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ABSTRACT

Current intermittent demand inventory control models assume that the demand interval is memoryless:
the probability of observing a positive demand does not depend on the time since the last demand oc-
curred. Contrarily, several forecasting contributions suggest that demand intervals contain more distribu-
tional information. We find that the data of the M5 forecasting competition confirms this. Therefore, we
propose an inventory control model that explicitly uses the full distributions of the demand sizes and
intervals and thereby acknowledges that the probability of a demand occurrence may vary throughout
the interval. To exploit this information, we also allow for time-varying order-up-to levels that flexibly
adjust inventories according to the dynamic requirements. We derive the long-run average holding costs,
non-stockout probability, order fill rate, and volume fill rate. Inspired by an analogy with multi-item
inventory control models, we propose a greedy marginal-analysis heuristic to optimize the order-up-to
levels, which we benchmark against the optimal solution on theoretical instances. In a simulation study
on the M5 competition data we demonstrate this method’s improved on-target service performance com-
pared to that of traditional solutions. We furthermore show that target service levels can be achieved at

significantly lower costs with time-varying than with fixed order-up-to levels.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Intermittent demand patterns are characterized by periods with
positive demand, alternated with (one, a few, or many) periods
without demand. Intermittent demand used to be associated with
only a few item types, such as spare parts (Syntetos, Babai, Boy-
lan, Kolassa, & Nikolopoulos, 2016). However, due to ever-growing
assortments and numbers of product varieties, it is increasingly
recognized that in many warehouses and distribution centers the
majority of the stored products is sold irregularly (Doszyn, 2019;
Nikolopoulos, 2021). Forecasting intermittent demand patterns is a
notoriously difficult task and most often approached by means of
so-called size-interval forecasting methods (starting with Croston,
1972). These separately forecast the size of a positive demand and
the time between two periods with positive demand, also called
the demand interval. Demand intervals have received significant
attention in forecasting research, as we will further discuss in
Section 2.1.

* Corresponding author at: Department Industrial Engineering and Business Infor-
mation Systems, University of Twente, PO Box 217, 7500 AE Enschede, the Nether-
lands.

E-mail addresses: d.rj.prak@utwente.nl (D. Prak), p.b.rogetzer@utwente.nl (P. Ro-
getzer).
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Contrarily, inventory control research for intermittent demand
has until now devoted little attention to the demand interval. As
we will further elaborate on in Section 2.2, compound Poisson
processes are the standard choice for intermittent demand, al-
though the (fixed) probability of a demand occurrence has also
sporadically been modeled explicitly by using a compound bino-
mial model for lead-time demand. However, both compound Pois-
son and compound binomial demand models have the property
that the demand interval is assumed to be memoryless, i.e. the
“demand occurrence probability” is the same in every period, ir-
respective of the time since the last demand occurred. This simpli-
fies the mathematical analysis and leads to stationary order-up-to
levels throughout the entire demand interval.

We find evidence that this assumption is too restrictive and
moreover ignores an opportunity to make use of all features of
the demand interval. In the Walmart data set of the M5 forecast-
ing competition, we find that the vast majority of items show pat-
terns in their demand interval that do not confirm the memory-
lessness assumption and therefore do not fit to compound Pois-
son or compound binomial demand models. Particularly, we dis-
cover that multiple demands occur shortly after each other on a
much more frequent basis than such models suggest. We propose
a more general demand model that allows for any demand size
and demand interval distribution, and thus also for time-varying
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demand occurrence probabilities. We show how to estimate these
probabilities from real data and use them to optimize an order-up-
to inventory control policy under either a non-stockout probability,
order fill rate, or volume fill rate constraint.

In line with the generalized demand interval distribution, our
inventory model allows for time-varying order-up-to levels. This
has an important advantage over existing, stationary order-up-to
policies: inventories can be adjusted in anticipation of higher or
lower probabilities of demand occurring in the future. Contrarily,
under classical policies, the order-up-to level would always stay
the same, even if the demand occurrence probability in the up-
coming periods is very different from the past. In modern, respon-
sive supply chains - where real-time demand information can be
used to optimize inventories on-line - this leads to large service
level improvements.

An interesting analogy exists between our proposed model and
multi-item inventory control models: instead of setting order-up-
to levels for different items to fulfill an overall objective, we
set order-up-to levels for a single item at different periods in
the demand interval. Inspired by this analogy, we propose a
greedy marginal-analysis heuristic to optimize the order-up-to lev-
els throughout the demand interval. We demonstrate our approach
for several theoretical scenarios and thereafter empirically compare
its performance to that of existing methods, using all 30,490 train-
ing time series of the M5 forecasting competition. Summarizing,
our contribution is threefold: (1) we present a generalized demand
and inventory model that allows demand occurrence probabilities
and order-up-to levels to vary throughout the demand interval and
show how to calculate long-run average holding costs and var-
ious service measures, (2) we present and benchmark a greedy
marginal-analysis solution procedure to determine the order-up-to
levels at every period in the demand interval, and (3) we use the
M5 competition data set to empirically benchmark our proposed
method’s service level performance against that of existing meth-
ods.

The remainder of this paper is structured as follows.
Section 2 reviews the relevant literature. Section 3 presents the
data set and discusses goodness-of-fit tests of commonly-used
demand distributions. Section 4 describes the inventory con-
trol setting and introduces the new, general demand model.
Section 5 shows the calculation of holding costs and various ser-
vice measures and describes how time-varying order-up-to lev-
els can be determined. Section 6 demonstrates the policy on
various theoretical scenarios and presents a sensitivity analysis.
Section 7 compares the policy’s on-target service performance to
that of existing models on the M5 competition data and ana-
lyzes the added value of using time-varying order-up-to levels.
Section 8 concludes the paper.

2. Literature review

We review the relevant literature in three main streams.
First, we discuss intermittent demand forecasting and size-interval
methods, which provide the rationale for our demand model. Then,
we cover relevant previous work on intermittent demand inven-
tory control. Finally, we list contributions to the statistics literature
that are relevant for our analysis.

2.1. Intermittent demand forecasting

In supply chain optimization in general and demand forecast-
ing in particular, the relevance of storing and utilizing “big data”
is acknowledged. When demand time series are studied at higher
granularity (e.g. at a daily instead of a weekly level), their lev-
els of intermittency also increase. This makes intermittent demand
foresting increasingly relevant, ultimately leading to the fact that
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the M5 forecasting competition in 2020 focused mainly on inter-
mittent demand (Makridakis, Spiliotis, & Assimakopoulos, 2021).

Intermittent demand forecasting is notoriously difficult, because
demand intervals as well as demand sizes have to be studied.
The majority of the related literature consists of so-called size-
interval methods that separately analyze these two components
of the demand time series. Croston (1972) proposed the first such
method, twice applying exponential smoothing. Syntetos & Boylan
(2005) corrected the bias in Croston’s method that Syntetos & Boy-
lan (2001) discovered. Teunter, Syntetos, & Babai (2011) proposed
an estimator that is updated in every period rather than only after
a demand occurrence, in order to react to possible obsolescence.
New methodological contributions to the size-interval forecasting
literature are still made on a frequent basis. Prestwich, Tarim,
Rossi, & Hnich (2014) and Babai, Dallery, Boubaker, & Kalai (2019),
for instance, derived estimators with improved performance under
obsolescence.

Point forecasts of the average demand size and interval give
only partial information about the distribution of future demand.
Willemain, Smart, & Schwarz (2004) argued that real demand in-
tervals are often longer or shorter than would be expected based
on only these point forecasts. They proposed a bootstrapping ap-
proach to model lead-time demand. Porras & Dekker (2008) pro-
posed an alternative bootstrapping method that samples from
overlapping blocks of periods with the length of the lead time,
whereas Viswanathan & Zhou (2008) constructed lead-time de-
mand by sampling from the demand intervals and demand sizes
separately. Hasni, Aguir, Babai, & Jemai (2019) suggested other
variations of bootstrapping methods which achieved higher cost-
service efficiency on a large spare part data set. In the traditional
size-interval forecasting literature stream, Pennings, Van Dalen, &
van der Laan (2017) showed that by conditioning on the time since
the last demand occurrence, and thereby actively anticipating the
next demand arrival, forecasting accuracy could be improved. This
indicates the importance of considering the full demand interval
distribution rather than only its point forecast.

In line with the popularity of machine learning for general
forecasting purposes, especially neural networks have also been
applied for predicting intermittent demand. Whereas Gutierrez,
Solis, & Mukhopadhyay (2008), Mukhopadhyay, Solis, & Gutier-
rez (2012), and Lolli, Gamberini, Regattieri, Balugani, Gatos, &
Gucci (2017) found that neural networks achieve higher accu-
racy than classical methods, Kourentzes (2013) and Babai, Tsadiras,
& Papadopoulos (2020) found mixed results. Jiang, Huang, & Liu
(2021) achieved good performance and computation speed with an
approach based on support vector machines. The best-performing
entries to the M5 competition were combinations of various ma-
chine learning methods, especially neural networks and gradient
boosting methods (Makridakis, Spiliotis, & Assimakopoulos, 2022).
The good performance of these machine learning approaches con-
firms that demand time series contain more information than is
captured by classical demand models. This was also recognized by
Tiirkmen, Januschowski, Wang, & Cemgil (2021), who distinguished
two typical demand interval patterns: “aging” - where it is un-
likely that demands occur shortly after each other, but the proba-
bility of observing a new demand increases when the interval pro-
gresses — and the opposite, “clustering” — where it is highly likely
that demands occur shortly after each other and the probability of
observing a new demand decreases when the interval progresses.

2.2. Intermittent demand inventory control

If demand is intermittent, then (compound) Poisson models are
the default choice in (theoretical and applied) literature. For ex-
ample, Axsdter (2015) discussed the calculation of policy parame-
ters under various service measures for - next to the normal and
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gamma - the compound Poisson class of demand. Empirical work
largely follows this selection by fitting normal, gamma, and com-
pound Poisson distributions to intermittent demand (e.g. Snyder,
Ord, & Beaumont, 2012; Syntetos, Babai, & Gardner, 2015; Teunter
& Duncan, 2009; Turrini & Meissner, 2019). Syntetos, Babai, & Al-
tay (2012), Lengu, Syntetos, & Babai (2014), and Turrini & Meissner
(2019), amongst others, found that Poisson arrivals combined with
geometric demand sizes perform well empirically.

Other authors have expressed the intermittent nature of de-
mand by modeling period demand as a compound Bernoulli pro-
cess: a demand occurs in a period with a fixed probability, and if
it occurs, then it follows some probability distribution. Dunsmuir
& Snyder (1989), Janssen, Heuts, & de Kok (1998), and Strijbosch,
Heuts, & Van der Schoot (2000) used this approach to estimate
the first two moments of lead-time demand, which is subsequently
modeled by a gamma or mixed-Erlang distribution. In line with
compound Bernoulli demand per period, Teunter, Syntetos, & Babai
(2010) explicitly modeled lead-time demand with a compound bi-
nomial distribution to calculate order-up-to levels.

Larsen & Thorstenson (2008, 2014) showed how the order fill
rate and volume fill rate can be calculated if demand is mod-
eled as a general compound renewal process. However, they,
and the authors mentioned before who studied specific demand
classes, assumed that lead-time demand follows a fixed distri-
bution that cannot vary depending on the period in which the
lead time starts. This implies that the demand interval must be
memoryless. Various authors in the forecasting literature (as dis-
cussed in Section 2.1) have suggested that this assumption may be
overly simplifying and our empirical analysis of the M5 data (see
Section 3) confirms this suggestion. In that spirit, we present an
inventory model that does allow demand occurrence probabilities
to vary throughout the demand interval and, accordingly, dynami-
cally adjusts inventory levels. Our approach to calculating holding
costs and service measures extends the modeling logic of Larsen &
Thorstenson (2014) to this more general class of demand processes.

Our model shows an analogy with multi-item inventory con-
trol. Instead of setting order-up-to levels for different items, we set
order-up-to levels at different periods in a single item’s demand
interval. Multi-item inventory models are notorious for being com-
putationally demanding, as an exhaustive search over all possible
inventory levels for all items quickly becomes infeasible. Various
authors (such as Bijvank, Koole, & Vis, 2010; Graves, 1982; Prak,
Saccani, Syntetos, Teunter, & Visintin, 2017; Teunter, 2006) there-
fore proposed and applied greedy marginal-analysis heuristics that
iteratively select the item for which an increased inventory level
yields the largest service benefit relative to the additional hold-
ing costs. Acknowledging this analogy, we will propose a similar
heuristic to iteratively select the period in which to increase the
inventory level until the desired service level is attained.

2.3. Statistics

Relaxing the assumption of a constant demand occurrence
probability allows to fine-tune the inventory policy to the tempo-
ral state of the system. The concept of time-varying demand oc-
currence probabilities is known in the statistics literature as de-
pendent Bernoulli trials. Modeling the joint distribution of multiple
such trials is generally computationally intractable (Emrich & Pied-
monte, 1991). The earliest statistics solution to the added complex-
ity was a Poisson approximation (Chen, 1975), which interestingly
coincides with the mainstream approach in the inventory control
literature to model intermittent demand arrivals. Van der Geest
(2005) used binary trees to model the number of demand occur-
rences during multiple subsequent periods, such as a lead time,
leading to a binomial-like distribution. In our analysis we use a
similar logic to calculate the joint distribution of the number of
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demand occurrences during the lead time and the state of the sys-
tem after the lead time, which we subsequently combine with the
demand size distribution to find a full specification of lead-time
demand.

3. Data and goodness-of-fit of memoryless demand interval
models

To motivate the need for a generalized demand model, we
analyze the training data of the M5 forecasting competition
(International Institute of Forecasters, 2022) and analyze the
goodness-of-fit of standard demand models. The M5 forecasting
competition is the most recent in a series of five forecasting com-
petitions organized by the Makridakis Open Forecasting Center,
this time focusing on intermittent demand time series and attract-
ing 7092 participants (Makridakis et al., 2022). The training data
set consists of 3049 different items in ten different Walmart stores
located in three different US states, thereby comprising 30,490
time series in total. Given the important role of the M competi-
tions in the development of new forecasting methods (Petropoulos
& Makridakis, 2020), we believe that this data set is an important
benchmark case not only for forecasting, but also for intermittent
demand inventory control. In this section we briefly recap the data
characteristics and then discuss how we assess the goodness-of-fit
of memoryless demand processes.

We consider the 30,490 item-level time series, which contain
daily sales of products in the categories food, household, and
hobby. Our focus is - different from the M5 competition itself -
explicitly not on forecasting or explaining item-/category level de-
mand patterns. Contrarily, we aim to measure the goodness-of-fit
of a class of demand processes on all item-level time series. Some
time series show very long periods during which the item was not
sold at all. We interpret this as an indication that the item was not
in the assortment for at least a large share of these periods, for in-
stance because it is a seasonal product, it was newly introduced, or
it was taken out of the assortment. To avoid such non-selling pe-
riods being incorrectly considered as very long demand intervals,
we pre-process the data by deleting for every item periods of 30
or more consecutive days without demand.

Table 1 shows the remaining time series lengths, as well as
descriptive statistics on the mean, standard deviation, and coeffi-
cient of variation (CV) of the demand sizes and intervals, across all
items. Demand sizes and intervals vary heavily in absolute num-
bers, but also in their CV. We conclude that this data set represents
a broad spectrum of intermittent demand types and is therefore
a representative test set for benchmarking intermittent demand
models.

To assess the fit of classical demand models on the time series
of this data set, we observe the following: under either the com-
pound Poisson or compound binomial demand model, the occur-
rence of a positive demand in any period is Bernoulli distributed
with some probability p. Under the compound Poisson model it
holds that p =1 —exp(—A). The demand interval length then fol-
lows a geometric distribution with parameter p. After having esti-
mated p for each item as the reciprocal of the mean demand inter-
val, we compare the theoretical distribution of the demand interval
to the actually observed demand intervals. We apply four differ-
ent tests, using the R package XNomial (Engels, 2015): 1) the chi-
squared test with p-values computed according to the asymptotic
distribution, 2) the chi-squared test with p-values computed via
Monte Carlo simulation, 3) the likelihood ratio test, 4) the multi-
nomial probability of the observed outcomes. Whereas the chi-
squared test is most widely applied, Engels (2009) argues that the
likelihood ratio test is more reliable.

Table 2 contains the percentages of the 30,490 item-level time
series for which - based on the observed demand intervals - the
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Table 1
Descriptive statistics.

European Journal of Operational Research 303 (2022) 1126-1136

Length (days) Positive demand sizes

Demand intervals

Mean Std. Dev. cv Mean Std. Dev. cv
Minimum 14 1.00 0.00 0.00 1.00 0.04 0.04
25% quantile 872 1.31 0.64 0.48 1.53 1.35 0.80
Mean 1247 2.47 1.62 0.59 3.04 2.80 0.90
75% quantile 1677 2.40 1.71 0.68 3.88 3.81 1.01
Maximum 1913 161.20 98.20 10.35 14.34 10.59 2.10
Table 2 4. Model
Rejection of “fixed demand occurrence probability” hypothesis.
Significance We consider the standard base-stock inventory setting: a
95% 99% continuous-review, discrete-time inventory model with periods t =
- - - . . 1,2,..., a single location, and a single item which can be ordered
8::83223 ai:l; ijgﬁgﬁ:ﬁf;ﬁ};ﬁis fod o or discarded without fixed costs. Orders arrive after a lead time of
Likelihood ratio 66% 58% L=0,1,2,... periods. Inventory holding costs h > 0 are incurred
Multinomial probability 70% 61% per unit and per period, and either a non-stockout probability, or-
Average 70% 61% der fill rate, or volume fill rate should be satisfied. The order of
events in a period is as follows: first, a new order is placed and
outstanding orders (if any) arrive; second, holding costs are in-
. i curred; third, a possible demand occurs; fourth, service is eval-
Observed and hypothetical interval lengths uated. Table 3 gives an overview of the notation that is used
throughout this paper. In the remainder of this section we describe
o | —— Observed our demand model and service measures.
e L T Hypothetical
o 4.1. Demand model
o
- We assume that demands in different periods are independent.
£ ° To model demand per period, we separate the demand occurrence
g probability and the size of a period demand given that it is posi-
8 3 tive. However, rather than assuming a constant demand occurrence
a probability, we allow this probability to vary throughout the de-
S mand interval. Let T be the number of periods since the last pe-
riod with positive demand. The probability that a demand occurs
S in the present period is p.. Hence, T can be viewed as the state
of a Markov Chain (MC). With probability p; the MC resets to
g state 1, and with probability 1 — p; it moves forward to state T + 1.

1 1 1 T 1 T T T T T T T T T 1
7 8 9 10 11 12 13 14 15 16

Interval length

Fig. 1. Observed and hypothetical demand interval lengths for an exemplary item.

hypothesis of a fixed demand occurrence probability is rejected. Al-
though the results vary slightly between the tests, the hypothesis
is rejected for the majority of the time series. Taking the average
over all tests, we find that for 70% (61%) of the items the demand
occurrence probability does indeed vary throughout the demand
interval with 95% (99%) certainty.

Figure 1 zooms in on one exemplary item and compares the
hypothetical demand interval lengths under the memorylessness
assumption with the actually observed demand interval lengths.
The probability of an interval of length 1 (i.e. two subsequent pe-
riods with positive demand) is underestimated, whereas the prob-
abilities of interval lengths 2 until 7 are overestimated. This cor-
responds to the “clustering” demand interval pattern in the clas-
sification of Tcfflrkmen et al. (2021). A similar pattern can be ob-
served for many items. For 93% of the time series the probability
of having positive demand in two subsequent periods is underesti-
mated by a memoryless demand model. Motivated by this empir-
ical evidence, we present our generalized demand and inventory
model in the next section.
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Without loss of generality we assume the existence of a maximum
value 7’ for t for which p,, =1, and for all 7 < 7/, p; < 1. So, the
MC is irreducible.

The long-run probabilities p5 that the MC is in state T can be
found by solving

pE=0-p. )P, fort=2,3,...,7/, (1)
o

Y pi=1 2)
=1

This gives (defining pg = 0 for completeness)

ph = e P 3)

i [1.i(1-pj)
Note that in the special case that p; = p for all t, the probabilities
ps reduce to those of a geometric distribution and we obtain the
Bernoulli demand occurrence model of Teunter et al. (2010). Fur-
thermore, under the assumption of (compound) Poisson demand
with arrival rate A per period, the demand occurrence probability
pr =1 —exp(—A) is also constant throughout the demand interval.

We denote total demand in a period, given state t, by D;. Given
that demand in a period is positive, its value D has a distribution
with probability mass function (pmf) f and cumulative distribution
function (cdf) F. We assume that demand is discrete as this is most
common in real life and also the case in our data set.
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Table 3
Notation.
t Period
L Lead time
h Holding cost per unit and per period
T Number of periods since the last demand, state of the Markov Chain
Dr Probability of a demand occurrence in state ©
T/ Maximum number of periods between two demand occurrences, p;» =1
i Long-run probability that the Markov Chain is in state t
D. Stochastic demand in a period with state 7, D, >0
D+ Stochastic demand in a period, conditional on a positive demand occurrence, D* > 0
f, F Probability mass function (pmf) and cumulative distribution function (cdf) of D*
fa n-fold convolution of f, pmf of the sum of n i.i.d. positive period demands
fL’_VT (n, p) Joint probability that, given lead time L and current state 7, n demands occurred during the
lead time and the state before the lead time was 7,
fEr d, tp) Joint probability that, given lead time L and current state t, the total demand during the
lead time was d and the state before the lead time was 7,
pT Probability of the sole feasible binary trajectory in Algorithm 1
pr Probability of feasible binary trajectory i in Algorithm 1
Dyy Minimum demand that must occur in L periods starting in state 7
e ith unit vector
St Order-up-to level set in state T
X Net inventory after replenishment in some period
ar (Sq,..., Se) Achieved non-stockout probability in state v with order-up-to levels Sy, ..., S
a(S,..., S) Achieved (overall) non-stockout probability with order-up-to levels Sy, ..., Se
B2(S1, ..., Se) Achieved order fill rate in state t with order-up-to levels Sy, ..., Se
B°(Sq, ..., Se) Achieved (overall) order fill rate with order-up-to levels Sy, ..., Se
EFD.(S1, ..., Se) Expected fulfilled demand in state t with order-up-to levels Sy, ..., S
BY(S1,..., Se) Achieved (overall) volume fill rate with order-up-to levels Sy, ..., Sy
H(Sq, ..., Se) Expected overall holding costs with order-up-to levels Sy,..., Sy

4.2. Lead-time demand

The demand distribution is non-stationary throughout the or-
der interval, because of the varying demand occurrence probabil-
ities. Whereas stationary models allow to calculate the inventory
level directly from the (single) order-up-to level and the stationary
distribution of lead-time demand, we allow for order-up-to levels
that vary per state and thus also need to account for the interplay
between state transitions and lead-time demand. Specifically, our
analysis in Section 5 requires the joint probability distribution of
total demand over L periods and the state in which the MC was
L periods ago, given its current state. In the special case where
pr = p for all 7, the number of demand occurrences follows a bi-
nomial distribution with parameters L and p, and there is only one
state. However, in the general case, such a compact formulation
does not exist.

Denote by le\,]z the joint pmf of the number of demand occur-
rences during the lead time and the state of the MC before the
lead time, given state T after the lead time. In the case L = 0, lead-
time demand is obviously zero and the state remains 7. If L > 0,
we suggest Algorithm 1 to find fL"fr (n, Tp). Its logic is as follows:
first, all feasible trajectories i of length L that lead from state T,
to state t, given n demand occurrences, are listed. If n = 0, then
a feasible trajectory only exists if 7, = 7 — L. If n > 0, then feasible
trajectories are those that (i) have at most 7’ — 7, leading zeros
(otherwise the trajectory cannot have started in 7p), (ii) have ex-
actly T — 1 trailing zeros (otherwise the trajectory does not end in
), (iii) contain no sequence of at least 7’ zeros (a demand must
occur in state T/ at the latest), (iv) have exactly n ones. The proba-
bility of each feasible trajectory is found by multiplying the corre-
sponding probabilities of (no) demand occurrences throughout the
lead time trajectory. The sum of the probabilities of all feasible tra-
jectories is multiplied by pstp (as the system should be in state 7,
before the lead time) and divided by p$ (as we condition on being
in state t after the lead time).

We still have to transform fJ_ into fP,, the joint pmf of
lead-time demand and the previous state. To that end, we recall
that all positive period demands are i.i.d. with pmf f, so that the
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Algorithm 1 Joint pmf of the number of demand occurrences and
the state before the lead time.
Require: 7,7, € {1,2,...,7'},LeN", ne{0,...,L}

1: if n = 0 then

2: if 7, =7 —Lthen PT = ]‘[f;,lp (1 - pt), the probability of the
sole feasible trajectory
3:  elsePT=0
4 end if
5: else
6: List all binary numbers of length L
7. Discard all elements that have more than 7’ — 7, leading
zeros, not exactly T — 1 trailing zeros, any sequence of at
least T/ zeros, or not exactly n ones
8: for all binary numbers i do p,.T =1, the probability of trajec-
tory i from 7y to T
9: Set T =1p
10: for all positions n do
11: if n=1 then p! = plp,, T =1
12: else pl =pl(1—py,), ta=Tn+1
13: end if
14: end for
15: end for
16: end if
17: return fN_(n, tp) = psiz-p.T
Lt \'" *P P iPj

probability distribution of the sum of n positive period demands,
with pmf denoted by f;, is the n-fold convolution of f. Defining
fo(0) =1, we can derive

L
fPod.tp) =Y fl (1) fu(d).

n=0

In Section 5 we show how to calculate various service measures
and long-run average holding costs under this demand and inven-
tory model, and discuss how the (state-dependent) order-up-to
levels can be optimized.
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5. Inventory policy analysis

In this section we first show how to calculate the non-stockout
probability, order fill rate, volume fill rate, and long-run average
holding costs for a given inventory policy. Thereafter, we discuss
how to optimize the time-varying order-up-to levels. In all fol-
lowing calculations we assume the existence of a state-dependent
order-up-to level Sz, so that if the last positive demand was ob-
served T periods ago, the inventory position is raised to S;.

5.1. Non-stockout probability

We define the non-stockout probability ¢ as the long-run prob-
ability that net inventory is non-negative at the end of an arbi-
trary period. Consider an arbitrary period where the MC is in state
7, in which the net inventory after the replenishment is X. The
probability of completely fulfilling demand from on-hand stock in
that period is then (1 — p;) + pF(X). Using the order-up-to levels,
the joint distribution of lead-time demand and the state before the
lead time, we can derive that the non-stockout probability in state
T equals:

T/ STp

ar(S1,....50) = Z Z [(1 = Pe) + PpF(Sy, — d)]fl_Df(d7 Tp).

Tp=1d=0

The overall non-stockout probability « is then found by taking
the expectation over possible states 7:

o
a(Sy.....Sp) =Y ar(St,....So)ps. (4)
=1

5.2. Order fill rate

The second service measure that we consider is the order fill
rate B°. It is defined as the long-run probability that an arbitrary
(positive) demand can be fulfilled completely from on-hand stock.
Let the current state be 7, let the net inventory level after replen-
ishment be X, and let a positive demand occur in this state. This
demand is fulfilled completely from on-hand stock with probabil-
ity F(X). The analysis now proceeds in analogy to Section 5.1. The
achieved order fill rate in state t is

T/ sfp

BoSt... Sy = 3 S F(Se, — ) fP, (d. 7).

Tp=1d=0

The overall order fill rate is

ﬂo(s1,...,51—/):Zﬂg(S],...,Sr/)pi. (5)
=1

5.3. Volume fill rate

As a third service measure we consider the volume fill rate gv,
which is defined as the long-run fraction of a positive period de-
mand that can be satisfied from on-hand stock. Again, let the pe-
riod in which a demand occurs have state 7, and let the net inven-
tory after the replenishment be X. Denote a (stochastic) positive
demand size by D*. The expected fulfilled demand in that period
is

X
E[min(X,D")] = Zif(i) +X(1-FX)).
i=1
Using again fEr and the order-up-to levels S;, we find the ex-
pected fulfilled demand (EFD) in state 7:
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EFD; (S1,...,5¢)
T Srp STP—d
=Y dory)| Y if () + (S, —d)(1—F(Sg, - d)) |.
p=1d=0 i=1

Since the expected demand is E(D*) =} 2, if(i), the overall
volume fill rate is

o

ﬁv(sla '~-7S‘L") = Z

=1

EFD; (S1.....5:)p5

S i (D) (6)

5.4. Holding costs

The objective is to minimize long-run average holding costs,
which we derive in analogy to the service level calculations. As
holding costs are incurred after the replenishment, but before the
demand arrival, we evaluate the inventory level after L periods:

’

v 1t S
HGS1 .. Se) =h Y 3 3 pi(Ss, — fP(d. 7).

t=11p=1d=0

(7)

Eq. (7) combines the steady-state probabilities of the t’ possible
states of the MC with the expected inventory level after a lead
time that ended in any of these states. As h is a constant that only
scales the holding costs, we can set h = 1 without loss of general-
ity.

5.5. Inventory policy

After having computed the service measures and the holding
costs for a given state-dependent order strategy, we can now op-
timize the order-up-to levels to achieve the service requirements
with minimum holding costs. The complete inventory problem can
be formulated as the following nonlinear integer program:

H(Sls ~-~,St’)

o (Sq,...,S) = a* or B°(Sq, ...
> g% or B'(S1,...,S¢) = B
S1,..., Sy integer,

Minimize

subject to ,Se)

where any of the three service measures can be selected. Perform-
ing an exhaustive search to solve this program with t’/ decision
variables is only viable for relatively small instances with low val-
ues of t/ and/or low maximum period demand values. Acknowl-
edging the existing analogy with the multi-item inventory con-
trol literature (see the discussion in Section 2.2), we suggest a
greedy marginal-analysis heuristic solution procedure to optimize
the time-varying order-up-to levels.

The solution procedure starts with order-up-to levels of 0 for
any period 7, so that no holding costs are incurred. It then finds
the period for which increasing the order-up-to level by 1 leads
to the largest service level increase relative to the holding cost in-
crease. In the case that no service level increase is achieved be-
cause of the minimum number of demands that occur during the
lead time, the order-up-to level is increased with this minimum
demand, so that an improvement is made in every iteration. Once
the service level is at least equal to the threshold, the process re-
verses. In a similar greedy way order-up-to levels are decreased,
every time selecting the period with the largest holding cost sav-
ing relative to service level loss. The last found solution that still
satisfies the service level threshold is the solution of the heuris-
tic. Algorithm 2 describes the procedure, where e; is the ith unit
vector.

6. Demonstration and sensitivity analysis

This section serves two purposes. Firstly, we aim to find insights
into the optimal inventory policy by studying it for some typical
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Algorithm 2 Heuristic solution procedure.

Require: service level target y* achieved service function
y(S1.....Sy) =a or B°or BY
1: for all z do D" = LL“;#J +1
2: end for
3: Set S= (51,...,54)=1(0,0,...,0)
4: while y(S) < y* do
5: for all T do
6: if S; =0 then S"" = S + e, DIMin
7: else "W =S e,
8: end if
9: Incr(z) = (¥ (S"%) — ¥ ())/(H(S™™) — H(S))
10: end for
11: T* = argmax(Incr)
12  ifS;»=0then S=S+ er*D?fL”
13: else S=S+ e«
14: end if
15: end while
16: while y(S) > y* do
17: for all T do
18: Snew — S —e;
19: Decr(t) = (H(S) —H(ES"™))/(y (S) — y (§™")))
20: end for
21: T* = argmax(Decr)
22: S=S—e
23: end while
24: S=S+ e«
25: return S
Table 4
Scenario 1: “aging”, L = 1.
Service Order-Up-To Levels Cost Diff.
Optimal Heuristic
a =080 25535 2,5,5,4,1 0.83%
a =095 5,5,5,5,5 555,555 0%
a =099 6810910 6,9,9,8,9 0.55%
B° =080 556,67 5,5,6,6,7 0%
B° =095 68,109,10 7,8,9,8,8 1.54%
p° =099 81010,10,10 9,9,10,109  0.80%
BY =080 45576 4,5,6,5,5 0.64%
BY =095 67887 6,7,8,8,7 0%
BY =099 89998 8,99,98 0%

parameter settings. The optimal policy is found by full enumera-
tion of all possibilities in sufficiently small problem instances. Sec-
ondly, we evaluate the heuristic optimization procedure by com-
paring its solution and corresponding holding costs with the op-
timum. We study two typical demand interval patterns that cor-
respond to the classification by Tiirkmen et al. (2021): “aging”
(with demand occurrence probabilities p; = 0.2, p, = 0.4, p3 = 0.6,
ps =0.8, and ps =1) and “clustering” (with demand occurrence
probabilities p; = 0.8, p, = 0.6, p3 = 0.4, p; = 0.2, and ps = 1). For
each pattern we consider a scenario with a short lead time (L = 1)
and a long lead time (L = 5). Within each scenario, we define three
service level targets (80%, 95%, and 99%) for each of the three dif-
ferent service measures that we study («, 89 and BY). In all sce-
narios, the demand sizes are uniformly distributed on the integers
1,...,5. Tables 4-7 showcase for every scenario and service level
target the order-up-to levels according to the optimal solution, the
heuristic solution, and the percentage cost difference between both
solutions.

In the “aging” scenarios (Tables 4 and 5), many (but not all)
optimal policy patterns have order-up-to levels that either mono-
tonically increase during the interval, or first increase and then de-
crease towards the end of the interval. In the case with L =1 (see
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Table 5
Scenario 2: “aging”, L = 5.
Service Order-Up-To Levels Cost Diff.
Optimal Heuristic
o = 0.80 9,9,10,10,8 9,9,10,10,8 0%
o = 0.95 12,12,13,13,15  12,13,12,13,11 1.05%
o = 0.99 14,15,16,17,17  15,15,15,15,15  0.26%
p° =080 11,11,11,13,13  11,11,12,11,11  0.13%
B° =095 14,14,14,16,14  14,14,15,14,13  0.28%
B° =099 16,17,18,18,16  16,17,18,18,16 0%
p' =080 1010,11,13,12 10,11,11,10,8 0.73%
BY =095 13,13,14,15,17  13,14,14,13,11 1.01%
BY=0.99 16,16,16,18,17  16,16,17,16,16  0.22%
Table 6
Scenario 3: “clustering”, L = 1.
Service Order-Up-To Levels Cost Diff.
Optimal Heuristic
o = 0.80 7,5,0,5,6 7,5,0,5,6 0%
o = 0.95 9,7,6,5,8 9,7,6,5,8 0%
o = 0.99 1098,59 10938,59 0%
B° =080 76,5538 7,6,5,5,8 0%
B° =095 986,59 9,8,6,5,9 0%
p°=099 109959 1098,610 0.06%
B’ =080 66,5438 741,47 6.5%
BY =095 87,759 8,8,6,5,7 0.57%
BV =099 999810 99098,10 0%
Table 7
Scenario 4: “clustering”, L = 5.
Service Order-Up-To Levels Cost Diff.
Optimal Heuristic
o = 0.80 17,17,17,17,20  18,15,13,15,16  0.65%
o =0.95 21,20,19,19,22 21,20,19,19,22 0%
o = 0.99 24,2321,21,23  24,2321,21,23 0%
p° =080 18,17,1516,18 18,17,15,16,18 0%
B° =095 2122212024 22720,18,18,19  0.54%
B° =099 2424222224 2424222224 0%
pY =0.80 17,17,15,16,19  18,14,13,15,17  1.88%
BV =095 21,19,18,18,21  21,19,18,1821 0%
BV =099 2324232224  2422,21,20,21 1.38%

Table 4), order-up-to levels are lower than in the case with L =5
(see Table 5), as in the latter case a longer lead time needs to be
covered. Similarly, higher service targets require higher order-up-
to levels. Low order-up-to levels directly after the last demand are
explained by the fact that the probability of a new demand occur-
rence is lowest at that time, and hence also a lead time that starts
directly after a previous demand will likely have fewer demand oc-
currences than a lead time that starts later in the interval. How-
ever, after the first demand in the lead time has occurred, the MC
resets. Therefore, for a longer lead time (such as in the case with
L = 5) the effect of its starting point on the total lead-time demand
is smaller and consequently, the variation of the order-up-to levels
(relative to their overall sizes) is lower.

For explaining the further solution patterns, we have to con-
sider three other effects: firstly, not every period contributes
equally to the achieved service and realized costs as not every pe-
riod is equally likely to occur. Secondly, as is common in inventory
problems, costs increase supralinearly in the service target. This
makes it beneficial to achieve slightly higher service in periods
where it is cheaper to achieve and lower service in periods where
it is more costly. Thirdly, for discrete demand a target service level
typically cannot be achieved exactly, so that one solution may out-
perform another mainly because of a smaller “service surplus.” The
sum of all these effects may be ambiguous. A good example of this
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policy structure ambiguity is the optimal solution in scenario 2 for
o = 0.80. By construction, a demand must occur in the fifth pe-
riod and a lead time that starts in that period will therefore cer-
tainly include that demand. Yet, it is optimal to set the order-up-to
level in period 5 slightly lower than in all other periods. Contrarily,
in the same scenario, but for & = 0.95, the order-up-to level is set
higher in period 5 than in all other periods. Considering all “aging”
scenarios, the heuristic finds the optimal solution in 6 out of 18
cases. In 9 other cases the cost difference is less than 1%, whereas
the maximum error is 1.54%. 17 out of 18 cases have time-varying
order-up-to levels in optimum.

In the “clustering” scenarios (Tables 6 and 7) we observe the
opposite: order-up-to levels are relatively high early in the inter-
val, as demands are likely to occur shortly after each other. Order-
up-to levels then decrease, but typically increase again towards the
end of the interval. The latter is due to the “end effect”: all scenar-
ios must have ps =1 in order to keep the intervals short enough
to find the optimal solution by full enumeration. Similar to the ag-
ing scenarios, order-up-to levels are higher for longer lead times
and/or higher service levels, whereas they are more variable for
short lead times. For example, in the case L =1 and « = 0.80 it is
optimal to keep no inventory at all in period 3, whereas in earlier
and later periods order-up-to levels of 5, 6, and 7 units should be
set. Considering all “clustering” scenarios, the heuristic finds the
optimal solution in 11 out of 18 cases. In 4 other cases the cost
difference is less than 1%. However, one scenario shows a cost dif-
ference of 6.5%. All cases have time-varying order-up-to levels in
optimum.

Summarizing, we find that 35 out of 36 cases have time-varying
order-up-to levels in optimum, which confirms the usefulness of
a general policy that allows for these. The variation is largest if
the lead time is short compared to the expected demand interval.
This showcases that if the supply chain is agile, so that the inven-
tory policy can quickly respond to the actual state of the system,
the benefit of actually using the state information of the system
is largest. The heuristic finds the optimal solution in 17 out of 36
cases and is within 1% cost difference in 30 out of 36 cases. The
average performance loss is 0.55%. In the next section we examine
the performance gain that can be achieved with this model and
the heuristic solution procedure over fixed order-up-to-level poli-
cies with classical distributional assumptions.

7. Empirical results

In this section we analyze the inventory performance of the
model and heuristic solution procedure on the data set described
in Section 3. First, we compare - in a simulation experiment on
the entire data set and for several given target service levels - its
achieved service with that of a standard base-stock system with
two commonly-used demand models. Then, we zoom in on one
specific item of the data set and show the advantage of using
time-varying order-up-to levels, measured by the inventory costs
required to achieve a given target service level. We restrict atten-
tion to the non-stockout probability service level () for brevity,
remarking that the procedures work completely analogously for
the order fill rate and volume fill rate.

7.1. On-target service performance on the full data set

We consider as benchmarks the normal lead-time demand
model, which is (sometimes implicitly) used in many applied pa-
pers, and the Poisson-geometric as most popular compound Pois-
son demand process. For every item of the data set described
in Section 3, we fit the respective distributions to the demand
time series by estimating the parameters as follows: for the nor-
mal distribution, we use the sample mean and standard devia-
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tion. For the Poisson-geometric distribution, we use the Method-
of-Moments estimators given in Axsdter (2015). For the newly pre-
sented model, we use the empirical probabilities for the demand
size and demand interval distribution. The latter probabilities p$
are transformed into the demand occurrence probabilities p; by
inverting the recurrent relationship of Eq. (1):

p1 =D}

/

S
P fort=2,...,7.

P TG =p)

Subsequently, we calculate for all items the order-up-to levels
to satisfy a given target service level under the fitted distributions.
For the normal and Poisson-geometric benchmarks the order-up-
to level is fixed throughout the entire horizon, whereas the newly
proposed method will set time-varying order-up-to levels Sj,...S;/
throughout the demand interval, calculated with the heuristic so-
lution procedure. We select lead times of 1 and 5 days and con-
sider various non-stockout probability targets between 50% and
99%. Then, we find the achieved service in a simulation experiment
by applying the policy in every period and evaluating the inventory
levels after subtracting the observed lead-time demand.

We calculate the Mean Squared Errors (MSEs, across all items)
of the achieved service levels from their targets. This symmetric er-
ror measure avoids that an underachievement for one item is offset
by an overachievement for another item and therefore provides a
fair judgment of overall performance (see e.g. Prak, Teunter, Babai,
Boylan, & Syntetos, 2021). Fig. 2 shows the results for the entire
data set. Fig. 2a presents the results for L = 1, Fig. 2b corresponds
to the case L =5, and Figs. 2c and d zoom in on service levels
between 95% and 99%. The first observation is that the proposed
model achieves closer to the target over the entire range of service
levels and for both the short lead time of 1 day and the long lead
time of 5 days. This indicates that it is indeed beneficial for in-
ventory performance to explicitly model the demand interval and
size distributions rather than assuming a standard arrival process
or lead-time demand model.

The normal lead-time demand model performs worst for almost
all settings, except for service levels between 90% and 95%, where
it slightly outperforms the Poisson-geometric model. All MSEs nat-
urally decrease when the target service level increases, as higher
achieved service levels are less sensitive to inventory differences.
Therefore, the MSEs also converge to each other as the service level
increases. Best visible for L = 5 in Fig. 2b, the normal and proposed
model exhibit an S-shape, indicating that performance slightly de-
teriorates for higher service levels. For the proposed model, this
can likely be attributed to the heuristic solution procedure which
deviates stronger from the optimum for higher service levels. For
the normal model it may be a result of the misfitting distribution
shape.

All MSEs are significantly larger for L =5 than for L =1, as the
period which the order-up-to level has to account for is also larger
in that case. The largest improvement by the proposed method is
achieved for L = 1, because a shorter lead time implies a more re-
sponsive system and thus a larger potential for time-varying order-
up-to levels. Indeed, as L — oo, the effect of timing the intermit-
tent demand diminishes and the optimal solution of the proposed
model converges to a stationary order-up-to level. An important
secondary finding is therefore that, to make optimal use of this
highly responsive model, the inventory system should be designed
in an agile way, so that items can be quickly reordered or replaced
to where they are expected to be demanded in the near future.

7.2. The added value of time-varying order-up-to levels

Having compared the overall performance of the proposed
model and solution procedure with that of traditional demand
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Fig. 2. Mean Squared Errors of achieved service levels over all items.

models, we now zoom in on the added value of time-varying
order-up-to levels in particular. Given our demand model, one
can still restrict the set of allowable inventory policies to only
those with fixed order-up-to levels. We compare the holding costs
required to achieve a given service level when using a fixed
order-up-to level with the holding costs required when using
time-varying order-up-to levels with the heuristic solution pro-
cedure presented in this paper. To do so, we use the same ex-
emplary item that was also discussed in Figure 1 to estimate
the demand size and interval distribution, and plot the long-
run average holding costs (or equivalently, the average inven-
tory level, as we set h =1 throughout the paper) that are nec-
essary to achieve non-stockout probabilities between 50% and
99%.

Figure 3a shows the results for L =1 and displays an impor-
tant benefit of using time-varying order-up-to levels, namely the
larger number of variables available to “fine-tune” the inventory
policy. Increasing a fixed order-up-to level by one unit leads to a
large jump in the service level and holding costs. Service levels be-
tween these jump points cannot be achieved exactly, and therefore
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both the service level and the holding costs are overshot. This over-
shoot — which is omnipresent for any discrete inventory policy -
is much smaller with time-varying order-up-to levels, leading to a
much smoother curve. In line with the typical pattern of decreas-
ing service level returns to cost investment, the jumps are largest
for lower service levels. For example, increasing a fixed order-up-to
level from 2 to 3 increases the service level from 69% to 83%, and
the holding costs from 1.25 to 2.15 (a 72% cost increase), whereas
increasing a fixed order-up-to level from 5 to 6 increases the ser-
vice level from 96.3% to 98.5%, and the holding costs from 4.10 to
5.09 (a 24% cost increase).

The cost advantage of using time-varying order-up-to levels
is largest for service levels immediately after jumps in the fixed
order-up-to policy. For example, a service level of 69.4% can be
achieved at 43% lower costs with time-varying order-up-to lev-
els than with fixed order-up-to levels. In coherence with the de-
creasing jump sizes, the magnitude of the difference between both
methods also decreases for larger service levels, although it re-
mains substantial. A service level of 98.5% can be achieved at 15%
lower costs.
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Costs to achieve service level, L=5
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Fig. 3. Long-run average holding costs needed to achieve a given non-stockout probability, comparison between a fixed order-up-to level and the heuristic solution procedure

with time-varying order-up-to levels, for an exemplary item.

The cost advantage gradually decreases between the jumps.
Immediately before a jump in the fixed order-up-to policy, both
methods perform very similarly. In most such points the time-
varying policy still yields lower or the same costs. Immediately be-
fore the jump points at service levels of 96.3% and 98.5%, though,
the fixed order-up-to level performs slightly better. This demon-
strates that the heuristic solution procedure - although it over-
all clearly dominates the benchmark policy - is not guaranteed
to find the most cost-efficient solution for each service level. To
avoid these rare cases, the heuristic could easily be extended with
a check whether a fixed order-up-to policy outperforms the best
found solution. It should be noted that the points and magnitudes
of the jumps are item-specific.

Figure 3b shows the results for L = 5. In line with our findings
of Section 7.1, we find that with a larger lead time the jumps of
both methods become smaller. This can be explained by the fact
that for a longer lead time, lead-time demand can take on more
values and thus becomes smoother. Also the performance differ-
ence between both methods decreases, as the effect of the current
position in the demand interval on the lead-time demand distribu-
tion becomes smaller. Nevertheless, using time-varying order-up-
to levels still leads to significant advantages. In this case, a service
level of 51.5% can be achieved at 35% lower costs with time-varying
order-up-to levels, whereas a service level of 98.5% can be achieved
at 10% lower costs. Also for L =5 the gains decrease gradually be-
tween the jumps. We conclude that even though the largest rel-
ative gains can be achieved for short lead times and low service
levels, significant advantages can be observed for this item over
the entire range of service levels and for both lead times.

8. Conclusion

We presented a generalized intermittent demand inventory
control model which allows for any discrete distribution of the
demand interval and demand size. Our model allows for time-
varying order-up-to levels that follow the distributional shape of
both the demand size and interval, so that inventories can be ad-
justed throughout the demand interval, in anticipation of vary-
ing future requirements. We showed how to calculate the long-
run average holding costs, achieved non-stockout probability, order
fill rate, and volume fill rate. We furthermore suggested a greedy
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marginal-analysis heuristic solution procedure to optimize order-
up-to levels under any of these service constraints.

Several authors found that the assumptions underlying stan-
dard demand models - such as the compound Poisson and com-
pound binomial - are debatable on real-life data sets. In the M5
competition data set we also found that there are more con-
secutive periods with positive demands than would be expected
based on the classical assumption of time-independent demand
occurrence probabilities. An imbalance exists between forecast-
ing developments on the one hand and advances in inventory
control on the other hand. Whereas alternative forecasting meth-
ods (such as bootstrapping of the lead-time demand distribution)
have been presented, current inventory control models with time-
independent control parameters cannot fully exploit their predic-
tions. Our model can, and is therefore a tool to manage inventories
in an agile way.

Time-varying order-up-to levels provide a two-fold benefit.
First, they allow to anticipate with greater accuracy on upcom-
ing changes in the demand for an item. Second, they provide
significantly increased flexibility over a single, fixed order-up-
to level to minimize the service level overshoot that exists for
discrete demand inventory models. Whereas this overshoot is
largest for low service levels, we found that significant savings
are achieved also for high service levels. Our model’'s on-target
inventory performance dominates that of the Poisson-geometric
and normal demand model. The largest gains can be achieved
for short lead times, as these imply a more responsive inventory
system.

Three main limitations of our study can be identified. First,
although the M5 forecasting competition provides an established
benchmark data set for a range of forecasting and inventory appli-
cations, it should be noted that our empirical results are limited
to this data set. Second, applying the proposed model in practice
entails estimating (next to the demand size distribution) a number
of parameters equal to the maximum observed demand interval
length, which may be prohibitive if only a short demand history
is available. Finally, although the heuristic solution procedure is
motivated by existing literature, yields close-to-optimal results in
the small benchmark instances, and substantially outperforms the
benchmark methods in the empirical study, it is - like all heuris-
tics — not guaranteed to give the optimal solution.
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Future research should proceed on the interface of intermittent
demand forecasting and inventory control, especially on the trans-
fer of distributional (lead-time) demand forecasts to inventory de-
cision models. Furthermore, time-varying inventory control param-
eters are also useful for non-intermittent demand patterns, for ex-
ample when seasonality or a trend is involved. The current model
can in principle handle any (also non-intermittent) demand pat-
tern, but an inventory model with time-varying control parameters
can be tailored to any forecasting model that predicts varying de-
mand (levels or distributions) for different periods ahead. A natural
extension can be made to a multi-location inventory system, where
an item can be relocated between locations in anticipation of di-
verging future requirements. A final research avenue is the devel-
opment of interfaces between non-parametric (e.g. machine learn-
ing) demand forecasts and the optimization of inventory control
parameters.
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