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a b s t r a c t 

Current intermittent demand inventory control models assume that the demand interval is memoryless: 

the probability of observing a positive demand does not depend on the time since the last demand oc- 

curred. Contrarily, several forecasting contributions suggest that demand intervals contain more distribu- 

tional information. We find that the data of the M5 forecasting competition confirms this. Therefore, we 

propose an inventory control model that explicitly uses the full distributions of the demand sizes and 

intervals and thereby acknowledges that the probability of a demand occurrence may vary throughout 

the interval. To exploit this information, we also allow for time-varying order-up-to levels that flexibly 

adjust inventories according to the dynamic requirements. We derive the long-run average holding costs, 

non-stockout probability, order fill rate, and volume fill rate. Inspired by an analogy with multi-item 

inventory control models, we propose a greedy marginal-analysis heuristic to optimize the order-up-to 

levels, which we benchmark against the optimal solution on theoretical instances. In a simulation study 

on the M5 competition data we demonstrate this method’s improved on-target service performance com- 

pared to that of traditional solutions. We furthermore show that target service levels can be achieved at 

significantly lower costs with time-varying than with fixed order-up-to levels. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

p

w

o

l

a

r

m

N

n

s

1

t

t

a

S

m

l

g

h

w

p

t

s

m

s

t

“

r

fi

l

m

t

i

h

0

. Introduction 

Intermittent demand patterns are characterized by periods with 

ositive demand, alternated with (one, a few, or many) periods 

ithout demand. Intermittent demand used to be associated with 

nly a few item types, such as spare parts ( Syntetos, Babai, Boy- 

an, Kolassa, & Nikolopoulos, 2016 ). However, due to ever-growing 

ssortments and numbers of product varieties, it is increasingly 

ecognized that in many warehouses and distribution centers the 

ajority of the stored products is sold irregularly ( Doszy ́n, 2019; 

ikolopoulos, 2021 ). Forecasting intermittent demand patterns is a 

otoriously difficult task and most often approached by means of 

o-called size-interval forecasting methods (starting with Croston, 

972 ). These separately forecast the size of a positive demand and 

he time between two periods with positive demand, also called 

he demand interval. Demand intervals have received significant 

ttention in forecasting research, as we will further discuss in 
ection 2.1 . 

∗ Corresponding author at: Department Industrial Engineering and Business Infor- 

ation Systems, University of Twente, PO Box 217, 7500 AE Enschede, the Nether- 

ands. 

E-mail addresses: d.r.j.prak@utwente.nl (D. Prak), p.b.rogetzer@utwente.nl (P. Ro- 
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Contrarily, inventory control research for intermittent demand 

as until now devoted little attention to the demand interval. As 

e will further elaborate on in Section 2.2 , compound Poisson 

rocesses are the standard choice for intermittent demand, al- 

hough the (fixed) probability of a demand occurrence has also 

poradically been modeled explicitly by using a compound bino- 

ial model for lead-time demand. However, both compound Pois- 

on and compound binomial demand models have the property 

hat the demand interval is assumed to be memoryless, i.e. the 

demand occurrence probability” is the same in every period, ir- 

espective of the time since the last demand occurred. This simpli- 

es the mathematical analysis and leads to stationary order-up-to 

evels throughout the entire demand interval. 

We find evidence that this assumption is too restrictive and 

oreover ignores an opportunity to make use of all features of 

he demand interval. In the Walmart data set of the M5 forecast- 

ng competition, we find that the vast majority of items show pat- 

erns in their demand interval that do not confirm the memory- 

essness assumption and therefore do not fit to compound Pois- 

on or compound binomial demand models. Particularly, we dis- 

over that multiple demands occur shortly after each other on a 

uch more frequent basis than such models suggest. We propose 

 more general demand model that allows for any demand size 

nd demand interval distribution, and thus also for time-varying 
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emand occurrence probabilities. We show how to estimate these 

robabilities from real data and use them to optimize an order-up- 

o inventory control policy under either a non-stockout probability, 

rder fill rate, or volume fill rate constraint. 

In line with the generalized demand interval distribution, our 

nventory model allows for time-varying order-up-to levels. This 

as an important advantage over existing, stationary order-up-to 

olicies: inventories can be adjusted in anticipation of higher or 

ower probabilities of demand occurring in the future. Contrarily, 

nder classical policies, the order-up-to level would always stay 

he same, even if the demand occurrence probability in the up- 

oming periods is very different from the past. In modern, respon- 

ive supply chains – where real-time demand information can be 

sed to optimize inventories on-line – this leads to large service 

evel improvements. 

An interesting analogy exists between our proposed model and 

ulti-item inventory control models: instead of setting order-up- 

o levels for different items to fulfill an overall objective, we 

et order-up-to levels for a single item at different periods in 

he demand interval. Inspired by this analogy, we propose a 

reedy marginal-analysis heuristic to optimize the order-up-to lev- 

ls throughout the demand interval. We demonstrate our approach 

or several theoretical scenarios and thereafter empirically compare 

ts performance to that of existing methods, using all 30,490 train- 

ng time series of the M5 forecasting competition. Summarizing, 

ur contribution is threefold: (1) we present a generalized demand 

nd inventory model that allows demand occurrence probabilities 

nd order-up-to levels to vary throughout the demand interval and 

how how to calculate long-run average holding costs and var- 

ous service measures, (2) we present and benchmark a greedy 

arginal-analysis solution procedure to determine the order-up-to 

evels at every period in the demand interval, and (3) we use the 

5 competition data set to empirically benchmark our proposed 

ethod’s service level performance against that of existing meth- 

ds. 

The remainder of this paper is structured as follows. 

ection 2 reviews the relevant literature. Section 3 presents the 

ata set and discusses goodness-of-fit tests of commonly-used 

emand distributions. Section 4 describes the inventory con- 

rol setting and introduces the new, general demand model. 

ection 5 shows the calculation of holding costs and various ser- 

ice measures and describes how time-varying order-up-to lev- 

ls can be determined. Section 6 demonstrates the policy on 

arious theoretical scenarios and presents a sensitivity analysis. 

ection 7 compares the policy’s on-target service performance to 

hat of existing models on the M5 competition data and ana- 

yzes the added value of using time-varying order-up-to levels. 

ection 8 concludes the paper. 

. Literature review 

We review the relevant literature in three main streams. 

irst, we discuss intermittent demand forecasting and size-interval 

ethods, which provide the rationale for our demand model. Then, 

e cover relevant previous work on intermittent demand inven- 

ory control. Finally, we list contributions to the statistics literature 

hat are relevant for our analysis. 

.1. Intermittent demand forecasting 

In supply chain optimization in general and demand forecast- 

ng in particular, the relevance of storing and utilizing “big data”

s acknowledged. When demand time series are studied at higher 

ranularity (e.g. at a daily instead of a weekly level), their lev- 

ls of intermittency also increase. This makes intermittent demand 

oresting increasingly relevant, ultimately leading to the fact that 
1127 
he M5 forecasting competition in 2020 focused mainly on inter- 

ittent demand ( Makridakis, Spiliotis, & Assimakopoulos, 2021 ). 

Intermittent demand forecasting is notoriously difficult, because 

emand intervals as well as demand sizes have to be studied. 

he majority of the related literature consists of so-called size- 

nterval methods that separately analyze these two components 

f the demand time series. Croston (1972) proposed the first such 

ethod, twice applying exponential smoothing. Syntetos & Boylan 

2005) corrected the bias in Croston’s method that Syntetos & Boy- 

an (2001) discovered. Teunter, Syntetos, & Babai (2011) proposed 

n estimator that is updated in every period rather than only after 

 demand occurrence, in order to react to possible obsolescence. 

ew methodological contributions to the size-interval forecasting 

iterature are still made on a frequent basis. Prestwich, Tarim, 

ossi, & Hnich (2014) and Babai, Dallery, Boubaker, & Kalai (2019) , 

or instance, derived estimators with improved performance under 

bsolescence. 

Point forecasts of the average demand size and interval give 

nly partial information about the distribution of future demand. 

illemain, Smart, & Schwarz (2004) argued that real demand in- 

ervals are often longer or shorter than would be expected based 

n only these point forecasts. They proposed a bootstrapping ap- 

roach to model lead-time demand. Porras & Dekker (2008) pro- 

osed an alternative bootstrapping method that samples from 

verlapping blocks of periods with the length of the lead time, 

hereas Viswanathan & Zhou (2008) constructed lead-time de- 

and by sampling from the demand intervals and demand sizes 

eparately. Hasni, Aguir, Babai, & Jemai (2019) suggested other 

ariations of bootstrapping methods which achieved higher cost- 

ervice efficiency on a large spare part data set. In the traditional 

ize-interval forecasting literature stream, Pennings, Van Dalen, & 

an der Laan (2017) showed that by conditioning on the time since 

he last demand occurrence, and thereby actively anticipating the 

ext demand arrival, forecasting accuracy could be improved. This 

ndicates the importance of considering the full demand interval 

istribution rather than only its point forecast. 

In line with the popularity of machine learning for general 

orecasting purposes, especially neural networks have also been 

pplied for predicting intermittent demand. Whereas Gutierrez, 

olis, & Mukhopadhyay (2008) , Mukhopadhyay, Solis, & Gutier- 

ez (2012) , and Lolli, Gamberini, Regattieri, Balugani, Gatos, & 

ucci (2017) found that neural networks achieve higher accu- 

acy than classical methods, Kourentzes (2013) and Babai, Tsadiras, 

 Papadopoulos (2020) found mixed results. Jiang, Huang, & Liu 

2021) achieved good performance and computation speed with an 

pproach based on support vector machines. The best-performing 

ntries to the M5 competition were combinations of various ma- 

hine learning methods, especially neural networks and gradient 

oosting methods ( Makridakis, Spiliotis, & Assimakopoulos, 2022 ). 

he good performance of these machine learning approaches con- 

rms that demand time series contain more information than is 

aptured by classical demand models. This was also recognized by 

ürkmen, Januschowski, Wang, & Cemgil (2021) , who distinguished 

wo typical demand interval patterns: “aging” – where it is un- 

ikely that demands occur shortly after each other, but the proba- 

ility of observing a new demand increases when the interval pro- 

resses – and the opposite, “clustering” – where it is highly likely 

hat demands occur shortly after each other and the probability of 

bserving a new demand decreases when the interval progresses. 

.2. Intermittent demand inventory control 

If demand is intermittent, then (compound) Poisson models are 

he default choice in (theoretical and applied) literature. For ex- 

mple, Axsäter (2015) discussed the calculation of policy parame- 

ers under various service measures for – next to the normal and 
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amma – the compound Poisson class of demand. Empirical work 

argely follows this selection by fitting normal, gamma, and com- 

ound Poisson distributions to intermittent demand (e.g. Snyder, 

rd, & Beaumont, 2012; Syntetos, Babai, & Gardner, 2015; Teunter 

 Duncan, 2009; Turrini & Meissner, 2019 ). Syntetos, Babai, & Al- 

ay (2012) , Lengu, Syntetos, & Babai (2014) , and Turrini & Meissner 

2019) , amongst others, found that Poisson arrivals combined with 

eometric demand sizes perform well empirically. 

Other authors have expressed the intermittent nature of de- 

and by modeling period demand as a compound Bernoulli pro- 

ess: a demand occurs in a period with a fixed probability, and if 

t occurs, then it follows some probability distribution. Dunsmuir 

 Snyder (1989) , Janssen, Heuts, & de Kok (1998) , and Strijbosch, 

euts, & Van der Schoot (20 0 0) used this approach to estimate 

he first two moments of lead-time demand, which is subsequently 

odeled by a gamma or mixed-Erlang distribution. In line with 

ompound Bernoulli demand per period, Teunter, Syntetos, & Babai 

2010) explicitly modeled lead-time demand with a compound bi- 

omial distribution to calculate order-up-to levels. 

Larsen & Thorstenson (2008, 2014) showed how the order fill 

ate and volume fill rate can be calculated if demand is mod- 

led as a general compound renewal process. However, they, 

nd the authors mentioned before who studied specific demand 

lasses, assumed that lead-time demand follows a fixed distri- 

ution that cannot vary depending on the period in which the 

ead time starts. This implies that the demand interval must be 

emoryless. Various authors in the forecasting literature (as dis- 

ussed in Section 2.1 ) have suggested that this assumption may be 

verly simplifying and our empirical analysis of the M5 data (see 

ection 3 ) confirms this suggestion. In that spirit, we present an 

nventory model that does allow demand occurrence probabilities 

o vary throughout the demand interval and, accordingly, dynami- 

ally adjusts inventory levels. Our approach to calculating holding 

osts and service measures extends the modeling logic of Larsen & 

horstenson (2014) to this more general class of demand processes. 

Our model shows an analogy with multi-item inventory con- 

rol. Instead of setting order-up-to levels for different items, we set 

rder-up-to levels at different periods in a single item’s demand 

nterval. Multi-item inventory models are notorious for being com- 

utationally demanding, as an exhaustive search over all possible 

nventory levels for all items quickly becomes infeasible. Various 

uthors (such as Bijvank, Koole, & Vis, 2010; Graves, 1982; Prak, 

accani, Syntetos, Teunter, & Visintin, 2017; Teunter, 2006 ) there- 

ore proposed and applied greedy marginal-analysis heuristics that 

teratively select the item for which an increased inventory level 

ields the largest service benefit relative to the additional hold- 

ng costs. Acknowledging this analogy, we will propose a similar 

euristic to iteratively select the period in which to increase the 

nventory level until the desired service level is attained. 

.3. Statistics 

Relaxing the assumption of a constant demand occurrence 

robability allows to fine-tune the inventory policy to the tempo- 

al state of the system. The concept of time-varying demand oc- 

urrence probabilities is known in the statistics literature as de- 

endent Bernoulli trials. Modeling the joint distribution of multiple 

uch trials is generally computationally intractable ( Emrich & Pied- 

onte, 1991 ). The earliest statistics solution to the added complex- 

ty was a Poisson approximation ( Chen, 1975 ), which interestingly 

oincides with the mainstream approach in the inventory control 

iterature to model intermittent demand arrivals. Van der Geest 

2005) used binary trees to model the number of demand occur- 

ences during multiple subsequent periods, such as a lead time, 

eading to a binomial-like distribution. In our analysis we use a 

imilar logic to calculate the joint distribution of the number of 
1128 
emand occurrences during the lead time and the state of the sys- 

em after the lead time, which we subsequently combine with the 

emand size distribution to find a full specification of lead-time 

emand. 

. Data and goodness-of-fit of memoryless demand interval 

odels 

To motivate the need for a generalized demand model, we 

nalyze the training data of the M5 forecasting competition 

 International Institute of Forecasters, 2022 ) and analyze the 

oodness-of-fit of standard demand models. The M5 forecasting 

ompetition is the most recent in a series of five forecasting com- 

etitions organized by the Makridakis Open Forecasting Center, 

his time focusing on intermittent demand time series and attract- 

ng 7092 participants ( Makridakis et al., 2022 ). The training data 

et consists of 3049 different items in ten different Walmart stores 

ocated in three different US states, thereby comprising 30,490 

ime series in total. Given the important role of the M competi- 

ions in the development of new forecasting methods ( Petropoulos 

 Makridakis, 2020 ), we believe that this data set is an important 

enchmark case not only for forecasting, but also for intermittent 

emand inventory control. In this section we briefly recap the data 

haracteristics and then discuss how we assess the goodness-of-fit 

f memoryless demand processes. 

We consider the 30,490 item-level time series, which contain 

aily sales of products in the categories food, household, and 

obby. Our focus is – different from the M5 competition itself –

xplicitly not on forecasting or explaining item-/category level de- 

and patterns. Contrarily, we aim to measure the goodness-of-fit 

f a class of demand processes on all item-level time series. Some 

ime series show very long periods during which the item was not 

old at all. We interpret this as an indication that the item was not 

n the assortment for at least a large share of these periods, for in- 

tance because it is a seasonal product, it was newly introduced, or 

t was taken out of the assortment. To avoid such non-selling pe- 

iods being incorrectly considered as very long demand intervals, 

e pre-process the data by deleting for every item periods of 30 

r more consecutive days without demand. 

Table 1 shows the remaining time series lengths, as well as 

escriptive statistics on the mean, standard deviation, and coeffi- 

ient of variation (CV) of the demand sizes and intervals, across all 

tems. Demand sizes and intervals vary heavily in absolute num- 

ers, but also in their CV. We conclude that this data set represents 

 broad spectrum of intermittent demand types and is therefore 

 representative test set for benchmarking intermittent demand 

odels. 

To assess the fit of classical demand models on the time series 

f this data set, we observe the following: under either the com- 

ound Poisson or compound binomial demand model, the occur- 

ence of a positive demand in any period is Bernoulli distributed 

ith some probability p. Under the compound Poisson model it 

olds that p = 1 − exp (−λ) . The demand interval length then fol- 

ows a geometric distribution with parameter p. After having esti- 

ated p for each item as the reciprocal of the mean demand inter- 

al, we compare the theoretical distribution of the demand interval 

o the actually observed demand intervals. We apply four differ- 

nt tests, using the R package XNomial ( Engels, 2015 ): 1) the chi-

quared test with p-values computed according to the asymptotic 

istribution, 2) the chi-squared test with p-values computed via 

onte Carlo simulation, 3) the likelihood ratio test, 4) the multi- 

omial probability of the observed outcomes. Whereas the chi- 

quared test is most widely applied, Engels (2009) argues that the 

ikelihood ratio test is more reliable. 

Table 2 contains the percentages of the 30,490 item-level time 

eries for which – based on the observed demand intervals – the 
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Table 1 

Descriptive statistics. 

Length (days) Positive demand sizes Demand intervals 

Mean Std. Dev. CV Mean Std. Dev. CV 

Minimum 14 1.00 0.00 0.00 1.00 0.04 0.04 

25% quantile 872 1.31 0.64 0.48 1.53 1.35 0.80 

Mean 1247 2.47 1.62 0.59 3.04 2.80 0.90 

75% quantile 1677 2.40 1.71 0.68 3.88 3.81 1.01 

Maximum 1913 161.20 98.20 10.35 14.34 10.59 2.10 

Table 2 

Rejection of “fixed demand occurrence probability” hypothesis. 

Significance 

95% 99% 

Chi-squared with asymptotic p-values 73% 69% 

Chi-squared with Monte Carlo p-values 69% 56% 

Likelihood ratio 66% 58% 

Multinomial probability 70% 61% 

Average 70% 61% 

Fig. 1. Observed and hypothetical demand interval lengths for an exemplary item. 
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ypothesis of a fixed demand occurrence probability is rejected. Al- 

hough the results vary slightly between the tests, the hypothesis 

s rejected for the majority of the time series. Taking the average 

ver all tests, we find that for 70% (61%) of the items the demand

ccurrence probability does indeed vary throughout the demand 

nterval with 95% (99%) certainty. 

Figure 1 zooms in on one exemplary item and compares the 

ypothetical demand interval lengths under the memorylessness 

ssumption with the actually observed demand interval lengths. 

he probability of an interval of length 1 (i.e. two subsequent pe- 

iods with positive demand) is underestimated, whereas the prob- 

bilities of interval lengths 2 until 7 are overestimated. This cor- 

esponds to the “clustering” demand interval pattern in the clas- 

ification of Tcfflrkmen et al. (2021) . A similar pattern can be ob- 

erved for many items. For 93% of the time series the probability 

f having positive demand in two subsequent periods is underesti- 

ated by a memoryless demand model. Motivated by this empir- 

cal evidence, we present our generalized demand and inventory 

odel in the next section. 
1129 
. Model 

We consider the standard base-stock inventory setting: a 

ontinuous-review, discrete-time inventory model with periods t = 

 , 2 , . . . , a single location, and a single item which can be ordered

r discarded without fixed costs. Orders arrive after a lead time of 

 = 0 , 1 , 2 , . . . periods. Inventory holding costs h > 0 are incurred

er unit and per period, and either a non-stockout probability, or- 

er fill rate, or volume fill rate should be satisfied. The order of 

vents in a period is as follows: first, a new order is placed and 

utstanding orders (if any) arrive; second, holding costs are in- 

urred; third, a possible demand occurs; fourth, service is eval- 

ated. Table 3 gives an overview of the notation that is used 

hroughout this paper. In the remainder of this section we describe 

ur demand model and service measures. 

.1. Demand model 

We assume that demands in different periods are independent. 

o model demand per period, we separate the demand occurrence 

robability and the size of a period demand given that it is posi- 

ive. However, rather than assuming a constant demand occurrence 

robability, we allow this probability to vary throughout the de- 

and interval. Let τ be the number of periods since the last pe- 

iod with positive demand. The probability that a demand occurs 

n the present period is p τ . Hence, τ can be viewed as the state 

f a Markov Chain (MC). With probability p τ the MC resets to 

tate 1, and with probability 1 − p τ it moves forward to state τ + 1 .

ithout loss of generality we assume the existence of a maximum 

alue τ ′ for τ for which p τ ′ = 1 , and for all τ < τ ′ , p τ < 1 . So, the

C is irreducible. 

The long-run probabilities p s τ that the MC is in state τ can be 

ound by solving 

p s τ = (1 − p τ−1 ) p 
s 
τ−1 for τ = 2 , 3 , . . . , τ ′ , (1) 

τ ′ 
 

=1 

p s τ = 1 . (2) 

his gives (defining p 0 = 0 for completeness) 

p s τ = 

∏ 

i<τ (1 − p i ) ∑ τ ′ 
i =1 

∏ 

j<i (1 − p j ) 
. (3) 

ote that in the special case that p τ = p for all τ , the probabilities

p s τ reduce to those of a geometric distribution and we obtain the 

ernoulli demand occurrence model of Teunter et al. (2010) . Fur- 

hermore, under the assumption of (compound) Poisson demand 

ith arrival rate λ per period, the demand occurrence probability 

p τ = 1 − exp (−λ) is also constant throughout the demand interval. 

We denote total demand in a period, given state τ , by D τ . Given

hat demand in a period is positive, its value D 

+ has a distribution 

ith probability mass function (pmf) f and cumulative distribution 

unction (cdf) F . We assume that demand is discrete as this is most 

ommon in real life and also the case in our data set. 
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Table 3 

Notation. 

t Period 

L Lead time 

h Holding cost per unit and per period 

τ Number of periods since the last demand, state of the Markov Chain 

p τ Probability of a demand occurrence in state τ

τ ′ Maximum number of periods between two demand occurrences, p τ ′ = 1 

p s τ Long-run probability that the Markov Chain is in state τ

D τ Stochastic demand in a period with state τ , D τ ≥ 0 

D + Stochastic demand in a period, conditional on a positive demand occurrence, D + > 0 

f , F Probability mass function (pmf) and cumulative distribution function (cdf) of D + 

f n n -fold convolution of f , pmf of the sum of n i.i.d. positive period demands 

f N L,τ (n, τp ) Joint probability that, given lead time L and current state τ , n demands occurred during the 

lead time and the state before the lead time was τp 

f D L,τ (d, τp ) Joint probability that, given lead time L and current state τ , the total demand during the 

lead time was d and the state before the lead time was τp 

P T Probability of the sole feasible binary trajectory in Algorithm 1 

P T 
i 

Probability of feasible binary trajectory i in Algorithm 1 

D min 
τ,L Minimum demand that must occur in L periods starting in state τ

e i i th unit vector 

S τ Order-up-to level set in state τ

X Net inventory after replenishment in some period 

ατ (S 1 , . . . , S τ ′ ) Achieved non-stockout probability in state τ with order-up-to levels S 1 , . . . , S τ ′ 

α(S 1 , . . . , S τ ′ ) Achieved (overall) non-stockout probability with order-up-to levels S 1 , . . . , S τ ′ 

βo 
τ (S 1 , . . . , S τ ′ ) Achieved order fill rate in state τ with order-up-to levels S 1 , . . . , S τ ′ 

βo (S 1 , . . . , S τ ′ ) Achieved (overall) order fill rate with order-up-to levels S 1 , . . . , S τ ′ 

EFD τ (S 1 , . . . , S τ ′ ) Expected fulfilled demand in state τ with order-up-to levels S 1 , . . . , S τ ′ 

βv (S 1 , . . . , S τ ′ ) Achieved (overall) volume fill rate with order-up-to levels S 1 , . . . , S τ ′ 

H(S 1 , . . . , S τ ′ ) Expected overall holding costs with order-up-to levels S 1 , . . . , S τ ′ 
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Algorithm 1 Joint pmf of the number of demand occurrences and 

the state before the lead time. 

Require: τ, τp ∈ { 1 , 2 , . . . , τ ′ } , L ∈ N 

+ , n ∈ { 0 , . . . , L } 
1: if n = 0 then 

2: if τp = τ − L then P T = 

∏ τ−1 
t= τp 

(1 − p t ) , the probability of the 

sole feasible trajectory 

3: else P T = 0 

4: end if 

5: else 

6: List all binary numbers of length L 

7: Discard all elements that have more than τ ′ − τp leading 

zeros, not exactly τ − 1 trailing zeros, any sequence of at 

least τ ′ zeros, or not exactly n ones 

8: for all binary numbers i do p T 
i 

= 1 , the probability of trajec- 

tory i from τp to τ
9: Set τn = τp 

10: for all positions n do 

11: if n = 1 then p T 
i 

= p T 
i 

p τn , τn = 1 

12: else p T 
i 

= p T 
i 
(1 − p τn ) , τn = τn + 1 

13: end if 

14: end for 

15: end for 

16: end if 

17: return f N L,τ (n, τp ) = 

p s τp 

p s τ

∑ 

i p 
T 
i 

p

w  

I

a

t

.2. Lead-time demand 

The demand distribution is non-stationary throughout the or- 

er interval, because of the varying demand occurrence probabil- 

ties. Whereas stationary models allow to calculate the inventory 

evel directly from the (single) order-up-to level and the stationary 

istribution of lead-time demand, we allow for order-up-to levels 

hat vary per state and thus also need to account for the interplay 

etween state transitions and lead-time demand. Specifically, our 

nalysis in Section 5 requires the joint probability distribution of 

otal demand over L periods and the state in which the MC was 

 periods ago, given its current state. In the special case where 

p τ = p for all τ , the number of demand occurrences follows a bi- 

omial distribution with parameters L and p, and there is only one 

tate. However, in the general case, such a compact formulation 

oes not exist. 

Denote by f N L,τ the joint pmf of the number of demand occur- 

ences during the lead time and the state of the MC before the 

ead time, given state τ after the lead time. In the case L = 0 , lead-

ime demand is obviously zero and the state remains τ . If L > 0 ,

e suggest Algorithm 1 to find f N 
L,τ (n, τp ) . Its logic is as follows:

rst, all feasible trajectories i of length L that lead from state τp 

o state τ , given n demand occurrences, are listed. If n = 0 , then

 feasible trajectory only exists if τp = τ − L . If n > 0 , then feasible

rajectories are those that (i) have at most τ ′ − τp leading zeros 

otherwise the trajectory cannot have started in τp ), (ii) have ex- 

ctly τ − 1 trailing zeros (otherwise the trajectory does not end in 

), (iii) contain no sequence of at least τ ′ zeros (a demand must 

ccur in state τ ′ at the latest), (iv) have exactly n ones. The proba- 

ility of each feasible trajectory is found by multiplying the corre- 

ponding probabilities of (no) demand occurrences throughout the 

ead time trajectory. The sum of the probabilities of all feasible tra- 

ectories is multiplied by p s τp 
(as the system should be in state τp 

efore the lead time) and divided by p s τ (as we condition on being 

n state τ after the lead time). 

We still have to transform f N L,τ into f D L,τ , the joint pmf of 

ead-time demand and the previous state. To that end, we recall 

hat all positive period demands are i.i.d. with pmf f , so that the 
l

1130 
robability distribution of the sum of n positive period demands, 

ith pmf denoted by f n , is the n -fold convolution of f . Defining

f 0 (0) = 1 , we can derive 

f D L,τ (d, τp ) = 

L ∑ 

n =0 

f N L,τ (n, τp ) f n (d) . 

n Section 5 we show how to calculate various service measures 

nd long-run average holding costs under this demand and inven- 

ory model, and discuss how the (state-dependent) order-up-to 

evels can be optimized. 
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i

. Inventory policy analysis 

In this section we first show how to calculate the non-stockout 

robability, order fill rate, volume fill rate, and long-run average 

olding costs for a given inventory policy. Thereafter, we discuss 

ow to optimize the time-varying order-up-to levels. In all fol- 

owing calculations we assume the existence of a state-dependent 

rder-up-to level S τ , so that if the last positive demand was ob- 

erved τ periods ago, the inventory position is raised to S τ . 

.1. Non-stockout probability 

We define the non-stockout probability α as the long-run prob- 

bility that net inventory is non-negative at the end of an arbi- 

rary period. Consider an arbitrary period where the MC is in state 

, in which the net inventory after the replenishment is X . The 

robability of completely fulfilling demand from on-hand stock in 

hat period is then (1 − p τ ) + p τ F (X ) . Using the order-up-to levels,

he joint distribution of lead-time demand and the state before the 

ead time, we can derive that the non-stockout probability in state 

equals: 

τ (S 1 , . . . , S τ ′ ) = 

τ ′ ∑ 

τp =1 

S τp ∑ 

d=0 

[
(1 − p τ ) + p τ F (S τp 

− d) 
]

f D L,τ ( d, τp ) . 

The overall non-stockout probability α is then found by taking 

he expectation over possible states τ : 

(S 1 , . . . , S τ ′ ) = 

τ ′ ∑ 

τ=1 

ατ (S 1 , . . . , S τ ′ ) p s τ . (4)

.2. Order fill rate 

The second service measure that we consider is the order fill 

ate βo . It is defined as the long-run probability that an arbitrary 

positive) demand can be fulfilled completely from on-hand stock. 

et the current state be τ , let the net inventory level after replen- 

shment be X , and let a positive demand occur in this state. This 

emand is fulfilled completely from on-hand stock with probabil- 

ty F (X ) . The analysis now proceeds in analogy to Section 5.1 . The

chieved order fill rate in state τ is 

o 
τ (S 1 , . . . , S τ ′ ) = 

τ ′ ∑ 

τp =1 

S τp ∑ 

d=0 

F (S τp 
− d ) f D L,τ (d , τp ) . 

he overall order fill rate is 

o (S 1 , . . . , S τ ′ ) = 

τ ′ ∑ 

τ=1 

βo 
τ (S 1 , . . . , S τ ′ ) p s τ . (5)

.3. Volume fill rate 

As a third service measure we consider the volume fill rate βv , 

hich is defined as the long-run fraction of a positive period de- 

and that can be satisfied from on-hand stock. Again, let the pe- 

iod in which a demand occurs have state τ , and let the net inven-

ory after the replenishment be X . Denote a (stochastic) positive 

emand size by D 

+ . The expected fulfilled demand in that period 

s 

 [ min (X, D 

+ )] = 

X ∑ 

i =1 

i f (i ) + X (1 − F (X )) . 

Using again f D L,τ and the order-up-to levels S τ , we find the ex- 

ected fulfilled demand (EFD) in state τ : 
1131 
FD τ (S 1 , . . . , S τ ′ ) 

= 

τ ′ ∑ 

τp =1 

S τp ∑ 

d=0 

f D L,τ (d, τp ) 

[ 

S τp −d ∑ 

i =1 

i f (i ) + (S τp 
− d)(1 − F (S τp 

− d)) 

] 

. 

Since the expected demand is E (D 

+ ) = 

∑ ∞ 

i =1 i f (i ) , the overall 

olume fill rate is 

v (S 1 , . . . , S τ ′ ) = 

τ ′ ∑ 

τ=1 

EFD τ (S 1 , . . . , S τ ′ ) p s τ∑ ∞ 

i =1 i f (i ) 
. (6) 

.4. Holding costs 

The objective is to minimize long-run average holding costs, 

hich we derive in analogy to the service level calculations. As 

olding costs are incurred after the replenishment, but before the 

emand arrival, we evaluate the inventory level after L periods: 

(S 1 , . . . , S τ ′ ) = h 

τ ′ ∑ 

τ=1 

τ ′ ∑ 

τp =1 

S τ∑ 

d=0 

p s τ (S τp 
− d) f D L,τ (d, τp ) . (7)

q. (7) combines the steady-state probabilities of the τ ′ possible 

tates of the MC with the expected inventory level after a lead 

ime that ended in any of these states. As h is a constant that only

cales the holding costs, we can set h = 1 without loss of general-

ty. 

.5. Inventory policy 

After having computed the service measures and the holding 

osts for a given state-dependent order strategy, we can now op- 

imize the order-up-to levels to achieve the service requirements 

ith minimum holding costs. The complete inventory problem can 

e formulated as the following nonlinear integer program: 

inimize H(S 1 , . . . , S τ ′ ) 

subject to α(S 1 , . . . , S τ ′ ) ≥ α∗ or βo (S 1 , . . . , S τ ′ ) 

≥ βo∗ or βv (S 1 , . . . , S τ ′ ) ≥ βv ∗

S 1 , . . . , S τ ′ integer , 

here any of the three service measures can be selected. Perform- 

ng an exhaustive search to solve this program with τ ′ decision 

ariables is only viable for relatively small instances with low val- 

es of τ ′ and/or low maximum period demand values. Acknowl- 

dging the existing analogy with the multi-item inventory con- 

rol literature (see the discussion in Section 2.2 ), we suggest a 

reedy marginal-analysis heuristic solution procedure to optimize 

he time-varying order-up-to levels. 

The solution procedure starts with order-up-to levels of 0 for 

ny period τ , so that no holding costs are incurred. It then finds 

he period for which increasing the order-up-to level by 1 leads 

o the largest service level increase relative to the holding cost in- 

rease. In the case that no service level increase is achieved be- 

ause of the minimum number of demands that occur during the 

ead time, the order-up-to level is increased with this minimum 

emand, so that an improvement is made in every iteration. Once 

he service level is at least equal to the threshold, the process re- 

erses. In a similar greedy way order-up-to levels are decreased, 

very time selecting the period with the largest holding cost sav- 

ng relative to service level loss. The last found solution that still 

atisfies the service level threshold is the solution of the heuris- 

ic. Algorithm 2 describes the procedure, where e i is the i th unit 

ector. 

. Demonstration and sensitivity analysis 

This section serves two purposes. Firstly, we aim to find insights 

nto the optimal inventory policy by studying it for some typical 
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Algorithm 2 Heuristic solution procedure. 

Require: service level target γ ∗, achieved service function 

γ (S 1 , . . . , S τ ′ ) ≡ α or βo or βv 

1: for all τ do D 

min 
τ,L 

= � L + τ−τ ′ −1 
τ ′ 	 + 1 

2: end for 

3: Set S ≡ (S 1 , . . . , S τ ′ ) = (0 , 0 , . . . , 0) 

4: while γ (S) < γ ∗ do 

5: for all τ do 

6: if S τ = 0 then S new = S + e τ D 

min 
τ,L 

7: else S new = S + e τ
8: end if 

9: Incr (τ ) = (γ (S new ) − γ (S)) / (H(S new ) − H(S)) 

10: end for 

11: τ ∗ = argmax (Incr) 

12: if S τ ∗ = 0 then S = S + e τ ∗ D 

min 
τ,L 

13: else S = S + e τ ∗
14: end if 

15: end while 

16: while γ (S) > γ ∗ do 

17: for all τ do 

18: S new = S − e τ
19: Decr (τ ) = (H(S) − H(S new )) / (γ (S) − γ (S new ))) 

20: end for 

21: τ ∗ = argmax (Decr) 

22: S = S − e τ ∗
23: end while 

24: S = S + e τ ∗
25: return S 

Table 4 

Scenario 1: “aging”, L = 1 . 

Service Order-Up-To Levels Cost Diff. 

Optimal Heuristic 

α = 0.80 2,5,5,3,5 2,5,5,4,1 0.83% 

α = 0.95 5,5,5,5,5 5,5,5,5,5,5 0% 

α = 0.99 6,8,10,9,10 6,9,9,8,9 0.55% 

βo = 0.80 5,5,6,6,7 5,5,6,6,7 0% 

βo = 0.95 6,8,10,9,10 7,8,9,8,8 1.54% 

βo = 0.99 8,10,10,10,10 9,9,10,10,9 0.80% 

βv = 0.80 4,5,5,7,6 4,5,6,5,5 0.64% 

βv = 0.95 6,7,8,8,7 6,7,8,8,7 0% 

βv = 0.99 8,9,9,9,8 8,9,9,9,8 0% 
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Table 5 

Scenario 2: “aging”, L = 5 . 

Service Order-Up-To Levels Cost Diff. 

Optimal Heuristic 

α = 0.80 9,9,10,10,8 9,9,10,10,8 0% 

α = 0.95 12,12,13,13,15 12,13,12,13,11 1.05% 

α = 0.99 14,15,16,17,17 15,15,15,15,15 0.26% 

βo = 0.80 11,11,11,13,13 11,11,12,11,11 0.13% 

βo = 0.95 14,14,14,16,14 14,14,15,14,13 0.28% 

βo = 0.99 16,17,18,18,16 16,17,18,18,16 0% 

βv = 0.80 10,10,11,13,12 10,11,11,10,8 0.73% 

βv = 0.95 13,13,14,15,17 13,14,14,13,11 1.01% 

βv = 0.99 16,16,16,18,17 16,16,17,16,16 0.22% 

Table 6 

Scenario 3: “clustering”, L = 1 . 

Service Order-Up-To Levels Cost Diff. 

Optimal Heuristic 

α = 0.80 7,5,0,5,6 7,5,0,5,6 0% 

α = 0.95 9,7,6,5,8 9,7,6,5,8 0% 

α = 0.99 10,9,8,5,9 10,9,8,5,9 0% 

βo = 0.80 7,6,5,5,8 7,6,5,5,8 0% 

βo = 0.95 9,8,6,5,9 9,8,6,5,9 0% 

βo = 0.99 10,9,9,5,9 10,9,8,6,10 0.06% 

βv = 0.80 6,6,5,4,8 7,4,1,4,7 6.5% 

βv = 0.95 8,7,7,5,9 8,8,6,5,7 0.57% 

βv = 0.99 9,9,9,8,10 9,9,9,8,10 0% 

Table 7 

Scenario 4: “clustering”, L = 5 . 

Service Order-Up-To Levels Cost Diff. 

Optimal Heuristic 

α = 0.80 17,17,17,17,20 18,15,13,15,16 0.65% 

α = 0.95 21,20,19,19,22 21,20,19,19,22 0% 

α = 0.99 24,23,21,21,23 24,23,21,21,23 0% 

βo = 0.80 18,17,15,16,18 18,17,15,16,18 0% 

βo = 0.95 21,22,21,20,24 22,20,18,18,19 0.54% 

βo = 0.99 24,24,22,22,24 24,24,22,22,24 0% 

βv = 0.80 17,17,15,16,19 18,14,13,15,17 1.88% 

βv = 0.95 21,19,18,18,21 21,19,18,18,21 0% 

βv = 0.99 23,24,23,22,24 24,22,21,20,21 1.38% 
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arameter settings. The optimal policy is found by full enumera- 

ion of all possibilities in sufficiently small problem instances. Sec- 

ndly, we evaluate the heuristic optimization procedure by com- 

aring its solution and corresponding holding costs with the op- 

imum. We study two typical demand interval patterns that cor- 

espond to the classification by Türkmen et al. (2021) : “aging”

with demand occurrence probabilities p 1 = 0 . 2 , p 2 = 0 . 4 , p 3 = 0 . 6 ,

p 4 = 0 . 8 , and p 5 = 1 ) and “clustering” (with demand occurrence

robabilities p 1 = 0 . 8 , p 2 = 0 . 6 , p 3 = 0 . 4 , p 4 = 0 . 2 , and p 5 = 1 ). For

ach pattern we consider a scenario with a short lead time ( L = 1 )

nd a long lead time ( L = 5 ). Within each scenario, we define three

ervice level targets (80%, 95%, and 99%) for each of the three dif- 

erent service measures that we study ( α, βo , and βv ). In all sce-

arios, the demand sizes are uniformly distributed on the integers 

 , . . . , 5 . Tables 4–7 showcase for every scenario and service level

arget the order-up-to levels according to the optimal solution, the 

euristic solution, and the percentage cost difference between both 

olutions. 

In the “aging” scenarios ( Tables 4 and 5 ), many (but not all) 

ptimal policy patterns have order-up-to levels that either mono- 

onically increase during the interval, or first increase and then de- 

rease towards the end of the interval. In the case with L = 1 (see
1132 
able 4 ), order-up-to levels are lower than in the case with L = 5

see Table 5 ), as in the latter case a longer lead time needs to be

overed. Similarly, higher service targets require higher order-up- 

o levels. Low order-up-to levels directly after the last demand are 

xplained by the fact that the probability of a new demand occur- 

ence is lowest at that time, and hence also a lead time that starts 

irectly after a previous demand will likely have fewer demand oc- 

urrences than a lead time that starts later in the interval. How- 

ver, after the first demand in the lead time has occurred, the MC 

esets. Therefore, for a longer lead time (such as in the case with 

 = 5 ) the effect of its starting point on the total lead-time demand

s smaller and consequently, the variation of the order-up-to levels 

relative to their overall sizes) is lower. 

For explaining the further solution patterns, we have to con- 

ider three other effects: firstly, not every period contributes 

qually to the achieved service and realized costs as not every pe- 

iod is equally likely to occur. Secondly, as is common in inventory 

roblems, costs increase supralinearly in the service target. This 

akes it beneficial to achieve slightly higher service in periods 

here it is cheaper to achieve and lower service in periods where 

t is more costly. Thirdly, for discrete demand a target service level 

ypically cannot be achieved exactly, so that one solution may out- 

erform another mainly because of a smaller “service surplus.” The 

um of all these effects may be ambiguous. A good example of this 
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olicy structure ambiguity is the optimal solution in scenario 2 for 

= 0 . 80 . By construction, a demand must occur in the fifth pe-

iod and a lead time that starts in that period will therefore cer- 

ainly include that demand. Yet, it is optimal to set the order-up-to 

evel in period 5 slightly lower than in all other periods. Contrarily, 

n the same scenario, but for α = 0 . 95 , the order-up-to level is set

igher in period 5 than in all other periods. Considering all “aging”

cenarios, the heuristic finds the optimal solution in 6 out of 18 

ases. In 9 other cases the cost difference is less than 1%, whereas 

he maximum error is 1.54%. 17 out of 18 cases have time-varying 

rder-up-to levels in optimum. 

In the “clustering” scenarios ( Tables 6 and 7 ) we observe the 

pposite: order-up-to levels are relatively high early in the inter- 

al, as demands are likely to occur shortly after each other. Order- 

p-to levels then decrease, but typically increase again towards the 

nd of the interval. The latter is due to the “end effect”: all scenar-

os must have p 5 = 1 in order to keep the intervals short enough

o find the optimal solution by full enumeration. Similar to the ag- 

ng scenarios, order-up-to levels are higher for longer lead times 

nd/or higher service levels, whereas they are more variable for 

hort lead times. For example, in the case L = 1 and α = 0 . 80 it is

ptimal to keep no inventory at all in period 3, whereas in earlier 

nd later periods order-up-to levels of 5, 6, and 7 units should be 

et. Considering all “clustering” scenarios, the heuristic finds the 

ptimal solution in 11 out of 18 cases. In 4 other cases the cost 

ifference is less than 1%. However, one scenario shows a cost dif- 

erence of 6.5%. All cases have time-varying order-up-to levels in 

ptimum. 

Summarizing, we find that 35 out of 36 cases have time-varying 

rder-up-to levels in optimum, which confirms the usefulness of 

 general policy that allows for these. The variation is largest if 

he lead time is short compared to the expected demand interval. 

his showcases that if the supply chain is agile, so that the inven- 

ory policy can quickly respond to the actual state of the system, 

he benefit of actually using the state information of the system 

s largest. The heuristic finds the optimal solution in 17 out of 36 

ases and is within 1% cost difference in 30 out of 36 cases. The 

verage performance loss is 0.55%. In the next section we examine 

he performance gain that can be achieved with this model and 

he heuristic solution procedure over fixed order-up-to-level poli- 

ies with classical distributional assumptions. 

. Empirical results 

In this section we analyze the inventory performance of the 

odel and heuristic solution procedure on the data set described 

n Section 3 . First, we compare – in a simulation experiment on 

he entire data set and for several given target service levels – its 

chieved service with that of a standard base-stock system with 

wo commonly-used demand models. Then, we zoom in on one 

pecific item of the data set and show the advantage of using 

ime-varying order-up-to levels, measured by the inventory costs 

equired to achieve a given target service level. We restrict atten- 

ion to the non-stockout probability service level ( α) for brevity, 

emarking that the procedures work completely analogously for 

he order fill rate and volume fill rate. 

.1. On-target service performance on the full data set 

We consider as benchmarks the normal lead-time demand 

odel, which is (sometimes implicitly) used in many applied pa- 

ers, and the Poisson-geometric as most popular compound Pois- 

on demand process. For every item of the data set described 

n Section 3 , we fit the respective distributions to the demand 

ime series by estimating the parameters as follows: for the nor- 

al distribution, we use the sample mean and standard devia- 
1133 
ion. For the Poisson-geometric distribution, we use the Method- 

f-Moments estimators given in Axsäter (2015) . For the newly pre- 

ented model, we use the empirical probabilities for the demand 

ize and demand interval distribution. The latter probabilities p s τ
re transformed into the demand occurrence probabilities p τ by 

nverting the recurrent relationship of Eq. (1) : 

p 1 = p s 1 

p τ = 

p s τ∏ 

i<τ (1 − p i ) 
for τ = 2 , . . . , τ ′ . 

Subsequently, we calculate for all items the order-up-to levels 

o satisfy a given target service level under the fitted distributions. 

or the normal and Poisson-geometric benchmarks the order-up- 

o level is fixed throughout the entire horizon, whereas the newly 

roposed method will set time-varying order-up-to levels S 1 ,..., S τ ′ 
hroughout the demand interval, calculated with the heuristic so- 

ution procedure. We select lead times of 1 and 5 days and con- 

ider various non-stockout probability targets between 50% and 

9%. Then, we find the achieved service in a simulation experiment 

y applying the policy in every period and evaluating the inventory 

evels after subtracting the observed lead-time demand. 

We calculate the Mean Squared Errors (MSEs, across all items) 

f the achieved service levels from their targets. This symmetric er- 

or measure avoids that an underachievement for one item is offset 

y an overachievement for another item and therefore provides a 

air judgment of overall performance (see e.g. Prak, Teunter, Babai, 

oylan, & Syntetos, 2021 ). Fig. 2 shows the results for the entire 

ata set. Fig. 2 a presents the results for L = 1 , Fig. 2 b corresponds

o the case L = 5 , and Figs. 2 c and d zoom in on service levels

etween 95% and 99%. The first observation is that the proposed 

odel achieves closer to the target over the entire range of service 

evels and for both the short lead time of 1 day and the long lead

ime of 5 days. This indicates that it is indeed beneficial for in- 

entory performance to explicitly model the demand interval and 

ize distributions rather than assuming a standard arrival process 

r lead-time demand model. 

The normal lead-time demand model performs worst for almost 

ll settings, except for service levels between 90% and 95%, where 

t slightly outperforms the Poisson-geometric model. All MSEs nat- 

rally decrease when the target service level increases, as higher 

chieved service levels are less sensitive to inventory differences. 

herefore, the MSEs also converge to each other as the service level 

ncreases. Best visible for L = 5 in Fig. 2 b, the normal and proposed

odel exhibit an S-shape, indicating that performance slightly de- 

eriorates for higher service levels. For the proposed model, this 

an likely be attributed to the heuristic solution procedure which 

eviates stronger from the optimum for higher service levels. For 

he normal model it may be a result of the misfitting distribution 

hape. 

All MSEs are significantly larger for L = 5 than for L = 1 , as the

eriod which the order-up-to level has to account for is also larger 

n that case. The largest improvement by the proposed method is 

chieved for L = 1 , because a shorter lead time implies a more re-

ponsive system and thus a larger potential for time-varying order- 

p-to levels. Indeed, as L → ∞ , the effect of timing the intermit- 

ent demand diminishes and the optimal solution of the proposed 

odel converges to a stationary order-up-to level. An important 

econdary finding is therefore that, to make optimal use of this 

ighly responsive model, the inventory system should be designed 

n an agile way, so that items can be quickly reordered or replaced 

o where they are expected to be demanded in the near future. 

.2. The added value of time-varying order-up-to levels 

Having compared the overall performance of the proposed 

odel and solution procedure with that of traditional demand 
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Fig. 2. Mean Squared Errors of achieved service levels over all items. 
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odels, we now zoom in on the added value of time-varying 

rder-up-to levels in particular. Given our demand model, one 

an still restrict the set of allowable inventory policies to only 

hose with fixed order-up-to levels. We compare the holding costs 

equired to achieve a given service level when using a fixed 

rder-up-to level with the holding costs required when using 

ime-varying order-up-to levels with the heuristic solution pro- 

edure presented in this paper. To do so, we use the same ex- 

mplary item that was also discussed in Figure 1 to estimate 

he demand size and interval distribution, and plot the long- 

un average holding costs (or equivalently, the average inven- 

ory level, as we set h = 1 throughout the paper) that are nec- 

ssary to achieve non-stockout probabilities between 50% and 

9%. 

Figure 3 a shows the results for L = 1 and displays an impor-

ant benefit of using time-varying order-up-to levels, namely the 

arger number of variables available to “fine-tune” the inventory 

olicy. Increasing a fixed order-up-to level by one unit leads to a 

arge jump in the service level and holding costs. Service levels be- 

ween these jump points cannot be achieved exactly, and therefore 
1134 
oth the service level and the holding costs are overshot. This over- 

hoot – which is omnipresent for any discrete inventory policy –

s much smaller with time-varying order-up-to levels, leading to a 

uch smoother curve. In line with the typical pattern of decreas- 

ng service level returns to cost investment, the jumps are largest 

or lower service levels. For example, increasing a fixed order-up-to 

evel from 2 to 3 increases the service level from 69% to 83%, and 

he holding costs from 1.25 to 2.15 (a 72% cost increase), whereas 

ncreasing a fixed order-up-to level from 5 to 6 increases the ser- 

ice level from 96.3% to 98.5%, and the holding costs from 4.10 to 

.09 (a 24% cost increase). 

The cost advantage of using time-varying order-up-to levels 

s largest for service levels immediately after jumps in the fixed 

rder-up-to policy. For example, a service level of 69.4% can be 

chieved at 43% lower costs with time-varying order-up-to lev- 

ls than with fixed order-up-to levels. In coherence with the de- 

reasing jump sizes, the magnitude of the difference between both 

ethods also decreases for larger service levels, although it re- 

ains substantial. A service level of 98.5% can be achieved at 15% 

ower costs. 
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Fig. 3. Long-run average holding costs needed to achieve a given non-stockout probability, comparison between a fixed order-up-to level and the heuristic solution procedure 

with time-varying order-up-to levels, for an exemplary item. 
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The cost advantage gradually decreases between the jumps. 

mmediately before a jump in the fixed order-up-to policy, both 

ethods perform very similarly. In most such points the time- 

arying policy still yields lower or the same costs. Immediately be- 

ore the jump points at service levels of 96.3% and 98.5%, though, 

he fixed order-up-to level performs slightly better. This demon- 

trates that the heuristic solution procedure – although it over- 

ll clearly dominates the benchmark policy – is not guaranteed 

o find the most cost-efficient solution for each service level. To 

void these rare cases, the heuristic could easily be extended with 

 check whether a fixed order-up-to policy outperforms the best 

ound solution. It should be noted that the points and magnitudes 

f the jumps are item-specific. 

Figure 3 b shows the results for L = 5 . In line with our findings

f Section 7.1 , we find that with a larger lead time the jumps of

oth methods become smaller. This can be explained by the fact 

hat for a longer lead time, lead-time demand can take on more 

alues and thus becomes smoother. Also the performance differ- 

nce between both methods decreases, as the effect of the current 

osition in the demand interval on the lead-time demand distribu- 

ion becomes smaller. Nevertheless, using time-varying order-up- 

o levels still leads to significant advantages. In this case, a service 

evel of 51.5% can be achieved at 35% lower costs with time-varying 

rder-up-to levels, whereas a service level of 98.5% can be achieved 

t 10% lower costs. Also for L = 5 the gains decrease gradually be-

ween the jumps. We conclude that even though the largest rel- 

tive gains can be achieved for short lead times and low service 

evels, significant advantages can be observed for this item over 

he entire range of service levels and for both lead times. 

. Conclusion 

We presented a generalized intermittent demand inventory 

ontrol model which allows for any discrete distribution of the 

emand interval and demand size. Our model allows for time- 

arying order-up-to levels that follow the distributional shape of 

oth the demand size and interval, so that inventories can be ad- 

usted throughout the demand interval, in anticipation of vary- 

ng future requirements. We showed how to calculate the long- 

un average holding costs, achieved non-stockout probability, order 

ll rate, and volume fill rate. We furthermore suggested a greedy 
1135 
arginal-analysis heuristic solution procedure to optimize order- 

p-to levels under any of these service constraints. 

Several authors found that the assumptions underlying stan- 

ard demand models – such as the compound Poisson and com- 

ound binomial – are debatable on real-life data sets. In the M5 

ompetition data set we also found that there are more con- 

ecutive periods with positive demands than would be expected 

ased on the classical assumption of time-independent demand 

ccurrence probabilities. An imbalance exists between forecast- 

ng developments on the one hand and advances in inventory 

ontrol on the other hand. Whereas alternative forecasting meth- 

ds (such as bootstrapping of the lead-time demand distribution) 

ave been presented, current inventory control models with time- 

ndependent control parameters cannot fully exploit their predic- 

ions. Our model can, and is therefore a tool to manage inventories 

n an agile way. 

Time-varying order-up-to levels provide a two-fold benefit. 

irst, they allow to anticipate with greater accuracy on upcom- 

ng changes in the demand for an item. Second, they provide 

ignificantly increased flexibility over a single, fixed order-up- 

o level to minimize the service level overshoot that exists for 

iscrete demand inventory models. Whereas this overshoot is 

argest for low service levels, we found that significant savings 

re achieved also for high service levels. Our model’s on-target 

nventory performance dominates that of the Poisson-geometric 

nd normal demand model. The largest gains can be achieved 

or short lead times, as these imply a more responsive inventory 

ystem. 

Three main limitations of our study can be identified. First, 

lthough the M5 forecasting competition provides an established 

enchmark data set for a range of forecasting and inventory appli- 

ations, it should be noted that our empirical results are limited 

o this data set. Second, applying the proposed model in practice 

ntails estimating (next to the demand size distribution) a number 

f parameters equal to the maximum observed demand interval 

ength, which may be prohibitive if only a short demand history 

s available. Finally, although the heuristic solution procedure is 

otivated by existing literature, yields close-to-optimal results in 

he small benchmark instances, and substantially outperforms the 

enchmark methods in the empirical study, it is – like all heuris- 

ics – not guaranteed to give the optimal solution. 
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Future research should proceed on the interface of intermittent 

emand forecasting and inventory control, especially on the trans- 

er of distributional (lead-time) demand forecasts to inventory de- 

ision models. Furthermore, time-varying inventory control param- 

ters are also useful for non-intermittent demand patterns, for ex- 

mple when seasonality or a trend is involved. The current model 

an in principle handle any (also non-intermittent) demand pat- 

ern, but an inventory model with time-varying control parameters 

an be tailored to any forecasting model that predicts varying de- 

and (levels or distributions) for different periods ahead. A natural 

xtension can be made to a multi-location inventory system, where 

n item can be relocated between locations in anticipation of di- 

erging future requirements. A final research avenue is the devel- 

pment of interfaces between non-parametric (e.g. machine learn- 

ng) demand forecasts and the optimization of inventory control 

arameters. 
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