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Abstract
The field of deep learning is evolving in different directions, with still the need for more efficient training strategies. In this

work, we present a novel and robust training scheme that integrates visual explanation techniques in the learning process.

Unlike the attention mechanisms that focus on the relevant parts of images, we aim to improve the robustness of the model

by making it pay attention to other regions as well. Broadly speaking, the idea is to distract the classifier in the learning

process by forcing it to focus not only on relevant regions but also on those that, a priori, are not so informative for the

discrimination of the class. We tested the proposed approach by embedding it into the learning process of a convolutional

neural network for the analysis and classification of two well-known datasets, namely Stanford cars and FGVC-Aircraft.

Furthermore, we evaluated our model on a real-case scenario for the classification of egocentric images, allowing us to

obtain relevant information about peoples’ lifestyles. In particular, we work on the challenging EgoFoodPlaces dataset,

achieving state-of-the-art results with a lower level of complexity. The results obtained indicate the suitability of our

proposed training scheme for image classification, improving the robustness of the final model.

Keywords Visual explanation techniques � Learning process � Convolutional neural networks � Image classification �
Fine-grained recognition � Egocentric vision

1 Introduction

Nowadays, the potential of convolutional deep learning

models for the task of image classification has been proven.

Research in this field has followed different directions

namely, new architecture and framework proposals [1, 2],

training methods [3, 4], multi-tasking [5, 6], attention

mechanisms [7, 8], explainability and interpretability

[9, 10], among others.

New techniques such as attention mechanisms allow to

force the model to pay attention to certain features, whilst

explainable artificial intelligence techniques allow to

interpret the model and know what is happening during the

learning process. However, to the best of our knowledge,

the combination of both approaches has not been explored.

Inspired by this lack of combination, we aim to improve

the training procedure by interpreting the model and

focusing it on certain regions of interest. To this end, our

proposed approach is based on modifying the classical

training procedure to include online information and thus

adapt the learning process based on the features on which

the network is focused.
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More specifically, we propose a new training

scheme that benefits from the saliency maps provided by

visual explanation techniques. Our hypothesis is that, by

the end of the training phase, the model should use as many

features as possible to make a robust prediction. In this

sense, we apply a visual explanation algorithm to identify

the regions on which the model bases its decisions. After

identifying those relevant areas, we partially occlude them

trying to distract the model in some way and forcing the

detection of other regions that, a priori, are weak (i.e., not

so informative for the discrimination of the class). Our

intention is to highlight that the model should not forget

what the occluded regions mean, but it should learn to

recognize other features to make a decision. This is ensured

as the occluded images are combined with the original ones

during the learning process.

We think fine-grained image classification problems

could benefit the most from this approach, as they have

many classes that differ from each other in small details,

and our training approach forces the network to find them.

For this reason, we evaluated the proposed training

scheme on two well-know datasets namely Stanford cars

[11] and FGVC-Aircraft [12], composed of 16,185 and

10,000 images respectively, and used in fine-grained

recognition. In addition, we carried out some experiments

on top of different backbone architectures to demonstrate

that our proposal improves the performance regardless of

the respective network.

Furthermore, we evaluate the robustness of our model in

a real-scenario case study: recognizing the food-related

scene that an egocentric image depicts. The analysis of

egocentric images is an emerging field within computer

vision that has gained attention in recent years [13]. Images

captured by wearable cameras during daily life allow

recording information about the lifestyle of the users from

a first-person perspective [14, 15]. The analysis of this

information can be used to improve peoples’ health-related

habits [16]. In particular, the analysis of food-related

egocentric images can be a powerful tool to analyze peo-

ples’ nutritional habits, being the focus of previous

research [15, 17]. In this context, we carried out some

experiments on the EgoFoodPlaces dataset [15], which is

composed of 33,801 images and describes food-related

locations gathered by 11 camera wearers throughout their

daily life activities.

The contributions of this research work are three-fold:

1. A novel training scheme for CNN image classification

that makes use of visual explanation techniques, with

the main aim of improving the robustness and the

generalization ability of the trained models.

2. The experiments carried out demonstrate the compet-

itiveness of our training scheme, which outperforms

the classical approach on two public datasets com-

monly used in fine-grained recognition tasks, regard-

less of the backbone architecture.

3. Our proposed method achieves competitive results in a

real-case scenario that addresses the classification of

egocentric photo-streams depicting food-related

scenes.

The rest of the paper is organized as follows. Section 2

includes an overview of related works. Section 3 presents

the proposed training approach. Section 4 introduces the

two datasets for fine-grained recognition, describes the

experiments carried out and analyzes the obtained results.

Section 5 describes and evaluates the case study focused on

egocentric vision. Finally, Sect. 6 closes with our conclu-

sions and future lines of research.

2 Related work

While the very first machine learning systems were easily

interpretable, the last years have been characterized by an

upsurge of opaque decision systems, such as deep neural

networks (DNNs) [18, 19]. DNNs are the state-of-the-art

on many machine learning tasks due to their great gener-

alization and prediction skills. However, they are consid-

ered black-box machine learning models. In this context,

there has been a growing influx of work on explainable

artificial intelligence. Post-hoc local explanations, which

refer to the use of interpretation methods after training a

model, and feature relevance methods are increasingly the

most adopted approaches to explain DNNs [18]. In this

section, we review some methods that produce visual

explanations for decisions of a large class of DNN-based

models, making them more transparent and reliable.

Most of these visual explanation techniques provide heat

maps to identify the regions of the input images that net-

works look at when making predictions, allowing the data

to be interpreted at a glance. Note that these heat maps are

also referred to in the literature as sensitivity maps, sal-

iency maps, or class activation maps. Class activation

mapping (CAM) [20] is a well-known procedure for gen-

erating class activation maps using global average pooling

in CNNs. Their authors expect each unit to be activated by

some visual pattern within its receptive field. The class

activation map is nothing more than a weighted linear sum

of the presence of these visual patterns at different spatial

locations. By simply upsampling the class activation map

to the size of the input image, they can analyze the most

relevant image regions to identify the particular category.

However, CAM can only be used with a restricted set of

layers and architectures.
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A class-discriminative localization technique called

gradient-weighted class activation mapping (Grad-CAM)

was proposed in [21]. In fact, it is a generalization of CAM

that can be applied to a significantly broader range of CNN

families. Grad-CAM uses the gradients of any target con-

cept flowing into the final convolutional layer to produce a

coarse localization map, highlighting the regions of the

image that are relevant for the prediction. Given an image

and a class of interest (e.g., tiger cat) as inputs, Grad-CAM

forward propagates the image through the convolutional

part of the model and then through task-specific compu-

tations to obtain a raw score for the category. The gradients

are set to 0 for all classes except for the desired class (tiger

cat), which is set to 1. This signal is then backpropagated to

the rectified convolutional feature maps of interest, which

are combined to compute the coarse Grad-CAM localiza-

tion that represents where the model looks at to make the

corresponding decision. Finally, they point-wise multiply

the heat map with guided backpropagation, thus obtaining

also guided Grad-CAM visualizations, which are both

high-resolution and concept-specific.

Another visual explanation method was presented in

[22], in which input images are perturbed by occluding all

their patches, in an iterative process, and classifying the

occluded images. This idea allows the authors to analyze

how the top feature maps and the classifier output change,

revealing structures within each patch that stimulate a

particular feature map. However, the use of this method

requires generating multiple occluded samples and their

classification, making it computationally expensive.

Ribeiro et al. [23] proposed the local inter-

pretable model-agnostic explanations (LIME) technique,

which allows to explain the predictions of any classifier in

an interpretable and faithful manner. Given the original

representation of the instance being explained, they get

new samples by perturbing the original representation.

They use those samples to approximate the classifier with

an interpretable model. Just as the method above, the use of

multiple samples implies to apply the classifier several

times given one instance.

Some of these visual explanation techniques generate

noisy sensitivity maps. In this context, Smilkov et al. [24]

proposed SmoothGrad, a technique to reduce the noise in

the sensitivity maps produced by visual explanation tech-

niques based on gradients. Their idea was to sample images

similar to the original ones by adding some noise. Then,

they produced intermediate sensitivity maps for each image

and took the average of them as the final sensitivity map.

Finally, it is worth highlighting some applications of the

saliency maps generated by visual explanation techniques.

Schöttl [25] used Grad-CAM maps to improve the

explainability of classification networks. More specifically,

the idea was to introduce some measures obtained from the

Grad-CAM maps in the loss function. Cancela et al. [26]

proposed a saliency-based feature selection method that

selects the features that contain a higher discrimination

result, allowing to provide robust and explainable predic-

tions in both classification and regression problems.

2.1 Egocentric photo-streams

Following, we review some recent works on egocentric

photo-streams, mainly focused on the classification of

food-related scenes, such as our case study.

Egocentric image analysis is a field within computer

vision related to the design and development of algorithms

to analyze and understand photo-streams captured by

wearable cameras [15]. These cameras are capable of

capturing images that record visual information of our

daily life, known as visual lifelogging, to create a visual

diary with activities of first-person life. The analysis of

these egocentric photo-streams can improve peoples’ life-

style by analyzing social patterns [27], social interactions

[28], or food behavior [29].

In recent years, there is a growing interest in egocentric

photo-streams giving their potential for assisted living. For

instance, Furnari et al. [30] presented a benchmark dataset

containing egocentric videos of eight personal locations

and proposed a multi-class classifier to reject locations not

belonging to any of the categories of interest for the end-

user.

As for food-related scene recognition, Sarker et al. [17]

addressed this task by proposing a multi-scale atrous CNN

[31] to analyze lifelogging images and determine people’s

recurrences in food places throughout their day. Later,

Talavera et al. [15] presented the EgoFoodPlaces dataset,

composed of more than 33,000 images organized in 15

food-related scene classes. This dataset was recorded by 11

users while spending time on the acquisition, preparation,

or consumption of food. The dataset was manually labeled

into a total of 15 different food-related scene classes like

bakery shop, bar, or kitchen. Taking into account the

relation of the studied classes, a taxonomy for food-related

scene recognition was introduced. Furthermore, the authors

proposed a hierarchical classification model based on the

aggregation of six VGG16 networks [32] over different

subgroups of classes, emulating the proposed taxonomy.

This is, to the best of our knowledge, the state-of-the-art in

the recognition of food-related scenes in egocentric images.
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3 Methodology

We propose a novel training approach to improve the

robustness of CNNs in image classification. Figure 1

illustrates the different steps of the proposed scheme,

which are subsequently explained in depth.

Let consider the classical mini-batch gradient descent

[33] training algorithm where, on each training step, the

mini-batch is first fed into the neural network, then the

gradient is computed, and finally, the calculated gradient is

used to update the weights of the network. We propose to

modify the training step to apply the new scheme over each

mini-batch with a probability p 2 ð0; 1Þ; i.e., with a prob-

ability 1� p, the images in the mini-batch kept unchanged

and the classical training step is performed as usual. Note

that the probability p belongs to the open interval (0, 1).

p ¼ 0 would mean that our training scheme is not applied

(i.e., the classical training procedure is used instead). p ¼ 1

would mean that only the modified images are used,

making model convergence difficult. Preliminary experi-

mentation suggests applying the method with values of

p� 0:5 to guarantee that both occluded and original images

are used in the learning process. Therefore, with a proba-

bility p 2 ð0; 1Þ, our training scheme is applied as follows:

1. Using the current weights of the network, we do

inference over the current mini-batch and apply a

visual explanation method to get a heat map for each

image in the mini-batch. These heat maps highlight the

regions where the current model focuses its attention to

classify the corresponding image.

2. After that, we occlude the areas corresponding to those

highlighted regions, forcing the model to look at other

regions in the image. For each image in the mini-batch,

we normalize its heat map and get a weight w 2 ½0; 1�

for each pixel. Next, we select all the pixels whose

weight w is over a threshold th. The selected pixels are

erased by setting them to 0, calling this approach

0-occlusion. As a result, we obtain the occluded images

of the mini-batch.

3. Finally, we train our model making use of the occluded

mini-batch.

Algorithm 1 shows the pseudo-code of our proposed

training method according to the 0-occlusion approach.

Note that once the mini-batch is modified, the training step

continues as usual (i.e., the gradient is calculated and the

weights are updated). We think it is important to highlight

that the model should not forget what the occluded regions

mean, but learn to recognize other parts of the image to

make a decision. This is guaranteed as the occluded images

are used only for some mini-batches, according to the

p hyper-parameter, while the original ones are used for the

rest of them.

The proposed approach is compatible with any of the

visual explanation methods presented in Sect. 2 and, in

general, with any method that generates a heat map to

explain the decision of a CNN for a given target image.

Among all these techniques, we choose Grad-CAM [21]

because it uses the flow of the gradients from the last

convolutional layer to compute the heat maps, making it

computationally less expensive than other methods like

LIME [23] or SmoothGrad [24]. These other techniques

apply inference several times on images generated by

perturbing the target image to compute the heat maps. In

other words, Grad-CAM does inference once per image

while other techniques do inference several times per

image, which makes the former more appropriate for the

problem at hand.

Summarizing, the heat maps provided by Grad-CAM

highlight the relevant regions of the image for predicting
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the ground truth class. By occluding them, the model is

forced to look at other regions to make the decision. The

initial regions should not be forgotten by the model, but

other parts of the images should also be taken into account

in the learning process. In this manner, the model improves

its robustness and generalization capabilities.

4 Experimental framework and results

In this section, we present two datasets used to evaluate the

proposed method. Next, we describe the implementation

details as well as the two experiments carried out, includ-

ing the evaluation metrics considered. Finally, we report

and analyze the results obtained in both experiments: (1) a

comparison between the proposed method and some vari-

ants of it, and (2) a comparison with standardized

baselines.

4.1 Datasets

We evaluated our proposed method on two well-known

datasets: the Stanford cars dataset [11], and the fine-grained

visual classification of aircraft (FGVC-Aircraft) benchmark

dataset [12]. Both datasets were used as part of the fine-

grained recognition challenge FGComp 2013, which ran

jointly with the ImageNet Challenge 20131

The Stanford cars dataset contains 16,185 images of 196

car models covering sedans, SUVs, coupes, convertibles,

pickups, hatchbacks, and station wagons; and it is officially

split into 8,144 training and 8,041 test images. The FGVC-

Aircraft dataset contains 10,000 images of aircraft, with

100 images for each of 100 different aircraft model vari-

ants; and it is officially split into 6,667 training and 3,333

test images.

4.2 Implementation details

The techniques and parameters used for experimentation

are explained in the following. We used the Adam

optimization algorithm [34] with the following parameters:

learning rate a ¼ 0:00005, b1 ¼ 0:9, b2 ¼ 0:999, and

� ¼ 0:0000007. Regarding the training step, we used a

batch size of 16 and the images were resized to 224� 224.

The outputs were monitored using the validation accuracy

to apply an early stopping strategy, based on which the

training process finished after 30 epochs with no

improvement. Additionally, we applied the following

classical data augmentation techniques: horizontal flip,

rotation ½�40�; 40��, random channel shift ½�30; 30�, and
image brightness change [0.5, 1.5].

The proposed method was implemented on TensorFlow

[35] and Keras [36], and the code is available for down-

load2. Starting from the training algorithm provided in

Keras, we modified the training step to apply our method

over each mini-batch with a probability p, as described in

Sect. 3. According to some preliminary experiments, we

applied the proposed method with a probability p ¼ 0:25,

and the threshold for the occlusion step was set to

th ¼ 0:85.

4.3 Experimental setup

This section describes the two experiments designed to

evaluate our training scheme. Both experiments were

applied to each dataset individually and compared with

other approaches. As for the experimentation itself, we

kept the original split in training and test sets for the two

considered datasets (see Sect. 4.1). For validation purposes,

we randomly divided the original training dataset into two

parts: 75% training and 25% validation. Then, we trained

the model and evaluated it on the isolated test set, using the

performance metrics described in Sect. 4.4. This validation

procedure was repeated five times. We report the average

performance and the standard deviation calculated across

the five runs.

GET NEW
MINI-BATCH

APPLY VISUAL 
EXPLANATION 

TECHNIQUE
TRAIN CNN

OCCLUDE 
HIGHLIGHTED

REGIONS

Fig. 1 Workflow of our

alternative training scheme,

which 1 gets a new mini-batch

of input images, 2 Applies a

visual explanation technique to

generate the heat maps, 3
Occludes the regions

highlighted in the previous step,

and 4 trains the CNN classifier

1 http://image-net.org/challenges/LSVRC/2013/. 2 https://github.com/DavidMrd/Playing-to-distraction
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4.3.1 Experiment 1

The objective of this experiment is to test several setups of

our training scheme and compare them with a baseline. In

particular, we used a ResNet50 [37], a very popular net-

work successfully applied to different image classification

tasks. The different configurations are detailed as follows:

1. Baseline. In order to compare our method with a

baseline, we trained a ResNet50 using the classical

training approach (i.e., without applying the proposed

method). We called this model fine-tuned ResNet50

(FT-ResNet50) because it is a model pre-trained on the

ImageNet dataset [38], whose parameters were fine-

tuned with the corresponding dataset.

2. Our approach. We trained a ResNet50 using the

proposed training method, which is based on Grad-

CAM visualizations and illustrated in Fig. 1. More

specifically, we used the weights from the ResNet50

model pre-trained on ImageNet [38], and then we fine-

tuned them using the corresponding dataset and our

training scheme. Note that, during the learning process,

the Grad-CAM algorithm was applied to the last

convolutional layer of the ResNet50, as indicated in

[21].

3. Other setups. Aiming at demonstrating the adequacy

of the 0-occlusion approach, we also conducted some

experiments in which the pixels were set to a random

value (R-occlusion) and 1 (1-occlusion).

4.3.2 Experiment 2

This experiment aims to demonstrate the adequacy of our

training scheme regardless of the backbone architecture

considered. In this sense, we applied it to two well-known

backbone architectures, different from ResNet50, using the

following configurations:

1. Baselines. We trained two architectures commonly

used in the literature, InceptionV3 [39] and DenseNet

[40], using the classical approach. We called them FT-

InceptionV3 and FT-DenseNet, respectively, because

they were pre-trained on ImageNet and fine-tuned with

the corresponding dataset.

2. Our approach. We trained the two backbone archi-

tectures considered, InceptionV3 and DenseNet, using

the proposed training scheme (see Fig. 1). As in the

previous experiment, we used the weights from these

two architectures pre-trained on ImageNet, and then we

fine-tuned them with the corresponding dataset and our

training scheme. Regarding the Grad-CAM algorithm,

it was applied to the last convolutional layer of the

networks as described in [21].

4.4 Evaluation

In order to evaluate the performance of the proposed

models and make a fair comparison with other approaches,

we computed some popular metrics in image classification

tasks: accuracy, precision, recall, and F-score (F1). These

metrics are defined as follows:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð1Þ

Precision ¼ TP

TPþ FP
ð2Þ

Recall ¼ TP

TPþ FN
ð3Þ

F1 ¼2 � Precision � Recall
Precisionþ Recall

ð4Þ

where TP, FP, TN, and FN stand for true positives, false

positives, true negatives, and false negatives, respectively.

4.5 Results

In this section, we report and analyze the results obtained

in the two experiments described above.

4.5.1 Experiment 1

Table 1 shows the results obtained for the different con-

figurations. As can be observed, our training scheme pro-

vides very competitive results regardless of the setup used

for the occlusion. Analyzing the four metrics considered,

the three setups outperform the baseline method (FT-

ResNet50), which was trained with the classical learning

procedure, in both datasets. Focusing on our proposal (0-

occlusion), it achieves a gain of more than 2 percent in the

Standford cars dataset and about 2 percent in the FGVC-

Aircraft dataset. In order to demonstrate the relevance of

this improvement, we applied a statistical t-test that allows

us to determine if there is a significant difference between

the baseline (FT-ResNet50) and our proposal (0-occlu-

sion). Notice that we used a paired sample, two-tailed

t-test. As a result, we can confirm that our proposal sig-

nificantly outperforms the baseline in terms of accuracy,

with a significance level of 0.05.

If we analyze the behavior of the three different setups

considered for the proposed training scheme, we can see

that both 0-occlusion and 1-occlusion provide better results

than R-occlusion, with a very slight difference in favor of

the former (0-occlusion). The experiments show that, when

using random values for the occlusion procedure, the

model does not benefit so much from the distraction

applied to the model, by forcing it to look at new regions in

the input images. This behavior is discussed in detail
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below, with some qualitative results that aim at illustrating

the impact of the proposed method.

Figure 2 depicts two representative images of the two

datasets used for experimentation, Stanford cars and

FGVC-Aircraft, along with the heat maps generated by

Grad-CAM for the different methods analyzed: the base-

line FT-ResNet50 and the three setups for the proposed

training approach. As can be observed, the models trained

with the proposed approach, regardless of the setup, base

their decisions on more features than the one trained using

a classical approach (FT-ResNet50). While the baseline

method seems to base its decisions just on a local area of

the image, the models trained with the proposed approach

seem to react to almost the whole object. Analyzing the

Table 1 Classification

performance, averaged across

five runs, of the different

approaches on the Stanford cars

[11] and FGVC-Aircraft [12]

datasets.

Stanford cars

FT-ResNet50 0-occlusion R-occlusion 1-occlusion

Accuracy 0:849	 0:009 0:871	 0:007 0:860	 0:009 0:869	 0:008

Precision 0:855	 0:007 0:876	 0:007 0:866	 0:008 0:873	 0:008

Recall 0:849	 0:009 0:870	 0:008 0:860	 0:009 0:868	 0:009

F1 0:848	 0:009 0:870	 0:008 0:859	 0:009 0:867	 0:009

FGVC-Aircraft

FT-ResNet50 0-occlusion R-occlusion 1-occlusion

Accuracy 0:731	 0:013 0:749	 0:005 0:739	 0:012 0:743	 0:005

Precision 0:746	 0:011 0:762	 0:005 0:755	 0:010 0:759	 0:004

Recall 0:731	 0:013 0:749	 0:005 0:739	 0:012 0:743	 0:005

F1 0:731	 0:014 0:748	 0:005 0:739	 0:012 0:743	 0:005

Best results are in bold

(a) (b) (c) (d) (e)

Fig. 2 a Input images from the Stanford cars (top) and FGVC-

Aircraft (bottom) datasets, b Heat maps generated by Grad-CAM for

the baseline FT-ResNet50, and heat maps generated by Grad-CAM

for the model trained with the proposed training scheme using c 0-

occlusion, d R-occlusion, and e 1-occlusion

Table 2 Number of epochs and

seconds per epoch, averaged

across five runs, needed to train

the two different approaches on

the Stanford cars [11] and

FGVC-Aircraft [12] datasets

FT-ResNet50 0-occlusion

Standford cars FGVC-Aircraft Standford cars FGVC-Aircraft

Number of epochs 98:8	 6:78 113:4	 10:97 130	 10:38 174	 13:87

Seconds per epoch* 153	 0:00 153	 0:00 175	 0:00 175	 0:00

Network input size: 224� 224� 3. Hardware: NVIDIA T4 Tensor Core GPU

Neural Computing and Applications (2021) 33:16937–16949 16943

123



different configurations, we can see that both 0-occlusion

and 1-occlusion show a similar behavior, reacting to the

whole object, which explains the achieved results in both

cases. However, the R-occlusion version behaves differ-

ently since it reacts to many features but with a low level of

confidence. That is, occluding the selected pixels with a

fixed value (0 or 1) allows us to achieve better results than

occluding the relevant regions with a random value. The

reason for this behavior could be that, when using a fixed

value, the model learns to ignore these areas and looks at

other regions, whereas the model does not benefit as much

from this idea when using a different value each time. It is

worth noting that using 0-occlusion is somewhat similar to

the well-known dropout [41], a regularization technique in

which some connections are disabled during the learning

phase. This would explain why this approach gets slightly

better results than the 1-occlusion version.

Finally, Table 2 shows the number of epochs and the

seconds per epoch needed to train the baseline (FT-

ResNet50) and our proposal (0-occlusion). As can be

observed, our training scheme requires more computational

time per epoch and more epochs to converge than the

classical procedure. Regarding the increment in terms of

seconds per epoch, it is lower than 19%. Note that this time

only depends on the image resolution and the hardware, so

it is the same for both datasets. With respect to the incre-

ment in the number of epochs, it is 
 32% for the Stanford

cars dataset and 
 53% for the FGVC-Aircraft dataset.

Nevertheless, it is worth noting that, for application pur-

poses, this computational time is not decisive since the

training procedure is carried out only once before the

model is put into production, after defining its architecture

and setting its hyper-parameters. As our method is applied

during the learning process, the computation time in the

test phase is not affected.

4.5.2 Experiment 2

Table 3 shows the results obtained when applying our

training scheme to the other two backbone architectures

selected: InceptionV3 and DenseNet. According to the

figures, our approach outperforms the corresponding

baseline for both datasets regardless of backbone consid-

ered. While analyzing the behavior of our training

scheme when using InceptionV3, we can observe that it

achieves an improvement of more than 1 percent for the

four performance measures. In terms of accuracy, this

improvement over the baseline is of 1.3 percent on the

Stanford cars dataset and 1.5 percent on the FGVC-Aircraft

dataset. Regarding the DenseNet backbone, the improve-

ment with respect to the baseline is about 1.1 percent for all

the metrics on both datasets.

5 Case study

This section describes an application of the proposed

method to a real-world scenario. In particular, we consider

the task of food-related scene classification in egocentric

images, as detailed below.

5.1 Dataset

We evaluated our proposed method on the EgoFoodPlaces

dataset [15], which is composed of 33,810 egocentric

images gathered by 11 users and organized in 15 food-

related scene classes. By making use of a wearable cam-

era3, the users regularly recorded an amount of approxi-

mately 1,000 images per day. The camera movements and

Table 3 Classification

performance, averaged across

five runs, making use of

different backbones on the

Stanford cars [11] and FGVC-

Aircraft [12] datasets.

Stanford cars

FT-InceptionV3 0-occlusion-InceptionV3 FT-DenseNet 0-occl-DenseNet

Accuracy 0:778	 0:023 0:791	 0:020 0:883	 0:010 0:894	 0:011

Precision 0:788	 0:021 0:798	 0:020 0:888	 0:009 0:898	 0:011

Recall 0:777	 0:023 0:791	 0:020 0:882	 0:010 0:893	 0:012

F1 0:776	 0:023 0:790	 0:021 0:882	 0:010 0:893	 0:012

FGVC-Aircraft

FT-InceptionV3 0-occlusion-InceptionV3 FT-DenseNet 0-occl-DenseNet

Accuracy 0:618	 0:029 0:633	 0:026 0:767	 0:026 0:780	 0:025

Precision 0:630	 0:030 0:641	 0:029 0:786	 0:024 0:794	 0:023

Recall 0:618	 0:028 0:633	 0:026 0:767	 0:026 0:780	 0:025

F1 0:616	 0:029 0:630	 0:026 0:768	 0:026 0:780	 0:025

Best results are in bold

3 http://getnarrative.com/.
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the wide range of different situations that the users expe-

rienced during their days, lead to challenges such as

background scene variation or changes in lighting condi-

tions. The dataset was manually labeled into a total of 15

different food-related scene classes namely, bakery shop,

bar, beer hall, cafeteria, coffee shop, dining room, food

court, ice cream parlor, kitchen, market indoor, market

outdoor, picnic area, pub indoor, restaurant, and super-

market. Table 4 depicts the distribution of images among

the collected classes, with a great imbalance between them.

5.2 Experimental results

This section describes the results obtained when addressing

the task of food-related scene classification with our pro-

posed training scheme.

The implementation details are the ones described in

Sect. 4.2 with two exceptions: (1) the resolution of the

input images, which in this case is 250� 250 as in [15];

and (2) the application of class oversampling to the fourth

largest class (i.e., dining room) in order to alleviate the

imbalance problem.

Concerning the experimentation, we used the split

described in [15], which includes a division into events for

the training and evaluation phases, to make sure that there

are no images from the same scene/event in both phases.

The validation procedure, in this case, consisted of three

partitions, with the following distribution: training set

(70%), validation set (10%), and test set (20%). Then, the

model was trained and evaluated on the test set. This val-

idation procedure was repeated five times. We report the

average performance and the standard deviation calculated

across the five runs.

Finally, we considered the four performance metrics

detailed in Sect. 4.4: accuracy, precision, recall, and F1

score. Note that, for the per-class metrics (precision, recall,

and F1), we calculated the macro- and weighted-averages,

as suggested in [15]: macro gives equal weight to all

classes, while weighted is sensitive to imbalances. It is

worth noting the relevance of these two average values due

to the unbalanced nature of the dataset.

5.2.1 Classification performance

For the evaluation of our proposal, we followed the

experimental setup described in Sect. 4.3, but using the

EgoFoodPlaces dataset to train the ResNet50 architecture

with the classical procedure (FT-ResNet50) and with our

training scheme (0-occlusion). Additionally, we compared

our results with the ones reported in [15], the state-of-the-

art approach for this dataset.

Table 5 reports the results obtained for the different

approaches. As can be seen, training a ResNet50 with ourTa
bl
e
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proposed scheme (0-occlusion) allows us to achieve a

higher accuracy than the one obtained with the baseline

(FT-ResNet50). Moreover, the proposed method also

achieves higher weighted averages for the other three

metrics considered (precision, recall, and F1). It is worth

noting that, due to the high imbalance of the dataset, the

weighted metrics are more informative than the macro

values. Concerning the latter, the differences between both

methods are minimal, with the same values for precision

and F1, and a slightly higher macro recall in favor of the

baseline.

If we analyze the results achieved by the state-of-the-art

[15] and compare them with the proposed method, we can

see that our approach achieves better results in four out of

the seven performance measures, whereas the remaining

three are equal. We find important to point out that our

approach makes use of only just one classifier (ResNet50),

while the model presented in [15] uses a hierarchical

ensemble composed of six VGG16 networks. Therefore,

the complexity of our model is significantly lower, not only

because we have one single classifier but also because our

backbone model ResNet50 has a lower number of param-

eters than their VGG16 networks. Therefore, we can con-

clude that our proposed method is able to achieve similar

performance results with a less complex architecture and a

computationally less expensive approach.

Finally, the impact of the different approaches on the

individual classes is presented in Table 6. As can be seen,

our method (0-occlusion) shows a behavior very similar to

the baseline approach (FT-ResNet50), with slightly higher

rates in seven classes and three ties. Analyzing the fig-

ures obtained with the hierarchical approach [15], our

method achieves better results in eight classes. More

specifically, the results in which our approach outperforms

the state-of-the-art correspond to the four most represented

classes (restaurant, supermarket, kitchen, and dining

room). Also noteworthy is the improvement achieved for

the class food court, which could not be classified by the

hierarchical model (true positive rate of 0.00). However,

there are five classes for which the hierarchical model gets

a better performance, including beer hall, cafeteria, and

coffee shop. We deduce that this is due to the benefits of

classifying them in a hierarchical fashion.

Going deeper into the results obtained and given the

characteristics of the EgoFoodPlaces dataset, we can draw

some additional conclusions. Firstly, we can observe that

the classification improves when using our approach for (1)

classes where the scene to recognize is right in front of the

camera users (e.g., restaurant), and (2) classes that tend to

share descriptors even if recorded at different locations

(e.g., dining room or supermarket). Those results inherit

that the model is able to learn the relevant features in the

scene when it is self-contained, which is closely related to

the fine-grained datasets evaluated in Sect. 4.

Analyzing the images we can also see that, in some

classes (e.g., food court, cafeteria, market outdoor), there is

more background than foreground information necessary

for the identification of the scene; that is, the image is

composed of characteristics that an observer would not find

relevant for the distinction of an event. Therefore, the main

difficulty in learning these scenes is that not only the

locations vary but also they are composed of elements

common to other scenes. In this case, including other rel-

evant regions along with a limited amount of samples

available per class might represent imposed noise and lead

to a lower performance in our approach compared to the

baseline. This issue could be addressed with the extension

of the dataset.

5.2.2 Model inspection

We analyzed not only the classification performance of our

training scheme but also its ability to make predictions. In

particular, we aimed to find out if the proposed approach is

able to improve the robustness of a CNN classifier and

make it sensible to more features. For this reason, we

carried out two additional experiments: (1) we analyzed the

behavior of the models making use of a visual explanation

algorithm, and (2) we randomly erased some areas of the

test images before evaluating the models on them.

In the first experiment, our target was to demonstrate

that the regions considered as relevant by the trained

Table 5 Classification

performance, averaged across

five runs, of the different

approaches on the

EgoFoodPlaces dataset [15].

Hierarchical approach [15] FT-ResNet50 0-occlusion

Macro precision 0.56 0:59	 0:03 0:59	 0:05

Macro recall 0.53 0:55	 0:03 0:54	 0:06

Macro F1 0.53 0:53	 0:04 0:53	 0:06

Weighted precision 0.65 0:67	 0:02 0:68	 0:03

Weighted recall 0.68 0:67	 0:03 0:68	 0:04

Weighted F1 0.65 0:64	 0:03 0:66	 0:04

Accuracy 0.68 0:67	 0:03 0:68	 0:04

Best results are in bold
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models were more and bigger when applying our training

scheme than when following the classical procedure. For

this purpose, we applied the Grad-CAM algorithm to the

last convolutional layer of the two ResNet50 models pre-

viously trained on the EgoFoodPlaces dataset: one trained

using the classical procedure (FT-ResNet50), and the other

one using our training scheme with 0-occlusion. As a

result, we obtained the heat maps that allow us to visualize

the regions that are important to the models when making a

prediction for a given image. Figure 3 depicts some rep-

resentative images along with their corresponding heat

maps for each model. As can be observed, our model took

into account bigger regions than the baseline method (FT-

ResNet50) when processing the same target images.

Besides, it can be seen that the model trained with our

proposed method bases its decisions on more regions than

when using the classical procedure. Furthermore, the

regions that the baseline model took into account when

making a decision were also taken into account by the

proposed model. This demonstrates that when using the

proposed training scheme, the model does not forget the

learned features, but just learns to recognize other features.

Finally, we conducted the second experiment to test the

robustness of our training scheme. For this purpose, we hid

some regions of the test images by randomly erasing them,

as proposed in [42]. After that, we compared how the two

approaches (FT-ResNet50 and 0-occlusion) performed on

the modified test set. Table 7 presents the results for this

experiment. As can be observed, the proposed approach (0-

occlusion) performs better than the baseline model (FT-

ResNet50). This means that our model does not suffer as

much when some areas of the image are erased or hidden,

demonstrating its robustness. It is also worth noting that

these results are consistent with the ones obtained in the

previous experiment, and demonstrate that our model

makes use of more and bigger regions than the baseline

approach to make a prediction for a target image.

6 Conclusion

This research work presents a novel training scheme that

improves the robustness and generalization ability of CNNs

applied to image classification. The idea is to force the

model to learn as many features as possible when making a

class selection. For this purpose, we apply a visual expla-

nation algorithm to identify the areas on which the model

bases its decisions. After identifying those areas, we

occluded them and trained the model with a combination of

the modified images and the original ones. In this manner,

the model is not able to base its prediction on the occluded

regions and is forced to use other areas. Consequently, the

model also learns to pay attention to those regions of theTa
bl
e
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target image that, a priori, are not so informative for its

classification.

To evaluate the proposed method, we carried out dif-

ferent experiments on two popular datasets used for fine-

grained recognition tasks: Stanford cars and FGVC-Air-

craft. From the obtained results, we can confirm our initial

hypothesis: our method forces the network to learn addi-

tional features that help it distinguish between very similar

classes, showing its suitability for fine-grained classifica-

tion problems. More specifically, and within the different

evaluated configurations, the 0-occlusion approach has

shown to be the most appropriate setting. Furthermore, we

demonstrated the adequacy of our training scheme regard-

less of the backbone architecture considered.

We further experimented with a real-case study focused

on the classification of food-related scenes. We analyzed

the impact of our training scheme by comparing it with a

baseline method and, to the best of our knowledge, with the

state-of-the-art approach that follows an ensemble com-

posed of six CNNs [15]. The results achieved with our

method were comparable or even better than the ones

obtained with the state-of-the art approach despite making

use of just one network, thus reducing the level of com-

plexity while maintaining a competitive performance.

Furthermore, our method is computationally less expen-

sive, as the chosen backbone (ResNet50) has fewer

parameters than the VGG16 used in [15]. Finally, we

carried out several occlusion and visual explanation

experiments, showing that our method improves the

robustness of the classifier by forcing it to base its deci-

sions on more features.

As a future line of research, it would be interesting to

apply the same methodology not only to input images but

also at different convolutional levels, as it is usually done

with the regularization technique known as dropout. In

other words, the feature maps obtained at different levels

could be analyzed and occluded in the same way that we

did with the input images. This idea would force the model

to pay attention to different characteristics on the feature

maps, thereby improving the robustness of the model at

different levels of the learning process.

Acknowledgements We would like to thank the Center for Informa-

tion Technology of the University of Groningen for their support and
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(a) (b) (c)

Fig. 3 a Input images, b Heat maps generated by Grad-CAM for the

baseline FT-ResNet50, and c heat maps generated by Grad-CAM for

the model trained with the proposed training scheme (0-occlusion)

Table 7 Classification performance, averaged across five runs, of the

baseline method and the proposed training scheme when we randomly

hid some regions on the test images.

FT-ResNet50 0-occlusion

Macro precision 0:53	 0:01 0:54	 0:02

Macro recall 0:47	 0:02 0:48	 0:03

Macro F1 0:47	 0:02 0:48	 0:05

Weighted precision 0:63	 0:02 0:63	 0:03

Weighted recall 0:59	 0:02 0:65	 0:03

Weighted F1 0:59	 0:02 0:59	 0:02

Accuracy 0:59	 0:02 0:60	 0:02

Best results are in bold
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