts in space of the fi rst two principal components; the dimensionality of the 
axes of the principal components is represented by the linearly transformed frequencies 
of occurrence of the number of photons in the coordinates of components 1 and 2; shades 
of gray indicate monomeric and dimeric forms of proteins.

Figure 2: The results of the analysis of the simulated data using the developed method, 
based on the algorithms of the principal component method (data centering is performed) and 
hierarchical cluster analysis (the standardized Euclidean measure of similarity of objects and 
the Ward connection distance for combining clusters are implemented); modeling parameters: 

 a) monomers, σ = 0.02; b) dimers, σ = 0.02; c 
and d) combined sets of monomers and dimers with σ = 0.02 and 0.2; 1) photon counting histograms 
on a logarithmic scale in the space of the initial attributes X1, X2, …, XK; 2) dendrograms of photon 
counting histograms PCHs, d is the measure of cluster similarity; 3) photon counting histograms in the 
space of principal components  — linearly transformed frequencies of occurrence of 
the number of photons in the coordinates of principal components; 4) histograms of photon counts in 
space of the first two principal components; the dimensionality of the axes of the principal components 
is represented by the linearly transformed frequencies of occurrence of the number of photons in the 
coordinates of components 1 and 2; shades of gray indicate monomeric and dimeric forms of proteins.

The results of the analysis of experimental datasets using the algorithms of the integrated 
approach are shown in Fig. 3 and in Table 1. Study of the data for the GFP protein in 
a buffer solution allows one to determine the threshold value of the similarity measure  
(d1 = 23), at which the monomers form a single cluster, for use in the subsequent analysis 
of protein compounds (Fig. 3a). The connection distance of the resulting clusters into 
one (<5), the spherical shape of the data cloud in the space of the first two principal 
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components (Fig. 3a) and a low relative proportion of the scatter α1 = 50.5% (Table 
1), which falls on the first principal component, qualitatively confi rm the fundamental 
principle of the working hypothesis proposed in the implemented method. As a result 
of the analysis of the combined experimental data of mGFP and diGFP proteins in 
cell lysates, the presence of two forms of proteins corresponding to monomeric and 
dimeric forms (Fig. 3b) was confirmed: α1 = 99.9%, the data form two clusters in the 
space of the principal components, the connection distance of the resulting clusters 
into one >40. Analysis of the experimental data of a mixture of mGFP and diGFP 
proteins in the cell lysate revealed the presence of two forms of protein oligomers. The 
relative proportion of the scatter α1, which falls on the first principal component of the 
tested data, at 93.6% significantly exceeds the value of 50.5% obtained for monomeric 
forms of the GFP protein in a buffer solution. The connection distance at which the 
final cluster is formed is 40 (Fig. 3c), the data form two clusters in the space of the 
principal components, at 18 the connection distance of the resulting clusters into one 
significantly exceeds the value of 5 for GFP monomers. The value ≥23 should be taken 
as the threshold value for determining the number of nonmonomeric form clusters. At 
a connection distance of 23, two clusters formed by the majority of mGFP or diGFP 
molecules can be distinguished on the dendrogram of the tested data (Fig. 3c). Further
evaluation of the parameters of protein complexes can be carried out in the course 
of analysis of medoids of the obtained PCH clusters using classical algorithms for 
analyzing fluorescence spectroscopy data [5, 6]. Note that the monomers of the 
GFP protein form a spherical cluster of data in the space of the first two principal 
components (Fig. 3a), while an elongated ellipsoidal cloud is observed for a mixture of 
mGFP or diGFP, formed by clusters of monomers and dimers of compounds (Fig. 3c).

Table 1: Relative Proportion of Scatter (in %) for the First 10 Principal Components Obtained During 
Analysis of Simulated (SD) and Experimental Datasets Using Principal Component Analysis
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and dimers (Fig. 2a and 2b). The relative proportion of the scatter α1 for the fi rst principal component is 54.6 and 58.8% for 
monomers and dimers, and the data clouds in the space of the principal components have a spherical Gaussian shape. The 
threshold value of the similarity measure, at which molecules form a single cluster d1 = 15, is a criterion for determining 
clusters of different molecular shapes. The connection distance of the resulting clusters into one is <2, which indicates a 
signifi cant similarity of the combined clusters.

The application of the algorithms of the developed method to the analysis of the combined set of simulated data makes 
it possible to accurately determine the samples of monomeric and dimeric forms of proteins (error ε = 0), which is confi rmed 
by the high relative fraction of the scatter falling on the fi rst principal component, α1 >98% (for monomers 54.6%), clear 
separability of data into two clusters in the space of the principal components Z1 and Z2 (Fig. 2c), long connection distances 
of the resulting clusters into one (>50), which confi rms the importance of the difference between clusters. It should be noted 
that the method successfully works under the conditions of the considered example of blurring and partial overlapping of data 
clusters (σ = 0.2, ε = 1.5%; Fig. 2d), which is typical for molecular systems such as a mixture of GFP monomers and dimers 
in a cell lysate. Samples of monomeric and dimeric forms of proteins were determined: the relative proportion of scatter α1 = 
99%, the data form two clusters in the space of the principal components Z1 and Z2 (Fig. 2d), the line length of the unifi cation 
of the resulting clusters into one is >30.

In the course of the study, together with the standardized Euclidean distance, three additional measures for 
calculating the similarity between objects, invariant to data heterogeneity, such as Mahalanobis, correlation and Spearman 
were considered [9, 13, 14]. The best results were obtained for the distances of the standardized Euclidean distance and 
Mahalanobis. However, the Mahalanobis measure requires the computation of the covariance matrix of the input data, which 
can be costly in the case of analyzing large datasets (N → ∞, K → ∞).

The results of the analysis of experimental datasets using the algorithms of the integrated approach are shown in 
Fig. 3 and in Table 1. Study of the data for the GFP protein in a buffer solution allows one to determine the threshold value 
of the similarity measure (d1 = 23), at which the monomers form a single cluster, for use in the subsequent analysis of 
protein compounds (Fig. 3a). The connection distance of the resulting clusters into one (<5), the spherical shape of the data 
cloud in the space of the fi rst two principal components (Fig. 3a) and a low relative proportion of the scatter α1 = 50.5% 
(Table 1), which falls on the fi rst principal component, qualitatively confi rm the fundamental principle of the working 
hypothesis proposed in the implemented method. As a result of the analysis of the combined experimental data of mGFP 
and diGFP proteins in cell lysates, the presence of two forms of proteins corresponding to monomeric and dim eric forms 
(Fig. 3b) was confi rmed: α1 = 99.9%, the data form two clusters in the space of the principal components, the connection 
distance of the resulting clusters into one >40. Analysis of the experimental data of a mixture of mGFP and diGFP proteins 
in the cell lysate revealed the presence of two forms of protein oligomers. The relative proportion of the scatter α1, which 
falls on the fi rst principal component of the tested data, at 93.6% signifi cantly exceeds the value of 50.5% obtained for 
monomeric forms of the GFP protein in a buffer solution. The connection distance at which the fi nal cluster is formed is 40 

TABLE 1. Relative Proportion of Scatter (in %) for the First 10 Principal Components Obtained During Analysis of Simulated 
(SD) and Experimental Datasets Using Principal Component Analysis

Components 1 2 3 4 5 6 7 8 9 10

SD, monomers 54.564 29.263 8.134 3.079 2.318 1.120 0.701 0.471 0.166 0.094

SD, dimers 58.775 25.822 9.317 3.410 1.611 0.704 0.195 0.100 0.045 0.014

SD 1* 98.768 0.823 0.206 0.104 0.048 0.027 0.012 0.007 0.003 0.001

SD 2** 98.998 0.812 0.160 0.017 0.008 0.003 0.002 0.001 0.000 0.002

GFP 50.502 16.554 12.656 9.545 6.331 2.674 1.137 0.343 0.150 0.077

mGFP/diGFP 99.869 0.041 0.025 0.018 0.014 0.012 0.007 0.005 0.004 0.003

mGFP/diGFP 
mixture

93.592 4.161 1.360 0.470 0.175 0.104 0.055 0.028 0.023 0.011

  *Monomers/dimers, σ = 0.02;
**Monomers/dimers, σ = 0.2.
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Fig. 3. Results of the analysis of experimental data sets using the developed method, based 
on the algorithms of the principal component analysis (data centering was performed) 
and hierarchical cluster analysis (the Euclidean measure of similarity of objects and the 
Ward connection distance for combining clusters were implemented): a) GFP protein in 
a buffer solution, b) mGFP and diGFP proteins in cell lysates, c) mixture of mGFP and 
diGFP proteins in cell lysates; designations as in Fig. 2.

(Fig. 3c), the data form two clusters in the space of the principal components, at 18 the connection distance of the resulting 
clusters into one signifi cantly exceeds the value of 5 for GFP monomers. The value ≥23 should be taken as the threshold 
value for determining the number of nonmonomeric form clusters. At a connection distance of 23, two clusters formed 
by the majority of mGFP or diGFP molecules can be distinguished on the dendrogram of the tested data (Fig. 3c). Further 
evaluation of the parameters of protein complexes can be carried out in the course of analysis of medoids of the obtained 
PCH clusters using classical algorithms for analyzing fl uorescence spectroscopy data [5, 6]. Note that the monomers of the 
GFP protein form a spherical cluster of data in the space of the fi rst two principal components (Fig. 3a), while an elongated 
ellipsoidal cloud is observed for a mixture of mGFP or diGFP, formed by clusters of monomers and dimers of compounds 
(Fig. 3c).

Figure 3: Results of the analysis of experimental data sets using the developed method, based on the 
algorithms of the principal component analysis (data centering was performed) and hierarchical cluster 
analysis (the Euclidean measure of similarity of objects and the Ward connection distance for combining 
clusters were implemented): a) GFP protein in a buffer solution, b) mGFP and diGFP proteins in cell 
lysates, c) mixture of mGFP and diGFP proteins in cell lysates; designations as in Fig. 2.
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Conclusions

A method for the complex analysis of fluctuations of the fluorescence intensity of 
molecular compounds is proposed, which makes it possible to determine the structural 
composition of protein oligomers and complements the classical methods of PCH and 
FIDA analysis. The efficiency of the algorithms developed within the framework of the 
proposed method was confirmed during the analysis of simulated and experimental 
data representing the fluorescence of monomeric and dimeric forms of the GFP protein. 
The developed method has the following advantages over the classical method for 
analyzing data from fluorescence fluctuation spectroscopy: it improves the accuracy 
of data analysis, since it uses the entire data set, rather than individual histograms; 
provides computational performance due to the high speed of execution of procedures 
of the method of principal components and cluster analysis in comparison with a 
separate analysis of the full set of histograms; provides the ability to visualize data in 
the space of the first two principal components, which is much more informative than 
a diagram of a complete set of initial histograms.
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Abstract

Protein dimerization plays a crucial role in the regulation of numerous biological processes. 
However, detecting protein dimers in a cellular environment is still a challenge. Here we 
present a methodology to measure the extent of dimerization of GFP-tagged proteins 
in living cells, using a combination of fluorescence correlation spectroscopy (FCS) and 
photon counting histogram (PCH) analysis of single-color fluorescence fluctuation 
data. We named this analysis method brightness and diffusion global analysis (BDGA) 
and adapted it for biological purposes. Using cell lysates containing different ratios of 
GFP and tandem-dimer GFP (diGFP), we show that the average brightness per particle 
is proportional to the fraction of dimer present. We further adapted this methodology 
for its application in living cells, and we were able to distinguish GFP, diGFP, as well as 
ligand-induced dimerization of FKBP12-GFP. While other analysis methods have only 
sporadically been used to study dimerization in living cells and may be prone to errors, 
this paper provides a robust approach for the investigation of any cytosolic protein 
using single-color fluorescence fluctuation spectroscopy.

Keywords
Brightness and diffusion global analysis; Dictyostelium discoideum; dimeric protein; 
GFP; FK506 binding protein 12; fluorescence correlation spectroscopy; fluorescence 
fluctuation spectroscopy; photon counting histogram
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Introduction

Oligomerization and complex formation of proteins in organisms is one of the key 
mechanisms for the orchestration of protein function and activities. Classic examples 
are the dimerization and activation of protein kinases like extracellular signal-regulated 
kinase 2 (ERK2) and rapidly accelerated fibrosarcoma (RAF) [1–3]. Most nuclear 
receptors are monomeric in the cytosol and become dimeric and active upon the 
binding of ligand molecules [4,5], although, for the human androgen receptor, this may 
be the other way around [6]. Unraveling the dimerization mechanism of the androgen 
receptor is important because it has been implicated in hormone-related diseases [7]. 
In fact, dimerization and oligomerization play a role in many diseases, especially in 
neurodegenerative diseases, e.g., leucine-rich repeat kinase 2 and alpha-synuclein in 
Parkinson’s disease and tau protein in Alzheimer’s disease. 

To study the dynamic process of dimerization it is logical to use in cellulo techniques such 
as ‘live cell imaging’. Over the past decades, numerous approaches have been developed, 
all based on the non-invasive visualization of fluorescently-labeled proteins. For the 
detection of dimers it is possible to use a combination of two differently colored labels, 
as used in techniques like Förster resonance energy transfer (FRET) and fluorescence 
cross-correlation spectroscopy (FCCS) [8,9]. However, the creation of protein constructs 
with the right proximity and spectral properties of fluorophores is often a daunting task. 
Therefore, several techniques have been developed using a single fluorophore, most of 
which are based on fluorescence fluctuation spectroscopy (FFS).

FFS exploits the fluctuation of fluorescence signals, caused by either diffusion of 
fluorescent particles, through a tiny, illuminated volume or reversible change of its 
spectroscopic properties, e.g., singlet-state–triplet-state transitions, recorded from 
a stack of images or from a time-observed single spot. This fluctuation pattern is 
influenced by the diffusion speed and brightness of the particles. The diffusion and 
brightness per particle are different for monomer and dimer because of their different 
size or mass and number of fluorophores. In this way co-diffusion of multiple proteins 
in a dimer/oligomer form can be observed without any requirements for proximity of 
fluorophores within the complex, and monomer can be distinguished from the dimer 
with the same fluorophore.

To calculate the diffusion and brightness per particle from FFS data, various analysis 
techniques have been developed [10–12]. Some of these techniques have been applied 
for analysis of the dimerization of GFP-tagged proteins in living cells, i.e., number and 
brightness analysis (N&B [13]), raster image correlation spectroscopy (RICS [14]), 
photon counting histogram (PCH [15]) fluorescence intensity distribution analysis (FIDA 
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[16]), and time integrated fluorescence cumulant analysis (TIFCA [12]).

N&B and RICS are based on the analysis of images, yielding valuable information on 
the location of oligomeric complexes in the cell, especially on membranes. However, 
the vast number of pixels analyzed simultaneously is at the expense of precision. For 
an accurate determination of molecular brightness and diffusion parameters in the 
intracellular environment, single-point FFS as in FCS, PC(M)H, and FI(M)DA would be 
the method of choice [17–23].

In single-point FFS, the fluorescence intensity fluctuations are caused by the diffusion 
of proteins through a very small volume, which is generated by a tightly focused laser 
beam of a confocal microscope. The fluorescence intensity at a specific time point and 
the next time point are correlated, and the amount of correlation of a specific time-
step is dependent on the diffusion speed of the molecules crossing the observation 
volume. The correlation shows a time-dependent decay and can be fitted to a chosen 
autocorrelation function (ACF) describing the physical model of diffusion.

In fluorescence correlation spectroscopy (FCS), these ACF curves are used to estimate 
the diffusion time and number of fluorescent particles. By simply comparing the latter to 
the total photon count rate, the molecular brightness can be calculated, which is defined 
as the average number of photons detected per molecule per second (cpms). FCS has 
been widely used to study protein concentration, diffusion, kinetics, and aggregation 
in living cells, as well as dimerization [24,25]. However, to study dimerization in living 
cells, a more sophisticated and accurate method is required to calculate the molecular 
brightness such as PCH or FIDA analysis. 

PCH and FIDA are two related techniques, both based on the analysis of the amplitudes 
in the fluctuation of fluorescence intensity. The distributions of these amplitudes are 
plotted as photon counting distributions (PCD) and are derived from the same FFS 
data as the ACF curves. In the case of analysis of multiple distributions, they are called 
PCMH and FIMDA [18,22,23]. PCMH and FIMDA allow to extract information not only 
about brightness, but also about diffusion parameters. However, to get the same 
information content about the diffusion as available in the analysis of a single ACF in 
FCS, the number of analyzed PCDs should be equal to the number of points in the ACF, 
which is around one hundred and fifty. The collecting and analysis of a high number 
of PCDs, calculated at different binning times, is time consuming, whereas the same 
information, specifically on diffusion, is obtained by fitting just one ACF in FCS. For the 
determination of brightness, however, PCH and FIDA, and their extensions PCMH and 
FIMDA, are suitable methods. PCH was first applied to dimerization in cells by Chen 
et al. using tandem-dimer EGFP as well as concentration-dependent dimerization of 
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several nuclear receptors [15]. For samples with low signal-to-noise ratios, which is 
often the case in cellular samples, additional analysis tools are required. 

Here we describe the combination of FCS and PCH in the analysis of molecular brightness 
and diffusion speed and its application in the analysis of dimerization of cytosolic 
proteins in living cells. A specific analysis technique has been developed which allows 
the simultaneous analysis of FCS and PCH by linking common parameters [26]. The 
advantage of this combined FCS and PCH global analysis method is that it enhances the 
advantages of PCH in estimation of brightness by adding the power of FCS in estimation 
of diffusion to the analysis [26]. Compared to individual FCS and PCH analyses (as well as 
other techniques), the combined global FCS and PCH analysis is superior at lower signal-
to-noise ratios, making the analysis more robust and accurate. Moreover, this technique 
can be performed on a standard FCS microscope using single-color fluorescence.

Previously, the combined FCS and PCH global analysis method has been applied to 
purified dimeric GFP (diGFP) in vitro [26], as well as monomeric GFP in cells [27]. 
However, the detection and quantification of dimeric species in living cells is a challenging 
task, and the accuracy of this global analysis, as for all FFS methods, depends on 
the method of application. We have optimized the combined FCS and PCH global 
analysis method to detect the state of dimerization of fluorescent molecules in living 
cells. This combined analysis will be referred here as brightness and diffusion global 
analysis (BDGA). We use Dictyostelium cells as a model system, expressing either 
monomeric GFP, diGFP, or FKBP12-GFP, a small protein that dimerizes upon ligand 
binding [28,29], and demonstrate that this BDGA methodology is a suitable approach 
to study the in vivo dimerization of GFP-tagged proteins.

Results and Discussion

Optimization of the BDGA Method in Order to Measure Monomer-Dimer Equilibria
In cells, dimeric proteins often exist in an equilibrium between monomers and dimers; 
however, resolving monomer-dimer mixtures using FFS methods is still a challenging 
task. Both species differ in mass and brightness by just a factor of two, and even when 
we applied the standard BDGA method, see details in the Methods section, it was not 
possible to clearly resolve a monomer-dimer mixture at the low signal-to-noise ratios 
typical for FFS measurements in cells. Therefore, we aimed to optimize BDGA for a 
multi-species application in cells. 

To be able to quantify protein dimerization in cells, the method was first validated on data 
obtained from mixes of cell lysates expressing monomeric GFP and tandem-dimer GFP 
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(diGFP), see Materials section for details. In this way, various stable monomer-dimer 
equilibria were mimicked in a biological context. The measurements of these samples 
were performed at typical settings for standard FCS measurements, as described in 
the Methods section. The total averaged fluorescence intensity ranged from 40 kHz to 
250 kHz, depending on the (fluorescent) protein concentration. 

Initial Steps in the Analysis of FFS Data
For the data analysis, raw data sets of photon arrival times were converted into 
autocorrelation curves (ACF) and photon counting distributions (PCD) (Figure 1, top 
panels). In order to do so, a set of data was imported into the measurement database 
of the FFS data processor (FFS DP) and each measurement was split into traces of 5 s. 
A 5-s trace-length provides enough data points for validated samplings, while yielding a 
high enough number of traces in the global analysis. Per trace one ACF and three PCDs 
were generated. The binning time step of the ACF curves was set at 2 × 10−7 s, roughly 
500 times shorter than the residence time of GFP and diGFP in the confocal volume, 
which was in the order of 100 µs. The binning times of the PCD curves were set such that 
the histograms contained a minimum of five data points and the histogram peak value 
did not pass the 10-photon counts position. The first constraint is required because the 
PCH model has five parameters for an analysis with two components and the latter to 
maintain the super-Poissonian shape of the distribution (i.e., to avoid effect of averaging).

Next, all generated ACF and PCD curves of one measurement were imported in the 
analysis platform of FFS DP to perform the global analysis. The FCS 3D free diffusion 
model with triplet state term and brightness correction (Equation (1)) was used to fit 
ACFs, and the PCH model with out of focus (first order), diffusion and triplet correction 
(Equations (2)–(9)) was used to fit PCDs. A detector dead-time correction was included 
for the analysis of measurements obtained at high intensities. These equations can be 
used for one, two, or more component analyses. We started with a two-component 
analysis because of our goal to analyze samples that contain a mixture of two species. 
Two-Component BDGA of Lysate Mixtures
 

76  |  CHAPTER 4

4 4



Figure 1. BDGA analysis of the ACF and PCD curves from a monomer-dimer ‘equilibrium’ in cell 
lysate. The sample consisted of 50% GFP and 50% diGFP, mimicking a stable equilibrium between two 
species. Top panel: raw FFS data showing photon counts over time, from which the ACF and PCD curves 
were calculated. The measurement was divided into twelve 5-s traces, as indicated by vertical lines. 
Bottom left: 1-component fit of all ACF curves, with residuals below. Bottom right: 1-component fit of all 
PCD curves, with residuals below. PCD curves were generated with three different time steps of 5 × 10−5, 
1 × 10−4 and 2 × 10−4 s, respectively.

In the simplified system of artificial monomer-dimer equilibria in cell lysates, we expected 
that the parameters of the two species could be resolved via a two-component analysis. 
Initially, the diffusion parameter τdiff 1, see description of model parameters in section 
3.1 and Table S2, was grouped, as well as the triplet state parameters τtrip and Ftrip 
(τdiff 2 were not grouped to allow some freedom in their estimation). Reliable values for 
these parameters were retrieved from the separate FCS analyses and used to fix τdiff 1, 
τtrip, and Ftrip in the combined BDGA analysis. As a result, parameters N1 and N2 should 
indicate the amount of monomeric and dimeric particles in the confocal volume, and 
the brightness parameters q1 and q2 should differ by a factor of two. However, the 
values for N1 and N2 varied a lot between different traces within one measurement, 
while q1 and q2 yielded similar values, in-between the brightness of monomeric and 
dimeric controls (Figure S3), indicating that the two species were not resolved properly. 
In order to obtain good fits, we applied different approaches in the global analysis, 
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mostly including variation in the different parameters to be fixed or free. In the example 
of a lysate mix with 50% GFP and 50% diGFP, best results were obtained when diffusion 
parameters τdiff 1 and τdiff 2 were fixed to the values found for GFP (τdiff 1) and diGFP (τdiff 

2), while q1 was fixed to the brightness of GFP (qGFP) and the q2/q1 ratio to r = 1.8 (Table 
1, Figure S4). Alternative approaches, like fixing q2 to the brightness found for diGFP, 
resulted in N1- and N2-values that deviated more from the expected percentages for 
GFP and diGFP (Table S3). However, the optimal value for r varied for measurements 
with other proportions of diGFP (Table S4), thus a generally applicable fixed value of 
r, which would yield the expected N-values under different conditions, could not be 
determined. Therefore, the two-component analysis is considered to not be a reliable 
method for analysis of our measurements of a mix of two components that vary only 
two-fold in mass and brightness. Moreover, this method is not suitable for unknown 
samples, since τdiff and q were fixed to known values from the pure samples, and in 
biological situations it is difficult to obtain proteins that are completely monomer or 
completely dimer. We concluded that most probably the signal-to-noise ratio needed 
to resolve such mixtures into monomer and dimer was not reached.

Table 1. Analyses of representative lysate samples from one measurement day.
Each measurement consists of 12 traces of 5 s. Deviations of all parameters except N are presented as 
confidence intervals, calculated as asymptotic standard errors (ASE), as reported by the software. Ftrip: 
triplet state fraction; τtrip: triplet state time; τdiff: diffusion parameter as reported by the software; N: number 
of particles in the confocal volume, with the standard deviation (SD) between traces indicated; qtrue: true 
brightness; χ2: value of the global fit criterion. ASEs represent uncertainties of estimated parameters 
obtained in analyses performed per one trace. For comparison we additionally calculated standard 
deviations of brightness between traces (SD of qtrue). Fixed values are indicated in italics (have been 
determined in the rows above). cpms: counts per molecule per second; r = q2/q1.

Sample Analysis 
method Ftrip (×10−2) τtrip (µs) τdiff 1 (µs) N (±SD) qtrue (×104 

cpms)
SD of 
qtrue

χ2

R110 1-component 9.10 ± 0.78 6.9 ± 1.2 35 ± 1 4.50 (±0.06) 4.04 ± 0.023 0.055 1.147
GFP 1-component 12.2 ± 0.90 35.1 ± 2.0 151 ± 4 3.88 (±0.09) 3.20 ± 0.020 0.096 1.05
diGFP 1-component 7.08 ± 0.43 31.0 ± 2.0 221 ± 3 3.63 (±0.06) 5.12 ± 0.023 0.090 1.233

50% GFP 
+ 50% 
diGFP

1-component 8.97 ± 0.47 22.2 ± 2.5 191 ± 2 3.47 (±0.07) 4.88 ± 0.025 0.107 1.193
2-component  
(r = 1.8) 8.07 ± 0.46 19.1 ± 2.4 151 (τdiff 1);  

221 (τdiff 2)
2.00 (±0.18) (N1); 
1.76 (±0.12) (N2)

3.20 (q1);  
5.76 (q2)

- 1.068

Although the two-component model could not resolve two species which differ by 
only a factor of two in brightness and mass, in more complex samples the addition 
of a second component may very well be required. In our experience, adherence to 
cellular structures may cause part of the particles to diffuse very slowly (in the seconds 
time-scale), requiring the two-component model for a good fit. But for the lysate mixes, 
which do not have such a slow-diffusing component, we changed to a simpler variant 
of the BDGA method, namely the one-component analysis.
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One-Component BDGA of Lysate Mixes
While in a two-component analysis the number of molecules (N1 and N2) reflects the 
proportion of each species, in a one-component analysis the parameter of interest is 
the average brightness q. This apparent brightness per particle increases with a higher 
dimer to monomer ratio. The BDGA analysis was performed as described above, except 
that a one-component model was applied. Ftrip, τtrip, and τdiff 1 (now called τdiff) were first 
calculated in the FCS global analysis, and subsequently fixed in the BDGA analysis. An 
example of the fit of one of the analyses is shown in Figure 1. The brightness parameter 
q was determined per trace and corrected for correction factor Fc1 (Equation (12)) before 
further calculations were made. Data from multiple measurement days were normalized 
and averaged as described in the Methods section. Of note: the GFP lysate was used 
for normalization rather than the R110 calibration dye, because it corrects for day-to-day 
variation between the biological samples rather than only the technical setup.

Brightness per sample was plotted as a ratio compared to the brightness of GFP 
(Figure 2 and Table 2). Despite some deviation due to technical fluctuation per day, 
a linear trend is observed with higher average brightness when more dimer is present 
(solid line). This is slightly lower than the theoretical value when diGFP would be twice 
as bright as the monomer (dashed line). This deviation is in accordance with previous 
reports, where a ratio of 1.7 was observed, possibly due to fluorescence energy 
transfer [26]. A proportion of dimer as small as 5% could be distinguished (p < 0.001). 
Therefore, one-component BDGA can be used to determine whether dimeric proteins 
are present in the sample and to estimate the monomer to dimer ratio.

Table 2. Diffusion rate and brightness of various GFP-diGFP mixes in cell lysate. Percentages of 
diGFP particles are indicated, relative to the total number of GFP and diGFP particles in the sample. The 
presented values are mean ± standard deviation (SD) based on 42–126 traces from 2–5 measurement 
days. τdiff: diffusion parameter before any normalization; D: diffusion coefficient calculated from τdiff, 
corrected for the diffusion of R110 on each measurement day; qtrue: average true brightness without any 
correction for instrumental variation between days; qtrue norm. to GFP: true brightness normalized for the 
true brightness of the GFP sample per measurement day.
diGFP% τdiff (µs) D (µm2 s−1) qtrue (×104 cpms) qtrue norm. to GFP
0 131 ± 21 97.3 ± 6.5 4.43 ± 1.22 1.00 ± 0.02
5 126 ± 32 98.3 ± 6.6 5.13 ± 1.19 1.02 ± 0.03
10 154 ± n.a. 99.0 ± n.a. 5.16 ± 1.60 1.10 ± 0.03
12.5 132 ± 37 94.1 ± 3.3 5.19 ± 1.15 1.13 ± 0.03
33.3 137 ± 32 87.7 ± 3.9 6.43 ± 1.42 1.37 ± 0.04
50 169 ± 31 74.0 ± 6.0 5.69 ± 1.62 1.45 ± 0.06
66.7 168 ± 37 78.4 ± 0.1 6.20 ± 1.84 1.55 ± 0.25
87.5 156 ± 37 76.8 ± 2.2 8.22 ± 2.02 1.75 ± 0.08
90 175 ± 46 69.5 ± 6.9 8.27 ± 2.88 1.84 ± 0.25
95 158 ± 36 75.7 ± 2.4 8.68 ± 1.70 1.74 ± 0.07
100 173 ± 40 71.4 ± 5.9 8.82 ± 2.77 1.89 ± 0.24

BDGA TO QUANTIFY PROTEIN DIMERIZATION IN LIVING CELLS  |  79

4 4



Figure 2. Average brightness of various GFP-diGFP mixes in cell lysate. Percentages of diGFP 
particles are relative to the total number of GFP and diGFP particles in the sample. Average true brightness 
is calculated as in Table 2, normalized to GFP per day. Error bars indicate standard deviations. The black 
line indicates the linear fit (R2 = 0.9837). The dashed line indicates the theoretical expected values, when 
a dimer would be twice as bright as a monomer.

Improved BDGA Methodology for the Analysis of Cellular Data
Analysis of cellular data brings new challenges compared to data from cell lysates. 
Due to internal movement of non-fluorescent biomolecules or compartments in living 
cells, such as lysosomes or vacuoles, the fluorescence intensity in the small FCS spot 
will fluctuate over time (Figure 3, top panel). Therefore, each measurement was split 
into 3-s traces, and instable traces were excluded from further analysis based on their 
typical aberrant tail in the ACF. This approach has proven to be effective to analyze the 
non-stationary data [30]. Of note, by using 3- rather than 5-s traces (as for lysate data), 
less data had to be removed per aberrant trace, because a deviation lasted usually 
for about three seconds and the selection of fluctuating regions in the measurement 
became more precise. 

Other challenges to overcome are phototoxicity and photobleaching. Focusing the 
laser beam on a single spot in a cell for a few minutes will cause local stress such 
as phototoxicity to the cells. Moreover, photobleaching of the fluorophore can play a 
role, because if a dimer of which one molecule is bleached it will behave as dimer in 
FCS and as monomer in PCH. In the small, confined volume of a cell, the bleached 
molecules are not diluted by diffusion as in lysates. Therefore, Dictyostelium cells were 
measured for only 45 s. All other steps in the ACF and PCD curve generation were the 
same as above. The resulting ACF as well as the PCD curves from a series of traces 
did overlay but deviated due to bleaching (Figure 3).
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Figure 3. BDGA analysis of the ACF and PCD curves from GFP in living cells. The sample consisted 
of cells expressing GFP. Panels are explained in Figure 1. The measurement was divided into fifteen 
3-s traces. Traces marked with an ‘X’ have been deleted based on visual inspection of the ACF curves. 
In the first 15 s, bleaching is taking place. The slight wave in the ACF residuals is expected because of 
internal movement of cellular compartments and fixation of the triplet state parameters. PCD curves were 
generated with three different time steps of 1 × 10−5, 2 × 10−5, and 5 × 10−5 s, respectively.

As with the lysate data, τdiff 1, τtrip, and Ftrip were first calculated via the global analysis 
of only ACF curves. Importantly, τtrip and Ftrip were the same for all samples with single 
GFP and GFP-fusion proteins, while diGFP had significantly different triplet state values 
(Figure S5A,B). Therefore, τtrip and Ftrip were averaged over a large number of cells, 
and all samples except diGFP were analyzed with these values fixed for τtrip and Ftrip in 
both the FCS and BDGA analyses. Fixation of triplet parameters improved the analysis, 
yielding lower standard deviations for the brightness parameters than when these 
parameters were left free (Figure S5C). In samples with complex proteins, the standard 
deviations will be higher and the reduction in standard deviation upon fixing the triplet 
state parameters is expected to be clearer. More details about the triplet state in FCS 
can be found in [31,32]. In general, fixing some parameters to the previously known 
values improved the estimation of any other parameters of interest. 

Representative examples of the global analysis of individual cells are shown in Table 3, 
while the averages of multiple cells are shown in Table 4 (two first rows). The fit per cell 
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yielded in many cases a χ2 close to unity and the standard deviations of fit parameters 
were similar to what was obtained for measurements in cell lysate (Table 1). However, 
the variation between cells was much larger compared to the cell lysate measurements. 
Therefore, 27–35 cells from three measurement days were analyzed per experimental 
condition, normalized towards GFP and averaged for the parameters q and τdiff (Table 4).

Unlike with cell lysate, in cells the additional recalculation of the apparent brightness to 
qtrue was not performed. The required correction parameter Fc1 varied to a great extent 
and did not reflect the real instrumental correction factor due to ‘absorption’ of any 
deviations which are not accounted by the model and which are more prevalent in cells. 
Since all measurements were performed on the same instrument with similar settings, 
a similar Fc1 correction parameter was expected for the whole data set. Any deviations 
caused by different Fc1 should be averaged out because of the large sample size and 
linearity of the correction. Finally, the influence of the correction parameter Fc1 to the 
relative brightness should be canceled out due to the performed normalization. In order 
to validate the results, a pilot of seven cells per sample was analyzed using PCH with 
the polynomial model (instead of Gaussian), which does not include parameter Fc1. 
Indeed, the differences in relative brightness were small (Figure S6A). Therefore, we 
are confident that the additional calculation of qtrue was not required for the comparison 
of relative values of cellular samples as was performed on the lysate samples. 

Table 3. Global analysis results of single cells. Representative cells have been chosen from the same 
measurement day. Each measurement of 45 s was divided into 3-s traces. Deviations of all parameters 
except N are presented as confidence intervals. Ftrip, τtrip, and τdiff, see Table 1. N: number of particles in the 
confocal volume, lowest and highest values indicate the amount of bleaching; q: apparent brightness;# 
traces: number of traces from one measurement, on which the analysis was based; χ2: value of the global 
fit criterion. ASEs represent uncertainties of estimated parameters obtained in analyses performed per 
one trace. For comparison we additionally calculated standard deviations of brightness between traces 
(SD of q). +dim: 1 µM dimerizer was added to the cells for 3 h. Trip free: triplet state parameters were free 
in the ACF analysis. Fixed values are indicated in italics and have been determined by averaging multiple 
analyses with free triplet state parameters. The two GFP results were based on the same measurement 
but with different analysis settings.

Sample Ftrip τtrip (µs) τdiff (µs) N (range) q (×104 
cpms)

SD of q  
(×104 cpms)

# 
traces χ2

GFP (trip free) 0.241 ± 
0.008

53.8 ± 
2.8 381± 8 12.1 

(8.5–19.9) 4.71 ± 0.06 0.55 14 1.197

GFP (trip fixed) 0.178 40.0 330 ± 2 11 (7.8–18.2) 5.18 ± 0.07 0.55 14 1.108
diGFP 0.128 61.9 841 ± 6 6.5 (4.9–7.9) 8.32 ± 0.10 1.04 13 1.079

FKBP12-GFP + dim 0.178 40.0 1018 ± 9 19 (16.5–21.7) 6.73 ± 0.18 0.79 9 1.015
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The results of the analysis of GFP and diGFP in cells are shown in Table 4 (upper 
rows). The diffusion of both GFP and diGFP was slower in cells and had a broader 
distribution compared to cell lysate (Table 2). This broad deviation in diffusion may 
be due to variation in viscosity, depending on the position in the cell, which could not 
be distinguished in our setup. Still, the diffusion of GFP and diGFP was significantly 
different in the separate samples (p < 0.001; Table 4), as determined in the initial 
analysis step with FCS without PCH. 

Considering the significant difference in diffusion between GFP and diGFP, the question 
may arise why FCS should not be used. However, if a protein with unknown dimerization 
property is observed, the amount of dimer cannot be estimated because a reference 
with pure monomer of the same protein is often lacking. Moreover, the diffusion of 
proteins in cells is often influenced by adhesion to cellular structures like membranes 
and protein complexes. Nevertheless, FCS may be used to estimate the protein 
concentration N, from which the average brightness per particle may be calculated by 
dividing the total fluorescence intensity by N (q = <I>/N). In complex samples which 
are difficult to fit, this may be a fast way to assess whether higher order oligomers are 
present in the cells, since this average brightness can be compared to the brightness 
of monomeric GFP in cells. This simplification comes at the expense of any corrections 
for background fluorescence, protein aggregates and other artifacts. 

With the brightness and diffusion global analysis as performed here, the brightness of 
GFP and diGFP could clearly be distinguished with a significance of p < 0.001 (Table 
4 and Figure 4, first rows/bars). The magnitude of this difference is 1.6-fold, which 
is comparable to what was found before with purified protein (1.72; [26]), but smaller 
than the two-fold difference which is expected when two fluorophores are present per 
particle. The low apparent brightness of the dimer may be caused by resonance energy 
transfer, triplet state formation, photobleaching, or blinking of one of the subunits [33–
35]. In the small confined volume of cells, the effect of photobleaching is substantial, 
which can be avoided by adjusting the laser power or it may be reduced by using short 
measurement times (<1 min) as well as more photostable fluorophores or two-photon 
excitation [15]. However, we strived for a simple, broadly applicable method which 
could be performed with any existing GFP construct on any confocal microscope with 
FCS module. Using diGFP as a reference for the brightness of dimeric samples, it will 
be possible to estimate the amount of dimer in the sample. Taken together, with the 
above data we have shown that in our setup the BDGA method can distinguish GFP 
from diGFP in Dictyostelium cells.
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Application of the Developed Methodology to the Analysis of Induced Dimerization 
in Cells
To mimic real dimerization and create a monomer-dimer mix in living cells, GFP 
was fused to the FKBP12 dimerization domain [29,36]. Two of these domains can 
dimerize via a linker molecule called B/B homodimerizer (or ‘dimerizer’, Figure S7A). 
Measurement and analysis of Dictyostelium cells with FKBP12-GFP were performed as 
described in the Methods section. The ACF and PCD curves of FKBP12-GFP appear 
similar to those of GFP in cells (Figure 5 compared to Figure 3). 

When dimerizer was added to the cells, the apparent brightness of the FKBP12-GFP 
molecules was 1.33-fold higher than GFP, which was significantly higher compared 
to FKBP12-GFP without dimerizer or the GFP controls (p < 0.001), indicating that 
dimerization of FKBP12-GFP was taking place. Considering the linear relationship 
between average brightness and the monomer-dimer ratio (Figure 2), and the fact that 
100% diGFP was 1.6-fold brighter than GFP (Table 4), a brightness of 1.33 × qGFP would 
correspond to approximately 55% dimer. Taken together, the amount of dimeric protein 
could be estimated in a cellular context using monomeric and dimeric GFP as a reference. 

The difference in diffusion between FKBP12-GFP and ‘FKBP12-GFP plus dimerizer’ 
is smaller than the difference between GFP and diGFP, but due to a large sample size 
this difference is still significant (p < 0.001). Thus, the presence of FKBP12 dimer can 
already be distinguished by analyzing diffusion alone. However, as mentioned above, 
‘clean’ diffusion (without adherence to other cellular components) and the availability of 
a 100% monomeric sample, are required to determine whether a sample would contain 
oligomers based on diffusion. 

Taken together, we show that BDGA is an adequate analysis procedure, even in an in 
cellulo situation, to quantify the dimerization status of cytosolic proteins with statistical 
significance. To our knowledge, this is the first time that this method is applied to 
dimerizing proteins in living cells.
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Figure 4. Average brightness calculated from analysis of multiple cells. The apparent brightness 
of several proteins was measured in living Dictyostelium cells and normalized to GFP per day. Averages 
were calculated from 24–35 cells per sample from 3 independent measurement days, as in Table 4. Error 
bars indicate standard deviations. FKBP12-GFP: GFP-linked dimerizing domain; +dim: cells have been 
incubated with 1 µM dimerizer for 3 h; *** p < 0.001.

Table 4. Induced dimerization of GFP in cells via the FKBP12 domain. Addition of dimerizer increased 
the average brightness per particle when GFP was fused to the FKBP12 dimerizing domain, but not 
to GFP alone. The presented values are mean ± standard deviation (SD) based on 27–35 cells from 3 
measurement days. Parameters are explained in Table 2 and 3. The diffusion coefficient D is calculated 
from τdiff and the diffusion rate of R110 on each measurement day. q: average apparent brightness without 
any correction for variation between days; q norm. to GFP: brightness normalized for the brightness of 
the GFP sample per measurement day. +dim: 1 uM dimerizer was added to the cells for 3 h.* p < 0.001 
relative to GFP; ** p < 0.001 relative to GFP and FKBP12-GFP.
Sample τdiff (µs) D (µm2 s−1) q (×104 cpms) q normalized to GFP # cells
GFP 506 ± 115 16.7 ± 3.6 4.9 ± 0.6 1.00 ± 0.07 35
diGFP 871 ± 336 10.2 ± 2.4 * 7.8 ± 1.4 1.60 ± 0.25 * 27
GFP + dim 502 ± 133 17.1 ± 4.3 4.9 ± 0.6 1.00 ± 0.09 28
FKBP12-GFP 882 ± 269 9.8 ± 2.2 4.8 ± 0.7 0.98 ± 0.09 31
FKBP12-GFP + dim 1101 ± 336 7.8 ± 1.7 ** 6.6 ± 0.9 1.33 ± 0.15 ** 35
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Figure 5. Results of BDGA analysis of the ACF and PCD curves from a monomer-dimer equilibrium 
of FKBP12 in living cells. The sample consisted of cells expressing FKBP12-GFP, supplemented with 
dimerizer. Panels are explained in Figure 1. The measurement was divided into fifteen 3-s traces. Traces 
marked with an ‘X’ have been deleted based on visual inspection of the ACF curves. PCD curves were 
generated with three different time steps of 5 × 10−6, 1 × 10−5, and 2 × 10−5 s, respectively.

Materials and Methods

Theory of the Global Analysis of ACF and PCD
The set of measured autocorrelation functions (ACF) and photon counting distributions 
(PCD) is analyzed globally using a combination of two models, FCS and PCH, by linking 
parameters having the same meaning (and name) in both models [26]. The analysis 
is performed using the constrained nonlinear iterative least-squares method with the 
Levenberg–Marquardt optimization [37]. Application of a global analysis approach 
increases the information content available from a single measurement that results in 
more accurate values of molecular diffusion coefficients and triplet-state parameters, 
and also in robust, time-independent estimates of molecular brightness and number of 
molecules. 
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The FCS model used for fitting the autocorrelation function describes a number 
of independent molecular species, which diffuse freely in a 3D Gaussian-shaped 
observation volume and undergo the triplet process, and is written as [38]:
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 and B(r) is the 
brightness profile function, which is the convolution of excitation intensity and detection 
efficiency profiles, depending on the radius r of the overlapping excitation and detection 
spots. The subscript 0 in q0eff i and N0eff i means that these parameters do not depend 
on time. Equation (1) has been written in assumption that each molecular species has 
the same triplet-state characteristics. 

The PCH model with triplet, free 3D diffusion and out of focus emission corrections is 
calculated by a numerical algorithm consisting of the following steps (the full protocol 
is described in details in [38]):

1.	 Calculate the time dependent parameters
2.	
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for each molecular species i = 1, 2, …, where T is the counting time interval (bin time), 
B2(T) is the binning correction factor

 

Materials and Methods 

TThheeoorryy  ooff  tthhee  GGlloobbaall  AAnnaallyyssiiss  ooff  AACCFF  aanndd  PPCCDD  
The set of measured autocorrelation functions (ACF) and photon counting distributions (PCD) is 
analyzed globally using a combination of two models, FCS and PCH, by linking parameters having the 
same meaning (and name) in both models [26]. The analysis is performed using the constrained 
nonlinear iterative least-squares method with the Levenberg–Marquardt optimization [37]. 
Application of a global analysis approach increases the information content available from a single 
measurement that results in more accurate values of molecular diffusion coefficients and triplet-state 
parameters, and also in robust, time-independent estimates of molecular brightness and number of 
molecules.  

The FCS model used for fitting the autocorrelation function describes a number of independent 
molecular species, which diffuse freely in a 3D Gaussian-shaped observation volume and undergo the 
triplet process, and is written as [38]: 
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where ; Ftrip and τtrip are, respectively, the fraction and the relaxation time of molecules 

in the triplet state; q0eff i is the apparent molecular brightness of species i, expressed in counts per 
molecule per second (cpms); N0eff i is the number of molecules of species i in the effective volume Veff ; 

, ωxy and ωz are, respectively, the lateral and axial radii of the confocal detection volume; 

and τdiff i is the lateral diffusion time of species i, which is related to the diffusion coefficient D via τdiff = 

ωxy
2/(4D). The effective volume is calculated as , where  and B(r) is the 

brightness profile function, which is the convolution of excitation intensity and detection efficiency 
profiles, depending on the radius r of the overlapping excitation and detection spots. The subscript 0 
in q0eff i and N0eff i means that these parameters do not depend on time. Equation (1) has been written 
in assumption that each molecular species has the same triplet-state characteristics.  

The PCH model with triplet, free 3D diffusion and out of focus emission corrections is calculated by a 
numerical algorithm consisting of the following steps (the full protocol is described in details in [38]): 
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for each molecular species i = 1, 2, …, where T is the counting time interval (bin time), B2(T) is the 
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calculated over a time dependent term of the autocorrelation function in FCS 

 

calculated over a time dependent term of the autocorrelation function in FCS  
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and q0eff i, N0eff i, a, Ftrip, τtrip, τdiff i are fit parameters; 

2. Calculate single-molecular PCD  for each molecular species i 

 (5) 

where k = 1,2, …, K is the number of photons detected in an interval T, K is the maximal number of 
photons, Fcn, n = 1, 2 are instrumental out-of-focus correction parameters (Fcn are also fit parameters) 
and  

. (6) 

In Equation (6), γ() is the incomplete gamma function and parameter Θ is varied depending on the 
value of the product of qeff T (from 1 to 20), see details in [38]; 

3. Calculate PCD P(k) for each brightness component assuming the Poissonian distribution of a number 
of molecules in an open observation volume  

 (7) 

where  is M-times convolution of the single-

molecule PCD and Poi(k,η) denotes the Poisson distribution with the mean value η;  

4. Calculate the total PCD for a molecular system. PCD of a number of independent species is given by a 
convolution of PCD of each species 

 (8) 

5. The correction on dead-time is performed accordingly to the following equation [39]: 

 (9) 

where τdt is the detector dead time (fit parameter) and Pbinomial(j, n, p) is the binomial probability 
distribution. We omitted the dependence on T from qeff i, Neff i, and therefore from all related 
expressions in the Equations (5)–(9) for the sake of simplicity. 
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and q0eff i, N0eff i, a, Ftrip, τtrip, τdiff i are fit parameters;

3.	 Calculate single-molecular PCD (1) ( , )eff ip k q  for each molecular species i
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where k = 1,2, …, K is the number of photons detected in an interval T, K is the maximal number of 
photons, Fcn, n = 1, 2 are instrumental out-of-focus correction parameters (Fcn are also fit parameters) 
and  

. (6) 

In Equation (6), γ() is the incomplete gamma function and parameter Θ is varied depending on the 
value of the product of qeff T (from 1 to 20), see details in [38]; 

3. Calculate PCD P(k) for each brightness component assuming the Poissonian distribution of a number 
of molecules in an open observation volume  
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4. Calculate the total PCD for a molecular system. PCD of a number of independent species is given by a 
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5. The correction on dead-time is performed accordingly to the following equation [39]: 
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where k = 1,2, …, K is the number of photons detected in an interval T, K is the 
maximal number of photons, Fcn, n = 1, 2 are instrumental out-of-focus correction 
parameters (Fcn are also fit parameters) and 
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and q0eff i, N0eff i, a, Ftrip, τtrip, τdiff i are fit parameters; 

2. Calculate single-molecular PCD  for each molecular species i 
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where k = 1,2, …, K is the number of photons detected in an interval T, K is the maximal number of 
photons, Fcn, n = 1, 2 are instrumental out-of-focus correction parameters (Fcn are also fit parameters) 
and  
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In Equation (6), γ() is the incomplete gamma function and parameter Θ is varied depending on the 
value of the product of qeff T (from 1 to 20), see details in [38]; 

3. Calculate PCD P(k) for each brightness component assuming the Poissonian distribution of a number 
of molecules in an open observation volume  
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where  is M-times convolution of the single-

molecule PCD and Poi(k,η) denotes the Poisson distribution with the mean value η;  

4. Calculate the total PCD for a molecular system. PCD of a number of independent species is given by a 
convolution of PCD of each species 
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5. The correction on dead-time is performed accordingly to the following equation [39]: 
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where τdt is the detector dead time (fit parameter) and Pbinomial(j, n, p) is the binomial probability 
distribution. We omitted the dependence on T from qeff i, Neff i, and therefore from all related 
expressions in the Equations (5)–(9) for the sake of simplicity. 
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In Equation (6), γ() is the incomplete gamma function and parameter Θ is varied 
depending on the value of the product of qeff T (from 1 to 20), see details in [38];

4.	 Calculate PCD P(k) for each brightness component assuming the Poissonian 
distribution of a number of molecules in an open observation volume 
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and q0eff i, N0eff i, a, Ftrip, τtrip, τdiff i are fit parameters; 

2. Calculate single-molecular PCD  for each molecular species i 
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where k = 1,2, …, K is the number of photons detected in an interval T, K is the maximal number of 
photons, Fcn, n = 1, 2 are instrumental out-of-focus correction parameters (Fcn are also fit parameters) 
and  
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In Equation (6), γ() is the incomplete gamma function and parameter Θ is varied depending on the 
value of the product of qeff T (from 1 to 20), see details in [38]; 

3. Calculate PCD P(k) for each brightness component assuming the Poissonian distribution of a number 
of molecules in an open observation volume  
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where  is M-times convolution of the single-

molecule PCD and Poi(k,η) denotes the Poisson distribution with the mean value η;  

4. Calculate the total PCD for a molecular system. PCD of a number of independent species is given by a 
convolution of PCD of each species 

 (8) 

5. The correction on dead-time is performed accordingly to the following equation [39]: 
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where τdt is the detector dead time (fit parameter) and Pbinomial(j, n, p) is the binomial probability 
distribution. We omitted the dependence on T from qeff i, Neff i, and therefore from all related 
expressions in the Equations (5)–(9) for the sake of simplicity. 
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where 

 

calculated over a time dependent term of the autocorrelation function in FCS  
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where k = 1,2, …, K is the number of photons detected in an interval T, K is the maximal number of 
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In Equation (6), γ() is the incomplete gamma function and parameter Θ is varied depending on the 
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5. The correction on dead-time is performed accordingly to the following equation [39]: 
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 is M-times convolution of the single-

molecule PCD and Poi(k,η) denotes the Poisson distribution with the mean value η; 
5.	 Calculate the total PCD for a molecular system. PCD of a number of independent 

species is given by a convolution of PCD of each species
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where k = 1,2, …, K is the number of photons detected in an interval T, K is the maximal number of 
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and  
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In Equation (6), γ() is the incomplete gamma function and parameter Θ is varied depending on the 
value of the product of qeff T (from 1 to 20), see details in [38]; 
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5. The correction on dead-time is performed accordingly to the following equation [39]: 

 (9) 

where τdt is the detector dead time (fit parameter) and Pbinomial(j, n, p) is the binomial probability 
distribution. We omitted the dependence on T from qeff i, Neff i, and therefore from all related 
expressions in the Equations (5)–(9) for the sake of simplicity. 
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6.	 The correction on dead-time is performed accordingly to the following equation 
[39]:
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where τdt is the detector dead time (fit parameter) and Pbinomial(j, n, p) is the binomial 
probability distribution. We omitted the dependence on T from qeff i, Neff i, and therefore 
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from all related expressions in the Equations (5)–(9) for the sake of simplicity.

Both FCS and PCH models can be modified to fit the brightness ratio 0 0 1i eff i effr q q=  
instead of fitting of the absolute brightness values, thus, to have the following set of 
fitting parameters: q0eff 1, r2, r3, …. The ratio can be then fixed to the expected value 
or constrained to reasonable boundaries, which increases the ability of the model to 
resolve multicomponent samples. The FCS model will take the form:

 

Both FCS and PCH models can be modified to fit the brightness ratio  instead of fitting 

of the absolute brightness values, thus, to have the following set of fitting parameters: q0eff 1, r2, r3, …. 
The ratio can be then fixed to the expected value or constrained to reasonable boundaries, which 
increases the ability of the model to resolve multicomponent samples. The FCS model will take the 
form: 

 (10) 

In the PCH model, one has to recalculate the time dependent parameters  accordingly: 

. (11) 

For the sake of simplicity, q will be used instead of , N instead of , and r instead of r2 
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For the sake of simplicity, q will be used instead of 0effq , N instead of 0effN , and r 
instead of r2 throughout the text.

In the described method the FCS and PCH models are linked through the common 
parameter N. Values of N in FCS are corrected by values of q from PCH, and values of 
q and N in PCH are corrected by values of diffusion and triplet state parameters from 
FCS. When using the two-component model to resolve two species in the sample, 
it is important that the two fractions are separated in the same way for each trace in 
the global analysis of multiple traces, especially at low signal-to-noise ratios and/or 
when q and N values are close for the two species. To prevent the components to be 
exchanged in some individual traces, e.g., q1 of that trace is low and q2 is high while for 
the rest of the traces it is the other way around, the allowed range of each component 
should either be linked across all traces or even better, be tightly constrained or fixed. 
The swapping of components during the fit process (and therefore trapping in the 
local minima) is probable, even inside a global analysis of one ACF and one PCD in 
the case when brightness and diffusion are close to each other, which is typical for 
the dimerization studies. If necessary, the swapped values can be manually corrected 
and the analysis should then be repeated. The use of the model with brightness ratio 
fixed to the expected value may drastically improve the resolvability of the method in 
this case. 
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Sample Preparation and Measurement
Plasmids and Cloning
Vectors pDM317 and pDM334 [40] were used for constitutive or inducible expression 
of GFP-S65T (further referred to as GFP), respectively. For the construction of tandem-
dimer GFP (diGFP), an additional GFP gene was added to these plasmids by digesting 
GFP from pDM313 with SpeI/XbaI and ligating into the SpeI site of pDM317 or pDM334. 
This created the following linker: 5′-SGLRSSTSS-3′ between the two GFP inserts. 

FKBP12 was cloned into pDM334 using BglII/SpeI restriction sites. To improve 
binding of the dimerizing ligand, an F36V point mutation was created by PCR-based 
site directed mutagenesis using Phusion (ThermoScientific) polymerase and primer: 
5′-GATGGAAAGAAAGTTGATTCCTCCC resulting in FKBP12 F36V (hereafter referred 
to as FKBP12). 

Cell Culture
The axenic Dictyostelium discoideum wild-type strain was used for all experiments. 
Cells were grown in HL5-C medium (Formedium) at 22 °C. The indicated constructs 
were transformed in AX2 cells by electroporation and selected with either 10 µg/
mL geneticin or 50 µg/mL hygromycin B. To induce expression from the tetracycline 
inducible vectors, the cells were overnight incubated with 1 µg/mL doxycycline. 
Dimerization of FKBP12-GFP was induced by incubation with B/B homodimerizer 
(Clontech, also called AP20187) to a final concentration of 1 µM for 3 h. 

Measurement in Cell Lysate
Vegetative Dictyostelium cells containing constitutive expression vectors (pDM317 hyg 
GFP or pDM317 diGFP) were put on LoFlo medium (Formedium) overnight, 108 cells 
were pelleted, washed in 10 mM Na-K-hosphate buffer (pH = 6.5). Cells were lysed by 
incubation in 1 mL lysis buffer (50 mM Tris (pH 7.5), 50 mM NaCl, 5 mM DTT, 5 mM 
MgCl2, and 1% of a modified Dictyostelium protease inhibitor mix consisting of 2 ug/mL 
pepstatin (Carl Roth), 100 ug/mL N-tosyl-l-lysinc chlometyl ketone (Sigma), 80 ug/mL 
N-p-tosyl-l-arganine-methyl esther hcl (Sigma), 5 ug/mL leupeptin (Carl Roth), 0.1 mM 
PMSF (Carl Roth), 5 mM benzamidine (Sigma), 2 mM N-CBZ-Pro-ALA (Sigma) [41]) 
containing 1% triton for 30 min on ice.

Lysate was cleared from cell debris by centrifugation (10 min, 20,800× g, 4 °C). The 
protein concentrations were in the range of 5–30 mg/mL, as determined with the 
Bradford assay. The lysates were diluted 5–20 fold to a concentration corresponding to 
3–5 molecules detected in the confocal spot (N) accordingly to the estimates reported 
by the ZEN acquisition software (Zeiss, Jena, Germany). To prepare solutions with the 
same N, the dilution factor was determined by measuring both the GFP and diGFP 
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lysates. Subsequently, the lysates were mixed according to the percentage of diGFP 
as indicated. Lysates were kept on ice for a maximum of two hours.

All lysate samples were measured on a LSM710 ConfoCor 3 microscope (Zeiss, Jena, 
Germany), supplied with a 488 nm solid state laser, a triple dichroic (488/543/633) 
excitation filter, NFT 635 VIS dichroic mirror, BP 505-610 IR emission filter, Zeiss 
C-Apochromat 40x/1.2 NA water objective with coverslip thickness correction collar, 
and APD detector. The pinhole was set at 1 AU, and the laser power at 0.5%, as 
reported by the Zen software. Samples with a minimum volume of 100 µL were 
measured at 20 °C, in an 8-chambered coverslip (µ-Slide 8 Well Glass Bottom, Ibidi, 
Gräfelfing, Germany). Measurements were performed 30 µm above the glass surface, 
for 120–180 s in 1–3 spots per well. Rhodamine 110 (R110, D = 4.3 × 10−10 m−2 s−1 
(Invitrogen, Breda, The Netherlands)) in water was used for calibration measurements.

Measurement of Cells
Dictyostelium cells containing inducible expression vectors (pDM334hyg GFP, 
pDM334 diGFP, or pDM334 FKBP12 F36V) were starved for 3 h in Na-K-phosphate 
buffer (10 mM, pH = 6.5) at a cell density of 107 cells per mL. DMSO was added to 
a final concentration of 2% v/v to impair cell movement, after which the cells were 
immediately transferred to 8-chambered coverslips (µ-Slide 8 Well Glass Bottom, Ibidi, 
Gräfelfing, Germany) and were allowed to settle down for 3–5 min. All cellular samples 
were measured on a TCS SP8 X SMD system (Leica Microsystems, Wetzlar, Germany), 
supplied with a super continuum laser (emitting a continuous spectrum from 470 to 670 
nm), bandpass-adjustable spectral filters, a 63x 1.20 NA water immersion objective 
with coverslip thickness correction collar, and a HyD internal hybrid detector, coupled 
to a PicoHarp 300 TCSPC module (PicoQuant, Berlin, Germany). The pinhole was set 
at 80 µm, the laser line at 488 nm with a pulsed frequency of 40 MHz, and the spectral 
filter at 495–545 nm. Raw intensity fluctuation data consisting of about 107 photons 
were collected at 20 °C from single measurements. Generally, data were obtained 
from one measurement of 45 s per cell in one spot, in 10–20 cells per sample. Spots 
were selected in cells with low brightness, in areas with homogeneous distribution of 
fluorescence rather than nuclear area or large intracellular vesicles (Figure S1).

Data Analysis Procedure
Fitting Software
The FCS and global FCS and PCH analyses were performed using the FFS data 
processor 2.6 software (SSTC, Department of Systems Analysis and Computer 
Modelling, Belarussian State University, Minsk, Belarus, www.sstcenter.com). This 
software offers the complete set of tools for the global analysis of FFS data. First 
the raw data, which is the sequence of photon arrival times stored in a binary form, 
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are loaded in the program. This is followed by calculating a set of ACFs and PCDs, 
performing the non-linear constrained least-squares minimization, estimating of 
confidential intervals of fit parameters, displaying the analysis results is a user-friendly 
form, and finally storing both measured and analyzed data in databases. 

The software has a powerful algorithm to process raw data by splitting the measured 
data into parts and allowing for fully automated calculation of ACFs and PCDs at 
user defined binning times from each part. Weight factors for ACF are calculated as 
follows: the measurement (or part of the measurement) is split into a number of sub-
parts, ACF is calculated from each sub-part and standard deviations of each point of 
resulted ACFs are calculated in a usual way. Weight factors for PCDs are calculated 
assuming the binomial distribution. The length of a PCD (a range of photon counts) is 
extended automatically by a factor of 2 each time the software counts more photons 
than allocated for the last channel. 

The non-linear constrained least-squares analysis is performed using the Levenberg–
Marquardt optimization and reduced χ2 criterion. The fit parameters can be either 
constrained or fixed to the expected values. Confidential intervals are estimated using 
asymptotic standard errors (ASE) approach [42]. 

Analysis of the Obtained Data
The obtained raw data were imported into the measurement database of the FFS data 
processor. Each measurement was divided into traces of 3–5 s, and for each trace one 
ACF and three PCDs were calculated. Each trace was subdivided by 10 for the ACF 
weight factors calculation. The ACF was calculated with 140 points and a time step of 
1 × 10−7 s (cells) or 2 × 10−7 s (lysate). The lower binning times (1 × 10−7 s) and number 
of points in ACF (in comparison with conventionally used) were selected to ensure 
enough time length for the calculation of weights factors for ACF because of splitting 
the raw data in relatively short time traces. PCDs were calculated with 32 points as 
initial value and three different binning times, usually at 2 × 10−5, 5 × 10−5 and 1 × 10−4 
s, depending on the total fluorescence intensity.

Next, the ACF curves from all traces of one measurement were analyzed globally 
using a free diffusion 3D Gaussian model (Equation (1)), with the parameters specified 
in Table S1. Parameters a, Ftrip, τtrip, and τdiff were grouped between traces, and a 
was fixed to the value found for the R110 calibration dye. Confidence intervals (CI) 
with standard errors were calculated for Ftrip, τtrip and τdiff. In case of cellular data, the 
outcome of Ftrip and τtrip were averaged for all GFP (and diGFP) control samples of a 
single measurement day. These averaged values were fixed in the subsequent analyses 
of the experiment. 
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Next, the PCD and ACF curves of all traces of one measurement were imported in a 
new worksheet and collectively analyzed using the BDGA method as described above 
(Equations (1)–(9)). For lysate data, parameter a was fixed to the value found in the 
control samples, while Ftrip, τtrip, and τdiff were fixed to the values found in the previous 
analyses of the ACF curves of that particular sample. For cells, Ftrip and τtrip were also 
based on the control samples. The background parameter bg was fixed to 0 because, 
for the first-order out-of-focus correction, the parameters bg and Fc1 are mutually 
correlated (Skakun et al., 2015) and one of them must be fixed, Ginf was free, and 
Fc1 and τdt were free but grouped for all traces together. The parameters N and q 
were grouped per trace, i.e., per one ACF and three PCD curves (see Figure S2 for 
an illustration of the grouping). An example of the analysis output in the FFS data 
processor can be found in Table S2.

All parameter estimates were imported into Microsoft Excel for the calculation of 
averages, standard deviations, statistics, and performing normalizations. In the case of 
lysate data, the apparent brightness q obtained from global analysis was recalculated 
into the true brightness qtrue by [43], using

0 1(1 )true effq q Fc= +                                             (12)

Each lysate sample was measured once or twice per experiment day and normalized 
towards GFP of that day. Because of the complex composition of the data (multiple 
experiment days, with variable multiple measurements per sample consisting of 
multiple traces), multiple options were explored to determine the best way to perform 
the statistics. Since measurements were performed during just a few days, and the 
number of measurements per day varied, data traces of different days were combined 
before averages and standard deviations were calculated. 

In the case of cellular data, averages were first calculated from the traces per cell, after 
which the averages of all cells (normalized towards GFP per day) from several days 
were calculated. Therefore, standard deviations here also account for the variation 
between cells. The standard t-test (unequal variances) was applied each time when the 
question of significance of the difference between obtained values was studied. 
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Conclusions

Protein dimerization is abundant in nature [44] but studying the dimerization status of 
proteins in living cells is a challenge. In this paper we present a methodology to measure 
the oligomeric state of proteins using a standard confocal microscope including an 
FCS module. Diffusion and brightness information were combined using the BDGA 
method, exploiting all available information from the FCS data. We have developed 
a fully optimized analysis protocol by which monomeric and dimeric particles can be 
distinguished in cell extracts and in cells. 

We applied this methodology to analyze dimerization in living cells, as well as a mixture 
of GFP and diGFP in vitro. Compared to our previous global ACF and PCH experiments 
[26,27], changes were made regarding preparation of the samples, data acquisition, 
ACF and PCD curve calculation from raw data, global analysis of ACF and PCD curves, 
and further data processing. The changes regarding cellular sample preparation and 
data acquisition entailed (1) using starved rather than vegetative Dictyostelium cells, 
(2) adding 2% DMSO to the cells before the measurement, (3) selecting dim cells, (4) 
applying low laser power, (5) measuring for only 45 s per cell, and (6) using a sample for 
only 30 min. Regarding the raw data processing, measurements were separated into 
3-s traces, from which ACF and PCD curves were then calculated as before. 

Regarding the global analysis of ACF and PCD curves (BDGA), the main adaptations 
entailed (1) discarding aberrant traces, (2) fixing parameters a, Ftrip, τtrip, and τdiff 
(determined from only the ACF curves), rather than setting their values as initial guess, 
(3) grouping N and q per trace, rather than for all traces together, and (4) fixing Ftrip and 
τtrip for the cellular measurements with values as determined from the GFP sample. 
When processing the results, (1) the GFP sample rather than the R110 dye was used 
for normalization between measurement days, and (2) the apparent brightness rather 
than the true brightness (corrected for Fc1) was used for comparisons between cells. 
We have demonstrated that the ratio of monomer and dimer can be estimated with our 
methodology, by mixing the content of cells containing monomeric GFP and dimeric 
GFP. We have explained how we developed and optimized this method, and therefore 
several variants of the analysis as well as considerations regarding experimental setup 
and analysis were discussed. Next, we applied this method to distinguish GFP and 
diGFP in living cells, using Dictyostelium discoideum as a model organism. Finally, using 
the inducible dimerization domain FKBP12 [28,29], we have demonstrated that our 
BDGA method is well applicable to the in cellulo dimerization of GFP-tagged proteins. 
In our setup, dimerization of proteins with a monomeric GFP tag could be measured 
on a standard single-color, single-photon FCS microscope. Therefore, we consider this 
method to be very suitable for examining the dimerization status of any GFP-labeled 
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cytosolic protein in living cells. Moreover, the presented methodology is in principle 
independent of the means of labeling and could therefore be applied to any fluorescent 
protein or synthetic dye. Besides cytosolic proteins, BDGA may also be applied to 
extracellular protein dimerization with no change in the used models. For non-mobile 
cells, regions at the cell surface may also be selected to study the oligomerization of 
membrane proteins, which should then be analyzed using 2D models rather than 3D 
(e.g., triplet-state with 2D diffusion model and the 2D Gaussian model for PSF profile). 
With the brightness and diffusion global analysis of FFS data, the abundant role of 
dimerization in nature can be further explored. 
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Supplementary Information

Figure S1: Selection of cells. Green fluorescent images of Dictyostelium cells during the FCS 
experiment. Shown are vegetative GFP-expressing Dictyostelium cells in the presence of 2% DMSO. 
The crosshair (+) was placed on relatively dim cells, for a better resolution. Scale bar: 20 µm.

Figure S2: Grouping of parameters per trace. Illustration of linking parameter q1 per trace. Three 
PCD curves and one ACF curve derived from the same 5-second trace were grouped. In this example 
twelve groups were formed for parameter q1 and twelve groups for parameter N1. Icons do not illustrate 
files and folders but parameters and groups.

BDGA TO QUANTIFY PROTEIN DIMERIZATION IN LIVING CELLS  |  99

4 4



Figure S3: Brightness, estimated in 2 components fit when all parameters are free. Representative 
example of the initial 2 component global analysis of monomer-dimer mixtures (50%) with free 
parameters. Ftrip, τtrip and τdiff were grouped in the global analysis of only ACFs, and their outcomes 
were subsequently fixed in the combined global analysis of ACFs and PCDs, while τdiff 2, q1, q2, N1 and 
N2 were free and only grouped per trace (parameters of one ACF and three PDC curves were grouped 
per trace, not all traces together). The sample shown here is a mix of 50% GFP and 50% diGFP in 
cell lysate. The brightness of GFP and diGFP on the same measurement day were 0.92 ± 0.015 and 
1.95 ± 0.030 x 105 cpms, respectively. Average q1 = 1.34 ± 0.20 x 105 cpms; average q2 = 1.15 ± 
0.25 x 105 cpms, which is in-between the brightness GFP and diGFP. For some traces q2 could not be 
determined.

Figure S4: Results of 2-component FSC+PCH global analysis of the ACF and PCD curves from 
a monomer-dimer equilibrium in cell lysate. The analysis was based on the same data as Figure 
1. Top panel: raw FFS data showing photon counts over time, from which the ACF and PCD curves 
were calculated. The measurement was divided into 12 5-second traces, as indicated by vertical lines. 
Bottom left: fit of all ACF curves, with residuals below. Bottom right: fit of all PCD curves, with residuals 
below. PCD curves were generated with three different time steps of 5 x 10-5, 1 x 10-4 and 2 x 10-4 s. 
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Figure S5: Triplet state parameters may be fixed for all cells. A: Average triplet state fraction (Ftrip) 
as determined in the ACF analyses from one measurement day. B: Average triplet state time (τtrip) as 
determined in the ACF analyses from the same measurement day. C: Average brightness from all cells 
per sample of one measurement day, with either fixed or free triplet state parameters. Free triplet state 
parameters were determined per cell in the ACF analysis and subsequently fixed in the combined 
BDGA analysis. Fixed triplet state parameters were determined by the average of all GFP (or diGFP) 
cells and fixed in both the ACF and the BDGA analysis. Error bars: standard deviations (SD); ‘trip’: triplet 
state parameters.
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Figure S6: Similar results for the 3D Gaussian and the Polynomial model. Calculations have been 
repeated with the polynomial model in FFS Data Processor, for a subset of seven cells per sample 
from one measurement day. q-apparent indicates the apparent relative brightness calculated with the 
Gaussian model, without correction for Fc1. q-polynomial indicates the brightness as calculated with 
the polynomial model. For both models the same cells have been used for comparison. All brightness 
values have been normalized to the brightness of GFP control.

Figure S7: Ligand induced FKBP12 dimerization. Cartoon of the FKBP12 binding domain linked to 
GFP. When B/B homodimerizer (‘Dimerizer’) is added to the cells, it symmetrically binds and connects 
two FKBP12 domains, inducing an indirect link between two GFP fluorophores.
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Table S1: List of parameters. The definition and status of the parameters are indicated. All parameters 
from either one or two component analysis are listed together. ‘Fixed to (the value of) GFP’ means fixed 
to the average of the GFP measurements of the same measurement day. Free: parameter was not 
grouped, nor fixed to a value. Grouped: parameter was grouped between different traces, but not fixed 
to a value. Grouped per trace: different ACF and PCH curves from one trace were grouped together, 
but not fixed to a value. Fixed: parameter was fixed to a specific value that has been determined before.
Parameter Explanation Status in ACF analysis Status in BDGA
F1 Fraction of component 1 Free -
Ginf Value of ACF curve at infinity Free Free
Ftrip Triplet state fraction Fixed to the value of GFP Fixed to the value of GFP
τtrip Triplet state relaxation time Fixed to the value of GFP Fixed to the value of GFP

τdiff (τdiff 1) Residence time of component 1 Grouped Fixed to the value from the 
ACF analysis

a Structural parameter Fixed to the value of R110 Fixed to the value of R110
N Number of particles in the confocal volume Free -

N1
Number of particles in the confocal volume 
(of component 1 or 2) - Grouped per trace

Fc1 Out-of-focus correction factor - Grouped
τdt Dead-time correction - Grouped
Bg Background - Fixed to 0
q1 Molecular brightness - Grouped per trace
χ2 Fit criterion Output Output

Additional parameters in case of 2-component analysis of lysate data:
F2 Fraction of component 2 (if applicable) Free -

N2
Number of particles in the confocal volume 
(of component 2) - Grouped per trace

τdiff 2 Residence time of component 2
Fixed to the value of 
diGFP (and τdiff 1 fixed to 
GFP)

Fixed to the value of diGFP  
(and τdiff 1 fixed to GFP)

q2 Brightness parameter - Grouped per trace
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Table S2: Example of BDGA output in FFS Data Processor. The standardized BDGA method was 
applied on the measurement of a cell with FKBP12-GFP and dimerizer (the same cell with FKBP12 as 
in Table 3 and Figure 4). Some values have been fixed to the values from GFP, while others have been 
fixed to the values from the ACF analysis of this particular cell, as summarized in Table S1. T1: τdiff 1.
Name Value Minimum Maximum Fixed
Fc1’s group 0.927 0 3 False
Ftrip’s group 10 0.178 0 0.999 True
Ftrip’s group 12 0.178 0 0.999 True
Ftrip’s group 13 0.178 0 0.999 True
Ftrip’s group 14 0.178 0 0.999 True
Ftrip’s group 2 0.178 0 0.999 True
Ftrip’s group 4 0.178 0 0.999 True
Ftrip’s group 5 0.178 0 0.999 True
Ftrip’s group 8 0.178 0 0.999 True
Ftrip’s group 9 0.178 0 0.999 True
Ginf 1 0.5 1.5 False
Ginf 0.999 0.5 1.5 False
Ginf 1.001 0.5 1.5 False
Ginf 1.003 0.5 1.5 False
Ginf 1.004 0.5 1.5 False
Ginf 1.003 0.5 1.5 False
Ginf 1.001 0.5 1.5 False
Ginf 1.003 0.5 1.5 False
Ginf 1.003 0.5 1.5 False
N1’s group 10 20.15 0 100 False
N1’s group 12 17.459 0 100 False
N1’s group 13 17.81 0 100 False
N1’s group 14 16.525 0 100 False
N1’s group 2 21.665 0 100 False
N1’s group 4 19.628 0 100 False
N1’s group 5 20.205 0 100 False
N1’s group 8 19.069 0 100 False
N1’s group 9 18.775 0 100 False
T1’s group 10 1.018 1.00E-03 10 True
T1’s group 12 1.018 1.00E-03 10 True
T1’s group 13 1.018 1.00E-03 10 True
T1’s group 14 1.018 1.00E-03 10 True
T1’s group 2 1.018 1.00E-03 10 True
T1’s group 4 1.018 1.00E-03 10 True
T1’s group 5 1.018 1.00E-03 10 True
T1’s group 8 1.018 1.00E-03 10 True
T1’s group 9 1.018 1.00E-03 10 True
Tdt’s group 6.34E-05 1.00E-06 1.00E-03 False
Ttrip’s group 4.00E-02 1.00E-06 1 True
a’s group 5.9 1.001 20 True
bg’s group 0 0 1.00E+06 True
q1’s group 10 6.30E+04 0 1.00E+07 False
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Table S2: Continued.
Name Value Minimum Maximum Fixed
q1’s group 12 6.15E+04 0 1.00E+07 False
q1’s group 13 5.64E+04 0 1.00E+07 False
q1’s group 14 5.74E+04 0 1.00E+07 False
q1’s group 2 7.50E+04 0 1.00E+07 False
q1’s group 4 7.55E+04 0 1.00E+07 False
q1’s group 5 7.67E+04 0 1.00E+07 False
q1’s group 8 6.94E+04 0 1.00E+07 False
q1’s group 9 7.05E+04 0 1.00E+07 False

BDGA TO QUANTIFY PROTEIN DIMERIZATION IN LIVING CELLS  |  105

4 4



Ta
bl

e 
S3

: C
om

pa
ris

on
 o

f 
va

rio
us

 s
et

tin
gs

 o
f 

th
e 

2-
co

m
po

ne
nt

 a
na

ly
si

s 
of

 o
ne

 m
on

om
er

-d
im

er
 m

ix
. A

ll 
an

al
ys

es
 h

av
e 

be
en

 p
er

fo
rm

ed
 o

n 
th

e 
sa

m
e 

m
ea

su
re

m
en

t o
f o

ne
 s

am
pl

e,
 w

hi
ch

 w
as

 a
 m

ix 
of

 5
0%

 G
FP

 a
nd

 5
0%

 d
iG

FP
, c

on
sis

tin
g 

of
 1

2 
tra

ce
s 

of
 5

 s
ec

on
ds

. ‘
q 

an
d 

τ f
re

e’
: τ

di
ff 

1 w
as

 g
ro

up
ed

 a
nd

 c
al

cu
la

te
d 

in
 th

e 
gl

ob
al

 a
na

lys
is 

of
 o

nl
y 

AC
Fs

 a
nd

 fi
xe

d 
in

 B
DG

A,
 w

hi
le

 τ
di

ff 
2, 

q 1 a
nd

 q
2 w

er
e 

on
ly 

gr
ou

pe
d 

pe
r t

ra
ce

 n
ot

 fo
r a

ll t
ra

ce
s 

to
ge

th
er

. ‘
q 

fre
e’

: τ
di

ff 
1 a

nd
 τ

di
ff 

2 w
er

e 
fix

ed
 to

 th
e 

va
lu

es
 fo

un
d 

fo
r G

FP
 a

nd
 d

iG
FP

 (T
ab

le
 1

), 
w

hi
le

 q
1 a

nd
 q

2 w
er

e 
fre

e.
 ‘r

 =
 1

.8
’ (

or
 2

): 
τ di

ff 
1 a

nd
 q

1 w
er

e 
fix

ed
 to

 th
e 

va
lu

es
 fo

un
d 

fo
r G

FP
 a

nd
 τ

di
ff 

2 t
o 

th
e 

va
lu

e 
fo

un
d 

fo
r d

iG
FP

, w
hi

le
 q

2 w
as

 fi
xe

d 
to

 1
.8

x 
or

 2
x 

th
e 

va
lu

e 
of

 q
1. 

‘q
2 o

f d
iG

FP
’: 

τ di
ff 

1, 
τ di

ff 
2, 

q 1 a
nd

 q
2 w

er
e 

fix
ed

 to
 th

e 
va

lu
es

 fo
un

d 
fo

r G
FP

 a
nd

 d
iG

FP
. 

Al
l p

ar
am

et
er

s 
ex

ce
pt

 N
 a

nd
 τ di

ff 
2 a

re
 p

re
se

nt
ed

 w
ith

 c
on

fid
en

ce
 in

te
rv

al
s,

 c
al

cu
la

te
d 

as
 a

sy
m

pt
ot

ic
 s

ta
nd

ar
d 

er
ro

rs
 (A

SE
), 

as
 re

po
rte

d 
by

 th
e 

so
ftw

ar
e.

 F
tri

p: 
tri

pl
et

 
st

at
e 

fra
ct

io
n;

 τ tri
p: 

tri
pl

et
 s

ta
te

 ti
m

e;
  τ

di
ff 

1  
an

d 
 τ di

ff 
2: 

di
ffu

sio
n 

pa
ra

m
et

er
s 

as
 re

po
rte

d 
by

 th
e 

so
ftw

ar
e;

 N
1 a

nd
 N

2: 
nu

m
be

r o
f p

ar
tic

le
s 

in
 th

e 
co

nf
oc

al
 v

ol
um

e,
 S

D 
is 

in
di

ca
te

d;
 q

1t
ru

e a
nd

 q
2t

ru
e: 

tru
e 

br
ig

ht
ne

ss
, w

ith
 A

SE
s 

re
pr

es
en

tin
g 

un
ce

rta
in

tie
s 

of
 e

st
im

at
ed

 p
ar

am
et

er
s 

ob
ta

in
ed

 in
 a

na
lys

es
 p

er
fo

rm
ed

 p
er

 o
ne

 tr
ac

e.
 W

e 
ad

di
tio

na
lly

 c
al

cu
la

te
d 

st
an

da
rd

 d
ev

ia
tio

ns
 o

f b
rig

ht
ne

ss
 b

et
w

ee
n 

tra
ce

s 
(S

D 
of

 q
). 

χ2 : 
gl

ob
al

 a
na

lys
is 

fit
 c

rit
er

io
n 

va
lu

e.
 C

pm
s:

 c
ou

nt
s 

pe
r m

ol
ec

ul
e 

pe
r s

ec
on

d.
 

Fi
xe

d 
va

lu
es

 a
re

 in
di

ca
te

d 
in

 it
al

ic
s 

an
d 

ha
ve

 b
ee

n 
de

te
rm

in
ed

 in
 T

ab
le

 1
. V

al
ue

s 
of

 N
 w

hi
ch

 a
re

 c
lo

se
st

 to
 th

e 
ex

pe
ct

ed
 5

0-
50

 ra
tio

 a
re

 in
di

ca
te

d 
in

 b
ol

d.

An
al

ys
is

 m
et

ho
d

F tri
p  

(x
10

-2
 m

s)
τ tr

ip
  

(x
10

-2
 m

s)
τ d

iff
 1
 (m

s)
τ d

iff
 2
  

(±
SD

)
N

1  
(±

SD
)

N
2  

(±
SD

)
q 1t

ru
e  

(x
10

4  c
pm

s)
SD

 q
1t

ru
e 

(x
10

4  c
pm

s)
q 2t

ru
e  

(x
10

4  c
pm

s)
SD

 q
2t

ru
e  

(x
10

4  c
pm

s)
χ2

2-
co

m
p 

(q
 a

nd
 τ 

fre
e)

7.
13

 ±
 0

.6
1

1.
47

 ±
 0

.2
5

0.
17

1 
± 

0.
00

4
6.

2 
± 

11
.2

1.
73

 ±
 0

.9
0

5.
28

 ±
 3

.9
8

6.
58

 ±
 0

.2
42

2.
08

9
2.

65
 ±

 0
.2

1
2.

49
0.

97
1

2-
co

m
p 

(q
 fr

ee
)

8.
07

 ±
 0

.4
6

1.
91

 ±
 0

.2
4

0.
15

1
0.

22
1

1.
89

 ±
 1

.3
7

2.
23

 ±
 1

.4
0

6.
08

 ±
 0

.2
22

3.
10

1
5.

42
 ±

 0
.1

8
2.

24
0.

83
2

2-
co

m
p 

(r 
= 

1.
8)

8.
07

 ±
 0

.4
6

1.
91

 ±
 0

.2
4

0.
15

1
0.

22
1

2.
00

 ±
 0

.1
8

1.
76

 ±
 0

.1
2

3.
20

5.
76

1.
06

8

2-
co

m
p 

(r 
= 

2)
8.

07
 ±

 0
.4

6
1.

91
 ±

 0
.2

4
0.

15
1

0.
22

1
2.

65
 ±

 0
.1

4
1.

23
 ±

 0
.0

8
3.

20
6.

4
0.

92
4

2-
co

m
p 

(q
2 o

f d
iG

FP
)

8.
07

 ±
 0

.4
6

1.
91

 ±
 0

.2
4

0.
15

1
0.

22
1

1.
19

 ±
 0

.2
7

2.
49

 ±
 0

.1
7

3.
20

5.
12

1.
29

4

106  |  CHAPTER 4

4 4



Table S4: Comparison of various q-ratios of multiple monomer-dimer mixes. All samples have 
been measured on the same day. Fixed values are indicated in italics. Since this analysis was performed 
in an earlier stage, Ftrip and τtrip have been determined per sample (not shown), instead of fixed to the 
same value for all analyses, and τdiff 1, τdiff 2 and q1 have been fixed to different values than determined for 
GFP and diGFP in Table 1. N1 and N2 have been calculated into percentages by the formulas N1% = N1/
(N1+ N2) x100% and N2% = N2/(N1+ N2) x100%. The N2% closest to the % diGFP (input) are indicated in 
bold, along with the corresponding q2/q1 ratio. The N2% may become even closer to the diGFP% when 
τdiff 2, τdiff 2 and/or q1 are varied. As shown here, optimal settings varied a lot per sample and therefore no 
standardized procedure could be determined.

% diGFP τdiff 1 τdiff 2 q1
r =   
q2 /q1

N1 % N2 %

10
0.14 0.2 5.50E+04 1.8 93.2 6.8
0.14 0.2 5.50E+04 1.7 91.8 8.2

12.5
0.14 0.2 5.50E+04 1.8 88.2 11.8
0.14 0.2 5.50E+04 1.7 85.7 14.3

33.3
0.14 0.2 5.50E+04 1.8 71.2 28.8
0.14 0.2 5.50E+04 1.6 56.2 43.8
0.14 0.2 5.50E+04 1.7 64.7 35.3

50 0.14 0.2 5.50E+04 1.8 50.0 50.0

67.7
0.14 0.2 5.50E+04 1.6 14.0 86.0
0.14 0.2 5.50E+04 1.8 45.3 54.7
0.14 0.2 5.50E+04 1.7 31.5 68.5

87.5
0.14 0.2 5.50E+04 1.8 28.2 71.8
0.14 0.2 5.50E+04 1.6 7.5 92.5
0.14 0.2 5.50E+04 1.7 9.7 90.3

90
0.14 0.2 5.50E+04 1.8 30.6 69.4
0.14 0.2 5.50E+04 1.6 9.6 90.4
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Step-by-step protocol of FCS Data analysis using the BDGA methodology

1.	 Data preparation
a.	 For cellular data, split each measurement into traces of 3-5 seconds.  

Note. In vitro data is more stable and may consist of longer traces.
b.	 For each trace, calculate one ACF (time step 1 x 10-7 s (cells) or 2 x 10-7 s (lysate); 

point count 140) and three PCDs (point count 32), the latter with different time 
steps depending on the total fluorescence intensity, as described in section 3.1.1.

 
2.	 Curve fitting with the 1-component BDGA model  
2.1 ACF only
1. Fit globally all ACF traces from one measurement using the free diffusion 3D Gaussian 
model with the triplet-state term (Eq. 1). 
a.	 Group parameters Ftrip, τtrip, and τdiff1 between traces, and fix parameter a to the 

value found for the Rhodamine 110 calibration dye. 
b.	 Generate initial guesses. 
c.	 Run the analysis.
d.	 Remove traces with a very aberrant fit (e.g., with a steep drop of the ACF curve 

on the right side of the plot, or an overall alleviation of the curve compared to the 
other traces; this correlated with irregularities in the original traces), and run the 
analysis again. 

e.	 The chi-square value is a measure for how good the fit is and should be close to 
1, but any value between 0.7 and 1.4 is considered acceptable. 

2. Calculate averages Ftrip and τtrip from all GFP measurements of one day and then fix 
them for all samples of that day (except diGFP), as recommended in section 3.2.

Note. In the 2-component BDGA analysis, parameters τdiff2, N2, and q2 were added to 
the model and grouped per trace. Ftrip, τtrip, τdiff1 and a were fixed like in the 1-component 
model, but τdiff2 was not, to allow for differences between traces.

2.2 Combined ACF and PCD
1. Fit globally all ACF and PCD curves from the same measurement using the protocol 
described in detail in [38]. The FCS and PCH models are calculated as described in 
section 2.1. 
a.	 Group the parameters τdiff1, Ftrip, N1, and q1 per trace (one ACF and three PCDs), 

while grouping τtrip, a and some other parameters (Fc1, τdt, bg) for all traces together. 
b.	 Fix parameters a, Ftrip, and τtrip to the same values as fixed during the analysis of 

only the ACF curves, while fix τdiff1 to the value found during that ACF analysis. 
c.	 Run the analysis immediately without generation of initial guesses. 
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d.	 Examine the fits and residuals of the ACF and the PCD curves for aberrations, 
before exporting the resulting parameter values to a text file.

3.	 Postprocessing of fit results
a.	 Import the resulting data in a spreadsheet program like Microsoft Excel.
b.	 Calculate the average q1, q2, τdiff1 and τdiff2 per cell.
c.	 Normalize obtained brightness values towards GFP on that day.
d.	 Average both brightness and diffusion times between all cells of multiple days. 
e.	 Convert τdiff1 and τdiff2 into D1 and D2 by the formulas given in section 2.1.
f.	 The significance of apparent differences between samples may be determined 

using the standard two-sided t-test with unequal variances. 
g.	 Calculate standard deviations from the variation between cells, based on the 

normalized data from multiple measurement days.
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Abstract

Dimerization is an important step in the activation mechanism of LRRK2, a Roco 
protein involved in Parkinson’s Disease (PD). Elucidating this mechanism is essential 
for understanding the etiology of the disease and for developing new drugs targeting 
LRRK2 activation, as LRRK2 has a higher kinase activity in PD patients. However, 
studying LRRK2 dimerization in vivo has been challenging. Therefore, we adapted 
the Brightness and Diffusion Global Analysis (BDGA) methodology for its application 
to complex proteins in living cells. BDGA combines Fluorescence Correlation 
Spectroscopy (FCS) with Photon Counting Histogram (PCH) analysis of Fluorescence 
Fluctuation Spectroscopy (FFS) data, exploiting the property that dimers exhibit 
different brightness and diffusion patterns than monomers. To further develop BDGA 
for complex proteins, we used the amoeba Dictyostelium discoideum (Dictyostelium) 
as a model organism. First, we optimized the FFS measurement and BDGA analysis 
for Dictyostelium by studying reversible induced dimerization of FKBP12. Subsequently 
we used the optimized BDGA methodology to study oligomerization of Dictyostelium 
Roco4 and humanLRRK2 in HEK293 cells. Our data confirm previous models that both 
Roco4 and LRRK2 are mainly monomeric in the cytosol, with a small fraction of dimeric 
particles that are very slow diffusing and are most likely bound to membranes. Our 
research opens new avenues to study the in cellulo dimerization of complex proteins 
in various cell types, and study the influence of different conditions like PD-mutations, 
inhibitors, upstream proteins and nucleotide states on localization and dimerization of 
LRRK2. 

Keywords
BDGA or Brightness and Diffusion Global Analysis, Dictyostelium discoideum, FKBP12, 
fluorescence correlation spectroscopy, LRRK2, reversible dimerization, Roco4
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Introduction

The Roco protein family was first identified in the amoeba Dictyostelium discoideum 
and is characterized by the presence of a Roc GTPase followed directly by a 
C-terminal-of-Roc (COR) domain [1](Figure 1). In addition to the Roc-COR domains, 
most members of the Roco family contain multiple protein-protein interaction domains 
and a kinase domain, although the latter is lacking in bacteria [2]. Roco proteins have 
a complex activation mechanism, influenced by both enzymatic domains, protein-
protein interactions, localization and dimerization. Importantly, dimerization is essential 
for maximum activity of Roco proteins [3]. 
 

Figure 1: Domain structure of Roco proteins LRRK2 and Roco4. Catalytic core: Roc, Ras-of-
complex proteins (G-nucleotide binding domain); COR, C-terminal of Roc (facilitating dimerization); and 
a kinase domain. Protein-protein interaction domains: Arm, armadillo repeats; Ank, ankyrin repeats; 
LRR, Leucine Rich Repeats, and a WD40 domain. 

 
The most prominent member of the Roco family is the human Leucine Rich Repeat 
Kinase 2 (LRRK2), which is a major factor for the cause of Parkinson’s Disease 
(PD) [4]. PD is an increasing problem, with the number of cases growing faster than 
the population of elderly. There is currently no cure available [5] nor are there good 
biomarkers to detect the disease. Some treatments to delay the disease progression 
are currently being tested in clinical phase, but those are not ideal due to side effects, 
heaviness (e.g. brain surgery), and unknown effectiveness [6–8]. Therefore, there is 
an urgent need to identify the pathways underlying the disease and find novel targets 
targeting PD.

LRRK2 kinase activity has been reported to be increased in both sporadic and familial 
forms of PD [4,9,10]. Strikingly, different PD mutations lead to an increased kinase 
activity, even though they are located in different domains of the protein [11]. Because 
compounds that directly inhibit the LRRK2 kinase activity may cause problems in lung 
and kidney [12,13], indirect allosteric inhibition of LRRK2 activity through its activation 
mechanism is now being explored. 

One essential step in the activation mechanism of LRRK2 is dimerization, which is 
therefore an ideal target for intervention [3,14–16]. Importantly, based on in vitro data 
it has been reported that some PD mutations most likely affect dimerization [17–19]. 
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However, tools to study the dynamics of LRRK2 dimerization in living cells are limited. 
One previous study assessed LRRK2 dimerization using Photon Counting Histograms, 
Number and Brightness analysis and Autocorrelation analysis, showing an increase in 
dimerization of the G2019S mutant variant [19]. However, these were relatively simple, 
singular analyses and thus no direct relationship could be established between diffusion 
and brightness per particle. Therefore, we here aimed to adopt and optimize our 
previous developed Brightness and Diffusion Global Analysis (BDGA) of Fluorescence 
Fluctuation Spectroscopy (FFS) data methodology [20] to study the dimerization of 
Roco and LRRK2 proteins in their cellular environment. 

FFS is based on the Brownian diffusion of fluorescent molecules through a fixed confocal 
observation volume, causing fluctuations in the fluorescence signal. Other processes 
that may influence these fluctuations are triplet state dynamics, reversible reactions, 
and protonation. FFS data is most commonly analyzed through autocorrelation of the 
fluctuations and then called Fluorescence Correlation Spectroscopy (FCS) [21–23]. In 
FCS, AutoCorrelation Functions (ACFs) are calculated from the raw FFS data and fitted 
with a model to extract the diffusion speed and number of particles in the confocal 
observation volume. Alternatively, FFS data can be converted into Photon Counting 
Distributions (PCDs), which are then analyzed by Photon Counting Histogram (PCH) 
analysis, yielding information on the number of particles as well as the brightness per 
particle [24,25]. BDGA combines the FCS and PCH analyses by fitting the ACF and 
PCD curves from the same FCS data with linked mathematical models [20].

To optimize the BDGA method for the analysis of complex proteins in living cells, we 
initially used Dictyostelium discoideum as a model organism, a unicellular amoeba 
which forms multicellular fruiting bodies upon starvation. Dictyostelium contains 
multiple Roco proteins, among which Roco4 has been most well studied and has a 
domain architecture similar to LRRK2 [26–29]. Moreover, Roco4 overlaps with LRRK2 
regarding activation mechanism and function. Both proteins phosphorylate Rab 
proteins and influence mitochondrial respiration [11,30,31]. 

BDGA analysis in Dictyostelium was previously developed using FKBP12 [20], which 
functions as a ligand-inducible dimerizing domain when fused to a protein of interest 
[32,33]. FKBP12 naturally binds rapamycin and mTOR [34], and has been extensively 
used to induce dimerization in mammalian cell cultures and in vivo (e.g. [35–38]). In the 
first part of this chapter, we describe the optimization of the FKBP12 system in more 
detail, focusing on specific adaptations of the sample preparation and measurement of 
Dictyostelium cells. Moreover, we will show that this induced dimerization of FKBP12 is 
reversible. In the second part of this chapter, we will apply the optimized BDGA to the 
analysis of Roco4 in Dictyostelium and LRRK2 in HEK293 cells. We demonstrate that 
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cellular Roco4 and LRRK2 exist in a monomer-dimer equilibrium, which opens the way 
to study the dimerization of other complex proteins in living cells.

Results and discussion

Brightness and Diffusion Global Analysis of FCS data: five steps
Measuring dimerization in living cells is a challenging task, as monomeric and dimeric 
proteins differ only by a factor of two in mass and brightness, while the cellular 
environment results in more complex data than measurements in vitro. Recently, 
we optimized the Brightness and Diffusion Global Analysis (BDGA) method for the 
resolution of monomeric and dimeric species in living cells [20]. Here we describe the 
specific application of this method to Dictyostelium.

In general, the full procedure consists of five steps, i.e. (1) cell culture and sample 
preparation, (2) sample measurement, (3) ACF and PCD curve calculation from raw data, 
(4) curve fitting, and (5) parameter analysis (Figure 2). In this section we will describe 
the sample preparation and measurement in detail, followed by a brief summary of the 
three data analysis steps, as they have been extensively covered in [20].

Figure 2: General workflow of the FFS experiments with BDGA analysis. Data collection starts 
with preparation (1) and measurement (2) of the sample. FFS measurements generate raw fluorescence 
fluctuation traces from which ACF and PCD curves are being calculated (3). These curves are imported 
in the FFS analysis interface (Figure S2B), after which first the ACF curves are analyzed with the FCS 
global analysis method (4.1) and subsequently the corresponding parameters are fixed in the BDGA 
analysis of all ACF and PCD curves (4.2). The resulting parameters are exported to a spreadsheet 
program like Microsoft Excel, by which averages and statistics are calculated (5).
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Sample preparation of living Dictyostelium cells 
In a simple setup, cultured Dictyostelium cells expressing a fluorescent protein may be 
transferred to a glass slide and be directly measured with an FCS microscope. Here, 
we show some adaptations to optimize this setup. Unlike many other techniques, FCS 
benefits from low protein concentrations. Because the fluorescence fluctuations are 
caused by molecules diffusing through the confocal volume, the changes per event are 
relatively greater with fewer fluorescent proteins present, resulting in higher resolution. 
To control the protein levels, proteins were expressed from plasmids with inducible 
promotors. We used 10-20 times less inducer than required for full expression [39] and 
applied it overnight, resulting in a substantial proportion of low-fluorescent cells. 

As unicellular amoeba, Dictyostelium cells drink liquid medium by a process called 
macropinocytosis, resulting in a large number of vesicles in the cytoplasm. This could 
lead to a heterogeneous distribution of fluorescent protein throughout the cell and an 
unstable signal. We hypothesized that starvation of Dictyostelium cells in buffer may 
reduce the number of vesicles in these cells and increase signal stability. However, 
when comparing the fluorescence signal of vegetative and starved cells expressing 
GFP, the stability of the signal did not clearly improve (Figure 3A and Figure S1). In 
addition, a simple calculation of the brightness per particle gave similar results and did 
not become more accurate for starved cells (Figure 3B). Based on these observations 
(Figure 3 and Figure S1), both vegetative and starved cells can be used, at least for 
small proteins such as GFP. Because starved cells are less sensitive to laser power and 
our protein of interest (Roco4) has been reported to play a role in development [28], we 
decided to use starved cells by default in all our experiments.

Starved Dictyostelium cells have a higher tendency to move away from the focal 
point, resulting in a sudden loss of signal. Therefore, the cells were immobilized by 
the addition of DMSO. Addition of 2% (v/v) DMSO to cells starved for 5 hours at room 
temperature resulted in round and non-motile cells (own observations). Dictyostelium 
cells starved overnight in the refrigerator required more DMSO for immobilization and 
were therefore not used for further experiments. DMSO is a common solvent for drugs 
and other compounds and the used concentrations are not toxic for Dictyostelium cells 
[40]. But of course, in general, appropriate controls to investigate the effect of DMSO 
on the pathway of interest should be included in the experimental setup. 
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Figure 3: Vegetative and starved cells. A: Representative measurements of vegetative and 5 h 
starved cells expressing monomeric GFP, showing variation in the signal. B: Brightness results of GFP 
are similar for vegetative and 5 h starved cells. The FCS measurements have been analyzed with the 
simple brightness analysis. Measurements consisted of 30 traces of 5.5 seconds. Brightness values 
were normalized to the averaged vegetative samples (GFP-veg) per measurement day. n= 8-10 cells 
from 2-3 measurement days. 

FCS measurements of Dictyostelium cells
The samples were examined with a confocal microscope with FCS module. First, 
the fluorescence of GFP in cells was induced and imaged in the confocal scanning 
mode, to find the correct focus (z-position) and to search for an area with good cells. 
An example of a good density and distribution of cells is given in Figure 4A. Then, 
a spot for the FCS measurement was marked by placing a cross hair in a region 
with homogeneous GFP expression in a dim cell (Figure 4B), after which the FCS 
measurement was started. Note that low laser intensities were used for both imaging 
and FCS measurement to avoid bleaching of the fluorophore. Multiple cells in one well 
were usually measured for 45 seconds per cell, while a fresh sample was prepared 
every 30 minutes. 
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Figure 4: Selection of cells. Green fluorescent images of Dictyostelium cells during the FCS 
experiment. Shown are vegetative GFP-expressing Dictyostelium cells in the presence of 2% DMSO. 
Starved cells gave a similar picture. A: Representative illustration of a good cell density: a single layer 
of cells with some space in between. B: Closer view of cells as used during the experiments to select 
a good spot for the experiment, indicated by a crosshair (+). The crosshair was placed on relatively dim 
cells, for a better resolution. Scale bar: 20 µm.

FCS data analysis using the BDGA method
The analysis of the FCS data (step 3-5 in Figure 2) has been extensively described 
in [20]. An impression of the data analysis program (FFS Data Processor (FFS DP)) is 
given in Supplementary Figure S2. In short, the raw data was first imported into the 
FFS DP Measurement Database, loaded into the Raw Data Builder and displayed as a 
fluorescence intensity plot (photon frequency (kHz) over time (s) (Figure S2A, top panel)). 
Each measurement was divided into short 3-second traces to minimize artefacts caused 
by a high non-stationarity of the signal, and one autocorrelation function (ACF) and three 
photon counting distributions (PCDs) were calculated for each trace. 

To determine the values of dynamic parameters such as diffusion and triplet state 
characteristic times in a simpler and thus more reliable model compared to the 
combined FCS and PCH analysis, ACF curves were first analyzed separately using the 
global FCS analysis (without PCH), as described in [20,41] (point 1 of step 4 in Figure 
2). Briefly, the generated ACF curves of all traces from one measurement were loaded 
into the analysis platform of FFS DP (Figure S2B) and aberrant traces were removed 
(e.g. with a steep drop of the ACF curve on the right side of the plot, or an overall 
alleviation of the curve compared to the other traces; the number of traces removed 
ranged from a few to half of the traces from a single measurement in a cell). The ACF 
curves were fitted with the FCS global analysis method, using the ‘1-component free 
diffusion 3D Gaussian model’ as described [20]. Relevant parameters in this model 
are diffusion time τdiff, structural parameter a, triplet state fraction Ftrip, and triplet state 
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decay time τtrip. (Figure S2C). The quality of the fit is estimated by calculation of χ2 
criterion values and visual inspection of residuals (as in Figure S2E). 

Next, all ACF and PCD curves were fitted together (point 2 of step 4 in Figure 2), 
while fixing the relevant parameters from the previous step. The N and q parameters 
associated with the ACF and PCD curves were grouped by trace (Figure S2D). N is 
the number of particles in the confocal volume, and q is the brightness per particle. 
The resulting fit (Figure S2E-F) was inspected and the average brightness q was first 
calculated per cell (of all measured traces), after which the average of multiple cells in 
the sample was calculated. All measurements were normalized to the brightness of 
(cellular) GFP on that day, and averaged over multiple days. 

One measurement of – in our case – 45-150 seconds ultimately results in one data 
point. Therefore, dynamic processes in the order of seconds cannot be observed in 
real time with this method. Cellular responses lasting only for a few minutes could 
potentially be measured in a different setup, for example using a flow chamber or 
channel slide. In our setup, however, more sustained changes were investigated, for 
example through the addition of dimerizing compounds, as discussed below.

Reversible homodimerization via the FKBP12 binding domain in Dictyostelium
When the brightness of tandem-dimer GFP (diGFP) was compared to monomeric GFP 
in Dictyostelium cells, the dimer was significantly brighter than the monomer (Figure 
5 and previous data [20]). However, diGFP is expressed as one protein, resulting in a 
uniform population of ‘dimer’, while natural proteins often switch between a monomer-
dimer equilibria in the cell. 
   

Figure 5: Brightness analysis of GFP and diGFP in cells before normalization. 3h-starved 
Dictyostelium cells expressing GFP or diGFP were measured on a single day and analyzed with the 
described BDGA analysis method (3 sec per trace). Error bars indicate the standard deviation (SD), 
n=10 cells per cell line. Normalized averages of GFP and diGFP on multiple measurement days can be 
found in Figure 6. *** p<0.001.
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We have adopted the TaKaRa/Clontech’s iDimerize inducible dimerization system (based 
on [32]) for Dictyostelium to test and optimize our BDGA methodology. In this system, 
dimerization occurs via the DmrB domain, a derivative of the FKBP12 protein, which is a 
member of the FK506 Binding Protein (FKBP) family. An F36V point mutation facilitates 
the binding of the dimerizing ligand (B/B Homodimerizer, hereinafter referred to as 
‘Dimerizer’), while endogenous FKBP12 is insensitive to the compound [42]. FKBP12-
F36V is further referred to as FKBP12. FKBP12 is relatively small and functions as a 
binding domain when fused to a protein of interest, in our case GFP (Figure 6A). In this 
way, a monomer-dimer equilibrium of the protein of interest can be created in the cells. 

To investigate the appropriate experimental setup for this induced dimerization in 
Dictyostelium, several conditions were tested using FKBP12-GFP (Figure 6B). The 
highest brightness per particle was achieved when cells were incubated for 3 hours 
with 1 µM Dimerizer, indicating that dimerization is occurring. Interestingly, incubation 
for longer periods or at higher concentrations did not improve dimerization, but rather 
decreased it, possibly because excess Dimerizer would compete for and thereby 
saturate the binding pockets of FKBP12, leaving too few unbound proteins to form 
dimers, as hypothesized before [33]. 

Based on the Clontech iDimerize system, we expected that the dimerization of 
FKBP12 would be reversible. Indeed, when an excess of B/B Washout Ligand 
(hereinafter referred to as Splitter) was added to the samples incubated with Dimerizer, 
no dimerization was observed (Figure 6C). To confirm that this effect was not caused 
by the ethanol solvent, mock samples with 2% EtOH were also analyzed. The ethanol 
may cause a larger standard deviation, but the average brightness per particle was not 
affected (Figure 6C). 

BDGA analysis of Roco4 and LRRK2
Next we applied the BDGA method to Dictyostelium Roco4 and human LRRK2. LRRK2 
and Roco4 both consist of a catalytic core, flanked by protein-protein interaction 
domains (Figure 1). Biochemical fractionation experiments have shown that LRRK2 
is largely monomeric in the cytosol and dimeric at membranes [14]. Importantly, 
the membrane fraction yielded higher enzyme activity than the cytosolic fraction, 
although the latter contained the majority of all LRRK2, indicating that dimerization 
and translocation are important for protein activation. We initially investigated this 
mechanism in Dictyostelium, using Roco4 as a model for LRRK2, and asked whether 
LRRK2 also has a monomer-dimer equilibrium. 
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Figure 6: Reversible induced dimerization through the FKBP12 domain. A: Cartoon of dimerization 
through FKBP12. Addition of a dimerizing compound called Dimerizer induces dimerization, while 
subsequent addition of the washout ligand called Splitter induces monomerization. FKBP12 could 
also be linked to other proteins than GFP, to investigate cellular effects of dimerization. B-C: BDGA 
analysis of FKBP12 under various conditions. GFP, FKBP12, and FKBP12+dim3h_1uM are repeated 
in both figures. As Dimerizer was dissolved in ethanol, 0.2% EtOH was added to each mock sample 
during starvation (not indicated in the figure). All samples (except FKBP12+dim4h_1uM) were starved 
for 3 hours and each measurement was divided into 3-sec traces. B: Dimerization at various incubation 
times and concentrations of Dimerizer. An incubation time of 3 hours and a concentration of 1 µM 
Dimerizer (dim) seem most effective to induce dimerization, compared to the conditions tested. C: 
Dimerization is reversible through the addition of Splitter. Dimerizer was incubated for 3 hours at a 
concentration of 1 µM, while Splitter (split) was added just before the measurement at a concentration 
of 10 µM. Because Splitter was dissolved in ethanol, the same volume of EtOH (2% of the total volume 
in the well, in addition to the 0.2% EtOH that had been present in the cell culture because of Dimerizer) 
was added as a control (final bar). *p<0.05, ***p<0.001, N.S.: non-significant.
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Roco4 sample preparation and analysis
To address this question, the optimized BDGA methodology has been adapted for 
measurements with Dictyostelium cells expressing Roco4-GFP. Consistent with the 
other data, the difference in brightness per particle between vegetative and starved 
cells was negligible (Figure 7, Figure S3, Figure S4A), although the presence of 
fluorescence-free vesicles was observed in vegetative cells (Figure 7A), therefore we 
decided to continue our experiments with 5-6 h starved cells. 

Although the measurement of Roco4-GFP-expressing Dictyostelium cells was the 
same as for GFP, the data analysis presented new challenges. When our optimized 
BDGA was applied to the Roco4 data, the fit yielded a clear wave in the residuals of 
the ACF curve, indicating that the mathematical model was incomplete (Figure 8A, left 
panel). Therefore, we increased the number of components to two. This 2-component 
model describes the presence of two species with different diffusion velocities, and 
yielded a good fit in the ACF-only analysis step (Figure 8A, right panel). 

Figure 7: Vegetative and starved Roco4 samples. A: Confocal image of vegetative cells expressing 
the Roco4-GFP construct (180 kD). Arrows indicate vesicles without fluorescent protein. Scale bar: 
10 µm B: Representative FFS fluorescence fluctuation graphs for vegetative and 5h-starved Roco4 
cells. C: Brightness results of Roco4-GFP are similar for vegetative and 5 h starved cells. The FCS 
measurements have been analyzed with the simple brightness analysis. Measurements consisted of 30 
traces of 5.5 seconds. Brightness values were normalized to the averaged vegetative samples (GFP-
veg) per measurement day. n= 8-22 cells from 2-3 measurement days. Error bars: SD.
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From this 2-component ACF fit, the diffusion speed per component was calculated, 
as well as the fraction of each component (Figure 8B). The majority of the Roco4-GFP 
containing particles had a diffusion coefficient of 7.5 ± 1.7 µm2/s (n=14) (mean and 
standard deviation, with the number of independent observations in parenthesis). This is 
slower than expected when compared to the size and speed of GFP, but this difference 
can be explained by the putative non-globular shape of Roco4 [43]. The second 
component consisted of very slowly diffusing particles (0.23 ± 0.34 µm2/s (n=14)). Similar 
patterns were found for mutant versions of Roco4, with very slowly diffusing particles in 
the second component, which was the minority fraction (Figure S4B). This slow diffusion 
corresponds to a residence time of the order of seconds in the confocal volume, which 
is even visible as waves in the fluorescence fluctuation signal (Figure 9A) and cannot 
be explained by mere dimerization or oligomerization. Instead, the slow diffusion of this 
second component may be due to adhesion of Roco4 to vesicles or organelles. 

To test whether the slow diffusion could possibly be caused by the adhesion of Roco4 
to vesicles, the fluorescence fluctuation signal of Roco4-GFP was compared with 
that of a mitochondrial membrane protein (GFP-GemA TM). Indeed, the seconds-
scale fluctuations are also observed for GFP-GemA TM (Figure 9B), indicating that 
such fluctuations may be caused by adhesion to cellular membrane structures. Thus, 
the presence of a slow diffusing component may be caused by its interaction with 
membrane structures, but does not provide information about the presence of dimers 
or oligomers. Therefore, diffusion analysis by itself is not suitable to study dimerization, 
and we continued our research with brightness analysis.

Roco4 is largely monomeric, with a minor slow-diffusing brighter fraction
Initially, the average fluorescence per particle was calculated by simply dividing the total 
fluorescence intensity per second by the total number of particles in the confocal volume, 
as calculated from the global analysis of ACF curves (without PCH), called ‘simple 
brightness analysis’. However, the results of this experiment were not satisfactory. The 
average brightness per particle for Roco4 may be higher than monomeric GFP, but the 
large standard deviation of this simple method does not allow for conclusions (Figure 
10). Similarly, the analysis of some Roco4 mutants revealed no significant differences 
in the average brightness per particle compared to GFP or Roco4 WT (Figure S4C). 
Therefore, the 2-component BDGA analysis was applied to Roco4. As shown above 
for the analysis of ACF curves only (Figure 8B), here again the first component was the 
fast diffusion component, and the second component represented the slowly diffusing 
particles. Now with this combined brightness and diffusion analysis, the brightness per 
component could be determined. Interestingly, the brightness of the first component 
of Roco4 was similar to monomeric GFP, while the average brightness of the second 
component was similar to diGFP (Figure 11A).  
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Figure 8: 2-comp FCS diffusion analysis of Roco4. A: Autocorrelation curves (ACF) from one 
representative Dictyostelium cell expressing Roco4-GFP (27 5.5-second traces). Roco4 data yields 
a better fit when analyzed with a two-component model, as shown by the decreased wave in the 
residuals. Red line: fit calculated by the free diffusion 3D Gaussian model with triplet-state term 
[20]. B: Diffusion speed of the two Roco4 components, averaged for multiple 5h starved cells. Each 
measurement consisted of 30 traces of 5.5 seconds. n = 13-14 cells from 1-2 measurement days. 
Error bars: SD.
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Figure 9: GemA TM fluorescence fluctuates at the seconds time scale, comparable to Roco4. 
Roco4-GFP and the GFP-coupled trans-membrane domain of GemA were expressed in vegetative 
Dictyostelium cells and measured with a Zeiss LSM 710 confocal microscope with FCS module. 

Figure 10: Simple brightness analysis of GFP and Roco4. Total photon counts per second have 
been divided by the number of particles in the confocal volume (N, calculated from ACF-only), yielding 
an average brightness per particle. Data from vegetative and 5h-starved Dictyostelium cells have been 
averaged. Each measurement of a cell consisted of 30 traces of 5.5 seconds. Error bars: SD. n = 18-32 
cells from 4 measurement days.
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Figure 11: 2-component BDGA analysis of Roco4-GFP in Dictyostelium cells. A: 2-component 
BDGA brightness analysis, normalized to average GFP. Percentages indicate the proportion of the 
first and second component, varying between cells. B-C: BDGA diffusion results represented as the 
residence time in the confocal volume (B) and recalculated into diffusion speed D (C). The residence 
time τdiff1 of the first component is fixed with the values from the ACF-only analysis, while the τdiff2 of the 
second component was left free. Each measurement consisted of 26 5-second traces, measured in 5h 
starved cells. Error bars: SD; *** p<0.001; N.S. non-significant.
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The fast diffusing particles from the first component, which was the largest fraction, 
had a residence time of 2.2 ± 0.6 ms (n=8) in the confocal volume (D1 = 4.5 ± 1.3 
µs2/s (n= 8))(Figure 11B-C). The residence time of the second component varied 
widely and could even vary between 1.9 ms and 600 ms between the 3-second traces 
within one cell, with an average D2 of 0.19 ± 0.16 µs2/s (n= 8), which is much slower 
than expected from a freely diffusing dimeric particle and may indicate vesicle binding 
as suggested above (Figure 9). These diffusion parameters, calculated by the BDGA 
method, are in the same order of magnitude as with the FCS analysis performed on 
previous data (Figure 8B). Although the diffusion and brightness of Roco4 mutants 
did not change much when analyzed with FCS and a simple brightness calculation 
(Figure S4), testing these variants with the BDGA method could potentially yield more 
information. Taken together, the diffusion of Roco4 in Dictyostelium cells could be split 
in a large normally diffusing fraction with the brightness of a monomer, and a minor 
slow diffusing fraction with the brightness of a dimer. 

Dimerization of LRRK2 in HEK293 cells analyzed with BDGA
To investigate whether the results for Dictyostelium Roco4 could be translated to human 
LRRK2, similar experiments were performed with GFP-LRRK2 expressed in HEK293 
cells. Good results were achieved when HEK293 cells were seeded and transfected 
on 8-well IBIDI glass slides where they were also measured. The FCS measurements 
were performed with similar settings as for Dictyostelium cells. During the analysis, 
a 2-component BDGA model was required as for Roco4, as the simple brightness 
analysis did not yield a significant increase in average brightness of LRRK2 WT and 
mutants, compared to monomeric GFP (Figure S5).

Interestingly, the BDGA results of LRRK2 were very similar to Roco4. The fast-diffusing 
component 1 represented the largest fraction and had a brightness comparable to 
monomeric GFP, while the slowly diffusing second component represented the minor 
fraction (Figure 12B). However, the average brightness of the second component was 
higher than for Roco4-GFP, indicating the presence of higher order oligomers. This 
is in agreement with the previous observation that LRRK2 is able to form oligomeric 
filaments, as seen, for example, on microtubule under specific conditions [44]. We did 
not observe these higher order oligomers when only the RocCOR dimerizing domain 
was expressed (Figure 12A-B). 

The diffusion of LRRK2 was also similar to Roco4: component 1 had a diffusion 
corresponding to a monomer (τdiff1 = 1.7 ± 0.38 ms (n=10); D1 = 5.0 ± 1.2 µs2/s (n=10)), 
while component 2 was much slower and displayed a large variation between cells and 
between traces within a measurement of one cell (τdiff2 = 51 ± 50 ms (n=10); D2 = 0.39 ± 
0.31 µs2/s (n = 10))(Figure 12C-D). The first component of the RocCOR domain had a 
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residence time τdiff1 of 0.78 ± 0.13 ms (n=8) in the confocal volume (D1 = 11 ± 1.9 µs2/s 
(n=8)), while the second component was slower (τdiff2 = 6.8 ± 2.9 ms (n=8); D2 = 1.4 ± 
0.62 µs2/s (n=8)), but clearly not as slow as for LRRK2. Above, we hypothesized that 
the very slow diffusion of Roco4 (and thus of LRRK2) may be due in part to organelle 
binding. Whether the moderate diffusion speed of the second component of RocCOR 
would also be caused by translocation is not clear from these data. To speculate, 
RocCOR may still bind to some cellular structures or protein complexes, but not to 
large organelles. 

The two components of full-length LRRK2 may represent a cytosolic fraction with 
a diffusion and brightness corresponding to monomeric LRRK2 and an oligomeric 
membrane-bound fraction with slow diffusion and high brightness per particle. Under 
the conditions tested (over expression in HEK293 cells, without any stimulus), the 
vast majority of the LRRK2 full-length and RocCOR particles were in the monomeric 
cytosolic form. However, as with Roco4, the possibility that the oligomeric fraction and 
the diffusion-limited fraction represent different sets of particles cannot be excluded. 
Cell fractionation and N&B experiments indicate that the membrane fraction is indeed 
predominantly oligomeric [14,19], suggesting that the oligomeric and diffusion-limited 
particles likely overlap in our analysis. Strikingly, the percentages of the two components 
resemble the cytosolic and membrane fractions in the aforementioned biochemical 
fractionation experiments [14]. In addition, Sanstrum et al. found that the PD-related 
G2019S variant had increased dimer formation [19]. It would be very interesting to test 
these and other PD mutations with BDGA. Taken together, our in cellulo data support 
the model that LRRK2 is monomeric in the cytosol and dimeric at membranes.
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Figure 12: 2-component BDGA analysis of GFP-LRRK2 in HEK293 cells. A: LRRK2 and RocCOR 
domain structure. B: 2-component BDGA brightness analysis of LRRK2 and RocCOR in HEK293 cells, 
normalized to average GFP. Percentages indicate the proportion of the first and second component, 
varying between cells. C-D: BDGA diffusion results represented as the residence time in the confocal 
volume (B) and recalculated into diffusion speed D (C). The residence time τdiff1 of the first component is 
fixed with the values from the ACF-only analysis, while the τdiff2 of the second component was left free. 
Each measurement consisted of 25 5.5-second traces, measured in 5h starved cells. Error bars: SD.

Conclusion and outlook 

Our data confirm that our previous developed Brightness and Diffusion Global Analysis 
of FCS data is a suitable method to study homodimerization in living Dictyostelium 
and HEK cells [20]. Furthermore, to our knowledge, we are the first to apply FKBP12-
induced dimerization to Dictyostelium, as well as the first to quantitatively measure this 
FKBP12-mediated dimerization in living cells, as most FKBP12-induced dimerization 
assays are based on the cellular output of dimerization, rather than on the extent of the 
dimerization itself. 
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Previously, the dimerization of various proteins in Dictyostelium has been studied 
using in vitro techniques such as protein purification and crystallography, velocity 
sedimentation of cell extracts, co-immuniprecipitation, NMR, chemical crosslinking, 
gel filtration, small-angle X-ray scattering, as well as some in cellulo techniques such 
as fluorescence complementation and FCS [45–51], although to our knowledge the 
latter was only used for heterodimerization of two different molecules [48]. Studying 
homodimerization in vivo has been challenging until now. The single-color BDGA as 
described here can be a game changer in this regard. Known homodimers such as 
CAP [45], STAT [46,47], TgrC1 [49], Skp1 [50,51], or some small GTPases can now 
be studied in more detail, while new ones could be discovered by screening existing 
GFP-fusion constructs using BDGA. 

Subsequently we successfully applied the BDGA methodology to study Roco4 and 
LRRK2 dimerization in Dictyostelium and HEK cells respectively. Our analysis revealed 
that the majority of both LRRK2 and Roco4 are monomeric, while a small fraction has 
a brightness comparable to dimeric species. This indicates that both proteins indeed 
have a monomer-dimer equilibrium. Moreover, the major fraction yielded a diffusion 
speed comparable to that of cytosolic proteins, while the minor fraction showed a very 
slow diffusion comparable to vesicle bound proteins. 

This is in agreement with previous cellular fractionation experiments, as well as Number 
and Brightness and PCH analyses, showing LRRK2 is monomeric in the cytosol and 
oligomeric at membrane structures [14,19,52], and that slowly diffusing LRRK2 is likely 
vesicle-bound [19]. LRRK2 has been found to localize to mitochondria, lysosomes and 
other vesicles [30,53,54]. In the case of Roco4, techniques such as cell fractionation 
and colocalization are needed to investigate which organelles and vesicles Roco4 
could bind to. However, since the majority of both Roco4 and LRRK2 are cytosolic, 
overexpression of GFP fusion constructs would yield a very high cytosolic fraction that 
could mask any organelle or membrane localization. Developing good antibodies for 
immunostaining of Roco4, as has been done with LRRK2, could provide more insight 
in the localization of endogenous Roco4. Alternatively, a knock-in Roco4-GFP strain 
could be useful in this perspective.

Using our new method, we were now able to demonstrate in living cells that Roco 
proteins exist in a monomeric cytosolic form and a dimeric/oligomeric membrane-
bound form (Figure 13). Interestingly, recent proximity biotinylation experiments 
– which allowed to specifically purify dimeric LRRK2 from cell extracts – show that 
LRRK2 dimers yielded a higher kinase activity than monomeric LRRK2 [55], indicating 
that dimerization is an important step in the activation mechanism of Roco proteins. 
Since BDGA quantifies the equilibrium between cytosolic monomers and diffusion-
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impaired dimers/oligomers, any condition that potentially changes this equilibrium 
could now be tested in cellulo. For example, PD mutations or kinase inhibitors may 
influence the amount of dimer, while LRRK2-recruiting proteins such as 14-3-3 and 
Rabs usually affect localization. 14-3-3 is responsible for the recruitment of LRRK2 to 
the cytosol, while some Rabs facilitate the localization of LRRK2 and Roco4 to the trans-
Golgi network [31,56–58]. Inhibition, knock-down or mutation of any of these proteins 
is expected to affect localization and thus possibly the monomer-dimer equilibrium. 
New factors involved in regulating Roco4/LRRK2 dimerization and recruitment may be 
identified.
 

Figure 13: Model of the monomer-dimer equilibrium of LRRK2. In this model, dimerization and 
translocation are closely connected. LRRK2 and Roco4 are largely monomeric in the cytosol and 
dimeric at cellular membranes.

In addition, BDGA may be further exploited to investigate to which organelles Roco 
proteins can bind. LRRK2 has been found to bind to a wide variety of vesicles and 
organelles, e.g. mitochondria, endosomes and lysosomes (Erb & Moore, 2020; 
Kuwahara & Iwatsubo, 2020; Singh et al., 2019). Any significant change in the 
recruitment of LRRK2 to (one of) these structures is expected to influence the brightness, 
diffusion and/or fraction of the second component in the BDGA analysis. Inhibition of 
(the migration of) mitochondria, phagosomes or other organelles is expected to reduce 
the presence of a second component – if indeed Roco4/LRRK2 were to bind to one 
of these structures. Moreover, Stapled Peptides have recently been developed that 
inhibit LRRK2 dimerization by binding to the dimerization interface in the RocCOR 
domain [59]. It would be interesting to use BDGA to investigate the degree of inhibition 
in cellulo, as well as its influence on LRRK2 recruitment to cellular structures. 
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Taken together, we have now optimized the BDGA methodology to investigate the 
dimerization of complex proteins such as Roco4 and LRRK2, and our results support 
the hypothesis that both Roco4 and LRRK2 are monomeric in the cytosol and dimeric 
at cellular membranes. The cytosolic fraction was the major component, while a minor 
proportion was most likely bound to vesicles and other structures. Importantly, the 
2-component BDGA analysis methodology developed for Dictyostelium required no 
further adaptation for the use in HEK293 cells, suggesting that BDGA is a universal 
method with broad applicability. For the analysis of proteins that are membrane-bound 
without a substantial cytosolic fraction, further optimization may be required. Proteins 
in the outer membrane of the cell are usually measured with Total Internal Reflection 
Fluorescence (TIRF) microscopy [19,60], and the resulting fluorescence fluctuation 
data may subsequently be analyzed using BDGA to obtain detailed information about 
the brightness and diffusion per particle. The application of BDGA in Dictyostelium 
and other cell types could potentially significantly increase our knowledge about 
dimerization. 

Materials and Methods

Cell lines and plasmids
Most experiments were performed with the AX2 axenic cell line from Dictyostelium, 
containing plasmid pDM334hyg GFP-S65T (further referred to as GFP), pDM334 
diGFP, pDM334 FKBP12-F36V-GFP (further referred to as FKBP12), pDM363 Roco4-
GFP, or pDM488 GFP-gemA TM [28]. The construction of pDM334 FKBP12-F36V 
and pDM334 diGFP has been described in [20]. GemA TM consisted of the trans 
membrane domain of Dictyostelium GemA (a.a. 1810-1977).

Handling of Dictyostelium cells has been described by [61,62]. Selection of cells 
containing the expression vectors was performed with 10 µg/mL G418 (pDM334 diGFP 
and pDM334 FKBP) or 50 µg/mL Hygromycin B (pDM334hyg GFP, pDM363 Roco4, 
pDM488 gemA). Cells were grown on 100 mm coated Nunc plates supplemented with 
HL5-C medium (Formedium) at 22°C. These cultures were transferred to shake flasks 
containing 20 mL HL5-C medium and harvested in the exponential growth phase.

HEK293 cells were maintained in tissue culture treated T75 Greiner flasks in Dulbecco’s 
Modified Eagle medium (DMEM) supplemented with high glucose, 4mM L-Glutamine, 
10% fetal bovine serum and 1% antibiotics (Penicillin and Streptomycin). The cells 
were grown at 37 °C and supplemented with 5% CO2. The cells were grown until 
80% confluency in T75 flask and 30,000 cells were seeded per well in 8-well glass 
bottom Ibidi slides (Cat.No: 80827). Cells were transfected for 48 hours with 200 ng 
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of pcDNA 3.0/eGFP, pcDNA 3.1/eGFP-LRRK2 WT or pEGFP_RocCOR [63] using 
Lipofectamine LTXTM reagent (Invitrogen, Waltham, Massachusetts, USA) according to 
the protocol given by Invitrogen transfecting plasmid DNA into HEK293 cells used for 1 
cm2 surface area per well. In order to have low expression of ‘GFP only’ plasmid, cells 
were transfected with a mixture of 196 ng of pcDNA 3.0 and 4 ng of pcDNA3/eGFP. 

FCS sample preparation and measurement
Before each experiment, 1 µg/mL doxycycline (a tetracycline) was added to the 
Dictyostelium cells and incubated overnight to induce protein expression. The next 
day, cell densities were determined and 1 x 107 cells were washed in 10mM Na-K-
Phosphate buffer (PB, pH=6.5), and resuspended in 1 mL PB. In case of starvation, 
the suspension was transferred to 10 mL glass jars on a shaker (150 rpm) and starved 
for 3-6h as indicated. For both starved and vegetative cells, the cell suspension was 
concentrated or diluted in PB depending on the cell density, and mixed just before 
the measurement in a 1:1 ratio with a stock solution of 4% DMSO (dissolved in PB). 
Subsequently, the cells were loaded on an 8-well IBIDI glass slide and allowed to settle 
down for 3-5 minutes, after which the effect of DMSO was clearly visible (round cells) 
and the measurements were started.

Induction of dimerization
Dimerization of FKBP12-GFP was induced by the addition of B/B Homodimerizer 
(Clontech, also called ‘Dimerizer’ and known as AP20187, closely related to AP1903) 
to a final concentration of 1-2 µM for the whole starvation period of 3-4 hours as 
indicated. In the case of 30 min starvation, 1 µM Dimerizer was added to 2.5-hour 
starved cells for 30 minutes (total starvation time 3 hours). Mock samples without 
Dimerizer were supplied with 0.2% EtOH (final concentration) before starvation, to 
compensate for the solvent of the Dimerizer. To some samples B/B Washout Ligand 
(Clontech, also called splitter) or mock EtOH was added immediately after starvation to 
a final concentration of 10 µM splitter and 2% EtOH. 

FCS measurements in cells
All samples except GemA were measured on a TCS SP8 X SMD system (Leica 
Microsystems) as described in [20]. The GemA expressing Dictyostelium cells were 
measured on a Zeiss LSM 780 with the same settings as in [20]. Fluorescent images 
were captured in scanning mode before each FCS measurement. Spots were selected 
in cells with low brightness, in areas with homogeneous distribution of fluorescence 
rather than vesicles. Generally, data were obtained from one measurement of 45 
seconds per cell in one spot, in 10-20 cells per sample, unless indicated differently. For 
calibration measurements, Rhodamine 110 (R110, D = 4.3 x 10-10 m-2s -1) (Invitrogen, 
Breda, The Netherlands) in water was used.
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FCS Data analysis using the BDGA methodology	
Data preparation
The raw FCS data was converted to ACF and PCD before further processing, using the 
Raw Data Processing tool of the FFS Data Processor 2.6 software (SSTC, Department 
of Systems Analysis and Computer Modelling, Belarussian State University, Minsk, 
Belarus, www.sstcenter.com). Each measurement was split into traces of 3-5 seconds, 
and for each trace one ACF (time step 1 x 10-7 s; point count 140) and three PCDs 
(point count 32, with different binning times) were calculated, the latter with different 
time steps depending on the total fluorescence intensity, as described in section 2.1.1 
of [20].

Curve fitting with the 1-component BDGA model
All ACF traces from one measurement were loaded in FFS Data Processor and 
fitted globally with the free diffusion 3D Gaussian model with triplet-state term [20]. 
Parameters Ftrip, τtrip, and τdiff1 were grouped between traces, and parameter a was 
fixed to the value found for the Rhodamine 110 calibration dye. An ‘Initial Guess’ was 
created and the analysis was run. 

Traces with a very aberrant fit were removed (e.g. with a steep drop of the ACF curve 
on the right side of the plot, or an overall alleviation of the curve compared to the other 
traces; this correlated with irregularities in the original traces), and the analysis was run 
again. The chi-square criterion value is a measure for how good the fit is and should 
be close to 1, but any value between 0.7 and 1.4 is considered acceptable because of 
the broader shape of the χ2 distribution at relatively low number of degrees of freedom. 
Average Ftrip and τtrip were calculated from all GFP measurements of one day and then 
fixed for all samples of that day (except diGFP), as recommended in section 2.2 of [20].
Next, all ACF and PCD curves from the same measurement were fitted globally using 
the protocol described in detail in [64]. The FCS and PCH models are calculated as 
described in [20]. The parameters τdiff1, Ftrip, N1, and q1 were grouped per trace (one 
ACF and three PCDs), while τtrip, a and some other parameters (Fc1, τdt, bg) were 
grouped for all traces together. Parameters a, Ftrip, and τtrip were fixed to the same 
values as fixed during the analysis of only the ACF curves, while τdiff1 was fixed to 
the value found during that ACF analysis. The analysis was run immediately without 
generation of initial guesses. The fits and residuals of the ACF and the PCD curves 
were examined for clearly visible aberrations, before the resulting parameter values 
were exported to a text file.

Curve fitting with the 2-component BDGA model
In the 2-component BDGA analysis, parameters τdiff2, N2, and q2 were added to the 
model and grouped per trace. Ftrip, τtrip, τdiff1 and a were fixed like in the 1-component 
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model, but τdiff2 was not, to allow for differences between traces. 

Post processing of fit results
The resulting data was imported in Microsoft Excel. Average q1, q2, τdiff1 and τdiff2 were 
calculated per cell, and the obtained brightness values were normalized towards GFP 
on that day. Brightness values as well as diffusion times were averaged between all 
cells of multiple days. τdiff1 and τdiff2 were converted into D1 and D2 by the formulas 
given in section 3.1 of [20]. The significance of apparent differences between samples 
was determined using the standard two-sided t-test with unequal variances. Standard 
deviations were calculated from the variation between cells, based on the normalized 
data from multiple measurement days.

Simple brightness analysis
ACF curves were generated and fitted as described for the BDGA analysis. From these 
results, the average number of particles in the confocal volume (N) was calculated per 
cell. The total photon count of the measurement was divided by N and the duration 
of the measurement, resulting in the average counts per molecule per second (cpms).
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Figure S2: Impression of analysis program FFS Data Processor. Raw data is first imported into the 
Measurement Database, from which the Raw Data Builder (A) can be opened, where ACF and PCD 
curves are calculated as described. Next, all ACF curves from one measurement are imported into FFS 
Data Processor (B). (In this example, some aberrant traces are visible, which are usually removed at 
this stage.) Before running the ACF analysis, some parameters are grouped and/or fixed (C). Next, ACF 
and PCD curves are analyzed together in a new global analysis (D), simultaneously fitting the ACF (E) 
and PCD (F) curves. Green lines: measured data; red lines: theoretical curves obtained after the fit (free 
diffusion 3D Gaussian model with triplet-state term).
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Figure S4: Brightness and diffusion of Roco4 WT and mutant samples. Roco4 WT and mutants 
have been expressed in Dictyostelium from plasmid pDM363, containing N-terminal GFP [65]. 
A: Simple brightness analysis of vegetative and starved cells. B: diffusion coefficients based on 2-comp 
ACF analysis of Roco4 mutants (starved cells). Percentages of the two components are indicated. 
For comparison, Roco4 data from Figure 8B have also been included. C: Simple brightness analysis 
of Roco4 mutants, averaged between vegetative and starved cells. For comparison, GFP and Roco4 
data from Figure 10 have also been included. All panels are based on the same raw data, although 
the simple brightness analysis was performed on a smaller subset of samples than the 2-comp ACF 
analysis (diffusion in panel B). Roco4 LRR-END was only based on starved cells, and therefore omitted 
in panel A. Roc-dead: Roco4 K383N, unable to bind G-nucleotides; kinase-dead: K1055W; LRR-end: 
amino acid 244-1726; Roc-end: amino acid 341-1726. Error bars: SD.
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Figure S5: Brightness results for LRRK2 mutants and inhibitor. LRRK2 WT, LRRK2 R1441C, and 
RocCOR R1441C have been expressed from pcDNA3.1/eGFP, RocCOR WT from pEGFP, and eGFP 
from pcDNA3.0/eGFP plasmids in the 293T cell line. R1441C point mutations had been generated 
via quick-change site-directed mutagenesis. GSKinh: 1µM GSK2578215A kinase inhibitor (GSK, 
Brentford, UK) incubated for 90 min; DMSO: control sample with 0.004% DMSO, similar to the final 
DMSO concentration in the sample with inhibitor; RocCOR: amino acid 1293-1840 from LRRK2. The 
FCS measurements have been analyzed with a simple brightness analysis. Measurements consisted of 
25 traces of 5 seconds. n= 17-38 cells from 2-4 measurement days.
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Summary and discussion

Protein clustering processes such as dimerization and complex formation play an 
important role in the activation and function of various proteins in living cells. For 
example, protein kinases such as ERK2 and RAF become active upon dimerization 
[1–3]. Complex formation contributes to various diseases, e.g. aggregation of Tau 
protein in Alzheimer’s disease and alpha-synuclein in Parkinson’s disease. In addition, 
dimerization is important for the activation of LRRK2, a protein that also contributes to 
Parkinson’s disease [4,5]. 

Parkinson’s Disease (PD) is the fastest growing neurodegenerative disease, affecting 
over 6 million people worldwide (Ray Dorsey et al. 2018). Despite decades of 
research, no cure has been found, in part because molecular mechanisms leading to 
neurodegeneration are complex and still poorly understood. The vast majority of cases 
are idiopathic (not familial), while for a small subset of patients, pathogenic mutations 
have been identified in multiple genes, including SNCA/α-synuclein, PINK1, DJ-1 GBA 
and LRRK2 [6–8]. 

Our research focuses on the dimerization of LRRK2 (Leucine Rich Repeat Kinase 
2), which belongs to the Roco protein family. Roco proteins are characterized by the 
presence of a Ras-like G-domain called Roc (Ras of complex proteins), immediately 
followed by a dimerization domain called COR (C-terminal of Roc)[9]. In addition, LRRK2 
and other eukaryotic Roco proteins also contain a kinase domain, thus harboring 
two catalytic domains within one protein. In LRRK2, this ‘catalytic core’ is flanked by 
multiple protein interaction domains, i.e. Armadillo, Ankyrin and Leucine Rich Repeats 
(LRR) at the N-terminus, and a WD40 domain at the C-terminus.

In both familial and idiopathic Parkinson’s Disease, LRRK2 has increased kinase 
activity [10]. However, the exact mechanism by which the activity is regulated remains 
to be elucidated. The complex structure of LRRK2 allows for multiple protein-
protein interactions as well as intra-molecular regulation between domains through 
G-nucleotide-dependent kinase activity and autophosphory-lation. 

Canonical small G-proteins such as Ras depend on G-nucleotide Exchange Factors 
(GEFs) and GTPase Activating Proteins (GAPs) for their GTPase cycle. Roco proteins, 
on the other hand, seem to function though a different mechanism. In Chapter 1 we 
argued that Roco proteins may belong to the GAD (G-proteins activated by nucleotide-
dependent dimerization) class of molecules, based on the low nucleotide affinity of the 
Roc domain, the crystal structures of C. tepidum Roco implying trans-complementation 
of the active site, and the increased GTPase activity of the dimer [11–13]. In the GAD 
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mechanism, the active state of a protein would be a GTP-bound dimer. However, this 
model has been challenged by the findings in Chapter 2, which showed that GTP-
bound Roco proteins are predominantly monomeric, while the dimeric proteins were 
largely GDP-bound or nucleotide free. Based on several observations, a mechanism was 
proposed in which the GTPase cycle involves both monomerization and dimerization 
steps. Thus, in this model, monomerization and dimerization are an integral part of the 
GTPase cycle. Importantly, other reports suggest that the GTPase domain of Roco 
proteins need to actively cycle to gain full kinase activity, rather than having distinct 
on- and off-states [12,14]. Taken together, this would imply that a dynamic alternation 
between dimerization and monomerization is required for kinase activity. 

The mechanism described above is based on biochemical and structural data of 
bacterial Roco proteins. A next step would be to verify these results in the biological 
context of living cells (in cellulo). However, the difference between monomers and 
dimers cannot be easily distinguished by simple microscopic observation. In recent 
decades, more sophisticated approaches have been developed based on the 
visualization of fluorescently labeled proteins. These include Fluorescence Correlation 
Spectroscopy (FCS), Förster resonance energy transfer (FRET), fluorescence cross-
correlation spectroscopy (FCCS), number and brightness analysis (N&B), raster image 
correlation spectroscopy (RICS), and photon counting histogram (PCH) analysis [15–
20]. As discussed in Chapter 4, these techniques are either difficult to implement, or not 
very accurate at low signal-to-noise ratios, which are typical for living cells. However, 
previous analyses of FCS data yielded some promising results [21,22]. Therefore, 
the aim of this thesis was to optimize the FCS analysis method for measuring 
dimerization of LRRK2 and other proteins in living cells. 

Measuring dimerization in living cells
Initial estimations of dimerization
FCS is a method to correlate the fluctuations in the fluorescence signal of fluorescently 
labeled molecules in solution, caused by their diffusion through the confocal 
observation volume. Based on the generated autocorrelation curves, diffusion speed 
and particle concentration can be calculated. When the observed total fluorescence 
intensity in the confocal volume is divided by the average number of particles in the 
same volume, the average brightness per particle is the result. When compared to the 
brightness monomeric fluorophores, the presence of dimerization/oligomerization can 
be observed.

We used this simple method to estimate the per-particle brightness of GFP-bound 
LRRK2 RocCOR in cell lysate under different G-nucleotide conditions (Chapter 2). 
Similar to the bacterial in vitro data, GTP-bound RocCOR was monomeric, while 
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nucleotide free and GDP-bound RocCOR was partly oligomeric. These initial findings 
support the idea that for LRRK2, like for bacterial Roco proteins, a similar mechanism 
of continuous cycling between GTP-bound monomer and GDP-bound dimer may 
represent the active state.

Principle Component Analysis
In search of a more robust and accurate method, we aimed to apply the combined FCS 
and PCH global analysis which was previously developed and successively applied 
to distinguish between the brightness of monomeric and dimeric GFP in vitro [21], as 
well as to measure the brightness of monomeric GFP in living Dictyostelium cells [22]. 
However, when this technique was initially applied to Roco4, a Dictyostelium Roco 
protein, it was problematic to fit the data. In Chapter 3, an extended and adapted data 
analysis approach was therefore developed, which takes into account the big variability 
of FCS and PCH curves calculated from the raw fluorescence intensity data of different 
samples and the relatively low signal to noise ratio typical for the measurements in 
living cells. Also, through a data mining technique called Principle Component Analysis 
(PCA), we could show in cell lysate that the PCH curves of tandem-dimer GFP (diGFP) 
are shaped differently from monomeric GFP, without fitting the data to a mathematical 
model. Moreover, in different measurements of GFP and diGFP, or even of their mixtures, 
two clusters were found in the principle components space, indicating that PCH curves 
representing monomeric and dimeric particles could be easily distinguished, as well 
as one mixture from another. This PCA based method may be further developed for 
nonparametric analysis of complex proteins in living cells.

Brightness and Diffusion Global Analysis
To still develop the combined FCS and PCH global analysis for the analysis of Roco 
proteins in living cells, we optimized this technique in Chapter 4 for simplified model 
systems and named it Brightness and Diffusion Global Analysis (BDGA). Compared 
to our previous global FCS and PCH experiments [21,22], changes were made in 
the preparation of the samples, global analysis of FCS and PCH curves, and further 
data processing. Using a series of different mixtures of GFP and diGFP containing 
lysates, we were able to show that the average brightness per particle calculated by 
BDGA is proportional to the dimer/monomer ratio present in the sample. Thus, when 
comparing an unknown sample to the brightness of GFP and diGFP, the proportion of 
the monomer and dimer can be estimated quantitatively. Next, we demonstrated that 
living Dictyostelium cells expressing diGFP yielded a significantly higher brightness per 
particle than monomeric GFP. In addition, when GFP was linked to FKBP12, homo-
dimerization could be chemically induced [23–26]. Upon addition of ligand to the cells, 
we showed a clear increase in average brightness per particle, in-between monoGFP 
and diGFP, indicating the presence of a monomer-dimer equilibrium. From this we 
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concluded that the developed BDGA methodology is a suitable approach to study the 
dimerization of GFP-tagged proteins in living cells.

Specific application of BDGA and FKBP12-mediated dimerization in Dictyostelium 
discoideum
In the first part of Chapter 5, we explained in more detail the adaptations made to utilize 
BDGA and FKBP12-induced dimerization in Dictyostelium cells. The FKBP12-induced 
dimerization method is derived from the iDimerize system from Takara bio, which is 
usually applied to the dimerization of proteins involved in signal transduction and other 
processes, and the effect of dimerization is usually assessed by cellular outputs like 
cell proliferation and kinase assays [27,28]. To our knowledge, this is the first time that 
the induced dimerization levels of the iDimerize system were quantified in a more direct 
way. We have performed some initial experiments using different ligand concentrations. 
This preliminary data suggested that an excess of ligand may impair the total amount 
of dimerization taking place. More elaborate titration experiments would shed light 
on this effect, and the optimal ligand concentration, which probably depends on the 
expression level of the FKBP12-fused protein, may be determined using BDGA. Both 
techniques – BDGA and FKBP12-induced dimerization – could be used independently 
of each other and would be of great benefit to the ‘Dicty field’.

Adaptation of BDGA to study the dimerization of Roco proteins and LRRK2
In the second part of Chapter 5, this BDGA method was further developed for the 
application to Roco proteins, after which the dimerization of Roco4 and LRRK2 
could be investigated in living cells. Since BDGA had already been developed for 
Dictyostelium and this model organism was easier to culture than human cell lines, 
it was a logical step to first apply this method to Dictyostelium Roco proteins before 
investigating LRRK2 itself. Of the eleven Dictyostelium Roco proteins, Roco4 is the 
most well studied, has a similar domain architecture to LRRK2, and overlaps with 
LRRK2 in activation mechanism and function [9,29–33]. The main adjustment was the 
introduction of a two-component model in the BDGA analysis, which enabled us to 
assess differences in diffusion, abundance and brightness per particle between the two 
fractions. Importantly, the two-component BDGA methodology developed for Roco4 in 
Dictyostelium could be applied directly to the FCS data from LRRK2 in HEK293 cells. 
Thus, we have optimized the BDGA methodology such that it is now possible to study 
the dimerization of both Dictyostelium Roco and human LRRK2 in living cells. 

Interestingly, Roco4 and LRRK2 yielded similar results. The first component represented 
the major fraction of freely diffusing monomeric particles, and the second component 
represented the minority of diffusion-limited, dimeric particles, which we expect to be 
vesicle/membrane bound. The presence of monomeric LRRK2/Roco in the cytosol 
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is in agreement with the model proposed in Chapter 2, where GTP – abundantly 
present in the cytosol – would cause monomerization. To investigate the hypothesis 
that the slow diffusion of the second component is caused by adhesion to organelles 
and vesicles, more research is needed, but some preliminary observations indicated 
that the diffusion pattern of the Roco proteins resembled that of mitochondria-bound 
protein. Other reports have shown that membrane association and dimerization are 
essential for LRRK2 signaling [5,34–37]. 

Conclusions and outlook
Taken together, we have developed a technique to study the dimerization of LRRK2 
in living cells. Our cellular data supports previous in vitro observations that LRRK2 
is monomeric in the cytosol and dimeric at membranes. The BDGA methodology 
developed in this thesis is now ready to be deployed to study the LRRK2 activation 
cycle in more detail, by exploring the influence of relevant mutations, upstream 
regulatory proteins, and dimerization modifying compounds on the monomer-dimer 
equilibrium of LRRK2 in living cells.

One of the remaining questions is whether the GTPase cycle, besides monomerization 
and dimerization, also involves association and dissociation with membranes. FCS-TIRF 
microscopy of outer cell membrane-associated proteins may shed light on this question. 
The resulting data can potentially be analyzed with BDGA using a 2D diffusion model, 
which would then indicate whether some monomer is present at the membranes. If not, 
then membrane dissociation would be required for the monomerization step during the 
GTPase cycle. Another approach would be to inhibit dimerization using compounds 
like the recently developed LRRK2-specific stapled peptides [4]. If monomerization is 
directly coupled to membrane dissociation, we would not only expect a decrease in 
the brightness of the slow-diffusing second component, but also in the fraction of this 
component, when measured with BDGA. 

Besides investigating the influence of stapled peptides and other inhibitors on 
dimerization and translocation, our method may also assess the influence of LRRK2-
recruiting proteins, such as Rab29 [34,37], as knockdown of this protein is also expected 
to result in a decrease in the second component. In addition, the validity of the in vitro 
results of Chapter 2 may be examined in living cells by introducing nucleotide-free and 
GTP- and GDP-mimetic mutations into the G-nucleotide binding pocket of LRRK2 to 
investigate the influence of G-nucleotide binding on dimerization. Finally, the influence 
of Parkinson-related mutations on the monomer-dimer equilibrium and localization of 
LRRK2 can now be assessed in more detail using BDGA. 

In general, our developed technique can also be applied to other proteins than LRRK2. 
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As our setup only requires a standard single-color, single-photon FCS microscope, 
and standard fluorescent tags like GFP, we expect it to be widely applicable to any 
fluorescently-labeled cytoplasmic protein with a potential monomer-dimer equilibrium 
in living cells. In addition, we expect that with a few adjustments, oligomerization 
of membrane proteins could also be studied using TIRF with BDGA. Compared to 
individual FCS and PCH analyses, the combined global FCS and PCH analysis of 
BDGA is superior at lower signal-to-noise ratios, making the analysis more robust and 
accurate. While two-component BDGA was optimized using Roco4 and LRRK2, we 
expect that this method is also suitable for other complex proteins which partly adhere 
to cellular structures. This makes the BDGA method widely applicable to a large variety 
of proteins. 
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Dit proefschrift beschrijft de ontwikkeling van een methode om de zogenaamde 
‘dimerisatie’ (paarvorming) van eiwitten te meten. Dit is onder andere van belang 
voor het eiwit LRRK2 dat betrokken is bij de ziekte van Parkinson en waar onze 
onderzoeksgroep uitgebreid onderzoek naar doet. De fundamentele inzichten die 
voortvloeien uit dit onderzoek dragen bij aan de ontwikkeling van medicijnen die de 
ziekte van Parkinson kunnen remmen of zelfs voorkomen. 

De ziekte van Parkinson
Parkinson is een neurodegeneratieve ziekte die in Nederland ongeveer één procent 
van de zestigplussers treft en die bij een groeiend aantal mensen voorkomt. Bij 
parkinsonpatiënten sterven dopamine-producerende hersencellen langzaam af, wat op 
den duur leidt tot stijfheid, trillen en moeite met bewegen, alsook cognitieve problemen 
zoals concentratieverlies en slapeloosheid. De huidige medicijnen bestrijden tijdelijk de 
symptomen, maar kunnen niet voorkomen dat steeds meer neuronen afsterven. 

LRRK2
De oorzaak van de ziekte van Parkinson is bij de meeste patiënten onbekend, maar in 
sommige families zijn genetische afwijkingen gevonden, onder andere in het LRRK2-
gen. LRRK2 (spreek uit: lark-two) is een relatief groot eiwit dat behoort tot de Roco 
familie en bestaat uit meerdere domeinen (onderdelen) met verschillende functies 
(Figuur 1). LRRK2 kan aan andere eiwitten binden via de Ankyrin-, LRR- en WD40-
domeinen, het kan een fosfor-groep vastmaken aan andere eiwitten en aan zichzelf 
via het kinase domein, en het kan GTP-moleculen omzetten in GDP via het ROC-
domein. Tot slot bevat LRRK2 een COR-domein dat essentieel is voor de stabiliteit van 
LRRK2 ‘dimeren’ (paartjes). Meer informatie over de functie van deze domeinen en hun 
onderlinge interacties is te vinden in hoofdstuk 1.

Figuur 1: Domeinstructuur van de Roco eiwitten LRRK2 en Roco4. 

In al deze verschillende LRRK2-domeinen zijn mutaties (genetische veranderingen) 
gevonden die parkinson kunnen veroorzaken. Het onderliggende mechanisme hoe die 
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mutaties uiteindelijk leiden tot celdood is echter nog niet duidelijk. Eerder onderzoek 
heeft uitgewezen dat de meeste mutaties leiden tot een verhoogde activiteit van het 
kinase domein en ook tot een verhoogde dimerisatie. Interessant genoeg is deze kinase-
activiteit ook bij parkinsonpatiënten zonder LRRK2-mutaties hoger dan in gezonde 
mensen. Opheldering van het activatiemechanisme van LRRK2 is dus belangrijk om 
het ontstaan van parkinson te begrijpen en voor het ontwerpen van nieuwe medicijnen 
die de hyperactiviteit van LRRK2 tegengaan.

Het LRRK2 activeringsmechanisme onderzoeken
Experimenten met opgezuiverd LRRK2 eiwit en in cel-lysaten (de inhoud van 
kapotgemaakte cellen) hebben aangetoond dat LRRK2 voornamelijk monomeer is in 
het cytosol en dimeer aan membraanstructuren van de cel (Figuur 2), en dat het dimeer 
een hogere kinase activiteit heeft dan een monomeer. Dimerisatie is dus relevant voor 
het activatiemechanisme van LRRK2, en medicijnen die ervoor zorgen dat er minder 
dimeer is kunnen dus worden gebruikt voor de verlaging van de kinaseactiviteit in 
parkinsonpatiënten.

Figuur 2: Model van het monomeer-dimeer evenwicht van LRRK2 (en Roco4). Dit model is 
gebaseerd op experimenten met opgezuiverde eiwitten en met de cel-inhoud van gebroken cellen. 
Experimenten in dit proefschrift suggereren dat dit model ook geldt voor LRRK2 in levende cellen. 

Bij aanvang van dit onderzoek werd daarom de vraag gesteld hoe de transitie tussen 
inactief cytosolisch monomeer en actief membraangebonden dimeer gereguleerd 
wordt. We wilden daarbij met een lichtmicroscoop in levende cellen kijken in plaats van 
te werken met lysaten of opgezuiverd eiwit, zodat de cellulaire processen tijdens het 
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experiment door konden gaan. Het bestuderen van de dimerisatie van LRRK2 in levende 
cellen was echter lastig en nog niet eerder gedaan. Wel was onze onderzoeksgroep 
al betrokken bij de ontwikkeling van een microscooptechniek waarbij dimeren van een 
klein opgezuiverd eiwit gemeten konden worden alsook monomeren in levende cellen. 
Het meten van dimeren in levende cellen was dan ook een logische volgende stap. 

‘Spectroscopie’ met de microscoop 
De betreffende techniek was een combinatie van Fluorescence Correlation 
Spectroscopy (FCS) en Photon Counting Histogram (PCH) analyse (FCS+PCH). 
Daarbij worden eiwitten (die te klein zijn om met de golflengte van zichtbaar licht waar 
te kunnen nemen) voorzien van een fluorescent label dat licht in een andere golflengte 
uitzendt dan waar je het mee beschijnt. Door met een filter alleen naar de uitgezonden 
golflengte te kijken neem je alleen de locatie van het betreffende eiwit waar. Hiermee 
kunnen plaatjes gemaakt worden, maar in het geval van FCS wordt de laser op één vast 
punt gericht in de cel – het confocale volume, schematisch afgebeeld op de cover – en 
wordt de lichtintensiteit in dat kleine punt gemeten in de tijd. Door diffusie (de beweging 
van moleculen door een vloeistof) bewegen de eiwitten in en uit het confocale volume, 
wat resulteert in fluctuaties in het fluorescente signaal. Met FCS en PCH kan vanuit dat 
signaal de ‘brightness per particle’ (helderheid per deeltje) berekend worden. Aangezien 
een dimeer bestaat uit twee eiwitten met twee fluorescente labels, schijnt het twee keer 
zo helder als een monomeer en is daarmee als zodanig te onderscheiden.

Ontwikkeling BDGA-methode
Bij aanvang van dit promotieonderzoek werden de beschreven metingen in eerste 
instantie uitgevoerd op Roco4 eiwitten in levende Dictyostelium-cellen. Roco4 en 
LRRK2 behoren tot dezelfde Roco eiwitfamilie en komen wat betreft domeinstructuur 
grotendeels overeen. Dictyostelium (specifiek Dictyostelium discoideum) is een 
eencellige amoebe (slijmschimmel) die normaal gesproken in de grond voorkomt 
en bij voedselschaarste samentrekt tot een meercellige structuur met sporen die 
extreme omstandigheden kunnen doorstaan. Dictyostelium is gemakkelijker te kweken 
dan menselijke cellijnen en wordt daarom regelmatig als modelorganisme gebruikt. 
Onze groep had Roco4 al eerder gebruikt als model voor LRRK2, en Dictyostelium 
al eerder voor bovengenoemde ‘FCS+PCH’-experimenten. Het lag dan ook voor de 
hand om deze methode eerst toe te passen op Dictyostelium Roco-eiwitten alvorens 
LRRK2 zelf te onderzoeken. Het meten en vooral het analyseren van Roco4 (met 
Green Fluorescent Protein (GFP) als fluorescent label) in Dictyostelium was echter niet 
eenvoudig. Het beschreven promotieonderzoek heeft zich daarom met name gericht 
op het optimaliseren van deze metingen en analyses. 
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Het probleem met de gecombineerde ‘FCS+PCH’-analyse van de Roco4 metingen 
in Dictyostelium was met name dat een goede ‘fit’ met het theoretische model (een 
set formules waarmee eigenschappen zoals diffusiesnelheid en brightness per particle 
berekend kunnen worden) niet gemaakt kon worden vanwege de ruis die onder andere 
optreedt als grote eiwitten in levende cellen interacties aangaan met hun omgeving 
en daardoor onvoorspelbare diffusiepatronen volgen. Een manier om informatie uit de 
FCS-data te halen zonder een dergelijke ‘fit’ is via data mining technieken zoals Principle 
Component Analysis (PCA). In hoofdstuk 3 wordt hiervoor een aanzet gegeven. Via 
PCA kon een onderscheid gemaakt worden tussen monomeer GFP (monoGFP) en 
dimeer GFP (diGFP) in cel-lysaten. Deze methode kan nu verder ontwikkeld worden 
voor de analyse van complexere eiwitten in levende cellen. 

Om alsnog de gecombineerde FCS+PCH-analyse methode te ontwikkelen voor 
Roco eiwitten in levende cellen, hebben we deze techniek in hoofdstuk 4 eerst 
geoptimaliseerd voor simpelere eiwitten en deze Brightness and Diffusion Global 
Analysis (BDGA) genoemd. Door mengsels te maken van lysaten met een verschillende 
verhouding tussen monoGFP en diGFP, konden we aantonen dat met BDGA de 
gemiddelde fluorescentie per deeltje een goede maat is voor het aandeel dimeren in 
het monster. Dus bij het vergelijken van een onbekend monster met de helderheid 
van GFP en diGFP, kan het aandeel van het monomeer en dimeer kwantitatief worden 
geschat. Voor metingen van dimerisatie in levende Dictyostelium-cellen hebben we 
eerst aangetoond dat de cellen die diGFP tot expressie brengen een significant hogere 
helderheid per deeltje opleverden dan cellen met monoGFP. 

Om een beter model te krijgen voor een monomeer-dimeer evenwicht (mengsel) zoals 
dat in de natuur voorkomt hebben we gebruikgemaakt van het FKBP12 eiwit met 
GFP label. Na toevoeging van een bepaald ligand (een molecuul dat aan een eiwit 
bindt) verandert FKBP12 gedeeltelijk van een monomeer in een dimeer, waardoor je 
de gemiddelde helderheid van de monomeren (zonder ligand) kunt vergelijken met 
dat van een mengsel/evenwicht van monomeer en dimeer. En inderdaad, met BDGA 
namen we een duidelijke toename waar in de gemiddelde helderheid per deeltje – 
tussen de controlemetingen van monoGFP en diGFP in – wat wijst op de aanwezigheid 
van een monomeer-dimeer evenwicht. Hieruit concluderen we dat de ontwikkelde 
BDGA-methodology (manier van toepassen van een bestaande methode) geschikt is 
om de dimerisatie van GFP-gelabelde eiwitten in levende cellen te bestuderen. Een 
meer gedetailleerde beschrijving van de optimalisatie van de FKBP12-experimenten in 
Dictyostelium is te vinden in het eerste deel van hoofdstuk 5. Beide technieken – BDGA 
en FKBP-geïnduceerde dimerisatie – kunnen onafhankelijk van elkaar worden gebruikt 
en zouden van groot nut zijn voor het ‘Dicty’-onderzoeksveld.
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Dimerisatie van Roco4 en LRRK2
Om initiële informatie te krijgen over de dimerisatie van LRRK2, hebben we in hoofdstuk 
2 gebruik gemaakt van (niet-levende) lysaten van humane cellen en de FCS-metingen 
op een vereenvoudigde manier geanalyseerd. Hierbij werd gebruik gemaakt van een 
eenvoudiger methode dan BDGA: de totale fluorescentie-intensiteit in het confocale 
volume werd gedeeld door het gemiddelde aantal eiwitten in datzelfde volume. Hierbij 
vonden we dat het Roc-COR domein van LRRK2 in aanwezigheid van GppNHp (een 
analoog van GTP, dat door het Roc domein omgezet kan worden in GDP middels 
de zogenaamde GTPase cyclus) gemiddeld dezelfde helderheid heeft als GFP-
monomeren, terwijl de gemiddelde helderheid per deeltje toenam in aanwezigheid van 
GDP, wat duidt op de aanwezigheid van dimeren of hogere orde oligomeren (deeltjes 
van meer dan twee eiwitten aan elkaar). Dit komt overeen met de andere bevindingen 
in hoofdstuk 2, waarbij opgezuiverde Roco eiwitten voornamelijk monomeer waren 
in de GTP-gebonden toestand en dimeer in de GDP-gebonden of nucleotide-vrije 
toestand. Aangezien de GTPase cyclus van het Roc domein belangrijk is voor de 
regulatie van het kinase domein, zou dit betekenen dat de dimerisatie tijdens deze 
cyclus een belangrijke stap is in het activatiemechanisme van LRRK2.

In het tweede deel van hoofdstuk 5 is de BDGA-methode verder ontwikkeld 
voor toepassing op Roco-eiwitten in levende cellen, met behulp van Roco4 in 
Dictyostelium. De belangrijkste aanpassing was de introductie van een zogenaamd 
twee-componentenmodel in de BDGA-analyse, waarmee de helderheid van langzaam 
en snel diffunderende deeltjes konden worden onderscheiden. Vervolgens konden 
we de ontwikkelde twee-componenten BDGA-methode rechtstreeks toepassen op 
de FCS-gegevens van LRRK2 in HEK293-cellen. Dit betekent dat we BDGA nu zo 
geoptimaliseerd hebben dat het mogelijk is om de dimerisatie van zowel Dictyostelium 
Roco als menselijk LRRK2 in levende cellen te bestuderen. 

Nu de BDGA-methode geoptimaliseerd was, kon de dimerisatie van Roco4 en LRRK2 
in levende cellen worden onderzocht. Interessant is dat Roco4 en LRRK2 vergelijkbare 
resultaten opleverden. In de twee-componentenanalyse vertegenwoordigde de eerste 
component de grootste fractie van vrij diffunderende monomere deeltjes, en de tweede 
component vertegenwoordigde de minderheid van diffusie-beperkte, dimere deeltjes, 
die waarschijnlijk gebonden zijn aan membraanstructuren zoals organellen en vesicles 
(blaasjes) in de cel. Dit bevestigt de eerdergenoemde hypothese dat LRRK2 monomeer 
is in het cytosol en dimeer aan membranen (Figuur 2).

Conclusies en vooruitzichten
Samengevat hebben we een techniek ontwikkeld om de dimerisatie van LRRK2 in 
levende cellen te bestuderen. De BDGA-methode die in dit proefschrift is ontwikkeld, 
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is nu klaar om te worden ingezet om de LRRK2-activeringscyclus in meer detail te 
bestuderen, bijvoorbeeld door in levende cellen de invloed te onderzoeken van 
mutaties, LRRK2-bindende eiwitten en andere moleculen die het monomeer-dimeer-
evenwicht van LRRK2 zouden kunnen beïnvloeden.

Daarnaast kan onze ontwikkelde techniek ook worden toegepast op andere eiwitten dan 
LRRK2. Omdat onze opstelling alleen een standaard FCS-microscoop en standaard 
fluorescerende labels (zoals GFP) vereist, verwachten we dat deze breed toepasbaar 
zal zijn en dat in principe elk cytosolisch eiwit met een (potentieel) monomeer-dimeer 
evenwicht nu in levende cellen gemeten kan worden. Daarnaast verwachten we dat 
deze methode naast Roco4 en LRRK2 ook geschikt is voor andere complexe eiwitten 
die zich gedeeltelijk hechten aan cellulaire structuren. Dit maakt de BDGA-methode 
breed toepasbaar op een grote verscheidenheid aan eiwitten. 

Met onze nieuwe BDGA-methode hebben we kunnen bevestigen dat LRRK2 in levende 
cellen een monomeer-dimeer evenwicht heeft. Aangezien de dimeren waarschijnlijk 
een rol spelen bij de verhoogde kinase-activiteit van LRRK2 in parkinsonpatiënten, is 
het van belang om stoffen te testen die de dimerisatie tegengaan. De hier ontwikkelde 
experimentele setup biedt de mogelijkheid om de invloed van zulke stoffen op LRRK2-
dimerisatie rechtstreeks in levende cellen te testen. De ontwikkeling van medicijnen 
tegen de ziekte van Parkinson komt daarmee een stap dichterbij.
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