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A B S T R A C T   

Repetitive TMS (rTMS) allows for non-invasive and transient disruption of local neuronal functioning. We used 
machine learning approaches to assess whether brain tumor patients can be accurately classified into aphasic and 
non-aphasic groups using their rTMS language mapping results as input features. Given that each tumor affects 
the subject-specific language networks differently, resulting in heterogenous rTMS functional mappings, we 
propose the use of machine learning strategies to classify potential patterns of rTMS language mapping results. 
We retrospectively included 90 patients with left perisylvian world health organization (WHO) grade II-IV gli-
omas that underwent presurgical navigated rTMS language mapping. Within our cohort, 29 of 90 (32.2%) pa-
tients suffered from at least mild aphasia as shown in the Aachen Aphasia Test based Berlin Aphasia Score (BAS). 
After spatial normalization to MNI 152 of all rTMS spots, we calculated the error rate (ER) in each stimulated 
cortical area (28 regions of interest, ROI) by automated anatomical labeling parcellation (AAL3) and IIT. We used 
a support vector machine (SVM) to classify significant areas in relation to aphasia. After feeding the ROIs into the 
SVM model, it revealed that in addition to age (w = 2.98), the ERs of the left supramarginal gyrus (w = 3.64), left 
inferior parietal gyrus (w = 2.28) and right pars triangularis (w = 1.34) contributed more than other features to 
the model. The model’s sensitivity was 86.2%, the specificity was 82.0%, the overall accuracy was 85.5% and the 
AUC was 89.3%. Our results demonstrate an increased vulnerability of right inferior pars triangularis to rTMS in 
aphasic patients due to left perisylvian gliomas. This finding points towards a functional relevant involvement of 
the right pars triangularis in response to aphasia. The tumor location feature, specified by calculating overlaps 
with white and grey matter atlases, did not affect the SVM model. The left supramarginal gyrus as a feature 
improved our SVM model the most. Additionally, our results could point towards a decreasing potential for 
neuroplasticity with age.   

1. Introduction 

10 years ago, rTMS was introduced by our group as a tool for plan-
ning brain tumor surgery based on individualized cortical language 
mapping (Lioumis et al., 2012; Picht et al., 2013). Nevertheless, its 

clinical reliability and usefulness for cognitive mapping remains 
debatable to this day (Bahrend et al., 2020; Schwarzer et al., 2018). We 
have therefore retrospectively analyzed our rTMS language mapping 
results of the last decade to classify aphasic and non-aphasic glioma 
patients using machine learning. 

Abbreviations: AAL, automated anatomical labeling; AAT, Aachen aphasia test; AUC, area under receiver operating characteristic curve; BAS, Berlin aphasia score; 
ER, error rate; IQR, interquartile range; Machine Learning, ML; MNI, Montreal neurological institute; RFE, recursive feature elimination; ROC, receiver operating 
characteristic; ROI, region of interest; rTMS, repetitive transcranial magnetic stimulation; SVM, support vector machine; TMS, transcranial magnetic stimulation; 
VAS, visual analogue scale. 
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Regarding language, it has been postulated that different levels of 
language processing engage various brain areas, with different left- 
hemispheric streams being responsible for production and comprehen-
sion (Hickok and Poeppel, 2007; Price, 2012). Additionally, it has been 
suggested that processes such as syntax and semantics are supported by 
networks with different levels of laterality (Friederici, 2011). Moreover, 
current models on the neural bases of phonological and semantic rep-
resentation propose neuronal assemblies distributed over bilateral but 
differentially lateralized perisylvian as well as extrasylvian sensorimotor 
and multimodal areas (Pulvermuller, 2018). 

In addition to the organization of language in large-scale distributed 
networks (Duffau, 2014; Mesulam, 1990; Pulvermuller and Fadiga, 
2010), language mapping is also challenged by the observation that 
individual language networks appear to be volatile in the sense that in 
the presence of an expanding brain tumor their dynamic processing 
patterns are subject to plasticity, both acute and long-term (Duffau, 
2015; Duffau et al., 2003). Plasticity enables functional redistribution 
within remote networks and plays a central part in recovery after brain 
injury (Duffau, 2005, 2015; van Dokkum et al., 2019). 

To analyze the complex language network in relation to aphasia and 
rTMS object naming results, a promising possibility is the use of machine 
learning (ML). ML has better predictive power than traditional statistical 
methods. Compared to traditional statistics, ML focuses on finding pat-
terns in rich and unwieldy data, and can also be used to infer data (Bzdok 
et al., 2018). Among ML methods, linear support vector machines (SVM) 
can be easy-to-interpret since they can learn linear discriminant func-
tions and assign weights to features in the input space (Rosenbaum et al., 
2011). Due to abovementioned advantages, SVMs have been widely 
used for various disease-related data (Cuingnet et al., 2011; Deo, 2015; 
Kannel et al., 1975). In addition, SVM has proven to outperform classical 
correlation methods, for example in gene selection biologically relevant 
to cancer (Guyon et al., 2002). SVM maximizes the classification margin 
and is more robust over more traditional approaches of analyses, for 
example multiple logistic regression, especially when a large feature 
space is considered for analysis and data is unbalanced (Christodoulou 
et al., 2019). This study is the first to analyze TMS data of tumor patients 
with an SVM classifier. 

Our aim was to use machine learning to retrospectively investigate 
rTMS language mappings and classify aphasic and non-aphasic patients 
in rich feature space, consisting of individual regions’ specific rTMS 
language mapping error rates as well as patients’ lesion profiles and 
clinical data. 

2. Methods 

2.1. Patient cohort 

We identified 296 patients in our prospectively collected database 
who received preoperative rTMS language mappings for left perisylvian 
brain tumors since 2010. Of these, 218 underwent the standardized 
consensus protocol (Krieg et al., 2017). After stratifying for glioma only 
(n = 147) and completeness of data including formal language testing 
(AAT/BAS), 90 patients were included into the study (41 female, 49 
male, mean age 48.86 ± 14.12, age range 21–82, 12 WHO II◦, 42 WHO 
III◦, 36 WHO IV◦). Patient characteristics are shown in Table 1. Hand-
edness was determined using the Edinburgh handedness inventory 
(Oldfield, 1971). The exclusion criteria were: 1. Frequent generalized 
seizures (more than one per week); 2. Aphasia with more than 28% error 
rate in the baseline object naming task, identified as a reliability 
threshold in a previous study (Schwarzer et al., 2018); 3. Multicentric 
gliomas, and 4. Left-handedness. 

2.2. Ethical standard 

The study proposal is in accordance with ethical standards of the 
Declaration of Helsinki and was approved by the Ethics Committee of 

Charité - Universitätsmedizin Berlin (#EA1/016/19). All patients pro-
vided written informed consent for all medical evaluations and treat-
ments within the scope of the present study. 

2.3. Data acquisition 

2.3.1. In-house data 
MRI data were acquired using a Siemens 3T Skyra system (Erlangen, 

Germany) at Charité – Universitätsmedizin Berlin, Department of 
Neuroradiology. T1 weighted images were acquired with TR/TE/TI 
2300/2.32/900 ms flip angle = 8◦, field of view (FOV) = 230 × 230 
mm2, matrix size 256 × 256, 192 sagittal slices, 1 mm isotropic 
resolution. 

2.3.2. Aphasia grading 
The severity of aphasia was assessed preoperatively using the Berlin 

Aphasia Score (BAS). The BAS is used and developed by physicians of the 
Charité – Universitätsmedizin Berlin and adapted from the Aachen 
Aphasia Test (Huber et al., 1984). The test classifies patients into 4 
categories (Picht et al., 2013; Schwarzer et al., 2018): 0 = no aphasia (61 
patients), 1 = mild aphasia (18 patients), 2 = moderate aphasia (8 pa-
tients), 3 = severe aphasia (3 patients). All patients with a BAS score of 
0 were grouped into the non-aphasic cohort, others were classified as 
aphasic patients. A Spearman’s rank-order correlation was performed to 
determine the correspondence between BAS and AAT T-scores for a 
subset of patients under investigation (n = 60) for which both mea-
surements were available. AAT subtests included in this version were 
Token Test, Verbal Repetition, Naming and Language Comprehension. 
BAS results were correlated to a composite score across all subtests. 

2.3.3. rTMS language mapping 
Navigated rTMS language mapping was performed with nTMS eXi-

mia NBS version 3.2.2, Nexstim NBS 4.3 and NexSpeech module (Nex-
stim Oy, Helsinki, Finland). The baseline naming performance of 150 
black-and-white drawings of everyday objects was assessed prior to 
rTMS (M = 85.5, SD = 28.6, Min = 35, Max = 149). The images applied 
were provided by the Nexstim NexSpeech software. During baseline 

Table 1 
Demographics and neuropathological overview of the patient cohort.   

Non-aphasic 
patients 

Aphasic 
patients 

p 

Demographics    
Trial size 61 (68%) 29 (32%)  
Age* 45.13 ± 12.84 56.69 ± 13.64 0.000018 
Female 31 (51%) 10 (34%) 0.272 
Male 30 (49%) 19 (66%) 0.272 
Tumor volume** (cm3) 46.95 ± 45.31 47.17 ± 41.31 0.986 
Right handedness 61(100%) 29(100%) 1 
Time since tumor diagnosis 

(days) 
2.23 ± 19.65 2.24 ± 8.33 0.988 

Tumor location    
Frontal 25 (41%) 9 (31%) 0.498 
temporal 21 (34%) 18 (62%) 0.025 
Parietal 9 (15%) 1 (3%) 0.158 
Insular 6 (10%) 1 (3%) 0.422 
Glioma WHO grade    
Glioma II 11 (18%) 1 (3%) 0.0944 
Glioma III 31 (51%) 11 (38%) 0.358 
Glioma IV 19 (31%) 17 (59%) 0.024 
Error rate    
Overall ER (%) 4.37 ± 2.93 8.43 ± 4.92 0.000004 
Left ER (%) 4.55 ± 3.06 8.87 ± 4.66 0.000001 
Right ER (%) 5.01 ± 3.67 6.71 ± 4.93 0.232 

Values shown are M ± SD or n (percentage). 
ER: Error rate (amount of positive TMS stimulations divided by the sum of 
positive and negative TMS stimulations). 
*Age at the time of diagnosis. 
**Tumor size was measured within 7 days before the TMS examination and BAS. 
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testing, the dataset was presented to the patients twice in the absence of 
any stimulation, while being video-recorded. In case errors were still 
made in the second baseline, the dataset was presented a third time. 
Only images remaining after the final baseline testing with correct re-
sponses were used for rTMS mapping, which covered the perisylvian 
cortex of both hemispheres (Schwarzer et al., 2018). The resulting set of 
pictures after baseline correction was presented in a randomized order. 

The required individual stimulation intensity was determined prior 
to stimulation of language-relevant areas (Groppa et al., 2012). Each 
individual’s responsiveness to TMS stimulation was determined by 
measuring the resting motor threshold (RMT) using the 5/10 method 
over the primary motor cortex of the respective hemisphere for the first 
dorsal interosseus muscle of the contralateral hand (Rossini et al., 2015). 
Consequently, language mapping was performed with 1-s trains of rTMS 
at 100% of the RMT. If the calculated cortical electric field was less than 
50 V/m, the stimulation intensity was increased accordingly (Krieg 
et al., 2017). In case no stimulation effects on naming were observed by 
the examiner during the initial 20–30 rTMS trains, the parameters were 
modified to increase difficulty: first, shorter inter-image intervals (4–2.5 
s), and, if still ineffective, the picture display time was decreased 
(1000–700 ms). Further, if still ineffective, different frequencies (7 Hz, 
10 Hz) were tested (Hauck et al., 2015; Schwarzer et al., 2018). The 
objects remaining from the baseline were presented to the patient in 
randomized order. Each patient underwent one rTMS mapping session 
during which cortical areas were targeted based on the location and size 
of the tumor as well as the aphasia status and performance of the patient. 
For each hemisphere, 150–250 stimulations over 50–80 distributed sites 
were administered. Each spot was stimulated at least 3 times. If a pos-
itive effect was found during the examination, the respective spot was 
stimulated repeatedly to assess the reproducibility of the effect 
(Schwarzer et al., 2018). The degree of discomfort or pain during the 
mapping was evaluated with the visual analogue scale (VAS). The rTMS 
coordinates were exported as text files for subsequent analysis and 
spatial normalization. 

2.3.4. Spatial normalization & anatomical labelling 
In order to optimize the registration process to MNI ICBM 152 space, 

all anatomical T1 data sets were skull-stripped applying the ANTs brain 
extraction tool in combination with the public ANTs/ANTsR IXI brain 
template (https://doi.org/10.6084/m9.figshare.915436.v2) prior to 
MNI space registration (Avants et al., 2011). Furthermore, semi- 

automated lesion segmentations were generated with ITK-Snap and 
used as binarized masks (Yushkevich et al., 2006), see Fig. 1. The semi- 
automatic segmentation in ITK-SNAP relies on a two-step pipeline where 
first multiple image modalities used for segmentation are combined to 
produce a scalar image, followed by active contour segmentation and 
user-placed initiation seeds. The automated segmentation is divided into 
three steps. First, a probability map or a speed function is computed, 
based on the users preferences. Second, the user places one or more 
spherical seeds in the image for the segmentation, and third, the actual 
live contour evolution is initialized and the contour begins to evolve. 
Furthermore, the segmentations can be manually manipulated. (Yush-
kevich et al., 2016). All patients’ anatomical image data sets were 
registered to normalized space (MNI ICBM 152 non-linear 6th Genera-
tion Symmetric Average Brain Stereotaxic Registration Model) using the 
Advanced Normalization Tools (ANTs) software with the Symmetric 
Normalization (SyN) transformation model (Avants et al., 2011; Grab-
ner et al., 2006). The registration matrix files were used to subsequently 
register the T1 data sets based rTMS coordinates to MNI ICBM 152 space 
as well. The rTMS coordinates were mapped to the Automated 
Anatomical Labeling (AAL3) parcellation (Rolls et al., 2020; Tzourio- 
Mazoyer et al., 2002) to define the grey matter regions of interest 
(ROI). The recently published AAL3 offers a whole brain parcellation of 
170 ROIs (Rolls et al., 2020). The AAL3 coordinates were gathered using 
SPM12 and SPM-based viewing program xjView (Ashburner and Friston, 
1999). After merging all rTMS spots, we calculated the error rate (ER) in 
each ROI. The ER was calculated by dividing the number of rTMS 
stimulations with error responses by the number of total rTMS stimu-
lations within each ROI. To obtain detailed tumor locations, binary 
tumor masks were overlaid on AAL3 for grey matter and IIT human 
brain for white matter atlases. The IIT human brain atlas provides 42 
probabilistic white matter tract masks (Zhang and Arfanakis, 2018). The 
percentages of overlap between tumor masks and atlas regions were 
calculated (Supplementary Table 1). 

We calculated the ERs for each patient and subsequently mapped the 
ERs to AAL3 ROIs. Additionally, we calculated the number of stimula-
tions per AAL3 ROI/patient. To increase the reliability of the ER results, 
the ERs derived from AAL3 ROIs which were stimulated less than 25% 
per AAL3 area per patient have been excluded. Given our clinical 
experience and the overall low incidence of rTMS induced language 
errors, we have defined a threshold of >=25% rTMS stimulations per 
AAL3 area as the minimum to draw meaningful conclusions about the 

Fig. 1. Lesion map. The figure shows the lesion map in MNI space with corresponding x (sagittal), y, (coronal) and z (axial) coordinates above each slice. All lesions 
are located in the perisylvian area. The color bar indicates the number of tumors per voxel. 
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functional relevance of a specific area in clinical decision making. 

2.4. SVM 

With the progression of computational power over the last two de-
cades, SVM has received growing attention and is increasingly being 
used in biomedicine. SVMs are supervised machine learning models and 
aim to classify data points by maximizing the margin between classes 
(Cortes and Vapnik, 1995). SVM can be used for nonlinear classification 
using kernel tricks by implicitly mapping inputs to high-dimensional 
feature spaces using various kernel functions (Liu et al., 2019). 

In the present study we applied the linear kernel function using our 
data set to classify the patients into aphasic or non-aphasic groups. 
Missing data were interpolated with median imputation because the 
features were not normally distributed (SVM1). To ensure that missing 
data did not affect the SVM results, we applied a k-nearest neighbors 
algorithm (k-NN) imputation method in a second SVM model (SVM2) 
instead of a median imputation (Stewart et al., 2018). The preference for 
k-NN was based on the fact that with increasing number of missing 
values, the k-NN imputation becomes more robust to bias (Wu et al., 
2019). In a third SVM model (SVM3), we excluded 26 patients because 
they did not receive rTMS over their right hemisphere. All patients’ TMS 
ERs in each AAL3 area, age, gender, tumor WHO grade and principal 
component analysis (PCA) components of individual IIT and AAL3 
lesion percentages were fed into the SVM model as features (cf. 2.5 for 
PCA description). To effectively determine the meaningful features, 
recursive feature elimination was used for feature selection. Recursive 
feature elimination ranked the features, then recursively removed the 
less important features and built a model on those remaining features. A 
nested cross-validation (10-fold outer loop and 5-fold inner loop) 
approach was applied for training (Varoquaux et al., 2017). The nested 
cross-validation uses an internal cross-validation loop to adjust the pa-
rameters and select the best model. The outer cross-validation loop is 
used to evaluate models selected by the inner loop. The penalty 
parameter C was optimized by an internal cross-validation loop. In the 
inner loop the parameter C was tested from 2− 10 to 210 with a 0.1 step. 
Next, the data were proportionally split into 5 subsets. One was assigned 
to test the set and others were assigned to train the set. Subsequently, the 
optimized parameter C was estimated from the highest average classi-
fication accuracy. In our data, the ratio of aphasia to non-aphasia was 1 
to 2, the proportion of patients in each fold was also 1 to 2 for both the 

inner and outer loop. Due to the unbalanced data, we adjusted the 
weight of the aphasia group to 2.0, the parameter C of the class aphasia 
was set to weight × C (Huang et al., 2013). To reduce the variance, we 
combined a model aggregation method called bagging and cross- 
validation. In each convolution, the data was resampled by random 
resampling (still according to the ratio of aphasia to non-aphasia of 1 to 
2) so that 1000 training sets and corresponding models were generated 
and finally averaged (Poldrack et al., 2019). For machine learning 
coding, we used MATLAB R2014b (MathWorks, Natick, MA, US) with 
LIBSVM (Chang and Lin, 2011). We evaluated the performance of the 
SVM model by sensitivity, specificity, its overall accuracy, and the area 
under the receiver operating curve (AUC). The overall accuracy is the 
ratio of the correctly predicted classification of the entire cohort into the 
aphasic or non-aphasic group. The code and data used for SVM classi-
fication is archived as a MATLAB script on Zenodo (https://doi.org/10. 
5281/zenodo.3727663) and openly accessible (Wang et al., 2020). 
Fig. 2 demonstrates the SVM analysis pipeline. 

2.5. Comparison of SVM and logistic regression results 

In order to detect the capability of tumor location to predict aphasia 
status, logistic regression was used to detect the relationship between 
region specific lesion percentages and aphasia status in a control anal-
ysis. As a first step of this analysis, the variance inflation coefficients of 
obtained lesion percentages were tested, because neighboring ROIs are 
likely to show correlations between their tumor overlaps and the 
resulting multicollinearity of tumor location variables would be prob-
lematic for logistic regression analysis (Supplementary Table 5). If the 
variance inflation coefficients were greater than 5, we used PCA to 
address the problem of multicollinearity (cf. 2.4). Only ROIs with suf-
ficient lesion affection were included. Sufficient lesion affection was 
defined in the context of the current study as grey/white matter regions 
where the tumor has affected more than 10% of all voxels comprising 
that particular region in at least 5% of the patient sample (Sperber and 
Karnath, 2017). Resulting PCA component scores were subsequently 
entered as predictors in binary logistic regression analysis and fed into 
the SVM models, which also reduced the feature space for analysis 
(compared to entering individual AAL3 and IIT regions). To test whether 
the results obtained from the SVM model were influenced by tumor 
location, we subsequently performed a mediation analysis based on 
linear and binary logistic regression analyses (Supplementary Fig. 1). 

Fig. 2. SVM analysis pipeline. Nested cross-validation and bootstrap aggregating (bagging).  
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2.6. Statistical analysis 

Statistical analysis was performed by using MATLAB R2014b 
(MathWorks, Natick, MA, US) and SPSS22 (IBM SPSS, Armonk, New 
York, US). To compare continuous variables, two tailed Student’s t-tests 
or Mann–Whitney U tests were performed separately, depending on the 
normality of the data. Significant effects were considered at p < .05. 
Fisher’s exact test (for expected values less than five) or Pearson’s chi- 
squared test (larger values) were applied for the comparison of param-
eter variables. A Spearman’s rank-order correlation was used to test the 
association between BAS and AAT T-scores. With respect to multiple 
comparison analyses, statistical significance values for ROIs of ER 
comparisons were adjusted by the Holm-Bonferroni method (Table 4). 

2.7. Data availability 

Parts of the data that support the findings of this study are not 
publicly available due to information that could compromise the privacy 
of the participants but are available from the corresponding author on 
reasonable request. However, the code we used is openly available 
under the following address (https://doi.org/10.5281/zenodo. 
3727663) and is cited at the corresponding passage (Wang et al., 2020). 

3. Results 

3.1. Patients 

There was a strong, negative correlation between BAS and AAT T- 
scores, which was statistically significant (rs(60) = − 0.732, p =
3.6593E− 8). Twenty-nine (32.2%) of the recruited 90 patients pre-
sented with presurgical aphasic language disorders. The demographic 
data and comparison between aphasic and non-aphasic patients are 
provided in Table 1. There were no significant differences in gender or 
tumor size in relation to aphasia (χ2 = 1.207[1, 90], p = .272; t[88] =
0.023, p = .982 respectively). Aphasic patients were older (56.69 ±
13.64) than non-aphasic patients (45.13 ± 12.84), with a highly sig-
nificant difference of p = .0003 (t [52] = 3.83). The tumor locations are 
shown in Supplementary Table 1. 

3.2. Presurgical rTMS mapping 

Presurgical rTMS speech mapping was successful in all patients and 
generally well tolerated. Twenty-six (19 non-aphasic, 7 aphasic) pa-
tients were only mapped on their left hemisphere due to fatigue or 
decreasing level of attention. The mapping results of frontopolar and 
temporopolar cortices were not considered for analysis due to the 
discomfort evoked by the rTMS mapping in these areas (Fig. 3). The 
number of missing ER data points across all patients’ AAL3 ROIs was 
28.8% while 82.2% of patients showed missing ER data points. 

The mean VAS score during rTMS mapping was 3.9 ± 2.9 in the left 
and 3.7 ± 2.8 in the right hemisphere. The ER of the entire brain 
mapping in the aphasia group (Mdn = 7.49) was significantly higher (p 
< .0001, Z = 4.60, η2 = 0.24) than the ER of the entire brain mapping in 
the non-aphasia group (Mdn = 3.48). 

Further, the aphasic patients showed a significantly higher ER in 
their left hemisphere compared to the non-aphasic patients and a non- 
significant difference of ER in their right hemisphere (Table 1). The 
rTMS spots were categorized into positive and negative spots. rTMS 
positive spots indicate that the rTMS stimulation caused an error 
response of any type, whereas a negative spot would indicate no error 
response. The overall rTMS positive spot distribution showed no clear 
pattern, not favoring specific cortical areas (Fig. 3). Moreover, the 
closely matching overall cortical distribution of both positive and 
negative rTMS spot distribution further demonstrates the non- 
occurrence of a particular pattern. We provide detailed results 
regarding the individual error rates of rTMS, individual numbers of 
positive rTMS stimulations and individual numbers of the sum of rTMS 
stimulations per AAL3 area in Supplementary Tables 2-4. 

3.3. AAL3 and IIT labelling 

The analysis of aphasic and non-aphasic patients in relation to rTMS 
ERs distributions showed specific cortical patterns. The numbers of 
stimulations per AAL3 ROI/patient were M = 14.9, SD = 16.2. ERs 
derived from AAL3 ROIs which were stimulated less than 6 times (< =

25% of stimulations per AAL3 ROI/patient) have been excluded. The 
threshold of > = 25% resulted in a total inclusion of 28 AAL3 ROIs per 
patient (Fig. 4 & Table 2). 

Fig. 3. Percentages of voxel-wise rTMS stimulations of all patients in MNI space: (A) Left negative spots. (B) Right negative spots. (C) Left positive spots. (D) Right 
positive spots. The numbers and the color bar indicate the percentages of rTMS positive or negative stimulations per voxel. 
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3.4. SVM classification 

All 28 ER ROIs, age, gender, tumor WHO degree and tumor location 
PCA components were taken as input features for the SVM-recursive 
feature elimination (RFE) model to classify the aphasia status. The 
best classifier of final accuracy of the classification for aphasic and non- 
aphasic tumor patients were 85.53% (SVM1), 82.4% (SVM2) and 77.6% 
(SVM3). After RFE was embedded within a 10-fold cross-validation 
framework, four features were selected as the most important based 
on the weight. These four features were age, ER of right pars triangu-
laris, ER of left supramarginal gyrus and ER of left inferior parietal gyrus 
(excluding angular and supramarginal gyri). All models (SVM1-SVM3) 
yielded the same four features after RFE. Their weights are illustrated in 
Fig. 5 (and Supplementary Fig. 2) and Table 3. The sensitivities of the 
models were 86.2% (SVM1), 90.0% (SVM2) and 59.1% (SVM3), the 
specificities were 82.0% (SVM1), 78.7% (SVM2) and 85.7% (SVM3) and 
the AUC’s were 89.3% (SVM1), 86.7% (SVM2) and 74.8% (SVM3). 
Fig. 6 illustrates the model’s receiver operating characteristic (ROC) 
curve and shows the AUC. The ERs of these three ROIs showed signifi-
cant differences between the aphasic and non-aphasic groups after false 
discovery rate (FDR) correction (see Table 4 and Fig. 7). A mediation 
analysis revealed that the tumor location did not explain the full pre-
dictive value of TMS induced ER for aphasic status (Supplementary 
Fig. 1). 

3.5. Logistic regression and mediation analyses 

To calculate the overlap between tumors and ROIs, we included 194 
ROIs that resulted from the AAL3 (170) and IIT (24) parcellations. Of the 
total 194 ROIs, 69 (AAL3, 48 ROIs; IIT, 21 ROIs) overlapped with tu-
mors. The variance inflation coefficients of all overlap ratios were higher 
than 5 in all 69 ROIs, revealing strong multicollinearity between overlap 
ratios. After performing PCA, 10 PCA components were extracted 
(Kaiser-Meyer-Olkin value = 0.717; 10 components PCA revealed with 
an eigenvalue greater than 1; cumulative percentage variance = 89.2%; 
varimax rotation was used to achieve orthogonality of components, see 
rotated components matrix in Supplementary Table 5). A Kaiser-Meyer- 
Olkin value greater than 0.5 revealed eligibility for PCA. To explore the 
effect of tumor location on aphasia status, a logistic regression on these 
10 PCA components to classify the aphasia status showed that only 
component 6 (including left Heschl’s gyri, left middle longitudinal 
fasciculus, left Rolandic operculum and left superior temporal gyrus) 
and PCA component 9 (including left middle temporal gyrus and left 
vertical occipital fasciculus) led to significant results (p = .023, Exp(B) 
= 1.85; p = .005, Expo(B) = 2.36; Table 5). 

4. Discussion 

In the present study, we examined rTMS based language mapping by 
using an object naming task and group analysis in a spatially normalized 
cohort of 90 glioma patients. After spatial normalization, a linear SVM 
model using TMS ERs, tumor location and demographic data was 
applied to classify the patients’ aphasia status. Regarding the SVM re-
sults, the findings of the present study can be linked to current neuro-
plasticity models from research in post-stroke aphasia, for example the 
use of spare capacity within or between networks via variable neuro- 
displacement (variable neuro-displacement is described as the process 
by which a neural network uses its free capacity and increases its activity 
and/or performance in more demanding conditions – it aims at titrating 
performance against energy costs) (Hartwigsen and Saur, 2019; Stefa-
niak et al., 2019). Moreover, similar to other tumor-induced language 
neuroplasticity studies, our results reveal an involvement of right pars 
triangularis in relation to aphasia caused by left-hemispheric lesions 
(Piai, 2019; Thiel et al., 2005). Regarding the SVM’s model underlying 
TMS spot distribution, the pattern of overall positive rTMS spots does 
not differ from the pattern of overall negative rTMS spots. Furthermore, 
the rTMS-based analysis demonstrated a bihemispheric perisylvian 
distribution of rTMS-positive cortical areas indicating a bilateral rep-
resentation of language function. This bilateral susceptibility to rTMS 
disruption of language processing is less pronounced in rTMS studies on 
healthy volunteers, indicating functional reorganization of the language 
network in brain tumor patients (Rosler et al., 2014). This observation is 
in line with other studies, suggesting a pivotal role of left and right 
frontal, as well as left precentral, central and parietal areas for language 
function (Stefaniak et al., 2019). The wide-spread distribution of rTMS 
positive responses is consistent with the large-scale distributed network 
configuration of language. 

4.1. SVM classification 

The SVM model results demonstrate the accuracy of patient classi-
fication into different groups (i.e. aphasic, non-aphasic) based on dis-
tributions of rTMS language mapping error rates. The SVM results show 
that right pars triangularis, left supramarginal gyrus, left inferior pari-
etal gyrus and age contributed more to the classification model than 
rTMS language error rates in other areas and patients’ lesion profile 
features. The important contribution of rTMS-induced object naming 
error rates in right pars triangularis to distinguish aphasic from non- 
aphasic tumor patients could plausibly be the result of a functional 
shift of language abilities from the left to the right hemisphere to 
compensate for the initial impact of left-hemisphere brain tumors on the 

Fig. 4. Visualization of overall ER distribution in relation to AAL3 parcellation in non-aphasic (left) and aphasic (right) groups. The color bars indicate the median 
ER per area. 
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language network. However, this may be caused by behavioral vari-
ability due to differences in premorbid functions of certain brain areas, 
or because of differences in the brain’s potential for reorganization to 
compensate for lost function (Price, 2018). 

The overall increase of errors in aphasic patients shows that even 
after baseline correction of the object-naming image stack, patients with 
aphasia make more errors during mapping in the left hemisphere. We 
used a cut-off value of 28% error rate during baseline naming of the 
object naming task (Schwarzer et al., 2018). Yet, concerning the aphasic 
patients of the present study, the SVM results demonstrate that the 

overall increase of ERs over both hemispheres manifests in a dispro-
portional increase of errors in the right pars triangularis. This finding 
plausibly points towards an increased involvement in object naming of 
the right hemisphere due to the left hemisphere pathology. Further, it 
points towards the previously claimed object naming susceptibility of 
the right hemisphere in areas such as the right inferior frontal gyrus 
(Neininger and Pulvermuller, 2003; Rosler et al., 2014; Thiel et al., 
2005). In stroke studies recruitment of the right inferior frontal gyrus 
after left hemispheric stroke was associated with both, favorable and 
unfavorable outcomes compared to cases with predominant regional 
ipsilateral recruitment (Hartwigsen and Saur, 2019). TMS-induced 
suppression of the right pars triangularis in patients with post-stroke 
aphasia has previously been associated with improvements in object 
naming performance (Naeser et al., 2011). This finding has been repli-
cated a number of times (Barwood et al., 2013; Harvey et al., 2019; 
Kindler et al., 2012; Thiel et al., 2013), although other studies have 
reported substantial inter-patient variability in the effect of inhibitory 
TMS over the right pars triangularis in acute stroke patients (Seniow 
et al., 2013; Winhuisen et al., 2005). Yet, in brain tumor patients, there 
is evidence that a shift towards the right hemisphere is associated with 
better outcome after surgery in the left hemisphere, supporting hy-
potheses of increased functional reserve in patients with more bilateral 
distributions of language function (Ille et al., 2016). The current results 
are compatible with both, a beneficial or a deteriorating effect of right 
hemispheric neuroplasticity on aphasia status. The difference in right 
hemispheric error rates could demonstrate neuroplasticity compen-
sating for (otherwise more severe) language impairments following 
tumor induced lesions. Alternatively, at least in theory, the right 
hemispheric neuroplasticity could also reflect a dysfunctional mecha-
nism which leads to (an increase of) aphasics symptoms in the patients 
investigated in the current analysis and could thus explain the SVM 
classification findings. 

Regarding the effect of tumor location, PCA component 6 (including 
left Heschl’s gyri, left middle longitudinal fasciculus, left Rolandic 
operculum and left superior temporal gyrus), PCA component 9 
(including left middle temporal gyrus and left vertical occipital fascic-
ulus) and the related mediation effect, and thus the lesion topographies, 
may explain some of the predictive values of the ERs for the aphasia 
status, but critically not in its entirety. Therefore, the ERs in right pars 
triangularis, left supramarginal gyrus and left inferior parietal gyrus can 
be seen to be informative for the aphasia status, independent of the in-
fluence of the individual lesion topography. In contrast, the feature of 
age contributed significantly to the SVM model. This result is confirmed 
by an earlier study predicting language dysfunction, that reported cor-
relation of age and tumor grade with aphasia, but no correlation of 
tumor location (Recht et al., 1989). Even years later it is argued that the 
location of the tumor does not correlate with the type of aphasia or its 
severity before, during and after tumor resection (Davie et al., 2009). 
This supports the notion that general tumor induced network discon-
nection is relevant to aphasia and not necessarily related to specific 
lesion locations. Regarding the feature of age, our results may support 
the decreasing potential for neuroplasticity with age, as has been shown 
in previous studies (Lu et al., 2004). However, this was not directly 
tested in this study. 

Importantly, our results confirm the importance of the left supra-
marginal gyrus and left inferior parietal gyrus for maintaining speech 
function, as it has already been shown in early lesion mapping studies 
(Penfield and Roberts, 1959). Additionally, lesions disconnecting 
traditional Broca’s and Wernicke’s areas, including the left supra-
marginal gyrus and left inferior parietal gyrus, cause different syn-
dromes of clinical aphasias (Catani et al., 2005). Our findings regarding 
the importance of the left supramarginal gyrus could be linked to 
Geschwind’s territory that connects traditional Broca’s and Wernicke’s 
areas via the arcuate fascicle with its anterior and posterior segments 
(Catani et al., 2005). The supramarginal and angular gyri represent high 
risk areas, an indication of low functional resectability, which further 

Table 2 
ER distribution in non-aphasic and aphasic patients.  

Region Overall ER (%) Mdn (IQR) Missing subjects n (%) 

Non- 
aphasic 
patients 

Aphasic 
patients 

Non- 
aphasic 
patients 

Aphasic 
patients 

Left angular gyrus 0 (0) 0 (11.11) 19 (31.15) 9 (31.03) 
Right angular gyrus 0 (0) 2.63 

(12.5) 
28 (45.90) 13 

(44.83) 
Left inferior frontal gyrus, 

opercular part 
0 (8.33) 7.69 

(14.29) 
7 (11.48) 4 (13.79) 

Right inferior frontal 
gyrus, opercular part 

0 (9.76) 0 (11.46) 22 (36.07) 9 (31.03) 

Left pars triangularis 3.70 (7.42) 8.71 
(8.26) 

6 (9.84) 5 (17.24) 

Right pars triangularis 0 (6.63) 5.88 
(14.28) 

22 (36.07) 8 (27.59) 

Left middle frontal gyrus 0 (7.41) 5.88 
(10.71) 

12 (29.67) 8 (27.59) 

Right middle frontal 
gyrus 

0 (8.90) 4.45 
(10.63) 

23 (37.70) 9 (31.03) 

Left superior frontal 
gyrus, dorsolateral 

0 (2.80) 8.33 (20) 29 (47.54) 17 
(58.62) 

Right superior frontal 
gyrus, dorsolateral 

0 (0) 0 (10) 34 (55.74) 16 
(55.17) 

Left inferior parietal gyrus 
(excluding angular and 
supramarginal gyri) 

0 (6.25) 7.68 
(9.88) 

8 (13.11) 3 (10.34) 

Right inferior parietal 
gyrus (excluding 
angular and 
supramarginal gyri) 

0 (0) 2.94 
(14.88) 

21 (24.43) 9 (31.03) 

Left superior parietal 
gyrus 

0 (11.65) 0 (0) 27 (44.26) 13 
(44.83) 

Right superior parietal 
gyrus 

6.97 (9.09) 0 (5) 31 (50.82) 14 
(48.28) 

Left postcentral gyrus 3.85 (6.73) 4.08 
(11.24) 

4 (6.58) 2 (6.90) 

Right postcentral gyrus 4.35 (7.69) 5.56 
(9.98) 

20 (32.79) 7 (24.14) 

Left precentral gyrus 2.50 (6.61) 8.02 
(11.60) 

7 (11.48) 3 (10.34) 

Right precentral gyrus 0 (5.56) 5 (14.29) 20 (32.79) 8 (27.59) 
Left rolandic operculum 0 (2.85) 13.39 

(17.5) 
7 (11.48) 5 (17.24) 

Right rolandic operculum 0 (0) 11.11 
(15.38) 

20 (32.79) 8 (27.59) 

Left supramarginal gyrus 4.55 (8.33) 10 (7.69) 8 (13.11) 4 (13.79) 
Right supramarginal 

gyrus 
5.26 
(10.39) 

4.55 (10) 19 (31.48) 8 (27.59) 

Left middle temporal 
gyrus 

3.46 (8.35) 8.70 (7.5) 9 (14.75) 0 (0) 

Right middle temporal 
gyrus 

5.13 (8.52) 2.63 
(11.92) 

25 (40.98) 15 
(51.72) 

Left temporal pole: 
superior temporal gyrus 

0 (8.68) 0 (0) 16 (26.23) 10 
(34.38) 

Right temporal pole: 
superior temporal gyrus 

0 (0) 0 (6.25) 30 (49.18) 10 
(34.48) 

Left superior temporal 
gyrus 

3.18 (9.09) 7.94 
(9.24) 

3 (4.92) 1 (3.45) 

Right superior temporal 
gyrus 

3.13 (7.14) 6.25 
(8.17) 

20 (32.79) 7 (24.14) 

Note: Only AAL3 ROIs that were stimulated at least 6 times were considered for 
the calculation of ERs. 
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highlights their crucial role in relation to aphasia (Ius et al., 2011). 

5. Limitations 

The number of rTMS stimulations per area is heterogenous, with the 
discomfort evoked by the current rTMS methodology limiting cortical 
coverage. By and large, only one speech task was used in the study, 
namely object naming. This may lead to a systematic error, since 
different cortex areas may have different sensitivities to certain 

linguistic submodalities (De Witte et al., 2015), but also due to a possible 
location specificity (Krieg et al., 2017). Further, an object naming task 
alone provides only a partial picture of language processing. In addition, 
aphasic patients with an error rate of more than 28% in the baseline 
object naming task were excluded from rTMS mapping, biasing the 
sample to patients with milder forms of aphasia. Also, error annotation is 
user dependent, leading to difficulties when comparing results across 
institutions and establishing objective measures for the analysis of lan-
guage performance. Moreover, the impact of aphasia severity was not 
tested and might be addressed in another study with larger subgroup 
analyses. It should also be mentioned that cognitive mapping depends 
on the patient’s individual performance. This leads to a high degree of 
variability in cognitive mapping, which is difficult to control for. Finally, 
we would like to state that the results are atlas dependent and may 
therefore be compromised by the choice of parcellation scheme. 

Fig. 5. Visualization of spherical ROIs-based SVM (SVM1) weights. The visualization illustrates the different weights of ROIs classified by the SVM (SVM1) model, 
shown in left sagittal, dorsal and right sagittal views. The ROI sizes indicate the SVM (SVM1) weights of the AAL3 areas. 

Table 3 
Weights learned from SVM classification with LibSVM, linear kernel.  

Feature Weight 

Left inferior parietal gyrus (excluding angular and supramarginal gyri)  2.28 
Left supramarginal gyrus  3.64 
Right pars triangularis  1.34 
Age  2.98  

Fig. 6. ROC for the SVM (SVM1) model with AUC = 85.4%. The ROC curve shows the true positive rate against the false positive rate at various threshold settings.  
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6. Conclusion 

The results of the present study based on group analysis, cortical 
parceling and machine learning classification with an SVM model in 90 
patients suffering from left perisylvian glioma, show that the pattern of 
rTMS-induced errors in aphasic patients differs distinctly from the 
pattern in non-aphasic patients. Further, our findings demonstrate that 
patients with aphasia due to left perisylvian brain tumours have a 
generally increased area of right perisylvian rTMS error susceptibility, 
particularly in the right pars triangularis, as well as a larger right peri-
sylvian distribution of ERs. This finding points towards a stronger, 
possibly essential, involvement of the right frontal lobe as a result of 
aphasia-induced functional reorganization. While reliable non-invasive 
mapping of the functional language-network remains a major chal-
lenge in individual brain tumor patients, the results of this study could 
suggest that machine learning adds to the detection of distinct patterns 
of functional reorganization in patients with language eloquent brain 

tumors. To the best of our knowledge, this study constitutes the first 
machine learning based classification of rTMS language mapping results 
of tumor patients. 
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Table 4 
Error rate comparisons between aphasic and non-aphasic patients in the AAL3 areas with SVM weights.  

Area Overall ER (%) Mdn (IQR) p Z- 
score 

η2 Number of patients 

Non-aphasic 
patients 

Aphasic 
patients 

Non-aphasic 
patients 

Aphasic 
patients 

Left inferior parietal gyrus (excluding angular and 
supramarginal gyri) 

0 (6.25) 7.68 (9.88)  0.0057  3.448  0.152 53 26 

Left supramarginal gyrus 4.55 (8.33) 10 (7.69)  0.00042  3.794  0.182 53 25 
Right pars triangularis 0 (5.00) 5.88 (14.28)  0.047  1.984  0.069 39 21 

Note: Note: Only AAL3 ROIs that were stimulated at least 6 times were considered for the calculation of ERs. 
Number of tests = 3. Results computed by Matlab multicmp and ranksum toolboxes. 
η2 represents the effect size of Mann-Whitney U test: η2 = Z2/N. 

Fig. 7. ER comparison between aphasic and non-aphasic groups in relation to SVM (SVM1)-derived AAL3 ROIs.  

Table 5 
Logistic regression on aphasia status and PCA components derived from overlapped ratio of ROIs (AAL3 and IIT).   

B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)        
Lower Upper 

Component1 − 0.074 0.276 0.072 1 0.788 0.928 0.540 1.595 
Component2 − 0.036 0.256 0.019 1 0.889 0.965 0.584 1.595 
Component3 0.115 0.242 0.227 1 0.634 1.122 0.698 1.805 
Component4 0.187 0.258 0.524 1 0.469 1.206 0.727 2.001 
Component5 0.511 0.271 3.549 1 0.060 1.666 0.980 2.835 
Component6 0.617 0.272 5.144 1 0.023 1.854 1.087 3.161 
Component7 0.006 0.247 0.001 1 0.979 1.006 0.620 1.633 
Component8 − 0.093 0.271 0.118 1 0.731 0.911 0.536 1.549 
Component9 0.859 0.304 7.991 1 0.005 2.361 1.301 4.282 
Component10 − 0.359 0.311 1.333 1 0.248 0.698 0.380 1.285 
Constant − 0.853 0.264 10.403 1 0.001 0.426    
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