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Abstract 

 

Background: International sharing of cohort data for research is important and challenging. The LifeCycle project 
aimed to harmonise data across birth cohorts and develop methods for efficient federated analyses of early life 
stressors on offspring outcomes. Aim: To explore feasibility of federated analyses of associations between four 
different types of pregnancy exposures (maternal education, area deprivation, proximity to green space and 
gestational diabetes) with offspring BMI from infancy to 17 years. Methods: We used harmonised exposure and 
outcome data from 17 cohorts (n=200,650 mother-child pairs) from the EU Child Cohort Network. For each child, 
we derived BMI at five age periods: (i) 0-1 years, (ii) 2-3, (iii) 4-7, (iv) 8-13 and (v) 14-17 years. Associations were 
estimated using linear regression via one-stage individual participant data meta-analysis using the federated 
analysis platform DataSHIELD. Results: Associations between lower maternal education and higher child BMI 
emerged from age 4 years and increased with age (difference in BMI z-score comparing low with high education 
age 0-1 years = 0.02 [95% CI 0.00, 0.03], 2-3 years = 0.01 [CI -0.02, 0.04], 4-7 years = 0.14 [CI 0.13, 0.16], 8-13 
years = 0.22 [CI 0.20, 0.24], 14-17 years = 0.20 [CI 0.16, 0.23]). A similar pattern was found for area deprivation. 
Gestational diabetes was positively associated with BMI from 8 years (8-13 years = 0.17 [CI 0.10, 0.24], 14-17 
years = 0.012 [CI -0.13, 0.38]) but not at younger ages. The normalised difference vegetation index measure of 
maternal proximity to green space was weakly associated with higher BMI in the first year of life but not at older 
ages. Conclusions: Associations between maternal education, area-based socioeconomic position and GDM with 
BMI increased with age. Maternal proximity to green space was not associated with offspring BMI, other than a 
weak association in infancy. Opportunities and challenges of cross-cohort federated analyses are discussed.  
 
 

Keywords 
BMI, maternal education, area deprivation, green spaces, gestational diabetes, cohort data sharing, federated 
analyses 
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Introduction 

 

Prospective cohort studies can contribute to numerous important health and social science research questions, but 
they are resource intensive (society, funder and participants). Over recent decades, national and international 
funders and cohort data custodians have emphasised the importance of data sharing across cohorts [1-4]. This 
provides economic efficiency (avoiding unnecessary new data collection), enables replication and triangulation of 
findings across different studies, increases the period of the life course that can be studied for repeated measures, 
and increases statistical power particularly for rare outcomes. Some government funders, including the UK 
Economic and Social Research Council and Medical Research Council, and the US National Institute of Health, 
mandate such data sharing whilst recognising the challenges of governance and custodian responsibilities [2, 3].  
 
To help address these issues, the EU Horizon 2020 funded LifeCycle project has harmonised data across 
international birth cohorts to tackle key research questions about the potential effects of early life stressors on 
health from infancy through to adulthood [5, 6]. The LifeCycle project has established an open and sustainable 
network (The EU Child Cohort Network; ECCN) , that currently brings together 20 pregnancy and childhood 
cohorts across 12 countries in Europe and Australia comprising more than 250,000 participants. It is designed in 
such a way that new harmonized data can be added to the repertoire of harmonized measures and other cohorts can 
join with their data.  In addition to increasing power and supporting replication, this network contains extensive 
repeated-measures data and thus enables researchers to explore how associations might differ across the life course. 
A key innovation of the ECCN is implementation of a federated data analysis infrastructure via DataSHIELD, a 
software solution which enables the remote analysis of data without data being transferred and without researchers 
being able to view participant-level data [7]. 
 
The aim of this paper is to demonstrate the potential of the ECCN by studying associations of maternal exposures 
with offspring body mass index (BMI) from infancy to early adulthood. BMI was chosen as a suitable outcome for 
this proof-of-concept study as (i) reducing childhood overweight and obesity is a major global public health 
challenge, and (ii) it is hypothesised that higher BMI starts to be ‘programmed’ in intrauterine and early infancy [8, 
9]. Furthermore, as weight and height are often measured at repeated time points it provides an opportunity to 
explore potential changes in exposure-BMI outcomes across the life course. Despite repeated measurements of 
BMI in many cohorts, few studies have systematically explored the age at which associations between key 
exposures and BMI emerge and how they change as children age. This is likely due to the lack of data in 
sufficiently large numbers at older ages, something that the ECCN is well-placed to address.  
 
For this proof-of-concept study we chose four different types of pregnancy-related exposure each of which have 
been hypothesised to potentially influence offspring BMI, and that together could demonstrate challenges and 
opportunities of harmonisation and federated analyses with different types of data. These exposures are briefly 
summarised below. 
 
Individual and area based socioeconomic position (SEP). Lower maternal SEP at the time of pregnancy and at 
birth is associated with higher child BMI in medium and high-income countries [10-15]. SEP could influence 
childhood BMI via family factors, including through exposure to an obesogenic environment [16-18]. Families 
with lower income may have a greater reliance on cheaper foods with higher energy density, and those living in 
deprived areas may have a greater exposure to unhealthy food outlets and reduced opportunities for exercise [19-
22]. Whilst studies have consistently found lower family SEP to be associated with higher child BMI, evidence 
regarding the age at which these inequalities emerge and the course they take is not consistent. [10-14, 23, 24]. 
Studies have also reported that living in a more deprived neighbourhood is associated with higher BMI and 
overweight/obesity after adjusting for family-level SEP but again there is limited evidence for the age at which 
these associations emerge or how they change with age [24, 25].  
 
Residential Proximity to green space. Whilst deprived neighbourhoods often contain lower levels of surrounding 
greenness this is not always the case [26], and thus it is important to explore the impact of proximity to greenness 
separately. Maternal availability of green spaces could influence offspring BMI via increased physical activity 
during pregnancy, stress reduction or reduced exposure to pollution [27, 28]. As the child is likely to live in the 
same area in early life there could also be postnatal effects related to child physical activity, outdoor play, stress 
and exposure to air pollution. Some studies have reported that higher postnatal exposure to green spaces is 
associated with lower BMI but evidence is not conclusive [29-31]. Whilst increased prenatal exposure to green 
spaces has been consistently associated with higher birth weight [32, 33], little is known about associations with 
BMI at older ages [34].  
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Gestational Diabetes Mellitus (GDM, defined as hyperglycaemia in pregnancy) [35] is robustly associated with 
higher mean birth weight, macrosomia (high birth weight) and large for gestational age, with recent evidence 
showing that increased fetal growth can occur earlier than the timing of the GDM diagnosis [36, 37] and Mendelian 
randomization suggesting a potential causal effect [38, 39]. Higher birth weight is in turn associated with higher 
future offspring BMI, fat mass and lean mass [40, 41] thus it has been proposed that intrauterine fetal overgrowth 
related to higher maternal circulating glucose may result in lifelong higher offspring BMI [42, 43]. However, few 
studies have explored whether any association of GDM with offspring BMI changes as the offspring age. This is 
important as a lasting effect into older age and/or a cumulative (increasing) effect across both childhood and 
adulthood might lead to higher risk of adverse adult cardiometabolic outcomes than association that is limited only 
to childhood [44].  
 

Methods 
 

Inclusion criteria and participating cohorts 
Pregnancy and birth cohort studies from the ECCN were eligible to participate if they (i) had information on at 
least one of the four exposures and BMI measured at a minimum of one time point, (ii) the study was approved by 
their institutional review boards, and (iii) the data were available for analysis via DataSHIELD. Further details of 
each cohort can be found in Jaddoe et al. [5] and each cohort’s profile paper referenced below. All 17 core 
LifeCycle cohorts were invited, plus one additional cohort from the wider LifeCycle network which had 
harmonised data available (The Healthy Growth Study, HGS) [45]. Of these 18 studies, 17 were able to participate: 
Avon Longitudinal Study of Parents and Children (ALSPAC, University of Bristol) [46, 47], Born in Bradford 
(BiB, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust) [48], European 
Childhood Obesity Project Trial (CHOP, University of Munich and collaborators) [49], Danish National Birth 
Cohort (DNBC, University of Copenhagen) [50], Etude des Déterminants pré- et postnatals du développement et de 
la santé de l’Enfant, Nancy & Poitiers (EDEN, French Institute for Medical Research  and Health) [51], Etude 
Longitudinale Française depuis l'Enfance (ELFE, French Institute for Medical Research and Health) [52], 
Groningen Expert Center for Kids with Obesity (GECKO, University of Groningen) [53], Generation Rotterdam 
(GEN-R, Erasmus MC) [54], INfancia y Medio Ambiente Gipuzkoa, Sabadell & Valencia (INMA, Barcelona 
Institute for Global Health) [55], Norwegian Mother, Father and Child Cohort (MoBa, Norwegian Institute of 
Public Health) [56, 57], North Finland Birth Cohort 1966 (NFBC1966, University of Oulu) [58], North Finland 
Birth Cohort 1986 (NFBC1986, University of Oulu) [59], Nascita e INFanzia: gli Effetti dell'Ambiente (NINFEA, 
University of Turin) [60], The Raine study (Raine, The University of Western Australia) [61], Rhea (University of 
Crete) [62], The Southampton Women’s Survey (SWS, University of Southampton) [63] and The Healthy Growth 
Study, HGS) [45] 

 

The analysis sample thus consisted of 17 cohorts with a maximum sample size of n = 200,560 (Figure 1). All 
participants gave written informed consent and ethical approval was granted by local ethics boards (Supplementary 
Materials S1). The analysis plan can be viewed at https://osf.io/58vau/.  
 

Exposures 
 
Maternal education at birth 
SEP is a complex exposure encompassing several different domains of family resources with maternal education at 
birth being a commonly used indicator. A harmonised maternal education variable was created in each cohort based 
on the International Standard Classification of Education 97 (ISCED-97) and consisted of three categories: Low 
(No education to lower secondary; ISCED-97 categories 0-2), Medium (Upper and post-secondary; ISCED-97 
categories 3-4), High (Degree and above; ISCED-97 categories 5-6) [64]. Data was available in all cohorts. 

 

Area deprivation 
Area deprivation in pregnancy was estimated using country-specific deprivation indices (e.g Index of Multiple 
Deprivation; full details provided in Table S1). A harmonised ordinal variable was derived indicating the within-
cohort tertile of deprivation based on residential address (low, medium, high). Data was available for nine cohorts 
(ALSPAC, BiB, DNBC, EDEN, GEN-R, INMA, MoBa, NINFEA & Rhea). 

 

Green spaces 
Exposure to green space during pregnancy was captured using Normalized Difference Vegetation Index (NDVI) 
within a 300m buffer from the residential address using Geographic Information System approaches previously 
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described [65]. NDVI (range 0-1) quantifies vegetation by measuring the difference between near-infrared and red-
light reflection based on satellite imagery. Extremely low values (0 - 0.1) indicate areas of barren rock, sand or 
snow; moderate values (0.2 - 0.5) indicate sparse vegetation such as shrubs and grasslands, whilst high values (0.6 - 
1) indicate dense vegetation [66]. Data was available for the same nine cohorts as area deprivation. 

 

Gestational diabetes 
A binary variable indicating the presence or absence of evidence for GDM was harmonised for each cohort based 
either on extraction from clinical records or maternal self-report (Table S2). For most of the included cohorts at the 
time of pregnancy no universal diagnostic test was used, meaning that selective misclassification of some women 
with GDM being treated as ‘healthy’, particularly if they had no clear risk factors for GDM, is possible. To test 
this, we performed a sensitivity analysis only in those studies in which all women in the sample had a blood 
measure of hyperglycaemia, including HbA1c, fasting or random glucose, oral glucose challenge or tolerance test 
(BiB & Eden). For the main analyses, data was available for all cohorts except HGS, NFBC66 and NFBC86. 

 

Outcome 
The outcome was offspring BMI z-scores based on either clinic or parental reported height and weight 
measurements (Table S3). Sex-and-age specific z-scores were estimated per month for BMI using external WHO 
standards [67] and references [68] excluding observations ±5 standard deviations from the population median. We 
defined five age periods a priori: (i) 0 to 1 years, (ii) 2 to 3 years, (iii) 4 to 7 years, (iv) 8 to 13 years, (v) 14 to 17 
years. These represent key developmental periods of change (early infancy, adiposity rebound, puberty and late 
adolescence). If participants had more than one measurement within an age bracket we used the earliest recorded 
measurement.  

 

Confounders 
We defined confounders as any characteristic that was a known or plausible causal risk factor for the maternal 
exposure of interest and offspring BMI. We used Directed Acyclic Graphs (DAGs) to depict confounders for each 
analysis (Figure S1). All confounders were assessed via self-report except pre-pregnancy BMI (self-report or 
clinical measurement). In the main models, for analyses of maternal education with offspring BMI no confounders 
were included as we did not identify plausible causes of variation in both maternal education and offspring BMI. 
For area deprivation we adjusted for potential confounding by maternal education. For analyses with NDVI as 
exposure we adjusted for maternal education, area deprivation and parity. For analyses with GDM as the exposure 
we adjusted for maternal education, maternal age at birth (years), maternal pre-pregnancy BMI (kg/m2), parity 
(nulliparous, multiparous) and maternal smoking during pregnancy (yes/no). In addition, all analyses were adjusted 
for cohort, child sex and age at weight and height measurements (months) to improve statistical precision. All 
cohorts had some available data on the above confounders. Maternal ethnicity also fit our definition of a 
confounder for all exposures but was only available (defined as Western vs other) in 8 of the 17 cohorts (ALSPAC, 
BiB, CHOP, ELFE, GECKO, GEN-R, INMA & Raine; maximum N = 40,019 representing 20% of the 200,560 
participants). In a sensitivity analyses we therefore repeated all association analyses in this subset of cohorts with 
additional adjustment for ethnicity. 

 
Federated analyses using DataSHELD 
All analyses were performed using DataSHIELD version 6.1.0 and R version 3.5.2. Briefly, each participating 
cohort stored their harmonised data on a local server protected by a firewall, over which they maintain full control. 
Researchers granted permission to access the data use DataSHIELD to conduct remote analysis of individual 
participant data. The innovation of DataSHIELD is that it provides data security by preventing researchers viewing, 
copying or transferring any data. Instead, analysis commands are performed on each server and only non-disclosive 
summary statistics (cohort-specific or pooled) returned to the researcher. 
 
Associations between each exposure and BMI at each age period were tested using linear regression and one-stage 
Individual Participant Data (IPD) meta-analysis. All regression models included a dummy variable for cohort and 
were adjusted for confounders as described above. We repeated analyses using two-stage IPD random effects meta-
analysis in order to describe estimates within each cohort and explore between-cohort heterogeneity. We tested for 
sex differences in exposure-outcome associations by testing for sex by exposure interactions and repeating analyses 
stratified by sex. Finally, we assessed the influence of two large cohorts (DNBC & MoBa) by repeating analyses 
with these cohorts excluded. Analysis code can be viewed at https://github.com/lifecycle-project/wp4-bmi-poc. 
 

Missing data 
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The analysis sample consisted of participants with available data on at least one exposure and BMI in at least one 
outcome period. There were minimal differences between participants in the analysis sample and those excluded, 
except included participants were of slightly lower education and had lower rates of smoking in pregnancy (Table 
S4). Missing data were handled through complete case analysis, with the percentage of participants who were 
complete cases ranging from 10% to 65% (Table S5). Estimates from linear regression models using complete 
cases are unbiased if the chance of being missing is not associated with the outcome after adjusting for covariates 
[69]. To explore this assumption, for each exposure-outcome analysis we derived a variable indicating whether 
each participant had complete data. We then regressed this variable on child BMI adjusting for non-missing 
covariates (Figure S2). For all exposures, associations between BMI at all ages and the chance of having complete 
data were close to null.  

 

Results 
Participants’ characteristics 
There were large differences between cohorts in the education level of mothers, with MoBa and NINFEA 
containing mostly highly educated mothers whilst BiB, NFBC66 and Raine contained mothers with lowest levels 
of education (Figure 2a). Nine cohorts had data on area deprivation, and for some cohorts (DNBC, MoBa, 
NINFEA) the exposure was only derived for a subset of the full cohort within specific urban areas (Figure 2b). 
INMA, NINFEA and Rhea had the lowest values for NDVI indicating exposure to lower levels of vegetation 
(Figure 2c). There was marked heterogeneity between cohorts in estimated rates of GDM (e.g.  Gen-R = 0.8%, 
NINFEA = 8.1%; Figure 2d). Cohort-specific information on covariates and child BMI, height, weight and age at 
measurement are shown in Tables S6-10.  

 
Associations between pregnancy exposures and child BMI 
Figures 3-6 show associations between each exposure and BMI z-scores within each age period. At ages 0-1 and 2-
3 years associations between maternal education and BMI were close to null; however, at older ages a consistent 
pattern emerged with lower maternal education associated with higher childhood BMI (Figure 3). There was some 
evidence of a linear relationship as the magnitude of the association increased across categories of maternal 
education. Results were consistent when using 2-stage IPD (Figures S2a & S2b). Whilst there was considerable 
heterogeneity between cohorts (I2 range 0-92%) the direction of association was largely consistent for all cohorts.  

 

A similar pattern was observed for area deprivation in pregnancy. At younger ages there was minimal evidence of 
an association between deprivation and childhood BMI; however higher deprivation was associated with higher 
BMI from age 4-7 years (Figure 4). There was again some evidence of a linear relationship with associations 
greater where mothers lived in highly deprived areas than for areas with medium deprivation. Findings were similar 
using 2-stage IPD with the direction of associations largely consistent across cohorts (Figures S3a & S3b). 
Heterogeneity was moderate (I2 range 0-53%). 
 
At ages 0-1 higher NDVI in pregnancy was associated with slightly higher BMI, however at older ages associations 
were close to null (Figure 5). Repeating analyses using 2-stage IPD showed considerable heterogeneity between 
cohorts (I2 range 0-66%): for example at age 2-3 higher NDVI was associated with higher BMI in BiB but lower 
BMI in Rhea (Figure S4).  
 
Between ages 0-7 associations between GDM and childhood BMI was close to null; however at ages 8-13 GDM 
was associated with higher BMI (Figure 6). These results were replicated using 2-stage IPD with 10 out of 13 
cohorts showing a positive association at ages 8-13 (I2 = 0 – 73%; Figure S5). At ages 14-17 associations 
attenuated towards null, however within this age period only three cohorts had available data.  

 
Sensitivity and subgroup analyses 
To test for potential confounding by indication, we repeated analyses for GDM comparing cohorts where 
assessment was via a universal blood-based glucose test vs self-report or non-universal test, and found estimates to 
be very similar (Table S11). We also explored sex differences by repeating each analysis separately in males and 
females. Associations between maternal education and BMI were stronger in females at older ages whilst the 
association between GDM and BMI at ages 8-13 was stronger in males (Table S12 & S13). We additionally 
adjusted for ethnicity in the subset of up to 40,019 participants with available data, which attenuated associations of 
maternal education and area deprivation towards the null (Table S14). Finally we repeated analyses removing the 
two largest cohorts (DNBC and MoBa; Table S15), however this did not change the direction of any associations or 
markedly change their magnitude.  
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Discussion 
In this meta-analysis of 16 prospective and one retrospective cohort study with a maximum sample of 200,560 
children we explored associations between key pregnancy exposures and BMI across childhood. These analyses 
demonstrate the feasibility and utility of federated analyses of harmonised data from large numbers of participants 
across many international cohorts. Such federated analyses remove the need for data transfer and in this example 
facilitate investigating the potential change in associations of early life exposures with outcomes measured across 
the life course. We found consistent evidence that lower maternal education and higher area deprivation were 
associated with increased childhood BMI. This association emerged from ages 4-7 and increased in magnitude with 
age. Greater exposure to green vegetation was associated with slightly higher BMI in the first year of life, however 
associations at older ages were close to null. We also found evidence that GDM was associated with higher child 
BMI at ages 8-13 but not at younger ages.  

 

Opportunities and challenges of federated data analysis 
Using data from the ECCN provided both opportunities and challenges. The large quantity of repeated measures 
data enabled us to explore how associations between early exposures and BMI changed with age, and the 
considerable sample size gave us more precise estimates, especially important for categorical outcomes (GDM). 
For many variables (e.g green spaces) harmonisation of data according to a common framework ensured 
comparability across cohorts. Including 17 cohorts also allowed us to explore the consistency of findings across 
populations which may have different confounding structures. In contrast to a standard meta-analysis, an IPD 
approach enabled us to define the same outcome windows in each cohort, select our confounders, and avoid 
potential publication bias. Federated analysis using DataSHIELD also provided practical benefits. As one 
researcher can remotely conduct analysis on all cohorts, it ensures that the analyses are done identically in all 
studies and removes the need for individual researchers within each cohort to run analysis scripts. It also provides 
flexibility if-and-when co-authors or reviewers ask for changes to the analysis. Rather than needing to circulate a 
new analysis script (in this case requiring 17 researchers re-running analysis), the lead researcher can modify one 
script and re-run all analyses themselves. 
 
This approach also has limitations. Whilst some harmonisations are straightforward (e.g. BMI), for other variables 
the data comes to represent the lowest common denominator of information. For example, maternal education was 
reduced to three categories from more granular detail within many of the cohorts. Information on area deprivation 
also varied considerably across cohort, and harmonisation could only be achieved by defining within-cohort tertiles 
of deprivation and thus only provides information about relative deprivation within each cohort. Maternal ethnicity 
(a potential key confounder) was harmonised to a crude measure of Western vs other because many of the cohorts 
in LifeCycle were predominantly of White European ancestry or did not record more detailed information. One 
pitfall of this loss of information in covariates is that it may increase the risk of residual confounding. Whilst 
additional analysis could be performed separately in cohorts with greater information, this would add considerable 
workload and lose the advantages of federated analysis.  
 
Using DataSHIELD for analysis also has limitations. Only a small subset of analysis packages are available in 
DataSHIELD, and whilst the functionality is ever evolving, at the time of writing multivariable imputation was not 
available. We were therefore limited to complete case analyses with complete cases reflecting between 10% to 66% 
of the initial cohort sample across studies and age categories. However, we found little evidence that the chance of 
missingness was associated with the outcome, and under these conditions, attrition should not bias findings using 
complete case analysis [69]. Additionally, when this paper was conceived linear mixed models were unavailable in 
DataSHIELD. Future research could use these methods to take account of the repeated measures data available 
within LifeCYCLE. A further limitation of federated analysis is the requirement for investment in stable server 
infrastructure. Finally, the LifeCycle project is interested in potential mediation of early life exposures on later 
health by epigenomic and metabolomic mechanisms and in causal analyses including using genomic instrumental 
variables (i.e. Mendelian randomization) but the extent to which such large scale highly correlated data could be 
accommodated in federated analyses with the approval of data custodians is the subject of ongoing work.  
 
 
Interpretation of applied illustrative findings 
This was a large meta-analysis containing 16 prospective birth cohorts and one retrospective cohort study. Our 
finding of an inverse socioeconomic gradient in offspring BMI emerged from age 4 and widened with age 
replicates and extends previous findings. Previous studies using individual cohorts contained within this study 
(ALSPAC, DNBC, Gen-R, MoBa) have also reported that associations between maternal education and BMI 
emerge from around age 4 (though cf. EDEN who found a social gradient from one month, especially in girls) [11-
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14, 23]. Here we build on these findings by showing that this pattern is consistent across additional EU cohorts and 
that the strength of these associations increase across childhood. Children born in lower SEP circumstances will be 
exposed to multiple risk factors for overweight including early exposure to sub-potimal food, increased screen time 
and inadequate opportunities to exercise [20-22]. One explanation for the increase in inequalities over childhood 
time is that this early exposure creates behavioural patterns that result in steeper BMI trajectories. Additionally, if a 
family’s SEP status remains stable over time, children from lower SEP backgrounds will continue to be 
disproportionately exposed to these risks across childhood. 
 

The finding that area deprivation in pregnancy was associated with higher child BMI from age 4 also aligns with 
previous research. For example, a US study which explored associations between deprivation and obesity from age 
2-18 found that associations increased with age and were strongest between ages 11-18 [24]. Adjusting for 
maternal education in our analyses suggests – not withstanding residual confounding – that neighbourhood may 
exert an independent effect on obesity to family SEP. In contrast to maternal education, associations emerged 
slightly later but also increased in magnitude with age. Many children will remain in the same neighbourhood 
across childhood, thus these findings likely reflect both the specific influence of deprivation in pregnancy and the 
continued influence of neighbourhood on BMI across childhood (e.g. via prevalence of unhealthy food outlets 
[21]). Future studies could use repeated measures data on area deprivation to elucidate these pathways. 

 

Our finding that pregnancy exposure to green spaces was associated with slightly higher BMI at ages 0-1 was 
consistent with previous studies reporting an association between prenatal green space exposure and birth weight 
[32, 33, 70]. There are multiple potential mechanisms for this effect, for example reduced exposure to air pollution 
[27], or improved maternal mental or physical health due to increased opportunities to exercise [28]. However, we 
failed to replicate the findings of a recent study which reported that prenatal exposure to green spaces was 
associated with lower BMI at age 5 [34]. We found considerable heterogeneity between cohorts – for example 
between ages 4-7 higher NDVI exposure in pregnancy was associated with lower BMI in Gen-R (Netherlands) but 
higher BMI in ALSPAC and BiB (UK). These differences remained after adjusting for ethnicity in these cohorts as 
a potential confounder. Social patterning of urban environment has been shown to differ across EU cities [71], so 
these cohort differences may be due to residual confounding that differs across cohort. Furthermore, our measure of 
exposure to green spaces (NDVI) provides information about the average level of vegetation within a buffer, but 
does not provide information about the accessibility or quality of spaces (e.g. facilities, safety) or the opportunities 
to engage in physical activities which may be more important determinants of BMI [72]. 

 

Exposure to higher maternal pregnancy glucose results in faster fetal growth and larger birth size, with Mendelian 
randomization analyses suggesting this may be causal [38, 39]. Within sibship analyses, that control for family 
level confounding, including parental BMI, also support a potential causal effect of intrauterine exposure to higher 
maternal glucose levels, particularly in early adulthood [73, 74]. Observationally in the Born in Bradford study 
(one of the cohorts included here), the association of maternal GDM (assessed universally by a diagnostic OGTT) 
and more rapid fetal growth [75, 76] (using repeat ultrasound scan data) and birth weight was no longer apparent in 
relation to BMI measured at ~ 4years [77]. Similar results have been reported in other cohorts not included in 
LifeCycle, including that associations of GDM with birthweight attenuate in infancy and up to 3 to 4 years of age 
[78, 79]. Systematic reviews show between study heterogeneity and poor adjustment for confounders (including 
parental BMI) and most of the contributing studies explore mean BMI (or overweight / obesity) assessed in 
childhood [80, 81]. Thus, it is possible that higher maternal BMI in pregnancy relates to higher birth weight and 
subsequently with BMI from later childhood and into adulthood as we find here in confounder adjusted analyses, 
though exploring this with BMI trajectories in larger numbers to older ages and with life course Mendelian 
randomization would be valuable. For all but two cohorts, GDM was not assessed via universal screening and thus 
there is a high risk of confounding by indication. However, a sensitivity analysis showed similar estimates for the 
cohorts with (Born in Bradford, EDEN) and without universal screening. 
 
We also found evidence that associations between maternal education and BMI were stronger for girls compared to 
boys at older ages. Body composition differs between boys and girls, with higher percentage of fat mass in girls 
[82], therefore it is plausible that girls respond more than boys to an obesogenic environment, which is related to 
SEP. Furthermore, obesogenic stimuli (e.g. physical activity) are often not equally distributed across sexes [83]. 
We also observed stronger associations between GDM and BMI for boys rather than girls. This does not fit with the 
above hypotheses, but is coherent with some earlier reports of sex-specific associations [84, 85]. 
 
 
Summary & future implications 
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In this study we have illustrated the scientific gains of collaboration and data sharing between international birth 
cohorts. We have demonstrated how federated analysis using the ECCN provides exciting opportunities to tackle 
key research questions, replicate findings across cohorts and have the power to explore how associations change 
across age. In our specific example, our findings show consistent associations between socioeconomic exposures 
and child BMI that increase with age. We also found evidence of an association between GDM and BMI at older 
ages, however we only found evidence for an association between exposure to green spaces and BMI within the 
first year of life. The increasing associations between both family and neighbourhood SEP and BMI as children age 
highlight the importance of systemic early interventions focused on prevention (e.g. through tackling obesogenic 
aspects of neighbourhoods) [86]. The ECCN is an open network, and we recommend additional birth cohorts to 
join the project, and for researchers to make use of this rich data resource.  
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Figure 1: Flow chart of cohorts and participants  
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n = 17 cohorts 
Signed agreements received and 
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N = 308,393 participants in provided 
datasets 
 

n = 17 cohorts 
N = 252,416 participants with some exposure 
and outcome data 
 
Maximum sample sizes for individual analyses: 
N = 200,560 (maternal education analysis) 
N = 36,153 (area deprivation analysis) 
N = 34,585 (green spaces analysis) 
N = 172,653 (gestational diabetes analysis) 

N = 55,977 
Participants with no data on all 4 
exposures and/or childhood BMI 

n = 1 cohorts 
Data not available via DataSHIELD by 
by 1st April 2022 (HCBC) 
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Table 1: Summary of cohort characteristics 
Cohort 
name 

Country City/area Design N 
included 
children 

Birth 
year(s) 

Age range 
of included 
children 
(years) 

ALSPAC United 
Kingdom 

Greater Bristol Prospective 10499 1991 - 1992 
0 - 17 

BiB United 
Kingdom 

Bradford Prospective 13400 2007 - 2011 
0 - 10 

CHOP Germany, 
Belgium, Italy, 
Poland, Spain 

Munich, Nuremberg, 
Liege, Brussels, 
Milano, Warsaw, Reus, 
Tarragona 

Prospective 1669 2002 - 2004 

0 - 11 

DNBC Denmark Greater Copenhagen Prospective 77534 1996 - 2002 0 - 18 

EDEN France Nancy & Poitiers Prospective 1765 2003 - 2005 0 - 12 

ELFE France  Prospective 17926 2011 0 - 9 

GECKO Netherlands Drenthe Prospective 2748 2006 - 2007 0 - 11 

Gen-R Netherlands Rotterdam Prospective 8680 2002 - 2006 0 - 10 

HGS Greece Attica, Etoloakarnania, 
Thessaloniki, Iraklion 

Cross-
sectional* 

2570 1994 - 2000 
10 - 14 

INMA Spain Gipuzkoa, Sabadell, 
Valencia 

Prospective 1918 2003 - 2008 
0 - 11 

MoBa Norway  Prospective 85589 1999 - 2008 0 - 13 

NFBC66 Finland  Prospective 7709 1966 0 - 16 

NFBC86 Finland  Prospective 7315 1985 - 1986 0 - 16 

NINFEA Italy Florence, Rome, Turin Prospective 6532 2005 - 2016 0 - 14 

Raine Australia Perth Prospective 2548 1989 - 1992 1 - 17 

Rhea Greece Crete Prospective 1002 2007 - 2008 0 - 12 

SWS United 
Kingdom 

Southampton Prospective 3012 1998 - 2007 
0 - 10 

*Information on early life exposures collected retrospectively 
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Figure 2: Exposure descriptive statistics 
 
2a: Maternal education        2b: Area Deprivation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2c: Normalised Difference Vegetation Index                  2d: Gestational diabetes 

 

 

 

 

 

 

 

 

 

 

 

 
*Note: No data was available on gestational diabetes for CHOP as this was an exclusion criterion for entry into the study. 
For all other studies, figures are blank where the exposure is entirely missing. Values for NDVI represent median and 
interquartile range. 
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Figure 3: Associations between maternal education at birth and child BMI z-scores using one-stage 
IPD meta-analysis 

 
Note: models adjusted for cohort, child sex and exact age at measurement in days. 
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Figure 4: Associations between area deprivation in pregnancy and child BMI z-scores using one-stage 
IPD meta-analysis 

 
Note: models adjusted for maternal education, cohort, child sex and exact age at measurement.  
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Figure 5: Associations between Normalised Difference Vegetation Index in pregnancy and child BMI 
z-scores using one-stage IPD meta-analysis 

 
Note: models adjusted for cohort, child sex, exact age at measurement, maternal education, parity and area deprivation.  
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Figure 6: Associations between gestational diabetes and child BMI z-scores using one-stage IPD 
meta-analysis 
 

 
Note: models adjusted for cohort, child sex, exact age at measurement, maternal education, maternal age at birth, pre-
pregnancy BMI, pregnancy smoking and parity.  
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