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a b s t r a c t

Small sulfur-containing heterocycles, like thianthrenes and tetrathiafulvalenes, together with their larger
p-extended counterparts, represent a long-known structural motif and offer reversible redox chemistry
at low potentials. Recently these motifs gained an increasing interest in a variety of fields circulating
organic chemistry ranging from molecular switches and redox reagents in synthesis to supramolecular
aggregates. We anticipate fruitful developments from these versatile building blocks in modern tech-
nologies based on their reversible redox properties.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sulfur-containing heterocycles are common structural motifs in
organic electronics and materials [1]. Incorporating sulfur hetero-
atoms into purely carbon-based polycyclic aromatic hydrocarbons
offers opportunities by (i) modulating the p-conjugation, (ii)
elongating the CeS bond compared to the CeC bond, (iii) distorting
the structure and deflattening, (iv) lowering of oxidation potentials,
and (v) stabilizing (radical) cationic species. Two long-known ex-
amples of sulfur-rich heterocycles, we think are currently under-
represented with regards to their reversible redox properties, are
thianthrene (TT) and tetrathiafulvalene (TTF) as well as their
respective p-extended counterparts (e.g., bisthioxanthylidene or
exTTF). These molecules have been reviewed extensively [2] thus
allowing us to highlight their distinct application in selected fields,
such as application in organic methodology or molecular switches,
and providing inspiration for future applications.

Both thianthrene and tetrathiafulvalene heterocycles undergo
an efficient and facile redox-cycling via the radical-cationic inter-
mediate to the stable dicationic state (Fig. 1). Upon single-electron
oxidation thianthrene converts into the radical-cation TT�þ at a low
potential of þ0.80 V vs. the ferrocene redox couple (FcH/FcHþ) in
nga@rug.nl (B.L. Feringa).

r Ltd. This is an open access articl
acetonitrile (MeCN), whereas tetrathiafulvalene reaches this state
already at þ 0.73 V (TTF�þ) [3]. This trend continues towards the
dicationic state which is reached at a higher positive potential
of þ1.40 V (TT2þ) and þ1.10 V (TTF2þ) vs. FcH/FcHþ in MeCN,
respectively [4]. Both TT2þ and TTF2þ are planar aromatic states
with achieved aromaticity as thermodynamic driving force [5]. This
reversible twofold oxidation at low potentials rationalizes their
applications in redox-active or redox-responsive materials as
compared to dimethyl viologen (paraquat), which is converted
from its dicationic state in two redox steps to the neutral state. The
first reduction occurs ate 0.43 V and the second ate 0.84 V vs. FcH/
FcHþ in MeCN [6].

Since TT and TTF stand out as thermodynamically stable and fast
electrochemically switchable compounds they are well-suited to be
incorporated into molecular switches. Molecular switches typically
constitute of two stable states, which differ by their electric, mag-
netic, or optical properties and can be alternated by reversible
interconversion induced by external stimuli [7]. An applied voltage
produces no waste and can be easily modulated in space, time, and
magnitude [8]. These single molecule switches are frequently the
basis for more advanced multicomponent switches such as rotax-
anes where directed translational motion can be fueled by elec-
tricity [9].

Moreover, the reversible low oxidation potential enables the use
of TT as redox mediator in organic synthesis, thus giving access to
mild and selective oxidation reactions. Preferentially these imple-
mentations give access to the conversion of otherwise unreactive or
labile functional groups and generate new chemical reactivities.
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Thianthrene (TT) and tetrathiafulvalene (TTF) and their respective reversible
redox behaviors.
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2. Thianthrenes

Thianthrenes offer a broad structural diversity based on simple
preparation procedures, such as oxidative dimerization of thio-
phenols [10]. In the ground state, TT features a distinct structural
distortion in which both phenyl rings have a folding angle of 128�

facilitating a bent shape available for convex-concave interactions
(vide infra).

Recently, TT received considerable attention in organic synthesis
due to its highly regioselective monocationic thianthrenium adduct
formation with aromatic substrates under redox conditions, which
could then be used for further functionalization (Fig. 2) [11]. For a
fluorinated TT analogue the para/ortho (p/o) selectivity for the
adduct formation by aromatic substitution was as record high as
520:1 [12]. This remarkably selective formation was utilized in
subsequent functionalizations, such as fluorination or amination
reactions among others (Fig. 2a) [11]. In addition, the Ritter group
also found that thianthrenium adducts allow the selective forma-
tion of secondary (E)-allylic amines, an otherwise challenging and
oxidatively labile motif [13]. This photochemical procedure was
Fig. 2. Possible applications of TT and TTF small molecules in synthesis and materials. Uses
modulation (b, c) up to non-covalent functionalization of carbon nanotubes (d).
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amenable to couple primary amines with terminal olefins selec-
tively. Concomitantly, the Wickens group discovered the electro-
chemical activation of TT and olefins to access aziridines in the
presence of primary amines [14] and likewise performing an allylic
amination with secondary amines [15]. Upon oxidation of TT, the
dicationic adduct (Fig. 1, TT2þ) with olefins was isolated and proved
to be a key intermediate in the reaction. The formation of (Z)-allylic
amines under the electroorganic conditions is an impressive
feature and thus further highlights the high complementarity to the
seminal photochemical work by the Ritter group [16].

The extended counterpart of TT is bisthioxanthylidene (Fig. 2b),
a subclass of overcrowded alkenes. Such motifs can adopt different
conformations [17], which originate in the non-planarity of the two
tricyclic units on both sides of the olefinic bond [18]. This non-
planarity is induced by the steric crowding in the fjord region
and can be adapted by twisting around the central double bond or
the folding of the tricyclic moieties [19]. Four major geometries are
possible: anti-folded, syn-folded, twisted, and orthogonal twisted,
allowing for a molecular switch [19]. Different geometries can be
individually addressed by external stimuli (e.g. thermal, photo-,
and electrochemical stimulants), whichmay lead to photo, electro-,
and mechano-chromic behavior [20]. An example is the reversible
switching of bisthioxanthylidenes where an anti-folded conformer
can be electrochemically oxidized to a dicationic orthogonally
twisted conformer showcasing electrochromism (Fig. 2b) [20a]. The
change in geometry upon oxidation can be unambiguously
confirmed by cyclic voltammetry, which is in line with earlier ob-
servations on bisanthrones by Evans et al. [21].

Ultimately, incorporating electroactive thianthrenes into mo-
lecular switches may give access to the formation of a molecular
electromotor. The unidirectional rotary molecular motor developed
in the Feringa group is traditionally based on photochemical E/Z
isomerizations and thermal helix inversions [22]. Advances have
been made to use a second generation molecular motor and drive it
with electricity instead of light [23]. The oxidation of the molecular
motor results in the formation of the dicationic state which is
analogous to the electrochemistry of the aforementioned bis-
thioxanthylidenes. However, this oxidation is immediately fol-
lowed by a deprotonation and the point chirality of the methyl
range from leaving group properties (a) to intrinsic geometry distortions upon redox
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group is lost. The latter, however, is essential to the unidirectional
rotation and further research is therefore required to prevent this
deprotonation event.

To incorporate a multi-stimuli responsiveness to the parent
bisthiaxanthylidene switch a three-state switching system of an
anthracene extended bisthiaxanthylidene was established after-
wards, which forms highly stable diradical states [24]. Three indi-
vidually addressable states can be interconverted by
electrochemical, thermal, and photochemical reactions, respec-
tively. Reversible electrochemical switching was found between an
orthogonal dicationic and orthogonal, kinetically stabilized, dir-
adical. Furthermore, reversible switching by heating and irradiation
between the open- and folded-closed-shell state was demonstrated
successfully.

3. Tetrathiafulvalene

TTF is an organic redox switch that showcases exceptional
thermodynamically stable oxidation states [2b]. For instance,
neutral TTF is a strong p-donor, which decreases with successive
oxidation steps, and thus interactions with other parts of a mole-
cule or system can be reversibly tuned by electrochemical means.
Reversible dimerization can occur for the neutral TTF and its radical
cation (mixed-valence dimer), but also for two radical cations by
radical pairing showing profound covalent character (radical-cation
dimer, Fig. 2c). Many multicomponent supramolecular systems,
such as rotaxane based molecular machines, take advantage of
these interactions [25]. The conformation of molecules can be
redox switched between an unfolded and folded geometry by the
incorporation of two TTF ‘arms’ [26]. Depending on the solvent/
anion combination a two-electron oxidation can lead to the folding
of the molecule induced by the dimerization of two radical cation
moieties. Upon a second two-electron oxidation step this folding is
undone and the initial unfolded conformation is attained to mini-
mize the repulsion between the two doubly charged TTF units.

Another important use of TTF was found to be as semiconductor
utilizing its singly oxidized form [2a]. Additionally, metallic-like
behavior was discovered when TTF was combined with tetracya-
noquinodimethane (TCNQ) moieties creating charge-transfer (CT)
complexes that have shown high conductivities [2a,5]. Exploiting
the individual addressable redox states of TTF was achieved by its
annulation to a porphyrin [27]. In the neutral state the TTF moiety
quenches the fluorescence of the porphyrin, but upon oxidation it is
transformed into a fluorescent species as electron transfer from the
TTF�þ unit to the porphyrin is absent. Similarly, TTF was coupled to
two anthracene moieties and the fluorescence could be modulated
by successive oxidation and reduction steps [28].

Finally, the anthracene-extended counterpart of TTF, called
exTTF, features a similar bent shape as discussed for thianthrenes,
however, with a larger p-system. Various applications of this exTTF
motif have been described such as the non-covalent functionali-
zation of advanced materials like single-walled carbon nanotubes
(SWCNT). This strategy was pioneered by the P�erez group who
utilized a bis-exTTF macrocycle precursor which undergoes ring-
closing metathesis in the presence of the nanotubes [29]. Due to
the templated concave-convex p-p-interaction a high loading of
macrocycles onto the nanotubes was achieved. Nevertheless, this
system lacks error correction and results in oligomerization upon
metathesis reaction. To overcome the irreversible formation of the
olefin bond, the von Delius group introduced two disulfide units
into the bis-exTTF macrocycle (Fig. 2d). This macrocycle was sub-
sequently utilized under dynamic disulfide exchange conditions in
the presence of SWCNT [30]. The catalytic nature of the reactions
combined with the distinct supramolecular control improved the
loading of exTTF rings, allowed for recovery of these rings, and
3

finally enabled the purification of specific chirality nanotubes from
the bulk mixture. The charge-transfer redox interactions between
exTTF and SWCNT were unambiguously proven by transient ab-
sorption spectroscopy.

4. Conclusion & outlook

The utility as redox mediator in complex organic synthesis
makes thianthrene and its extended counterparts remarkable
structural units. We anticipate the adaption of these recent syn-
thetic developments towards further protocols accessing sensitive
functional groups. Considerations into thianthrene-based molecu-
lar electromotors will remain a promising area, since many mo-
lecular switches are powered by (photo-)chemical energy while
electrical energy driven switching is underexplored. Due to the
advantage of selective electrochemical switching over photo-
chemical stimuli, it is a matter of time before these will become
more dominant in (commercial) redox addressable smart molecu-
lar electronic devices.

For the full utilization of tetrathiafulvalene as organic redox
switch in molecular ensemble junctions and organic batteries key
challenges remain. With regards to organic batteries the energy
density of these molecules needs to be increased while maintaining
high stability and reversibility. Future research in the purification of
nanoscopic structures like nanotubes or fullerenes with the use of
redox-active macromolecules will enable a new era of organic
electronics. However, due to the versatility and tunability of the
cost-efficient TTF-based organic redox switches it is expected that
they will have a bright future in the design of functional devices.
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