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Abstract: This paper deals with symmetrical data that can be modelled based on Gaussian distri-
bution, such as linear mixed models for longitudinal data. The latent factor linear mixed model
(LFLMM) is a method generally used for analysing changes in high-dimensional longitudinal data. It
is usual that the model estimates are based on the expectation-maximization (EM) algorithm, but
unfortunately, the algorithm does not produce the standard errors of the regression coefficients,
which then hampers testing procedures. To fill in the gap, the Supplemented EM (SEM) algorithm
for the case of fixed variables is proposed in this paper. The computational aspects of the SEM
algorithm have been investigated by means of simulation. We also calculate the variance matrix of
beta using the second moment as a benchmark to compare with the asymptotic variance matrix of
beta of SEM. Both the second moment and SEM produce symmetrical results, the variance estimates
of beta are getting smaller when number of subjects in the simulation increases. In addition, the
practical usefulness of this work was illustrated using real data on political attitudes and behaviour
in Flanders-Belgium.

Keywords: latent factor linear mixed model (LFLMM); expectation-maximization (EM) algorithm;
supplemented EM algorithm; longitudinal data analysis

1. Introduction

The latent factor multivariate linear mixed model (LFLMM) is a combination between
the Factor Analysis (FA) and the Linear Mixed Model (LMM), as proposed by [1]. The
model aims to analyze longitudinal data sets with large numbers of multivariate responses,
i.e., high-dimensional longitudinal data. The authors proposed estimation of the LFLMM
by means of the EM algorithm, which is a closed-form solution. They showed by way of
simulation that EM estimation of the LFLMM provides accurate parameter estimates and
is more efficient in terms of adding variables other than time variables in the model than
alternatives like the structural equation model. As shown by [2,3], the combination of fixed
and random effects and the interaction of covariates with time can be straightforwardly
handled by the LFLMM estimated by EM.

The LFLMM assumes that the responses are continuous and that the number of latent
variables is known [1]. Moreover, convergence of the EM algorithm is sometimes slow. The
main disadvantage, however, is that the EM algorithm does not produce standard errors of
the estimator of the regression coefficients because it does not calculate the derivatives of
the likelihood function, which are often complicated and tedious to derive [4,5]. Thus, it
is difficult to study the effects of different covariates or fixed variables for different latent
factors simultaneously.

The general Supplemented EM algorithm was proposed by [6] to obtain the standard
errors by calculating the complete information matrix as the base of the variance-covariance
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matrix of the estimator. The Supplemented EM algorithm has been applied to various kinds
of models, notably item response models [6–9]. However, its suitability and features in the
case of application to the LFLMM have not been investigated yet. In this study, we extend
the work of [1] by employing the Supplemented EM algorithm as a by-product of the EM
estimator for the case of fixed variables. We used simulation studies to investigate the
computational aspects of the Supplemented EM algorithm and used a real data example to
illustrate the practical usefulness of this work.

The remainder of this study is organized as follows. In Section 2, we specify the
LFLMM and summarize the EM algorithm to estimate it. Section 3 presents the Supple-
mented EM algorithm. Sections 4 and 5 present the results of the simulation and real data
example. Conclusions follow in Section 6.

2. The LFLMM and the EM Algorithm

Following [1], an LFLMM can be composed of two parts. The first is the factor analysis
model, which represents the relationships between the observed and latent variables. This
is similar to the structural equation model, which explains the relationship of the latent
variables and the measurement indicators carried out through factor analysis [10]. This
part can be written as:

Yit = Ληit + εit (1)

Specifically, for the i-th of N individuals, we observe j = 1, . . . , J responses which
characterize d latent factors

(
ηit =

(
η1

it, . . . , ηd
it

)
, d < J

)
at time t, t = 1, . . . , Ti, where

Ti is the number of time periods for subject i. Λ is the matrix of factor loadings and
εit =

(
εit1, . . . , εitJ

)
the vector of measurement errors for subject i at time t. It is assumed

that εitJ ∼ N
(

0, τ2
j

)
and εitj⊥εith, j 6= h. In matrix notation, Equation (1) reads:

Yi =
(

ITi

⊗
Λ
)

ηi + εi (2)

where
Yi =

(
y′i1, . . . , y′iTi

)
′[J×Ti ,1]

ηi =
(

η′i1, . . . , η′iTi

)
′[d×Ti ,1]

Λ[J×d] =

 λ′1
...

λ′J


The second part of the LFLMM is a multivariate linear mixed model containing the

fixed and random effects for each latent variable (ηit). For individual i, i = 1, 2, . . . N, at
time t, t = 1, 2, . . . , Ti, and latent variable l, l = 1, 2, . . . , d, we thus have:

ηl
it = xl

itβ
l + zl

ita
l
i + εl

it (3)

where xl
it and zl

it are the elements of design matrices of the p fixed variables and q random ef-

fects, respectively. βl is an unknown coefficient, al
i =

(
al

i1, . . . , al
iq

)
and εl

i =
(

εl
i1, . . . , εl

iTi

)
,

l = 1, 2, . . . d, are the random effects and errors for subject i and factor l, respectively.
The random effects are assumed to be normally distributed with mean 0 and variance-
covariance matrix V(a) = Σa. It is assumed that Σa captures the changes among the latent
variables [1]. For example, a positive covariance between the random effects for the latent
variables 1 and 2 means that if for a given individual i the latent variable 1 increases over
time, the latent variable 2 also increases for that individual. Note that in this setting, the
covariates are included in the multivariate linear mixed model (MLMM) of Equation (3)
but not in the factor analysis model of Equation (1).
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In matrix notation, Equation (3) reads:

ηi = Xiβ + Ziai + εi (4)

where

Xi =

 xi1
...

xiTi


[d×Ti ,p×d]

, xit =


x1

it 0
0 x2

it

· · · 0
· · · 0

· · · · · ·
0 0

. . .
...

· · · xd
it


[d, p×d]

Zi =

 zi1
...

ziTi


[d×Ti ,q×d]

, zit =


z1

it 0
0 z2

it

· · · 0
· · · 0

· · · · · ·
0 0

. . .
...

· · · zd
it


[d, q×d]

β =
(

β1′, . . . , βd ′
)
′[p×d,1]

ai =
(

a1′
i , . . . , ad′

i

)
′[q×d,1] ∼ N(0, Σa)

εi =
(

ε′i1, . . . , ε′iTi

)
′[d×Ti ,1], εit ∼ N(0, Σε)

The marginal distribution of Yi is assumed multivariate normal with mean:

E (Yi) =
(

ITi

⊗
Λ
)

Xiβ

and variance-covariance matrix

V(Yi) =
(
ITi ⊗Λ

)
V(ηi)

(
ITi ⊗Λ

)′
+ ITi

⊗diag
(

τ2
1 , . . . , τ2

J

)
The first term in V(Yi) denotes the variances and covariance of the latent factors and

the last term the variances of the error term, εit. The mean and variance-covariance matrix
of ηi are E(ηi) = Xiβ and V(ηi) = ZiΣaZ′i + ITi ⊗ Σε, respectively.

To estimate the LFLMM by EM, we summarize it below, as proposed by [1]. Before
going into detail, we observe that {ηi, ai} is treated as missing data. Hence, the complete
dataset is {Yi, Xi, Zi, ηi, ai} whereas the observed data is {Yi, Xi, Zi}. It follows that the
complete data likelihood is:

L =
N

∏
i=1

P
(

Yi

∣∣∣ηi, Λ, τ2
)

P(ηi|Xi, Zi, ai, β, Σε)P(ai|Σa) (5)

The corresponding complete data loglikelihood is:

log L =
N

∑
i=1

[
log P

(
Yi

∣∣∣ηi, Λ, τ2
)
+ log P(ηi|Xi, Zi, ai, β, Σε) + log P(ai|Σa)

]
(6)

where

N
∑

i=1
log P

(
Yi
∣∣ηi, Λ, τ2) =

N
∑

i=1

J
∑

j=1
log P

(
Yij

∣∣∣ηi, Λj, τ2
j

)
=

N
∑

i=1

J
∑

j=1

[
− ni

2 log τ2
j −

1
2τ2

j

(
Yij − η′iΛj

)′(Yij − η′iΛj
)] (7)

N
∑

i=1
log P(ηi|Xi, Zi, β, ai, Σε) =

N
∑

i=1

Ti
∑

t=1
log P(ηit|Xi, Zi, ai, β, Σε)

=
N
∑

i=1

Ti
∑

t=1

[
− 1

2 log|Σε| − 1
2 (ηit −Xitβ− Ziai)

′Σ−1
ε (ηit −Xitβ− Ziai)

] (8)
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N

∑
i=1

log P(ai|Σa) = −
1
2

N

∑
i=1

[
log|Σa| −

1
2

a′iΣ−1
a ai

]
(9)

Let the θ denote the parameter vector
(
Λ, τ2, β, and Σε

)
, θ(w) be the ML estimate

of θ at the wth iteration for w = 0, 1, . . .., and Q
(

θ|θ(w)
)

the expectation of the joint
loglikelihood for the complete data {Yi, Xi, Zi, ηi, ai} conditional on the observed data
{Yi, Xi, Zi}:

Q
(

θ|θ(w)
)
= E

{
log L(θ|Yi, Xi, Zi, ηi, ai)

∣∣∣Yi, Xi, Zi, θ(w)
}

(10)

Then the (w + 1)th iteration of the EM algorithm consists of (i) the E–step, which is the
expectation of the joint loglikelihood computed according to (10) and (ii) the M-step, which
maximizes Q

(
θ|θ(w)

)
to yield θ(w+1). Further details on EM estimation of the LFLMM

can be found in [1].

3. The Supplemented EM

Below we discuss the Supplemented EM algorithm, denoted as SEM. Before going
into detail, we observe that the main purpose of this study is to estimate the standard
errors of the fixed effects, β.

Consider the mapping M defined by iteration w of the EM algorithm:

β(w+1) = M
(

β(w)
)

, for w = 0, 1, . . .

when the parameter vector converges to β∗, we obtain β∗ = M(β∗). For M(β) continuous
we have by Taylor expansion in the neighbourhood of β∗

β(w+1) = M
(

β(w)
)
≈ M(β∗) + DM

(
β(w) − β∗

)
= β∗ + DM

(
β(w) − β∗

)
(11)

where

DM =

(
∂Mh(β)

∂βg

)∣∣∣∣
β=β∗

(12)

g = 1, 2, . . . , k and h = 1, 2, . . . , k is the k× k Jacobian matrix of M(β) = (M1(β), . . . , Mk(β))
evaluated at the ML estimate of β with k = p× d. DM is known as the rate matrix. To
obtain the loglikelihood of β, we consider the complete data density of the LFLMM:

f ({Yi, Xi, Zi, ηi, ai}|θ)
= f ({Yi, Xi, Zi}|θ) f ({ηi, ai}|{Yi, Xi, Zi}, θ)

where f ({Yi, Xi, Zi}|θ) is the density of the observed data and f ({ηi, ai}|{Yi, Xi, Zi}, θ)
the density of missing data, given the observed data. Thus, the loglikelihood of β given the
complete data is:

log L(β|{Yi, Xi, Zi, ηi, ai}) = log L(β|{Yi, Xi, Zi}) + log f ({ηi, ai}|{Yi, Xi, Zi}, β) (13)

where log L(β|{Yi, Xi, Zi}) is the observed-data loglikelihood and
log L(β|{Yi, Xi, Zi, ηi, ai}) is the complete data loglikelihood.

The asymptotic variance-covariance matrix of β, V(β), is the inverse of the observed
information matrix (Io). In the case of the LFLMM, the observed data is {Yi, Xi, Zi} so
that V(β) is:

V(β) = I−1
o (β

∣∣∣{Yi, Xi, Zi}) (14)
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where Io(β|{Yi, Xi, Zi}) is the information matrix of the observed data loglikelihood
(which is assumed to exist). That is [6,11]:

Io(β|{Yi, Xi, Zi}) = −E
[

∂2 log L(β|{Yi, Xi, Zi})
∂β·∂β

]
(15)

Equation (15) is difficult to evaluate directly using the EM algorithm [6,11]. As a way
out, [7] suggested to evaluate the complete data information matrix:

Io(β|{Yi, Xi, Zi, ηi, ai}) = −E

[
∂2 log L(β

∣∣{Yi, Xi, Zi, ηi, ai})
∂β·∂β

]
(16)

The conditional complete data information, given the observed data evaluated
at β = β∗, is:

Ioc = E[Io(β|{Yi, Xi, Zi, ηi, ai}|{Yi, Xi, Zi}, β∗ ] (17)

After taking second derivatives, averaging over f ({ηi, ai}|{Yi, Xi, Zi}, β) , and eval-
uating at β = β∗, Equation (13) implies:

Io(β∗|({Yi, Xi, Zi}) = Ioc − Iom (18)

where the missing information matrix (Iom) is

Iom = E
[
−∂2 log f ({ηi, ai}|{Yi, Xi, Zi}, β∗ )

∂β·∂β

]
(19)

ref [12] interpreted Equation (18) as

observed in f ormation = complete in f ormation−missing in f ormation

and called it the “missing information principle”. Equation (18) can be written as:

Io(β∗|({Yi, Xi, Zi}) =
(

I− IomI−1
oc

)
Ioc, (20)

where I is the k × k identity matrix and IomI−1
oc is the matrix of the fraction of missing

information [7,11]. According to [13], the rate of convergence of the EM algorithm is
determined by the fraction of missing information in the neighborhood of β∗:

DM = IomI−1
oc (21)

Substituting DM = IomI−1
oc into Equation (20) and inverting, the asymptotic variance-

covariance matrix of β∗, V(β∗) is:

V(β∗) = I−1
oc (I−DM)−1 (22)

From the equality (I− P)−1 = (I− P + P)(I− P)−1 = I + P(I− P)−1 it follows that:

V(β∗) = I−1
oc

{
I + DM(I−DM)−1

}
= I−1

oc + I−1
oc DM(I−DM)−1 (23)

or
V(β∗) = I−1

oc + ∆V(β∗) (24)

where ∆V(β∗) is the increase of the diagonal elements of V(β∗) related to missing information.
Calculation of the DM matrix can be done using the code and output of the original

EM algorithm as follows [6,7]. The DM matrix represents the differential of the parameter
mappings during the EM algorithm. Hence, each element of the DM matrix represents
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a component-wise increase of the rate of convergence per iteration of the EM algorithm.
Let rgh be the (g, h) th element of the DM matrix. From Equation (13), we have:

rgh = ∂Mh(β∗)
∂βg

= lim
βg→β∗g

Mh

(
β∗1 ,...,β∗g−1,βg ,β∗g+1, ...,β∗k

)
−Mh(β∗)

βg−β∗g

= lim
w→∞

Mh(β(w)(g))−Mh(β∗)

β
(w)
g −β∗g

≡ lim
w→∞

r(w)
gh

(25)

g = 1, 2, . . . , k and h = 1, 2, . . . , k
where β(w)(g) is called the semi-active parameter set

β(w)(g) =
(

β∗1, . . . , β∗g−1, β
(w)
g , β∗g+1, . . . , β∗k

)
, w = 1, 2, . . . (26)

which converges to β∗g. Note that only the gth component in β(w)(g) takes a value different
from its maximum likelihood estimate.

To calculate rgh, the Supplemented EM algorithm requires θ∗ =
{

Λ∗, τ2∗, β∗and Σε
∗}

and θ(w) =
{

Λ(w), τ2(w), β(w)and Σε
(w)
}

for w = 1, 2, . . . as input. θ∗ can be obtained by

the EM algorithm using a set of arbitrarily chosen initial parameters θinit including θ(w)

for w = 1, i.e., θ(1). The starting point θ(1) may, but need not, be close θ∗. The algorithm
below closely follows [14,15].

1. Select input: θ(w) and θ∗

2. Set θ(w) for w = 1, 2, . . .. Then take the E step and M step of the LFLMM EM
algorithm to produce θ(w+1).

3. For rows = 1, 2, . . . , k:

(i) Set β̃(w)(g) be equal to β∗, except for the gth element:(
β̃(w)(g) = (β∗1, . . . , β∗g−1, β

(w)
g , β∗g+1, . . . , β∗k

)
)

(ii) Run the LFLMM EM algorithm with β̃(w)(g) as the current estimate of β to
obtain β̃(w+1)(g).

(iii) Calculate the gth row of r(w)
gh as

r(w)
gh =

β̃h
(w+1)(g)− β∗h

β
(w)
g − β∗g

, for h = 1, 2, . . . , k

The output after a single run of the Supplemented EM algorithm (Step 1 and 2) are
βw+1 and r(w)

gh g = 1, 2, . . . , k and h = 1, 2, . . . , k. Based on the final estimates of DM, V(β∗)

is calculated using (24). The diagonal elements of V are the variance of β∗.

4. Simulation

To evaluate the statistical properties and computational aspects of the SEM, we set
up a simulation study. The number of subjects (N) is set at 500, 1000, and 1500 with
six time periods. The number of simulations (S) is set at 50 and 250. The other set-up of
the simulations is adopted from [1]. Particularly, we use the same initial values of the
parameters of the LFLMM model (12 items, 2 latent factors, and a simple structure to
model the relationship between the items and the latent factors). It is done to check if the
bias resulting from the Supplemented EM algorithm on LFLMM is in line with the results
presented in [1]. Table 1 presents the absolute difference for the true parameters, and the
averages of the SEM estimates are calculated as a measure of performance.

Table 1 shows that the absolute difference of σa,11 has a range from 0 to 0.0444 (N = 500
and S = 250). The results are in line with [1] the parameters of the measurement model
(factor loadings and error variances) are estimated more precisely than those of the latent
mixed regression model. Overall, these results indicate that with the increasing number of
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subjects in the simulation, the absolute difference between the actual parameters and the
SEM average is getting smaller. This means the SEM can estimate the model parameter
very well.

Although the results in Table 1 indicate that the accuracy of the estimates in the
latent mixed regression model (No. 23–43) is not as good as in the measurement model
part (No. 1–22), through Figure 1a–c, it can be shown that the median of boxplots (which
generally is close to the true parameters) are all at the same level. This means that the
parameters of the latent mixed regression models (β, σa, σε) are estimated more precisely,
especially for the number of simulations S = 250. Furthermore, all the boxplots are also
shown to have different distributions of views with an increasing number of subjects in the
simulation. This is indicated by the smaller size of the boxplot as the number of subjects
increases for both numbers of simulations.

The results from the simulations of the Supplemented EM algorithm in estimat-
ing the asymptotic variance matrix of beta is summarized as a standard deviation of
beta in Table 2. We also calculate the standard deviation of beta using the 2nd moment,√

V
(

β̂
)
=

√
1

S−1

S
∑

s=1

(
β̂s − β̂

)2
as a benchmark to compare with the standard deviation of

beta of SEM. Both the 2nd moment and SEM produce symmetrical results the parameter
estimate for the standard deviation of beta is getting smaller with the increasing number of
subjects in the simulation. Overall, it can be concluded that by using SEM, changes in the
parameter estimate for the standard deviation of beta are not too different for all number of
subjects (Figure 2). Therefore, the simulation results suggest that the asymptotic variance
of beta from the Supplemented EM Algorithm can be used to estimate the asymptotic
variance of beta in real data analysis.

Table 1. The absolute difference between the true parameters and the SEM averages.

No

Para True SEM

No

Para True SEM

N 500 1000 1500 N 500 1000 1500

S 50 250 50 250 50 250 S 50 250 50 250 50 250

1 λ2,1 1 0.0013 0.0012 0.0010 0.0009 0.0009 0.0009 23 β1
1 1 0.0040 0.0036 0.0032 0.0004 0.0018 0.0007

2 λ3,1 1 0.0019 0.0015 0.0013 0.0009 0.0012 0.0009 24 β2
1 −1 0.0111 0.0079 0.0008 0.0008 0.0034 0.0017

3 λ4,1 1 0.0015 0.0009 0.0005 0.0009 0.0012 0.0010 25 β1
2 0 0.0038 0.0018 0.0012 0.0007 0.0016 0.0003

4 λ5,1 1 0.0014 0.0016 0.0007 0.0009 0.0007 0.0009 26 β2
2 0 0.0031 0.0039 0.0014 0.0021 0.0044 0.0006

5 λ6,1 1 0.0016 0.0014 0.0011 0.0009 0.0013 0.0010 27 β1
3 1 0.0012 0.0016 0.0008 0.0003 0.0007 0.0004

6 λ7,2 1 0.0021 0.0018 0.0013 0.0014 0.0016 0.0013 28 β2
3 1 0.0016 0.0010 0.0002 0.0004 0.0000 0.0005

7 λ8,2 1 0.0015 0.0016 0.0017 0.0014 0.0010 0.0013 29 β1
4 1 0.0025 0.0027 0.0002 0.0001 0.0007 0.0002

8 λ9,2 1 0.0020 0.0015 0.0015 0.0014 0.0019 0.0013 30 β2
4 −1 0.0018 0.0025 0.0004 0.0001 0.0003 0.0001

9 λ10,2 1 0.0015 0.0015 0.0015 0.0014 0.0022 0.0017 31 σa,11 3 0.0332 0.0444 0.0152 0.0154 0.0039 0.0160
10 λ11,2 1 0.0019 0.0012 0.0017 0.0017 0.0016 0.0016 32 σa,12 1 0.0410 0.0120 0.0024 0.0057 0.0265 0.0085
11 τ2

1 0.5 0.0007 0.0001 0.0006 0.0004 0.0009 0.0004 33 σa,13 1.5 0.0289 0.0200 0.0218 0.0141 0.0229 0.0133
12 τ2

2 0.5 0.0003 0.0006 0.0000 0.0011 0.0019 0.0006 34 σa,14 1 0.0286 0.0131 0.0077 0.0083 0.0169 0.0094
13 τ2

3 0.5 0.0027 0.0001 0.0021 0.0001 0.0005 0.0007 35 σa,22 3 0.0233 0.0105 0.0247 0.0017 0.0276 0.0150
14 τ2

4 0.5 0.0007 0.0009 0.0002 0.0002 0.0005 0.0008 36 σa,23 1 0.0003 0.0045 0.0158 0.0042 0.0124 0.0051
15 τ2

5 0.5 0.0002 0.0006 0.0010 0.0013 0.0010 0.0006 37 σa,24 2 0.0073 0.0020 0.0057 0.0004 0.0126 0.0089
16 τ2

6 0.5 0.0044 0.0010 0.0017 0.0005 0.0004 0.0004 38 σa,33 3 0.0014 0.0125 0.0383 0.0260 0.0387 0.0274
17 τ2

7 0.5 0.0005 0.0008 0.0016 0.0021 0.0017 0.0004 39 σa,34 1 0.0080 0.0075 0.0236 0.0069 0.0043 0.0022
18 τ2

8 0.5 0.0027 0.0012 0.0006 0.0006 0.0011 0.0009 40 σa,44 3 0.0021 0.0015 0.0215 0.0020 0.0148 0.0094
19 τ2

9 0.5 0.0016 0.0010 0.0004 0.0009 0.0001 0.0004 41 σε,11 0.5 0.0020 0.0013 0.0028 0.0005 0.0015 0.0013
20 τ2

10 0.5 0.0009 0.0012 0.0012 0.0005 0.0003 0.0008 42 σε,12 0.2 0.0017 0.0006 0.0006 0.0003 0.0006 0.0001
21 τ2

11 0.5 0.0001 0.0001 0.0013 0.0000 0.0012 0.0001 43 σε,22 0.5 0.0021 0.0033 0.0027 0.0029 0.0028 0.0023
22 τ2

12 0.5 0.0011 0.0012 0.0001 0.0002 0.0011 0.0002
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Figure 1. (a) Boxplot the parameters estimate of the latent mixed regression models (β). (b) Boxplot the parameters estimate
of the latent mixed regression models (σa). (c) Boxplot the parameters estimate of the latent mixed regression models (σε).

Table 2. The parameter estimates for
√

V
(

β̂
)

.

Number of Subjects Parameter
The 2nd Moment SEM

50 250 50 250

500

β1
1 0.0512 0.0528 0.0249 0.0251

β2
1 0.0587 0.0530 0.0187 0.0195

β1
2 0.0378 0.0392 0.0110 0.0126

β2
2 0.0391 0.0379 0.0164 0.0158

β1
3 0.0184 0.0190 0.0245 0.0268

β2
3 0.0184 0.0190 0.0212 0.0200

β1
4 0.0283 0.0283 0.0105 0.0105

β2
4 0.0288 0.0308 0.0145 0.0145

1000

β1
1 0.0338 0.0327 0.0179 0.0184

β2
1 0.0342 0.0339 0.0138 0.0134

β1
2 0.0232 0.0232 0.0071 0.0077

β2
2 0.0253 0.0232 0.0105 0.0100

β1
3 0.0095 0.0100 0.0176 0.0184

β2
3 0.0089 0.0095 0.0130 0.0130

β1
4 0.0141 0.0130 0.0077 0.0077

β2
4 0.0130 0.0130 0.0110 0.0105
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Table 2. Cont.

Number of Subjects Parameter
The 2nd Moment SEM

50 250 50 250

1500

β1
1 0.0276 0.0253 0.0152 0.0152

β2
1 0.0270 0.0265 0.0105 0.0110

β1
2 0.0187 0.0182 0.0063 0.0063

β2
2 0.0164 0.0192 0.0084 0.0084

β1
3 0.0071 0.0071 0.0145 0.0152

β2
3 0.0063 0.0071 0.0105 0.0105

β1
4 0.0110 0.0105 0.0063 0.0063

β2
4 0.0110 0.0105 0.0084 0.0084
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5. Real Data Example

The real data-set that we used to illustrate the development of the Supplemented EM
algorithm is the political attitudes and behavior data of Flemish. The data was designed
to include a representative sample of the target population under the Belgian electorate.
The Flemish data set (Flemish and Dutch speaking respondents from Brussels Capital
Region) consists of 1274 respondents, who have been interviewed three times (1991, 1995,
and 1999) [16–18]. There are four latent factors measured on political attitudes of Flemish
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used, i.e., Individualism, Nationalism, Ethnocentrism, and Authoritarianism. This data
has been analyzed using various methods by several authors, including [19–23]. There
are three interesting questions in this real data case, i.e., how Individualism, Nationalism,
Ethnocentrism, and Authoritarianism of the Flemish develop over time; whether there is an
association between these four developments, and whether the gender of the respondent
affects the change patterns of latent developments.

I, N, E, and A in Table 3 correspond to Individualism, Nationalism, Ethnocentrism,
and Authoritarianism, respectively. a11 and a12 are the random intercept and random slope
for Individualism. a21 and a22 are the random intercept and random slope for Nationalism.
a31 and a32 are the random intercept and random slope for Ethnocentrism. a41 and a42 are
the random intercept and random slope for Authoritarianism. The positive correlation
of random intercept between a11 and a21, a11 and a31, a11 and a41 suggests that the de-
velopment of Individualism and other political attitudes is highly related, which highest
correlated with Ethnocentrism. The results indicate that those who have a better sense of
Individualism tend to have a better sense of Nationalism, Ethnocentrism, and Authoritari-
anism. The results find a positive correlation of random intercept between a21 and a31, a21
and a41. It suggests that those who have a better sense of Nationalism tend to have a better
sense of Ethnocentrism and Authoritarianism, as well as those who have a better sense of
Ethnocentrism tend to have a better sense of Authoritarianism. There is also a positive cor-
relation of random slope between a12 and a22. It means that if one subject’s Individualism
decreases over time, then it is reasonable to expect that his or her Nationalism will decrease
over time and vice versa. This also holds between Individualism and Ethnocentrism and
between Individualism and Authoritarianism. The positive correlation of random slope
between a22 and a32, meaning that if one subject’s Nationalism decreases over time, then it
is reasonable to expect that his or her Ethnocentrism will decrease over time. The corre-
lation matrix of random effects confirms that all latent factors have a positive correlation
over time.

Table 3. Correlation matrix of random effects.

Random Effects
I N E A

a11 a12 a21 a22 a31 a32 a41 a42

I
a11 1 0.892 0.832 0.903 0.966 0.930 0.956 0.880
a12 0.892 1 0.854 0.878 0.937 0.931 0.913 0.895

N
a21 0.832 0.854 1 0.311 0.864 0.883 0.856 0.835
a22 0.903 0.878 0.311 1 0.918 0.893 0.899 0.861

E
a31 0.966 0.937 0.864 0.918 1 0.946 0.973 0.919
a32 0.930 0.931 0.883 0.893 0.946 1 0.946 0.918

A
a41 0.956 0.913 0.856 0.899 0.973 0.946 1 0.873
a42 0.880 0.895 0.835 0.861 0.919 0.918 0.873 1

The significance of parameter estimate of β is analyzed via the z–values. By using the
Supplemented EM algorithm, the standard errors of β for all parameters can be calculated.
The standard errors of β are listed in Table 4. Using a 95 percent confidence interval of
β, almost all confidence intervals do not include the null value, except the slope of Male
on Authoritarianism. Hence there are statistically significant differences in the parameter
estimate of β. In other words, all latent factors of Flemish people decrease over time, with
Ethnocentrism having the highest rate of decline over time (−0.252) and Nationalism the
lowest (−0.177). On average, the Individualism and Nationalism of the male respondent
are higher than that of the female. However, Ethnocentrism of the male respondent is
lower than that of the female.
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Table 4. Parameter estimates of β.

Parameter Estimate SE (
^
β) Lower Upper

Individualism −0.195 0.004 −0.203 −0.187
Nationalism −0.177 0.028 −0.231 −0.123

Ethnocentrism −0.252 0.011 −0.273 −0.231
Authoritarianism −0.186 0.002 −0.190 −0.182

Slope of Male on Individualism 0.110 0.010 0.091 0.129
Slope of Male on Nationalism 0.219 0.017 0.185 0.253

Slope of Male on Ethnocentrism −0.038 0.003 −0.045 −0.031
Slope of Male on Authoritarianism 0.022 0.017 −0.011 0.055

6. Conclusions

This paper proposed the Supplemented EM algorithm for LFLMM in estimating
the asymptotic variance-covariance matrix as a by-product of the EM estimator for the
case of fixed variables in the model. Results from simulation studies suggest that the
Supplemented EM algorithm can estimate the model very close to the initial parameters.

As a result of the development of EM algorithm of LFLMM, the Supplemented EM
algorithm is very slow to converge, as stated by [1], especially when the number of simu-
lations is 250 times with 1500 subjects. For this reason, further research is needed to find
techniques that can be used to accelerate the speed of the algorithm. Several approaches
to speed the EM algorithm have been proposed and can be found in [24–26] (the ECM
algorithm), [27] (the ECME algorithm), and [28] (the Parameter-Expanded EM algorithm).
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