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Abstract: Lytic polysaccharide monooxygenases (LPMOs) have sparked a lot of research regarding
their fascinating mode-of-action. Particularly, their boosting effect on top of the well-known cel-
lulolytic enzymes in lignocellulosic hydrolysis makes them industrially relevant targets. As more
characteristics of LPMO and its key role have been elucidated, the need for fast and reliable methods
to assess its activity have become clear. Several aspects such as its co-substrates, electron donors,
inhibiting factors, and the inhomogeneity of lignocellulose had to be considered during experimental
design and data interpretation, as they can impact and often hamper outcomes. This review provides
an overview of the currently available methods to measure LPMO activity, including their potential
and limitations, and it is illustrated with practical examples.

Keywords: lytic polysaccharide monooxygenase; enzyme assay; cellulose; lignocellulosic biomass;
chromatography; enzyme kinetics

1. Introduction

Until recently, the enzymatic conversion of recalcitrant polysaccharidic materials such
as chitin or cellulose was thought to solely depend on the activity of hydrolytic enzymes.
The discovery of lytic polysaccharide monooxygenases (LPMOs) has revolutionized this
view [1]. LPMOs are copper-containing enzymes that boost the activity of the classical
hydrolytic enzymes on either chitin [2] or cellulose [3]. In 2010, Vaaje-Kolstad et al. [1]
showed that LPMO’s catalytic mechanism is based on an oxidative reaction, which re-
sults in the cleavage of glycosidic bonds in polysaccharides, and an overall disruption of
the substrate’s structure, facilitating the activity of hydrolytic enzymes such as endoglu-
canase (EG), cellobiohydrolase (CBH), and β-glucosidase (BG) (Figure 1). LPMOs are now
classified as auxiliary activities (AA) [4,5] and grouped into seven families in the CAZy
database (CAZy. Available online: http://www.cazy.org/, accessed on 12 April 2021).
Enzymes belonging to families AA9 and AA10, originally known as GH61 and CBM33,
respectively, were the first to be characterized [1,6]. AA9s include fungal enzymes that
are active on different substrates, such as cellulose [6–8], soluble cello-oligosaccharides [9],
xylan [10], hemicelluloses [11–13], and starch [14,15]. AA10 LPMOs, found in all domains
of life but mainly in viruses and bacteria, have been reported to have activity on chitin
and cellulose [1,16]. AA11, AA13, and AA14 LPMOs are only found in fungi and show
activity towards chitin, starch, and cellulose-bound xylan, respectively [14,17,18]. Mem-
bers of the AA15 family, found in Eukarya and viruses, show activity on both chitin and
cellulose [19]. The most recently described family is AA16, with one enzyme so-far char-
acterized showing activity on cellulose [20]. One peculiar structural feature of LPMO is
the presence of a flat binding surface in which two conserved histidines coordinate the
Cu2+ ion and form the so-called histidine brace [6,21,22]. The third residue coordinating
the copper is a tyrosine for AA9 (Figure 2), as well as for AA11/13/14/15 [18], and a
phenylalanine for most of the AA10 [23]. The reduction of Cu2+ to Cu+ is driven by an
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external electron donor, which can be a small molecule such as ascorbic acid or certain
phenols [1,24,25], biomass components such as lignin and its derivatives [26,27], an en-
zyme such as cellobiose dehydrogenase and pyrroloquinoline quinone (PQQ)-dependent
pyranose dehydrogenase (PDH) [28–33], or light [34–36]. This represents the first step in
the oxidative reaction of LPMO. Following this, a reaction with O2 [1] or H2O2 [30] leads
to the hydroxylation of either the C1 (resulting in the formation of an aldonolactone) or C4
carbon (with the formation of a 4-ketoaldose) of the glucose moieties in the polysaccharide
substrate [10,11], releasing both soluble and insoluble oxidized products [6]. The majority
of LPMOs characterized so far, according to the CAZy database (CAZy. Available online:
http://www.cazy.org/, accessed on 12 April 2021) [5], are C1- or C1/C4-oxidizing LPMOs,
with fewer strictly C4-oxidizers reported in literature. Over the past few years, several
studies have focused on the identification of elements involved in LPMO regioselectivity
because the sequence-based unambiguous prediction of C1/C4-oxidizing activity is not as
straightforward. In this regard, the precise positioning of the active site copper towards
the substrate [37–40], which is influenced by the local amino acid configuration, appears to
be the main determinant.
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Figure 1. Schematic representation of enzymes acting in the deconstruction of cellulose. LPMOs (C1-
oxidizing: EC 1.14.99.54; C4-oxidizing: EC1.14.99.56) use either O2 or H2O2 to hydrolyze cellulose
chains in the crystalline regions, making the cellulose more accessible for the action of hydrolytic
enzymes. Endoglucanases (EG; EC 3.2.1.4) hydrolyze the glycosidic bond in the amorphous regions
of the cellulose chains, generating new reducing and non-reducing ends. Cellobiohydrolases (EC
3.2.1.91) processively release cellobiose units from the reducing (CBH I) and non-reducing (CBH II)
ends of the cellulose chains. Cellobiose is then converted into glucose units by β-glucosidases (BG;
EC 3.2.1.21). Ox, oxidated glucose moiety; CBM, carbohydrate binding module.
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Figure 2. Crystal structure and catalytic center of a fungal LPMO. Schematic representation of the crystal structure and a
close-up view of the histidine-brace of the cellulose-active TtLPMO9E from Thielavia terrestris (UniProt ID G2RGE5, PDB
3EJA, strictly C1-oxidizing). The copper atom is shown as an orange sphere. The residues involved in the coordination of
the copper are shown as sticks.

Since their discovery, LPMOs have attracted attention from both the academic sector
and industry. The ability of cellulose-active LPMOs to improve the hydrolysis efficiency of
classical cellulases on different lignocellulosic materials represents an interesting option
for industries to reduce the enzyme loadings needed in the process of biomass to biofuel
conversion [41,42]. Despite extensive research conducted in the last few years, accurately
measuring and quantifying LPMO activity is still a difficult task, partly due to the insoluble
nature of the substrates. As a result, less than 1% of the ~8500 known LPMO enzymes
(CAZy. Available online: http://www.cazy.org/, accessed on 12 April 2021) are biochem-
ically characterized. With several key questions still to be elucidated (e.g., inactivation
mechanisms, reducing agents, and effects of O2, H2O2, or electron acceptors under indus-
trial conditions), there is a need for a variety of analytical methods. The most commonly
applied method is to assess LPMO activity by analyzing the oxidized oligosaccharides
released after the incubation of the enzyme with the substrate through high performance
anion exchange chromatography (HPAEC) and/or mass spectrometry [1,16]. Though very
sensitive, these methods can be quite time-consuming and require specialized equipment
that is not available in every facility. Despite several studies focusing on quick and easy
methods to assess LPMO activity, we are still lacking a screening method to compare the
oxidative activity of LPMO on different polysaccharides. The aim of this review is to give
an overview of available methods that have been used to assess LPMO activity, with their
advantages and drawbacks.

2. Analytical Methods

LPMOs act on the glycosidic bonds of cellulose chains by using O2/H2O2 and elec-
trons to extract a hydrogen atom from the C1 or C4 carbon and form a radical that is
immediately hydroxylated. This species is unstable, leading to the breakage of the glyco-
sidic bond and the oxidation of the chain end [9,28]. As reported extensively, depending on
the type of LPMO, the oxidation can take place either at the C1 (EC number: EC 1.14.99.54)
or C4 carbon (EC number: EC 1.14.99.56) [1,7,39,43,44]. C1-oxidation results in the for-
mation of an oligosaccharide with a regular non-reducing end and a lactone group on
the other end that is hydrated to its aldonic acid form. C4-oxidation results in an oligo
with a regular reducing end and a 4-ketosugar on the other end that is then hydrated
to gem-diol (Figure 3). The most common identification and quantification methods for
LPMO products rely on chromatographic methods and mass spectrometry analysis, which
differ depending on the type of LPMO–substrate combinations to analyze. Oxidized
cello-oligosaccharides can be successfully separated by means of high performance anion
exchange chromatography (HPAEC) [1,43], and they can be analyzed by different detection

http://www.cazy.org/
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methods (pulsed amperometric detection (PAD), electrospray-ionization mass spectrome-
try (ESI-MS), and charged aerosol detection (CAD)); see below for more details. In parallel,
MALDI-TOF MS is normally employed to annotate the oxidized products detected with
HPAEC. Another chromatographic method successfully applied to separate C1- and C4-
oxidized cello-oligosaccharides is porous graphitized carbon (PGC) chromatography, either
alone or in combination with CAD [45].
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leading to the formation of a lactone or a 4-ketoaldose, respectively.

2.1. HPAEC-PAD

The most commonly used quantitative method to assess LPMO activity is measuring
the amount of products released after incubation by means of high-performance chro-
matography, particularly HPAEC with PAD [43]. A typical elution pattern is presented in
Figure 4: native (non-oxidized) products elute first, followed by C1- and C4-oxidized prod-
ucts. Double-oxidized products normally elute later in the gradient. Here, C1-oxidizing
NcLPMO9F [46] and TausLPMO9B [47] and C4-oxidizing NcLPMO9C [46] were incubated
with phosphoric acid swollen cellulose (PASC) in the presence of ascorbic acid as an elec-
tron donor. In order to separate the oligosaccharides present in the reaction mixtures,
alkaline pH is applied during the elution. This is particularly favorable for the separation
and detection of C1-oxidized products, which are negatively charged at alkaline pH, thus al-
lowing for separation from native products. On the other hand, at alkaline pH, C4-oxidized
products tend to be subjected to chemical modifications such as tautomerization [9] and
on-column decomposition [45]. Due to this and the late elution of the products in a phase
when the percentage of acetate in the mobile phase is high and more likely to suppress
other signals, the intensity of the C4 peaks is relatively low compared to C1 peaks. On
top of this, C4-oxidized products in alkaline environments tend to get converted to native
(non-oxidized) products, which can explain the increase in native products released upon
the incubation of substrates with C4-oxidizing LPMOs [45,48]. Another drawback is that
due to the high pH and salt concentrations used for separation, the MS analysis of HPAEC
samples is not straightforward. Coupling the HPAEC-PAD set-up to an ion trap MS with
online anion suppression has been proven to be an effective tool for the direct annotation
of C1-oxidized products but does not allow for the detection of masses corresponding to
C4-oxidized products or C1/C4-oxidized products [45].
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Figure 4. Products released from cellulose by different AA9s [47]. Strictly C1-oxidizing LPMOs
(TausLPMO9B, blue line; NcLPMO9F, red line) and strictly C4-oxidizing LPMO (NcLPMO9C, green
line) in the presence (solid lines) or absence (dotted lines) of ascorbic acid (asc). The black solid
line represents the negative control containing all components of the reaction mixture except for
the enzyme.

The quantification of released soluble products requires a comparison to oligosaccha-
ride standards of known concentration. To “simplify” the product profile and allow for
easier quantification, the reaction mixtures can be treated with different enzymes. Treat-
ment with a GH5 endoglucanase, such as Tf Cel5A [49], degrades longer oxidized products
to a mixture of oxidized trimers and dimers [23,35,38,50,51]. Standards for these trimers
and dimers can be produced by incubating cellotriose and cellobiose, respectively, with
cellobiose hydrogenase MtCDH [38]. In a similar approach, Frommaghen et al. [52] devel-
oped a method to quantify C1-oxidating activity by using BG to convert longer oxidized
oligosaccharides into gluconic and cellobionic acid, which can be compared with commer-
cially available standards (see Figure 5 in this work and Figure 1 in [52] for examples of the
effect of BG on product profile). The quantification of C4-oxidation, on the other hand, is
not as simple, due to the instability of these compounds during analysis and the lack of
proper standards. Nevertheless, Müller et al. exploited the ability of a C4-oxidizing LPMO
(NcLPMO9C) to cleave cellopentaose and generate equimolar amounts of native cellotriose
(commercially available) and C4-oxidized cellobiose (Glc4gemGlc); this mixture was used
as an external standard to indirectly quantify the amount of Glc4gemGlc by comparing
it with the native cellotriose compound [53]. Glc4gemGlc can subsequently be incubated
with MtCDH to generate a standard for the double-oxidized dimer (Glc4GemGlc1A) [23].
Because of the challenges faced when assessing LPMO activity, there are not many kinetic
data available in the literature. Bissaro et al. reviewed the apparent LPMO rates that were
either published or calculated from available progress curves [54]. The highest oxidative
rates have been reported for reactions with H2O2 [30,55], followed by reactions fueled by
photocatalytic systems [34,56].
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Figure 5. Products released from cellulose by TausLPMO9B [47] before (blue line) and after (green
line) treatment with BG; 1 µM TausLPMO9B was incubated with 0.1% (w/v) PASC and 1 mM
ascorbic acid in a 50 mM sodium acetate buffer pH 5 at 45 ◦C for 16 h. Reaction mixtures were
centrifuged and filtered before the treatment of soluble products with 1 unit of BG from almonds
(Sigma, St Louis, MO, USA) at 37 ◦C for 16 h in a 50 mM sodium acetate buffer pH 5. Glc1A,
gluconic acid; GlcGlc1A, cellobionic acid; Glc2 Glc1A, cellotrionic acid; Glc3Glc1A, cellotetraonic
acid; Glc5Glc1A, cellohexaoinic acid; Glc6Glc1A, celloeptaonic acid.

When measuring the activity of an isolated LPMO, the above-mentioned methods are
suitable for the detection of small soluble products only. Considering that a fraction of
oxidized LPMO products still remains in the insoluble fraction, reported LPMO activities
are usually underestimated. A way to address this problem is by degrading the insoluble
fraction of the LPMO–substrate mixture using hydrolytic enzymes, resulting in the release
of residues that can be quantified by chromatographic methods. Applying this principle
during the characterization of the cellulose-active TtLPMO9E, Cannella et al. were able to
quantify the total cellulose oxidation by measuring the amount of glucose and gluconic
acid released after the treatment of LPMO reaction products with a commercial cellulosic
cocktail [34]. The same method was applied by Frommhagen et al. [52], who showed that
the amount of oxidized oligosaccharides was higher in the insoluble fraction during the
early hours of incubation compared to the soluble fraction. Based on the progress curve
reported in the latter study, the total amount of the released oxidized products can be
estimated as about two times higher than the soluble oxidized products, with values in the
range of, respectively, 28 and 15 µM after 8 h of enzyme incubation. Though enzymatic
hydrolysis is often not 100% complete due to various limiting factors, the only alternative
is complete acid hydrolysis, but this destroys the oxidative moieties. HPAEC-PAD is
powerful tool that is also routinely applied for the identification of products released from
other substrates, such as xyloglucan [11,48,52,57,58].

Though very sensitive, the methods described above come with certain limitations.
Due to long analysis times (typical incubation times go up to 24 h and approximately 30 min
per chromatographic run), it is not viable to monitor LPMO activity during production (i.e.,
fermentation and purification). On top of that, the limitation of the analysis to solubilized
products and the lack of readily available reference compounds (the synthesis of which can
become laborious and costly) are further complications.

2.2. Porous Graphitized Carbon (PGC) Chromatography

PGC chromatography has proven to be an efficient method for the separation of native
and oxidized cello-oligosaccharides. An important advantage of this method is the use of a



Biomolecules 2021, 11, 1098 7 of 21

buffer compatible with MS analysis (50 mM ammonium bicarbonate at pH 8). The PGC col-
umn separates compounds based on the surface contact between the molecular area of the
analyte and the graphite surface, as well as the polarity of the analyte itself [59]. Because of
their different pKa, aldonic acids and native products behave differently at the slightly alka-
line conditions (pH 8) used during PGC chromatography, with the former being negatively
charged (e.g., pKa of cellobionic acid = 3.51 [45] and pKa D-gluconic acid = 3.7 [60]) [43].
The protocol developed for the separation of aldonic acids has also proven to be successful
for the simultaneous analysis of C1- and C4-cellodextrins, particularly for the separation of
gem-diol and aldonic acids with the same DP [43]. The resolution decreases for mixtures of
native and C4-cellodextrins or aldonic acids and double-oxidized species, as their retention
times are similar and they tend to co-elute. The absolute identification of these products
therefore requires either MS detection (see Figure 4 in [45] for an example of porous graphi-
tized carbon chromatograms of either native, C1-, C4-, or double-oxidized cellodextrins)
or β-glucosidase treatment to remove native and C1-oxidized species [45]. Moreover, the
strong affinity of the PGC column stationary phase for longer oligosaccharides does not
allow for the separation of native-oligosaccharides with a DP above five. Combining PGC
with CAD enables product quantification. This is particularly effective for C4-cellodextrins,
with amounts as low as nanograms detectable when using low ionic strength eluents,
therefore making this method sensitive enough to be used in kinetic studies [45].

2.3. RP-UHPLC-UV-ESI-MS/MS

In 2017, Frommhagen et al. developed a protocol for the separation of C4-oxidized
oligosaccharides based on reverse phase-ultra high performance liquid chromatography
(RP-UHPLC) paired to non-reductive 2-aminobenzamide (2-AB) labeling [61]. Reduc-
tive labeling via amination had already been used before for the identification of gluco-
oligosaccharides [62]. The process is based on the reaction of the reducing end of the
oligosaccharide with a fluorophore–amine complex. This reaction results in the generation
of unstable intermediates, such as imines, which are converted into more stable amines
using reducing agents. The reductive labeling of C4-oxidized products derived from LPMO
reactions can be challenging because the ketone group tends to also be reduced in the
presence of strong reducing agents [63]. Building on this knowledge, Frommhagen and
co-workers developed a non-reductive labeling method. The new method resulted in the
successful identification of native and C4-oxidized products without the use of strong
reducing agents. The advantage of this approach is, as for the PGC method, the improve-
ments in the analysis and identification of native and C4-oxidized oligosaccharides, for
which HPEAC separation is not efficient. In contrast to PGC, the use of non-reductive
labeling allows for the use of non-buffered eluents, which are less detrimental in terms of
mass spectrometry sensitivity, for separation.

2.4. UHPLC-ESI-MS

The separation of polar compounds, such as LPMO products, can be efficiently
achieved with UHPLC. Though not routinely used, the combination of UHPLC with
ESI-MS can complement MALDI-TOF analysis in getting a complete spectrum of product
profile. Since the 2,5-dihydroxybenzoic acid (DHB) matrix generates signals in the low
molecular weight region of the spectrum, the optimal detection range for MALDI-TOF MS
includes longer oligosaccharides (DP between 3 and 10). By combining the high sensitivity
offered by ESI-MS with the efficiency of hydrophilic interaction chromatography to an-
alyze polar compounds, De Oliveira Gorgulho Silva et al. developed a UHPLC-ESI-MS
method that can detect smaller oligosaccharides (DP 1–5) [64]. Additionally, this method is
compatible with online mass-spectrometry detection.

2.5. MALDI-TOF-MS

A method to qualitatively assess the products released by LPMO, after incubating the
enzyme with substrate and reducing agents, is MALDI-TOF MS [1,6,65,66]. Even though
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the 4-ketosugars and lactones have identical masses (m/z −2 compared to the correspond-
ing native product), it is still possible to discriminate them by means of MS [65,66]. At the
neutral pH used during analysis, the equilibrium between the lactone and its aldonic acid
form is shifted towards the latter. Because of its carboxylic group, the aldonic acid is more
prone to form double salt adducts. In contrast to the C1 products, the 4-keto-sugar gener-
ated through C4-oxidation and its hydrated gem-diol form are in equilibrium and typically
result in single sodium adducts. Taken together, the detection of masses corresponding to
the presence of two sodium ions is an indication of the presence of C1-oxidized products
in the reaction mixture, while their absence suggests C4-oxidizing activity (see [23,67]
for examples of the MALDI-TOF spectra of oxidized products). Additionally, the per-
methylation of released oxidized products allows for the unambiguous identification of
C1-oxidation [68]: the conversion of hydrogen atoms to methyl groups leads to the gen-
eration of +30 Da species for products oxidized at the reducing end compared to the
corresponding non-oxidized oligosaccharides [6,15,19]. The analysis of reaction products
through MALDI-TOF has been successfully applied to characterize LPMO activity on sev-
eral substrates. In addition to cellulose, MALDI-TOF is routinely applied to detect activity
on chitin [1,67,69], hemicellulose [11,48,57,58,70,71], and starch [15]. For instance, by using
this method, Lo Leggio et al. detected the aldonic acids released from starch by An(AA13),
which could not be detected through chromatographic methods [15]. Though the MALDI-
TOF-MS method is purely qualitative, it can be useful to assess the regioselectivity and
activity of particular LPMOs.

2.6. NMR

Some studies have used nuclear magnetic resonance (NMR), in particular as a means
to assess the possibility of C6-oxidation activity, as C6-oxidized products cannot be easily
and unambiguously identified with mass spectrometry. NMR has been successfully used to
identify the products released by NcLPMO9C as C4-oxidizing products [9] and to confirm
the absence of C6-oxidation. Westereng et al. [43] also used NMR to confirm the identity
of a cellotrionic acid generated through semi-preparative PGC-LC, and they used it as
standard for the assessment of chromatographic methods.

2.7. XPS

X-ray photoelectron spectroscopy (XPS) is a powerful surface technique that allows
for elemental composition analysis. The irradiation of the sample with a beam of X-rays
causes photoelectron emission from the surface, generating a specific kinetic energy that
can be measured and used to identify the chemical composition of the sample surface.

As LPMOs modify the surface of the substrate, the introduction of oxygen atoms
can be detected and analyzed by XPS. This method was successfully applied by Selig and
co-workers [72] in the evaluation of ScLPMO10C’s influence on the interactions between
cellobiohydrolase and cellulose. In this case, XPS was used to verify the presence of
oxidized cellulose on cellulose-coated SiO2 sensors caused by the LPMO treatment. Though
powerful, this costly method has not been so widely applied. Vuong et al. used it as a
comparison to validate their newly developed method [73] (see section “Carbodiimide
conjugation of carboxyl groups”).

3. Methods Based on Absorbance/Fluorescence

Though very sensitive, chromatographic methods can be time-consuming and requires
high-end instrumentation. Therefore, efforts have been made towards the development of
alternative fast and easy assays that can be used to measure and/or characterize activity
by making use of different LPMO properties. In contrast to directly measuring reaction
products, LPMO activity can also be indirectly determined by measuring, for instance, side
products. As described above, LPMOs are oxidative enzymes with a Cu(II) atom in the
catalytic center. The reaction starts with the reduction of Cu2+ to Cu+ by an external electron
donor. The reduced copper then reacts with the co-substrate, originally proposed to be O2,
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forming an activated copper–oxygen complex that enables the oxidation of the substrate
and the cleavage of the glycosidic bond (Figure 6; [1,29]). A recent study proposed H2O2
as a kinetically relevant co-substrate for LPMO [30]. In this proposed mechanism, after
the reduction of Cu2+ to Cu+ and in the presence of a substrate, LPMO reacts with H2O2,
leading to the abstraction of a hydrogen atom from the substrate and the hydroxylation of
the latter [30,74] (Figure 6b). In the absence of a substrate, the activated copper–oxygen-
complex undergoes a so-called “uncoupling reaction,” leading to the generation of H2O2
(Figure 6c).
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leading to substrate hydroxylation (R-OH). In the absence of a substrate (c), oxygen reduction by LPMO results in the
generation of H2O2.

3.1. AmplexTM Red/Horseradish Peroxidase

The H2O2 produced by the “uncoupling reaction” can be quantified by the AmplexTM

Red/Horseradish peroxidase (HRP) assay [46]. HRP can oxidize AmplexTM Red using
H2O2 to resorufin in a 1:1 stoichiometry (Figure 7a). This product is a red fluorescent com-
pound with an absorption maximum at 536 nm and an emission maximum at 587 nm [75].
Because it is quick and easy to apply, the AmplexTM Red assay has been widely used to
check for LPMO activity [12,46,76,77]. Despite its widespread use, it comes with some
disadvantages including a low sensitivity and a requirement of high amounts of LPMO
(3 µM). On top of that, the presence of metal ions in fermentation media can interfere with
the assay, as shown for TausLPMO9B (Figure 7b). In [47], this enzyme was produced in
A. niger grown in corn steep liquor (CSL). When fermentation broth was directly tested,
the background absorbance values were too high to allow for the clear detection of the
LPMO activity (Figure 7b, blue line). Another aspect to consider when using this assay
is the amount of H2O2 generated by the reaction of the reductant with oxygen. Stepnov
et al. compared the effects of different amounts of gallic or ascorbic acid, highlighting the
striking effect that free copper in LPMO preparations can have on the determination of
LPMO rates [78].
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(brown and red lines) enzyme purification. Reactions were run in 50 mM sodium phosphate buffer pH 7 and contained
5 U/mL of HRP, 100 µM AmplexTM Red, and 20 µL of purified TausLPMO [47] or diluted fermentation broth (1:4) in a final
volume of 100 µL. Reactions were started by the addition of ascorbic acid (brown and green lines) to a final concentration
of 50 µM. Reactions were run in triplicate; the dotted lines represent the standard deviation of 3 independent replicates.
Various dilutions were tested for the fermentation broth, but the background absorbance was always too high to allow for
the clear detection of LPMO activity. The LPMO content of fermentation broth was measured by the quantification of the
protein band after SDS-PAGE electrophoresis. The intensity of the band was measured and compared to a BSA standard
curve by digital imaging using ImageJ (Image Processing and Analysis in Java; available at http://imagej.nih.gov/ij/,
accessed on 5 January 2021). Samples were diluted to fit in the linear quantifiable range (0.050–0.250 mg/mL protein). The
LPMO content of the fermentation broth was estimated to be 0.1 mg/mL.

Nevertheless, this method is very useful to check for LPMO activity in more “clean”
samples (e.g., during and after purification).

3.2. Nickel/Pyrocathecol Violet

Another rapid method to measure the LPMO-dependent oxidation of insoluble sub-
strates was proposed by Wang et al. for cellulose and chitin-active LPMOs [79]. The
principle of this ion adsorption/desorption method relies on the fact that the aldonic acids
generated though C1-oxidation are negatively charged. Briefly, LPMO-treated polysaccha-
rides are centrifuged to remove solubles. The insoluble polysaccharides are then incubated
with Ni2+, which is adsorbed by the carboxyl groups generated by LPMO reaction. The
concentration of adsorbed Ni2+ can easily be quantified using pyrocatechol violet (PV),
a complexometric indicator that chelates the cation and absorbs at 650 nm. Therefore,
by measuring the amount of unbound Ni2+ present in the supernatant, it is possible to

http://imagej.nih.gov/ij/
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quantify the amount the carboxylate moieties adsorbed by the polysaccharide surface [79].
The relative simplicity and rapidity of this method (multiple measurements can be done
at the same time in a 96-well plate) make it an interesting option for comparing differ-
ent LPMOs. However, the method is limited to the detection of C1-oxidized sites only
and lacks a reliable standard that simulates the oxidation pattern introduced by LPMO
on the polysaccharides. Nevertheless, the method was successfully used by Ni et al. to
elucidate the role of a synthetic lignin polymer on the activity of an LPMO from Pleurotus
ostreatus (PcLPMO9D) and, in particular, the inhibition effect of high amounts of LPMO on
cellulase-mediated hydrolysis [80].

3.3. D-Gluconic Acid/D-Glucono-d-Lactone Assay

Unfortunately, most of the methods listed thus far for the detection of LPMO products
are limited to clean, model cellulosic substrates. The need for a simple method for the
quantification of oxidizing activity, also on more complex lignocellulosic substrates, was
therefore urgent. This was the focus of a recent study by Keller et al., who developed a
quick approach for the quantification of gluconic acid in both microcrystalline cellulose and
pretreated wheat straw [81]. The treatment of LPMO C1-oxidized products with BG leads
to the hydrolysis of the products and the generation of glucose and gluconic acid, among
others. The latter could easily be spectrophotometrically quantified with a D-Gluconic
acid/D-Glucono-d-lactone assay kit (Megazyme). In this assay, gluconic acid is converted
by gluconate kinase in D-gluconate-6-phosphate, which is converted to D-gluconate-6-
phosphate by 6-phosphogluconate dehydrogenase in the presence of NADP. The NADPH
formed in this reaction can be quantified at 340 nm and is in a stochiometric 1:1 ratio with
gluconate. This method can be applied to quantify gluconic acid formation in both soluble
and insoluble products. For the latter, an additional CBH I hydrolyzation of the insoluble
reaction pellet is required prior to BG treatment. All reagents are commercially available,
and the relative simplicity of the method enables automatization (96 samples in the MTP
format in 30 min) and the application on both model substrates, as well as lignocellulosic
material. its main limitation is that it only is suitable for C1-oxidizing LPMOs.

3.4. 2,6-Dimethoxyphenol

Exploiting the recently discovered role of H2O2 in the LPMO reaction [30],
Breslmayr et al. [82,83] developed a spectrophotometric method for quick activity assessment.
This assay is based on the oxidation of 2,6-dimethoxyphenol (2,6-DMP) by LPMO peroxidase
activity, resulting in the generation of a 2,6-DMP phenoxy radical (Figure 8). Two 2,6-DMP rad-
icals dimerize to hydrocoerulignone, which LPMO can convert to coerulignone, a chromogenic
product that absorbs at 469 nm with a molar absorption coefficient of 53,200 M−1cm−1. The
DMP assay has since then been widely used to assess LPMO activity [84–86], but one must
consider that individual LPMOs have different sensitivities towards H2O2 [30], which may
influence the efficiency of the assay. Nevertheless, the rapidity and simplicity of this method
has made it a valuable tool for the quick assessment of LPMO activity in many studies.



Biomolecules 2021, 11, 1098 12 of 21
Biomolecules 2021, 11, x FOR PEER REVIEW 12 of 21 
 

 

Figure 8. DMP assay to measure LPMO activity. (a) In the presence of H2O2, LPMOs catalyze the 

conversion of 2,6-DMP to coerulignone, a chromogenic compound with a maximum absorption at 

469 nm. (b) TausLPMO9B [47] activity with DMP in the presence (green) or absence (red) of H2O2. 

Reactions were run at 30 °C and contained 0.06 mg/mL purified LPMO, 10 mM substrate, and 1 mM 

H2O2 in a 100 mM sodium acetate buffer pH 4.5. 

3.5. Azo-Xyloglucan Assay 

Another fast method is based on the use of a soluble, dyed substrate, namely azo-

xyloglucan (Megzayme) [87]. This substrate has previously been used for the evaluation 

of different endoglucanases, such as xyloglucan-specific [88,89] or GH7 endo-1,4-β-glu-

canases [90]. Due to their endo-mechanism of depolymerization, these enzymes release 

low-molecular-weight dyed components from the starting material. After the addition of 

a precipitant, such as ethanol, the remaining longer polysaccharides can be removed while 

the released and colored oligosaccharides remain in solution. As the substrate is dyed 

with Remazol Brilliant Blue R (RBBR), the color can be quantified by measuring the ab-

sorbance at 590 nm. The same assay can be used to evaluate LPMO activity by exploiting 

their need for reductants to fuel their reaction. In the absence of a reductant, LPMOs are 

not able to cleave the substrate, so no color can be detected in the supernatant after pre-

cipitation. In the presence of a reducing agent, such as ascorbic acid, LPMOs cleave the 

azo-xyloglucan substrate and release dyed oligosaccharides into solution. As this method 

has not been extensively applied, there are not much data to fully value its merits and/or 

limitations. The most straightforward assumption is that this method is only applicable 

for xyloglucan-active LPMOs, i.e., NcLPMO9C (Figure 9). Additionally, the structure of 

the modified substrate, with about one dye molecule every 20 sugar residues, could ham-

per LPMO’s ability to cleave it. Therefore, it is not recommended to use this assay for the 

absolute comparison of different LPMOs. Nevertheless, it represents an easy and quick 

Figure 8. DMP assay to measure LPMO activity. (a) In the presence of H2O2, LPMOs catalyze the
conversion of 2,6-DMP to coerulignone, a chromogenic compound with a maximum absorption at
469 nm. (b) TausLPMO9B [47] activity with DMP in the presence (green) or absence (red) of H2O2.
Reactions were run at 30 ◦C and contained 0.06 mg/mL purified LPMO, 10 mM substrate, and 1 mM
H2O2 in a 100 mM sodium acetate buffer pH 4.5.

3.5. Azo-Xyloglucan Assay

Another fast method is based on the use of a soluble, dyed substrate, namely azo-
xyloglucan (Megzayme) [87]. This substrate has previously been used for the evalua-
tion of different endoglucanases, such as xyloglucan-specific [88,89] or GH7 endo-1,4-β-
glucanases [90]. Due to their endo-mechanism of depolymerization, these enzymes release
low-molecular-weight dyed components from the starting material. After the addition
of a precipitant, such as ethanol, the remaining longer polysaccharides can be removed
while the released and colored oligosaccharides remain in solution. As the substrate is
dyed with Remazol Brilliant Blue R (RBBR), the color can be quantified by measuring
the absorbance at 590 nm. The same assay can be used to evaluate LPMO activity by
exploiting their need for reductants to fuel their reaction. In the absence of a reductant,
LPMOs are not able to cleave the substrate, so no color can be detected in the supernatant
after precipitation. In the presence of a reducing agent, such as ascorbic acid, LPMOs
cleave the azo-xyloglucan substrate and release dyed oligosaccharides into solution. As
this method has not been extensively applied, there are not much data to fully value its
merits and/or limitations. The most straightforward assumption is that this method is
only applicable for xyloglucan-active LPMOs, i.e., NcLPMO9C (Figure 9). Additionally, the
structure of the modified substrate, with about one dye molecule every 20 sugar residues,
could hamper LPMO’s ability to cleave it. Therefore, it is not recommended to use this
assay for the absolute comparison of different LPMOs. Nevertheless, it represents an easy
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and quick method to serve different purposes, such as the identification of LPMO activity
in fermentation broth or during purification.
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Figure 9. Azo-xyloglucan assay to measure LPMO activity. NcLPMO9C activity with azo-xyloglucan
in the presence or absence of ascorbic acid. Reactions were run at 55 ◦C for 10 min in a final volume
of 0.6 mL and contained 0.06 mg/mL enzyme, 1% (w/v) substrate, 2.5 mM ascorbic acid in a 100 mM
sodium acetate buffer pH 4.5. Reactions were stopped by the addition of 1 mL of 96% ethanol. After
centrifugation at 1000× g for 10 min to separate the substrate, the released azo-labelled oligos were
quantified by measuring absorbance at 590 nm.

3.6. Reduced Phenolphtalein (rPHP) Assay

A new high-throughput colorimetric method based on the production of phenolph-
thalein (PHP) was recently developed by Brander and coworkers [91]. The assay relies on
LPMO’s ability to produce PHP, a pink dye that can easily be quantified by measuring its
absorbance at 552 nm, by oxidation of its reduced form (rPHP) in a mechanism that uses
dehydroascorbate (DHA) as a co-substrate. Interestingly, rPHP oxidation is not boosted
by ascorbic acid, the most commonly used electron donor for LPMO reactions, and actu-
ally causes the degradation of the enzyme in the reaction mixture. [91]. Considering that
DHA is derived from the oxidation of ascorbate, it is not unlikely that it will be present
in reactions with ascorbic acid, where it could also act as an electron donor for LPMOs.
One disadvantage of the assay is its limitation to cellulose- and starch-active LPMOs (AA9
and AA13, respectively), and only limited DHA-dependent rPHP oxidation was shown
for two chitin-active AA10s [91]. Nevertheless, the rPHP assay has several advantages
over other assays, leading to the identification of new LPMO co-substrates, DHA and
fructose (confirmed by cellulose cleavage). The method is also less sensitive to free copper
in enzyme preparations compared to assays using ascorbate as a co-substrate. Moreover,
reaction conditions reproduce what might happen in industrial settings due to the relatively
slow LPMO-driven rPHP oxidation and lower sensitivity to O2 and H2O2 levels [91].

4. Other Methods
4.1. SYTO-62 Labeling of Carboxyl Groups

Another approach for the detection of LPMO products is labelling the oxidized sites
generated on insoluble substrates. This was used by Eibinger et al. [92] to characterize
the changes caused by LPMO on the surface of cellulose: the LPMO-treated substrates are
incubated with a fluorescent probe reacting to carboxyl groups (SYTO-62) and analyzed
by confocal laser scanning microscopy. With this approach, the authors were able to show
that Neurospora crassa NcLPMO9F mainly acts on the outer surface of cellulose and with
multiple site attacks.

4.2. PACE and FRET

Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) is a sensitive
method for the analysis of polysaccharide structures that has also been used in the LPMO
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field [6]. It relies on two steps: first, derivatization of the reducing ends of sugars with
a fluorophore and second, polyacrylamide-gel electrophoresis [93]. It was successfully
applied by Frandsen et al. [22] to analyze the reaction products generated from PASC
and oligosaccharides by a LPMO from Lentinus similis (LsAA9). In this study, the reaction
products were reductively aminated with 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS)
before analysis. The results confirmed the activity of LsAA9 on PASC, with the release
of cellobiose and cellotriose (among others), and, importantly, they showed the activity
of LsAA9 on soluble oligosaccharides [22]. Exploiting the ability of this LPMO to act
on soluble oligosaccharides, in the same work, the authors used fluorescence-labeled
cellotetraose to determine the kinetic parameters of the oxidative reaction by LPMO. The
cleavage of this derivatized substrate separates the quencher from the fluorophore, causing
a strong fluorescence that can be quantified. Using this fluorescence resonance energy
transfer (FRET) technique, the authors were able to determine a Km of 43 and a kcat of 0.11
for LsAA9 on cellotetraose. Despite its advantages, such as its relative simplicity, the FRET
method its limitations. In addition to its high cost and laborious substrate preparation, its
applicability is limited to soluble oligosaccharides, so it is not suitable for LPMOs only
acting on insoluble substrates.

4.3. Carbodiimide Conjugation of Carboxyl Groups

A high-throughput screening method for assessing the activity of C1-oxidizing LPMO
on insoluble substrates was developed based on the conjugation of the newly generated car-
boxylic acid groups through a carbodiimide (1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide
(EDAC)) to an amine-based fluorophore (7-amino-1,3-naphtalene-disulfonic acid (ANDA)) [73].
The conjugated products can be excited at 310 nm, and the resulting emitted fluorescence can
be measured at 450 nm. Combining this assay with the classical methods for the detection of
soluble products, such as HPAEC, can give more detailed profiles of the products generated
by LPMO.

4.4. Turbidimetric Assay

LPMO activity on PASC can be correlated to the optical density of the substrate
solution [94,95]. Because PASC is an amorphous and insoluble substrate, it forms an
opaque solution. As a result of LPMO-driven solubilization, a change in its optical density
can be observed. Applying this concept, Hansson and co-workers were able to compare the
cellulose-cleaving activity of HjLPMO9A with its ∆CBM-mutant, showing a 50% decrease
in solubilization activity for the latter. Building on this, Filandr and co-workers developed
an assay for monitoring the time-dependent activity of cellulose-active LPMOs [96]. The
constant monitoring of the substrate absorbance at 620 nm allowed for a comparison of
different reductant and H2O2 rates on LPMO activity. In their study, the authors showed
that all the reactions in the presence of H2O2 converged to similar OD values, and this
could not be reverted by the addition of fresh PASC/reductant/H2O2. Therefore, they
identified the limiting factors of the assay as the unbound enzyme being damaged and the
limited number of binding sites on the substrate itself.

5. Discussion and Conclusions

The use of LPMO in second-generation bioethanol production has sparked much
research on these enzymes. Out of all the methods listed in this work, MS and HPAEC
analysis remain the most reliable way of assessing LPMO. By using established protocols,
over the past few years, LPMO’s reaction mechanism and potential in polysaccharide
degradation has been elucidated. As discussed in this review, one of the many challenges
encountered in this line of work is finding the right tools to study LPMO activity. As
these enzymes require electrons and O2/H2O2 to perform their catalytic action, one must
pay attention to the conditions used in activity assays. As exhaustively explained by
Eijsink et al. [97], side reactions can play a big role controlling product levels, so care
needs to be applied regarding the availability of reaction components (e.g., H2O2, O2, or
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reductant), as well as potential enzyme inactivation. Particularly when assuming H2O2 as a
co-substrate fueling LPMO reactions, H2O2 availability (either produced by reaction of O2
with reductant or by LPMO side reactions) is the rate-limiting factor in evaluating enzyme
activity [30,54,74,98]. Factors that could influence data interpretation have to be considered
during experimental design. When analyzing LPMO progress curves, one can estimate
the catalytic efficiency of the enzyme. Bissaro et al. gave a complete overview of reported
and deduced kinetic parameters [54]. The highest reaction rates have been reported for
enzymes fueled by H2O2 as co-substrate: SmAA10A was reported to have a catalytic
efficiency (kcat/Km) of 106 M−1 s−1 [98], which is in the same range as those reported for
other fungal enzymes such as peroxygenases AAP II (Agrocybe aegerita peroxygenase) with
a kcat/Km for H2O2 of 2.79 × 105 M−1 s−1 [99] or lignin peroxidase from Phanerochaete
chrysosporium with a kcat/Km for H2O2 between 6.9 and 10.1 M−1 s−1 [100]. Reactions
run in the absence of H2O2, on the other hand, appear to be rather slow: ScAA10C
was reported to have an oxidative rate (kcat) of about 3.2 min−1 in the absence of H2O2
and a rate of 82.4 min−1 in the presence of 200 µM H2O2 [30]. Stepping-up from these
“semi” controlled in vitro environments, monitoring reaction conditions in more complex
systems such as enzyme cocktails on colored, viscous, and inhomogeneous lignocellulosic
substrates becomes even more challenging. Hence, the optimization of reaction conditions
to fully exploit LPMO oxidative power has proven to be difficult: the presence of different
redox compounds in lignin-rich substrate makes it virtually impossible to control side-
reactions in the presence, for instance, of externally supplied H2O2 [47,101], which could
be also detrimental to the other hydrolytic enzymes. The quantification of LPMO products
through HPAEC-PAD relies on the use of additional enzymes to simplify the product
profile and generate standards of known concentration. It is important to note that, as
spectrophotometric and fluorometric methods can suffer from interfering elements in
enzyme preparations, chromatographic methods can also have their limitations in terms
of background interference. While these methods are very effective in detecting LPMO
products in more “clean” samples, such as products released from Avicel, they might suffer
some drawbacks when analyzing more complex samples such as lignocellulosic biomass
hydrolysates. In this regard, saccharification experiments are usually performed with
commercial enzyme cocktails that contain a mixture of hydrolytic enzymes. Evaluating
the effect of LPMO on the performance of a whole cocktail is not an easy task. When
spiking single LPMO enzymes on top of an LPMO-poor cocktail, such as Celluclast®, an
increase in glucose yield is observed and can be considered an “indirect measurement” of
LPMO contribution [47,53,102–104]. More modern cellulolytic cocktails, such as CellicTM

CTEC2 or CTEC3, contain LPMOs in addition to the classical hydrolytic enzymes. In this
case, LPMO’s contribution can be evaluated by a comparison of saccharification yields
run in the presence or absence of O2 [53,102]. The measurement of LPMO products in
this type of set-up is not as straightforward. The BG present in enzyme cocktails is able
to convert longer C1-oxidized products into gluconic acid [105], which elute early in
the chromatographic analysis and can suffer from interference due to other overlapping
peaks. On the other hand, Müller et al. showed that BG is not able to cleave C4-oxidized
products [53]. As C4-oxidized cellobiose (Glc4gemGlc) elutes later in the gradient in an
area where background interference is not too pronounced, it can be used to monitor LPMO
activity during the saccharification of steam-exploded birch [53,102,106]. Glc4gemGlc is
the only LPMO product identified when using CellicTM CTEC preparations, and its levels
correlate with overall saccharification yields.

Though challenging, the characterization of LPMO activity has enabled tremendous
progress in the elucidation of its reaction mechanism. More than 10 years after its discovery,
LPMO is still object of extensive research. Though its unique oxidative power is being
exploited in the biorefinery industry, there are also LPMOs that do not seem to be related
to polysaccharide degradation but have a physiological role [107]. For example, some
AA10s have been attributed a role as virulence factors in human infections caused by Vibrio
cholerae [69,108], Listeria monocytogenes [109,110], and Pseudomonas aeruginosa [111,112]. The
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broad range of described tools and methods will certainly enable further studies and reveal
additional functions of LPMO in nature.
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Abbreviations

AA Auxiliary Activity
BG β-glucosidase
CAD Charged Aerosol Detection
CAZymes Carbohydrate Active enZymes
CBH Cellobiohydrolase
CBM Carbohydrate Binding Module
CDH Cellobiose Dehydrogenase
CSL Corn steep liquor
Glc1A Gluconic acid
GlcGlc1A Cellobionic acid
DHA Dehydroascorbate
DHB Dihydroxybenzoic Acid
DMP Dimethoxyphenol
DP Degree of Polymerization
FRET Fluorescence Resonance Energy Transfer
Glc4GemGlc gem-diol of cellobiose
GH Glycosisde Hydrolase
EG Endoglucanase
ESI-MS Electrospray Ionization Mass Spectrometry
HPLC High Performance Liquid Chromatography
HPAEC-PAD High Performance Anion Exchange Chromatohraphy

with Pulsed Amperometric Detection
HRP Horseradish Peroxidase
LPMO Lytic Polysaccharide Monooxygenase
MTP Microtiter Plate
NMR Nuclear Magnetic Resonance
PACE Polysaccharide analysis using carbohydrate gel electrophoresis
PASC Phosphoric Acid Swollen Cellulose
PCS Pretreated Corn Stover
PGC Porous Graphitized Carbon
PDH Pyranose Dehydrogenase
PQQ Pyrroloquinoline Quinone
PHP Phenolphtalein
PV Pyrocathecol Violet
RBBR Remazol Brilliant Blue
rPHP reduced Phenolphtalein
RP-UHPLC Reverse Phase-Ultra High Performance Liquid Chromatography
XPS X-ray Photoelectron Spectroscopy
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