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Abstract

Mammals tend to align their most energetically demanding phenological events with periods of peak resource availability.
Their reproductive phenology is influenced by local resource availability, potentially leading to geographical variation in their
breeding strategy. Although the Amazon is the world’s epicenter of bat diversity, the reproductive phenology of Amazonian
bats remains poorly known. Seasonality induces fluctuations in resource availability and most phyllostomid species, crucial
agents of seed dispersal, pollination and arthropod suppression in the Neotropics, have been described to exhibit seasonal
bimodal polyestry. However, current understanding of phyllostomid reproductive phenology is impaired by the paucity of
comparative examinations of the phenologies of sympatric species, using consistent classification schemes based on the
number and timing of annual peaks in pregnancy and lactation. Using a multi-year dataset from Central Amazonia, we
examined the reproductive phenology of nine bat species (Artibeus concolor, A. obscurus, A. lituratus, Carollia brevicauda,
C. perspicillata, Gardnerycteris crenulatum, Lophostoma silvicolum, Rhinophylla pumilio, and Trachops cirrhosus), as well
as two feeding ensembles (i.e., frugivores and gleaning animalivores). Only three of the nine species exhibited a bimodal
reproductive phenology. Six species and the frugivore ensemble showed unimodal reproductive phenology, while gleaning
animalivores displayed an amodal pregnancy pattern. All species except L. silvicolum had their primary pregnancy peak
during the mid-dry season. A reproductive peak during the early wet season, or local variation in the duration of the fruiting
season may explain the deviation of our observations from the expected bimodal polyestry.

Keywords Chiroptera - Neotropical bats - Phyllostomidae - Reproduction - Seasonality

Introduction

Phenology, the study of recurrent biological life cycle
events, is key for understanding how organisms react to
seasonal changes in dynamic environments (Stucky et al.
2018). As most organisms time their reproduction to
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capitalize on optimal resource abundance, phenology is
vital for understanding how population-level dynamics are
modulated by environmental cues (Rocha et al. 2017a).
This is particularly important in the context of human-
induced global change, as phenomena such as climate and
land-use change are shifting the timing of vital phenologi-
cal events (Hillfors et al. 2020).

Reproduction is one of the most energetically demanding
aspects of an animal’s life cycle (Harshman and Zera 2007).
The energy budget of small mammals is heavily constrained
by the maintenance costs of physiological parameters associ-
ated with the regulation of body temperature, body function-
ing and foraging (Bronson 1985; McNab 1982; Speakman
and Thomas 2003). As most small mammals are unable to
store large amounts of energy in the form of fat (Bronson
1985), the energetic demands associated with reproduction
are therefore counterbalanced by reproducing seasonally,
and at times that are likely to increase reproductive suc-
cess by allowing for increased food intake (Bronson 1985;
Kunz et al. 1995). Additionally, during pregnancy and lac-
tation, bats spend most of their flight time foraging (Kurta
et al. 1989). This increased flight activity is energetically
extremely costly (Thomas 1975), leading to a tight asso-
ciation between most species’ reproductive phenology and
periods of high resource availability (Racey and Speakman
1987; Kurta et al. 1989; Racey and Entwistle 2000). For
female bats, reproductive costs are mostly shared between
pregnancy and lactation for which the daily costs can be
twice as high as the costs of pregnancy (Kurta et al.1989;
Kunz et al. 1995). As female bats need to increase their food
intake to be able to meet these energetic demands (Kunz
et al. 1995), food availability is an important determinant of
the timing of reproduction (Thompson 1992).

Throughout the tropics, seasonality is mostly shaped by
differences in precipitation and not so much by fluctuations
in temperature (MacArthur 1984). Seasonal changes in pre-
cipitation affect plant and animal phenology, causing oscil-
lations in resource availability (Bentos et al. 2008; Ramos
Pereira et al. 2010), one of the main factors controlling the
parturition period in bats (Arlettaz et al. 2001). If births were
to mismatch peaks of food availability, bat fitness would be
negatively affected (Ransome 1989). Weaning, a period dur-
ing which juvenile bats have to overcome the double chal-
lenge of meeting the energetic demands for growth while
learning how to independently forage, is critical for juvenile
survival (Handley et al. 1991). Thus, in the tropics, female
bats seem to avoid giving birth too close to the dry season so
that weaning can occur when resources are plentiful, maxi-
mizing the survival chances of the offspring (Willig 1985).
Accordingly, bat reproduction has been observed to match
periods of high resource abundance (Nurul-Ain et al. 2017;
Molinari and Soriano 2014; Mello et al. 2004; Estrada and
Coates-Estrada 2001; Fleming et al. 1972).

@ Springer

Phyllostomids are one of the most species-rich and eco-
logically diverse tropical bat families (Fleming 2020; Yoh
et al. 2020). The ca. 200 recognized species have evolved to
explore a wide range of food sources, ranging from fruits,
nectar and pollen, to arthropods, small vertebrates and blood
(Fleming et al. 2020). In the Neotropics, food resources such
as insects and fruits are available year-round, but their abun-
dance tends to increase during the rainy season and with the
onset of rains (da Silva et al. 2011; Torres and Madi-Ravazzi
2006; Ramos Pereira et al. 2010). Across the Neotropics,
phyllostomids seem to have adapted to these constraints by
adopting a phenology known as bimodal polyestry, consist-
ing of the production of two young between the end of the
dry season and the middle of the wet season (Wilson 1973;
Ribeiro de Mello and Fernandez 2000; Willig 1985; but see,
e.g., Duarte and Talamoni 2010 for exceptions to bimodal
polyestry). However, plant phenology, and vertebrate and
invertebrate prey dynamics vary across forest types and loca-
tions (Patricia and Morellato 201 1; Héllfors et al 2020), with
some Neotropical biomes displaying seasonal fruiting pat-
terns with fruiting peaks occurring during the wet season
(Malizia 2001; Alencar et al. 1979; Peres 1994), while others
show aseasonal (Alencar 1990; Wallace and Painter 2002)
or bimodal patterns with both peaks occurring during the
dry season (ter Steege and Persaud 1991). Notwithstanding
the scarcity of assemblage-wide phenology studies in Neo-
tropical bats, this variation in resource availability seems
to greatly influence bat phenology throughout the region
(Estrada and Coates-Estrada 2001; Bernard 2002; Durant
et al 2013; de Carvalho et al 2019).

Here, we address the information gap in tropical bat phe-
nology by describing the reproductive phenology of nine
Central Amazonian phyllostomid species, as well as two
feeding ensembles, frugivores and gleaning animalivores.
We compare our results to findings from other locations
across the Neotropics in order to identify and explore the
underlying drivers of geographic variation in phenology
across species’ ranges. We anticipated that the reproductive
activity of most species will be modulated by seasonality,
likely reflecting the timing of maximum fruit and arthropod
availability.

Materials and methods
Study site and climate

This study was conducted at the Biological Dynamics of
Forest Fragments Project (BDFFP), a whole-ecosystem
experimental manipulation located ca. 80 km north of
Manaus in the Central Brazilian Amazon (2° 20’ S, 60° 6’
W, 30-125 m.a.s.l.; Fig. 1). The BDFFP was established
in the 1980s to assess the effects of forest fragment size
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Fig. 1 Location of the Biologi-
cal Dynamics of Forest Frag-
ments Project (BDFFP), Central
Amazon, Brazil

L
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on tropical ecosystems (Lovejoy and Bierregaard 1990).
To do so, forest fragments (1, 10, and 100 ha) were iso-
lated from nearby continuous ferra firme rainforest by
distances of 80-650 m. Forest fragments were originally
located within cattle ranches but became gradually sur-
rounded by secondary forest dominated mainly by Vismia
spp. and Cecropia spp. (Carreiras et al. 2014; Rocha et al.
2018). Primary forest reaches 30-37 m in mean canopy
height, with isolated trees up to 55 m tall (Laurance et al.
2011). Rainfall varies from 1900 to 3500 mm annually,
with a dry season between July and November and a rainy
season between November and June (Ferreira et al. 2017).
Precipitation can exceed 300 mm/month in the wet sea-
son, while being under 100 mm/month during the dry
season (Laurance et al. 2011; Fig. 2). The flowering peak
occurs during the transition between the wet and the dry
season, and the fruiting peak occurs at the beginning of
the wet season (Haugaasen and Peres 2005, 2007; Bentos
et al. 2008).

Biological Dynamics

of Forest Fragments

Project
®

Bat surveys

Bats were surveyed between August 2011 and October 2014,
using both ground- and canopy-level mist nets placed in a
variety of habitats: continuous primary forest, forest frag-
ments and secondary forest in which standardized surveys
were conducted, as well as temporary lakes, rivers, streams,
and clearings where we sampled opportunistically (Farneda
et al. 2015; Silva et al. 2020; Rocha et al. 2020; Torrent et al.
2018). Sampling started at dusk and mist nets were deployed
until 0:00 a.m., being revised at intervals of ~20 min. Cap-
tured bats were identified to species level using available
field guides and morphological keys (Lopez-Baucells et al.
2018) and standard morphometric (e.g., forearm length and
body mass) and demographic data were collected following
Handley et al. (1991). The extent of ossification of the pha-
langes was used to distinguish between adults and juveniles.
Pregnant females were identified through gentle palpation of
the abdomen and lactating females were identified according

@ Springer
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Fig.2 Average monthly precipitation during the study period (2011—
2014, solid line) relative to the long-term average (1991-2020,
shaded area). Pluviometry and temperature data was obtained from
http://climexp.knmi.nl, associated with the Tropical Rainfall Meas-
uring Mission (TRMM). Data for the period 2011-2014 is based on
a satellite-driven monthly precipitation index centred on Manaus at
—3.10 N, —60.00 E, 60 m altitude

to the condition of the mamma (i.e., milk, evidence of hair
loss around the nipples). Since small fetuses may go unde-
tected through palpation, the number of nonreproductive
adult females may be an overestimate. Bat capture and
handling was conducted following guidelines approved by
the American Society of Mammalogists (Sikes and Gan-
non 2011). Taxonomy follows Lopez-Baucells et al. (2018)
except for Mimon crenulatum which is referred to as Gard-
nerycteris crenulatum (Hurtado et al. 2014). Detailed site
descriptions and sampling methods can be found in Rocha
et al. (2017b), Silva et al. (2020), Rocha et al. (2020), and
Torrent et al. (2018).

Classification of reproductive phenologies

We classified population- and ensemble-level reproduc-
tive phenologies following Durant et al. (2013). For adult
female bats, we counted the number of pregnancy and lac-
tation peaks. In accordance with Durant et al. (2013), we
considered two types of peaks: a primary peak, defined as
the period with the higher proportion of pregnant/lactat-
ing females, bounded by periods where the proportion of

@ Springer

pregnant/lactating females was at least twice as low; and
secondary peak(s), defined in a similar manner but with the
difference that the proportion of the secondary peaks was at
least 50% of the proportion of the primary peak. Depend-
ing on the number of peaks along the year, we expected
to observe four different phenological patterns: amodal if
there was no peak in reproduction/lactation but nonrepro-
ductive females were detected throughout the year; unimodal
if there was one peak in reproduction followed by a peak
in lactation; bimodal if there were two peaks in reproduc-
tion, each followed by peaks in lactation; and polymodal
if there were more than two peaks in reproduction. Due to
the lack of recapture data we were not able to identify if
a given individual female was pregnant more than once a
year. As such, similarly to Durant et al. (2013), we were
unable to classify species according to the five traditional
reproductive phenologies (aseasonal monoestry, aseasonal
polyestry, seasonal monoestry, seasonal bimodal polyestry
and seasonal polyestry; Wilson 1973). Notwithstanding the
lack of data regarding the number of estrous cycles (monoes-
trous [single] vs polyestrous [multiple]) for our study popu-
lations, whenever possible we use available literature from
elsewhere to discuss the recorded type of estrous cycle of
our target species.

According to the seasonal variation of our study area,
we defined six periods: June—July, August—September and
October—November, respectively as the early, mid and late
dry season, and December—January, February—March and
April-May, respectively as the early, mid and late dry sea-
sons. At the species and ensemble level, a species/ensemble
was retained in the analysis if at least five adult females were
captured in a minimum of four periods. At the species level,
nine species met these requirements, six of which are frugi-
vores and three are gleaning animalivores (Table 1). These
conditions were also met by two ensembles: frugivores and
gleaning animalivores. The species included in ensemble
level analysis were those listed in Table 1 in addition to
Ametrida centurio, Artibeus cinereus, Artibeus gnomus,
Mesophylla macconnelli, Sturnira tildae and Vampyressa
bidens for the frugivores, and Tonatia saurophila for the
gleaning animalivores.

Data analysis

For data analysis, the proportion of pregnant, lactating, and
nonreproductive female bats for each species/ensemble was
calculated as the number of individuals falling into each cat-
egory, divided by the total number of females captured for
that species/ensemble. At the ensemble level, the proportion
of bats falling in each category was weighted by species-
specific bi-monthly abundance.

We used circular statistics to test the deviation of the
number of pregnant and lactating females throughout the
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Graphical analysis

Rayleigh’s test

Hermans—Rasson test

Ensemble

Table 2 Summary of the different analyses for the lactating adult female bats

Species

@ Springer

Primary peak  Secondary peak

Phenology

Distribution

z

Distribution

P

T

Captures

?

Uni- or bimodal

Uniform

Non uniform 0.184 0.775

>0.001 Non uniform 0.403

0.006

545.34
1,287.69

Artibeus concolor

?

0.026  Non uniform  Uni- or bimodal

22

Artibeus lituratus

Mid wet

Unimodal

Artibeus obscurus

Mid dry Mid wet

?

Bimodal

0.037 Non uniform 0.180 0.710 Uniform
>0.001 Non uniform 0.166 0.009 Non uniform  Uni- or bimodal

1,193.76
18,081.98

11

Carollia brevicauda

172

F

Gardnerycteris crenulatum — GA

Carollia perspicillata

Late dry

Unimodal

>0.001 Non uniform 0.570 0.049 Non uniform Unimodal
>0.001 Non uniform 0.379 0.006 Non uniform Unimodal

Mid dry

195.10
3,114.86

GA

Lophostoma silvicolum

Late dry

35

Rhinophylla pumilio

Late dry

Early dry
Mid wet

0.717 0.006 Non uniform Bimodal

0.122 Uniform
>0.001 Non uniform 0.141

808.81
28,599.91

GA

Trachops cirrhosus

Late dry

Non uniform  Bimodal

0.006 Non uniform  Unimodal

0.003

263
13

Frugivores

Late dry

>0.001 Non uniform 0.418

2,343.58

Gleaning animalivores

Ensemble abbreviations: F Frugivorous bats, GA Gleaning animalivorous bats. For the graphical analysis, unclear patterns were marked as ‘?’. Calculations were not performed when sample

). The season in which the primary and secondary peaks occur was indicated only when it was relevant to the amodal, unimodal or bimodal character of the repro-

ITERL

sizes were < 5 (indicated as

if it was not relevant

ductive phenology, and indicated by

R). Five out of the nine species, namely A. lituratus, A. obscu-
rus, C. perspicillata, G. crenulatum, and R. pumilio exhibited
a unimodal pregnancy distribution, and so did the frugivore
ensemble, even when the more common species C. perspicil-
lata was excluded (Figs. 3, 4 Supplementary Fig. 1). How-
ever, pregnancy was bimodal for A. concolor, C. brevicauda,
and T. cirrhosus, amodal for gleaning animalivorous bats and,
according to Durant et al. (2013)’s definition, the pattern for
L. silvicolum was polymodal (Table 1, Figs. 3, 4 Supplemen-
tary Fig. 1). With the exception of L. silvicolum, all species
and feeding ensembles display their primary pregnancy peak
during the mid-dry season, indicating a high degree of inter-
specific pregnancy synchronization (Figs. 3, 4 Supplementary
Fig. 1). Likewise, other than L. silvicolum, all species display-
ing a secondary pregnancy peak experienced it during the late
wet season (Table 1).

As for lactation, A. obscurus, G. crenulatum, L. silvi-
colum, R. pumilio, and the gleaning animalivores ensemble
exhibited a unimodal distribution, whereas A. concolor, A.
lituratus, C. brevicauda, C. perspicillata, T. cirrhosus, and
the frugivore ensemble displayed a pattern in accordance
with a bimodal distribution (including when C. perspicillata
was excluded) (Figs. 3, 4). However, due to the lack of infor-
mation for the early wet season, it is unclear whether the
lactation pattern of A. concolor, A. lituratus, and C. perspi-
cillata was unimodal or bimodal. The primary lactation peak
occurred during the mid—wet season for A. obscurus and
the frugivore ensemble, during the mid—dry season for C.
brevicauda and L. silvicolum, during the late dry season for
G. crenulatum, R. pumilio, and the gleaning animalivores,
and during the early dry season for T. cirrhosus, indicat-
ing a lower degree of interspecific lactation synchronization
(Table 2). Except for C. brevicauda, all species displaying a
bimodal lactation phenology had their secondary lactation
peak during the late dry season.

At the ensemble level, frugivores and gleaning animali-
vores exhibited distinct reproductive patterns. In the case of
frugivores, pregnancies were concentrated in the mid dry
season, while for gleaning animalivores, high levels of preg-
nancy were observed throughout the year, with a peak occur-
ring during the mid-wet season. Regarding lactation, while a
bimodal phenology with a primary peak during the mid-wet
season and a secondary peak during the late dry season was
observed for frugivorous species, a bimodal pattern with a
primary peak during the late dry season was observed for
gleaning animalivores.

Discussion

Despite the importance of studies on reproductive phenol-
ogy to better understand the energetic requirements of spe-
cies over time, assessments using rigorous classification
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Fig. 3 Reproductive phenology of the nine phyllostomid species con-
sidered for species level analysis, based on the proportion of repro-
ductive (lactating and pregnant) females for each species. Dashed
grey lines show the average monthly precipitation between 2011 and

approaches for tropical bat species are scarce. Here, we
described the phenology of nine of the most common
Amazonian phyllostomids, providing the first consistent
analysis of reproductive phenology for four out of nine
species studied. Our results indicate that most species
exhibit a high degree of synchronization of their preg-
nancy and lactation peaks. This adds to an expanding body
of evidence suggesting that the reproductive phenology of
Neotropical bats is largely modulated by seasonality and
its associated shifts in resource availability (Hernandez-
Aguilar and Santos-Moreno 2020; Lima and Fabiin 2016).

Although over 160 bat species occur throughout the
Amazon (Lépez-Baucells et al. 2018), very little is known
about the reproductive phenology of most of these species.
Indeed, with the exception of a few isolated observations
of pregnant or lactating individuals of Artibeus concolor
(Bernard 2002), A. obscurus (Bernard 2002; Albuja 1999),
Gardnerycteris crenulatum (Pedro et al. 1994; Mello and
Pol 2006), and Rhinophylla pumilio (Rinehart and Kunz
2006; Bernard 2002; Rocha et al. 2017a), no comprehen-
sive study has been conducted to specifically assess the
reproductive phenology of these species.

2014 at the BDFFP. Black circles represent the monthly proportion
of adult pregnant females, black triangles represent the monthly pro-
portion of adult lactating females, and black squares represent the
monthly proportion of non-reproductive adult females

In the Neotropics, a common pattern is that frugivorous
phyllostomids generally experience a reproductive peak
during the late dry season and a second peak during the
mid-wet season (Fleming et al. 1972; Molinari and Soriano
2014; Durant et al. 2013). In some species, this trend is often
facilitated by the ability of bats to delay the development of
the embryo and produce milk while pregnant, a phenom-
enon known as postpartum oestrus, enabling them to give
birth twice a year (Ortega et al. 2021). Yet, while all but
one of the focal species showed a primary pregnancy peak
during the mid-dry season, only two of the six species con-
sidered—A. concolor and Carollia brevicauda—exhibited
gestation patterns characteristic of bimodal phenology. Car-
ollia brevicauda was observed to be bimodally polyestrous
in the Venezuelan Andes (Molinari and Soriano 2014) and
Costa Rica (La Val and Fitch 1977). However, Torres et al.
(2018) found that C. brevicauda reproduces throughout the
year with very low synchrony in Colombia. Additionally, at
the BDFFP, A. lituratus, A. obscurus, and C. perspicillata
evinced a unimodal gestation phenology, suggesting some
divergence from previous findings. The reported number of
reproductive peaks varies geographically for these species
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Fig.4 Reproductive phenology of frugivorous and gleaning animal-
ivorous phyllostomids between 2011 and 2014, determined using the
proportion of reproductive (lactating and pregnant) females for each
ensemble. Black circles represent the monthly proportion of adult

and, corroborating our results, Duarte and Talamoni (2010)
reported A. lituratus as a seasonally monoestrous species
in Brazil. Yet, Fleming et al. (1972) and Willig (1985)
described it as being polyestrous, with birth periods occur-
ring during the mid-dry season and during the mid-wet sea-
son. Furthermore, Tamsitt and Valdivieso (1963) reported
A. lituratus as seasonally polyestrous. On the other hand,
while in accordance with our findings C. perspicillata was
described as having a unimodal reproductive phenology in
Costa Rica (Stoner 2001), it has often been observed to have
a bimodal reproduction pattern elsewhere (Mello et al. 2004;
Ribeiro de Mello and Fernandez 2000; Charles-Dominique
1991; Ramirez-Pulido et al. 1993, La Val and Fitch 1977;
Heithaus et al. 1975; Fleming et al. 1972). For A. lituratus,
A. obscurus, and C. perspicillata, the presence of a high
proportion of lactating females during the mid-wet season is
consistent with a secondary pregnancy peak during the early
wet season for which we lack capture data. Therefore, it can-
not be excluded that even at the BDFFP these species may be
seasonally polyestrous with a bimodal reproductive phenol-
ogy. This hypothesis is further supported by the ability of C.
perspicillata and A. lituratus to perform postpartum oestrus
(Rasweiler and Badwaik 1997; Rodrigues et al. 2006). As
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pregnant females, black triangles represent the monthly proportion of
adult lactating females, and black squares represent the monthly pro-
portion of non-reproductive adult females

suggested by Molinari and Soriano (2014), another hypoth-
esis as to why these species experience geographic variation
in their reproductive phenology is that the fruiting season is
too short at our study site to allow species such as C. perspi-
cillata to produce two offspring in this timeframe.
Compared with frugivores, the reproductive phenol-
ogy of insectivorous phyllostomids is particularly poorly
known. Durant et al. (2013), Dechmann (2005), and Estrada
and Coastes-Estrada (2001) reported results ranging from
seasonal monoestry and aseasonal monoestry to seasonal
bimodal polyestry for different species. As in our study, Tra-
chops cirrhosus was described as bimodally polyestrous by
Sénchez-Hernandez and Romero-Almaraz (1995) in Mexico.
The reproductive phenology we observed in Lophostoma
silvicolum at the BDFFP differs from observations made
on all other species in our study, and its multimodal gesta-
tion does not match its unimodal lactation pattern. On Barro
Colorado Island (Panama), L. silvicolum was observed to
have two pregnancy peaks—one during the late dry season
and another during the mid-dry season—and the species was
suggested as being capable of postpartum estrus (Dechmann
et al. 2005). Pregnant females may therefore be able to give
birth when resources are at their maximum, e.g., during the
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mid-dry season, explaining the presence of a single lactation
peak for this species.

At the ensemble level, pregnancy of the frugivores was
unimodal, and lactation was bimodal with peaks occurring
during the late dry and mid wet seasons. However, as with
A. lituratus, A. concolor, C. brevicauda, and C. perspicillata,
the high proportion of lactating females captured in the late
dry and mid wet season suggests that the frugivorous ensem-
ble may have a bimodal reproductive phenology with a pri-
mary pregnancy peak occurring during the early wet season.
This idea is supported by the fruiting peak in the early wet
season at our study site (Haugaasen and Peres 2005, 2007;
Bentos et al. 2008). Compared with frugivores, the glean-
ing animalivores displayed a more constant pregnancy phe-
nology, with a high proportion of pregnant bats observed
throughout the year, and lactation mostly concentrated dur-
ing the dry period. In Costa Rica, this ensemble exhibited a
single reproduction peak in the mid-late dry season (Durant
et al. 2013), but the authors documented geographical
variation in the reproductive strategy of gleaning animali-
vores: unimodal phenology was observed for this ensem-
ble in Costa Rica while bimodal phenology was reported
in northern South America and Mesoamerica (Durant et al.
2013). This difference in reproductive strategy may be due
to smaller fluctuations in the availability of feeding resources
for gleaning animalivores than for frugivores. Nonetheless
our findings suggest that reproduction appears to be timed so
that resources are abundant both when females are lactating
and when pups are weaned, therefore maximizing the suc-
cess of reproduction in both ensembles.

The ensemble-level phenology often does not correspond
to the phenology of its component species. Mismatches of
the reproductive phenology between specific species and
their feeding ensemble are likely due to species-specific
differences in preferred food resources and their temporal
availability, or due to dietary flexibility associated with the
capacity of complementing the diet with items typically
associated with a different ensemble, e.g., consumption
of insects by frugivorous bats or fruits for gleaning ani-
malivores, therefore allowing species to exhibit more than
one reproductive peak during a given season (Durant et al.
2013). In accordance, Estrada and Coates-Estrada (2001)
reported that some frugivorous bat species with similar
feeding habits may exhibit different reproductive phenolo-
gies due to differences in their preference for specific plant
taxa (Dinerstein 1986), and by the differences in the fruit-
ing phenology of these species (Laska 1990; Fleming et al.
1972). For instance, the timing of reproduction of Cynop-
terus brachyotis is strongly correlated with the timing of
mango fruiting (Kofron 1997). Ecologically similar spe-
cies that occur in sympatry may therefore exhibit different

reproductive phenologies despite similar fruiting conditions
(Stevenson et al. 2000).

Until now, few studies have illustrated the reproduc-
tive phenology of Neotropical bats. Species-level char-
acterization of the pregnancy and lactation patterns are
challenging due to considerable geographic biotic (timing
and duration of resource availability) and abiotic (timing
and duration of the rainy season) variation. However, such
studies remain essential to better understand the biology of
bats and the factors influencing their reproductive phenol-
ogy. Fragmentation can affect the reproduction of some
Neotropical bat species, often in a species-specific man-
ner (de Oliveira et al. 2017) and leading to sex-specific
responses to landscape features (Rocha et al. 2017a).
Thus, it cannot be excluded that the phenology patterns
observed at our study area are not influenced by fragmen-
tation. Indeed, at a time when anthropogenic stressors such
as fragmentation and global warming are increasingly
influencing the reproductive behavior of a wide array of
taxa (Klapwijk and Lewis 2008; Grazer and Martin 2012;
Rocha et al. 2017a; Rossi et al. 2019) understanding which
parameters modulate bat reproductive patterns can provide
key conservation insights. Further long-term studies are
paramount to investigate the reproductive behavior of bats,
particularly across the tropics, where the reproductive phe-
nology of most species remains unknown.
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