
 

 

 University of Groningen

Primordial information content of Rayleigh anisotropies
Coulton, William R.; Beringue, Benjamin; Meerburg, P. Daniel

Published in:
Physical Review D

DOI:
10.1103/PhysRevD.103.043501

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Coulton, W. R., Beringue, B., & Meerburg, P. D. (2021). Primordial information content of Rayleigh
anisotropies. Physical Review D, 103(4), Article 043501. https://doi.org/10.1103/PhysRevD.103.043501

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-09-2023

https://doi.org/10.1103/PhysRevD.103.043501
https://research.rug.nl/en/publications/e5b20df7-40f1-449c-9790-7a9894b68f3f
https://doi.org/10.1103/PhysRevD.103.043501


 

Primordial information content of Rayleigh anisotropies

William R. Coulton ,1,2 Benjamin Beringue ,3 and P. Daniel Meerburg4
1Institute of Astronomy and Kavli Institute for Cosmology,
Madingley Road, Cambridge CB3 0HA, United Kingdom

2Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes
for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

3DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
4Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4,

9747 AG Groningen, The Netherlands

(Received 5 November 2020; accepted 11 January 2021; published 1 February 2021)

Anisotropies in the cosmicmicrowave background (CMB) are primarily generated byThomson scattering
of photons by free electrons. Around the time of recombination, the Thomson scattering probability quickly
diminishes as the free electrons combine with protons to form neutral hydrogen. This production of neutral
hydrogen enables a new type of scattering to occur: Rayleigh scattering of photons by hydrogen atoms.
Unlike Thomson scattering, Rayleigh scattering is frequency dependent resulting in the generation of
anisotropies with a different spectral dependence. Unfortunately the Rayleigh scattering efficiency rapidly
decreases with the expansion of the neutral universe, with the result that only a small percentage of photons
are scattered off of neutral hydrogen after recombination. Although the effect is very small, future CMB
missions with higher sensitivity and improved frequency coverage are poised to measure the effect of
Rayleigh scattering. The uncorrelated component of the Rayleigh anisotropies contains unique information
on the primordial perturbations that could potentially be leveraged to expand our knowledge of the early
universe. In this paper we explore whether measurements of Rayleigh scattering anisotropies can be used to
constrain primordial non-Gaussianity and examine the hints of anomalies found by WMAP and Planck
satellites. We show that the additional Rayleigh information has the potential to improve primordial non-
Gaussianity constraints over pure Thompson constraints by 30%, ormore. Primordial bispectra that are not of
the local type benefit the most from these additional scatterings, which we attribute to the different scale
dependence of the Rayleigh anisotropies. Unfortunately this different scaling means that Rayleigh
measurements cannot be used to constrain anomalies or features on large scales. On the other hand,
anomalies that may persist to smaller scales, such as the potential power asymmetry seen in WMAP and
Planck, could be improved by the addition of Rayleigh scattering measurements.

DOI: 10.1103/PhysRevD.103.043501

I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) anisotropies have been one of the best means of
studying the primordial universe as the CMB anisotropies
are linearly related to the primordial fluctuations. Through
these measurements we have found that the fluctuations
generated in the early universe can be accurately described
as adiabatic, isotropic, and Gaussian with a simple power-
law power spectrum (see e.g., [1–3]). While these mea-
surements have already been highly informative for our
understanding of the early universe, there is still a broad
range of models that describe their potential origin. To
distinguish these models we require new primordial sig-
natures. One such signature would be the measurement of
primordial gravitational waves and is the focus of much
ongoing work [4–8]. Here we are motivated by searches
for violations of three of the primordial fluctuations’

properties: deviations from Gaussianity, isotropy, and
power-law behavior. Any such violations would be highly
constraining for models of the early universe.
Searches for these violations have been rigorously

performed, and to date there is no conclusive evidence
for any violations. However, there are some interesting
features in the CMB, including a lack of large angle
correlations [9–11], a lack of variance [12], a hemispherical
(or dipolar) power asymmetry [13,14], a preference for
power in odd multipoles [15], weak hints of a feature in the
CMB power spectrum [9,16], an alignment of quadrupole
and octopole [17], and an anomalous cold spot [18,19]. The
significance of most of these anomalies is mild 2 − 3σ and
is complicated by the role of a posteriori choices [20];
however, adding new measurements would either clarify
their origin as statistical fluctuations or point to new
physics [21]. Further, while searches for non-Gaussianity
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have found no significant deviations [3], a detection of
primordial non-Gaussianity would be highly informative
for our understanding about the physics in the early
universe and our constraints are still much larger than
theoretically interesting thresholds, both of which motivate
searching for methods to reach beyond current observa-
tional constraints (see [22] for a summary of the current
status).
It is challenging to improve our measurements of these

effects. Hints of violations of isotropy and the power-law
structure of initial fluctuations seem to occur at very large
scales, where cosmic variance means that there is limited
room to improve our measurements with the CMB. Either
the upcoming space-based CMB mission LiteBird or the
proposed satellite Probe of Inflation and Cosmic Origins
(PICO) would be able to provide only small improvements
on existing large-scale measurements, and such measure-
ments would reach the cosmic variance limit from the CMB
[7,8]. At the same time, these scales are very difficult to
measure with large-scale structure surveys (which probe
much smaller scales) [23,24]. To improve our constraints
of non-Gaussianity we need to measure more modes.
Upcoming CMB experiments will measure new small scale
modes, and this will lead to improved constraints [4,5,25].
However, it will be challenging to extract primary CMB
modes down to very small scales due to Galactic and extra-
galactic foregrounds and damping of primary fluctuation
[26]. Likewise, large galaxy and 21 cm surveys can provide
powerful constraints on some types of primordial non-
Gaussianity [24,27–30]. Unfortunately, for many types of
non-Gaussianity it is challenging to constrain these with
large-scale structure surveys due to signal contamination
from the non-Gaussian evolution of gravity and structure
formation, as well as observational limitations and com-
putationally expensive estimators [31–33].
Given the challenges of existing observables we have

been motivated to explore alternative measures. In particu-
lar, in this work we will consider anisotropies sourced by
Rayleigh scattering. Rayleigh scattering is the scattering of
low energy photons by neutral atoms, whereas Thomson
scattering, the dominant scattering process in the early
universe, is the scattering of photons from charged par-
ticles. During recombination the universe transitioned from
ionized to neutral resulting in an abundance of neutral
hydrogen, which then scattered the CMB photons inducing
further anisotropies. The impact of Rayleigh scattering on
the CMB was first considered by Peebles and Yu [34], and
then Yu et al. [35] explored how Rayleigh scattering would
impact measurements of the Thomson anisotropies for the
Wilkinson Microwave Anisotropy Probe (WMAP) and the
Planck experiments. More recently Lewis [36] and Alipour
et al. [37] revisited the topic and explored how measure-
ments of Rayleigh anisotropies could improve our con-
straints on the parameters of ΛCDM. Most recently,
Beringue et al. [38] has expanded this effort by exploring

the Rayleigh signal to probe extensions to ΛCDM with
upcoming CMB experiments. These studies were primarily
aimed at estimating the discovery potential of the signal and
parameter constraints from the “late” universe (though we
note that Lewis [36] also discussed how Rayleigh scattering
can be used to disambiguate primordial gravitational B
modes and lensing B modes). Here we build on these
results but focus on the physics of the primordial universe
to explore whether measurements of Rayleigh anisotropies
can provide more information on potential primordial
large-scale anomalies or non-Gaussianity.
In Sec. II we review the physics of Rayleigh scattering

and its prospects for cosmology. We discuss what we can
learn about deviations from a power-law spectrum of
primordial fluctuations and violations of isotropy using
Rayleigh scattering in Sec. III. The rest of the paper is
focused on using Rayleigh scattering measurements to
improve our constraints on primordial non-Gaussianity. We
first review the origin of primordial non-Gaussianity and
why it is interesting in Sec. IV before discussing, in Sec. V,
how constraints on primordial non-Gaussianity are altered
by including measurements of Rayleigh scattering. We
conclude in Sec. VI.

II. COSMOLOGY AND RAYLEIGH SCATTERING

In this section we review the physics of Rayleigh
scattering processes and its imprint on the CMB. For a
thorough discussion of cosmological Rayleigh scattering
we refer the reader to Lewis [36] and Alipour et al. [37].
Rayleigh scattering refers to the scattering of long wave-
length photons off neutral atoms. The internal dipole of the
particle is excited by the incoming electromagnetic wave
and radiates in return, producing an apparent scattering.
Recombination of free electrons and protons around

z ∼ 1100 produces neutral species off which CMB photons
that have just decoupled from the plasma can scatter. Con-
trary to Thomson scattering, Rayleigh scattering is a fre-
quency dependent effect with the cross section described by

σRðνÞ ¼ σT

��
ν

νeff

�
4

þ 638

243

�
ν

νeff

�
6

þ 1299667

236196

�
ν

νeff

�
8

þ � � �
�
; ð1Þ

where ν is the radiation frequency, σT is the Thomson
scattering cross section and νeff ∼ 3.1 × 106 GHz is approx-
imately the Lyman limit frequency. The frequency depend-
ence of the cross section means that Rayleigh scattering
anisotropies have a different spectral dependence toThomson
anisotropies and are increasingly important at high frequen-
cies. The frequency dependence also means that Rayleigh
scattering is only important over a smaller redshift range (with
the effect decreasing as a−7, where a−3 comes from density
dilution and a−4 from the frequency dependence). Rayleigh
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scattering can be included in Boltzmann codes by modifying
the Thomson scattering term to include the above frequency
dependence. In this work we use a version of CAMB [39,40]
developed in Lewis [36].
Alipour et al. [37] found that the inclusion of measure-

ments of Rayleigh anisotropies can help to improve
constraints on parameters of ΛCDM, while a recent study
by Beringue et al. [38] showed that some extensions of
ΛCDM could also benefit if Rayleigh scattering is included
in cosmological inference. The Rayleigh anisotropies are a
small correction to the Thomson anisotropies as can be
seen from Eq. (1) and the size of νeff compared to CMB
frequencies. For example, at 545 GHz the Rayleigh
temperature anisotropies are ∼2% the size of the
Thomson anisotropies. There is no frequency where the
Rayleigh anisotropies are the dominant sky signal and
the main limitation to the use of Rayleigh information is
how well Rayleigh anisotropies can be separated from the
brighter foregrounds and the primary CMB. Particularly
problematic will be dust anisotropies which are orders of
magnitude brighter than the Rayleigh anisotropies at high
frequencies. In this work we defer addressing this complex
issue, and we will assume that we have a foreground
cleaned map (with experimental properties that are
expanded on below).

III. CONSTRAINING LARGE-SCALE FEATURES
AND VIOLATIONS OF ISOTROPY

The presence of large-scale Rayleigh intensity and
polarization anisotropies raises the questions of whether
measurements of Rayleigh anisotropies can be used to
study tentative anomalies on large scales. If these anisot-
ropies probe similar scale modes, then there is the potential
to double the statistical power.
We wish to study the properties of the large-scale

primordial curvature perturbations, ζðkÞ, where k is the
comoving wave number. To investigate the sensitivity of
Rayleigh anisotropies to these modes, we perform a simple
test: we introduce a break in the primordial power spe-
ctrum so the primordial power spectrum, hζðkÞζðk0Þi ¼
PζζðkÞð2πÞ3δð3Þðk − k0Þ, is described as

PζζðkÞ ¼ As

�
Hðk − kbreakÞ

�
k
kp

�
ns−4

þHðkbreak − kÞB
�
k
kp

�
nb−4

�
; ð2Þ

where H is the Heaviside function, As is the amplitude of
fluctuations, ns is the spectral tilt, and B is a constant such
that the power spectrum is continuous. The power spectrum
has a different spectral index, nb above the break scale,
kbreak. In this test the break scale is chosen to be
kbreak ¼ 0.005 Mpc−1, and we use a red spectral index
of nb ¼ 0.5. In Fig. 1 we plot the ratio of such a power

spectrum to the ΛCDM power spectrum. Interestingly we
find that the large-scale Rayleigh temperature power
spectrum is practically insensitive to the break in the power
spectrum. This result is independent of the type of feature
and holds for other modifications of the large-scale power
spectrum, e.g., for localized features or sudden jumps.
The effect on polarization is larger, but the amplitude of the
Rayleigh polarization signal will be too small to be detected
in the near future, and hence we do not expect any statistical
power to be obtained from these modes.
To understand the origin of this limited sensitivity it is

insightful to investigate the various contributions to the
Rayleigh spectrum. The evolution of the CMB anisotropies
is governed by the Boltzmann equations which can be
formally solved by the line-of-sight solution [41]. In the
conformal-Newtonian gauge the line-of-sight solution can
be written as

Θlðk;η0;νÞ

¼
Z

η0

0

dηgðη;νÞðΨðk;ηÞ−Θ0ðk;ηÞÞjl½kðη0−ηÞ�

þ
Z

η0

0

dηe−τðη;νÞð _Ψðk;ηÞ− _Φðk;ηÞÞjl½kðη0−ηÞ�

−
Z

η0

0

dηgðη;νÞivbðk;ηÞ
k

d
dη

jl½kðη0−ηÞ�

−
Z

η0

0

dη

�
1

4
gðη;νÞΠþ 3

4k2
d
d2η

ðgðη;νÞΠÞ
�
jl½kðη0−ηÞ�;

ð3Þ

where Θlðk; η0; νÞ is the fractional temperature perturba-
tion, gðη; νÞ is the visibility function, Ψðk; ηÞ and Φðk; ηÞ
are the metric potentials, τ is the optical depth, η is

FIG. 1. The ratio of the measured CMB Thomson and Rayleigh
autospectra for a broken power-law primordial power spectrum,
given in Eq. (2), to the ΛCDM spectrum. We find that the
Rayleigh temperature spectrum is unaffected by the large-scale
feature.
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conformal time with η0 denoting the current conformal
time, vb is the baryon velocity, jl½x� is the spherical Bessel
function arising from the projection on the sphere, and Π is
the polarization tensor. The terms are grouped with the
monopole sources in the first line, the integrated Sachs-
Wolf (ISW) terms in the second, the Doppler sources in the
third, and the quadrupole sources in the final line. The
quadrupole sources are small and so can be neglected for
this discussion. Also note that there will be no late time
ISW contribution for the Rayleigh spectrum as there is no
“Rayleigh monopole” term.
Now consider the case of modes larger than the width of

the last scattering surface. In this regime the Bessel function
and monopole source terms are constant over the support of
the visibility and can be pulled out of the integral. Utilizing
the condition that photons have scattered at some point
in the history of the universe, i.e.,

Z
η0

0

dηgðη; νÞ ¼ 1; ð4Þ

we obtain the Sachs-Wolfe result [42] that the large-
scale anisotropies are constant (if one neglects the
Doppler sources due to their subdominant scaling as k).
However, we can now see that the visibility constraint,
Eq. (4), is true at all frequencies and thus implies there are
no anisotropies with Rayleigh frequency dependence from
large-scale modes. This means that the Rayleigh spectrum
will have significantly smaller contributions from the
monopole term and will only gain contributions when

the modes vary on scales smaller than the width of the
visibility function. In Fig. 2(b) we plot the individual
contributions to the Rayleigh power spectrum. For com-
parison the equivalent contributions to the Thomson power
spectrum are shown in Fig. 2(a). We see that the monopole
terms are significantly suppressed for Rayleigh scattering,
especially when compared to the Thomson case. Physically
Rayleigh scattering is a subhorizon process and thus should
not probe modes with scales larger than the horizon.
As the Rayleigh temperature spectrum is insensitive to

the large-scale primordial power spectrum, it is unsuitable
to probe most of the potential large-scale anomalies or
features. However, the Rayleigh spectrum could still be
used to probe the dipole power asymmetry. As was seen in
both WMAP [14] and Planck [2] the dipole power
asymmetry does not seem to be limited to large scales
(or temperature alone). Testing the Rayleigh anisotropies
via methods such as the angular clustering of the power
spectra on different scales [2,43] would be especially
interesting due to the different modes and scales probed.
We note that the Rayleigh E-mode spectrum is sensitive

to large-scale modes, as it is sourced by the large-scale
temperature quadrupole and, unlike the Thomson E-mode
spectrum, only has contributions from recombination (there
is no contribution from reionization). Thus it could be used
to enhance the statistical power of isotropy tests and
constraints on the large-scale power spectrum. As an
example we perform a simple test to examine the improve-
ment in the constraint of the large-scale spectral index, nb,
in our broken power spectrum model, Eq. (2). We jointly

(a) (b)

FIG. 2. The contributions to Thomson and Rayleigh temperature power spectrum from the different source terms including both the
auto and cross terms. The cross terms include a factor of 2 as this is their contribution to the total power spectrum. Dashed lines denote
negative values. Note that we do not show the contributions arising from cross correlations with the quadrupole as these are highly
subdominant.
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constrain As, ns, and nb, finding that, in the CV limit,
adding Rayleigh scattering tightens the constraint on nb by
15% (note that this example is illustrative of the informa-
tion content and a more thorough analysis should vary all
the cosmological parameters; see e.g., [44]). As the
Rayleigh E-mode signal is very small and significantly
beyond any current or proposed experiment, we do not
further pursue a more detailed analysis of this direction in
this work.
Interestingly, this sensitivity to different scales has

consequences for searches for non-Gaussianity, which is
the focus of the remainder of the paper.

IV. PRIMORDIAL NON-GAUSSIANITY

Measurements of primordial non-Gaussianity are a
powerful probe of the physics of the early universe. In
this work we will focus on constraints on the primordial
bispectrum, which is the Fourier equivalent of the three-
point function. The bispectrum is the lowest order term in
the Edgeworth expansion around a Gaussian probability
distribution function [45] (i.e., the lowest order deviation
from a Gaussian distribution) and for many primordial
mechanisms this is the most sensitive statistic to deviations
from Gaussianity. The primordial bispectrum, Bðk1; k2; k3Þ,
is defined as

hζðk1Þζðk2Þζðk3Þi

¼ ð2πÞ3δð3Þðk1 þ k2 þ k3Þ
3

5
Bðk1; k2; k3Þ: ð5Þ

Note that the factor of 3
5
is included so that our definition is

consistent with the convention used in the literature. The
simplest inflationary model [single-field slow-roll (SFSR)
inflation] generates Gaussian fluctuations with only non-
observably small corrections coming from the weak cou-
pling to gravity. As a result of this general prediction, a
measurement of primordial non-Gaussianity would there-
fore exclude such a model as the origin of structure in the
universe. In addition, besides a detectable level of non-
Gaussianity, the bispectrum has a shape and the shape is
highly informative about the dynamics that played a role
in the early universe. The importance of primordial
non-Gaussianities as an empirical discriminator of early
universe models has led to a broad interest in primordial
non-Gaussianities (see Meerburg et al. [22], Chen [46], and
references therein, for detailed discussions) and several
important results have been established. First, consistency
relations have shown that all inflationary models driven by
a single-field slowly rolling down its potential have
bispectra that are slow-roll suppressed in the squeezed
limit, when k1 ≪ k2; k3 [47–49]. Therefore a discovery of
this type of non-Gaussianity would rule out almost all
SFSR models.

Second, several generic, and well motivated, mecha-
nisms have been found that lead to measurable levels of
non-Gaussianity. For example, in early-universe models
where multiple (scalar) fields play a role in the produc-
tion of the fluctuations, primordial non-Gaussianities
of the local type are produced. Local primordial
non-Gaussianities can be described by the following
bispectrum:

Blocalðk1; k2; k3Þ ¼ 2flocalNL A2
sk

8−2ns
p

�
1

k4−ns1 k4−ns2

þ 1

k4−ns2 k4−ns3

þ 1

k4−ns1 k4−ns3

�
: ð6Þ

Generically models with strong nonlinear dynamics
during inflation, leading to propagation of fluctuations
with cs ≠ 1, generate equilateral and orthogonal type non-
Gaussianity [50,51], with bispectra

Bequilðk1; k2; k3Þ

¼ 6A2
sk

8−2ns
p fequilNL

�
−

1

k4−ns1 k4−ns2

−
1

k4−ns2 k4−ns3

−
1

k4−ns1 k4−ns3

−
2

ðk1k2k3Þ2ð4−nsÞ=3

þ
��

1

kð4−nsÞ=31 kð4−nsÞ=32 k2ð4−nsÞ=33

þ 5 perm:

��
ð7Þ

and

Borthðk1; k2; k3Þ

¼ 6A2
sk

8−2ns
p forthNL

�
−

3

k4−ns1 k4−ns2

−
3

k4−ns2 k4−ns3

−
3

k4−ns1 k4−ns3

−
8

ðk1k2k3Þ2ð4−nsÞ=3

þ
�

3

kð4−nsÞ=31 kð4−nsÞ=32 k2ð4−nsÞ=33

þ 5 perm:

��
: ð8Þ

While we focus on these three types of non-Gaussianity
there are many other interesting types, e.g., those arising
from nonbunch Davies initial conditions [52], from features
in the potential [53,54], or from Gauge-inflation models
[55], and results presented in this paper should be relevant
to searches for these types of non-Gaussianity as well.
While constraining primordial non-Gaussianity is gen-

erally computationally expensive (naively scaling as the
number of modes/pixels cubed), there are several efficient
estimators that have been developed, e.g., Bucher et al.
[56], Komatsu et al. [57], and Fergusson et al. [58].
Constraints on primordial non-Gaussianity are usually
expressed as constraints on the amplitudes of primo-
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rdial bispectra templates (such as the local, equilateral, and
orthogonal templates discussed above). For CMB mea-
surements these template amplitudes can be estimated by
measuring the CMB bispectrum, which is related to the
primordial bispectra by transfer functions [59] as follows:

haX1

l1;m1
aX2

l2;m2
aX3

l3;m3
i ¼ Gm1;m2;m3

l1;l2;l3
bX1;X2;X3

l1;l2;l3
; ð9Þ

where

bX1;X2;X3

l1;l2;l3
¼

Z
r2dr

Y
i

Z
2

π
dkig

Xi
T ðkiÞjliðkirÞBðk1; k2; k3Þ;

ð10Þ

Gm1;m2;m3

l1;l2;l3
is the Gaunt integral, r is the comoving distance,

and gXT ðkÞ is the transfer function where X denotes either
the temperature (T) or curl-free polarization (E) modes.
In this work we focus on constraints on the amplitudes of
the three primordial templates discussed above.
To date the best constraints on primordial non-

Gaussianities have come from measurements of the
CMB bispectrum, with the leading constraints coming
from the Planck satellite [3]. The CMB has proven a
powerful observable to search for non-Gaussianity because
the linear relationship between primordial fluctuations and
CMB anisotropies preserves the primordial statistics.
However, there is diminishing power to improve these
constraints from the primary CMB anisotropies as the
number of new modes that can be measured is limited due
to the damping of the primary fluctuations, the presence of
small scale secondary anisotropies that obscure the primary
anisotropies, and the measurement challenges of pushing to
very small scales [4,5].
A very promising avenue is to constrain primordial non-

Gaussianity through measurements of the large-scale
structure (LSS). In principle LSS measurements have the
power to dramatically improve the constraints as they
measure many more modes [three-dimensional (3D) galaxy
positions compared to the two-dimensional (2D) CMB
anisotropies] [24,27,28]. Furthermore, LSS tracers are
biased in a unique way in the presence of local primordial
non-Gaussianities [60,61]. While direct measurements of
this bias are hindered by large-scale cosmic variance, in
principle through the use of multitracer analysis [62]
constraints on local primordial non-Gaussianity can pos-
sibly be improved by almost an order of magnitude this
decade [29,63,64].
Besides local primordial non-Gaussianities, LSS con-

straints will rely on the galaxy bispectrum or trispectrum.
Unfortunately nonlinear evolution generates non-
Gaussianity that can easily obscure the primordial signal.
This obscuration, combined with uncertainties in the details
of small scale physics, such as baryonic processes, and
observational challenges, such as redshift uncertainties and

foreground removal, mean that it is challenging to improve
significantly beyond current CMB measurements [65–70].
For example, Karagiannis et al. [32] find that future
generation 21 cm experiments, such as the recently
proposed PUMA experiment [30], will only improve by
a factor of 2 over current CMB constraints, all while
practically mapping out all linear modes up to redshift 6.
The limited anticipated improvement over current CMB

constraints, strongly motivates a search for alternative
observables. While the Rayleigh signal is small, it does
not suffer from some of the uncertainties and challenges
present in the LSS. The smallness of the Rayleigh signal
will make it hard to detect, but the guaranteed signal is
definitely within reach of upcoming CMB experiments, and
the potentially large foregrounds (discussed at the end of
Sec. II) can generally be distinguished because of unique
frequency dependence [71,72] and are relatively small
when considered in comparison to those that, for example,
hinder all cosmological 21 cm observations [73,74].

V. RESULTS: PRIMORDIAL NON-GAUSSIANITY
CONSTRAINTS WITH RAYLEIGH SCATTERING

We use the Fisher forecast formalism to investigate
whether Rayleigh scattering measurements can improve
constraints on the amplitudes of local, equilateral, and
orthogonal types of non-Gaussianity. The predicted uncer-
tainties are given by

1

σ2ðf̂iNLÞ
¼ 1

6

X
li;Xi

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
4π

×

�
l1 l3 l3

0 0 0

�
2

bðiÞ;X1;X2;X3

l1;l2;l3
C−1
l1

X1;X4

× C−1
l1

X2;X5C−1
l2

X3;X6bðiÞ;X4;X5;X6

l1;l2;l3
; ð11Þ

where C−1
l1

X;Y is the observed power spectrum between
maps X and Y.
First, we consider the ideal case of a cosmic variance

limited experiment; in this case the observed power spectra
in Eq. (11) consist of the primary CMB alone. We consider
constraints both including and excluding the effect of
lensing on the power spectrum. We note that configurations
where this distinction matters, including the effect of
lensing on the power spectrum alone, will result in an
overestimation of the constraining power. Babich and
Zaldarriaga [75] and Coulton et al. [76] showed that in
these regimes non-Gaussianity from lensing acts as extra
noise on the bispectrum, increasing the noise beyond the
level forecasted with Eq. (11). However, in practice this
extra variance can be suppressed using delensing [77–81],
which if applied effectively, can mitigate this extra variance
[76]. Note that lensing only impacts measurements on
small scales (l≳ 2500).
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The constraining power of Rayleigh measurements in the
cosmic variance (CV) case are shown in Fig. 3. Let us
highlight the most interesting features.
First, we see that Rayleigh measurements on their

own provide similar, but slightly worse, constraints on
primordial non-Gaussianity compared to Thomson scatter-
ing measurements. Second, we find that combining
Thomson and Rayleigh scattering improves constraining
power, typically by ∼35%. This improvement is consistent
with an effective doubling of the number of modes. This is
potentially surprising at first, given the strong correlations
between the Rayleigh and Thomson anisotropies on small
scales. However, this can be understood by considering a
diagonalization of the observations into four uncorrelated
parts (see e.g., the appendix of [38]). Each of these
uncorrelated components contains independent information
on the primordial universe, and inclusion of the Rayleigh
signal should achieve an increase in constraining power
consistent with the number of added modes. A key point to
mention is that the removal of a correlated component
from, for example, the Rayleigh temperature mode, also
removes the correlated contribution from the cosmic
variance. Thus after diagonalization we are left with
uncorrelated modes (with independent cosmological infor-
mation) with variance limited by the cosmic variance of
these modes alone.
Third, the relative improvement from adding Rayleigh

scattering measurements shows some scale dependence
and, for some templates, predicts an improvement that is

greater than just doubling the number of modes. These
results can be understood by recalling the discussion from
Sec. III. There we explained how the Rayleigh anisotropies
are generally generated by different source terms and probe
different scales compared to the Thomson anisotropies. It is
this different coupling of scales that results in the template
and scale dependence seen in Fig. 3. For the equilateral
shape we find a scale dependence that improves beyond the
1=

ffiffiffi
2

p
improvement expected from doubling the number of

modes. This improvement appears to be aiding a known
problem. Bartolo and Riotto [82] found that constraints
on equilateral-type non-Gaussianity improve with lmax as
1=σðfequilNL Þ ∝ ffiffiffiffiffiffiffiffiffi

lmax
p

, which is less than the expected
improvement from mode counting arguments. This effect
is due to the damping of the CMB on small scales1 and to
the finite width of the last scattering surface. Broadly, these
effects result in a blurring of modes that are smaller than
either the damping scale or the width of last scattering. This
blurring effectively Gaussianizes the CMB signal. Here we
find that adding in Rayleigh scattering seems to restore
some of the information loss. The constraints improve more
rapidly with lmax closer to, but still less rapidly than,

FIG. 3. In the top panels we examine the cosmic variance limited constraining power of Thomson only (green lines), Rayleigh only
(red lines), and combined (blue lines) measurements for three types of primordial non-Gaussianity as a function of the maximum scale
used in the analysis. The dashed lines are the results when lensing effects are included in the power spectra. In the bottom panels we
show the ratio of the joint Thomson and Rayleigh constraints compared to the Thomson only constraint. We find that adding Rayleigh
measurements to Thomson measurements would improve the constraints on all types of non-Gaussianity by up to a factor of 2.

1Although not the exponential damping, which actually
cancels out. The signal-to-noise for N-point correlation functions
critically depends on their behavior in the squeezed or collapsed
limit. This will be explored in some depth in an upcoming
publication (Kalaja et al.). See also Bordin and Cabass [83] and
Babich and Zaldarriaga [75] for some further insights.
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expectations from mode counting. This arises as the
extra LSS surface of the Rayleigh signal undoes part
of the blurring. Since the signal-to-noise for local
non-Gaussianities already follows the mode-counting scal-
ing for the Thomson signal, Rayleigh scattering does not
have any effect on the lmax scaling.
Since the Rayleigh signal appears to effectively double

the number of measured modes, we will now explore a
simplified experimental setup to investigate how observa-
tional effects impact these findings. Here we envisage a
multifrequency experiment that has been used to clean
out other sky signals, resulting in a map of the Rayleigh
anisotropies at 545 GHz. We then explore the constraining
power as a function of the instrument noise and beam in
this 545 GHz map. The noise is assumed to be white. In
this setup our observed power spectrum, in Eq. (11),
consists of the unlensed CMB, the kinetic Sunyaev
Zel’dovich effect (as this cannot be removed from the
primary CMB Thomson anisotropies), instrument noise,
and beam effects. The kinetic Sunyaev Zel’dovich effect is
assumed to have power Dl ¼ 3.0 μK2 at l ¼ 3000 con-
sistent with recent measurements [84]. We note that our
results are similar if lensing is included in the power
spectrum, but note again that the dominant extra variance
from the non-Gaussianity induced by lensing is not
included here. In practice delensing would be used, and

this would result in constraints similar to it as if the
unlensed power spectrum is used (see e.g., [76] for a more
detailed discussion).
In Fig. 4 we report our constraints on non-Gaussianity

for this simplified experimental setup. We find that for
noise levels below ∼10 μKarcmin Rayleigh measurements
can improve over Thomson-only constraints and that for
very low noise levels these constraints can be more than a
factor of 2 better. Interestingly, for the equilateral and
orthogonal constraints we find that we can gain significant
improvements even with low resolution experiments.

VI. DISCUSSION AND CONCLUSIONS

In this work we have explored whether measurements of
Rayleigh anisotropies could be used to explore the initial
conditions of the universe. Specifically we first investigated
if including measurements of Rayleigh anisotropies can
increase the statistical power of tests for deviations from
isotropy or for large-scale features in the primordial power
spectrum. Our analysis found that, due to the suppression
of the non-Doppler source terms, the Rayleigh temperature
power spectrum is insensitive to large angular scales,
rendering it uninformative for the analysis of most
(large-scale) anomalies. In principle the large-scale
Rayleigh E-mode spectrum is sensitive to anomalies on

FIG. 4. In the top panels we explore how the constraining power of combined Thomson and Rayleigh (solid lines) and Thomson only
measurements (dashed lines) varies as a function of instrument noise level and experimental beam for three types of primordial non-
Gaussianity. The noise is treated as white and instrument properties are specified at 545 GHz, the observation frequency. In the bottom
panels we show the ratio of the joint Thomson and Rayleigh constraints compared to the Thomson only constraint for the equivalent
experimental setup. Both sets of measurements include modes up to lmax ¼ 5500. We see that experiments, which can isolate the
Rayleigh signal with ≲5 μK effective noise, obtain tighter constraints on primordial non-Gaussianity. We find that significant
improvements can be obtained even for experiments with moderately large beams ∼4 arcmin full-width half-maximum.
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large angular scales; however, this signal is likely too small
to be detected in the near (or even distant) future. We note
that hints of the clustering of power spectra, which extends
beyond large scales, as seen most recently in Planck
Collaboration VII [2] could be probed by Rayleigh anis-
tropies and would present an interesting target.
In the remainder of this paper we focused on exploring

how measurements of Rayleigh scattering can be used to
improve constraints on primordial non-Gaussianity. We
find that in the noiseless case, and when assuming noise
from a simplified experimental setup, Rayleigh measure-
ments can provide significant improvements over projected
constraints from the primary CMB signal alone. Including
the Rayleigh signal can lead to improvements that are on
par with futuristic 3D large-scale structure surveys. For the
noiseless case we find improvements of ∼35%, consistent
with doubling the number of observed modes. Interestingly
even with experimental noise we find that we can tighten
constraints by ∼40%–50% on the equilateral and orthogo-
nal non-Gaussianity, both of which are forecasted to be
challenging to constrain with large-scale structure surveys.
It is important to point out that these improvements can

be gained even by low resolution experiments. One of the
main targets of future CMB experiments is to measure
relic signatures from primordial gravitational waves
[4–8,85,86]. To achieve this goal experiments are pushing
to ever lower noise levels on large angular scales combined
with a broad frequency coverage to remove potential
contaminants. Such measurements, providing they extend
to sufficiently high frequencies, could be well suited for
measuring Rayleigh anisotropies, and thus, as a by-product
of searches for signatures of primordial gravitational

waves, we can potentially double our constraining power
on primordial non-Gaussianity.
We have not discussed any of the experimental chal-

lenges associated with isolating the Rayleigh signal from
other (frequency dependent) sky signals. Disentangling the
Rayleigh signal from Galactic dust and extragalactic
emission from dusty star forming galaxies will be the
biggest challenge. However, removing Galactic dust is a
similar concern for searches for signatures from primordial
gravitational waves, and so it is likely machinery to remove
foreground contamination in the search for primordial
gravitational waves can be equally applied to filter out
the Rayleigh signal. In the longer term, when performing
precision measurements of the Rayleigh signal, signals
from resonant scattering from metals in the dark ages will
likely contribute another foreground contaminant [87,88].
The level to which we can clean the data without significant
impact on the signal is still under active investigation.
In addition to foreground mitigation, a measurement of the

Rayleigh anisotropies will require very precise interchannel
calibration. Precise calibration is also a concern for B-mode
searches as inaccurate interchannel calibration can lead to
biases. Recent work has shown that existing techniques are
likely sufficient for B-mode searches (see e.g., [89,90]), but it
is unknown as to whether this is sufficiently precise for
Rayleighmeasurements andwill be the subject of futurework.
In this work we neglected the bispectra arising

from second-order effects (see e.g., [91,92]). Of parti-
cular interest is perturbed recombination, which induces a
bispectrum [93,94], as this will differently impact Rayleigh
and Thomson scattering. While we defer an explicit
computation of this contaminant to future work, we note

FIG. 5. A comparison of expected primordial non-Gaussianity constraints from CMB measurements (both with and without including
Rayleigh measurements) and from a range of up-coming large-scale structure surveys (LSS). We report the predictions for LSS surveys
from Castorina et al. [30], Karagiannis et al. [31,32]; the radio-continuum survey, the spectroscopic survey and the photometric survey
are based on SKA-like, DESI-like and LSST-like surveys respectively. We see that the future CMB constraints, when Rayleigh
measurements are included, provide competitive constraints to these upcoming LSS surveys.
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that it is expected that it will have a negligible impact on
primordial nongaussianity (PNG) constraining power. This
is based on the observation that, for Thomson scattering,
the second-order bispectra have a different scale depend-
ence than the primordial bispectra, especially equilateral
and orthogonal, and this means these effects can be
disentangled.
Despite these potential challenges, detecting and utiliz-

ing the Rayleigh signal for cosmological inference is still
very much worth the effort. This is convincingly shown in
Fig. 5 where we compare our projected Rayleigh con-
straints on primordial non-Gaussianity to predictions for
proposed and upcoming photometric, spectroscopic, radio
galaxy surveys as well as 21 cm experiments [30–32].
While future large-scale structure surveys will be able to
significantly improve upon CMB constraints for local type
non-Gaussianities, improving beyond current constraints
on equilateral and orthogonal type non-Gaussianities is
challenging and Rayleigh constraints are competitive with
futuristic 21 cm experiments for these shapes. Recent work
by Watkinson et al. [95] suggests that 21 cm bispectrum
measurements required to obtain these constraints could be
even more challenging than was considered in Karagiannis
et al. [32], because mixing between the foregrounds and the
signal suggest there is no bispectrum equivalent of the

power-spectrum’s foreground wedge. We stress that further
work is required to fully assess the impact of this,
particularly as Watkinson et al. [95] studied the epoch
of reionization, rather than the lower redshift regime
z ∼ 0.3–6 relevant to PUMA-like experiments. However,
given these potential issues, the potential gains using the
Rayleigh scattering signal to improve bounds on nonlocal
non-Gaussian signals are evident.
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