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Abstract: The current energy prices do not include the environmental, social, and economic short
and long-term external effects. There is a gap in the literature on the decision-making model for the
energy transition. True Cost Accounting (TCA) is an accounting management model supporting
the decision-making process. This study investigates the challenges and explores how big data, AI,
or blockchain could ease the TCA calculation and indirectly contribute to the transition towards
more sustainable energy production. The research question addressed is: How can IT help TCA
applications in the energy sector in Europe? The study uses qualitative interpretive methodology
and is performed in the Netherlands, Germany, and Poland. The findings indicate the technical
feasibilities of a big data infrastructure to cope with TCA challenges. The study contributes to the
literature by identifying the challenges in TCA application for energy production, showing the
readiness potential for big data, AI, and blockchain to tackle them, revealing the need for cooperation
between accounting and technical disciplines to enable the energy transition.

Keywords: True Cost Accounting; big data; sustainability; blockchain; AI; energy production

1. Introduction

The energy markets face challenges in the transformation towards sustainable alterna-
tives, with some European countries such as Sweden and the Netherlands showing stronger
readiness than others, i.e., Poland and Hungary [1–3]. The technical and social aspects
of energy production in transitioning towards renewable alternatives seem extensively
covered in literature [4–7]. From the economic perspective, there are business models
for classification [8] and accounting frameworks introduced to track the energy efficiency
trends [9]. There is a gap, however, in the literature on the decision-making model for
the energy transition. Specifically, studies are scares on how to enable decision-makers
throughout the energy production chain (from energy sources and production entities to
energy (pro)consumers) to make better decisions, i.e., choose more sustainable alternatives.
This paper addresses this gap by analysing the True Cost Accounting model for energy cost
estimation based on a broad scope of information covering all aspects of the energy pro-
duction chain, both internal and external. The analysis goes beyond a single discipline and
combines technical and accounting literature to critically assess the TCA model for energy
cost estimation. Further, it explores the potential of an innovative idea of strengthening the
TCA model with big data, Artificial Intelligence, and blockchain. In doing so, it contributes
to developing a new body of literature on big data use in the accounting field. The study
investigates the transition challenges facing the energy sector and explores how the use
of big data, AI, or blockchain could ease the TCA calculation and indirectly support the
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move towards more sustainable operations. The primary research question guiding this
study is how IT can help TCA applications in the energy sector in Europe. In answering
this question, we investigate the current challenges of TCA and the current use of big data
in management accounting.

Big data, AI, and blockchain, as elements of Industry 4.0, show different levels of
development across countries in the European Union [10,11]. The current study applies a
multidisciplinary and multinational approach to collect opinions from a diverse group of
relevant stakeholders—IT specialists, sustainability and energy experts, and accountants—
in the European energy market, with particular focus on the Netherlands, Germany, and
Poland, and the countries with contrasting energy markets, levels of industry 4.0 advance-
ment, and development of the accounting discipline.

1.1. Literature Review
True Cost Accounting Framework

TCA is a management accounting concept that estimates a true cost [12,13]. TCA is
a holistic approach accounting for current and future, internal and external impacts, by
discounting it in a single price [12,14,15]. TCA provides insight into the complex economic,
social, and ecological processes through which sustainability should be attained [16]. As a
result of the TCA application, the existing prices of products and services can be adjusted
to include the internal and external impacts throughout the whole lifecycle of the products
or services [17]. Consequently, sustainable decision making may be stimulated by putting
a price on otherwise seemingly free impact costs to society [13]. The stimulation can
enable the energy markets playing an important role in tackling the climate change [10,18],
making the externalities of energy production visible which are hardly included in the cost
estimations [11,19].

The TCA framework consists of five steps as shown in Figure 1 [20]. The first four steps
are essential for calculating the cost, the fifth step consider management decisions made
after the estimation and will be omitted in the current study.

1. Analyse company situation and map stakeholders engaged. Identify a cost object by
analysing the company situation [20]. A cost object refers to a process, a waste stream,
an industry, or an entity. Based on the cost object, a True Cost price calculation will
be performed.

2. Define the cost object to identify and outline the scope of the impacts: here, all the
possible externalities (side-effects/by-products or unintended production results)
should be identified. It is essential to set the limit on how far to go. Externalities can
be endless, so a well-defined scope is required.

3. Measure all impacts within the scope of the cost object [20]. Life cycle assessment
(LCA) analyses are helpful since they specify the full usages of materials and the
waste streams created.

4. Monetise all the significant impacts into a monetary unit [20]. This helps overcome
comparison and integration issues for social and environmental impacts [21,22].

Literature on TCA reveals several challenges in its application. For example, the
measurement and monetisation methods are incomplete, and TCA requires development to
provide complete and comprehensive coverage of all the identified impact categories [17].
Furthermore, TCA is complex and should therefore provide useful information efficiently
in order to improve its applicability for practice [17]. This effectivity–efficiency tradeoff
is important since the costs of the analysis should not outweigh the benefits of more
useful accounting information. When analysing the challenges of TCA, three categories are
identified: complexity, accuracy, and timeliness.
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1.2. TCA Challenges
1.2.1. TCA Complexity

1. Society, the environment, and the economy are interrelated elements interacting with
each other. TCA deals with the different scales and domains of social, environmental,
and economic impacts and those impacts are interrelated. Measurements not inte-
grated into one single and comparable unit [23] have consequences for interpreting
the result.

2. Across industries and throughout the life cycle of a product, different metrics are
used for measurement and monetisation [17]. There is no consensus on measurement
and monetisation, and this lack of standardisation makes it difficult to measure the
product’s impacts uniformly [23]. Especially with regard to monetisation, many
different valuation methods exist [24,25].

3. TCA uses data from multiple disciplines, such as bioscience, biology, psychology,
economy, and accounting, to understand the interaction among organisations, society,
and the natural environment [26]. Each new practice for measurement and moneti-
sation creates a new focus for negotiation, contestation, and political struggle over
values [27].

1.2.2. TCA Accuracy

1. Some impacts deal with emotions and subjectivity, for example, landscape or stress,
and are difficult to quantify and assign value [28].

Monetisation uses different valuation methods: direct behavioural and indirect valua-
tion [17]. The first technique measures the monetary value directly from the preferences
or behaviour of the stakeholder and uses available market prices and observed actual
behaviour [17]. The accuracy challenge occurs in all situations where differences appear
between what stakeholders say ‘they would do’ and what ‘they actually do’ [17]. The indi-
rect techniques estimate either cost of avoidance and restoration or damage costs [17]. The
avoidance and the restoration approaches use real market prices for existing technological
solutions to avoid, restore, or control pollution or damage. The damage costs approach
estimates the damage caused by a pollutant using scientific, statistical, and behavioural
valuation methods [17]. All the approaches mentioned above share shortcomings in the
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availability of the data and the reliability of the price estimates, causing inaccuracies in
this step.

2. The true cost of an impact depends on its context and the interlinkages of variables.
Takin the water usage on its own, for instance, is an incomplete measure to capture the
true cost of the water usage (water use in areas with plentiful rainfall is less stressful
than the water used for milk and cattle grazing) [23].

1.2.3. TCA Timeliness

1. Long-term cost estimation is characterized by different time lags and inertia, which
masks those important cause–effect relations when captured at one point in time [26].
For example, one ton of extra CO2 emission now will lead to more expenditures
for tackling climate change in the future. However, it is difficult to determine now
how aggressively the climate will warm up in the upcoming years and what those
expenditures will be in the future. Many variables determine the true cost of an
impact [29], and these become fully visible only in the long run.

2. The time lag in the measurement and the monetising of the impact are uncertain [30].
It takes some time to gain insight into those processes or for the information to reach
managers [31]. When the accounting impact information reaches the user, a problem
may arise that the accounting information has become outdated [31].

1.2.4. IT and TCA

The current study proposes to address the challenges in TCA application, using IT as
the primary data source for account management [32]. Generally, IT systems can collect,
organize, process, and distribute large amounts of data [33], allowing accountants to
interpret data from many sources [34]. IT systems can be defined as a set of interrelated
components, such as software, hardware, people, procedures, and data that collect, process,
store, and distribute information to support decision making and organisational control [35].
IT systems have shifted from traditional data processing to more progressive and automated
data capture, and consequently, more variety of unstructured data sources such as big
data can be exploited [36]. Accounting methods integrate with this new reality of big
data [37]. AI is an outcome of a successful application of big data that can help understand
the past and predict the future based on a large amount of data [38]. It prevents information
overload, predicts future events, and analyses voice-based data and images and other data
sources that are currently not being used in accounting [38]. In addition, blockchain may
be useful in accounting. Blockchain is described as a series of blocks used to establish and
record the ownership of assets, in which an arbiter is not required [39,40]. This enables the
direct exchange of accurate financial information and improves the efficiency and reliability
of transactions [41] and the integrity of transaction history.

Table 1 shows the literature overview on big data applications in accounting, including
several trials data mining applications are prominent within management accounting [42].

1.2.5. TCA Big Data in Coping with Complexity

Big data and AI enhance the processes of data collection, identification of cause and
effect relations, integration of data, translation of raw data into meaningful information,
and the representation of the data on a manageable and accessible scale more efficiently [65].
Automating the processes of identifying cost drivers, forecasting future costs, measuring
impacts, and evaluating impact in a monetary unit may increase efficiency. Descriptive
and predictive data mining helps identify cause–effect relations in the database, allocating
impact costs to certain activities and estimating future costs. Moreover, to reduce the
complexity, it is important to reduce the scope of TCA. Within big data analytics, it is
important to determine the goal of the analysis [66]. A clear question enables the designer of
the big data tool to exclude all but the relevant data. Therefore, big data and AI may reduce
TCA’s complexity and consequently enhance the TCA’s potential application. Blockchain
may also reduce the complexity of TCA since it supports the automated exchange of
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relevant data by all involved parties accurately and efficiently [67]. Moreover, blockchain
uses predefined protocols for a uniform sharing of information, and this standardisation of
data sharing may further reduce the complexity of TCA.

Table 1. Data mining applications within accounting literature.

Application of Data Mining Studies in
Management Accounting Brief Description of the Research

Esmat et al. (2018) Data mining was used to predict customer demand

Wald et al. (2013) Data mining was used to allocate costs to activities more efficiently

Hämäläinen and Inkinen (2017) Data mining was used to reduce emission costs

Chou et al. (2011) Data mining was used for the estimating equipment manufacturing costs

Chou and Tsai (2012) Data mining was used to improve the accuracy of equipment inspection
and repair in cost management

Dessureault and Benito (2012) Data mining was used for tracing equipment replacement costs

Kostakis et al. (2008); Liu et al. (2012) Data mining was used in defining drivers in activity-based costs and
improving production routing

Yu et al. (2006); Shi and Li (2008); Miglaccio et al.
(2011); Vouk et al. (2011)

Data mining was used to construct cost management, create neural
network systems for a faster and more accurate estimation of the total unit
cost of construction, and for operation and maintenance

Chang et al. (2012) Data mining was used to forecast product unit cost

Yeh and Deng (2012) Data mining was used to estimate product life cycle cost

Deng and Yeh (2010); Deng and Yeh (2011) Data mining was used to estimate project design and product
manufacturing costs

Petroutsatou (2012); Kaluzny et al. (2011) Data mining was used to develop a project-level cost–control system

Chen and He (2012) Data mining was used to develop a project level cost–estimate system

Yu (2011) Data mining was used to develop ABC classification techniques

Xing et al. (2015) Data mining was used to evaluate and predict educational performance

Zhou et al. (2015) Data mining was used to predict financial distress

Source: [43–64].

Proposition 1. Big Data, AI, and blockchain reduce the complexity of TCA practices.

1.2.6. TCA Big Data in Coping with Accuracy

Big data, AI, and blockchain may improve the accuracy of TCA, particularly its
measurement and monetisation steps. Here, data mining may be useful. Data mining,
defined as the process of identifying valid, potentially novel, and understandable patterns
in data [68], allows for the identification of causal relations and better forecasting of
future costs. Data mining is the most important current paradigm of advanced intelligent
business analytics and decision-supporting tools [42]. In data mining, specific algorithms
are used to extract patterns from data with three different goals: description, prediction, and
prescription [42]. Descriptive data mining refers to understanding and interpretation of the
data. Predictive data mining analyzes the past to predict the future by detecting patterns
of behaviour and extrapolating future actions based on those patterns [42]. Prescriptive
data mining refers to achieving the best possible outcome. So far, within management
accounting, the prediction function has been used the most often since estimation is the
most common task in managerial accounting application of data mining [42]. AI uses data
mining tools to build logic behind the data to forecast future outcomes and identify patterns
for allocating impacts to activities [45]. In order to arrive at the true cost estimations, the
interplay between discounting, uncertainty, damages, and risk aversion is important to
consider [29]. Those four elements can be integrated into a formula, and consequently, the
true cost can be estimated. Accounting may help determine the need and formula to extract
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value from the data [69]. Insight should be provided in what data is needed and what
relevant variables capture the problem, based on which an analytic model can be built [42].

Consequently, analytics tools can translate the raw data into valuable decision-making
knowledge [70]. Blockchain is a distributed digital ledger used to record and share infor-
mation through the peer-to-peer network [71]. Identical copies of the ledger are validated
collectively by all network members [72]. This technology implies that, due to the decen-
tralisation feature of blockchain, it is impossible to alter information in a block at a single
location. This results in efficient, secure, transparent, and accurate processing [72]. Thus,
blockchain in TCA may enable linking measurement data from the production line to the
monetisation for environmental, social, and economic impacts accurately and efficiently.
Consequently, it allows the sharing of TCA measurement data between all the involved
parties within the value chain. Together, blockchain, big data, and AI may help identify the
cause–effect relations within the data, support forecasting of future costs, and accurately
share the measurement data.

Proposition 2. Big data, AI, and blockchain result in more accurate TCA applications.

1.2.7. TCA Big Data in Coping with Timeliness

Digitalisation allows accounting information to be produced, distributed, and inter-
preted in real time [73]. Different databases connected to each other provide, via automated
censoring, real-time insight into the TCA. The measurement of the impacts identified in the
lifecycle of a product, or a service, can be linked directly to the monetisation of the external
and internal costs resulting in a real-time true cost price. The environmental, social, and
economic external data can be integrated with the internal database of production and
automatically updated [45]. The analytical tools will identify relations and correlations and
allocate impact costs to production processes. Big data enables open-source information
sharing so that all involved parties within the life cycle provide and use the required
real-time data to perform the TCA analysis. Blockchain allows for automated exchange and
verification of information, measurement data between parties in the whole value chain
can be directly shared [67]. For TCA, that is advantageous since, in order for TCA to work,
the required data should come from measurement for which consensus is required by the
involved stakeholders. Blockchain, furthermore, allows the secured exchange of that data
between all the parties without the approval of an arbiter [67]. This improves the real-time
accounting of information and thus the real-time awareness regarding sustainability.

Proposition 3. Big data, AI, and blockchain application results in timelier TCA information.

Figure 2 presents the conceptual model for the study and summarises the propositions.
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2. Materials and Methods

This research aims to contribute to the literature on sustainability accounting by pro-
viding insights into improving the TCA methodology with the application of big data, AI,
and Blockchain. The task requires an exploratory research design and interpretive research
to explore the reasons and dynamics behind the complex, interrelated processes [74]. The
concept of sustainability accounting is complex and draws together many academic disci-
plines. Therefore, the potential application of IT technologies and their influence on the
TCA application could only be explored within their social context [74]. Using a qualitative
approach to understand the processes behind the TCA method can provide meaningful
insight into how to improve its methodology [75]. Inductive reasoning was used, as there
was no theory at the start of the research, and any theories that were developed are a result
of this research [76].

2.1. Constructs

The selection of impacts used in the True Cost Accounting exercise used in the current
study is shown in Table A1 in the Appendix A. In preparation for this study, the TCA
application and estimate of the true price of energy production showed a high complexity
of the exercise and low accuracy and timeliness. The complexity, accuracy, and timeliness
were the core concepts guiding the current study. The accuracy referred to the degree to
which relevant estimates were reliable, the degree to which cause and effect chains between
activities and impacts could be identified, the degree to which subjectivity and uncertainty
could be reduced in estimating costs, and the degree to which the measurements provided
detailed and reliable data. Complexity was operationalized as the degree to which different
metrics were required to measure environmental, social, and economic impacts, the degree
to which the TCA analysis was costly and time consuming, the degree to which different
academic disciplines were needed in the analysis and the degree to which they diverged,
the degree to which different monetisation methods were required and the degree to which
different dimensions and attributes of data sources could be brought together into one
scale. Timeliness relates to the degree of accounting data processing in real time, the degree
to which the data were available and to which measurement from the production could be
directly linked to the monetisation assessments.

In order to discuss the application of big data, AI, and blockchain, the different types
of energy production costs were discussed with each respondent to discern the types of
costs IT allowed to arrive at more accurate, timelier, and less complex TCA estimation.
The scoping was limited to the material impacts, meaning that the plant and system costs
have been identified as internal costs. Greenhouse gas emission costs, air pollution costs,
landscape and noise impacts, loss of biodiversity, and upstream costs of material and
construction have been identified as the external costs for the energy market [25].

The true cost estimation trial for wind and coal energy in the Netherlands conducted
prior to this research showed that construct is defined fractionally, and selected impacts
are included in the energy cost due to the shortcomings in data availability and processing
ability. In an attempt to identify a complete scale of material impacts, several were identified
and monetized, as shown in Table 2.

2.2. Data Collection and Respondents

The data were collected in a cross-sectional manner and consisted of interviewing
the experts on how impacts of energy production can be measurable and translated into
meaningful data. The current study used an earlier developed stakeholder map for the
Dutch energy market of Bosma [25]. The respondents were selected based on their expertise
in big data, analytical software, and accounting tools to provide insights on how big data
applications might help TCA processes. Similarly, Galliers and Huang [77] used experts
to provide alternative narratives to the dominant paradigm. The expert panel provides a
forum where leading experts in a given field can share their experiences and insights [78].
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Table 2. True Cost Accounting estimate for wind and coal energy.

Cost price of Energy Generation in
EUR/kWh. Onshore Wind Offshore Wind Hard Coal Coal with CCS

after Combustion

Installation costs 4.4 7.6 1.5 7.0
O&M costs 1.0 2.0 0.8 1.0
Fuel costs 0.0 0.0 2.0 2.0

Sum of plant-level costs (a) 5.4 9.6 4.3 10.0
Grid costs 1.0 1.0 0.5 0.5
Balancing costs 0.3 0.3 0.0 0.0
Profile costs 1.5 1.5 0.0 0.0

Sum of system costs (b) 2.8 2.8 0.5 0.5
GHG emissions costs 0.1 0.09 7.11 2.34
Air pollution costs 0.07 0.07 1.37 1.47
Landscape and noise impacts 0.9 0.08 <0.1 <0.1
Loss on biodiversity Data not available 0.2 0.3
Employment benefits (<0.01) (<0.01) (<0.01) (<0.01)
Upstream costs of materials and construction 0.45 0.45 1.9 1.9
Cost of nonrecyclable materials 0.0000015 0.0000015 <0.0000015 <0.0000015

Sum of all quantifiable external costs (c) 1.53 0.7 10.6 5.6

Sum of all quantifiable costs (a+b+c) 9.73 13.1 15.4 16.1

Year 2019 S1 2019 S2 2020 S1 2020 S2
Energy market prices in the Netherlands EUR
/kWh (Statista, 2021) 20.52 20.55 14.27 13.61

Market prices energy in Germany (Statista, 2021) 30.88 28.78 30.43 30.06
Market prices energy in Poland (Statista, 2021) 13.43 13.76 14.75 15.71

Source: own calculations.

The same (Dutch) proxy of the stakeholders was used for Polish and German energy
markets due to the time constraints and since the system complexity of energy generation
was treated as similar across the EU countries.

The more variety exists in the data, the more patterns, relationships, and knowledge
can be extracted [79]. The Netherlands, Poland, and Germany energy markets were selected
for the study. Poland and the Netherlands are among the least sustainable European energy
markets [80] but show contrasting trends in industry 4.0 developments; the Netherlands
is one of the most advanced, Poland the least [10,11]. Germany, in contrast, is currently
reducing the amount of CO2 emissions significantly and is on the way to becoming the pio-
neer in renewable energy [81]. In total, 16 respondents were interviewed (see Appendix B,
Table A2) with a total interview time of almost 22 h. The interviews were conducted via
Google Meet due to COVID-19 restrictions on location in the summer of 2021. Before the
interview, a document containing the stakeholders’ analysis, an overview of the types of
energy production costs, an infographic presenting the environmental and societal im-
pacts of energy production, and the true cost calculation for the Dutch energy market
preparation study were shared with the respondents [25]. Consequently, these documents
were discussed with the experts to introduce them to the concept of TCA. The interview
guide was used as a baseline for the interview questions (see Appendix C). The interviews
were recorded to improve the data analysis process, and the transcripts were sent to the
respondents for verification purposes.

2.3. Data Analysis Method

In preparation for this study, the true cost estimation outcomes (Table 2) were dis-
cussed with the representatives of coal (RWE) and wind energy-producing companies. The
current study used an interpretative and thematic data analysis approach. The interviews
were divided into three themes: accuracy, timeliness, and complexity. Consequently, the
interview transcripts were coded according to the three themes. Quotes from the interviews
are placed in tables in the results section (and also appear in the narrative itself). The



Energies 2022, 15, 1089 9 of 24

narratives were created following Gray [82]. Gray states that narratives are needed to
provide alternative insights and move the boundaries of TCA [82]. Narratives are used
to enrich the current literature on TCA and provide insights into overcoming the current
challenges. Based on the quotes from the respondents, the researcher attempted to assess
the degree to which IT can make the TCA methodology more accurate, timely and less
complex, making use of the coding software but leaving much space to diverse opinions
and trying to grasp the richness of information.

3. Results

In general, in Europe, the energy prices do not cover the external influences of energy
production [83]. The estimations made during the preparation for this research were new
to most of the respondents and were received with much interest. Presenting Table 2 to
the respondents certainly contributed to broadening awareness of the externalities issue
and revealed the lack of applicable and common methodologies. According to the wind
farm owners we interviewed in Poland, there are no reliable procedures for this influence.
Further, they mentioned that the cost of avoiding negative impacts should be accounted
for in the investment planning stage. Owners are aware of potential external influences of
production. The owner shared the information that during the service of the wind farm,
the service technicians found that there was a bird’s nest with eggs in the high gondola
of the power plant. The owner believed that this is little evidence that the production of
energy from this source does not pose a radical threat to the birds. A wind power plant
is also a wintering place for ladybugs and other insects. The wind farm became part of
the natural environment. The coal energy plant controller in the Netherlands mentioned a
similar situation. Including the external effects during the investment, phase is essential as
then is easier to make a change rather than when the energy production takes place already.
However, the obstacle mentioned was missing the procedures and techniques to make it
visible and account for it.

Further results are presented according to the constructs described in the literature re-
view part. During the first interviews, a new aspect appeared to challenge the respondents,
namely TCA implementation. It was added in the following interviews and reported in the
results, as it kept coming back.

Overall, the level of awareness about TCA was more advanced in the Netherlands
than in Poland, in the last country where the interviewer faced difficulties in bringing
the concept of TCA into the discussion. Moreover, in Germany and the Netherlands,
relative openness and transparency were experienced while it was to a lesser extent present
in Poland.

3.1. Complexity

The results of complexity experiences could be divided into five areas: metrics, cause
and effect relationships, diversity of experts needed to collaborate, number of indica-
tors, resource consumption. Table 3 shows the challenges and solutions developed from
the results.

To summarise, big data and AI allow for the automation of data collection and man-
agement in TCA, resulting in a decrease in the complexity of TCA processes. The tools are
becoming cheaper and are available in identifying patterns, forecasting costs, and allocating
costs to drivers. This shows support for Proposition 1.

3.2. Accuracy

The accuracy of TCA estimations is a challenge in five areas: quantification and mon-
etisation, fluctuation, objectivity, data availability and ethics. All respondents mentioned
the importance of having a good base—input for interpretation. ( . . . ) We first have to
make sure that the basis is good before we let big data and artificial intelligence let loose on
it. ( . . . ) R10. Table 4 provides an overview of the most important findings on accuracy
deficiencies and potential solutions.
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Table 3. TCA complexity and solutions.

Result Challenge Solution Result

( . . . ) thousands of indicators that all
interrelate ( . . . ) R10

Large number of
interrelated indicators

Technology is available. Data
can be stored in data centres;
AI used to detect patterns,
blockchain secures

( . . . ) having large amounts of data is
crucial for the evaluation of the whole
situation ( . . . ) R3
( . . . ) The technologies are already
there. ( . . . ) R4, R11

( . . . ) we compared 30 to 40 different
metrics ( . . . ) R2 Common standard AI detects patterns can serve

as standard development

( . . . ) we have a lot of artificial
intelligence that can detect patterns
very well, and we can visualize data
very nicely ( . . . ) R4, R11

( . . . ) It is hard to consider the whole
chain in the life cycle since something can
have almost no impact in the direct
environment, but a huge impact elsewhere
( . . . ) R4
( . . . ) You have to be an expert in all areas.
Everything comes together in such a study
( . . . ) R7

Cooperation throughout
the life cycle /supply
chain

Sharing data would
potentially ease cooperation.
Blockchain would

No direct support in the data found;
data sharing is an issue.

( . . . ) In order to comprehend something
like biodiversity loss, it is difficult to see
how a population develops, and that is
cost-intensive ( . . . ) R3
( . . . ) These all are sub-topics that are all
in-depth and time-consuming ( . . . ) R5

Manual data collection is
costly due to human
resource and time
consumption

Sensors connected to a
blockchain system

( . . . ) sensing is becoming cheaper
and cheaper ( . . . ) R2
( . . . ) Automated cost systems process
a large amount in a short time. ( . . . )
R3

Source: own study.

Table 4. TCA accuracy and solutions.

Result TCA Challenge Solution Result IT

( . . . ) In many cases, there are impacts
that cannot be expressed in CO2
equivalents.
( . . . ) life expectancy, child mortality
and human development index are
typically things that are not really
monetary ( . . . ) R7

Uncertain estimations AI modelling
( . . . ) Technically, you can model each
little step of it, and I think you can come
up with pretty precise models ( . . . ) R2

( . . . ) Impacts can occur in 10 years or
100 years, so there is always an
uncertainty range here. ( . . . ) R5
( . . . ) This gives a lot of data problems
since data is often not available ( . . . )
R6

Data unavailable Data mining
( . . . ) I believe this information is not
available in real time. I use this
information ex post. ( . . . ) R16

( . . . ) It is difficult to predict future
climate change policies and whether
or not countries will stick to the
climate agreements. A value,
therefore, is never definite, and it is
constantly subject to changes ( . . . ) R5

Fluctuating values Identifying relationships
through AI modelling

( . . . ) If you caught those parts in a
well-defined causal relation with triggers
and conditions, then a computer is able to
forecast ( . . . ) R4

( . . . ) If data is collected manually,
they have a low credibility ( . . . )
R11–13
( . . . ) Everything is built on
assumptions and proxies ( . . . ) R5
( . . . ) Currently, there is a great deal
of subjectivity in assessing
externalities, biodiversity, etc. R16

subjective character Objectivity inherent in the
blockchain

( . . . ) Blockchain is perfect for getting
verifiable data. Given ten different
categories of costs, you also have ten
different protocols and foundations that
verify those numbers. ( . . . ) R9
( . . . ) If everyone uses the same protocol,
data can be exchanged uniformly and
verified ( . . . ) R9

( . . . ) I haven’t seen those social
values on your list yet. But if you
leave it out, you take the heart out of
the system. So, my advice is put them
in (..) R10

Ethical quantification of
social impacts

Data streams to develop
definitions

( . . . ) data streams and the
democratisation of data, i.e., making this
data available allows socially to simplify
and show the effects of an action: that
something good or bad ( . . . ) R11–13

Source: own study.
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At last, ethical consideration is important as well. Social values, such as equality,
the right to live a worthy life, and freedom are currently included in the TCA estimation
in the descriptive elements. The IT application would allow for pattern recognition and
quantification at a later stage.

To summarise, the IT technologies enable objective identification of patterns and
forecasting future costs technically possible. Further, blockchain allows for exchanging
verifiable and hygienical data, which improves TCA accuracy. The results show support
for Proposition 2.

3.3. Timeliness

The availability of real-time data in TCA is essential to be able to communicate the
holistic aspect of sustainability. If some data is available later, then the estimation of true
cost isfragmented. Currently, due to the manual data collection at each step of TCA, a
time-lag is created by the process itself. Table 5 presents the solutions to the challenges for
the timeliness aspect.

Table 5. TCA timeliness and solutions.

Result TCA Challenge Solution Result IT

( . . . ) data from 2014 and here is a
study from 2016 and together you
arrive at this number ( . . . ) R9

Time lag in TCA process

IoT sensors and data
mining models
including immediate
processing

( . . . ) The IoT devices that we
have, and sensing that we have,
absolutely allow to get real-time
measurements ( . . . ) R2
( . . . ) The input data can be
measured in real time via sensors
and IoT devices. I do not believe
that the human can use it directly.
So, you need an immediate
processing ( . . . ) R2

( . . . ) It does depend on what is
being measured. For example,
CO2 emissions and nitrogen are
already being measured in real
time. ( . . . ) R5

Time lag in data
availability

( . . . ) I believe that aggregate
data influences long-term
decisions, i.e., investments. Real
data is needed, e.g., when the
level of pollution is close to the
maximum, harmful to people,
then we should be able to make
decisions and take action fast, to
change the source. ( . . . ) R16

Data in different metrics
appear in different
timeframes

Standardisation of data
models

( . . . ) You can report on it, in a
calculation model, in every time
frame window or even live,
provided that you have
standardized it. That is really
important here ( . . . ) R4, R11

( . . . ) I wonder how much the
data collected here and now
delivers to us versus the data
aggregated after a quarter or half
a year or a year. I believe that
aggregate data influences
long-term decisions, i.e.,
investments. ( . . . ) R16

( . . . ) Here, the analysis in the
real state makes sense, certain
things at the level of companies
can be arranged and optimized in
this way ( . . . ) R16

Source: own study.

Here, the received solutions show a mixed picture. The costs of providing real-time
insight may not outweigh the benefits of real-time information; therefore, the real-time data
available should be explored further.

( . . . ) The adding of all new details may not be necessary. It may be better to update
the whole analysis once in a while instead of real time. The cost and benefit consideration
are important here ( . . . ) R7.

To summarise, the tools and technologies currently available allow for improving the
timeliness of TCA information to some extent showing partial support for Proposition 3.
Clearly, no information needs to be available in real time at all costs. Some delays can
potentially strengthen the results.
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3.4. Implementation

The implementation of the TCA technique in general and specifically with support of
IT in combination with big data, AI, or blockchain kept running into obstacles. Currently,
the human aspect of collaboration between parties to arrive at reliable and comprehensive
true cost estimation seems to be the biggest challenge. Institutions seem to be working
independently of each other lacking collaboration and developing too many methods not
accepted by the industry. The results suggest that adopting an open blockchain would
eliminate the need for collaboration, therefore, solving this challenge instantly.

Ownership of data is an issue in the implementation. Companies are hesitant to share
sensitive information. Blockchain and automation may deal with these issues around data
ownership and other parties looking into the sensitive data.

( . . . ) Companies are probably only willing to share their data, preferably by AI in an
automated manner ( . . . ) R9.

( . . . ) The first attempts have been taken to make an open protocol to enable uniform
and congruent sharing of data ( . . . ) R9.

The main challenge concerning the application of blockchain technology in TCA is
gaining mutual consensus on working in one platform.

( . . . ) The whole circular chain of events in the lifecycle of energy production should be
united in the blockchain. That means that you will need to combine different blockchains
since you can never have just one blockchain. So that may become complex exercise
( . . . ) R4.

4. Discussion

The early stage of adopting True Cost accounting to include the externalities is due to a
lack of awareness of what they are and what they constitute. We find the results repeatedly
in The Netherlands, Germany, and Poland. In all three countries initiated by us, the open
discussion about the challenges to estimate the true cost of energy prediction, including
the externalities on economic, social, and environmental dimensions, was received with
ingenious interest. Participants engaged in the TCA exercise agreed on the importance
and the value of this approach in decision-making on the transition to sustainable energy
prediction. When presented with opportunities for improving the TCA estimation with the
aid of IT, specifically big data, AI, and blockchain, many opportunities emerged, most of
them supporting the Propositions developed in the literature review.

4.1. Complexity

The results support Proposition 1, which means that big data technology enables
search for patterns and cost drivers to predict and allocate costs to activities in a more
efficient manner also by developing standards. Big data application allows dealing with
the TCA’s information overload and time consumption challenges. Individuals cannot
comprehend that complexity, and therefore automation of TCA using big data technology
seems highly promising. Currently available IT technologies are advanced enough to
deal with massive amounts of data sets to find patterns. The combination of TCA and
big data is, therefore, value adding. More variables can be included in the analysis, and
consequently, the system can be analyzed as a whole instead of as isolated elements of the
system. Literature on management accounting already acknowledges the potential of big
data for accounting [84] in general. The current study adds to the literature showing the
potential of big data for such advanced management accounting as TCA, which requires
combining financial and nonfinancial data from interdisciplinary resources.

Although big data implementation in TCA has not yet started, the application of
big data and AI may accelerate the TCA development by reducing or even eliminating
TCA complexity.
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4.2. Accuracy

The results show support for Proposition 2. This indicates that the application of
IT reduces the negative challenges of TCA concerning the accuracy of measurement
and monetisation.

Therefore, installing a big data environment and consequently statistically modelling
afterwards enable precise quantifications and valuation, improving the cost allocation and
reducing uncertainty in predicting future costs. Technically, everything is possible.

The problem is that all involved parties should cooperate to help install the data
environment This cooperation is weak or absent at the moment. A government may step in
here to steer the industry or mandate information measuring and sharing using blockchains.
It may have no interest to do so or fear the change in that applying blockchain would
allow for the perfect exchange and continuous verification and sharing of TCA data. The
application of blockchain technology would enable sharing of data without manipulation.
If happening, the uncertainties within the parameters will permanently cease to exist. It
is impossible to precisely predict what will happen in the future, and a complete story
of causality in the system is challenging. In the meantime, TCA may use standard risk
management accounting techniques, e.g., Groot and Selto discuss the risk in decision
making [85]. Some types of costs in energy production are not deterministic and rather
stochastic due to unpredictable future conditions. A distribution function here can help
predict the uncertainty since it allows to define the mean value and the standard deviation
especially in cases where sufficient data about the past is available [85]. Consequently, this
provides an interesting range to work within TCA. Automation of the TCA practices and big
datasets provide sufficient data and enable dealing with subjectivity, human intervention,
and the variety in scales and units.

TCA requires a dynamic process of measurement and monetisation and is not fixed
standardized. This contradicts the current literature that emphasizes that standardisation
of sustainability accounting is required [86]. It may be wise to be careful in standardizing
all TCA processes or define built-in evaluation mechanisms to prevent metrics from being
unable to fully grasp the total impact of products or services.

4.3. Timeliness

Although the standardisation is important to cope with earlier described complexity,
it makes the TCA process too static. It must be done with caution not to jeopardize the
machine learning effect from big data. In order to make big data applications in TCA
function, it is crucial to achieve a degree of timeliness. Complex analysis that requires a
lot of computing power may take weeks to arrive at the output. This is extremely costly,
and it may not outweigh the benefits of real-time TCA information. This tradeoff should be
considered when implementing IT technologies in TCA. Then, TCA and big data may work
together to provide more useful information. TCA may look into management accounting
literature. The expected value of additional information can be calculated based on different
conditions and probabilities [87]. Not all extra details in decision making are essential. It
is important to calculate the expected value of relevant decision-making information to
determine its maximum price [87]. The cost of establishing the whole data environment
that provides the required TCA input should be subtracted here to determine whether
combining TCA and big data for timelier information is beneficial. The costs of installing
the data environment can be determined accurately and consequently, and the expected
value of additional information can be calculated. Bayes’ Theorem, based on posterior
probabilities and conditional probabilities, is helpful to arrive at the expected value and
determine whether additional information is beneficial [88].

4.4. Implementation

During the research, the implementation struggles arrived quickly. The organisation
in the energy market seem to await governmental institutions to mandate the establishment
of the data environment. Similar to Seele, it seems capturing the concept of sustainability
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in an algorithm needs a unified definition and, therefore, involvement of the stakeholders
and the legal authorities to make the required data operational [89].

Confidentiality and sharing are important itching issues. Currently, companies most
likely already have a lot of data that they keep for themselves. Therefore, establishing an
industrial protocol per type of cost is important to enable all parties to collectively provide
and exchange their TCA input data in a uniform and transparent manner. Blockchain
allows data to be used in the calculation without other parties diving deep into the data to
extract sensitive data. It secures ownership of data. The protocol should not come from
companies themselves but rather from an independent foundation that checks and owns a
protocol; every type of cost should secure the data sharing.

The blockchain is a revolutionary new technology, and its application will be expanded
and reconsidered, and all the difficulties over time should be addressed with the help and
guidance of a third party to prevent misuse [90]. Given a well-functioning data environment
that gathers, processes, and shares TCA input data, analytical tools can perform predictive
and descriptive analysis.

It is recommended that the academic and business worlds work together more inten-
sively to deal with the current TCA and IT challenges.

All the implementation barriers should be more extensively studied, and it might be
important to link all these barriers to the wider available literature on barriers to sustainabil-
ity practices i.e., of the circular economy and its barriers as studied by Galvão et al. They
adopted bibliometric research and identified barriers in 6 groups: technological, policy
and regulatory, financial, and economic, managerial, performance indicators, customers
and social [91]. These themes can be used as an umbrella for the implementation barriers
identified in TCA. The lack of collaboration and standardisation is related to the policy, reg-
ulatory and managerial barriers; the financing hurdle relates to the financial and economic
barrier, and the lack of advanced technologies is a technological barrier. This understanding
of implementation barriers from broader literature helps study TCA implementation in a
broader context.

4.5. Future Research

Besides the recommendation to focus on the literature on the implementation barriers,
it is important to dive into establishing protocols for all different types of energy production
costs. It is helpful to attempt to collaborate with practitioners to establish a protocol on how
to share the relevant TCA input data and in which format. Furthermore, it is important
to dive further into the social impact assessment and what role big data could play here.
Ethical considerations concerning human rights should be at the bottom of how society,
companies, and the environment relate to each other. Much research has already been done
on quantifying social values [92,93].

TCA literature should go even further by attaching monetary values to social impacts
since that would lead to a better weighting and comparison in all three dimensions and
between organisations. At last, it might be helpful in the future to enable the experts within
the panel to interact with each other. This would create a different interview dynamic
where disciplines come together to search for answers.

4.6. Strengths and Limitations

This research approached a whole new field of research by applying big data, AI, and
blockchain technologies into True Cost Accounting combining academic and practitioners’
disciplines. Due to its experimental nature, it was important to interview experts from many
different relevant research fields. This research was multidisciplinary and internationally
oriented since local and top experts participated from the Dutch, Polish, and German
energy markets. However, more research is needed. Given the exploratory nature of this
study, this study was mainly about providing new insights to TCA literature, i.e., the
potential for big data and blockchain applications to cope with complexity, timeliness,
and accuracy.
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A limitation here might be that when looking at the respondents’ insights, one par-
ticipant showed a contrasting opinion by mentioning that TCA should include ethical
consideration before “letting big data loose on it”. Other respondents showed enthusiasm
about big data’s potential for TCA. This might bias the results, and in future research, more
critical experts should be engaged.

5. Conclusions

The study categorized the TCA challenges into complexity, accuracy, timeliness, and
a fourth group of challenges emerged under “implementation”. The study reviewed
the current use of big data, AI, and blockchain in accounting literature in answering the
research question: What is the current use of big data in management accounting?

The study explored an innovative idea of adopting IT to cope with the TCA challenges.
It used an innovative, multidisciplinary, and multinational approach to collect opinions
from a diverse group of relevant stakeholders, IT specialists, sustainability and energy
experts, and accountants in the European energy market; specifically the Netherlands,
Germany, and Poland. It showed ready-to-use technical feasibility of big data infrastructure
that measures the TCA impacts, analyses the data, identifies patterns, allocates costs to cost
objects, and reduces negative challenges. Simultaneously, it identified barriers concerning
financing, and potential standardisation of TCA practices as issues to be solved before the
real adoption can start. Although blockchain technology enables creating protocols for
all types of energy production costs and assures secure, accurate data sharing between
all involved parties, the essential implementation throughout the whole chain, including
policy levels, was perceived as most challenging. The study contributes to the literature by
categorizing the challenges in TCA application for energy production and presenting. the
readiness potential for big data, AI and blockchain to tackle those TCA challenges. Fur-
thermore, it reveals the need for cooperation between accounting and technical disciplines
to enable the energy transition. Future research should further explore the implementa-
tion barriers, especially the cooperation aspects and establish protocols for blockchain
applications to ease the big data TCA application.
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Appendix A

Table A1. Description of the true costs in the cost price of energy generation.

Types of Costs Description of the Cost

Installation costs Capital costs encompass all investment cost, refurbishment, assembly, decomposing, and
financing costs in an LCOE measure (Samadi, 2017)

Fuel costs The price of the fuel used for the energy in the LCOE measure

Non-fuel operation and
maintenance costs

Non-fuel operations encompass all fixed costs such as wages, insurance, equipment,
maintenance costs and variable costs at the power plant via an LCOE measure (Samadi, 2017)

Grid costs Grid costs can be defined as the extra costs in the transmission and distribution system when
power generation from a new plant is integrated into that system (Holttinen et al., 2011).

Balancing costs

The central system operator of the grid, who ensures a stable operation of the energy supply
and demand, manages the electrical systems to compensate for unplanned short-term
fluctuations in the electricity supply and demand by contracting sufficient reserves ahead of
time (Samadi, 2017). This holding of reserves to deal with added flexibility to the grid is being
regarded as balancing costs (Mattman et al., 2016).

Profile costs

Profile costs are additional specific capital and operational costs that the energy production
from a new plant may cause in the residual electricity system. The extra costs due to the
overproduction of renewable energy generation systems are considered to be profile costs
(Samadi, 2017)

GHG emission costs
GHG emissions contribute to global warming and thus lead to damages for the society in
tackling climate change. The carbon cost for society is used here, reflecting the GHG emission
in the energy generation process.

Air pollution

The extraction, transportation and conversion of fossil fuels lead to the release of several
forms of pollutants into the environment, such as SO2, NOx, NMVOC, NH3, fine particles,
Cd, As, Ni, Pb, Hg, Cr, Formaldehyde, Dioxin (Samadi, 2017). They affect the air, water, and
soil quality, which affects the health of humans, crops, building materials and the natural
environment.

Landscape and noise impacts
The welfare of people is affected by the visual appearance of the power plant, landscape
changes or the noise the power plant generates (Samadi, 2017). The valuation of properties
may be negatively impacted after changes in the use of the land.

Impacts on biodiversity
Impacts on ecosystems can be in the form of damage to land, plant life or animals. When the
damage affects the ability of a plant or an animal species to survive is threatened, biodiversity
may be reduced (Epstein et al., 2011).

Employment benefits Employment will create economic and social benefits for employees, and the government has
less cost of unemployment.

Upstream costs

The upstream costs result from the extraction of natural resources (Greenstone & Looney,
2012). Here, upstream activities for operating the power plant have been considered. For the
extraction of the resources and production of the required materials for the power plants,
much energy is needed, and GHG is emitted (Jensen, 2019). During the transport of the
resources and the construction of the power plants, energy use and CO2 emission are
inevitable.

Downstream costs

The costs of the nonrecyclable components of the power plant could be taken into
consideration as downstream costs since the nonrecyclable waste streams may affect future
generations (Shokrieh & Rafiee, 2020; Jensen, 2019)
Source: [16,24,94–98]
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Appendix B

Table A2. The list of interviewees participating in the research.

Name Respondent Field of Expertise Duration and Date of the Interview

R1 Florin Schürkens Master student at University of Groningen
who researched the German energy market 04 September 2021: 45 min

R2 Marco Aiello Expert in application of big data and artificial
intelligence, University of Stuttgart

12 April 2021:
45 min

R3 Jeroen Kuper Expert on the application of IT in accounting
and control, in the Netherlands 13 April 2021: 1.5 h

R4 Gideon Laugs Expert in system integration in the energy
market, Energy academy Groningen

14 April 2021:
1 h 45 min

R5 Victor Ipekoglu Master student at University of Groningen
who researched the German energy market

17 April 2021:
45 min

R6 Ruben Bour TCA expert, Deloitte Netherlands 28 April 2021:
35 min

R7 Harmen-Sytze de Boer
Expert in Modelling of Climate Change at
Planbureau voor de Leefomgeving (PBL) in
the Netherlands

29 April 2021:
1 h 5 min

R8 Dick de Waard Prof of Accountancy University of
Groningen, Netherlands

11 May 2021:
45 min

R9 Anonymous Expert on blockchain application in the
Dutch energy market

12 May 2021:
30 min

R10 Elly Reinierse
Expert on evaluation of social impacts of
mining activities around the globe, The
Hague

13 May 2021:
1 h 30 min

R11 Maciej Maciejowski Expert, implementer in IT and big data,
PlanBe Poland

13 May 2021: Respondents 11, 12 and
13 were interviewed together in an
expert discussion session duration of
1 h 30 min in total

R12 Agnieszka Maciejowska Expert, implementer in IT marketing, PlanBe
Poland

R13 Justyna Wojcik Expert in carbon footprint and
sustainability, PlanBe Poland

R14 Anonymous Wind turbine owners from northern Poland. 15 June 2021:
5 h

R15 Anonymous
A manager from a company dealing with
photovoltaic installation in the southern part
of the Masovian Voivodeship.

25 June 2021:
2 h 15 min

R16 Anonymous
The energy industry CEO of a large company
dealing in energy production, manager in the
energy industry with 25 years of experience.

12 July 2021:
2 h 30 min

Source: own study.

Appendix C

Cost price calculation from Table 2 in the text was central to discuss costs and see how
to come to better cost price calculations. Tables 2 and A1 exhibited in the text were sent to
the respondents in advance together with the Interview guide. Infographic served as an
icebreaker and a brief explanation of the TCA concept to energy and IT experts.
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Thank you for making time for me. I really appreciate it. I want to briefly introduce
you to my research topic. Last year I did make a true cost price calculation of energy to
see how sustainable energy generation really is. I wanted to include all greenhouse gas
emission impacts, air pollution impacts, and landscape impacts to provide a full overview
in order to make the comparison between wind and coal energy generation. However, last
year I found out that the measurement and valuation of those impacts is challenging and
requires expertise from many disciplines than just experts in accounting only, which is my
field of discipline. In the energy sectors, many impacts on stakeholders can be identified.
An overview of all the impacts is shared with you via the e-mail. The current research aims
to explore how big data, AI and maybe blockchain to strengthen the true cost estimations
we conducted previously. In the infographic, you see an overview of the impacts of energy
generation. The impacts that it has on the air, the nature, the mining areas, the land, the
society, and the financing. With that in mind, I wanted to ask you some questions. So
let’s start.

1. Complexity
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To what degree do you think that energy prices do cover external impacts of energy
production?

- If not, why do you think that is the case or what is the bottleneck?
- Where do you think the complexity comes from?
- How do you think current energy prices are determined? What influence does

the market, regulation and subsidies have?

What do you know about the impacts of energy generation on:

a. Biodiversity
b. GHG emission
c. Air pollution
d. Landscape and noise impacts.
e. Upstream impacts of all materials used in the process of energy generation
f. System impacts
g. Subsidies and taxation

- Consequently, what do you know of the measurement/quantification of those
impacts (a–g)

- If the respondent does not know anything on the measurement of the impacts,
ask: where would you start in trying to measure the impacts?

- To what degree do you think that is difficult/ do you experience complexity in a
sense that there are different metrics and unit?

- What would be the ideal situation to measure those impacts? (e.g., what variables
do you need?)

- If you had to value the impacts, where would you start? (e.g., Do you use market
values? Do you look at the cost of avoidance? Do you look at the costs needed
to restore the damage? Do you look at all the different outputs in the lifecycle
assessment and try to attach a value to it?)

What do you know of big data? In what fields?

- TCA requires input from experts of many disciplines, and large numbers of
upstream and downstream processes need to be tracked. How can big data help
in reducing the complexity?

- When applying big data to measure the impacts of energy production. We
need a lot of data points in order be able to determine what processes in energy
production lead to what impacts and lead to what costs. Where would you start?

- What information do you need? (e.g., data on actual costs, quantities of elements,
conversion of costs, time periods, quality, technical parameters, etc.)

- Where to find that data or what institutions are available in your country that
measure most of the information.

- Big data is often unstructured. How to make different units of measurement
comparable? What techniques are there available to integrate all dimensions into
one single monetary unit?

- Big data can be used to find correlations or forecast costs. How can big data make
estimations of the true cost, for example of 1 ton of CO2 emission, better?

- How would you determine the causality between certain activities and impacts
(e.g., How do you assign air pollution due to energy production for example to
health? What variables and what correlations do you need?)

- How can big data help in valuing the impact of energy production on climate
change, air pollution, biodiversity loss, landscape and noise impacts, subsidies,
upstream impacts, system impacts?

- How to make sense of those different units of measurement? How can big data
help and what techniques are available to compare or integrate the different units
(e.g., use of ratio scales in performance measurement?)

Are you familiar with big data and Artificial intelligence?



Energies 2022, 15, 1089 20 of 24

- What do you know of AI?
- In what fields and circumstances?
- What role can AI play in reducing the complexity of TCA we just discussed?

2. Accuracy
To what degree do you think that subjectivity exist in the valuation of that externalities.

- How do you think that is possible
- Where does this subjectivity comes from?)
- In order to assign impacts to energy generation there should be insight in what

emission lead to what climate costs and what air pollution lead to what health
costs. So there should be an identification of cause and effect relations. How
would you identify such cause and effect relations? What processes lead to what
impacts and to what costs?

- When you look for example at biodiversity, biodiversity is vital for us as human
and all the things we grow, it shows that it is difficult to assign a value to the
biodiversity services. Can big data or AI play a role in reducing the difficulty?

- What implication can big data have on the cost estimation and its subjectivity?
How would the impact of big data on that estimation work?

- How can big data and AI contribute? (e.g., focus on prediction of costs? Identifi-
cation of patterns and cause- and effect chains? Classification of costs?)

- How can big data provide insight in those cause and effect relationships between
for example GHG emission costs and climate change, air pollution and health
costs/ loss on crops, placement of a power plant and the noise and landscape
impacts? Power plant interferences on biodiversity?

Are you familiar with blockchain? (e.g.,

- What do you know of Blockchain?
- How can blockchain be useful to make sure that the data is accurate?)

3. Timeliness
Do you think it is possible to have real time insight in the impacts of energy production?

- What about the availability of all the data measurement points as discussed earlier?
- To what degree is data on biodiversity, GHG emission, air pollution, land-

scape and noise impacts and subsidies and system impacts available in a real
time manner?

- What needs to happen in order to have real time insight in those impacts? (e.g.,
does it require a whole paradigm shift in measurement?)

- To what degree is it the same for all types of impacts of energy production? (e.g.,
is there a differences between the loss on biodiversity, air pollution costs, GHG
emission costs, Landscape and noise impacts and subsidies?)

How can big data/ AI / Blockchain helps in providing real time measurements?

- How can those real time measurement be linked to real time valuation techniques
to obtain a real time true cost price calculation.

- Can it be linked to an external database that contains the valuation of a unit of
output from the production?)

- If you see this model of calculating a true cost price with the help of big data and
other technological tools evolving, where might we stand in about 10 years?

Those are all the questions I have for you today. I really want to thank you for your
time. I think It was really interesting and helpful to get an insight in your ideas about
how to measure sustainable performance of energy production. I can definitely move
forward with this. Do you have any questions remaining? Or do you want to come back
on anything? I will type out the transcript of this interview and I will send it to you so that
you are able to determine whether you agree with it.
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