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The necessity of incorporating 
non‑genetic risk factors 
into polygenic risk score models
Sipko van Dam 1,2,5*, Pytrik Folkertsma 1,2,5, Jose Castela Forte 2,3, Dylan H. de Vries 1,2, 
Camila Herrera Cunillera 1,2, Rahul Gannamani 2,4 & Bruce H. R. Wolffenbuttel 1

The growing public interest in genetic risk scores for various health conditions can be harnessed to 
inspire preventive health action. However, current commercially available genetic risk scores can 
be deceiving as they do not consider other, easily attainable risk factors, such as sex, BMI, age, 
smoking habits, parental disease status and physical activity. Recent scientific literature shows that 
adding these factors can improve PGS based predictions significantly. However, implementation 
of existing PGS based models that also consider these factors requires reference data based on a 
specific genotyping chip, which is not always available. In this paper, we offer a method naïve to the 
genotyping chip used. We train these models using the UK Biobank data and test these externally in 
the Lifelines cohort. We show improved performance at identifying the 10% most at‑risk individuals 
for type 2 diabetes (T2D) and coronary artery disease (CAD) by including common risk factors. 
Incidence in the highest risk group increases from 3.0‑ and 4.0‑fold to 5.8 for T2D, when comparing the 
genetics‑based model, common risk factor‑based model and combined model, respectively. Similarly, 
we observe an increase from 2.4‑ and 3.0‑fold to 4.7‑fold risk for CAD. As such, we conclude that it is 
paramount that these additional variables are considered when reporting risk, unlike current practice 
with current available genetic tests.

Risk perception to stimulate preventive health action. Chronic disease is an ever-growing problem 
in western society, with 32–58 percent of all Europeans age 50 and over suffering from multiple age-related non-
transmissible chronic  diseases1. These chronic conditions can in part be prevented by following simple health 
guidelines such as regular physical exercise, having a healthy diet, and not  smoking2–4. Yet, the adherence to this 
advice is limited. Among other reasons, this can be explained by the low perceived risk for each of these chronic 
conditions  separately5, which can influence health  behaviors6–8 and, in turn, lower risk for chronic  disease9.

There is a growing interest in genetics-based risk assessment, as evident by the over 27 million genetic tests 
sold  worldwide10. This growing interest, combined with the predictive power of polygenic scores (PGS), can and 
is harnessed to promote disease  prevention8,11,12.

PGS are risk scores, computed based on genetic profiles and have proven effective at identifying individuals 
(10% individuals at highest risk) with a 2.5 and 2.9 odds ratio for developing type-2-diabetes (T2D) and coronary 
artery disease (CAD), respectively, when compared to the rest of the population. These risk assessments are based 
on relatively cheap genotyping chip assessments (as opposed to whole genome sequencing (WGS) required for 
monogenic analyses), well suited for PGS  calculations13–15. Indeed, these PGS are now being implemented in 
commercially available  tests16,17 and made available to the public.

Genetic health risk limitations. Although PGS have proven able to identify individuals at high risk based 
on genotyping chip data, the usefulness of this newer approach to risk stratification remains a topic of  debate18,19. 
One commonly raised concern is that the variance explained for the predicted outcomes is often low. Typically, 
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these vary between 1 to 5% for phenotypes such as diabetes and  CAD19,20. Other, non-genetic risk factors, such 
as age, sex, smoking status, parental disease status, physical activity and body mass index (BMI), which already 
form part of most clinical risk prediction models, have proven more effective at identifying individuals at high 
 risk21–25. Combining both genetic and non-genetic factors leads to improved risk prediction, vastly increasing 
the discriminative  power26–28. Visa versa, the added value of PGS was only limited to these existing models. As a 
result of the established limited added predictive power resulting from adding PGS to existing risk  models27,29, to 
date they are rarely used in the clinical setting. On the other hand, public interest in genetic risk has increased as 
evidenced by the billion-dollar companies selling PGS commercially, resulting in more disease risk  awareness8.

Unfortunately, to date, commercially available genetic risk assessments do not leverage information of 
additional risk factors to improve the predictions. One limitation of the best performing risk models, is that 
they usually also require biomarker measurements, which are a great barrier to implementation. Fortunately, it 
was previously shown PGS models can also be vastly improved when only variables that can be easily attained, 
e.g. through a simple questionnaire, even with a single variable such as  BMI30. Since risk predictions can affect 
health behavior and decision making of  individuals31, models that include easily acquirable variables in addition 
to PGS should be deployed by these commercial parties.

While some models, solely based on variables attainable through genotyping and questionnaire data,  exist32, 
two limitations, still remain. The first limitation is that much of the previous work was solely conducted on a 
single dataset, often the UK Biobank data, and an external validation is important for a variety of  reasons33,34. 
Second, PGS based risk calculation methods to date require a large reference cohort to translate arbitrary PGS 
scores into disease risk estimates, by means of calibration. In order conduct this translation this reference dataset 
needs to use genotyping data based on the same genotyping chip, which is not always available. But even when 
they do have access to a large biobank, this limits the possible use of genotyping chips to only those readily used 
by large biobanks and additionally causes trouble when one would like to compare genotyping chips to multiple 
biobanks. The latter will become more and more desirable, as more biobanks for different ethnicities become 
available, since PGS based risk assessments should be based on a reference cohort of the same ethnicity. To allow 
feasible implementation of PGS based risk assessment in practice in any multi-ethnic population it is therefore 
important to use a method that allows for this. To this end we constructed a method that circumvents this 
problem. To validate this indeed is effective and that models including additional risk factors, limiting ourselves 
to those that allow for feasible implementation in practice, constructed in the UK Biobank (UKB)35 are also 
usable outside this context, we validate our results externally using the Lifelines  data36.

Results
Study outline. We have built predictive models using Cox  regression37, including and excluding a number 
of easily attainable variables, using the UKB data (with tenfold cross validation). We built models separately for 
prediction of T2D and CAD. All models were trained using the UKB and tested in the Lifelines data (for details 
see Supplementary materials). The UKB and Lifelines are two large databases for which numerous statistics are 
available, among which the input variables required for our models for a large number of individuals: genotyping 
chip data, BMI, genetic sex, smoking status, quantification of physical activity, parental disease status (Table 1). 
All reported statistics refer to the results for the Lifelines data used for testing the performance of the models 
trained in the UKB, unless specified otherwise.

All analyses were conducted twice, once to model incidence and once to model prevalence (Fig. 1). Predicting 
prevalence for T2D is less appropriate for the purpose of prevention as T2D also impacts the risk factors. E.g., 
individuals with T2D are more likely to become obese, while obesity also increases risk for  T2D38. Additionally, 
PGS perform different at predicting prevalence versus  incidence39. We primarily focus our analyses on predicting 
incidence rather than prevalence. To model prevalence, we used the entire dataset. To study incidence, we exclude 
all individuals that had already attained the respective outcome on their first visit.

Table 1.  Statistics of included participants. Data are presented as mean (SD) or n (%). For a histogram of the 
age distributions, we refer to Supplementary Fig. 1.

UKB Lifelines

Number of included individuals 406,159 36,130

Number of males 186,493 (45.9%) 15,004 (41.5%)

Number of females 219,666 (53.8%) 21,126 (58.5%)

Age range (years) 38–75 5–91

Body mass index (BMI), kg/m2 27.4 (SD:4.8) 25.0 (SD:4.6)

Number of individuals currently smoking 41,105 (10.12%) 6,203 (17.2%)

Number of individuals smoking in the past 184,388 (45.4%) 11,001 (30.4%)

Average days/week with vigorous activity 1.7 2.2

Average days/week with moderate activity 3.4 4.2

T2D prevalence at first assessment 20,118 (5.0%) 547 (1.5%)

T2D incidence after first assessment 8363 (2.1%) 270 (0.75%)

CAD prevalence at first assessment 13,648 (3.4%) 516 (1.43%)

CAD incidence after first assessment 9027 (2.2%) 255 (0.71%)
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We present our results as incidence odds ratios of individuals in the highest risk decile compared to the 
remainder of the population (Fig. 2b), to allow for comparison to previous works and easy interpretability. 
Furthermore, individuals at highest risk stand to gain most from intervention, which makes identifying this group 
highly relevant. Additionally, we report the Harrel’s C-index40 for all different models (Fig. 2c, Supplementary 
Table 1).

PGS based predictions. First, we show projecting PGS scores, based on a genotyping chip, against a 
reference cohort, based on WGS data, allows chips with different markers to be put onto the same distribution. 
This effectively normalizes the PGS scores of the different chips, allowing them to be compared against each 
other. Prior to this normalization the PGS values a genotyping chip from the Lifelines data cannot be compared 
to that of the UKB, as the resulting bias would cause all Lifelines individuals to appear at high risk for T2D. On 

Figure 1.  Training and validation setup study (concept). Models were trained based on a subset of UK Biobank 
individuals and validated in both the remainder of the UK Biobank individuals and the Lifelines cohort.
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Figure 2.  Comparison of models including only PGS or additional variables that can be attained through a questionnaire. 
Risk predicted with questionnaire-based variables performs similar or better at identifying individuals at high risk (10th 
decile), compared to PGS. Adding PGS to a questionnaire-based model can, however, further improve the identification of 
high-risk individuals, but requires a large dataset to be detectable due to its limited effect. For a comparison of risk in different 
risk strata at different ages, we refer to Supplementary Fig. 2. (A) Absolute incidence and prevalence per decile based on PGS 
alone or combine with additional variables. Performance improves if additional variables are added beyond PGS alone. Risk is 
increasing exponentially in higher risk categories. (B) Odds and incidence ratios of individuals in the top decile according to 
different models. Model including questionnaire-based risk variables performs significantly better at identifying individuals 
that will get the respective outcome than a model based on PGS alone. (C) C-indexes of the different models. Added value of 
PGS on top of variables that can be derived from a questionnaire is limited. PGS Polygenic risk score, BMI Body mass index, 
C-index Harrell’s C-index, PA Physical activity (based on number of days moderate and days of vigorous activity), Parent 
Parental T2D status, Variables not included as predictors in the model were included as covariates. Additionally, in the UK 
Biobank, data the first 4 PCs and genotyping batch were included as covariate. Bars indicate 95% confidence interval. For 
numerical representation we refer to the Supplementary Table 1.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1351  | https://doi.org/10.1038/s41598-023-27637-w

www.nature.com/scientificreports/

the other hand, after this normalization the distributions are very comparable allowing a genotyping chip from 
the Lifelines data (or any other dataset) to be compared against that of the UKB, or visa versa (Fig. 3). This 
method also can also be implemented for single genotyping chips that are not part of a bigger cohort.

Next, we reproduced earlier reports showing that PGS scores calculated through this normalization method 
can be used to identify high-risk individuals in  Lifelines13. We trained and validated models in the UKB and then 
validated them also externally in the Lifelines cohort. In Lifelines, we observe that the prevalence odds ratio for 
those in the top decile for T2D and CAD are 2.9 (95-CI 2.3–3.6) and 2.5 (95-CI 2.0–3.1) with a C-index of 0.90 
(95-CI 0.89–0.91) and 0.90 (95-CI 0.89–0.91) after correcting for age, sex, genotyping batch number, smoking 
status, physical activity, parental disease status and the first 4 principal components, respectively (Fig. 2c).

Questionnaire‑based risk factors improve incidence predictions based on PGS. Next, we 
investigate how much predictive power these PGS models would gain by including easily and freely attainable 
regular risk factors into these PGS-based models. We built a number of models to assess the added value of each 
of those variables, by integrating individual factors into the PGS-based model and by integrating PGS into the 
non-genetic factor model.

We are interested in identifying individuals at high risk of obtaining T2D or CAD in the future, aiming to 
act preventively in high-risk individuals. To create models that are suited for identification of individuals, of 
a certain age, at risk of obtaining either T2D or CAD (rather than already having it), we trained the model on 
incidence (as opposed to prevalence)26. Prior to our analyses, we have thus removed individuals that have the 
outcome on their initial measurement from the data. For comparison, we have also created models that predict 
prevalence rather than incidence (Fig. 2).

For a T2D prediction model based on PGS, we observe that individuals in the highest risk decile have a 
3.0 (95-CI 2.3–4.1) fold higher incidence, which increases to 5.8 (95-CI 4.5–7.4) when BMI, physical activity, 
sex, parental disease and smoking status are included in the model (Likelihood ratio Chi-square test p-value: 
2.1 ×  10–20).

In addition to the prior model, we constructed a model that includes age as an additional risk factor. We 
built this model separately as we deemed it of less value to compare individuals at different ages when aiming to 
identify individuals that would benefit most from preventive action. When age is also added to the model the 
incidence odds ratio in the top decile increases to 9.3 (95-CI 7.3–11.8, Likelihood ratio Chi-square test p-value: 
3.0 ×  10–26).

Similar to T2D, for CAD, Lifelines individuals in the highest risk decile have a 2.4-fold (95-CI 1.7–3.3) 
increased risk for CAD when modelling incidence based on PGS compared to 4.7 (95-CI 3.7–6.1) when BMI, 
physical activity, sex, parental disease and smoking status are also included in the model (Likelihood ratio Chi-
square test p-value = 4.0 ×  10–08).

When age is also included in the model the incidence odds ratio in Lifelines increases to 11.3 (95-CI 8.8–14.5, 
likelihood ratio Chi-square test p-value = 3.6 ×  10–33). The effect of age is larger than in the UKB where the 
incidence odds ratios in the highest decile are 4.5 (95-CI 4.3–4.7, Fisher exact test p-value = 4.0 ×  10–39). This 
is likely due to the much larger age range of the participants in the Lifelines database with the rarity of CAD at 

Figure 3.  Absolute PGS scores based on different genotyping chips cannot be compared directly. Left: Raw 
summed PGS scores; Risk scores calculated based on different genotypes are largely different, causing a bias 
when a risk assessment based one type of chip is compared to a reference cohort based on a different chip. Note 
that scores for individuals with T2D are lower than those without T2D as the calculated PGS scores capture the 
protection against T2D (can be multiplied by − 1 to indicate sensitivity for T2D rather than protection). Right: 
Raw PGS scores were compared to raw PGS scores of the individuals of the 1000 g cohort to translate them into 
percentiles. This was done for both PGS scores (based on GWAS summary statistic file including variants with 
p-value threshold 0.01 and  10–6). Then the percentiles where summed and the densities plotted. Raw PGS scores 
UKB diabetes versus Lifelines diabetes are statistically significantly different (p-value <  10–323, Mann–Whitney U 
test test), but summed PGS for UKB diabetes versus Lifelines diabetes are not (p-value: 0.51, two sided Mann–
Whitney U test t-test). PGS Polygenic Risk Score.
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younger ages being much lower (5–91 year in Lifelines and 38–75 year in the UKB; for the age distribution we 
refer to Supplementary Fig. 1).

We conclude that there is a clear benefit of adding risk factors that can be obtained through a simple 
questionnaire to PGS-based risk assessments.

Limited added value of PGS on top of questionnaire‑based risk factors for prediction of 
incidence. In the previous section, we investigated the added benefit of adding questionnaire-based risk 
factors to PGS. Here, we investigate to what extent PGS add value to a model based on solely those non-genetic 
risk factors that can be attained through a questionnaire, to predict incidence. This will allow an assessment of 
the added value for the added cost and effort of running a genotyping chip.

For a T2D prediction model based on BMI, physical activity, sex, parental disease and smoking status we 
observe that, compared to the remainder of the population, individuals in the highest risk decile have a 4.0 (95-
CI 3.1–5.2) fold higher incidence. When PGS are added to the model this increases to 5.8 (95-CI 4.5–7.4) fold 
(Likelihood ratio Chi-square test p-value = 2.2 ×  10–5).

Similar to T2D, we modelled incidence for CAD based on BMI, physical activity, sex, parental disease 
and smoking status. In Lifelines, individuals in the highest risk decile have a 3.0 (95-CI 2.3–4.0) fold higher 
incidence compared to 4.7 (95-CI 3.7–6.1) when PGS are included in the model (Likelihood ratio Chi-square 
test p-value = 0.29). While the observed difference in the number of individuals in the highest risk decile is not 
significant, the addition of the PGS term to the model across the entire spectrum is (Likelihood ratio Chi-square 
test p-value = 3.7 ×  10–10). This shows that PGS, to some extent, are exerting their risk effects through mechanisms 
that are not captured by these non-genetic risk factors.

Overall, it is clear that there is some, but limited, added value of PGS on top of questionnaire-based risk 
factors for predicting T2D and CAD incidence compared to when only free to attain risk factors are used. 
However, PGS are costly, logistically complex and is time consuming compared to the questionnaire which is 
cheap, fast and easy.

PGS and non‑genetic risk factors identify different aspects of disease risk. Previously, it was 
questioned whether PGS predict the same aspects of disease risk as these and other common, non-genetic risk 
 factors18 and if PGS would thus be no more than a complex approach to achieve the same result. The fact that 
the PGS term is statistically significant in a model that contains also the other risk factor terms suggests that 
PGS capture some aspect of risk that is not already captured by non-genetic risk factors in this model. However, 
since the statistical significance of the term in the model can be difficult to interpret, we investigated whether 
individuals predicted to have a high incidence for T2D based on PGS alone are also identified through a model 
based on sex, smoking status and parental disease status. We investigated how the predictions from PGS compare 
to predictions based on BMI, sex and smoking, on an individual level.

We found the correlation between the predictions of the model predicting risk based on a questionnaire data 
and a model predicting risk based on genetics is marginal (Lifelines: T2D: r = 0.03, p-value: 3.9 ×  10–07; CAD: 
r = 0.02, p-value: 3.6 ×  10–4, UKB: T2D: r = 0.03, p-value: 2.4 ×  10–93; CAD: r = 0.02, p-value: 4.2 ×  10–33). Over 
60% of individuals ranked differing at least 3 deciles apart according to the two different models. Furthermore, 
approximately 7.5% of the individuals in the highest category based on the PGS based model (decile 1) were 
classed in the lowest risk category by non-genetic model (decile 10) (Fig. 4). Similar results are observed when 
prevalence, rather than incidence, is interrogated (Supplementary Fig. 3).

From our findings, we can conclude that risk predictions based on genetic risk scores are largely dissimilar 
to those derived from a list of known, questionnaire-based risk factors. While both predictions appear to allow 
identification of individuals at higher risk, they do largely disagree on whom those individuals are.

Polygenic risk can be largely mitigated by controlling BMI for T2D and CAD. The fact that risk 
estimated based on questionnaire-based risk factors and risk based on genetics do not strongly overlap, suggests 
that non-genetic risk factors can be modified to mitigate the potential risk calculated based on genetics. To 
investigate whether individuals at high risk based on PGS can mitigate their genetic predisposition for T2D by 
adopting a healthier lifestyle, we investigated the effect of BMI in individuals in different genetic risk categories. 
We limited the analysis to BMI as, on the one hand, it is a known causal risk factor and showed largest impact 
in our analyses; and, on the other, weight reduction is a feasible lifestyle intervention which could be advised to 
mitigate genetic predisposition. Furthermore, limiting this analysis to the single most impactful variable allows 
for easy interpretation of the result.

We compared the effect of having a higher BMI in the different categories of genetic risk, in terms of both 
relative and absolute risk (Fig. 5). The T2D incidence in the low genetic risk category in those with a BMI above 
30 was 1.6% and higher compared to the incidence of 0% among individuals with a BMI between 18.5 and 25 
(Fisher exact test p-value: 1.6 ×  10–5). In individuals at high genetic risk for T2D, the incidence of those with a 
BMI above 30 was 5.0% being higher than in those with a BMI between 18.5 and 25 which had an incidence of 
0.4% (Fisher exact test p-value: 7.3 ×  10–11). This indicates that the absolute difference in the high-risk group 
is threefold higher in the high genetic risk group compared to the low genetic risk group being only 1.6% in 
the prior compared to 4.6% in the latter group. A similar pattern is observed in the UK Biobank (Fig. 5). This 
suggests that those at high genetic risk for T2D benefit more from controlling their weight, than those having 
a low genetic risk.

For CAD we fail to observe this same phenomenon for incidence in Lifelines, but do observe this in case in 
the UKB (Fig. 5). The incidence in the low genetic risk group is 0.7% in the normal BMI (18.5–25) group and 
1.8% in the high BMI (30+) group (Fisher exact test p-value: 2.1 ×  10–14). The incidence in the high genetic risk 
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group is 2.5% in the normal BMI group and 5.5% in the high BMI group (Fisher exact test p-value: 6.9 ×  10–28). 
The absolute difference in the high genetic risk group is thus 3% compared to only 1.1% in the low genetic risk 
group. We ascribe our failure to observe this difference for incidence to the low incidence numbers in Lifelines. 
Taken together, this supports the notion that those at high genetic risk for CAD also benefit more from weight 
control than those in the low genetic risk group, in terms of absolute risk reduction.

No significant interaction effects between PGS and other risk factors. In addition to the additive 
models, we have also created models including a multiplicative interaction term between BMI and PGS, but this 
term does not significantly contribute to the prediction of either T2D or CAD (Wald test p-value = 0.08). This is 
the case for both predicting prevalence and in case of predicting incidence. We do note that, although we do not 
observe these interactions to be significant, they may still exist but require larger sample sizes to detect, as large 
sample sizes are a known requirement for detecting interaction  effects41.

Discussion
We developed a method that allows different genotyping chips to be compared against different reference 
cohorts, without the need for having the same or any overlapping markers on the genotyping chip. This also 
allows assessment of risk from single genotyping chips when no reference cohort is available based on the same 
genotyping chip. We showed how this method can be combined with risk factors that are simple to acquire to 
predict risk much better at virtually no added cost or effort. This can help identify and motivate individuals that 
should be prioritized for preventive health measures.

We focused mostly on the utility of PGS to identify individuals at highest risk, defined as those with the 10% 
highest risk, as opposed to its discriminating power in the remainder of the risk spectrum. We confirm that 
PGS can be used in a Dutch cohort (Table 1) to identify the top 10% at-risk individuals at an approximately 
3.0- and 2.4-fold higher risk of developing T2D and CAD, respectively. However, we also find that individuals 
that are in the highest risk decile based on BMI, smoking status, physical activity, parental T2D status and sex 
have an incidence odds ratio of 4.0- and 3.0-fold, compared to the remainder in the Lifelines cohort, for T2D 
and CAD, respectively (Fig. 2b). This suggests that a risk assessment based on variables that can be obtained 

Figure 4.  Comparison risk predictions based on a model based on PGS and a model based on sex, BMI, 
physical activity, parental T2D disease and smoking status. Each bar represents the percentage overlap of the 
individuals identified at high risk (10th) or low risk (1st decile) based on PGS compared to individuals identified 
at high risk according to questionnaire-based risk factors. Questionnaire-based risk factors identify other 
individuals at high risk than PGS. Dashed line indicates the overlap expected by random chance.
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through a simple questionnaire or directly from electronic health records are similarly or more accurate than 
risk prediction based solely on genetics. Due to the ease of attaining such variables, we suggest to continue using 
the questionnaire approach as a first risk assessment, rather than rely solely on genetic testing to determine risk.

Nonetheless, as genetic testing becomes increasingly more accessible and appealing to individuals, there is a 
potential to harness this interest to deliver far more accurate risk impressions for numerous preventable chronic 
conditions. We show and validate in an external cohort that when PGS predictions are augmented with risk 
factors that can be easily attained through a questionnaire, risk predictions become more accurate improving 
from approximately a 3.0 and 2.4 fold higher incidence in the top decile to 5.8- and 4.7-fold for T2D and CAD 
respectively.

Additionally, we showed that PGS-derived risk often does not agree with risk derived from questionnaire-
based risk factors (Fig. 4). Our results suggest that many individuals presented with risk assessments solely based 
on their genetic risk scores, will falsely conclude they are at low or high risk, stressing the need for inclusion of 
these easily attainable variables into already existing PGS models. As a result, it can occur that an individual feels 
protected due to a low genetic risk score, despite being at high risk due to being a heavily overweight smoker, 
when PGS are reported without consideration of other risk factors. As such, it may even be deceiving to report 
risk based on solely PGS, which is concerning because this is currently often the case with offered PGS services, 
at least with commercially available genetic tests. Hence, we strongly advocate the inclusion of these additional 
variables by the commercial parties that readily supply PGS scores to millions of individuals.

Although models based on sex, BMI, parental disease and smoking status perform relatively well, there is 
still added value of the genetic risk scores, albeit limited, in line with earlier  reports27–29,42. We observe that 
when genetic risk is also included on top of sex, BMI, parental disease and smoking status, the incidence odds 
ratio increases from 4.0 to 5.8 for T2D and from 3.0 to 4.7 for CAD (Fig. 2b). Whether these gains are sufficient 
to warrant the added cost of a genotyping assessment may, for now, be questionable. However, with the cost of 
genotyping chips being close to the 30 euro mark and 30X WGS currently periodically being available for less 

Figure 5.  Comparison of diabetes incidence and prevalence in individuals with different genetic risk profiles 
and different BMI categories. Individuals with a high genetic risk profile benefit more from having a lower BMI 
in terms of absolute risk reduction, under the assumption that BMI is causal. Bars indicate 95% confidence 
interval.
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than 200  euro17, it is not difficult to imagine that such data will soon be readily available for a large number 
of individuals. This stresses the need for availability of platforms that allow integrated analysis of genetic and 
phenotypic data.

Age is still an obvious predictor of prevalence, also in case of T2D, as prevalence is a function of a time. 
Although we argue that it is unfair to compare disease prevalence of older individuals to younger individuals 
and should thus not be used in a model that predicts prevalence, this does clearly indicate that age should be 
considered when presenting individuals with their risk. If age is not considered when informing about risk, the 
absolute prevalence of a disease may appear irrelevant. For example, an increased prevalence from 0.25% to 2% 
for diabetes at young ages may appear irrelevant, but when the absolute risk increases at older age from 5 to 40% 
is communicated, may seem far more substantial and more likely to trigger action. Therefore, it is important to 
communicate the lifetime risk rather than 10-year risk to individuals of younger ages.

Role in prevention. The models created in this project can be used to identify individuals at high risk of 
either CAD or T2D. Depending on the outcome you are at risk for, you may want to take different preventive 
actions, as different risk factors may be relevant. For instance, high blood pressure can be a risk factor for CAD 
and can be affected by salt intake. For T2D, high blood pressure is less of an issue, while sugar intake may be 
much more important to monitor. If an individual is aware of the phenotype they are at highest risk for, they 
can identify the risk factors that they can reduce to efficiently lower their health risk (as opposed to following all 
standard guidelines, which cover to wide a range of actions to inspire actual action).

While some individuals are at high genetic risk, which they cannot change, they can still take preventive 
action to offset their genetic predisposition. Earlier work has indeed shown that those with elevated risk based 
on genetics can still lower their risk to well below the overweight individual with low genetic  risk43. Similarly, we 
observe that individuals with a healthy BMI (between 18.5 and 25) and high genetic risk (top decile), still have 
a lower or similar incidence than individuals with a high BMI (over 30) and low genetic risk (bottom decile) for 
T2D or medium genetic risk in case of CAD (Fig. 5). We simultaneously observe that individuals in the highest 
genetic risk groups stand to gain the most from a healthier lifestyle in terms of reducing risk on an absolute scale. 
Thus, if a limited number of individuals can be selected for a program to limit or even reduce weight, those in 
the high genetic risk category should be targeted over those in the low genetic risk category. These predictions 
can therefore be useful when prevention becomes a more common procedure in health care.

We observe that commercial parties are already playing a relatively big role in preventive health compared 
to hospitals. We believe this roll will evolve further in the future. From the fact that PGS have already been 
implemented by numerous companies we can deduce that commercial parties are indeed closely following 
developments in the scientific field. For this reason, we believe, it is important for the scientific field to guide 
commercial parties in the right direction and also offer applicable and implementable solutions.

Limitations. In this paper, we limited our genetic analyses to PGS, which typically do not consider 
monogenic variants. These are single variants that on their own greatly impact your risk. Iconic examples of 
such variants are the mutations that occur in BRCA1 and BRCA2 genes, which increased risk for breast cancer by 
more than  tenfold44. These variants are however rare and despite their large effects typically only explain a small 
portion, less than 15% of all cases, of the phenotype observed in the  population44. We observe that the predictive 
power of easily attainable risk factors is much larger than from PGS. Next to that fact, PGS is reportedly has 
equivalent predictive power as monogenic  analyses13, meaning the added cost of WGS, required for appropriate 
monogenic analyses, is likely not worth it for the purposes described in this paper. We note that genotyping 
chips are unsuitable for monogenic analysis as the false positive rate for very rare variants, is as high as 5 out of 
every 6  positives45. Furthermore, we note that risk from these monogenic variants is often more difficult if not 
impossible to mitigate through lifestyle intervention. Lastly, any findings from monogenic mutations would need 
to be validated and carefully communicated. This is not something easy to implement, which is the aim of this 
work. While we acknowledge the importance of monogenic analysis in hospital settings, this is not something 
that warrants the cost for the general public nor should be supplied directly from commercial parties.

There is also a number of ethical limitations to consider when offering polygenic risk scores, which warrant 
an elaborate dissemination, for which we refer  to46.

Lastly, in this paper, we focused on T2D and CAD due to their high prevalence, burden on society and their 
often-preventable nature. We acknowledge that PGS can play a role in screening for other common health 
conditions as well, such as  cancer13,15,47 (albeit varying per cancer  type48), and even rare diseases in the  future49.

Conclusion
With the emerging public interest in preventive  health50, the demand for more personalized risk assessments 
is likely to keep increasing. While, to some extent, genetic risk profiling is readily commercially available to 
the general public, most of the reported risk estimations can be greatly improved by using models that include 
easily accessible variables. To this end, we have developed a SaaS platform that transforms any raw VCF file, 
independent of the genotyping chip used, into validated risk scores, with the option of taking additional variables 
such as BMI, sex, age, parental disease and smoking status into consideration to ultimately arrive at more 
accurate predictions than those available to the public to date. We expect that methods like the one presented 
here will become commonly used to identify which individuals are at high risk and for what outcome to then be 
translated into personalised health advice and initiating targeted preventative measures.
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Methods
Data acquisition and quality control. Lifelines data. UMCG Genetics Lifelines Initiative (UGLI) 
release 1 of the Lifelines genotyping data was used (quality controlled as described in Refs.51,52). Additionally, all 
variants with a  minimac353 imputation  R2 < 0.4 were removed. All variants with more than two alleles were also 
removed from the data. In addition, all non-Caucasian samples, defined in Ref.52 (based on the first 2 PCs), were 
removed. Additionally, 146 individuals with missing values values for weight, were removed.

After removing these individuals, there were 15 individuals for which the date of diagnoses was missing. After 
removing these 36,130 individuals remained (Table 1), aged 15–93 (Supplementary Fig. 1).

UKB data. Imputed genotyping data for 487,406 individuals were downloaded via protocols provided by the 
 UKB54. All variants with an imputation  R2 < 0.4, according to Ref.55, were removed from the data. All variants 
with more than two alleles were removed from the data. All 78,411 non-Caucasian samples were removed 
(based on UKB field: 22,00656). There were 2715 caucasian individuals with missing values for one or multiple 
of the variables used in the model: 1973 BMI, 1983 smoking status, 516 high activity, 516 medium activity. After 
removing these individuals, there were 11 individuals for which the date of diagnoses was missing. They were 
removed. In total, 406,159 Caucasians remained, aged 38–75.

For both datasets, all NA values for illness of the parents were set to 0 (indicating no illness), instead of 
removing individuals with NA values for this variable.

1000 genomes (1000g) WGS data. The 1000g phase 3  data57 were downloaded and used as a Linkage 
Disequilibrium (LD) panel, as well as use as a reference to convert PGS scores into percentile/decile scores to 
allow potential data from other genotyping chips to be put on the same scale (explained in more detail in the 
supplements).

PGS score calculation. Polygenic scores are a summation of the effects of multiple, often many, common 
risk variants. Risk variants and effect sizes are based on GWAS. For the calculation of PGS scores the GWAS 
summary statistics files were used from 2 different studies. Two from GWAS conducted on European cohorts 
excluding any of the individuals in the UKB or Lifelines cohorts for  T2D58,  CAD59.

From each GWAS summary statistic file two subsets of variants were selected. One containing only those 
variants with a GWAS significance of 0.01 or more significant. And one containing only those variants with 
a significance of  10–6 or more significant. These subsets were used to calculate one PGS each; two per GWAS 
summary statistic file. Correlation of each PGS with the respective outcome was calculated and a comparison 
between the resulting PGS was made. The observation that both the PGS based on a significant cutoff of 0.01 and 
 10–6 performed relatively well, but did not correlate with each other as strongly as we expected (Supplementary 
Fig. 4), suggesting that combining both scores would potentially yield a PGS that predicts the outcome better. 
For this reason, the PGS resulting from the two separate analyses using the 2 different cutoffs were summed to 
ultimately arrive at the PGS used in this paper (Supplementary Fig. 2).

Any genetic variants that were not present in all three files (GWAS summary statistic, UKB/Lifelines 
genotyping or the 1000g WGS reference data), were removed from the data prior to subsequent analyses.

LDpred version 1.0.11 was used to calculate PGS scores, using the 1000g WGS  data57 as reference LD panel to 
calculate the posterior mean of the effect sizes under an infinitesimal model. In other words, the GWAS variant 
effect sizes were reweighed based on their LD with other variants. Only LDpred-inf scores were calculated to 
optimize the speed of the analysis.

LDpred-inf PGS scores were calculated for UKB, Lifelines and the 1000g individuals. The UKB and Lifelines 
scores were converted into a score from 1 to 100 based on the percentile they would be in in the PGS score 
distribution of the 503 European 1000g individuals. This is necessary since Lifelines and UKB are based on 
different genotyping chips with only 1/3 overlap in the genetic variants measured. As a consequence, the 
distribution of the resulting absolute PGS scores do not overlap; This problem is solved by calibrating them to 
the 503 European 1000g individuals as described above. For each GWAS summary static file the two PGS scores 
calculated were summed, referred to as summed PGS.

Prediction models. To calculate the c-indexes using different prediction variables, the following model was 
used or a subset thereof (for a full list of models used we refer to the supplements):

where β0 is the intercept, and βbmi, βsmokerPast, βSmokerCurrent, βphysicalActivityModerate, βphysicalActivityVigorous, βsex, βfatherDiseaseStatus, 
βmotherDiseaseStatus, βpgs, βage the regression coefficient for the respective variables and βPgsBmi the regression coefficient 
for the multiplicative term. βpc is the regression coefficient for the respective PC and βbatch the regression 

ModelOutcome ∼ BMI + Smoker + PA+ Sex + Parent + PGS + Age + PGS ∗ BMI ,

logit
(

pi
)

= β0 + βbmiBMIi + βsmokerPastSmokerPasti + βsmokerCurrentSmokerCurrenti

+ βphysicalActivityModeratePhysicalActivityModeratei + βphysicalActivityVigorousPhysicalActivityVigorousi

+ βsexSexi + βfatherDiseaseStatusFatherDiseaseStatusi + βmotherDiseaseStatusMotherDiseaseStatusi

+ βpgsPGSi + βageAgei + βPgsBmiPGSi ∗ BMIi +

4
∑

pc=1

βpcPCi +

95
∑

batch=1

βbatchbatchi ,
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component for the respective batch. Outcome is the diagnosis status for either T2D or CAD, described in the 
supplementary information. Annotations for each outcome are annotated in Supplementary Table 2.

Separate models were constructed to predict prevalence and incidence. The model coefficients were calculated 
based on the training set, consisting of the UK Biobank, which were subsequently applied to the Lifelines dataset 
used for testing. We did not use any dataset to optimize which parameters should be included in the model. 
The motivation for this choice was that we had a predetermined set of variables we aimed to test and wanted to 
avoid potential overfitting issues that could potentially translate to poor performance in the Lifelines dataset 
used for testing.

The predictions models for incidence were built and tested using the same approach, but on a subset of the 
data from which individuals that had obtained the outcome before their initial measurement were removed.

Relative risk calculations. A Cox regression model was fit on the UK Biobank data and using the resulting 
predictor coefficients were applied to the Lifelines dataset to attain a prediction value for each individual in this 
dataset. To determine the odds ratio of the top decile against the remaining deciles, a logistic regression was fit 
onto these scores calculated based on the Cox model. Coefficients of the fit logistic model were exponentiated to 
calculated the odds ratio of the relevant predictor in the model (Fig. 2b). Statistical difference between the odds 
ratios of different models is determined using a likelihood ratio test, indicating whether there is a statistically 
significant difference between the probability that is assigned to each individual in relation to their actual 
outcome.

All methods were carried out in accordance with relevant guidelines and regulations (see ethical approval 
and Data and code availability).

SaaS platform. Additionally, we have constructed a SaaS platform that can perform assessments on single 
genotyping chips, to determine an individual’s risk based on the observed prevalence and incidence of a number 
of outcomes, among which T2D and CAD reported in this paper. This includes a number of quality control 
steps already applied to the data supplied by the UKB and Lifelines. These steps are further explained in the 
supplements.

Ethical approval. UK Biobank has approval from the North West Multi-centre Research Ethics Committee 
(MREC) as a Research Tissue Bank (RTB) approval. This approval means that researchers do not require 
separate ethical clearance and can operate under the RTB approval. The Lifelines protocol was approved by the 
UMCG Medical ethical committee under number 2007/152. All participants signed an informed consent form. 
No participants were re-contacted during this project.

Code availability
All results and code created during this project are available upon request, if sharable in accordance with the UK 
Biobank and Lifelines material transfer agreement, by contacting the corresponding author of this paper (Sipko 
van Dam). We adhered to the ’Scientific Reports’ policies on sharing data and materials. The manuscript is based 
on data from the UK Biobank through application 55495. The Resource is available to all bona fide researchers 
for all types of health-related research that is in the public interest, without preferential or exclusive access for 
any person. The catalogue of the UK Biobank is accessible at https:// bioba nk. ndph. ox. ac. uk/ ukb/ catal ogs. cgi. All 
international researchers can obtain data access at https:// www. ukbio bank. ac. uk/ enable- your- resea rch/ apply- for- 
access. A fee is required. The manuscript is based on data from the Lifelines Cohort Study, Study OV20_00020. 
Lifelines adheres to standards for data availability. Due to ethical restrictions imposed by the Lifelines Scientific 
Board and the Medical Ethical Committee of the University Medical Center Groningen related to protecting 
patient privacy, the data are not publicly available. The data catalogue of Lifelines is publicly accessible at http:// 
www. lifel ines. net. All international researchers can obtain data at the Lifelines research office (research@lifelines.
nl), for which a fee is required. The Lifelines and UK Biobank systems allow access for reproducibility of the 
study results.
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