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ABSTRACT

In this chapter we first state the goals of this work and we list the thesis
content. The rest of the chapter is then aimed at providing relevant biology
background, such as the concept of haematopoiesis, and its connection to
gene therapy clonal tracking studies. Finally we review the state of the art
methodologies for investigating haematopoietic reconstitution in terms of
cell differentiation, clonal dominance, and clonal diversity. We first briefly
discuss on their limitations, and then we introduce our proposed methods.

1.1. AIM

Mathematical models of haematopoiesis are increasingly in demand since
they can provide relevant insights on how blood cells develop, thus sup-
porting the design of novel clinical strategies. Clonal tracking is a recent
high-throughput technology that allows to quantitatively calibrate such
mathematical models. In gene therapy clonal tracking studies, cell differen-
tiation networks describe the cellular hierarchical relationships involved in
haematopoiesis, whereas clonality is aimed at quantifying the clonal popu-
lation complexity (clonal diversity) and to early detect therapy side effects,
such as events of clonal dominance. The work of this thesis is aimed at
providing stochastic frameworks to shed more light on those mechanisms
given the information provided by clonal tracking data. We investigate cell
differentiation using stochastic quasi-reaction networks, a framework that
allows to model stochastic biochemical reactions. Since clonal tracking
data suffers from missing cell types and false negative errors, we combined
stochastic quasi-reaction networks with extended Kalman filtering, lead-
ing to our Kalman Reaction Networks framework (Karen). We first test
our state space model in several simulation studies, showing an accurate
recovery of the true parameters and the generative differentiation struc-
ture. Then we use our proposed method to compare different biologically
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plausible models of cell differentiation in five in-vivo clonal tracking stud-
ies. Subsequently, we combine stochastic quasi-reaction networks with
random-effects (RestoreNet) to provide clone-specific expansion parame-
ters, thus allowing to detect possible events of clonal dominance. We have
shown in synthetic studies and in two in-vivo models that our framework
RestoreNet is able to detect events of clonal dominance, and thus it can pro-
vide statistical support in gene therapy safety studies. Finally, to objectively
assess clonal diversity, we have developed a shape-constrained regression
approach (SCS) that removes the effect of several technical artefacts from
the Shannon entropy index, thus providing an unbiased diversity measure.
Our SCS-rescaling method was first validated in a specifically designed
in-vitro assay, and then used to objectively evaluate the impact of vector
genotoxicity on the entropy decays of tumor prone mice.

1.2. THESIS OUTLINE

The thesis content is structured as follows:

• Chapter 1 provides relevant biology background, such as cell differ-
entiation and clonal complexity, their connection with gene therapy,
and how these can be computationally investigated by means of
next generation sequencing (NGS) clonal tracking. Subsequently,
(i) we report the state-of-the-art methodologies for investigating
haematopoiesis in clonal tracking studies, (ii) we discuss on their
limitations, and (iii) we briefly introduce our proposed methods.

• Chapter 2 focuses on our proposed Kalman reaction network frame-
work Karen and its application to infer cell differentiation networks
from clonal tracking data. Our framework is based on stochastic
reaction networks combined with extended Kalman filtering and
Rauch-Tung-Striebel smoothing. We calibrate the parameters of
our framework on typical clonal tracking data subject to measure-
ment noise, false-negative errors, and systematically unobserved
cell types. Given a clonal tracking dataset and a set of candidate
network structures, Karen infers the unknown dynamics parameters,
the generative differentiation structure, and the first two smoothing
moments. After introducing the method, we first validate it with
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several in-silico studies, then (i) we compare the dynamics of cell
differentiation in tumour-prone mice that were treated with two
different viral vector designs, (ii) we analyse cell differentiation in
an in-vivo study of Rhesus Macaques, and (iii) we infer cell differen-
tiation in gene-therapy treated patients from three distinct clinical
trials. In each in-vivo study we compared different plausible mod-
els of cell differentiation. Our tool can provide statistical support
in gene therapy clonal tracking studies to better understand clonal
reconstitution dynamics.

• In Chapter 3 we introduce our proposed random-effects stochastic
framework RestoreNet to detect possible events of clonal dominance
in gene therapy safety studies. In particular, starting from an Ito-
type formulation of a stochastic reaction network, the dynamics
of cells duplication, death and differentiation at clonal level with-
out clonal dominance is described by a local linear approximation.
The parameters of this model are assumed to be shared across the
clones. In order to incorporate the possibility of clonal dominance,
we extend the base model by introducing random effects for the
clonal parameters. This extended formulation is estimated using a
tailor-made expectation maximization algorithm. We first validate
our framework with several in-silico studies, then (i) we analyse a
clonal tracking dataset from a rhesus macaque study, and (ii) we
compare the dynamics of clonal expansion in a genotoxicity mice
study. Our proposed framework can guide gene therapy surveillance
studies to detect possible adverse events of clonal dominance.

• In Chapter 4 we propose a shape-constrained method to quantify
and remove the effect of technical artefacts from the Shannon en-
tropy index, so as to get an unbiased measure of clonal diversity
in gene therapy longitudinal studies. In particular, we first show
that the Shannon diversity index, a well-established measure of
heterogeneity of the clonal population, is affected by several techni-
cal confounders such as the DNA amount of the collected samples
and the sequencing depth of the NGS library. In particular, with
an exploratory analysis, we first provide evidence that a direct com-
parison across clonal tracking samples, collected under different
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technical conditions, may provide misleading conclusions. Subse-
quently, (i) we define our shape-constrained rescaling method SCS,
(ii) we validate it on a tailor-made in-vitro study, and (iii) we apply it
to an in-vivo mice study to objectively evaluate the impact of vector
genotoxicity on the entropy decays. Our method does not only al-
low to compare the complexity of different clonal populations, but
does also provide insights on the artefacts mainly affecting diversity
measurements.

1.3. CLONAL TRACKING OF HAEMATOPOIESIS

Haematopoiesis (from Greek αiµα, ’blood’ and πoiεiν ’to make’) is the
process by which blood cells are produced by haematopoietic stem cells
(HSCs) [1]. HSCs reside in the bone marrow niche and have the unique
ability to give rise to all of the different mature blood cell types and tissues.
HSCs are self-renewing cells, meaning that as soon as they differentiate,
they can still produce HSCs, so as to ensure that the pool of stem cells is not
exhausted. In a asymmetric HSC cell division a single HSC first duplicates
into two HSCs, and then one of the two differentiate into a more spe-
cialised cell, such as a myeloid or lymphoid progenitor cell [2]. Otherwise,
if both HSC copies keep the HSC status, this leads to a symmetric cell divi-
sion [3]. The other daughter (non-HSC) cells can continue to follow their
differentiation path towards more specific blood cell types, but cannot
renew themselves, except for the multipotent intermediate progenitors
that can be considered as only-transiently (short-term) self-renewing [4].
As a stem cell maturates, several changes in gene expression occurs that
move the cell closer to the final cell type, and further limits its potential to
differentiate. The dynamics of haematopoiesis may differ under normal
(healthy) and malignant circumstances [5], and therefore understanding
this process is important for therapeutic applications [6]. This is the case
of gene therapy, a medical treatment aimed at curing a genetic disease at
its source by delivering a functioning copy of the missing/corrupted gene
which is causing the disease [7].

Several high-throughput technologies based on next generation se-
quencing (NGS) and single-cell systems, allow to investigate haematopoiesis
both in in-vitro preclinical studies and in-vivo gene therapy studies [8].
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NGS is a recent approach for DNA and RNA sequencing, which consists of
a complex interplay of chemistry, hardware, optical sensors and software
[9–12]. One of the most used NGS-based approaches in gene therapy is
clonal tracking which consists in labelling the haematopoietic stem cells
by the random insertion in its genome of several copies of a genetically-
modified virus (viral vector). More precisely the labels, called the clones,
are the genomic coordinates where the viral vector integrates on the HSC
genome. As the stem cells grow and differentiate, all the offspring cells
inherit the clones from their ancestor. During follow-up, the labels are col-
lected from tissues and blood samples using bioinformatics pipelines. As
a result, clonal tracking allows to calibrate mathematical models of clonal
dynamics and hierarchical relationships of haematopoiesis. In particular,
mathematical models of cell differentiation, clonal dominance and clonal
complexity (divertisty) can provide useful insights for safety and efficacy
of gene therapy strategies.

1.4. CURRENT STRATEGIES AND OUR PROPOSAL

1.4.1. CELL DIFFERENTIATION

Cell differentiation describes the cellular hierarchical relationships un-
derlying haematopoiesis. Clarifying how HSCs differentiate into mature
cell types is important for understanding how they attain specific func-
tions and offers the potential for therapeutic manipulation [13]. All the
models of cell differentiation that have been postulated can be divided
into two major categories, such as deterministic and stochastic models [6].
While deterministic models assume that all the possible scenarios of cell
differentiation are mainly characterized by deterministic (non-random)
environmental stimulating factors, stochastic models assume that un-
differentiated blood cells differentiate to specific cell types due to the
randomness of the stimulating factors. Recent studies support the stochas-
tic theory of cell differentiation by showing that the variability of certain
factors characterizes the cellular population into several groups exhibiting
different dynamics of differentiation [14]. There is also some evidence that
stochasticity plays an important role in regulating apoptosis (cell death)
and self-renewal, and that the process residing in the bone marrow aimed
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at balancing cell production has a stochastic nature [15]. Despite the
multiple studies in this regard, it has only been agreed that intermediate
progenitor cells lose the ability to proliferate, and each progenitor type
can produce one or several types of mature blood cells before exhausting
its own lifespan. Besides, it has not been reached a consensus about how
many types of progenitors exist in this intermediate stage and how they
differentiate [16]. Therefore mathematical modelling and inference of cell
differentiation from clonal tracking data can play a key role in shedding
more light on those mechanisms.

Several mathematical models have been proposed to describe cell dif-
ferentiation in-vivo. For example, Pellin et al. [17] proposed a continuous-
time Markov model able to describe the process of cell differentiation
from clonal tracking data. The inferential procedure provides parameter
estimates and structure selection of the differentiation network. More
recently Xu et al. [16] proposed a novel quantitative framework based on a
continuous-time, multi-type branching process aimed at describing the
mechanistic models of cell division and differentiation. In addition to the
dynamic parameters, the framework allows to compare structurally dis-
tinct models of hematopoiesis using cross validation. The model takes also
into account that data is partially observed, that is some of the cell types
are not collected. Many other mathematical models aimed at describing
cell differentiation have been proposed in research literature [18–23]. Still,
none of the already existent tools takes into account that clonal track-
ing data contains many missing values due to either threshold detection
failure or to false negative errors [24]. In this work we present a novel
stochastic framework to investigate cell differentiation while prudentially
treating all the missing values as latent states [25]. Our proposed frame-
work Karen is a continuous-discrete state space model having a stochastic
reaction network as dynamic model combined with a linear Gaussian
measurement model that links the noisy observations to the underlying
stochastic states. Parameters inference consists in three steps, such as
Kalman filtering, Rauch-Tung-Striebel smoothing, and a non-linear con-
strained optimization problem that are iterated until convergence on the
unknown parameters. A graphical representation of our proposed method
is reported in Figure 2.1.



1

8 1. INTRODUCTION

1.4.2. CLONAL DOMINANCE

Gene therapy treatments commonly use several multiple copies of a modi-
fied viral vector containing a functioning copy of the gene which is needed
to cure the disease (high gene transfer rate) [26, 27]. But genetic modifi-
cation of large numbers of cells is associated with the higher probability
of unintentional vector insertions near proto oncogenes that may lead
to insertional mutagenesis [28–30]. Insertional mutagenesis causes a sig-
nificant change in clone fitness that can lead to the clones’ abnormal
expansion and to an unbalanced contribution of different clones to blood
cells production. Thus, identifying such clones can guide the design of
safer and more effective viral vector designs for gene therapies.

To the best of our knowledge, none of the existing mathematical mod-
els of clonal dynamics can identify clones that exhibit deviant behaviours
during haematopoietic reconstitution. For example in the continuous-
time Markov model proposed by Pellin et al. [17] all the dynamic param-
eters are shared across the clones, so that the model does not allow to
identify specific clonal patterns of duplication and differentiation. Also,
in the multi-type branching process of Xu et al. [16] the kinetics of cell
division and differentiation are assumed to be the same for each clone,
therefore not even this model is able to describe clone-specific growing
dynamics. Here we propose a stochastic framework aimed at detecting
possible events of clonal dominance based on clone-specific birth, death
and differentiation dynamics [31]. Our proposed model combines Ito-type
stochastic reaction networks with clone-specific random-effects for the
dynamic parameters. In this formulation all the unknown parameters are
estimated with a tailor-made expectation maximization algorithm. Our
random-effects stochastic reaction networks technique (RestoreNet) pro-
vides a quantification of clonal dominance in terms of random expansion
rates on a network of cell lineages. Furthermore, our proposed method
can also be used to infer clone-specific dynamics of cell differentiation.
Figure 3.2.1 shows a graphical representation of our proposed framework.

1.4.3. CLONAL DIVERSITY

Clonal population complexity (clonality or clonal diversity) provides in-
sights on the safety and efficacy of a gene therapy treatment. A high level of
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clonality, called polyclonality, is characterized by a high number of distinct
clones whose abundances are evenly distributed. Whereas a low level of
clonality is characterized by either few distinct clones or by a degener-
ate distribution of their abundances to few clones, which we refer to as
oligoclonality. Usually, a polyclonal population is associated with a normal
(healthy) haematopoiesis, whereas an oligoclonal distribution suggests the
occurrence of a malignant event, such as a disease progression. Therefore
quantifying and monitoring clonality after a gene therapy treatment is
important in safety studies to prevent or moderate potential side effects
[32–34].

The Shannon entropy index is one of the most used measure of clonal
diversity in medical applications [35, 36]. However, this index does not
take into account the measurement noise due to technical variations and
artefacts, such as the amount of the sequenced DNA, the sequencing depth
and many other tuning parameters of the NGS platforms. Several rescaling
methods haven been proposed in research literature to remove the con-
founding effects, such as the rarefaction method [37] and its scaled version
[38]. The application of such methods revealed that rarefied microbiome
count data may be strongly biased [39–41]. Besides, none of the already
existent methods can quantify the effect of each confounder on clonal
diversity. In this work we propose a method based on the combination of
the Shannon entropy index [35, 36] with shape-constrained splines (SCS)
for objectively measure clonal complexity while taking into account mea-
surement noise due to technical confounding factors [42]. Our proposed
SCS method first quantifies the effect of each confounder on the observed
Shannon entropies. The quantification is based on a B-spline basis whose
shape is restricted according to a biological-sustained hypothesis, such
as the positive correlation between the number of clones observed and
the DNA amount of the sample being collected. Subsequently, those con-
founding effects are removed from the observed entropies by means of
the estimated residuals. Effectively, our proposed SCS rescaling method
allows to distinguish between biological and artefacts related changes in
clonal complexity, thus providing an unbiased measure of clonal diversity.
A graphical representation of our proposed method is reported in Figure
1.3.
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A STOCHASTIC STATE SPACE MODEL

OF CELL DIFFERENTIATION

Parts of this chapter have been published in “Stochastic inference of cell differentiation
networks in gene therapy clonal tracking studies” [1].
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ABSTRACT

Investigating cell differentiation under different disease settings offers the
potential for improving current gene therapy strategies. Clonal tracking is a
recent high throughput technology that allows to quantitatively track the
evolution and fate of stem cells at clonal level, thus supporting computa-
tional modelling of engraftment dynamics and hierarchical relationships
in vivo. However, many clonal tracking protocols relies on a subset of cell-
types for the characterisation of HSC output and the data generated are
subject to measurement errors and noise. This means that mathemati-
cal tools not accounting for these aspects may provide misleading conclu-
sions.We propose a stochastic framework for inferring dynamic models of
cell differentiation based on clonal tracking data collected in clinical and
preclinical gene therapy studies. Our framework is based on stochastic
reaction networks combined with extended Kalman filtering and Rauch-
Tung-Striebel smoothing. We tested and validated our framework in in-
silico studies, showing superiority over the state-of-the-art methods in terms
of parameters inference and robustness against measurement noise, false-
negative errors, and systematically unobserved cell types characterizing
clonal tracking data. The application of our method on five in-vivo gene
therapy studies revealed different dynamics of cell differentiation. Our
tool can provide statistical support to biologists and clinicians to better
understand clonal reconstitution dynamics. The stochastic framework is
implemented in the package Karen which is available for download
at https://cran.r-project.org/package=Karen. The code that supports the
findings of this study is openly available at https://github.com/delcore-
luca/CellDifferentiationNetworks.

https://cran.r-project.org/package=Karen
https://github.com/delcore-luca/CellDifferentiationNetworks
https://github.com/delcore-luca/CellDifferentiationNetworks


2.1. INTRODUCTION

2

19

2.1. INTRODUCTION

Hematopoiesis is the process responsible for maintaining the number
of circulating blood cells that are undergoing continuous turnover. This
process has a tree-like structure with hematopoietic stem cells (HSCs) at
the root node [2]. Each cell division gives rise to progeny cells that can
retain the properties of their parent cell (self-renewal) or differentiate,
thereby “moving down” the hematopoietic tree. As the progeny move fur-
ther away from the HSCs, their pluripotent ability is increasingly restricted.
Clarifying how HSCs differentiate is essential for understanding how they
attain specific functions and offers the potential for therapeutic manipu-
lation [3]. Several mathematical models have been proposed to describe
hematopoiesis in-vivo. One of the first stochastic models of hematopoiesis
was introduced in the early 1960s suggesting that it is the population as a
whole that is regulated rather than individual cells that behave stochasti-
cally, and control mechanisms act by varying the cell division and death
rates [4].

More recently, various studies analyzed data generated by advanced
lineage tracing protocols using novel statistical models [5–10]. Some of
these methods are able to take into account missing cell types, such as
those that are difficult to collect, e.g. in the bone marrow [11]. Still, to the
best of our knowledge, none of the already existing tools considers the bias
provided by false-negative clonal tracking errors. State of the art methods
usually assume that missing clone observations correspond to minimal
clones and set the corresponding counts to zero. But this hypothesis is too
restrictive because it does not take into account other technical sources
of false-negative errors, such as low-informative sample replicates and
threshold detection failure [12]. Besides, it has also been shown that false-
negative errors strongly depend on calling pipeline parameters, as well as
read coverage [13].

To overcome the limitations of the existent approaches, we propose
a novel stochastic framework aimed at investigating mechanistic models
of cell differentiation from clonal tracking data while cautiously treating
all the undetected values as latent states. More precisely, we model cell
differentiation using a continuous-discrete state-space formulation in-
cluding an Ito-type stochastic differential equation (SDE) describing the
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clonal dynamics coupled with a measurement model that links the noisy
corrupted measurements to the underlying process states. In Section 2.2,
a formal definition of our modelling approach is provided along with an
expectation-maximization algorithm based on extended Kalman filtering
(EKF) and Rauch-Tung-Striebel (RTS) smoothing to infer the unknown
parameters. In Section 2.3 we extensively test the method on several sim-
ulation studies including a direct comparison with the already existing
state-of-the-art approaches and we apply our framework to five in-vivo
high dimensional clonal tracking datasets, comparing different biologi-
cally plausible models of cell differentiation. In Section 4.5 we discuss our
results from both a methodological and biological perspective.

2.2. METHODS

A concise graphical representation of our proposed framework is provided
in Figure 2.1. It consists in an expectation-maximization (EM) algorithm.
The E-step is based on a Kalman filter/smoother aimed at estimating the
state variables given the parameters inferred from the M-step. While in
the M-step, a non-linear optimization method updates the unknown pa-
rameters given the states estimated by the E-step. Thus, given the cell
measurements, both steps are iterated until convergence of the unknown
parameters. The following subsections provide details on the state-space
formulation of cell differentiation and the expectation-maximization algo-
rithm.

2.2.1. A STOCHASTIC MODEL FOR CELL DIFFERENTIATION

Consistently with the definition of a stochastic quasi-reaction network of
Section 2.A, we consider a Markov process

xxx t = (x1t , . . . , xnt ) , (2.2.1)

for a single clone and n cell types (i = 1, . . . ,n) that evolve, in a time inter-
val (t , t +∆t), according to a set of net-effect vectors {vvv ik }Ki

k=1 and hazard
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functions {hik (xxx t ,θθθ)}Ki
k=1 defined as

vvv ik =


(· · ·1

i
· · · )′

(· · ·−1
i
· · · )′

(· · ·−1
i
· · · 2

O (i )
· · · )′

hik (xxx t ,θθθ) =


xi tαi

xi tδi

xi tλiO (i )

(2.2.2)

where
O (i ) = { j |λi j > 0} (2.2.3)

is the offspring set of cell type i , and Ki is the total number of reactions
that involve cell type i and its offspring set O (i ). The definitions of the
hazard functions and the net-effects follow from the law of mass action,
consistently with Eq. (2.A.6) of Section 2.A. The hazard functions include a
linear growth term xi tαi for cell lineage i with a duplication rate parameter
αi > 0, a linear term xi tδi for cell death of lineage i with a death rate
parameter δi > 0, and a linear term xi tλi j describing cell differentiation
from lineage i to any lineage j ∈ O (i ) with a differentiation rate λi j > 0.
The vector parameter

θθθ =
(
α1, . . . ,αn ,δ1, . . . ,δn ,λλλ′

1O (1), . . . ,λλλ′
nO (n)

)′
, (2.2.4)

appearing in the hazard functions, includes all the dynamic parameters,
whereλλλiO (i ) is the vector of all the differentiation rates from cell lineage
i to its offspring set O (i ). Finally, we define the net-effect matrix and the
hazard vector as

VVV = [
vvv11 · · · vvv1K1

· · · vvvn1 · · · vvvnKn

] ∈Zn×K ,

hhh(xxx t ,θθθ) =
(
h11 (xxx t ,θθθ), . . . ,h1K1

(xxx t ,θθθ)· · · hn1 (xxx t ,θθθ), . . . ,hnKn
(xxx t ,θθθ)

)′
,

(2.2.5)

where K =∑n
i=1 Ki is the total number of reactions involved in the network.

Finally, as probabilistic assumption, we use the Kolmogorov-forward ODE

∂P (xxx, t )

∂t
=−∇xxx

{
µµµ(xxx;θθθ)P (xxx; t )

}+ 1

2
∇2

xxx

{
βββ(xxx;θθθ)P (xxx; t )

}
,

µµµ(xxx;θθθ) =VVV hhh(xxx;θθθ) , βββ(xxx;θθθ) =VVV

[
h1(xxx t ;θθθ)

. . .
hK (xxx t ;θθθ)

]
VVV ′ ,

(2.2.6)

obtained from a continue approximation of the Master equation (see
details in Section 2.B).
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2.2.2. STATE SPACE FORMULATION

We consider a continuous-discrete state space model (CD-SSM) whose
dynamic component is the Ito type SDE formulation defined by Eqs. (2.2.1)-
(2.2.6), that is

dxxx =µµµ(xxx t ;θθθ)d t +βββ(xxx t ;θθθ)1/2dWWW t

dWWW t ∼Nn(000,d tIII n) ,
(2.2.7)

combined with the measurement model

yyyk = ggg k (xxx tk ,RRRk ) =GGGkxxx tk +rrr k , rrr k ∼Nd (000,RRRk ) ,

RRRk = ρ0III d +ρ1

 (GGGkxxx tk
)1

. . .
(GGGkxxx tk

)d

 ,
(2.2.8)

where GGGk is a d ×n time-dependent matrix selecting only the measurable
states of xxx tk subject to an additive noise rrr k , and xxx t is a shorthand notation
for xxx(t). The covariance matrix RRRk models the measurement noise as a
linear function of the process states GGGkxxx tk , thus allowing to increase noise
intensity with the magnitude of cell counts.

2.2.3. OPTIMAL FILTERING AND SMOOTHING

Assuming the Markov properties

p(xxxk |xxx1:k−1, yyy1:k−1) = p(xxxk |xxxk−1)

p(xxxk−1|xxxk:T , yyyk:T ) = p(xxxk−1|xxxk )

p(yyyk |xxx1:k , yyy1:k−1) = p(yyyk |xxxk ) ,

(2.2.9)

and given the measurements

yyy1:τ =
{

yyy1, yyy2, . . . , yyyτ
}

, (2.2.10)

the aim of optimal filtering and smoothing is to estimate the distributions

p(xxxk |yyy1:τ;θθθ,ρρρ)


k > τ predictive

k = τ filtering

k < τ smoothing

(2.2.11)
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in place of p(xxx0:τ|yyy1:τ), while inferringψψψ= (θθθ,ρρρ). Assuming a prior distri-
bution

xxx t0 ∼Nn(xxx tk |mmm0,PPP 0) , (2.2.12)

for xxx t at t = t0, our Kalman filtering and smoothing algorithm can be
summarised in the following steps (for details see Section 2.F):
1. Prediction: Solve the differential moment equations (DMEs){

dmmm∗(t )
d t =VVV θθθmmm∗(t )

mmm∗(tk−1) =mmmk−1 ,
(2.2.13a){

dPPP∗(t )
d t =VVV θθθPPP∗(t )+PPP∗(t )VVV ′

θθθ
+∆tβββ(mmm∗(t ),θθθ)

PPP∗(tk−1) =PPP k−1 ,
(2.2.13b)

where VVV θθθxxx is a re-formulation of VVV hhh(xxx;θθθ) as a linear function of xxx.
2. Update: Update the initial conditions of the DMEs via

µµµk =GGGkmmm∗
k

SSSk =GGGkPPP∗
kGGG ′

k +RRRk

KKK k =PPP∗
kGGG ′

kSSS−1
k

mmmk =mmm∗
k +KKK k (yyyk −µµµk )

PPP k =PPP∗
k −KKK kSSSkKKK ′

k ,

(2.2.14)

where mmmk = mmm(tk ), PPP k = PPP (tk ), mmm∗
k = mmm∗(tk ), PPP∗

k = PPP∗(tk ), µµµk and SSSk de-
pend onψψψ.
3. Optimization: Optimize the marginal likelihood of the measurements

ψψψ← argmin
ψψψ≥000

−ℓ(ψψψ|yyy1, . . . , yyyk ) ,

yyyk ∼N (µµµk (ψψψ),SSSk (ψψψ)) , ∀k = 1, . . . ,K .
(2.2.15)

4. Smoothing: Estimate xxxk |yyy1:K ∼ N (mmms
k|K ,PPP s

k|K ) through the following
backward step 

BBB k+1 =PPP k eVVV ′
θθθ (PPP∗

k+1)−1

mmms
k|K =mmmk +BBB k+1(mmms

k+1|K −mmm∗
k+1)

PPP s
k|K =PPP k +BBB k+1(PPP s

k+1|K −PPP∗
k+1)BBB ′

k+1 ,

(2.2.16)
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where e(·) is the matrix exponential operator. We used a gradient-based
method for the optimization step of Eq. (2.2.15). The gradient

∇ψψψℓ(ψψψ|yyy1, . . . , yyyk ) (2.2.17)

of the marginal log-likelihood can be computed with p+2 more prediction
and update steps, at every time point tk , aimed at computing all the partial
derivatives ofµµµk (ψψψ) and SSSk (ψψψ) w.r.t.ψψψ, where p is the dimension of θθθ (see
Section 2.F for details). The proposed inference procedure is summarised
in Algorithm 2 of Section 2.F. The whole procedure returns the estimated
parameters ψ̂ψψ, and the first two-order moments mmms

k|K and PPP s
k|K of the

smoothing distribution p(xxxk |yyy1:K ,ψ̂ψψ) at every time point tk .

2.2.4. TRANSITION PROBABILITIES

The transition probability pi j from cell type i to cell type j is defined as
the multinomial probabilities

pi j =
λi j +αi∑

k∈OM (i )λi k
, (2.2.18)

where OM (i ) is the set of all the offspring cells of cell i in a model M ,
consistently with Eq. (2.2.3).

2.2.5. REACTION CONSTRAINTS

Since in many clonal tracking studies both the HSCs and the progenitors
Pi s are missing states, we assume the following conservation laws

λHSC→Pi =
∑

j
λPi→x j , (2.2.19)

to help parameter inference in Eq. (2.2.15), where x j s are all the offspring
cell types of Pi .

2.2.6. MODEL SELECTION

Each candidate model M of cell differentiation is scored according to the
Akaike Information Criterion (AIC) [14], that is

AIC (M ) = 2pM −2ℓM (ψψψ|yyy1, . . . , yyyk ) , (2.2.20)
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where ℓM is the marginal log-likelihood of the measurements of model
M and pM is the number of free parameters.

2.2.7. COMPUTATIONAL IMPLEMENTATION

The stochastic framework is implemented in the package Karen avail-
able for download at https://cran.r-project.org/package=Karen.

2.3. RESULTS

2.3.1. IN-SILICO VALIDATION STUDIES

We first compared our proposed method Karen with the state-of-the-art ap-
proaches, such as the generalised least squares (GLS) method [6], the max-
imum likelihood method (RestoreNet) [15] and the branchCorr method
[11]. The comparisons have been made in terms of robustness against (i)
the sampling frequency T , (ii) the fraction f of false-negatives, and (iii) the
magnitude of the measurement noise parameters ρ0 and ρ1. To this end
we used the Euler-Maruyama Algorithm 1 from Section 2.C to simulate the
stochastic trajectories of 3 clones obeying to the cell differentiation net-
work of Figure 2.2. To allow the comparison of our method with the other
candidate ones we used the definition of net-effect matrix and hazard
functions from [11], and the corresponding system of SDEs was defined
accordingly. Two different comparative synthetic studies have been de-
signed. In the first one all the cell types were measured, thus branchCorr
was not included since it does not allow for observed progenitors. In the
second study the synthetic HSCs and progenitors P1-P2 were considered
as latent states, and therefore GLS and RestoreNet were excluded from this
comparison since both methods do not allow for latent states.

Results from Figure 2.3 clearly indicate the superiority of our proposed
method over the competitor ones. In particular, Figure 2.3a provides
evidence that our proposed method was the most robust against false neg-
ative errors compared to the other methods, which provided more biased
estimates for the parameters under an high value f = 90% of missing data.
Subsequently, plot panels 2.3b show that a low sampling frequency (T = 4)
of the simulated trajectories did not affect the estimates provided by our

https://cran.r-project.org/package=Karen


2

26 2. A STOCHASTIC STATE SPACE MODEL OF CELL DIFFERENTIATION

proposed method, whereas the ones obtained with any of the competitor
approaches were biased. Finally, after increasing the magnitude of the
measurement noise parameters ρ0 and ρ1 up to 10, our proposed method
still provided better estimates compared to the other candidate methods.
In conclusion, the results of our synthetic studies show that our method
outperformed the competitor ones overall against false negative errors,
sample size and measurement noise. This gives confidence in using our
method on real in-vivo datasets for providing better parameter estimates
and clonal dynamics predictions. Further results under different values of
f , T , ρ0 and ρ1 can be found in Sections 2.G-2.H.

We tested our method against model misspecification with an addi-
tional synthetic study. We considered two distinct candidate models (Fig-
ure 2.4b) that we cross-compared for simulating and fitting. The corre-
sponding system of SDEs was defined according to Eqs. (2.2.1)-(2.2.6). We
performed 100 independent simulations for the clonal trajectories using
the Euler-Maruyama Algorithm 1 from Section 2.C, and we fitted both
candidate models using our proposed framework Karen. As a result, Figure
2.4a indicates that our method was able to identify the true generative
model structure, having the lowest median AIC over 100 independent
simulations.

2.3.2. GENOTOXICITY STUDY

We analyzed an in-vivo clonal tracking dataset previously used to investi-
gate the impact of vector design on clonal diversity in tumor-prone mice
[16]. C dkn2a−/− tumor prone Li n− cells were first ex-vivo transduced
with a lentiviral vector expressing GFP under either spleen focus-forming
virus (SFV) or PGK promoter/enhancer sequence. Cells are then trans-
planted into lethally irradiated wild-type mice. To recover enough DNA
material, equal amounts of blood from two or three mice belonging to the
same experimental group were pooled before cell sorting. Integration sites
were then retrieved by polymerase chain reaction (PCR) at different time
points from sorted T (CD3+) and B (CD19+) lymphocytes, from myeloid
cells (CD11b+) and unsorted blood cells (total MNC). Clonal tracking sam-
ples were collected under heterogeneous technical conditions (see Table
2.I.1 from Section 2.I), making them not directly comparable. Therefore
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we rescaled the data following the description in Section 2.I.
The total number of distinct clones that were collected are 45186 and

20471 for the PGK and SFV treatments respectively. To further remove
bias, we focused our analyses on the top 1000 most recaptured clones
across lineages and time. We used our stochastic framework Karen to
compare four biologically-sustained models of cell differentiation under
the two vector conditions PGK and SFV. We reported the results in Figure
2.5 which shows, for each candidate model, the estimated cell differentia-
tion network and the corresponding Akaike Information Criterion (AIC) as
defined in Eq. (3.2.12). According to the AIC, model (b) is the one that best
fitted clonal tracking data under each vector design. This result suggests
that the classical/dichotomic model structure (b) adequately described
clonal dynamics in tumor-prone mice under both treatments. Also, the
arrow weights from Figure 2.5 clearly indicate that in SFV-treated tumor-
prone mice there was a more pronounced unbalance in cell differentiation
towards lymphoid progenitors compared to the PGK treatment. There-
fore our proposed framework Karen suggests that, in this particular study,
the design of viral vector did not significantly affect the structure of cell
differentiation in tumor-prone mice, but had an impact on the transition
probabilities p(HSC → P1) and p(HSC → P2), representing HSC differen-
tiation in lymphoid (P1) and myeloid (P2) progenitors.

2.3.3. RHESUS MACAQUES STUDY

We analyzed an in-vivo clonal tracking dataset collected from Rhesus
Macaques [17]. HSCs were first barcoded by using lentiviral vectors and
then transplanted in three animals. Barcode retrieval was performed
monthly via PCR on Granulocytes (G), Monocytes (M), T, B and NK cells
up to 9.5 months. Further details on transductions protocol and culture
conditions can be found in the original paper study [17]. Although the
sample DNA amount was maintained constant during the whole experi-
ment the samples resulted in different magnitudes of reads (see Table 2.J.1
from Section 2.J), making the data not directly comparable. Therefore we
rescaled the barcode counts as described in Section 2.J before analysis.
The total numbers of clones that were collected range in 1165 - 1291, but
we focused on the top 1000 most recaptured ones, so as to further remove
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bias.
We fitted the same four candidate models from previous section on

the clonal tracking data using Algorithm 2 of Section 2.F. We reported
the results in Figures 2.5-2.6 which shows, for each candidate model,
the estimated cell differentiation network. According to the AIC from
Eq. (3.2.12), model (c) is the one that best fitted the clonal tracking data
collected from the rhesus macaque study. This result suggests that the
classical/dichotomic model (b) failed to describe adequately clonal dy-
namics in rhesus macaques, whereas the myeloid-based developmental
model (c) better explained hematopoietic reconstitution. Therefore our
proposed framework Karen clearly indicates that in primate hematopoiesis
myeloid progenitors represent a prototype of hematopoietic cells capable
to produce both myeloid G/M cells and lymphoid NK cells.

2.3.4. GENE THERAPY CLINICAL TRIALS

We considered clonal tracking data collected from six patients affected by
three different genetic disorders and that undergo a HSPC gene therapy
treatment. Vector integration sites in five cell lineages (G, M, T, B, and
NK) were collected longitudinally from the peripheral blood of four pa-
tients affected by Wiskott-Aldrich syndrome (WAS) [18], 2 patients with β
hemoglobinopathy, 1 with βS/βS sickle cell disease [19] and 1 with β0/βE
β thalassemia [20]. Details on procedures, gene therapy protocols, and
normalization methods can be found in [18–20]. Since data were already
normalized to compensate for unbalanced sampling in VCN and DNA [21],
we did not apply any further transformation. The total clones that were
collected are 156654, 17273, and 230408, respectively, for WAS, βS/βS and
β0/βE clinical trials. The following results derive from the analysis of the
1000 most recaptured clones in each clinical trial (top 250 clones per WAS
patient).

The same four biologically motivated hematopoietic models from pre-
vious section have been scored separately in each clinical trial using our
stochastic framework Karen. We reported the results in Figures 2.7-2.8
showing the estimated cell differentiation networks for each clinical trial.
As a result, according to the AIC, model (d) is the one that best fitted
clonal tracking data collected from each clinical trial, thus suggesting that
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a three-branches developmental model better explained hematopoietic
reconstitution in these clinical trials. In particular, while lymphoid T/B
and myeloid G/M developed in parallel trough separate branches from
different progenitors, NK cells appear to be sustained by a dedicated pro-
genitors cell population.

2.4. DISCUSSION

We have proposed a novel stochastic framework for calibrating cell dif-
ferentiation networks from partially-observed high-dimensional clonal
tracking data. Our model is able to deal with experimental clonal track-
ing data that suffers from measurement noise and low levels of clonal
recapture due to either threshold detection failures or false-negative er-
rors. Our framework extends stochastic quasi-reaction networks by in-
troducing EKF and RTS components. We have developed a tailor-made
Expectation-Maximization (EM) algorithm to infer the corresponding pa-
rameters. Simulation studies have shown the method’s accuracy regarding
inference of the true parameters, estimation of the first two smoothing
moments of all the process states, and model selection. Simulation re-
sults indicated higher robustness of our proposed method compared to
the state-of-the-art ones against (i) a limited number of time points, (ii)
limited clonal recapture, and (iii) high levels of measurement noise.

Although the Gaussian assumption makes the analytical formulations
of the likelihoods explicitly available, this approximation may become poor
when the data contains outliers or shows non-Gaussian behaviors. This
limitation can be overcome by using a distribution-free approach, such
as the Kernel Kalman Rule [22]. Another limitation is that our framework
considers reaction rates constant for the whole study period. Extensions
that allow for modeling reaction rates as smooth functions of time or
depending on clinically relevant variables are within reach and will be the
goal of future research.

Our proposed method allowed to unveil the genotoxic impact on cell
differentiation in tumor-prone mice. While the differentiation structure
it does not seem to be affected by the viral vector design, the transition
probabilities from the HSCs to the intermediate progenitors do, showing
a more pronounced unbalance towards lymphoid progenitors under the
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SFV treatment compared to PGK. This can be biologically interpreted as a
faster immune response to the higher inflammation caused by the toxic
SFV treatment compared to the non-toxic PGK one. Subsequently, the
application of Karen to a rhesus macaque clonal tracking study unveiled
for the lymphoid NK cells a different developmental pathway from the
one detected for lymphoid T and B cells. That is, NK cells are produced by
both myeloid and lymphoid progenitors P1 and P2, whereas T and B cells
are sustained only by the lymphoid progenitor P1. Results are consistent
with the ones previously reported in [17] where the authors demonstrated
the presence of distinct subpopulations within the NK lineage, potentially
deriving from alternative maturation processes. Finally, we analyzed in-
vivo clonal tracking data from three different clinical trials. It is worth
noting the degree of agreement between the network structure inferred
using the different clinical datasets. Nonetheless, our modelling approach
is able to capture the heterogeneity of engraftment dynamics and selective
advantage characteristic of the different context as demonstrated by the
different parameter estimates.

Our stochastic framework can support biologists in understanding
hematopoietic reconstitution and in designing tailor-made therapies to
treat genetic disorders. Our model can be applied to different types of
clonal tracking data, such as vector integration sites, clonal barcodes,
and single cell methods. Applications in alternative contexts, such as
the modeling of population dynamics, where similar issues about partial
sampling and varying levels of measurement noise are present, could also
be explored.

2.5. AVAILABILITY OF DATA AND MATERIALS

The stochastic framework is implemented in the package Karen which
is available for download at https://cran.r-project.org/package=Karen.
The code that supports the findings of this study is openly available at
https://github.com/delcore-luca/CellDifferentiationNetworks.

https://cran.r-project.org/package=Karen
https://github.com/delcore-luca/CellDifferentiationNetworks
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HSC

P1

A B C

P2

D E

duplication death differentiation

latent observed

Figure 2.2 | Graphical representation of the cell differentiation network used in the
comparisons in-silico studies. Grey and white nodes represent latent and observed cell
types. Arrows represent cell duplication (green), death (red) and differentiation (blue).
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APPENDIX

2.A. STOCHASTIC QUASI-REACTION NETWORKS

Stochastic quasi-reaction networks (S-QRNs) allow to implement a partic-
ular class of stochastic differential equations that can be used to model
biochemical reactions. More formally, let

yyy t = (y1t , . . . , ynt )′ ∈Nn
0 (2.A.1)

be a collection of molecules of n different types observed at time t , and
consider K distinct (and competing) reactions

r j 1 y1 +·· ·+ r j n yn
θ j→ p j 1 y1 +·· ·+p j n yn , j = 1, . . . ,K , (2.A.2)

each occurring with its own rate θ j . The coefficients r j i ’s defining the
left-side of the reaction are called reagents and represent the minimum
amount of molecules of type i needed for the j -th reaction to occur.
Similarly, the coefficients p j i defining the right-side of the reaction are
called products and represent the amount of produced molecules of
type i after the j -th reaction is triggered. We assume that, if we observe
yyy0 = (r j 1, . . . ,r j n)′ molecules at time t = 0, the j -th reaction will occur after

T j ∼ Exp(θ j ) , j = 1, . . . ,K , (2.A.3)

Namely, if exactly ri j molecules of each type i would be present, then the
j -th reaction can only take place in one way, with the exponential hazard
rate θ j . The interpretation is that, after a waiting time T j , r j i molecules
of type i collide with each other and produce p j i molecules of type i
(∀i = 1, . . . ,n), while the molecules move randomly in a hosting “cellular”
environment. However, in general at time t = 0 we might observe Yi 0 ≥ r j i

molecules of each type i and, therefore, the j -th reaction can take place

39
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in a combinatorial number of ways leading to the following waiting time
formulation

T j ∼ Exp

(
θ j

n∏
i=1

(
yi 0

r j i

))
, where

(
x

y

)
= 0, for x < y , (2.A.4)

where

θθθ = (θ1, . . . ,θK )′ (2.A.5)

is the vector parameter for the reaction rates, and

h j (yyy0,θθθ) = θ j

n∏
i=1

(
yi 0

r j i

)
(2.A.6)

is the j -th hazard rate. In this case, the effect will be that at time t +T j we
have the following expression for the number of molecules of substrate i ,

yi ,t+T j = yi t +p j i − r j i = yi t + v j i , (2.A.7)

where v j i = p j i − r j i is the j -th net effect. More compactly, for a set of K
reactions and n species, the molecular transfer from reagent to product
species is a net change of

VVV =PPP −RRR , (2.A.8)

where PPP = [p j i ]′ denotes the n × r dimensional matrix of products, RRR =
[r j i ]′ is the n × r dimensional matrix of reactants, and VVV = [v j i ]′ is an
n × r dimensional matrix called net-effect matrix. Therefore, a S-QRN of
K -distinct reactions is fully identified by a net-effect matrix VVV and by the
hazard vector

hhh(yyy ,θθθ) = (
h1(yyy ,θθθ), . . . ,hK (yyy ,θθθ)

)′ . (2.A.9)

2.B. THE MASTER EQUATION

In practice it is common that the reaction rates of a stochastic reaction
network are unknown, and the goal is to estimate them given a collected
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dataset. In order to estimate the rates θθθ = (θ1, . . . ,θK )′ using a likelihood-
based approach, we need to define an underlying probabilistic model. One
of the most natural choices for describing stochastic chemical kinetics of
Eqs. (2.A.2)-(2.A.9) is the chemical master equation

dP (yyy ; t )

d t
=

K∑
j=1

{
h j (yyy −V· j ;θθθ)P (yyy −V· j ; t )−h j (yyy ;θθθ)P (yyy ; t )

}
, (2.B.1)

with transition rates

h j (yyy ;θ) = θ j

n∏
i=1

(
yi

r j i

)
, (2.B.2)

consistently with Eq. (2.A.4). It describes the temporal evolution of the
probability density function P (yyy ; t) of the state vector yyy of the chemical
system of Eq. (2.A.2). Roughly speaking, the first part of the right-hand
side of Eq. (2.B.1) models all the reactions letting the state out of k( ̸= j ),
whereas the second part models all the reactions which brings the state
back to k. It is often the case that the Master equation is computationally
intractable, especially when the state vector yyy is high-dimensional, so
that the number of possible states the system may occupy is too large.
Several approximations of the Master equation exist [23, 24], and here we
describe a procedure for “continuizing” the discrete-state chemical Markov
process defined by Eqs. (2.A.2)-(2.B.1). The procedure is summarized in
the following theorem.

Theorem 2.B.1. Assume that h j (xxx;θθθ)P (xxx; t ) are analytical functions in xxx.
Then, a second order Taylor expansion of the products h j (xxx −V· j ;θθθ)P (xxx −
V· j ; t ) around xxx leads to the Ito-type stochastic differential equation

dxxx t =µ(xxx t ;θθθ)d t +β1/2(xxx t ;θθθ)dWWW (t ) , dWWW (t ) ∼ N (000,d tIII ) , (2.B.3)

called the Kramers-Moyal approximation where the drift function and the
dispersion matrix are given by

µµµ(xxx t ;θθθ) =V hhh(xxx t ,θθθ) (2.B.4)

βββ(xxx t ;θθθ) =V

[
h1(xxx t ;θθθ)

. . .
hK (xxx t ;θθθ)

]
︸ ︷︷ ︸

d(hhh(xxx t ,θ))

V ′ . (2.B.5)
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Proof. The analytical assumption of h j (xxx;θθθ)P (yyy ; t) in xxx allows us to con-
sider a second-order Taylor expansion of h j (xxx −V· j ;θθθ)P (xxx −V· j ; t ) around
xxx, that is

h j (xxx −V· j ;θθθ)P (xxx −V· j ; t )

= h j (xxx;θθθ)P (xxx; t )+∇xxxh j (xxx;θθθ)P (xxx; t )
((

xxx −V· j
)−xxx

)
+1

2

((
xxx −V· j

)−xxx
)′ Hxxxh j (xxx;θθθ)P (xxx; t )

((
xxx −V· j

)−xxx
)

= h j (xxx;θθθ)P (xxx; t )−∇xxx
{
h j (xxx;θθθ)P (xxx; t )

}
V· j + 1

2
V ′
· j Hxxx

{
h j (xxx;θθθ)P (xxx; t )

}
V· j ,

and therefore

h j (xxx −V· j ;θθθ)P (xxx −V· j ; t )−h j (xxx;θθθ)P (xxx; t )

=−∇xxx
{
h j (xxx;θθθ)P (xxx; t )

}
V· j + 1

2
V ′
· j Hxxx

{
h j (xxx;θθθ)P (xxx; t )

}
V· j ,

and by plugging it in the Master equation (2.B.1) we have

∂P (xxx, t )

∂t
=

K∑
j=1

{
−∇xxx

{
h j (xxx;θθθ)P (xxx; t )

}
V· j + 1

2
V ′
· j Hxxx

{
h j (xxx;θθθ)P (xxx; t )

}
V· j

}

=−∇xxx
{
VVV hhh(xxx;θθθ)P (xxx; t )

}+ 1

2
∇2

xxx

{
VVV

[
h1(xxx t ;θθθ)

. . .
hK (xxx t ;θθθ)

]
VVV ′P (xxx; t )

}
,

which we recognize as a Kolmogorov forward (Fokker-Plank) equation
with drift function VVV hhh(xxx;θθθ) and dispersion matrix VVV d(hhh(xxx;θθθ))VVV ′, which
completes the proof.

2.C. MONTE CARLO SIMULATION OF ITO-SDES

Stochastic simulation can be stated as forming a Monte Carlo approxima-
tion to the probability density p(xxx) of the state xxx generated by the Ito-type
stochastic differential equation

dxxx = fff (xxx, t )d t +LLL(xxx, t )dβββ(t ) , (2.C.1)

where βββ is a Brownian motion with diffusion matrix QQQc (t). Simulation
methods are usually based on discrete approximations to the continuous
solution of Eq. (2.C.1).
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EULER-MARUYAMA SIMULATION

One of the simplest algorithms for simulating trajectories of stochastic
differential equations is the Euler-Maruyama method [25] which can be
formulated as follows.

Input: xxx0,ΠK = {0 = t0 < t1 < ·· · < tK+1 = T }, tk+1 − tk =∆t
Output: {xxxk }k

for k = 1 : K do
1. Draw ∆βk from

∆βββk ∼ N (000,QQQc (tk )∆t ) ; tk = k∆t (2.C.2)

2. Compute

xxxk+1 = xxxk + fff (xxxk , tk )∆t +LLL(xxxk , tk )∆βββk (2.C.3)

end
Algorithm 1: Pseudocode of Euler-Maruyama method.

2.D. DIFFERENTIAL SYLVESTER EQUATION

Theorem 2.D.1. Let I ⊆R be an open interval with t0 ∈ I and XXX (t ) ∈Rn×m ,
AAA ∈Rn×n , BBB ∈Rm×m , CCC (t ) ∈Rn×m , and DDD ∈Rn×m . The differential Sylvester
equation

ẊXX (t ) = AAAXXX (t )+XXX (t )BBB +CCC (t )

XXX (t0) =DDD
(2.D.1)

has the unique solution [26]

XXX (t ) = eAAA(t−t0)DDDeBBB(t−t0) +
∫ t

t0

eAAA(t−s)CCC (s)eBBB(t−s)d s . (2.D.2)

2.E. INTEGRATING FACTOR METHOD

A system of first order differential equations in standard form

ẏyy +AAA(t )yyy =bbb , (2.E.1)
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where yyy ∈Rn , and AAA(t ) ∈Rn×n and bbb ∈Rn has an explicit solution given by

yyy = e−∫
AAA(t )d t

{∫
e

∫
AAA(t )d tbbbd t +CCC

}
, (2.E.2)

where

I = e
∫

AAA(t )d t (2.E.3)

is the integrating factor.

2.F. KALMAN REACTION NETWORKS (Karen)

In this work we combine stochastic quasi-reaction networks from Section
2.A with Kalman filtering and smoothing.That is, we consider a non-linear
continuous-discrete state space model (CD-SSM) [27] whose dynamic
component is represented by the Kramers-Moyal approximation

dxxx =VVV hhh(xxx t ;θθθ)d t +
(
VVV

[
h1(xxx t ;θθθ)

. . .
h J (xxx t ;θθθ)

]
VVV ′

︸ ︷︷ ︸
βββ(xxx t ;θθθ)

)1/2
dWWW t

dWWW t ∼Nn(000,d tIII n)

(2.F.1)

of a stochastic quasi-reaction network defined by a n × J net effect matrix
VVV , a p × 1 vector parameter θθθ and a J × 1 hazard vector hhh(xxx;θθθ) for a n-
dimensional counting process {xxx(t)|xxx(t) ∈Nn}t . As measurement model
we use

ggg k (xxx(tk ),rrr k ) =GGGkxxx(tk )+rrr k , rrr k ∼Nd (000,RRRk ) ,

RRRk = ρ0III d +ρ1di ag (GGGkxxx(tk )) , ∀k = 1, . . . ,K ,
(2.F.2)

where GGGk ∈ 01d×n (the set of all d ×n binary matrices) is a time-dependent
selection matrix which selects only the measurable particles of xxx(tk ) with
an additive noise rrr k with covariance matrix RRRk . Here ρ0 and ρ1 are free
parameters which we infer from the data, and di ag (·) is a diagonal matrix
with diagonal equal to its argument. In the following xxx t is a shorthand
notation for xxx(t ).
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Assuming the Markov properties

p(xxxk |xxx1:k−1, yyy1:k−1) = p(xxxk |xxxk−1)

p(xxxk−1|xxxk:T , yyyk:T ) = p(xxxk−1|xxxk )

p(yyyk |xxx1:k , yyy1:k−1) = p(yyyk |xxxk ) ,

(2.F.3)

and given the measurements

yyy1:τ =
{

yyy1, yyy2, . . . , yyyτ
}

, (2.F.4)

the aim of optimal filtering and smoothing [28] is to estimate the following
distributions

p(xxxk |yyy1:τ;θθθ,ρρρ)


k > τ predictive

k = τ filtering

k < τ smoothing

(2.F.5)

in place of the posterior distribution p(xxx0:τ|yyy1:τ) of the states given the
measurements, while inferring the unknown parametersψψψ= (θθθ,ρρρ). The
Kalman filter/smoother provides an estimate of the distributions defined
in Eq. (2.F.5) under a Gaussian assumption of a continuous-discrete state
space model [27]. Our proposed Kalman filtering /optimizing /smoothing
algorithm can be summarised as follows. Assuming

xxx(t0) ∼Nn(xxx(t0)|mmm0,PPP 0) (2.F.6)

as prior distribution for xxx(t) at t = t0, the solution xxx(t) of Eq. (2.F.1) is a
Gaussian process whose first two-order moments are the solutions of the
differential moment equations [27, 29], obtained through the following
1. Prediction step: {dmmm∗

k (t )
d t =VVV θθθmmm∗

k (t )

mmm∗
k (tk−1) =mmmk−1

(2.F.7a)

{dPPP∗
k (t )

d t =VVV θθθPPP∗
k (t )+PPP∗

k (t )VVV ′
θθθ
+∆tβββ(mmm∗

k (t ),θθθ)

PPP∗
k (tk−1) =PPP k−1 ,

(2.F.7b)
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where VVV θθθxxx t is a linear formulation of VVV hhh(xxx t ;θθθ), and the definition of VVV θθθ

depends on VVV and hhh(xxx t ;θθθ). The solutions of Eq. (2.F.7) are given by

mmm∗
k (t ) = eVVV θθθ(t−tk−1)mmmk−1 , (2.F.8a)

PPP∗
k (t ) = eVVV θθθ(t−tk−1)PPP k−1eVVV ′

θθθ
(t−tk−1)

+
∫ t

tk−1

eVVV θθθ(t−s)∆tβββ(mmm∗
k (s);θθθ)eVVV ′

θθθ
(t−s)d s . (2.F.8b)

The solution for mmm∗
k (t) is obtained by applying the integrating factor

method of Eq. (2.E.2) from Section 2.E to the initial value problem of
Eq. (2.F.7a) using an integrating factor

I = e
−∫ tk

tk−1
VVV θθθd s = e−VVV θθθ(t−tk−1) . (2.F.9)

The solution for PPP∗
k (t) is obtained by applying the solution formula of

Eq. (2.D.2) for a differential Sylvester equation (2.D.1) to the system (2.F.7b).
These time-discretized solutions allow to use the update steps of a discrete-
time Kalman filter [27], whose equations are given by
2. Update step:

µµµk =GGGkmmm∗
k

SSSk =GGGkPPP∗
kGGG ′

k +RRRk

KKK k =PPP∗
kGGG ′

kSSS−1
k

mmmk =mmm∗
k +KKK k (yyyk −µµµk )

PPP k =PPP∗
k −KKK kSSSkKKK ′

k ,

(2.F.10)

where mmmk , PPP k , mmm∗
k , PPP∗

k ,µµµk and SSSk depend on the parameters θθθ, ρ0 and ρ1.
3. Optimization step:
For a linear Gaussian continuous-discrete state space model the marginal
likelihood of the measurements yyy1:T [30, 31] is the following Gaussian
distribution

yyy1:T ∼N


µµµ1(ψψψ)

...
µµµT (ψψψ)

 ,

SSS1(ψψψ)
. . .

SSST (ψψψ)


 , (2.F.11)
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whose optimal parameters can be found via

ψψψ← argmin
ψψψ≥000

−ℓ(ψψψ|yyy1, . . . , yyyK ) ,

yyyk ∼N (µµµk (ψψψ),SSSk (ψψψ)) , ∀k = 1, . . . ,K ,
(2.F.12)

where

ℓ(ψψψ|yyy1, . . . , yyyK ) =−1

2

K∑
k=1

log |2πSSSk |−
1

2

K∑
k=1

(yyyk −µµµk )′SSS−1
k (yyyk −µµµk ) (2.F.13)

is the marginal loglikelihood of the measurements.
4. Smoothing step: Following [27], the backward smoothing recursion
formula to estimate the first two-order moments mmms

k|K and PPP s
k|K of the

smoothing distribution p(xxxk |yyy1:K ;ψψψ) are defined as
BBB k+1 =PPP k (ψψψ)eVVV ′

ψψψ(PPP∗
k+1(ψψψ))−1

mmms
k|K =mmmk (ψψψ)+BBB k+1

(
mmms

k+1|K −mmm∗
k+1(ψψψ)

)
PPP s

k|K =PPP k (ψψψ)+BBB k+1

(
PPP s

k+1|K −PPP∗
k+1(ψψψ)

)
BBB ′

k+1 ,

(2.F.14)

where ψψψ = (θθθ,ρ0,ρ1) and the values of mmmk , PPP k , mmm∗
k , PPP∗

k are the ones ob-
tained from the filtering (prediction and update) steps. In order to run the
optimization step using a gradient-based method (e.g. Newton-Raphson)
we need to compute the gradient ∇ψψψ,ρ0,ρ1 −ℓ(ψψψ|yyy1, . . . , yyyK ) of the marginal
negative log-likelihood −ℓ(ψψψ|yyy1, . . . , yyyK ) which is defined by the following
partial derivatives

−∂ℓ(ψψψ)

∂ψ j
= tr

(
SSS−1 ∂SSS

∂ψ j

)
−

(
∂µµµ

∂ψ j

)′
SSS−1(yyy −µµµ) ,

−(yyy −µµµ)′SSS−1 ∂SSS

∂ψ j
SSS−1(yyy −µµµ)− (yyy −µµµ)′SSS−1 ∂µµµ

∂ψ j
,

(2.F.15)

where

SSS =
[

SSS1

. . .
SSSK

]
, yyy =

[ yyy1

...
yyyK

]
, µµµ=

[
µµµ1

...
µµµK

]
. (2.F.16)

This requires, at every time point k, p+2 more prediction and update steps

in order to compute the terms ∂SSSk
∂θ j

’s, ∂µ
µµk
∂θ j

’s, ∂SSSk
∂ρ0

, ∂µ
µµk
∂ρ0

, ∂SSSk
∂ρ1

and ∂µµµk
∂ρ1

, where p is

the dimension of θθθ. These are obtained by differentiating Eqs. (2.F.7) and
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(2.F.10) w.r.t. θθθ, ρ0 and ρ1, as shown below.
1’. Prediction derivatives step:

“
∂mmm∗

k
∂ψ j

∂mmm∗
k

∂ψ j

∂mmm∗
k

∂ψ j
”: If we differentiate the system (2.F.7a) w.r.t. ψ j we get


d

d t

(
∂
∂ψ j

mmm∗
k (t )

)
= ∂

∂ψ j
VVV θθθmmm∗

k (t ) =VVV θθθ
∂
∂ψ j

mmm∗
k (t )+

(
∂
∂ψ j

VVV θθθ

)
mmm∗

k (t )
∂
∂ψ j

mmm∗
k (tk−1) = ∂

∂ψ j
mmmk−1 .

(2.F.17)

By using the integrating factor

I = e
−∫ t

tk−1
VVV θθθd s = e−VVV θθθ(t−tk−1) , (2.F.18)

we get

∂mmm∗
k

∂ψ j
= eVVV θθθ(t−tk−1)

{∫ t

tk−1

e−VVV θθθ(s−tk−1)∂VVV θθθ

∂ψ j
mmm∗

k (s)d s + ∂

∂ψ j
mmmk−1

}
=

∫ t

tk−1

eVVV θθθ(t−s)∂VVV θθθ

∂ψ j
eVVV θθθ(s−tk−1)mmmk−1d s +eVVV θθθ(t−tk−1) ∂

∂ψ j
mmmk−1 .

(2.F.19)

“
∂PPP∗

k
∂ψ j

∂PPP∗
k

∂ψ j

∂PPP∗
k

∂ψ j
”: By differentiating the system (2.F.7b) w.r.t. ψ j we get

d

d t

(
∂

∂ψ j
PPP∗

k (t )

)
= ∂

∂ψ j

{
VVV θθθPPP∗

k (t )+PPP∗
k (t )VVV ′

θθθ+∆tβββ(mmm∗
k (t ),θθθ)

}
= ∂

∂ψ j
VVV θθθPPP∗

k (t )+VVV θθθ
∂

∂ψ j
PPP∗

k (t )+ ∂

∂ψ j
PPP∗

k (t )VVV ′
θθθ+PPP∗

k (t )
∂

∂ψ j
VVV ′
θθθ+

+∆t

{
n∑

i=1

∂βββ(mmm∗
k (t ),θθθ)

∂xi

∂m∗
ki (t )

∂ψ j
+ ∂βββ(mmm∗

k (t ),θθθ)

∂ψ j

}

=VVV θθθ
∂

∂ψ j
PPP∗

k (t )+ ∂

∂ψ j
PPP∗

k (t )VVV ′
θθθ+QQQ(t ),

(2.F.20)

where

QQQ(t ) = ∂

∂ψ j
VVV θθθPPP∗

k (t )+PPP∗
k (t )

∂

∂ψ j
VVV ′
θθθ

+∆t

{
n∑

i=1

∂βββ(mmm∗
k (t ),θθθ)

∂xi

∂m∗
ki (t )

∂ψ j
+ ∂βββ(mmm∗

k (t ),θθθ)

∂ψ j

}
,

(2.F.21)
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which is a differential Sylvester equation. The corresponding initial value
problem is

d
d t

(
∂
∂ψ j

PPP∗
k (t )

)
=VVV θθθ

∂
∂ψ j

PPP∗
k (t )+ ∂

∂ψ j
PPP∗

k (t )VVV ′
θθθ
+QQQ(t )

∂
∂ψ j

PPP∗
k (tk−1) = ∂

∂ψ j
PPP k−1 ,

(2.F.22)

whose solution is given, by applying Eq. (2.D.2), as

∂

∂ψ j
PPP∗

k (t ) = e(t−tk−1)VVV θθθ
∂

∂ψ j
PPP k−1e(t−tk−1)VVV ′

θθθ

+
∫ t

tk−1

e(t−s)VVV θθθQQQ(s)e(t−s)VVV ′
θθθd s .

(2.F.23)

2’. Update derivatives step:

The resulting solutions
∂mmm∗

k
∂θ j

,
∂PPP∗

k
∂θ j

,
∂mmm∗

k
∂ρ0

,
∂PPP∗

k
∂ρ0

,
∂mmm∗

k
∂ρ1

and
∂PPP∗

k
∂ρ1

are then used to

update the corresponding initial values via a set of equations obtained by
differentiating Eq. (2.F.10) w.r.t. each component ofψψψ= (θθθ,ρ0,ρ1), that is

∂µµµk

∂ψ j
=GGGk

∂mmm∗
k

∂ψ j
,

∂SSSk

∂ψ j
=GGGk

∂PPP∗
k

∂ψ j
GGG ′

k +
∂RRRk

∂ψ j
,

∂KKK k

∂ψ j
= ∂PPP∗

k

∂ψ j
GGG ′

kSSS−1
k −PPP∗

kGGG ′
kSSS−1

k

∂SSSk

∂ψ j
SSS−1

k ,

∂mmmk

∂ψ j
= ∂mmm∗

k

∂ψ j
+ ∂KKK k

∂ψ j
(yyyk −µµµk )−KKK k

∂µµµk

∂ψ j
,

∂PPP k

∂ψ j
= ∂PPP∗

k

∂ψ j
− ∂KKK k

∂ψ j
SSSkKKK ′

k −KKK k
∂SSSk

∂ψ j
KKK ′

k −KKK kSSSk
∂KKK k

∂ψ j

′
.

(2.F.24)

All the results obtained from every prediction/update step at each
time point tk , along with the corresponding derivatives, are then used
to compute the marginal log-likelihood ℓ(ψψψ|yyy1, . . . , yyyK ) and its gradient
which, in turn, are used for the optimization step. The proposed extended
Kalman filter procedure, is summarised in Algorithm 2. All the integrals
involved for the computation of PPP∗

k , ∂
∂θ j

mmm∗
k , ∂

∂θ j
PPP∗

k , ∂
∂ρ0

PPP∗
k and ∂

∂ρ1
PPP∗

k are

estimated using a 3rd-order Gauss-Legendre method [32].
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Input: {xxxk }k , VVV , hhh(xxx,θθθ), xxx0 ∼Nn(mmm0,PPP 0)
Output: θ̂θθek f , ρ̂0ek f , ρ̂1ek f , mmms

k|K and PPP s
k|K

while ϵ> tol do
ψψψol d ←ψψψ

for k = 1 : K do
1. Prediction: get mmm∗

k and PPP∗
k

1’. Prediction derivatives: get
∂mmm∗

k
∂ψ j

, ∂
∂ψ j

PPP∗
k

2. Update: get mmmk , PPP k ,µµµk and SSSk

2’. Update derivatives: get ∂mmmk
∂ψ j

, ∂
∂ψ j

PPP k , ∂µ
µµk
∂ψ j

, ∂
∂ψ j

SSSk

end
3. Optimization: ψψψ← argmin

ψψψ>0
−ℓ(

ψψψ|yyy1:K
)

4. Smoothing: Get mmms
k|K and PPP s

k|K
5. Update prior for xxx0: mmm0 ←mmms

1|K and PPP 0 ←PPP s
1|K

ϵ← ∥ψψψ−ψψψol d∥2
∥ψψψol d∥2

end
Algorithm 2: Pseudocode of Karen.

2.G. SIMULATION STUDIES

We performed several simulations designed to test and validate our pro-
posed method. The performance has been investigated by: (i) reducing
the number of time points, (ii) reducing the fraction of clones recaptured
across lineages and time, which is equivalent to increasing the rate of false-
negative errors, (iii) increasing measurement noise, and (iv) selecting a cell
differentiation structure among a set of candidate models. We consider
the cell differentiation network of Figure 2.K.1-b written in the state space
formulation of Eqs. (2.F.1) - (2.F.2) from Section 2.F. The net-effect matrix
VVV and an hazard vector hhh(xxx,θθθ) of the dynamic component are defined
according to Eq. (3.2.2) from Section 2.2.1, where θθθ is the vector of the
unknown dynamic parameters.

We assume that the information on the HSCs and progenitors P1 and
P2 is not available at every time point, and therefore we consider them as a
latent states which cannot be measured. Furthermore, all the lineages that
have not been recaptured for a particular clone at a given time point are
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also considered as latent states. Therefore, for the measurement model of
Eq. (2.F.2) the selection matrix GGGk is defined accordingly. In our simulation
studies we also assume the following conservation laws

λHSC→P1 =λP1→T +λP1→B +λP1→N K

λHSC→P2 =λP2→G +λP2→M ,
(2.G.1)

so as to facilitate the inference of parameters related to the systematically
missing cell types. In each simulation study, to generate the clone-specific
trajectories, we use the Euler-Maruyama algorithm 1 with an initial con-
dition xxx0 of 100 cells for the HSCs and zero otherwise. Each trajectory,
starting from t0 = 0 and terminating at t1 = 1, has a sample size equal to
1000 with ∆t = 1/1000. Then, we select a subset of T equidistant time
points, where T is chosen depending on the particular simulation design.
Each simulation study is designed to test parameter uncertainty when
reducing T (see Figures 2.G.1-2.G.2), reducing the fraction 0 < f < 1 of
clones recaptured across lineages and time (see Figures 2.G.3-2.G.4), in-
creasing measurement noise parameters (ρ0,ρ1) (see Figures 2.G.5-2.G.6),
selecting a cell differentiation structure among the candidates (Figure 2.4).

Results from simulations show accurate performance of the method
in the identification of the missing states and for the inference of the
true parameters. In particular, results from simulation 1 suggest that
reducing the number of time points of the complete simulated trajectories
does not affect parameter inference, even in the extreme case where we
fitted our model to the data with only five time points out of 1000 of the
complete trajectories. Second simulation clearly indicates that our method
still provides good estimates if we reduce the fraction f of the observed
states, even for an high fraction of missing states ( f = 0.1). Robustness on
measurement noise has been assessed in simulation 3, whose results show
that parameters are identifiable, even under extreme noise settings (ρ0 =
ρ1 = 100) where still we get some sensible estimates. Finally, in the fourth
simulation study our method combined with Akaike Information Criterion
was able to select the true generative structure among the candidates.
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branchCorr GLS MLE Karen Karen-noConstr
sim 1 no yes yes yes yes
sim 2 yes no no yes yes

Table 2.H.1 | Candidate methods (columns) involved (yes/no) in the two simulations
studies (rows) with either the progenitor cells considered as measured states (sim 1) or as
latent states (sim 2).

2.H. COMPARISON WITH THE STATE-OF-THE-ART

We compared our proposed method Karen with the state-of-the-art ap-
proaches, such as the generalised least squares (GLS) method [6], the
maximum likelihood (MLE) [15] and the branchCorr method [11]. The
comparisons have been made in terms of robustness against (i) the sample
size T , (ii) the fraction f of false-negative errors, and (iii) the magnitude
of the measurement noise parameters ρ0 and ρ1. To this end we used the
Euler-Maruyama algorithm 1 to simulate the stochastic trajectories of 3
clones obeying to the cell differentiation network of Figure 2.2. To allow the
comparison of our method with the other candidate ones we used the def-
inition of net-effect matrix and hazard functions from [11]. Two different
simulation studies have been designed for the comparisons, depending
on whether the competitor approach allows to consider systematically
missing cell types or not, as reported in Table 2.H.1.

Results from Figures 2.H.1-2.H.3 clearly indicate the superiority of our
proposed method over the competitor ones under different values of f , T ,
ρ0 and ρ1. In particular, Figure 2.H.1 provide evidence that our proposed
method is the most robust against false negative errors compared to the
other methods, which provide more biased estimates for the parameters as
we increase the fraction f of missing data. Subsequently, Figure 2.H.2 show
that decreasing the number of time points T of the simulated trajectories
does not affect the estimates provided by our proposed method, whereas
the ones obtained with any of the competitor approaches are increasingly
biased. Finally, Figure 2.H.3 shows that after increasing the magnitude
of the measurement noise parameters ρ0 and ρ1 from 0 up to 10, our
proposed method still provides better estimates compared to the other
candidate methods. In conclusion, the results of our synthetic studies
show that our method outperforms the competitor ones overall against
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PGK

DNA VCN PS SD
Min. 8.64 1.31 1 60

1st Qu. 106.56 10.90 2 1969
Median 200.00 13.59 2 5881

Mean 181.07 12.80 1.96 9351
3rd Qu. 200.25 13.90 2 14055

Max. 973.00 27.00 3 49853

LTR

DNA VCN PS SD
8.64 0.240 1 189

94.50 5.320 1 1130
200.00 6.300 2 2973
222.88 6.219 2.1 4695
222.50 7.800 3 7390
973.00 10.500 7 15375

Table 2.I.1 | Mice study: Quartiles and range of the DNA amount, VCN, PS and SD for the
n = 242 samples and separately for PGK (left) and LTR (right) treatments.

false negative errors, sample size and measurement noise. As a result,
we would trust more in using our method on real in-vivo datasets for
providing better parameter estimates and clonal dynamics predictions.

2.I. GENOTOXICITY DATA RESCALING

Clonal tracking samples were collected under heterogeneous technical
conditions as reported in Table 2.I.1. The variability of these confounding
factors makes clonal tracking samples not directly comparable across time
and cell types. Here we consider the DNA amount (in nanograms), the
vector copy number (VCN), the pool size (PS) and the PCR protocol (SLiM
or Sonic-LAM) as potential confounders. By analogy to the SCS method
[16], we first evaluate and then remove the effect of the confounders from
the observed data using a regression approach. More precisely, we first
perform a log-link Poisson regression on the collected cell counts yyy against
the corresponding confounding factors and the possibly factors of interest,
leading to the following model

l og (λλλ) = XXXβββ , yi ∼ Poisson(λi ) , (2.I.1)

where yi is the i -th component of yyy , λi is the i -th component of λλλ for
i = 1, . . . ,n, XXX = [

111 XXX c
]

is the full design matrix including a term 111 ∈Rn×1

for the intercept and a term XXX c ∈Rn×4 with confounder-specific columns.

After having estimated the parameters β̂ββ=
(
β̂0,β̂ββ

′
c

)′
with a Fisher scoring

algorithm, the rescaled clonal tracking data has been defined as the partial



2

54 2. A STOCHASTIC STATE SPACE MODEL OF CELL DIFFERENTIATION

residuals corresponding to the confounders, that is

yyy r es = exp
(
log(yyy)−XXX cβ̂ββc

)
, (2.I.2)

where β̂ββc are the optimal parameters for the confounders.

2.J. RHESUS MACAQUE DATA RESCALING

Although the sample DNA amount was maintained constant during the
whole experiment (200 ng for ZH33 and ZG66 or 500 ng for ZH17), the
sample collected resulted in different magnitudes of total number of reads.
Table 2.J.1 shows the total number of reads collected in each sample of the
rhesus macaque clonal tracking dataset. This discrepancy makes all the
samples not comparable across time and cell types. Therefore we define
the rescaled barcode counts Y r es

i j k as

Y r es
i j k = Yi j k

minlm
∑

n Ylmn∑
n Ylmn

, (2.J.1)

where Yi j k is the i j k-entry of the barcode matrix with dimensions (i , j ,k)
mapping respectively time, cell type and clone.

2.K. HEMATOPOIETIC MODELS

In this work we consider four different biologically-sustained models of
hematopoiesis whose graphical representation is shown in Figure 2.K.1.
Model (A) is a single-branch developmental tree where the hematopoietic
stem cells produce all the mature cell type trough a single multipotent in-
termediate progenitor P1. According to model (B) the lymphoid cells (T, B,
NK) and the myeloid cells (G, M) are generated trough separate branches
of differentiation. Therefore, this is very similar to the well known classi-
cal/dichotomic model of hematopoiesis [33]. This model classifies blood
cells into two major lineages, but finally differentiated cells are placed in
parallel. In contrast, model (C) proposes the idea that myeloid cells repre-
sent a prototype of hematopoietic cells capable to produce both myeloid
G/M cells and lymphoid NK cells, whereas T, B and NK cells represent spe-
cialized types. Therefore model C can be interpreted as the myeloid-based
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T B NK M G

ZH33 1 1465289 74735 135092 119331 2831
2 225797 216844 335789 1035270 908685
3 243986 413757 663184 886682 816990

4.5 485542 479493 834064 985821 987171
6.5 645005 676413 926089 895309 911637
9.5 829073 962325 1057398 1229233 1220506

ZH17 1 51802 1347050 1288718 1351450 707382
2 826190 1342700 1350703 1354355 1213749
3 1303922 1347692 1338024 1347177 1283250

4.5 190591 1206361 489098 572877 1195585
6.5 887851 610999 1344488 381552 1339299

ZG66 1 752127 0 211350 13382 0
2 692133 58890 308800 363310 145252
3 339292 209137 424458 808404 704331

4.5 617281 338977 718472 887183 897672

Table 2.J.1 | Total number of reads (sum across the clones) collected from each animal
(outer rows) at each time point (inner rows) and for all the cell types (columns).

model from [33]. Finally, model (D) assumes that while lymphoid T/B and
myeloid G/M develop in parallel trough separate branches from different
progenitors, there is a third developmental branch for the NK cells which
is separated/independent from the first two branches.
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Figure 2.G.1 | Varying T (rows): Boxplots of the estimated parameters over 100 indepen-
dent simulations.
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Figure 2.G.2 | Varying T (rows): The simulated process {xt }t (empty dots), the noise-
corrupted measurements {yk }k (full dots), and the estimated smoothing moments ms

k|K
and P s

k|K for each cell type (colors) and clone (columns).
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Figure 2.G.3 | Varying f (rows): Boxplots of the estimated parameters over 100 indepen-
dent simulations.
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Figure 2.G.4 | Varying f (rows): The simulated process {xt }t (empty dots), the noise-
corrupted measurements {yk }k (full dots), and the estimated smoothing moments ms

k|K
and P s

k|K for each cell type (colors) and clone (columns).
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Figure 2.G.5 | Varying ρ0 and ρ1 (rows): Boxplots of the estimated parameters over 100
independent simulations.
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Figure 2.G.6 | Varying ρ0 and ρ1 (rows): The simulated process {xt }t (empty dots), the
noise-corrupted measurements {yk }k (full dots), and the estimated smoothing moments
ms

k|K and P s
k|K for each cell type (colors) and clone (columns).
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Figure 2.K.1 | Graphical representation of the candidate models: Latent and observed cell
types are indicated with grey and white nodes respectively. Red arrows denote a death
move, green arrows indicate a duplication move, and blue arrows a differentiation move.



2

66 REFERENCES

REFERENCES

[1] L. Del Core, D. Pellin, M. A. Grzegorczyk, and E. C. Wit, “Stochastic modelling of
cell differentiation networks from partially-observed clonal tracking data,” bioRxiv,
2022.

[2] G. M. Cooper, R. E. Hausman, and R. E. Hausman, The cell: a molecular approach,
vol. 4. ASM press Washington, DC, 2007.

[3] H. Kawamoto, H. Wada, and Y. Katsura, “A revised scheme for developmental path-
ways of hematopoietic cells: the myeloid-based model,” International Immunology,
vol. 22, no. 2, pp. 65–70, 2010.

[4] J. E. Till, E. A. McCulloch, and L. Siminovitch, “A stochastic model of stem cell
proliferation, based on the growth of spleen colony-forming cells,” Proceedings of
the National Academy of Sciences of the United States of America, vol. 51, no. 1, p. 29,
1964.

[5] C. Di Serio, S. Scala, and P. Vicard, “Bayesian networks for cell differentiation process
assessment,” Stat, vol. 9, no. 1, p. e287, 2020. e287 STAT-20-0009.R1.

[6] D. Pellin, L. Biasco, A. Aiuti, M. C. Di Serio, and E. C. Wit, “Penalized inference of the
hematopoietic cell differentiation network via high-dimensional clonal tracking,”
Applied Network Science, vol. 4, no. 1, pp. 1–26, 2019.

[7] D. Dingli and J. M. Pacheco, “Modeling the architecture and dynamics of
hematopoiesis,” WIREs Systems Biology and Medicine, vol. 2, no. 2, pp. 235–244,
2010.

[8] I. Roeder, L. M. Kamminga, K. Braesel, B. Dontje, G. de Haan, and M. Loeffler,
“Competitive clonal hematopoiesis in mouse chimeras explained by a stochastic
model of stem cell organization,” Blood, vol. 105, pp. 609–616, 01 2005.

[9] I. Roeder and M. Loeffler, “A novel dynamic model of hematopoietic stem cell orga-
nization based on the concept of within-tissue plasticity,” Experimental Hematology,
vol. 30, no. 8, pp. 853–861, 2002.

[10] S. N. Catlin, J. L. Abkowitz, and P. Guttorp, “Statistical inference in a two-
compartment model for hematopoiesis,” Biometrics, vol. 57, no. 2, pp. 546–553,
2001.

[11] J. Xu, S. Koelle, P. Guttorp, C. Wu, C. Dunbar, J. L. Abkowitz, and V. N. Minin, “Statis-
tical inference for partially observed branching processes with application to cell
lineage tracking of in vivo hematopoiesis,” The Annals of Applied Statistics, vol. 13,
no. 4, pp. 2091–2119, 2019.



REFERENCES

2

67

[12] Y.-H. Kim, Y. Song, J.-K. Kim, T.-M. Kim, H. W. Sim, H.-L. Kim, H. Jang, Y.-W. Kim,
and K.-M. Hong, “False-negative errors in next-generation sequencing contribute
substantially to inconsistency of mutation databases,” PLOS ONE, vol. 14, no. 9,
p. e0222535, 2019.

[13] D. Bobo, M. Lipatov, J. Rodriguez-Flores, A. Auton, and B. Henn, “False negatives are
a significant feature of next generation sequencing callsets,” 2016.

[14] K. P. Burnham, D. R. Anderson, and K. P. Huyvaert, “AIC model selection and mul-
timodel inference in behavioral ecology: some background, observations, and
comparisons,” Behavioral Ecology and Sociobiology, vol. 65, no. 1, pp. 23–35, 2011.

[15] L. Del Core, M. A. Grzegorczyk, and E. C. Wit, “Stochastic inference of clonal domi-
nance in gene therapy studies,” bioRxiv, 2022.

[16] L. Del Core, D. Cesana, P. Gallina, Y. N. S. Secanechia, L. Rudilosso, E. Montini, E. C.
Wit, A. Calabria, and M. A. Grzegorczyk, “Normalization of clonal diversity in gene
therapy studies using shape constrained splines,” Scientific Reports, vol. 12, p. 3836,
Mar. 2022.

[17] C. Wu, B. Li, R. Lu, S. J. Koelle, Y. Yang, A. Jares, A. E. Krouse, M. Metzger, F. Liang,
K. Loré, et al., “Clonal tracking of rhesus macaque hematopoiesis highlights a dis-
tinct lineage origin for natural killer cells,” Cell Stem Cell, vol. 14, no. 4, pp. 486–499,
2014.

[18] S. H.-B. Abina, H. B. Gaspar, J. Blondeau, L. Caccavelli, S. Charrier, K. Buckland,
C. Picard, E. Six, N. Himoudi, K. Gilmour, et al., “Outcomes following gene therapy
in patients with severe Wiskott-Aldrich syndrome,” Jama, vol. 313, no. 15, pp. 1550–
1563, 2015.

[19] J.-A. Ribeil, S. Hacein-Bey-Abina, E. Payen, A. Magnani, M. Semeraro, E. Magrin,
L. Caccavelli, B. Neven, P. Bourget, W. El Nemer, et al., “Gene therapy in a patient with
sickle cell disease,” New England Journal of Medicine, vol. 376, no. 9, pp. 848–855,
2017.

[20] A. A. Thompson, M. C. Walters, J. Kwiatkowski, J. E. Rasko, J.-A. Ribeil, S. Hongeng,
E. Magrin, G. J. Schiller, E. Payen, M. Semeraro, et al., “Gene therapy in patients with
transfusion-dependent β-thalassemia,” New England Journal of Medicine, vol. 378,
no. 16, pp. 1479–1493, 2018.

[21] E. Sherman, C. Nobles, C. C. Berry, E. Six, Y. Wu, A. Dryga, N. Malani, F. Male,
S. Reddy, A. Bailey, et al., “Inspiired: a pipeline for quantitative analysis of sites of
new dna integration in cellular genomes,” Molecular Therapy-Methods & Clinical
Development, vol. 4, pp. 39–49, 2017.



2

68 REFERENCES

[22] G. H. W. Gebhardt, A. Kupcsik, and G. Neumann, “The kernel kalman rule,” Machine
Learning, vol. 108, pp. 2113–2157, Dec 2019.

[23] P. Sjöberg, P. Lötstedt, and J. Elf, “Fokker–planck approximation of the master equa-
tion in molecular biology,” Computing and Visualization in Science, vol. 12, no. 1,
pp. 37–50, 2009.

[24] P. Érdi and J. Tóth, Mathematical models of chemical reactions: theory and applica-
tions of deterministic and stochastic models. Manchester University Press, 1989.

[25] P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations.
Stochastic Modelling and Applied Probability, Springer Berlin Heidelberg, 2011.

[26] M. Behr, P. Benner, and J. Heiland, “Solution formulas for differential sylvester and
lyapunov equations,” Calcolo, vol. 56, no. 4, pp. 1–33, 2019.

[27] A. H. Jazwinski, Stochastic processes and filtering theory. Courier Corporation, 2007.

[28] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches.
John Wiley & Sons, 2006.

[29] A. Gelb, J. Kasper, R. Nash, C. Price, and A. Sutherland, “Applied optimal estimation,
a. gelb, ed,” 1974.

[30] S. Särkkä et al., Recursive Bayesian inference on stochastic differential equations.
Helsinki University of Technology, 2006.

[31] I. S. Mbalawata, S. Särkkä, and H. Haario, “Parameter estimation in stochastic differ-
ential equations with markov chain monte carlo and non-linear kalman filtering,”
Computational Statistics, vol. 28, no. 3, pp. 1195–1223, 2013.

[32] P. J. Davis and P. Rabinowitz, Methods of numerical integration. Courier Corporation,
2007.

[33] H. Kawamoto and Y. Katsura, “A new paradigm for hematopoietic cell lineages:
revision of the classical concept of the myeloid–lymphoid dichotomy,” Trends in
Immunology, vol. 30, no. 5, pp. 193–200, 2009.



3
MIXED-EFFECTS REACTION

NETWORKS OF CLONAL DOMINANCE

Parts of this chapter have been published in “Stochastic inference of clonal dominance
in gene therapy studies” [1].
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ABSTRACT

Mathematical models of haematopoiesis can provide insights on abnormal
cell expansions (clonal dominance), and in turn can guide safety moni-
toring in gene therapy clinical applications. Clonal tracking is a recent
high-throughput technology that can be used to quantify cells arising from
a single haematopoietic stem cell ancestor after a gene therapy treatment.
Thus, clonal tracking data can be used to calibrate the stochastic differ-
ential equations describing clonal population dynamics and hierarchical
relationships in vivo. In this work we propose a random-effects stochastic
framework that allows to investigate the presence of events of clonal domi-
nance from high-dimensional clonal tracking data. Our framework is based
on the combination between stochastic reaction networks and mixed-effects
generalized linear models. Starting from the Kramers-Moyal approximated
Master equation, the dynamics of cells duplication, death and differen-
tiation at clonal level, can be described by a local linear approximation.
The parameters of this formulation, which are inferred using a maximum
likelihood approach, are assumed to be shared across the clones and are
not sufficient to describe situation in which clones exhibit heterogeneity
in their fitness that can lead to clonal dominance. In order to overcome
this limitation, we extend the base model by introducing random effects
for the clonal parameters. This extended formulation is calibrated to the
clonal data using a tailor-made expectation maximization algorithm. We
also provide the companion package RestoreNet, publicly available for
download at https://cran.r-project.org/package=RestoreNet. Simulations
studies show that our proposed method outperforms the state-of-the-art.
The application of our method in two in-vivo studies unveils the dynamics
of clonal dominance. Our tool can provide statistical support to biologists
in gene therapy safety analyses.
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3.1. BACKGROUND

In gene therapy the correction of the defective gene(s) underlying the dis-
ease is, in principle, sufficient for inducing disease remission or even full
recovery [2]. Since the blood system possesses a hierarchical structure with
haematopoietic stem cells (HSCs) at its root [3], correction of large num-
bers of HSCs might be sufficient to eradicate a genetic disease [4, 5]. But
genetic modification of large numbers of cells is associated with the higher
probability of unintentional vector insertions near proto oncogenes, that
may lead to insertional mutagenesis [6–8]. Insertional mutagenesis causes
a significant change in clone fitness that can lead to the clones’ abnormal
expansion and to an unbalanced contribution of different clones to blood
cells production. Clonal dominance, characterised by the outgrowth of a
small subset of clones (oligoclonality) or one clone (monoclonality) in the
most extreme cases, poses serious concerns in the context of gene therapy
clinical trials because they might represent the initial stage of a leukemic
transformation and are in general considered negative predictors of long
term therapeutic benefit.

Clonal dominance in malignant haematopoiesis has been previously
identified as a consequence of a clonal competition that is corrupted by
disease progression [9, 10]. However, clonal dominance has also been
observed in normal haematopoiesis, even in the case of truly neutral
clonal markers [11–13]. Indeed, on the basis of various mathematical
models, progression of monoclonality has been discussed also for normal
(non-leukaemic) stem cell systems [14–18]. While there is strong evidence
for clonal selection inducing monoclonal systems in the crypts of the
small intestine [19–22], such a process has not been demonstrated for the
haematopoietic system yet. There are several high-throughput systems
that allow to quantitatively investigate those mechanisms. In gene therapy
applications, clonal tracking is performed by using permanent molecular
identifier integrated in the host cell genome. In pre-clinical animal stud-
ies, these are short fragments of random or semi-random DNA stretches
called barcodes, whereas in clinical setting vector integration sites are in
general used. After transplantation, all the progeny deriving through cell
differentiation inherits the original labels, thus allowing computational
modelling to unveil population dynamics and hierarchical relationships
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in vivo [23–26].
Here we extend the work by [27, 28] and propose a random-effects cell

differentiation network to detect the dynamics of clonal expansion from
high dimensional clonal tracking data. In particular, starting from the defi-
nition of the master equation [29], a set of Ito-type stochastic differential
equations is derived to describe the first two-order moments of the process.
We estimate the parameters of the Ito system from its Euler-Maruyama lo-
cal linear approximation (LLA) [30] using a maximum likelihood approach.
Although the base LLA model formulation has been shown to be effective
in modelling cell differentiation [28], it has some limitations as it considers
all clone trajectories to be iid realizations of the same underlying stochastic
process, and does not take into account possible heterogeneous behaviour
across the clones. Therefore, the base LLA formulation cannot be used to
model clonal dominance. In this work we further increase the flexibility
of the base LLA model to take into account for potential heterogeneity in
clones’ behaviour in both duplication and differentiation rates. To this end
we introduce random effects for the clones inside the LLA formulation,
providing a mixed-effects LLA model. Then, we use the inferred mixed
model to identify which clones are mainly expanding and in which cell
compartments. Parameter inference in the mixed-effects formulation is
performed by means of an expectation-maximization algorithm, for which
we developed an efficient implementation in the package RestoreNet.
Our random-effects LLA formulation describes a stochastic process of
clonal dominance on a network of cell lineages. We tested and validated
our method in simulation studies, including a direct comparison with the
state-of-the-art method GLS [28]. Subsequently, is applied to investigating
the dynamics of clonal expansion in a in-vivo model of rhesus macaque
haematopoiesis [31]. Finally, by analysing an in-vivo model of tumor prone
mice, our method identifies the expected impact of vector genotoxicity on
clonal dynamics [32].

3.2. METHODS

An outline of our proposed stochastic framework is as follows. RestoreNet
takes a clonal tracking dataset as input, along with a set of reactions coding
for cellular duplication, death and differentiation. The system of stochas-
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tic differential equations describing the clonal dynamics are translated
into a generalized linear model formulation, that possibly includes clone-
specific random effects on the dynamics parameters. Subsequently, the
parameters are inferred and, if an event of clonal dominance is detected, a
pie-chart shows the clones that are expanding and in which cell lineage.
A graphical representation of the framework is provided in Figure 3.2.1.
This section contains a concise description of the stochastic formulation
of clonal dominance and the corresponding inference method. A more
detailed description of the stochastic model can be found in Section 3.D.

3.2.1. A STOCHASTIC MODEL FOR CELL DIFFERENTIATION

Consistently with the definition of a stochastic quasi-reaction network of
Section 2.A, we consider a Markov process

xxx t = (x1t , . . . , xnt ) , (3.2.1)

for a single clone and n cell types (i = 1, . . . ,n) that evolve, in a time inter-
val (t , t +∆t), according to a set of net-effect vectors {vvv ik }Ki

k=1 and hazard

functions {hik (xxx t ,θθθ)}Ki
k=1 defined as

vvv ik =


(· · ·1

i
· · · )′

(· · ·−1
i
· · · )′

(· · ·−1
i
· · · 2

O (i )
· · · )′

hik (xxx t ,θθθ) =


xi tαi

x2
i tδi

xi tλiO (i )

(3.2.2)

where
O (i ) = { j |λi j > 0} (3.2.3)

is the offspring set of cell type i , and Ki is the total number of reactions
that involve cell type i and its offspring set O (i ). The definitions of the
hazard functions and the net-effects follow from the law of mass action,
consistently with Eq. (2.A.6) of Section 2.A. The hazard functions include a
linear growth term xi tαi for cell lineage i with a duplication rate parameter
αi > 0, a quadratic term x2

i tδi for cell death of lineage i with a death rate
parameter δi > 0, and a linear term xi tλi j describing cell differentiation
from lineage i to any lineage j ∈ O (i ) with a differentiation rate λi j > 0.
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The vector parameter

θθθ =
(
α1, . . . ,αn ,δ1, . . . ,δn ,λλλ′

1O (1), . . . ,λλλ′
nO (n)

)′
, (3.2.4)

appearing in the hazard functions, includes all the dynamic parameters,
whereλλλiO (i ) is the vector of all the differentiation rates from cell lineage
i to its offspring set O (i ). Finally, we define the net-effect matrix and the
hazard vector as

VVV = [
vvv11 · · · vvv1K1

· · · vvvn1 · · · vvvnKn

] ∈Zn×K ,

hhh(xxx t ,θθθ) =
(
h11 (xxx t ,θθθ), . . . ,h1K1

(xxx t ,θθθ)· · · hn1 (xxx t ,θθθ), . . . ,hnKn
(xxx t ,θθθ)

)′
,

(3.2.5)

where K =∑n
i=1 Ki is the total number of reactions involved in the network.

3.2.2. LLA FORMULATION OF CLONAL DOMINANCE

Let yyy t = (y1t , . . . , ynt )′ be the vector of the measurements collected at time
t for a n-dimensional counting process xxx t = (x1t , . . . , xnt )′ obeying to a
network of stochastic biochemical reactions defined by a net-effect ma-
trix VVV ∈ Zn×K , a vector parameter θθθ ∈ RK and an hazard vector h(xxx,θθθ) =
(h1(xxx,θθθ), . . . ,hK (xxx,θθθ))′ and let

[ ∆yyy t0
...

∆yyy tT−1

]
︸ ︷︷ ︸

∆yyy

=
[ MMM t0

...
MMM tT−1

]
︸ ︷︷ ︸

MMM

θθθ+εεε , εεε∼NnT

000,

ΣΣΣ(θθθ,σ2)︷ ︸︸ ︷WWW t0 (θθθ)

. . .
WtT−1 (θθθ)


︸ ︷︷ ︸

WWW (θθθ)

+σ2III nT

 , (3.2.6)

be the local linear approximation of the Kramers-Moyal approximated
Master equation (see Section 2.B for details) where

∆yyy t =MMM tθθθ+
(
WWW t (θθθ)+σ2III n

)1/2
∆εεεt , ∆εεεt ∼Nn(000,III n) ,

MMM t =VVV


∏n

i=1 (yi t
r1i

)
... ∏n

i=1 ( yi t
rK i

)

∆t , θθθ = (θ1, . . . ,θK )′ ,

WWW t (θθθ) =VVV

[h1(yyy t ,θθθ)

. . .
h1(yyy t ,θθθ)

]
VVV ′∆t ,

(3.2.7)
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withσ2 being the measurement noise variance, MMM tθθθ the mean drift, WWW t (θθθ)
the diffusion matrix, and ∆yyy t = yyy t+∆t − yyy t is a finite-time increment of yyy
in the time interval ∆t . From Eq. (3.2.6) it can be seen that all clones share
the same vector parameter θθθ. To infer the parameters of Eqs. (3.2.6)-(3.2.7)
we developed a maximum likelihood algorithm which is fully described in
Section 3.C.

In some cases it may happen that the clones being analysed are drawn
from a hierarchy of J different populations that possibly behave differently
in terms of dynamics. In this case it might be of interest to quantify the
population-average θθθ and the clonal-specific effects u around the average
θθθ for the description of clone-specific dynamics. For achieving this goal,
we extend the LLA formulation of Eq. (3.B.3) with a mixed-effects model
[33] by introducing random effects uuu for the J distinct clones on the vector
parameter θθθ, leading to a random-effects stochastic reaction network
(RestoreNet). The extended random-effects formulation becomes

∆yyy =
[

MMM 1 0
. . .

0 MMM J

]
︸ ︷︷ ︸
MMM∈RnT×J p

uuu +εεε , uuu ∼NJ p

1J ⊗θθθ︸ ︷︷ ︸
θθθu

,III J ⊗
τ2

1 0

. . .
0 τ2

p


︸ ︷︷ ︸

∆∆∆u

 ,

εεε∼NnT (000,ΣΣΣ(θθθ,σ2)) ,

(3.2.8)

whereMMM is the block-diagonal design matrix for the random effects uuu cen-
tered in θθθ, each block MMM j is clone-specific, and ⊗ is the Kronecker product.
As in the case of the null model of Eq. (3.B.3), we estimate σ2 based on
data. From Section 3.D, the conditional distribution of the random effects
uuu given the data ∆yyy is

uuu|∆yyy ∼NJ p (Euuu|∆yyy ;ψψψ[uuu],Vuuu|∆yyy ;ψψψ(uuu)) , (3.2.9)

where

Euuu|∆yyy ;ψψψ[uuu] =Vuuu|∆yyy ;ψψψ(uuu)
(
MMM′ΣΣΣ−1(θθθ,σ2)∆yyy +∆∆∆−1

u θθθu
)

,

Vuuu|∆yyy ;ψψψ(uuu) = (
MMM′ΣΣΣ−1(θθθ,σ2)MMM+∆∆∆−1

u

)−1
,

(3.2.10)

and ψψψ = (θθθ′,σ2,τ2
1, . . . ,τ2

p )′ is the vector of all the unknown parameters.
Once the parameters are estimated (see next section for inference details),
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the conditional expectations Euuu|∆yyy ;ψψψ[uuu] can then be used as a proxy for
the clone-specific dynamic parameters. This method allows to infer clone-
specific dynamics by extremely reducing the problem dimensionality from
J ·p to 2 ·p +1 (J ≫ 2).

3.2.3. INFERENCE PROCEDURE

In order to infer the maximum likelihood estimator ψ̂ψψ for

ψψψ=
(
θθθ,σ2,τ2

1, . . . ,τ2
p

)
, (3.2.11)

we have developed an efficient expectation-maximization (E-M) algorithm
where the collected cell increments ∆yyy and the random effects uuu take the
roles of the observed and latent states respectively. The full analytical
expression of the E-step function Q(ψψψ|ψψψ∗) = Euuu|∆yyy ;ψψψ∗[ℓ(∆yyy ,uuu;ψψψ)] and its

partial derivatives ∂
∂ψ j

Q(ψψψ|ψψψ∗) are available (see Section 3.D). In the E-M

algorithm we iteratively update the E-function Q(ψψψ|ψψψ∗) using the cur-
rent estimate ψψψ∗ of ψψψ and then we minimize the −Q(ψψψ|ψψψ∗) w.r.t. ψψψ. As
the E-step function Q(ψψψ|ψψψ∗) is non-linear and the parameters are box-
constrained, we used the L-BFGS-B algorithm from the optim() base R
function for optimization, to which we provided the objective function,
along with its gradient ∇ψψψQ(ψψψ|ψψψ∗), as input. The E-M algorithm is iter-
ated until a convergence criterion is met, that is when the relative errors
of the E-step function Q(ψψψ|ψψψ∗) and the parametersψψψ∗ are lower than a
predefined tolerance.

Once we get the E-M estimate ψ̂ψψ for the parameters we evaluate the
goodness-of-fit of the mixed-model according to the conditional Akaike
Information Criterion [34]. As every E-M algorithm, the choice of the
starting pointψψψs is very important from a computational point of view. We
choseψψψs = (θθθs ,σ2

s ,τ2
1 = 0, . . . ,τ2

p = 0) as a starting point where (θθθs ,σ2
s ) is the

optimum found in the fixed-effects LLA formulation of Eq. (3.B.3). This is a
reasonable choice since we want to quantify how the dynamics Euuu|∆yyy ;ψ̂ψψ[uuu] j

of each clone j departs from the average dynamics θθθs . With the help of
simulation studies (see Results section), we empirically proved that this
choice always led to a conditional expectation Euuu|∆yyy ;ψ̂ψψ[uuu] consistent with
the true clone-specific dynamic parameters θθθ. Computational details can
be found in Section 3.D. The pseudocode of the E-M algorithm is provided
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in Algorithm 5 of Section 3.D. The maximum likelihood inference for the
basal model and the expectation maximization algorithm for the random-
effects model are implemented in the package RestoreNet, available for
download at https://cran.r-project.org/package=RestoreNet.

3.2.4. MODEL SELECTION

The fixed-effects model M0 is scored according to the corrected Akaike
Information Criterion (AIC) [35] defined as

AIC (M0) =−2ℓM0 (θθθ,σ2|∆yyy)+ 2d pM0

d −pM0 −1
, (3.2.12)

where ℓM0 is the log-likelihood of the null model M0, d = nT is the size
of ∆yyy , and pM0 the corresponding number of parameters. The random-
effects model M1 is ranked with the conditional akaike information crite-
rion (cAIC) [34] defined as

c AIC (M1) =−2ℓ(∆yyy |uuu;ψψψ)+2(ρ+1) , (3.2.13)

where ℓ(∆yyy |uuu;ψψψ) is the conditional log-likelihood of the response measure-
ments ∆yyy given the random effects uuu,ψψψ is the vector of all the unknown
parameters, and ρ is the effective degrees of freedom of M1 [36] defined
as the trace ρ = tr(HHH) of the hat matrix

HHH = [
MMM MMM

][
MMM ′ΣΣΣ−1(θθθ,σ2)MMM MMM ′ΣΣΣ−1(θθθ,σ2)MMM
MMM′ΣΣΣ−1(θθθ,σ2)MMM MMM′ΣΣΣ−1(θθθ,σ2)MMM+∆∆∆−1

uuu

][
MMM ′ΣΣΣ−1(θθθ,σ2)
MMM′ΣΣΣ−1(θθθ,σ2)

]
. (3.2.14)

To measure the distance of the fixed-effects model M0 from the mixed-
effects model M1 we use the the Kullback-Leibler (KL) divergence [37]

K Ldi v (M0∥M1) =
∫

p(∆yyy)log
p(∆yyy)

q(∆yyy)
d(∆yyy)

= 1

2

{
tr(ΣΣΣ−1

1 ΣΣΣ0)−d + (µµµ1 −µµµ0)′ΣΣΣ−1
1 (µµµ1 −µµµ0)+ log

|ΣΣΣ1|
|ΣΣΣ0|

}
,

(3.2.15)

where p and q are the multivariate Gaussian density functions of Eqs. (3.B.3)
and (3.D.1), whose mean vector and covariance matrix are given by

µµµ0 =MMMθ̂θθ0 , ΣΣΣ0 =ΣΣΣ(θ̂θθ0,σ̂σσ2
0) ,

µµµ1 =MMMθ̂θθ1 +MMMEuuu|∆yyy ;ψ̂ψψ[uuu] , ΣΣΣ1 =ΣΣΣ(θ̂θθ1,σ̂σσ2
1) ,

(3.2.16)
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αA αB αC αD δA δB δC δD λA→B λA→C λC→D

c1 0.2 0.15 0.17 0.45 0.001 0.007 0.004 0.002 0.13 0.15 0.08
c2 0.2 0.15 0.17 0.09 0.001 0.007 0.004 0.002 0.13 0.15 0.08
c3 0.2 0.15 0.51 0.09 0.001 0.007 0.004 0.002 0.13 0.15 0.08

Table 3.3.1 | For each synthetic clone (row) the parameter values (columns) used for
inference.

where (θ̂θθ0,σ̂σσ2
0) and (θ̂θθ1,σ̂σσ2

1) are the parameter estimates for M0 and M1. To
make model divergences comparable across different sized samples, we
use the rescaled KL divergence K Ldi v (M0∥M1)/d .

3.3. RESULTS

3.3.1. IN SILICO VALIDATION STUDY

We simulated the dynamics of J = 3 distinct clones in four synthetic cell
types A, B, C, D following the differentiation network structure of Figure
3.3.1. The net-effect matrix VVV and the hazard vector h(xxx,θθθ) were derived
from Eq. (3.2.2). To simulate the clonal tracking data we used the τ-leaping
Algorithm 3 of Section 3.A, with a time lag τ= 1, that has been run inde-
pendently for each clone. We designed each simulation so that the first
clone dominates lineage D and the third clone dominates lineage C with a
sampling frequency T = 100. The values that were used for the reaction
parameters are reported in Table 3.3.1.

We first ran a single simulation under different magnitudes for the
noise variance σ2. Then we fit the random-effects model of Eq. (3.D.1) to
the simulated data using Algorithm 5 of Section 3.D. We reported in Figures
3.3.2-3.3.4 the simulated trajectories and a scatterplot of the estimated
conditional expectation Euuu|∆yyy ;ψ̂ψψ[uuu] for the random-effects model against
the true clone-specific parameters. In the same figure we also reported
a piechart where each clone k is identified with a pie whose slices are
lineage-specific and weighted with w l

k , defined as the difference between
the conditional expectations of the duplication and death parameters, that
is

w l
k = Euuu|∆yyy ;ψ̂ψψ[uk

αl
]−Euuu|∆yyy ;ψ̂ψψ[uk

δl
] , (3.3.1)
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where uk
αl

and uk
δl

are the random-effects for duplication and death of
clone k in cell lineage l . The diameter of the k-th pie is proportional to the
euclidean 2-norm of

www k = (w l1
k , . . . , w ln

k ) , (3.3.2)

where n is the number of cell types. Therefore, the larger the diameter,
the more the corresponding clone expanded into the lineage associated to
the largest slice. The values of the estimated conditional expectations are
reported in Table 3.3.2. The scatterplot of Figures 3.3.2-3.3.4 clearly indi-
cates a strong agreement between the true parameters and the conditional
expectations Euuu|∆yyy ;ψ̂ψψ[uuu]. In particular, as expected, as the noise variance
σ2 increased, the parameter estimates gradually moved away from the di-
agonal, so that the precision decreased. Also, our model correctly detected
the dominance of clones 1 and 3 in lineages D and C respectively, even for
large values of σ2, as suggested by the pie-charts of Figure 3.3.4 and by the
values of Table 3.3.2.

Subsequently, to check goodness-of-fit, we ran 100 independent sim-
ulations separately for each noise variance setting. After fitting both the
base model of Eq. (3.B.3) and the random-effects model of Eq. (3.D.1),
using Algorithms 4 and 5 of Sections 3.C-3.D, the latter always reached a
significantly lower AIC compared to the null model, as suggested by the
boxplots of Figure 3.3.5. This result clearly indicates that our proposed
random-effects stochastic reaction network was able to measure variation
between clones in terms of differentiation dynamics and to detect events
of clonal dominance.

3.3.2. COMPARISON WITH GLS METHOD

We compared our proposed method with the state-of-the-art method GLS
[28]. To this end, we have designed two different simulation studies. In
the first simulation study all the clones shared the same vector param-
eter, while in the second study we induced the same clonal expansions
of previous section. In both studies we used the differentiation network
structure of Figure 3.3.1 as the true generative model from which we sim-
ulated clonal trajectories, using the τ-leaping Algorithm 3 of Section 3.A,
with a time lag τ= 1. The net-effect matrix VVV and the hazard vector h(xxx,θθθ)
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σ2 = .1
c1 c2 c3

αA 0.198 0.198 0.199
αB 0.151 0.152 0.148
αC 0.171 0.168 0.509
αD 0.446 0.094 0.098
δA 0.001 0.001 0.001
δB 0.007 0.007 0.007
δC 0.004 0.004 0.004
δD 0.002 0.002 0.002

δA→B 0.129 0.130 0.130
δA→C 0.149 0.150 0.148
δC→D 0.081 0.079 0.079

σ2 = 1
c1 c2 c3

0.183 0.191 0.198
0.146 0.148 0.145
0.163 0.168 0.518
0.450 0.100 0.121
0.001 0.001 0.001
0.007 0.007 0.007
0.004 0.004 0.004
0.002 0.002 0.002
0.129 0.130 0.133
0.148 0.149 0.151
0.079 0.080 0.078

σ2 = 10
c1 c2 c3

0.151 0.139 0.127
0.163 0.148 0.137
0.166 0.175 0.649
0.479 0.199 0.319
0.001 0.000 0.001
0.008 0.007 0.007
0.004 0.005 0.005
0.002 0.003 0.004
0.127 0.126 0.110
0.154 0.155 0.153
0.082 0.079 0.058

Table 3.3.2 | Conditional expectations Euuu|∆yyy ;ψ̂ψψ[uuu] of the random-effects obtained from
the estimated parameters ψ̂ψψ for each reaction rate (rows) under different magnitudes of
the noice variance σ2 (outer columns) for each clone (inner columns).

were derived from Eq. (3.2.2). For each study, we ran 100 independent
simulations under different noise variance settings (σ2 ∈ {0.1,1,10}). Sub-
sequently we fit both our proposed method RestoreNet and the competitor
method GLS. We reported the results in Figure 3.3.6, showing boxplots of
the relative errors between the true parameters and the estimated parame-
ters provided by each method.

Figure 3.3.6 clearly indicates that our proposed inference method Re-
storeNet overall outperformed the competitor method GLS. Indeed, while
in the first simulation study (no clonal dominance) both methods provided
similar parameter estimates, in the second simulation study (with clonal
dominance) our proposed method RestoreNet provided better parame-
ter estimates compared to GLS. This result suggests that our proposed
method RestoreNet was able to infer a cell differentiation network with
clone-specific parameters. In conclusion, results from this synthetic study
show that our method outperformed the competitor one for the identifica-
tion of clonal dominance.
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3.3.3. CLONAL DYNAMICS IN RHESUS MACAQUES

We analysed clonal tracking data collected from an established hematopoi-
etic stem cell model, previously used to investigate hematopoietic reconsti-
tution in Rhesus Macaques [31]. Mobilized peripheral blood (MPB) CD34+
cells from three macaques were transduced with barcoded vectors and,
following engraftment, myeloid Granulocytes (G), Monocytes (M), and
lymphoid T, B, and Natural Killer (NK) cells were flow sorted for 9.5 months
(ZH33), 6.5 months (ZH17), and 4.5 months (ZG66) [38]. The total numbers
of clones collected are 1165 (ZH33), 1280 (ZH17), and 1291(ZG66). Further
details on transduction protocols and culture conditions can be found in
the original study.

Although the sample DNA amount was maintained constant during
the whole experiment (200 ng for ZH33 and ZG66 or 500 ng for ZH17), the
sample collected resulted in different magnitudes of total number of reads
(see Table 2.J.1 of Section 2.J). This discrepancy made all the samples not
directly comparable. Therefore we rescaled the barcode counts according
to Eq. (2.J.1) of Section 2.J before analysis. We compared the base and
random-effects models on the rhesus macaques clonal tracking data. Since
the CD34+ cells were not collected, we only estimated the duplication
parameters αT , αB , αN K , αM , αG and the death parameters δT , δB , δN K ,
δM , δG of the lymphoid (T, B, NK) and myeloid (M, G) cells. Therefore the
differentiation parameters were not considered in our model, and the net-
effect matrix and the hazard vector were obtained from Eqs. (3.2.2)-(3.2.5)
accordingly. Thus, the biochemical reactions were defined as

xT
αT→ 2 ·xT , xT

δT→; ,

xB
αB→ 2 ·xB , xB

δB→; ,

xN K
αN K→ 2 · xN K , xN K

δN K→ ; ,

xM
αM→ 2 · xM , xM

δM→; ,

xG
αG→ 2 ·xG , xG

δG→; ,

(3.3.3)

where the left and right columns list the duplication and death reactions,
respectively. The corresponding model became effectively a birth/death
model including 10 dynamic parameters, one duplication and death rate
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p AIC K Ldi v (M0∥M1) K Ldi v (M0∥M1)/d

ZH33 M0 11.00 81377.27
M1 434.16 38160.15 21062.95 1.87

ZH17 M0 11.00 336752.11
M1 478.43 29478.05 291854802.44 114228.89

ZG66 M0 11.00 31194.60
M1 410.92 21384.85 232030.37 83.77

Table 3.3.3 | Comparison between fixed-effects M0 and mixed-effects M1 models: Num-
ber of parameters (p), AIC, KL divergence K Ldi v (M0∥M1) and rescaled KL divergence
K Ldi v (M0∥M1)/d in each rhesus macaque.

for each lineage. We fit both the fixed-effect model of Eq. (3.B.3) and the
mixed-effects model of Eq. (3.D.1) separately to the data of each animal.
To further remove bias, we focused our analyses on the clones that were
recaptured at least 5 times. This resulted in a number of clones J equal to
481 (ZH33), 139 (ZH17), and 202 (ZG66), and in 6 (ZH33), 5 (ZH17), and 4
(ZG66) time points.

We reported the results on model selection in Table 3.3.3, and the
estimated parameters ψ̂ψψ in Table 3.3.4. Using the estimated parameters
ψ̂ψψ, following Eq. (3.D.5), we computed the net conditional expectations of
Eq. (3.3.1), which we used as a proxy for the clone-specific net-duplication
αl −δl in each cell lineage l . The resulting values are reported in Figure
3.3.7 in a box-plot fashion. Subsequenty, in Figure 3.3.8 we proposed to use
a weighted pie chart to visualize our findings at clonal level. Consistently
with previous section, each pie, corresponding to a particular clone, was
weighted by its net conditional expectations, as defined in Eq. (3.3.1).

As a result, according to the AIC values, in each animal the mixed-
effects model (M1) outperformed the fixed-effects one (M0). This means
that the clones did not follow the same average dynamics for the birth-
death process. Instead, the dynamic of some clones departed from the
average dynamics with a significant (random) effect. In particular, the con-
ditional net-duplication rates Euuu|∆yyy ;ψ̂ψψ[uk

αl
]−Euuu|∆yyy ;ψ̂ψψ[uk

δl
] of Figures 3.3.7 -

3.3.8 suggest events of clonal dominance in specific cell lineages. As an ex-
ample, for the animals ZH33 and ZG66 we observed clonal expansions into
NK cells. Whereas, for the animal ZH17 we observed clonal expansions
into G and B cell lineages. Finally, for the animal ZG66 we also observed
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ZH33
θθθ τ2

αT 0.813 1.176
αB 0.193 0.597

αN K 0.758 2.253
αG 0.197 0.403
αM 0.360 0.547
δT 0.155 0.074
δB 0.102 0.059

δN K 0.228 0.089
δG 0.039 0.029
δM 0.100 0.059

ZH17
θθθ τ2

2.246 1.051
6.503 4.648
2.435 2.364

10.931 53.216
3.298 4.256
0.172 0.741
2.159 36.268
0.223 0.406

13.211 70.756
0.012 0.018

ZG66
θθθ τ2

1.081 2.702
0.055 0.876
1.095 1.943
0.847 1.318
2.198 1.800
0.039 0.059
0.006 0.051
0.098 0.100
0.018 0.017
0.035 0.019

Table 3.3.4 | Parameter estimated for the proposed mixed effects model: Fixed effects (θθθ)
and variance (τ2) of the random effects for both the duplicationα and death δ parameters
for each cell lineage and each rhesus macaque.

events of clonal dominance into M and T cell lineages. Furthermore, the
weighted pie charts from Figure 3.3.8 revealed different gradients of clonal
dominance between the three rhesus macaques. As an example, by looking
at the size of the pies, it is possible to observe an higher clonal dominance
of NK cells in ZH33, and of G cells in ZH17, compared to the expansions
of M, NK and T cells detected in ZG66, where the diameters of the clone-
specific pies are rather similar. Not only the proposed mixed-effects model
detected clonal dominance in certain cell types, it also detected which
clones were responsible.

3.3.4. GENOTOXIC EFFECTS ON CLONAL DYNAMICS

We analyzed an in-vivo clonal tracking dataset previously used in [32]
to investigate clonal diversity in tumor-prone mice under two different
treatment conditions. C dkn2a−/− tumor prone Li n− cells were ex-vivo
transduced with a lentiviral vector expressing GFP under either spleen
focus-forming virus (SFV) or PGK promoter/enhancer sequence. Cells
are then transplanted into lethally irradiated wild-type mice. To recover
enough DNA material, equal amounts of blood from two or three mice
belonging to the same experimental group were pooled before cell sorting.
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Integration sites were then retrieved by polymerase chain reaction (PCR)
at different time points from sorted T (CD3+) and B (CD19+) lymphocytes,
from myeloid cells (CD11b+) and unsorted blood cells (total MNC). Clonal
tracking samples were collected under heterogeneous technical conditions
as reported in Table 2.I.1 of Section 2.I. These confounding effects made
the samples not directly comparable. Therefore we rescaled the samples
following the description in Section 2.I before analysis. The total number
of distinct clones collected were 45186 and 20471 for the PGK and SFV
treatments respectively. To further remove bias, we focused our analyses
on the top J = 1000 most recaptured clones across lineages and time. The
number of time-points T was equal to 7 (PGK) and 6 (SFV).

Next, we compared the fixed-effects model of Eq. (3.B.3) and the mixed-
effects model of Eq. (3.D.1) on the rescaled clonal tracking data, so as to
compare the dynamics of clonal dominance under the two viral vector
conditions. Since the HSCs were not collected, we only estimated the
duplication parameters αT , αB , αM and the death parameters δT , δB , δM

of the lymphoid (T, B) and myeloid (M) cells. Therefore, by analogy to
previous section the differentiation parameters were not considered in
our model, and the net-effect matrix and the hazard vector were obtained
from Eqs. (3.2.2)-(3.2.5) accordingly. Therefore, the biochemical reactions
were defined as

xT
αT→ 2 · xT , xT

δT→; ,

xB
αB→ 2 ·xB , xB

δB→; ,

xM
αM→ 2 · xM , xM

δM→; ,

(3.3.4)

where the left and right columns list the duplication and death reactions,
respectively. We fit both the fixed-effects model of Eq. (3.B.3) and the
mixed-effects model of Eq. (3.D.1) separately to the data of each vector
treatment. Both models included six dynamic parameters, that is one
scalar value for each combination of cell type with duplication and death
reactions.

We reported the results on model selection in Table 3.3.5, and the esti-
mated parameters ψ̂ψψ in Table 3.3.6. Then, from the estimated parameters
ψ̂ψψ we computed the conditional expectations of Eq. (3.3.1), which we used
as a proxy for the clone-specific net-duplicationαl −δl in each cell lineage
l . By analogy to previous section, the resulting values are reported in Fig-
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p AIC K Ldi v (M0∥M1) K Ldi v (M0∥M1)/d

PGK M0 7.00 115997.43
M1 471.40 65083.07 17098.71 1.29

SFV M0 7.00 63520.89
M1 842.00 30147.56 52431.53 6.51

Table 3.3.5 | Comparison between fixed-effects M0 and mixed-effects M1 models: Num-
ber of parameters (p), AIC, KL divergence K Ldi v (M0∥M1) and rescaled KL divergence
K Ldi v (M0∥M1)/d in each treatment group.

PGK
θ τ2

αM 0.058 1.014
αB 0.092 0.872
αT 0.632 2.625
δM 0.095 0.041
δB 0.079 0.028
δT 0.127 0.044

SFV
θ τ2

1.287 5.781
0.024 0.408
3.367 2.824
0.232 0.085
0.156 0.080
0.437 0.193

Table 3.3.6 | Parameter estimated for the proposed mixed effects model: Fixed effects (θ)
and variance (τ2) of the random effects for both the duplicationα and death δ parameters
for each cell lineage and each treatment group.

ure 3.3.9 in a box-plot fashion, while in Figure 3.3.10 we proposed to use a
weighted pie chart to visualize our findings at clonal level.

As a result, according to the AIC values, under each treatment the
mixed-effects model (M1) outperformed the fixed-effects one (M0). This
means that the clones exhibited heterogeneity in their dynamics for the
birth/death process. The dynamics of some clones departed from the
average dynamics with a significant (random) effect. In particular, the
conditional net-duplication rates of Eq. (3.3.1) from Figures 3.3.9 - 3.3.10
suggest events of clonal dominance in specific cell lineages. For example,
under the PGK treatment we observed clonal expansions into T cells.
Whereas, under the SFV treatment we observed clonal expansions into M
and T cell lineages with even higher conditional rates compared to PGK.
Furthermore, the Kullback-Leibler divergence from Table 3.3.5 revealed
a different gradient of clonal dominance between the two treatments,
suggesting that the clonal expansions identified in the SFV case were more
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significant compared to PGK.

3.4. DISCUSSION AND CONCLUSION

In this work we proposed a random-effects cell differentiation network
which takes into account heterogeneity in the dynamics across the clones.
Our framework extends the clone neutral local linear approximation of a
stochastic quasi-reaction network, written in the Ito formulation, by intro-
ducing random-effects for the clones on the dynamics parameters to allow
for clonal dominance. We used a maximum likelihood approach to infer
the parameters of the base (fixed-effects only) model that are than used as
initial values for the estimation of the random-effects model by means of
an E-M algorithm. We tested our framework with a τ-leaping simulation
study, showing accurate performance of the method in the identification
of a clonal expansion and in the inference of the true parameters. Then,
by means of an additional in-silico study, we have shown that our method
outperforms the state-of-the-art method GLS [28]. Subsequently, the appli-
cation of our proposed method on a rhesus macaque clonal tracking study
revealed significant clonal dominance for specific cell types. Particularly
interesting is that the NK clonal expansions detected by our model were
already observed by former studies [31, 39, 40], and therefore our findings
are consistent with those previously obtained. Indeed [39] described the
oligoclonal expansions of NK cells and the long-term persistence of HSPCs
and immature NK cells. Finally, our proposed method allowed to detect
the expected impact of vector genotoxicity on clonal dynamics in a tumor-
prone mice model of haematopoiesis, as already observed in a previous
study [32].

The main approximation, in both the basal and random-effects formu-
lations, is the piece-wise linearity of the process. In both cases we consider
first a local linear approximation of the Kramers-Moyal approximated Mas-
ter equation, which is then used to infer the process parameters either with
or without random-effects. Although the linearity assumption makes all
the computations easier, this approximation becomes poor as the time lag
increments (the ∆ts) of the collected data increase. This can be addressed
by introducing in the likelihood higher-order approximation terms than
the ones considered by the Euler-Maruyama method. The Milstein approx-
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imation is a possible choice [41]. Another, completely different, approach
is to employ extended Kalman filtering (EKF) which is suitable for non-
linear state space formulations [42]. Also, our framework cannot consider
false-negative errors or missing values of clonal tracking data. Also for this
issue, an EKF formulation could be a possible extension. The frequentist-
based inference step of our proposed E-M algorithm may be replaced by
Bayesian alternatives. For example, the E-step function Q(ψψψ|ψψψ∗) could be
replaced by a Metropolis-Hasting step [43, 44]. Alternatively, a variational
Bayes method could be employed, where the unknown vector parameter
ψψψ is treated as an additional latent variable [45]. Our future work will aim
to extend the package RestoreNet by including other types of reactions
(besides cell duplication, cell death and cell differentiation).

Our tool can be considered as complementary to the classical Shannon
entropy index [32] in detecting fast and uncontrolled growing of clones af-
ter a gene therapy treatment. Indeed, while the Shannon entropy measures
the diversity of a population of clones as a whole, RestoreNet provides a
clone-specific quantification of dominance in terms of conditional mean
and variance of the expansion rates. Our proposed method provides a pro-
totype model of clonal haematopoiesis whose parameters are calibrated
to fit high-dimensional clonal tracking data. Our data-driven model can
be integrated with those obtained with alternative approaches, where the
unknown parameters are either set to experimentally-derived quantities,
computed from the steady states, or based on independent studies [46, 47].

In conclusion, our proposed stochastic framework is able to detect de-
viant clonal behaviour relative to the average dynamics of haematopoiesis.
This is an important aspect for gene therapy applications where is crucial
to quickly detect any adverse event that may be related to clonal domi-
nance. Therefore our tool can provide statistical support in gene therapy
surveillance analyses. Our proposed method also has potential applica-
tions in other biomedical longitudinal studies with subject-specific dynam-
ics, such as population infection dynamics [48, 49], population analysis
of tumor development [50], and genetic regulatory networks [51]. More-
over, our proposed mixed-effects formulation of stochastic quasi-reaction
networks can potentially be applied to more general, non-Markovian,
classes of network models, such as stochastic hybrid systems with memory
(SHSM). This more general class of models suits history-dependent bio-
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logical systems, such as neural dynamics and immune responses [52, 53].
A mixed-effects formulation of dynamical systems may find room also in
optimal investments problems, such as stochastic games in a continuous-
time Markov regime-switching environment [54]. Indeed, if such models
can be written in a Ito-type formulation, mixed-effects on sensible subjects
(e.g. groups of investors in a market) can be incorporated.

3.5. AVAILABILITY OF DATA AND MATERIALS

The code that supports the findings of this study is openly available at
https://github.com/delcore-luca/ClonalDominance. The pack-
age RestoreNet is publicly available for download from CRAN.
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A

C

D

B

Figure 3.3.1 | Differentiation structure of four synthetic cell types A, B, C, D. Cell duplica-
tion, death and differentiation are indicated with green, red and grey arrows.
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APPENDIX

3.A. τ-LEAPING ALGORITHM

A τ-leaping algorithm is an alternative method to a Gillespie algorithm for
simulating triggering-chain events. Instead of simulating a waiting time
for the first reaction to occur and selecting the corresponding winner reac-
tion, a τ-leaping algorithm simulates the number of occurrences of each
possible event after a time-lag equal to τ elapsed. Formally, let {Nr (t )}t≥0

be an inhomogeneous Poisson point process representing the number of
reactions of type r that took place up to (and including) time t . Therefore

Nr (t ) ∼ Poisson

(∫ t

0
θr (s)d s

)
, (3.A.1)

E [Nr (t +∆t )−Nr (t )] =
∫ t+∆t

t
θr (s)d s =∧Θr

t . (3.A.2)

The last equation gives an estimate of the expected number of reactions
of type r that took place within the time interval [t , t +∆t [. Therefore,
the expected number of molecules yyy t+∆t at time t +∆t given the current
number of molecules yyy t can be easily obtained by adding to yyy t the product
between the expected number of events E [Nr (t +∆t)−Nr (t)] that have
happened in the time interval [t , t +∆t [, the corresponding net-effect, and
the number of ways that reaction can occur, leading to

yyy t+∆t = yyy t +VVV


Θ1

t
∏n

i=1

(yi t
r1i

)
...

ΘK
t

∏n
i=1

(yi t
rK i

)
 (3.A.3)

The pseudocode of the τ-leaping algorithm is reported in Algorithm 3.
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Input: S (no. simulations), yyy0(initial state),
τ (time lag), θ(t ) (reaction rates)

Output: {yyy t }t

t ← 0;
yyy t ← yyy0;
for s = 1 : S do

for r = 1 : K do
Θr

t =
∫ t+∆t

t θr (s)d s ;
end

yyy t+∆t ← yyy t +VVV


Θ1

t
∏n

i=1

(yi t
r1i

)
...

ΘK
t

∏n
i=1

(yi t
rK i

)
;

t ← t +τ;
end

Algorithm 3: τ-leaping algorithm

3.B. EULER-MARUYAMA APPROXIMATION

Remark 3.B.1. (Generalized Linear Model (GLM) formulation)
Using previous results and some linear algebra, the approximated Ito equa-
tion (2.B.3) can be further approximated as

∆yyy t =

MMM t︷ ︸︸ ︷
VVV


∏n

i=1 (yi t
r1i

)
. . . ∏n

i=1 ( yi t
rK i

)

∆t

[
θ1
...
θK

]
︸ ︷︷ ︸
θθθ

+

VVV

[h1(yyy t ,θθθ)

. . .
h1(yyy t ,θθθ)

]
VVV ′∆t︸ ︷︷ ︸

WWW t (θ)

+σ2III n


1/2

∆εεεt ,

∆εεεt ∼N (000,III n) ,

(3.B.1)

or more compactly

∆yyy t =MMM tθθθ+εεεt , εεεt ∼NN (000,WWW t (θθθ)+σ2III n) , (3.B.2)

where we included the term σ2III N so as to prevent singularity of the diffu-
sion term, and to additionally explain noise variance. In practice, since
we collect only discrete-time increments ∆yyy t = yyy t+∆t − yyy t , we consider an
Euler-Maruyama local linear approximation (LLA) of the approximated Ito
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equation. Indeed we also replaced the infinitesimal increments d t and d yyy t

with the discrete increments ∆t and ∆yyy t . Then, all the time-specific blocks
can be stacked together obtaining the full generalized linear model (GLM)
formulation

[ ∆yyy t0
...

∆yyy tT−1

]
︸ ︷︷ ︸

∆yyy

=
[ MMM t0

...
MMM tT−1

]
︸ ︷︷ ︸

MMM

θθθ+εεε , εεε∼N

000,

ΣΣΣ(θθθ,σ2)︷ ︸︸ ︷WWW t0 (θθθ)

. . .
WtT−1 (θθθ)


︸ ︷︷ ︸

WWW (θθθ)

+σ2III nT

 , (3.B.3)

which is convenient for parameters inference.

3.C. INFERENCE OF THE BASE GLM MODEL

We infer the parameters (θθθ,σ2) of (3.B.3) with a maximum likelihood ap-
proach, that is we solve the following constrained optimization problem

θ̂θθML ← argmin
θθθ≥000;σ2≥0

f (θθθ,σ2) , (3.C.1)

where the objective function is

f (θθθ,σ2) = log (|WWW ∗|)+ (d yyy −MMMθθθ)′WWW −1
∗ (d yyy −MMMθθθ) , (3.C.2)

and we compactly write the diffusion matrix WWW ∗ =WWW (θθθ,σ2) as a function
of the free parameters. Using the rules of matrix calculus [55], the partial
derivatives of f w.r.t. θθθ and σ2 can be written as

∇θθθ f (θθθ,σ2) =∇θθθl og (|WWW ∗|)+d yyy ′∇θθθWWW −1
∗ d yyy +2θθθMMM ′WWW −1

∗ MMM+
−2(MMM ′WWW −1

∗ +θθθ′MMM ′∇θθθWWW −1
∗ )d yyy +θθθ′MMM ′∇θθθWWW −1

∗ MMMθθθ ,
(3.C.3)

∇σ2 f (θθθ,σ2) =∇σ2 log (|WWW ∗|)+d yyy ′∇σ2WWW −1
∗ d yyy+

−2θθθ′MMM ′∇σ2WWW −1
∗ d yyy +θθθ′MMM ′∇σ2WWW −1

∗ MMMθθθ

tr
(
WWW −1

∗
)− (d yyy −MMMθθθ)′WWW −1

∗ WWW −1
∗ (d yyy −MMMθθθ) ,

(3.C.4)
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Input: MMM , ∆yyy
Output: θ̂θθ

p
ML

θ̂θθ
p
ML ←

θθθk

argmin
θθθ≥0;σ2≥0

{
l og (|WWW ∗|)+ (∆yyy −MMMθθθ)′WWW −1∗ (∆yyy −MMMθθθ)

}
Algorithm 4: Maximum Likelihood inference for the base model.

where

∂

∂θ j
WWW −1

∗ =−WWW −1
∗

∂

∂θ j
WWW ∗WWW −1

∗ ,
∂

∂θ j
WWW ∗ =WWW ((. . . ,1, . . . )

j
,0) ,

∂

∂σ2
WWW −1

∗ =−WWW −1
∗ WWW −1

∗ ,
∂

∂θ j
log |WWW ∗| = tr

(
WWW −1

∗
∂

∂θ j
WWW ∗

)
,

∂

∂σ2
log |WWW ∗| = tr

(
WWW −1

∗
)

.

(3.C.5)

Then, we solve the optimization problem (3.C.1) by using the objective
function (3.C.2) and its gradients (3.C.3)-(3.C.4) inside the L-BFGS-B opti-
mization algorithm from the optim() function of the stats package.
The inference procedure is summarised in Algorithm 4.

3.D. RANDOM-EFFECTS REACTION NETWORKS

From Eq. (3.B.3) it can be seen that all the molecules y1, . . . , yn share the
same parameter vector θθθ. In some cases it may happen that the molecules
being analysed are drawn from a hierarchy of J different populations
having different properties. In this case it might be of interest to quantify
the population-average θθθ and the subject-specific effects uuu around the
average θθθ for the description of the subject-specific dynamics. Therefore,
to quantify the contribution of each subject j = 1, . . . , J on the process’s
dynamics we extended the LLA formulation of Eq. (3.B.3) by introducing
random effects uuu for the J distinct subjects on the parameter vector θθθ,
leading to the following mixed-effects [33] formulation
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∆yyy =

MMM 1 0
. . .

0 MMM J


︸ ︷︷ ︸

MMM∈Rn×J p

uuu +εεε , uuu ∼NJ p

1J ⊗θθθ︸ ︷︷ ︸
θθθu

,III J ⊗

τ
2
1 0

. . .
0 τ2

p


︸ ︷︷ ︸

∆∆∆u

 ,

εεε∼N (000,ΣΣΣ(θθθ,σ2)) ,

(3.D.1)

where MMM is the block-diagonal design matrix for the random effects uuu
centered in θθθ, and each block MMM j is subject-specific. As in the case of the
null model of Eq. (3.B.3), to explain additional noise of the data and to
avoid singularity of the stochastic covariance matrix WWW (θθθ) we added to its
diagonal a small unknown quantity σ2 which we infer from the data. In
order to infer the maximum likelihood estimator ψ̂ψψ for

ψψψ=
(
θθθ,σ2,τ2

1, . . . ,τ2
p

)
, (3.D.2)

we developed an efficient expectation-maximization E-M algorithm where
∆yyy and uuu take the roles of the observed and latent states respectively.
Under this framework

p(uuu|∆yyy) ∝uuu p(∆yyy |uuu)p(uuu)

∝uuu exp

(
− 1

2
uuu′(MMM′ΣΣΣ−1(θθθ,σ2)MMM+∆∆∆−1

u )uuu

+uuu′(MMM′ΣΣΣ−1(θθθ,σ2)∆yyy +∆∆∆−1
u θθθu)

)
,

(3.D.3)

and therefore

uuu|∆yyy ∼NJ p (Euuu|∆yyy ;ψψψ[uuu],Vuuu|∆yyy ;ψψψ(uuu)) , (3.D.4)

where

Euuu|∆yyy ;ψψψ[uuu] =Vuuu|∆yyy ;ψψψ(uuu)
(
MMM′ΣΣΣ−1(θθθ,σ2)∆yyy +∆∆∆−1

u θθθu
)

,

Vuuu|∆yyy ;ψψψ(uuu) = (
MMM′ΣΣΣ−1(θθθ,σ2)MMM+∆∆∆−1

u

)−1
.

(3.D.5)
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Also, the joint log-likelihood of ∆yyy and uuu is given by

l (∆yyy ,uuu;ψψψ) ∝ψ l (∆yyy |uuu;ψψψ)+ l (uuu;ψψψ)

∝ψψψ −1

2
log |ΣΣΣ(θθθ,σ2)|− 1

2
(∆yyy −MMMuuu)′ΣΣΣ−1(θθθ,σ2)(∆yyy −MMMuuu)+

−1

2
log |∆∆∆u |− 1

2
(uuu −θθθu)′∆∆∆−1

u (uuu −θθθu) ,

(3.D.6)

which only depends on uuu linearly via its first two-order conditional mo-
ments of Eq. (3.D.5). Therefore, it follows for the E-step function that

Q(ψψψ|ψψψ∗) = Euuu|∆yyy ;ψψψ∗[l (∆yyy ,uuu;ψψψ)] =−1

2
log |ΣΣΣ(θθθ,σ2)|

−1

2
{∆yyy ′ΣΣΣ−1(θθθ,σ2)∆yyy −2Euuu|∆yyy ;ψψψ∗[uuu]′MMM′ΣΣΣ−1(θθθ,σ2)∆yyy+

+tr
(
MMM′ΣΣΣ−1(θθθ,σ2)MMM[Vuuu|∆yyy ;ψψψ∗(uuu)+Euuu|∆yyy ;ψψψ∗[uuu]Euuu|∆yyy ;ψψψ∗[uuu]′]

)
}+

−1

2
log |∆∆∆u |− 1

2
tr(∆∆∆−1

u [Vuuu|∆yyy ;ψψψ∗(uuu)+Euuu|∆yyy ;ψψψ∗[uuu]Euuu|∆yyy ;ψψψ∗[uuu]′])+

+Euuu|∆yyy ;ψψψ∗[uuu]′∆∆∆−1
u θθθu − 1

2
θθθ′u∆∆∆

−1
u θθθu .

(3.D.7)

The gradient of Q(ψψψ|ψψψ∗) is defined by the following partial derivatives

∂

∂θ j
Q(ψψψ|ψψψ∗) =−1

2
tr

(
ΣΣΣ−1(θθθ,σ2)

∂

∂θ j
ΣΣΣ(θθθ,σ2)

)
+

−1

2

{
−∆yyy ′ΣΣΣ−1(θθθ,σ2)

∂

∂θ j
ΣΣΣ(θθθ,σ2)ΣΣΣ−1(θθθ,σ2)∆yyy+

+2Euuu|∆yyy ;ψψψ∗[uuu]′MMM′ΣΣΣ−1(θθθ,σ2)
∂

∂θ j
ΣΣΣ(θθθ,σ2)ΣΣΣ−1(θθθ,σ2)∆yyy+

+tr
(
−MMM′ΣΣΣ−1(θθθ,σ2)

∂

∂θ j
ΣΣΣ(θθθ,σ2)ΣΣΣ−1(θθθ,σ2)

)
MMM

[
Vuuu|∆yyy ;ψψψ∗(uuu)

+Euuu|∆yyy ;ψψψ∗[uuu]Euuu|∆yyy ;ψψψ∗[uuu]′
]}
+

+Euuu|∆yyy ;ψψψ∗[uuu]′∆∆∆−1
u

∂

∂θ j
θθθu −θθθ′u∆∆∆−1

u
∂

∂θ j
θθθu ,

(3.D.8)
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∂

∂τ j
Q(ψψψ|ψψψ∗) =−1

2
tr

(
∆∆∆−1

u
∂

∂τ j
∆∆∆−1

u

)
+

−1

2
tr

(
∆∆∆−1

u
∂

∂τ j
∆∆∆−1

u ∆∆∆
−1
u

[
Vuuu|∆yyy ;ψψψ∗(uuu)+Euuu|∆yyy ;ψψψ∗[uuu]Euuu|∆yyy ;ψψψ∗[uuu]′

])+
−Euuu|∆yyy ;ψψψ∗[uuu]′∆∆∆−1

u
∂

∂τ j
∆∆∆−1

u ∆∆∆
−1
u θu + 1

2
θθθ′u∆∆∆

−1
u

∂

∂τ j
∆∆∆−1

u ∆∆∆
−1
u θθθu ,

(3.D.9)

∂

∂σ2
Q(ψψψ|ψψψ∗) =−1

2
tr(ΣΣΣ−1(θθθ,σ2))

−1

2

{
−∆yyy ′ΣΣΣ−1(θθθ,σ2)ΣΣΣ−1(θθθ,σ2)∆yyy+

+2Euuu|∆yyy ;ψψψ∗[uuu]′MMM′ΣΣΣ−1(θθθ,σ2)ΣΣΣ−1(θθθ,σ2)∆yyy+

+tr
(
−MMM′ΣΣΣ−1(θθθ,σ2)ΣΣΣ−1(θθθ,σ2)MMM

[
Vuuu|∆yyy ;ψψψ∗(uuu)

+Euuu|∆yyy ;ψψψ∗[uuu]Euuu|∆yyy ;ψψψ∗[uuu]′
])}

.

(3.D.10)

In the E-M algorithm we iteratively update the E-function Q(ψψψ|ψψψ∗) using
the current estimateψψψ∗ ofψψψ and then we minimize the −Q(ψψψ|ψψψ∗) w.r.t.
ψψψ. The E-M algorithm is run until a convergence criterion is met, that
is when the relative errors of both the E-step function Q(ψψψ|ψψψ∗) and the
vector parameterψψψ are lower than a predefined tolerance. Once we get the
E-M estimate ψ̂ψψ for the parameters we evaluate the goodness-of-fit of the
mixed-model according to the conditional Akaike Information Criterion
[34]. As every E-M algorithm, the choice of the starting pointψψψs is very
important from a computational point of view. We chose as a starting point
ψψψs = (θ̂θθML , σ̂2

ML ,τ2
1 = 0, . . . ,τ2

p = 0) where (θ̂θθML , σ̂2
ML) is the optimum found

in the fixed-effects LLA formulation of Eq. (3.B.3). This is a reasonable
choice since we want to quantify how the dynamics Euuu|∆yyy ;ψ̂ψψ[uuu] j of each

subject j departs from the average dynamics θ̂θθML . The E-M pseudocode is
given in Algorithm 5.
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Input: ψψψ∗ = (θ̂θθML , σ̂2
ML ,τ2

1 = 0, . . . ,τ2
p = 0), MMM , ∆yyy

Output: ψ̂ψψE M
chose a small tolerance tol and set ϵ=+∞ ;
while ϵ> tol do

update Euuu|∆yyy ;ψψψ∗[uuu] and Vuuu|∆yyy ;ψψψ∗(uuu) as defined in Eq. (3.D.5) ;
set to zero the negative elements of Euuu|∆yyy ;ψψψ∗[uuu] ;
update Q(ψψψ|ψψψ∗) and ∇ψψψ∗Q(ψψψ|ψψψ∗) according to

Eqs. (3.D.8)-(3.D.10) ;
setψψψol d ←ψψψ∗ ;
updateψψψ∗ ← argmin

ψψψ≥000
−Q(ψψψ|ψψψ∗) ;

update ϵ= |Q(ψψψol d |ψψψol d )−Q(ψψψ∗|ψψψ∗)| ;
end
ψ̂ψψE M =ψψψ∗

Algorithm 5: E-M inference algorithm for the mixed-effects model.
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4
A NORMALIZED MEASURE OF

CLONAL DIVERSITY

Parts of this chapter have been published in “Normalization of clonal diversity in gene
therapy studies using shape constrained splines” [1].
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ABSTRACT

Viral vectors are used to insert genetic material into semirandom genomic
positions of hematopoietic stem cells which, after reinfusion into patients,
regenerate the entire hematopoietic system. Hematopoietic cells originat-
ing from genetically modified stem cells will harbor insertions in specific
genomic positions called integration sites, which represent unique genetic
marks of clonal identity. Therefore, the analysis of vector integration sites
present in the genomic DNA of circulating cells allows to determine the num-
ber of clones in the blood ecosystem. Shannon diversity index is adopted to
evaluate the heterogeneity of the transduced population of gene corrected
cells. However, this measure can be affected by several technical variables
such as the DNA amount used and the sequencing depth of the library
analyzed and therefore the comparison across samples may be affected by
these confounding factors. We developed an advanced spline-regression
approach that leverages on confounding effects to provide a normalized
entropy index. Our proposed method was first validated and compared
with two state of the art approaches in a specifically designed in vitro assay.
Subsequently our approach allowed to observe the expected impact of vector
genotoxicity on entropy level decay in an in vivo model of hematopoietic
stem cell gene therapy based on tumor prone mice.

4.1. INTRODUCTION

Gamma retroviral and Lentiviral Vectors (LVs) are widely adopted in Gene
Therapy (GT) thanks to their ability to insert therapeutic transgenes in
the host cell genome of hematopoietic stem/progenitor cell (HSPC). Af-
ter transplantation into the patient the HSPCs reconstitute the entire
hematopoietic system and correct the genetic defect. Therefore, vector in-
tegration ensures the maintenance of gene correction during self-renewal
of HSPCs as well as its transmission to their cell progeny[2]. These vectors
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integrate semi-randomly within the human genome, and then each trans-
duced cell harbours a vector integration in a distinct genomic position
(integration site, IS) that can be adopted as a genetic mark to distinguish
each engrafted clone. The retrieval of IS from transduced cells can be
done by using PCR protocols that allow to specifically amplify the vec-
tor/genome junctions from their genomic DNA. Sequencing and mapping
on the target cell reference genome allow to identify IS that can be uni-
vocally used for clonal identity. Therefore, the analysis of vector IS from
DNA of blood cells harvested at specific time points after transplant from
GT patients provide information on number of hundreds to thousands of
clones present in circulation and their relative abundance. For this reason,
IS studies are required for safety and long-term efficacy assessment in
preclinical and clinical studies [3–9].

The Shannon entropy index, a well-established measure of species
diversity in ecology[10], has become one of the most widely used measure
of IS diversity in HSC-GT applications [11]. This measure has been pos-
itively correlated to high levels of genetic modification and engraftment
of genetically modified cells while low levels of entropy were associated
to poor levels of genetic modification, or oligoclonality due to poor en-
graftment or even the appearance of highly dominant clones resulting
from malignant transformation [12]. Indeed, the complexity of a given
DNA sample is computed considering both the total number of different
IS obtained and their relative abundance. Thus, highly polyclonal samples
characterized by large number of IS whose abundance is evenly distributed
will have a higher Shannon diversity index than oligoclonal samples with
a relatively smaller number of IS and/or characterised by the presence
of highly dominant clones. However, the Shannon diversity index does
not consider variations in sample size (amounts of DNA analyzed) or the
efficiency in species retrieval (different PCR protocols for IS retrieval, se-
quencing platforms and sequencing depth) of complex ecosystems, such
as the population of vector integrations sites in the genome [13].

Thus, while Shannon diversity index provides an objective measure
of the clonal complexity of any given IS sample, these confounding fac-
tors should be taken in account when the clonal complexity of different
samples is compared. Since longitudinal studies of GT patients for IS
monitoring could require the analysis of several samples collected under
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heterogeneous technical conditions, a method aimed at removing con-
founding effects in diversity index is needed. To remove confounding
factors in the estimations of ecosystem diversity, several methods have
been applied. Random subsampling without replacement, called “rarefy-
ing” [14], is among the most popular methods for the normalization of
species count data in ecology as well as for next generation sequencing
(NGS) data in microbiology. Given a predefined sequence depth (total
count, SD), a subsample from each library is generated by randomly pick-
ing reads without replacement, until the selected total number of counts
is reached. Although rarefying has become the state-of-the-art tool for
NGS data analysis [15], some limitations have been recognized. Indeed,
[16] demonstrated that rarefying is statistically inadmissible and should be
avoided. Furthermore, in [17] it was highlighted that estimates of species
diversity in sites/habitats at local scale, namely the α-diversity [18], for
rarefied microbiome count data may be strongly biased. This is mainly
due to the rare species which may be over- (or under-) represented in the
samples that have been normalized to a smaller depth by rarefaction. An
alternative normalization to rarefying is scaling, which adjusts the size
of all samples by scaling their counts to the same total amount. Scaling
preserves the relative frequencies of the species and keeps the species
richness unchanged. Therefore, simple scaling does not remove the ef-
fect provided from the library depth neither on species richness nor on
species diversity. [19] introduces a novel normalization method for species
count data called scaling with ranked subsampling (SRS) and the authors
demonstrate its suitability for the analysis of microbial communities.

The growing number of normalization and scaling approaches high-
lights that a robust method has not been developed yet. In this work we
show that all proposed methods have limitations. In particular they miss
of a precise quantification of the effect of each confounding variable on
the Shannon entropy. Furthermore, we also show that the rescaled Shan-
non entropy index obtained by either rarefying or scaling with ranked
subsampling still suffers from the effect of the confounders. We propose
a spline-regression approach aimed to explain and remove those effects
from the diversity indexes. The effect of the confounders is measured
using a B-spline term whose shape is restricted according to a biological-
sustained hypothesis. We test our framework by analysing a novel in-vitro
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dataset properly designed to simulate the same clonality state under differ-
ent combinations of technical conditions. We also compare our method
with the previously proposed methods from the literature in terms of ef-
ficiency according to hypothesis testing. That is, we consider a rescaling
method to be more efficient if there is more evidence for the correspond-
ing rescaled measure being independent from the effect of the candidate
confounders. Finally, our rescaling approach allowed to unmask the ex-
pected impact of vector genotoxicity on entropy level decay in an in vivo
model of hematopoietic stem cell gene therapy based on tumor prone
mice [20, 21].

4.2. POTENTIAL ARTEFACTS IN CLONAL TRACKING

There are several high-throughput systems capable to quantitatively track
cell types repopulation from an individual stem cell after a gene ther-
apy treatment [22–24]. Tracking cells by random labeling is one of the
most sensitive systems [25]. In HSC-GT applications, haematopoietic
stem cells (HSCs) are sorted from the bone marrow of the treated subject
and uniquely labeled by the random insertion of a viral vector inside its
genome. Each label, called clone, or integration site (IS), is defined as the
genomic coordinates where the viral vector integrates. After transplan-
tation, all the progeny deriving through cell differentiation inherits the
original labels. During follow-up, the labels are collected from tissues and
blood samples using Next Generation Sequencing (NGS) [26–29]. NGS
is a recent approach for DNA and RNA sequencing, which consists of a
complex interplay of chemistry, hardware, optical sensors and software
[30–33]. In gene therapy applications NGS does allow identifying, quanti-
fying and tracking clones arising from the same HSC ancestor. Over the
past decades, clonal tracking has proven to be a cutting-edge analysis
capable to unveil population dynamics and hierarchical relationships in
vivo [34–37]. Clonal diversity, measuring how many distinct clones are col-
lected and how they distribute, can address some of these aspects. Loosely
speaking, the less distinct clones the lower the clonal diversity and in turn
the less the system is being repopulated in that particular cell compart-
ment. Furthermore, under the same number of different clones collected,
the more their distribution is far from the uniform, the lower the clonal
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diversity and the more the dominance of few clones, thus suggesting the
possible occurrence of an adverse event. The Shannon entropy index [38],
a well-established measure of population diversity in ecology studies [10],
nowadays is hugely used as a proxy of clonal diversity in gene therapy
applications [11]. Following [38], the Shannon entropy index is defined as

h(xxx) =−
n∑

i=1
P (xi )l og P (xi ) , (4.2.1)

where xxx has possible realisations x1, . . . , xn which occur with probabilities
P (x1), . . . ,P (xn). Therefore, Shannon entropy is a special case (up to a
change in sign and a multiplicative factor 1/n) of the Kullback-Leibler
divergence [39]

DK L(P∥Q) =
n∑

i=1
P (xi )log

P (xi )

Q(xi )
, (4.2.2)

when the reference Q is the uniform distribution on x1, . . . , xn .
Potential limitations of entropy-based measures in gene therapy ap-

plications are related to the heterogeneous nature of NGS data [40–44].
Indeed due to sampling and technical conditions, such as the amount of
the host DNA being sequenced and the PCR being adopted, the number
of reads obtained per library can span orders of magnitudes [13] which
may affect the cellular counts and in turn their Shannon entropy. These
differences in magnitude of library size/depth mainly depends on unequal
pooling of PCR products before sequencing. In order to pool PCR products
from individual samples in equimolar amounts [45], DNA concentrations
are commonly determined by ultraviolet-visible (UV) or fluorescence spec-
troscopy, real-time PCR or digital PCR [46]. Although these methods are
very effective [47], an identical library size across samples is difficult to
achieve. Nonetheless, if we define the multiplicity of infection (MOI) as
the average ratio between the number of virus particles and the number of
target cells present in a defined space, then the actual number of viruses
that will integrate on any given cell can be described by a stochastic pro-
cess, such as some cells may absorb more than one infectious agent while
others may not absorb any of them. Typically, the probability P (n|m) that
a cell will absorb n virus particles when inoculated with an MOI of m can
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be modelled as a Poisson variable with rate m,

P (n|m) = mne−m

n!
. (4.2.3)

Therefore, by definition, it is possible to increase the expected number of
vector copies per cell (VCN) by properly tuning the MOI in the design of
the experiment/treatment. As a result, the VCN may affect the number of
IS collected and in turn the Shannon entropy.

In Figure 4.2.1 we show the behaviour of the Shannon entropy index
as a function of the DNA amount, the VCN and the sequencing depth
(SD) in the case of an in-vitro assay described in section 4.4.1. Figure
4.2.1 suggests that the Shannon entropy index strongly depends on the
quantitative confounders, until it reaches a steady-state. These features
motivate us to use shape constrained splines (SCS) in order to model the
effect of the candidate confounders on the entropy measurements.

4.3. METHODS: SHAPE CONSTRAINED SPLINES

4.3.1. DEFINITION OF THE MODEL

Shape-constrained splines (SCS) for fitting, smoothing and interpolation
have been explored and proposed in various works, such as [48–53]. In
this work we follow the cone-projection approach [52, 53]. We model the
logarithmic observed entropies hi ’s, for i = 1, . . . ,n, as a function of a SCS-

bases Ck
i for every potential confounder k = 1, . . . ,K plus a term F j

i for any
other additional feature of interest j = 1, . . . , J , so that

log (hi ) =β0 +
K∑

k=1
Ck

i βββ
k
c +

J∑
j=1

F j
iβββ

j
f +εi , i = 1, . . . ,n , (4.3.1)

where β0 is the intercept, Ck
i is the basis of a quadratic spline for the k-th

confounder used for observation i for which we assume a saturation state
at the right boundary knot and a monotone increasing concave shape.
For our applications, the boundary knots of a spline basis associated to a
variable x are defined as the minimal and maximal value of x. The term
F j

i corresponds to the i -th observation of a basis describing the j -th addi-
tional component, such as the time or the cell type. The corresponding
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parameter vectors areβββk
c andβββ j

f respectively. Finally we assume for the

noise variable:
εi

i i d∼ N (0,σ2) , i = 1, . . . ,n . (4.3.2)

Therefore, the model can be compactly written as

l og

([
h1
...

hn

])
︸ ︷︷ ︸

log (hhh)

=
[1

...
1

]
︸︷︷︸

111

β0 +
 C1

1 ··· CK
1

...
...

C1
n ··· CK

n


︸ ︷︷ ︸

C

 βββ1
c
...
βββK

c


︸ ︷︷ ︸
βββc

+
 F1

1 ··· FJ
1

...
...

F1
n ··· FJ

n


︸ ︷︷ ︸

F

βββ1
f

...
βββJ

f


︸ ︷︷ ︸
βββ f

+
[ ε1

...
εn

]
︸ ︷︷ ︸
ε

, (4.3.3)

where the number of features K and J depend on the project and/or the
specific research questions that must be addressed. Quadratic splines are
characterized by the discontinuity of the second-order derivative, which
makes their treatments harder than cubic splines. This applies already
to unconstrained spline fitting and interpolation. In particular, the def-
inition of quadratic penalised/smoothing splines is not straightforward.
Therefore, in general, cubic splines should be preferred over quadratic
splines. Despite this, in our in-vitro assay (VA) application only three dis-
tinct values of both the DNA amount and the vector copy number (VCN)
are available. Therefore, in order to get a good trade-off between bias and
variance as well as in order to obtain a full-rank design matrix, we chose
quadratic splines with one interior knot for both the DNA amount and the
vector copy number (VCN), and a quadratic spline with two interior knots
for the sequencing depth. In Section 4.B we compare the fits of quadratic
and cubic splines. For consistency, we also use quadratic splines in the
mice study on genotoxicity, where our goal is to model the relationship
between the entropy and several confounders; cf. Section 4.4.2.

4.3.2. SHAPE-CONSTRAINED SPLINES NORMALIZATION

For simplicity, we set K = 1 and J = 0 in Eq. (4.3.3), namely we consider
only one confounder and no additional factors of interest. The general case
can be obtained straightforwardly. Here we follow [54] and we represent
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an (r +1)-th order B-spline as

m(x) =
q∑

j=1
β j B r

j (x) (4.3.4)

where, for j = 1, . . . , q , the bases are iteratively computed as

B r
j (x) = x −k j

k j+r+1 −k j
B r−1

j (x)+ k j+r+2 −x

k j+r+2 −k j+1
B r−1

j+1 (x), (4.3.5)

B−1
j (x) =

{
1, k j ≤ x ≤ k j+1

0, otherwise
, (4.3.6)

for a given sequence of evenly spaced knots ξ1 ≤ ξ2 ≤ ·· · ≤ ξq+r+2, where
q is the number of basis functions and β j ’s are the corresponding coeffi-
cients. The first order derivative of Eq. (4.3.4) can be written as

m′(x) = 1

δ

q∑
j=2

B r−1
j (x)(β j −β j−1) , (4.3.7)

where δ is the distance between two adjacent knots. Since all B-spline
basis functions are nonnegative by definition, a sufficient condition for
m′(x) ≥ 0, and in turn for the monotone-increasing shape of m(x), is

β j −β j−1 ≥ 0 j = 2, . . . , q . (4.3.8)

Furthermore, the second order derivative of Eq. (4.3.4) can be written as

m′′(x) = 1

δ2

q∑
j=3

B r−2
j (x)(β j −2β j−1 +β j−2) . (4.3.9)

Then a sufficient condition for m′′(x) ≤ 0 and in turn for the concavity of
the spline in Eq. (4.3.4) is

β j −2β j−1 +β j−2 ≤ 0, j = 3, . . . , q . (4.3.10)

The monotonicity and concavity constraints can be written respectively as

C1C1C1βββ≥ 0, C2C2C2βββ≥ 0, βββ= [
β1 · · ·βq ,

]′
(4.3.11)



4

124 4. A NORMALIZED MEASURE OF CLONAL DIVERSITY

where

C1C1C1 =
−1 1−1 1

. . .
−1 1

 ∈R(q−1)×q , C2C2C2 =
−1 2 −1−1 2 −1

. . .
−1 2 −1

 ∈R(q−2)×q . (4.3.12)

If both monotonicity and concavity constraints must be satisfied, the first
q − 2 constraints/rows of C1C1C1 are redundant, as stated by the following
Lemma.

Lemma 4.3.1. If β j −2β j−1 +β j−2 ≤ 0 ∀ j = 3, . . . , q and βq −βq−1 ≥ 0,
then β j −β j−1 ≥ 0 ∀ j = 2, . . . , q −1.

Proof. j = q −1 : βq −2βq−1 +βq−2 ≤ 0 and −βq +βq−1 ≤ 0 hold, which
together imply βq−1 −βq−2 ≥ 0.

j = k +1 ⇒ j = k : βk+1 −2βk +βk−1 ≤ 0 and −βk+1 +βk ≤ 0 hold, which
together imply βk −βk−1 ≥ 0.

Therefore by Lemma 4.3.1, if both constraints C1C1C1 and C2C2C2 are applied,
the whole matrix of constraints reduces to

CCC =
 −1 1−1 2 −1−1 2 −1

. . .
−1 2 −1

 . (4.3.13)

Furthermore, we need to consider that sampling might be characterised by
a sequencing saturation level due to technical limitations. In this case, the
saturation level can be included by considering a steady-state/stationary-
point at the right boundary knot ξq+r+2, namely by setting

∂1BBB(ξq+r+2)βββ= 0, (4.3.14)

where

∂1BBB(x) =
(
∂1B r

1 (x), . . . ,∂1B r
q (x)

)
(4.3.15)

is the first derivative of the spline basis

BBB(x) =
(
B r

1 (x), . . . ,B r
q (x)

)
(4.3.16)
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evaluated at x. Our code implementation allows to switch between the
presence and absence of the saturation level by the additional logical input
parameter SATURATION. By default this parameter is set to TRUE, but it can
be switched to FALSE if the user prefers not to implement a saturation
level (or a steady state) w.r.t. a particular predictor variable. In our case of
quadratic degree (r = 1), the constraint in Eq. (4.3.14) reduces to

βq =−∂Bq−1(ξq+r+2)

∂Bq (ξq+r+2)
βq−1 , (4.3.17)

which can be written compactly using the following transformation

A :RnXXX ×q →RnXXX ×(q−1) , XXX 7→ XXX AAA (4.3.18)

where

AAA =


1 0 ··· 0

0
. . . . . .

...
...

. . . . . . 0
... 0 1
0 ··· 0 − ∂B [xn ,q−1]

∂B [xn ,q]

 ∈Rq×(q−1) , (4.3.19)

and nXXX is the number of rows of XXX .

4.3.3. INFERENCE PROCEDURE

Given n observations of one predictor xxx = (x1, . . . , xn) and a response yyy =
(y1, . . . , yn), the restricted least squares estimate β̂ββRLS of βββ subject to the
constraints in Eqs. (4.3.11) and (4.3.17) can be obtained as

β̂ββRLS = argmin
βββ∈S

(yyy −BBBβββ)′(yyy −BBBβββ) , (4.3.20)

where

S =
{
βββ ∈Rq

∣∣∣βββ≥ 0, Cβββ≥ 0, βq =−∂Bq−1(ξq+r+2)

∂Bq (ξq+r+2)
βq−1

}
. (4.3.21)

Therefore, using Eqs. (4.3.18) - (4.3.19) we can include the linear equality
constraint (4.3.17) inside the objective function, and the optimisation
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problem from Eq. (4.3.20) reduces to

β̂ββ
∗
RLS = argmin

βββ∗∈S∗

−2βββ∗BBB AAAyyy +βββ∗(BBB AAA)′BBB AAAβββ∗︸ ︷︷ ︸
f

 , (4.3.22)

subject to only linear inequality constraints, where

βββ∗ = (β1, . . . ,βq−1)′ , S∗ = {
βββ∗ ≥ 0;CCC AAAβββ∗ ≥ 0

}
. (4.3.23)

Since f is a quadratic function, we solve Eq. (4.3.22) using quadratic opti-
mization. To this end we use the function solve.QP() from the R package
quadprog. Once the restricted least squares estimate β̂ββ

∗
RLS is obtained,

we follow the cone projection approach [53] and we define a point-wise
confidence interval (CI) with 1−α/2 coverage for BBB AAAβββ∗

RLS as

bbb′
p AAAβββ∗∓ zα/2

√
σ̂2

RLS(bbb′
p AAA)′ĜGGbbb′

p AAA , (4.3.24)

where bbbp = BBB(xp ) is the B-spline basis BBB(x) evaluated at the prediction
point xp and the variance is estimated as

σ̂2
RLS = (yyy −BBB AAAβ̂ββ

∗
RLS)′(yyy −BBB AAAβ̂ββ

∗
RLS)

n −1.5d
, (4.3.25)

where d is the dimension of the cone’s face where the projection of yyy onto

F = {ηηη ∈Rn |ηηη=BBB AAAβββ , CCC AAAβββ≥000} (4.3.26)

lands on. The dimension d of F can be computed using the Hinge al-
gorithm implemented in the R package coneproj[55]. The matrix ĜGG is
computed as the following weighted average

ĜGG = ∑
I⊆{1,...,q−1}

ĜGG
(I )

p̂I , (4.3.27)

with the (q −1)× (q −1) matrix ĜGG
(I )

defined as

ĜGG
(I )
k∈I ,l∈I = ((XXX ′

I XXX I )−1)k∈I ,l∈I

ĜGG
(I )
k∉I ,l∈I = ĜGG

(I )
k∈I ,l∉I = ĜGG

(I )
k∉I ,l∉I = 0,

(4.3.28)
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where XXX I are the columns of BBB AAA indexed by I . Each weight p̂I repre-
sents the estimated probability that the projection of yyy lands on the cone’s
face corresponding to I . The probabilities p̂I are obtained by simulating
many normal random vectors with mean vector ŷyy =BBB AAAβ̂ββ

∗
RLS and covari-

ance matrix σ̂2
RLSIII n , and recording the resulting sets I ’s, along with their

frequencies. In case additional unconstrained components are present,
the definition of Eq. (4.3.27) can be extended [53]. Furthermore, if we need
to select from a set of candidate models featuring different covariates, we
use information criteria [56]. For our analyses we use the corrected Akaike
Information Criterion (AICc)

AIC (M) =−2l og (L(β̂ββ
∗
RLSβ̂ββ
∗
RLSβ̂ββ
∗
RLS |y))+2p +2p · p +1

n −p
(4.3.29)

for model selection, where L(βββ|yyy) is the likelihood of model M and p the
number of parameters of M , which is equal to d in our set-up. In case
some models have similar AICc values, we follow Burnham et al. [56] and
we average across all ones using the frequentist model average estimator

β̂ββF M A =
L∑

l=1
λlβ̂ββl , (4.3.30)

where β̂ββl is the parameter vector estimated under the l -th candidate model,
and λl the corresponding weight which can be computed as

λl =
exp(−B ICl /2)∑L

j=1 exp(−B IC j /2)
, (4.3.31)

where B IC j is the Bayesian Information Criterion (BIC) associated with
the j -th model. In case of model averaging, the BIC is preferred over
AIC/AICc, since it provides a better estimation of the marginal likelihood
[56]. From a Bayesian perspective, {λ j } j can be interpreted as an estimator
of the posterior probabilities

p(M j |yyy) = p(y |M j )p(M j )∑
j p(y |M j )p(M j )

, j = 1, . . . , J , (4.3.32)

of the candidate models under a uniform prior {p(M j )} j , where

p(yyy |M j ) =
∫
Θ j

p(y |M j ;Θ j )p(Θ j |M j )dΘ j (4.3.33)

is the marginal likelihood [56].
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4.3.4. PSEUDOCODE

The SCS method for rescaling the observed Shannon entropies given a
set of confounders and a set of features of interest is summarised in the
pseudocode of Algorithm 6.

Input: F(features of interest), C(confounders),
hhh(observed entropies)

Output: hhhr es(rescaled entropies)
1. Get the entire design matrix:

BBB = [
1 C F

]
2. Compute the equality constraints matrix AAA
3. Estimate the restricted least squares parameters:

β̂
∗ = argmin

β∗∈{β∗≥0, CCC AAAβ∗≥0}

{−2β∗BBB AAA log(hhh)+β∗(BBB AAA)′BBB AAAβ∗}
4. Get the parameters β̂

∗
c of the confounders

5. Compute the rescaled entropies:

hhhr es = exp
(
log(hhh)−Cβ̂c

)
Algorithm 6: SCS pseudocode

4.4. APPLICATIONS OF SCS IN NGS DATA

4.4.1. IN-VITRO ASSAY

To evaluate the reliability and sensitivity of the SCS rescaling method, we
generated an IS dataset originating from an EBV-transformed B cell line
transduced with a LV at Multiplicity of Infection (MOI) of 0.1, 1 and 10
to obtain DNA samples with increasing levels of polyclonality. Therefore,
by increasing the MOI at each transduction we expect an increase in the
vector copy number (VCN). As expected, the different vector doses re-
sulted in different VCNs (see Tables 4.A.2-4.A.3). Different amounts of
DNA (5, 20 and 100 ng) were used for IS retrieval. LV ISs were retrieved
by Sonication Linker-mediated (SLiM) - PCR [57]. Briefly, DNA material
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was sheared by sonication, subjected to end-repair and adenylation and
then split in 3 technical replicates. Each replicate was ligated to a different
barcoded linker cassette and subjected to two rounds of PCR allowing the
amplification of the cellular genomic portion close to the vector IS. The
different barcoded PCR products from each sample were assembled in
libraries and sequenced by using Illumina platform. After sequencing,
reads were processed by a dedicated bioinformatic pipeline [58] to identify
for each PCR/sample the different vector integration sites. For each IS
the clonal abundance was determined by the R package SonicLength [59]
using the corresponding fragment length distribution. A varying number
of ISs, ranging from 22 to 40575, was obtained from each sample (see
Table 4.A.1) and, as expected, the number of IS retrieved from each sample
increased proportionally to the vector dose (see Table 4.A.2). The total
number of sample’s sequencing reads was used as proxy for the sample’s se-
quencing depth (SD). The magnitude of VCN, DNA amount and SD affects
the clonality so that the samples are incomparable. Indeed Figure 4.2.1
clearly shows a positive trend between the Shannon entropy index and the
potential confounders. With the VA we are able to really understand the
impact of the variables (confounding factors) to the entropy index, thus
allowing a robust integrated analysis. We used the VA as “ground-truth” to
compare our SCS-rescaling method with the competitor approaches (RAR
and SRS). In our SCS method we took in consideration the DNA amount,
VCN and SD as potential confounders.

In this case the number of candidate confounders is K = 3 with no addi-
tional factors of interest (J = 0) and, according to the general formulation
of Eq. (4.3.3), the model was defined as

log(hhh) = 1β0 + [ Cdna Cvcn Csd ]︸ ︷︷ ︸
C

[
βdna
βvcn
βsd

]
︸ ︷︷ ︸

βc

+εεε , (4.4.1)

where we used two equidistant interior knots and the range of values as
boundary knots for every SCS term in C. We report the corresponding fitted
surface in Figure 4.4.1 showing only the partial surface corresponding to
the DNA and the VCN. In Figure 4.4.1 we also show the rescaled values, i.e.
the residuals that remain after having adjusted for the confounders. That
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is, according to the model definition of Eq. (4.3.3), we used the residuals

hhhr es = exp
(
log(hhh)−Cβ̂c

)
(4.4.2)

as the rescaled values, where β̂c is the vector of the fitted parameters.
We compared our method with the two previously proposed in literature,
such as the rarefaction (RAR) [14] and the ranked subsampling (SRS)
[19] approaches. We assessed the efficiency of the rescaling methods by
correlation p-values for the two-sided test problem:

H0 : ρ(hhh∗,ccck ) = 0 vs H1 : ρ(hhh∗,ccck ) ̸= 0, (4.4.3)

where ρ(·, ·) is the Spearman’s rank correlation function, hhh∗ is the vector
of the Shannon entropies either observed or rescaled with one of the can-
didate methods, and finally ccck is the vector of the corresponding values
collected for the k-th confounder. We preferred Spearman’s rank correla-
tion over Pearson correlation since we assumed that the relationships are
monotonic and possibly non-linear. Low p-values give statistical evidence
for dependencies and thus for unsolved confounding effects. For the com-
parison, the total amount of reads of the sample with the lowest SD has
been chosen as rarefaction level with 1000 replications for both the stan-
dard rarefaction (RAR) and its ranked version (SRS). We report the results
in Figure 4.4.2. These pictures show that our SCS method outperformed
both RAR and SRS methods in terms of correlation test p-values between
the rescaled entropy and every potential confounder. Indeed, for all three
confounders our new approach yields high p-values (0.37, 0.15 and 0.31
for DNA, VCN and SD respectively), so that we have no indication to reject
the null hypothesis that the rescaled entropies and the confounder values
are still correlated. For each of the three competing approaches we got
2-3 very low p-values (≪ 0.01), so that statistically significant amounts of
correlations are left.

Subsequently, we also checked whether our SCS-rescaling method
unveils comparable clonal levels among the samples. A proper rescaling
method should return similar clonal diversities independently from the
confounders. Indeed, Figures 4.4.1 and 4.4.3 show that our SCS-rescaling
method drastically reduced the variability of the observed entropies due
to the effect of the confounders and, in turn, that the clonal level of the
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VA samples, measured by the SCS-rescaled Shannon entropy index, is
approximately the same. It can be seen from Figure 4.4.3 that the com-
petitor methods RAR and SRS are also able to reduce the variability of
the observed entropies. However, unlike our new SCS-rescaling method,
the competing methods did not remove the effect of the confounders, as
confirmed by the p-values of Spearman’s rank correlation tests provided in
Figure 4.4.2. While the SCS-rescaling method made all (rank) correlations
insignificant, the competing methods RAR and SRS left significant rank
correlations (=dependencies) between confounders and the entropy. For
more explanations and illustrations we refer to Section 4.B.2 and Figure
4.B.2.

4.4.2. VIRAL VECTOR SAFETY IN A GENOTOXICITY STUDY

We analysed the IS data collected from an established hematopoietic stem
cell gene therapy model previously used to demonstrate how the genotoxic
impact of integrating vectors is strongly modulated by their designs [20, 21].
In this experimental setup C dkn2a−/− tumor prone Li n− cells were ex-
vivo transduced with two different LVs expressing GFP: the highly geno-
toxic LV vector, LV.SF.LTR (hereinafter refer as LTR) and the non-genotoxic
SIN.LV.PGK.GFP.PRE (hereinafter referred as PGK). Transductions protocol
and culture conditions were reported in [20, 21]. Twenty-four hours after
transduction, vector- and mock- transduced cells (5-7.5×105 cells/mouse)
were transplanted into lethally irradiated wild-type mice by tail vein in-
jection (Mock-control, N=19; LV.SF.LTR, N=24 and SINLV.PGK, N=23). Six
days after transduction the percentages of GFP+ cells were assessed by
Fluorescence Activated Cell Sorting (FACS) analysis and ranged from 90 to
95% for all the vectors and conditions. Engraftment level of transduced
cells was assessed by measuring the percentage of GFP-expressing cells in
the peripheral blood at 8 weeks post transplantation and were 80.8±2.9
% and 46.2±4.8 % in the group of mice transplanted with PGK and LTR
vector respectively. As expected, mice transplanted with C dkn2a−/− Li n−

cells transduced with the the LTR vector developed tumors and died sig-
nificantly earlier compared to mock-treated mice (p < 0.0001, Log-rank
Mantel-Cox test, median survival time: 282 and 149.5 days for mock-
control and LTR- transduced group respectively). Mice transplanted with
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PGK-transduced cells did not show any acceleration of tumor onset com-
pared to the mock-control group (median survival time: 289 days). All
data are in agreement with the one previously published [20, 21]. For the
retrieval of vector insertion sites (ISs), peripheral blood was collected on a
monthly basis from transplanted animals receiving transduced cells. Lym-
phoid B and T cells as well as myeloid cells were isolated by fluorescence
activated cell sorting. To recover enough DNA material, equal amounts of
blood from two or three mice belonging to the same experimental group
were pooled before the sorting procedure. The composition of pools was
maintained constant during the whole experiment, so that each pool is
composed by the same mice over time. ISs were then retrieved by SLiM-
PCR[60] at different time points from sorted T (CD3+) and B (CD19+)
lymphocytes, from myeloid cells (CD11b+) and unsorted blood cells (total
MNC). From the DNA purified from all the different sorted samples, we
also measured the VCN by ddPCR. Overall, a higher amount of ISs were
retrieved from the group of mice transplanted with Li n− cells transduced
with PGK, reflecting the higher level of VCN observed in PGK versus LTR
group of transplanted animals. Few statistics on the number of IS collected
in each treatment/condition, along with the corresponding VCN, are re-
ported in Table 4.4.1. The Shannon entropy index was then computed
from each IS sample and the application of a simple spline without shape
constraints and without considering any technical confounder yielded
the results shown in Figure 4.4.4. From Figure 4.4.4 we cannot see a clear
separation between the entropy profiles of the two vectors PGK and LTR.
The prediction intervals overlap so that the differences in the profiles do
not appear to be statistically significant. Henceforth, we cannot draw the
conclusion that PGK is safer than LTR. However, the high variability of
DNA amount (in nanograms), VCN, and the SD used for IS retrieval has a
clear impact on the entropy measurements, as suggested by Figure 4.4.5.
Furthermore, since some mice died faster, the size of each pool (PS) de-
creased over time, leading to variation in the cell counts and in turn in the
Shannon diversity index calculations (see Figure 4.4.5). Few statistics of
these quantites are reported in Table 4.4.1 separately for each vector treat-
ment. This suggests that initial results of figure 6 might be biased by the
presence of these confounding factors. The heterogeneity of these factors
may affect the estimate of the cell counts and in turn the corresponding
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PGK

DNA VCN PS SD nI S

Min. 8.64 1.31 1 60 35
1st Qu. 106.56 10.9 2 1969 433

Median 200.00 13.59 2 5881 720
Mean 181.07 12.8 1.964 9351 989.3

3rd Qu. 200.25 13.9 2 14055 1220
Max. 973.00 27 3 49853 4324

LTR

DNA VCN PS SD nI S

8.64 0.24 1 189 35
94.50 5.32 1 1130 217
200.00 6.3 2 2973 383
222.88 6.219 2.104 4695 731.9
222.50 7.8 3 7390 873
973.00 10.5 7 15375 3213

Table 4.4.1 | Mice study: Quartiles and range of the DNA amount, VCN, PS, SD and nI S for
the n = 242 samples and separately for PGK (top) and LTR (bottom) treatment conditions.

Shannon entropies. We therefore applied our shape-constrained spline
approach of Section 3, including the DNA amount, VCN, SD and PS as
potential confounders.

We proceeded as follows: We used the general formulation of Eq. (4.3.3),
including a shape constrained spline (SCS) term with two interior knots
for every confounder, plus a spline term w.r.t. the time decay for every
combination of cell lineage/marker (L) and viral vector (V ) as additional
factors of interest. In this way we described the entropy decays separately
for each combination of cell marker and treatment (viral vector) while
removing the bias provided by the potential confounders. We also set the
vector specific intercept V to zero to make sure all the individuals have
the same clonal diversity before the treatments. Therefore, following the
general formulation of Eq. (4.3.3), the model it has been explicitly defined
as

log(hhh) = 1β0 + [ Cdna Cvcn Cps Csd ]︸ ︷︷ ︸
C

βdna
βvcn
βps

βsd


︸ ︷︷ ︸

βc

+


S

l1
t

S
l2
t

S
l3
t

S
l4
t


︸ ︷︷ ︸

F

βl1
βl2
βl3
βl4


︸ ︷︷ ︸
β f

+εεε , (4.4.4)

where C binds all the confounder’s SCS bases and βc is the vector with
all the corresponding parameters stacked together. Alike, F is a block-
diagonal matrix where each block Sl

t is defined as

Sl
t =

[
1 S

l ,v1
t

1 S
l ,v2
t

]
, (4.4.5)
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and each sub-block Sl ,v
t , corresponding to the l-th cell lineage and the

viral vector v , is the basis of a monotone decreasing quadratic spline w.r.t.
the time t for which we assume a steady-state to the left of the second
right boundary knot. Indeed, each mouse pool started with 2-7 mice,
which then successively died, until no mouse was left, so that no mea-
surements could be taken anymore and therefore we do not expect any
further change in the entropy thereafter. For this purpose we use again
the affine transformation defined in Eqs. (4.3.18) - (4.3.19). Finally, we
refer to βββ f as the vector with all the corresponding parameters stacked
together. Therefore in this case the number of confounders is K = 4 and
the number of additional factors of interest is J = 8, namely a spline basis
for the time-decay for every combination of the two treatments and the
four cell lineages.

In order to identify the most important confounders among the can-
didates, we have fitted our model for each of the 24 −1 = 15 possible con-
founder subsets. Each candidate model included always F as fixed term
and and featured at least one SCS term in C for the confounders. Then
we averaged across the most likely models according to the frequentist
criterion defined in Eqs. (4.3.30) - (4.3.31) and we reported in Figure 4.4.6
the posterior distribution, along with the marginal inclusion probabilities
of the four individual confounders. Results from model averaging sug-
gest that the posterior distribution is mainly dominated by three models
namely: PS + SD (4th model), VCN + SD (6th model), and SD (8th model).
The remaining 12 models get substantially lower posterior probabilities
and thus have only negligible effects on the model averaging estimator.
Therefore, after computing the frequentist model averaging estimator

β̂ββ
f ma
c =

[
β̂0

(
β̂ββ

f ma
c

)′
β̂ββ
′
f

]′
(4.4.6)

of Eq. (4.3.30), we used the residuals

hhhr es = exp
(
log(hhh)−Cβ̂

f ma
c

)
(4.4.7)

corresponding to the confounder terms as the rescaled values. Rescaled en-
tropies are shown in Figure 4.4.7 together with the lineage×vector-specific
spline decays with a confidence interval of 0.95 coverage. Thanks to the
SCS-rescaling approach, a significant difference in the entropy decay for
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MNC, T-cells (CD3+) and Myeloid cells (CD11b) was observed depending
on the genotoxicity level of the vector adopted. Whereas in the B-cell com-
partment no major differences in the entropy decay under the two vector
treatments were observed. Indeed, consistently with the previous results
[20, 21], the B-cell compartment is less affected by the genotoxicity of the
LTR vector. Figures 4.B.5-4.B.7 from Section 4.B.2 clearly indicate that our
proposed method SCS outperforms the competitor ones in detecting such
differences.

4.5. DISCUSSION

We have shown that the Shannon entropy index, a widely used measure
of genetic variability, is strongly affected by the variability of technical
factors. We have introduced a shape-constrained splines (SCS) approach
aimed to quantitatively measure and remove the effect of confounders
from the target of interest. In particular we have shown that our approach
can remove confounding effects from the Shannon entropy index. We
also have shown that our SCS approach outperforms all the state of the
art rarefaction approaches like the RAR [14] and its ranked-subsampling
version [19]. That is, using a correlation test, we have found statistical
evidence that the SCS-rescaled diversity measure does not significantly
depend on the effect of the confounders anymore. Furthermore, our
method is useful for genetic applications, as it provides an unbiased and
more affordable measure of clonal diversity, and in turn it avoids drawing
misleading results. As an example, the entropy decay of treatment-specific
longitudinal studies may be erroneously interpreted if we do not take into
account that the changes in the entropy increments may depend more on
the confounders than on the biological treatments. Our method allows to
discriminate between the two effects and to remove the one that comes
from the confounders.

Since our approach is spline-regression based, its main limitation
could be related to the available sample size. This is a potential prob-
lem when when the number n of libraries is too low to define a spline
basis. For the same reason the degree of the splines and the number of its
knots should be chosen carefully. In particular, for the case of only one
library/sample it would be possible to rescale its diversity only using the



4

136 4. A NORMALIZED MEASURE OF CLONAL DIVERSITY

parameters inferred from an external controlled environment, like the VA
explored in Section 4.4.1, with a sufficient library size n. This is the main
price we pay if we switch from a rarefaction-based rescaling approach
to a spline-regression based one. Our model averaging approach allows
also to rank the impact of the confounders according to their approxi-
mated posterior probabilities. We perform model averaging by means of
the Bayesian Information Criterion which allow us to get an estimate of
the marginal likelihood of each candidate model, and in turn, of the cor-
responding marginal confounder inclusion posterior probabilities. One
possible methodological extension of this framework could be the im-
plementation of a more precise method to estimate the marginal likeli-
hood. This could, for example, either be done by Laplace Integration or by
Bayesian thermodynamic integration.

4.6. AVAILABILITY OF DATA AND MATERIALS

The code that supports the findings of this study is openly available at
https://github.com/delcore-luca/SCS.



4.6. AVAILABILITY OF DATA AND MATERIALS

4

137

20
40

60
80

46810

D
N

A
 (

ng
)

entropy

a

0
5

10
15

46810
V

C
N

entropy

b

0
20

00
0

40
00

0

46810

S
D

 (
ce

lls
)

entropy

c

Fi
gu

re
4.

2.
1

|F
ro

m
le

ft
to

ri
gh

t:
Sc

at
te

r
p

lo
to

ft
h

e
Sh

an
n

on
en

tr
op

y
in

d
ex

ag
ai

n
st

th
e

D
N

A
am

ou
n

t,
th

e
ve

ct
or

co
p

y
n

u
m

b
er

(V
C

N
)

an
d

th
e

se
q

u
en

ci
n

g
d

ep
th

(S
D

)
fo

r
al

lt
h

e
sa

m
p

le
s

in
cl

u
d

ed
in

th
e

in
-v

it
ro

as
sa

y.
O

n
ly

a
si

n
gl

e
am

o
u

n
to

fD
N

A
h

as
b

ee
n

ta
ke

n
fo

r
ev

er
y

sa
m

p
le

.T
h

e
to

ta
la

m
o

u
n

t
o

fi
n

te
gr

at
io

n
s

fo
u

n
d

in
a

sa
m

p
le

,n
am

el
y

th
e

to
ta

ln
u

m
b

er
o

fs
am

p
le

’s
se

q
u

en
ci

n
g

re
ad

s,
h

as
b

ee
n

u
se

d
as

p
ro

xy
fo

r
th

e
sa

m
p

le
’s

se
q

u
en

ci
n

g
d

ep
th

(S
D

).



4

138 4. A NORMALIZED MEASURE OF CLONAL DIVERSITY

  0
 20

 40
 60

 80
100

 2  4  6  8 10 12

 0
 5

10
15

20

D
N

A
 (ng)

VCN

OBS entropy

a

  0
 20

 40
 60

 80
100

2.83.03.23.43.63.84.04.2

 0
 5

10
15

20

D
N

A
 (ng)

VCN

SCS entropy

b

 0
10

20
30

40
50

 2  4  6  8 10 12

 0
 5

10
15

20

S
D(x10

3)
VCN

OBS entropy

c

 0
10

20
30

40
50

2.83.03.23.43.63.84.04.2

 0
 5

10
15

20

S
D(x10

3)

VCN

SCS entropy

d

Figu
re

4.4.1
|O

b
served

(left)
an

d
SC

S-rescaled
(righ

t)
en

tro
p

ies
(d

o
tsym

b
o

ls)
as

a
fu

n
ctio

n
o

fth
e

co
n

fo
u

n
d

ers,to
geth

er
w

ith
th

e
corresp

on
d

in
g

sh
ap

e
con

strain
ed

(b
ivariate)sp

lin
es

(green
su

rface).Top
p

an
els

sh
ow

th
e

slices
for

th
e

D
N

A
an

d
th

e
V

C
N

.B
ottom

p
an

els
sh

ow
th

e
slices

fo
r

th
e

SD
an

d
th

e
V

C
N

.



4.6. AVAILABILITY OF DATA AND MATERIALS

4

139

O
B

S
R

A
R

S
R

S
S

C
S

ρ(h, DNA(ng))
0.00.20.40.6

***

**

a

O
B

S
R

A
R

S
R

S
S

C
S

ρ(h, VCN)
0.00.20.40.6

****

*****

****

b

O
B

S
R

A
R

S
R

S
S

C
S

ρ(h, SD(cells))
0.00.20.40.60.8

******

******

**

c

F
ig

u
re

4.
4.

2
|E

ac
h

p
an

el
sh

ow
s

th
e

ab
so

lu
te

va
lu

e
o

f
th

e
Sp

ea
rm

an
’s

ra
n

k
ρ

co
rr

el
at

io
n

co
ef

fi
ci

en
t
ρ

(h
,c

on
fo

un
de

r)
(y

-a
xi

s)
b

et
w

ee
n

a
co

n
fo

u
n

d
er

an
d

th
e

o
b

se
rv

ed
o

r
re

sc
al

ed
Sh

an
n

o
n

en
tr

o
p

ie
s

(d
if

fe
re

n
t

b
ar

s)
.

Fo
r

ev
er

y
co

rr
el

at
io

n
co

ef
fi

ci
en

t,
w

e
p

er
fo

rm
ed

th
e

tw
o

-s
id

ed
Sp

ea
rm

an
’s

ra
n

k
co

rr
el

at
io

n
te

st
o

f
E

q
.(

4.
4.

3)
fo

r
ch

ec
ki

n
g

th
e

h
yp

o
th

es
es

H
0

:ρ
(h

,c
on

fo
un

de
r)

=
0

VS
H

1
:ρ

(h
,c

on
fo

un
de

r)
̸=

0.
T

h
e

n
u

m
b

er
o

fl
ea

d
in

g
ze

ro
s

af
te

r
th

e
d

ec
im

al
p

o
in

to
ft

h
e

p
-v

al
u

es
ar

e
re

p
o

rt
ed

o
n

to
p

o
fe

ac
h

b
ar

as
w

h
it

e
st

ar
s.



4

140 4. A NORMALIZED MEASURE OF CLONAL DIVERSITY

O
B

S
S

C
S

R
A

R
S

R
S

4 6 8 10
entropy

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●● ●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

● ●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

Figu
re

4.4.3
|B

ox-p
lot(m

in
im

u
m

,m
axim

u
m

,m
ed

ian
,fi

rstq
u

artile
an

d
th

ird
q

u
artile)ofth

e
ob

served
(O

B
S)an

d
rescaled

Sh
an

n
on

en
tro

p
ies

u
sin

g
th

e
SC

S,R
A

R
an

d
SR

S
ap

p
ro

ach
es.



4.6. AVAILABILITY OF DATA AND MATERIALS

4

141

50
10

0
15

0
20

0
25

0

34567

M
N

C

tim
e 

(d
ay

s)

OBS−entropy

a

50
10

0
15

0
20

0
25

0

34567

C
D

11
B

tim
e 

(d
ay

s)

OBS−entropy

b

50
10

0
15

0
20

0
25

0

34567

C
D

19

tim
e 

(d
ay

s)

OBS−entropy

c

50
10

0
15

0
20

0
25

0

34567

C
D

3

tim
e 

(d
ay

s)
OBS−entropy

d

●
PG

K
LT
R

F
ig

u
re

4.
4.

4
|O

b
se

rv
ed

Sh
an

n
o

n
en

tr
o

p
ie

s
(d

o
t

sy
m

b
o

ls
)

ov
er

ti
m

e
(x

-a
xi

s)
in

ea
ch

tr
ea

tm
en

t
(d

if
fe

re
n

t
co

lo
rs

),
al

o
n

g
w

it
h

a
si

m
p

le
sp

li
n

e
w

it
h

o
u

t
an

y
sh

ap
e

co
n

st
ra

in
ts

an
d

co
n

fo
u

n
d

er
ad

ju
st

m
en

ts
fo

r
ev

er
y

co
m

b
in

at
io

n
o

fc
el

lm
ar

ke
r

an
d

vi
ra

lv
ec

to
r.

Q
u

ad
ra

ti
c

sp
lin

es
ar

e
fi

tt
ed

u
si

n
g

th
e

st
an

d
ar

d
lm

()
an

d
bs

()
R

fu
n

ct
io

n
s.



4

142 4. A NORMALIZED MEASURE OF CLONAL DIVERSITY

0
200

400
600

800
1000

3 4 5 6 7

D
N

A
 (ng)

entropy

a

0
5

10
15

20
25

3 4 5 6 7

V
C

N

entropy

b

1
2

3
4

5
6

7

3 4 5 6 7

pool size (n. m
ice)

entropy

c

0
10000

30000
50000

3 4 5 6 7
seq. depth (cells)

entropy

d

Figu
re

4.4.5
|Fro

m
to

p
left

to
b

o
tto

m
righ

t:Scatter
p

lo
t

o
fth

e
raw

(u
n

scaled
)

Sh
an

n
o

n
en

tro
p

y
in

d
ex

co
m

p
u

ted
fro

m
th

e
en

tire
d

ataset(n=
242

IS
sam

p
les)

versu
s

th
e

D
N

A
am

o
u

n
t,th

e
vecto

r
co

p
y

n
u

m
b

er(V
C

N
),th

e
p

o
o

lsize
(P

S)
an

d
th

e
seq

u
en

cin
g

d
ep

th
(SD

).



4.6. AVAILABILITY OF DATA AND MATERIALS

4

143

1
3

5
7

9
11

13
15

m
od

el

posterior probability
0.00.20.40.6

a

D
N

A
V

C
N

P
S

S
D

va
ria

bl
e

posterior probability
0.00.40.8

b

Fi
gu

re
4.

4.
6

|A
p

p
ro

xi
m

at
ed

p
os

te
ri

or
d

is
tr

ib
u

ti
on

d
is

tr
ib

u
ti

on
(l

ef
t)

of
th

e
15

ca
n

d
id

at
e

m
od

el
s

ac
co

rd
in

g
to

th
e

fr
eq

u
en

ti
st

m
od

el
av

er
ag

in
g

m
et

h
o

d
o

fE
q

s.
(4

.3
.3

0)
-

(4
.3

.3
1)

,a
n

d
th

e
m

ar
gi

n
al

p
o

st
er

io
r

p
ro

b
ab

il
it

ie
s

o
ft

h
e

4
p

o
te

n
ti

al
co

n
fo

u
n

d
er

s
(r

ig
h

t)
.



4

144 4. A NORMALIZED MEASURE OF CLONAL DIVERSITY

50
100

150
200

250

3.0 4.0 5.0 6.0

M
N

C

tim
e (days)

SCS−entropy

a

50
100

150
200

250

3.0 4.0 5.0 6.0

C
D

11B

tim
e (days)

SCS−entropy

b

50
100

150
200

250

3.0 4.0 5.0 6.0

C
D

19

tim
e (days)

SCS−entropy

c

50
100

150
200

250

3.0 4.0 5.0 6.0

C
D

3

tim
e (days)

SCS−entropy

d

●
PG

K
LTR

Figu
re

4.4.7
|R

escaled
Sh

an
n

on
en

trop
ies

(y-axis)over
tim

e
(x

-axis)for
every

com
b

in
ation

ofcellm
arker

(p
an

els)an
d

viralvector
treatm

en
t(co

lo
rs)

to
geth

er
w

ith
th

e
co

rresp
o

n
d

in
g

d
ecay

sp
lin

es.



APPENDIX

4.A. IN-VITRO ASSAY

In this experimental setup the genomic DNA of a bulk-transduced cell
line harboring lentiviral insertions randomly distributed in the genome.
This is a controlled environment designed to quantify the impact of sev-
eral confounding factors to the clonal entropy. More specifically, the ge-
nomic DNA is obtained from a polyclonal lentiviral-vector (LV) marked cell
line (JY). The DNA material was sheared by sonication, end-repaired and
adenylated, split in technical triplicates, ligated of the barcoded linker cas-
settes and subjected to PCR amplification protocols for IS retrieval. Clonal
quantification is obtained using the R package SonicLength[59]. The total
amount of integrations found in a sample, namely the total number of sam-
ple’s sequencing reads, has been used as proxy for the sample’s sequencing
depth (SD). Few summary statistics of the DNA amount, multiplicity of
infection (MOI), VCN, number of distinct IS (nI S) and SD are provided in
Table 4.A.1. In Table 4.A.2 we provide the VCN, the total number of distinct
ISs and the total SD in each condition, that is for every combination of
DNA amount and MOI. The sample-specific information is provided in
Table 4.A.3.

4.B. SUPPLEMENTARY FIGURES

4.B.1. FITTING QUADRATIC AND CUBIC SPLINES

We fitted and compared quadratic and cubic splines on the VA data of
Section 4.4.1. First, we used quadratic splines with one interior knot for
the DNA amount and the VCN and two interior knots for the sequencing
depth. Second, we used cubic splines with no interior knots for the DNA
amount and the VCN and two interior knots for the sequencing depth.
The number of knots were chosen, so as to get a full-rank design matrix,
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DNA MOI VCN nI S SD
Min. : 5.00 Min. : 0.1 Min. : 0.484 Min. : 22 Min. : 41
1st Qu.: 5.00 1st Qu.: 0.1 1st Qu.: 0.484 1st Qu.: 188 1st Qu.: 419
Median : 20.00 Median : 1.0 Median : 2.850 Median : 1004 Median : 1340
Mean : 41.67 Mean : 3.7 Mean : 7.478 Mean : 5544 Mean : 6032
3rd Qu.:100.00 3rd Qu.:10.0 3rd Qu.:19.100 3rd Qu.: 3811 3rd Qu.: 4398
Max. :100.00 Max. :10.0 Max. :19.100 Max. :40575 Max. :41787

Table 4.A.1 | In-vitro assay (VA): Quartiles and ranges of the DNA amount, MOI, VCN, nI S

and SD for the n = 27 samples.

DNA MOI VCN nI S SD
1 5 0.10 0.48 143.00 361.00
2 20 0.10 0.48 548.00 1288.00
3 100 0.10 0.48 3307.00 4936.00
4 5 1.00 2.85 578.00 1043.00
5 20 1.00 2.85 2008.00 3044.00
6 100 1.00 2.85 19239.00 22021.00
7 5 10.00 19.10 3166.00 4163.00
8 20 10.00 19.10 10506.00 12331.00
9 100 10.00 19.10 110182.00 113689.00

Table 4.A.2 | In-vitro assay (VA): VCN, total number of distinct ISs and total SD in each of
the nine conditions (combination of DNA amount and MOI).

and in turn, a positive-definite quadratic form, which is needed during
optimization. Results are shown below in figure 4.B.1. The results in
figure 4.B.1 show that there is not much difference between the two fitted
surfaces (visual inspection). To be more objective, we also computed
the two corrected Akaike Information criteria (cAIC) and found that the
quadratic spline yields a lower cAIC value than the cubic spline.

4.B.2. COMPARISONS OF RESCALING METHODS

To make clearer what we mean by “RAR and SCS leave significant rank
correlations (=dependencies)” in Section 4.4.1, we report here two addi-
tional figures. Figure 4.B.2 shows an additional graphical representation of
the Spearman’s rank correlation tests performed in Section 4.4.1. Figure
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4.B.2 clearly shows that our SCS-rescaled entropies outperform both RAR-
and SRS- rescaled entropies in terms of dependence on the candidate
confounders. Indeed, the red-highlighted square indicate that both RAR-
and SRS- rescaled entropies still suffers from significant dependence on
the confounders. Whereas, the SCS-rescaled entropies do not depend on
any of the confounders anymore (all three correlations are insignificant).
These are the results that we report in figure 3. Figures 4.B.3-4.B.3 show
the observed entropies and the SCS-, RAR-, SRS- rescaled Shannon en-
tropies against the candidate confounders, along with the fitted surfaces.
These figures show that only the SCS-rescaled entropies do not depend
on the confounders anymore, as the fitted surface is an (almost) horizon-
tal plane. The surfaces fitted for RAR- and SRS- rescaled entropies are
non-horizontal planes, as the entropies still depend on the confounders.

These analyses better clarify why SCS performs significantly better
than the competitor methods. For the mice study data we do not know
the ‘ground truth’, so that we cannot objectively cross-compare the perfor-
mances of the different methods. However, we have applied all three meth-
ods to monitor the rescaled entropies in the mice study. The results are
reported in Figures 4.B.5 - 4.B.7, showing that the proposed SCS-rescaling
method yields the tightest confidence intervals and shows the clearest
(smoothest) trends.
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DNA MOI VCN nI S SD
100 0.10 0.48 1300 1954.00
100 1.00 2.85 6082 7264.00
100 10.00 19.10 40575 41787.00

20 0.10 0.48 183 429.00
20 1.00 2.85 649 1087.00
20 10.00 19.10 3933 4631.00

5 0.10 0.48 78 250.00
5 1.00 2.85 204 395.00
5 10.00 19.10 1051 1492.00

100 0.10 0.48 1074 1557.00
100 1.00 2.85 6632 7479.00
100 10.00 19.10 34629 35743.00

20 0.10 0.48 177 450.00
20 1.00 2.85 692 966.00
20 10.00 19.10 2884 3534.00

5 0.10 0.48 43 70.00
5 1.00 2.85 188 387.00
5 10.00 19.10 1004 1340.00

100 0.10 0.48 933 1425.00
100 1.00 2.85 6525 7278.00
100 10.00 19.10 34978 36159.00

20 0.10 0.48 188 409.00
20 1.00 2.85 667 991.00
20 10.00 19.10 3689 4166.00

5 0.10 0.48 22 41.00
5 1.00 2.85 186 261.00
5 10.00 19.10 1111 1331.00

Table 4.A.3 | In-vitro assay (VA): VCN, number of distinct ISs and SD in each of the n = 27
samples.
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Figure 4.B.2 | Pairwise correlation scatter plots between ranks of the candidate con-
founders (DNA, VCN, SD), the ranks of the observed entropies (OBS), and the ranks of the
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SUMMARY

AIM OF THE WORK

Mathematical models of haematopoiesis provide relevant insights to sup-
port the design of novel gene therapy strategies [1, 2]. Clonal tracking is
a recent high-throughput technology that allows to calibrate such math-
ematical models by quantitatively tracing the evolution of haematopoi-
etic stem cells [3]. In particular, cell differentiation networks and clon-
ality are key surveillance studies in gene therapy [4, 5]. While cell dif-
ferentiation networks describe the hierarchical relationships underlying
haematopoiesis, clonality is aimed at quantifying the clonal population
complexity (clonal diversity) and to detect possible therapy side effects,
such as events of clonal dominance [6].

In this work we investigate cell differentiation using stochastic quasi-
reaction networks combined with extended Kalman filtering, leading to
our proposed Kalman Reaction Networks framework Karen [7]. This frame-
work takes into account that typical clonal tracking data suffers from
missing cell types and false negative errors. It consists in a continuous
-discrete state space model with a stochastic reaction network describing
the dynamics, coupled with a linear Gaussian measurement model that
links the noisy observations to the underlying states. In particular, (i) we
develop an expectation-maximization inference algorithm; (ii) we exten-
sively test our method on several simulation studies, including a direct
comparison with the state-of-the-art methods, and finally (iii) we apply
our framework to five in-vivo clonal tracking datasets to compare different
biologically plausible models of cell differentiation.

Subsequently, in order to detect possible adverse events of clonal
dominance we combine stochastic quasi-reaction networks with random-
effects (RestoreNet) [8]. Our proposed method consists in a set of biochem-
ical reactions translated into a generalized mixed-effects model including
random effects on the clones for the dynamic parameters. The unknown
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parameters are estimated with a tailor-made expectation maximization
algorithm. In particular, (i) we validate our inference method in several
synthetic studies, (ii) we compare its performance with the state of the
art approaches, and finally (iii) we apply it in two in-vivo clonal tracking
studies. Finally, to objectively measure clonal complexity, we propose a
method that combines shape-constrained splines (SCS) with the Shannon
entropy index [9]. Our proposed method leverages the effect of technical
artefacts from the Shannon entropy index, thus providing an unbiased
measure of clonal diversity. Our SCS-rescaling method was first validated
in a specifically designed in-vitro assay, and then used to objectively evalu-
ate the impact of vector genotoxicity on the entropy decays of tumor prone
mice.

CHAPTERS CONTRIBUTION

The content of the thesis can be summarised as follows:

• Chapter 1 first introduces the research questions that we address,
and provides relevant biology background. Subsequently, it follows
a brief discussion on the state-of-the-art methods and our proposed
approches.

• Chapter 2 focuses on our Kalman reaction network framework Karen
aimed at inferring cell differentiation networks from typical clonal
tracking data. We first introduce and validate our method, then we
apply it on five in-vivo clonal tracking studies.

• Chapter 3 introduces our proposed random-effects stochastic reac-
tion networks RestoreNet to detect possible adverse events of clonal
dominance in gene therapy clonal tracking studies. After validating
our framework with several synthetic studies, we analyse two in-vivo
models of haematopoiesis.

• Chapter 4 focuses on our proposed shape-constraint rescaled Shan-
non entropy index to provide an artefacts-free measure of clonal
diversity. We first validate our SCS method on a specifically designed
in-vitro clonal tracking study, then we apply it on a genotoxicity pre-
clinical study.
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FUTURE DIRECTIONS

The main approximation in both the basal LLA and random-effects Re-
storeNet formulations is the piece-wise linearity of the process. That is, in
both cases we consider first a local linear approximation of the Ito equa-
tion, which then we use to infer the process parameters either with or
without random-effects. Although the linearity assumption makes all the
computations easier, this approximation becomes poor as the time lag
increments (the ∆ts) of the collected data increase. This can be addressed
by introducing in the likelihood higher-order approximation terms than
the ones considered by the Euler-Maruyama method. The Milstein approx-
imation is a possible choice. Another, completely different, approach is to
employ extended Kalman filtering (EKF) which is suitable for non-linear
state space formulations, as we did for Karen. Furthermore, RestoreNet
cannot consider false-negative errors or missing values of clonal tracking
data, as Karen does. Also for this limitation, an EKF formulation could be a
possible extension of RestoreNet.

Although the Gaussian assumption of Karen makes the analytical for-
mulations of the likelihoods explicitly available, this approximation may
become poor when the data contains outliers or shows non-Gaussian be-
haviors. A distribution-free approach, such as the Kernel Kalman Rule,
could be a possible extension [10, 11]. Besides, both frameworks Re-
storeNet and Karen consider reaction rates constant for the whole study
period. Extensions that allow for modeling reaction rates as spline func-
tions of clinically relevant variables are within reach and will be the goal of
future research.

Furthermore, since our SCS approach for rescaling Shannon entropy
is regression-based, its main limitation is related to the available sample
size, a potential issue when defining a spline basis. Thus, the number
of knots of the splines should be chosen carefully. Our model averaging
approach allows to rank the impact of the confounders according to their
approximated inclusion probabilities by means of the Bayesian Informa-
tion Criterion. A more precise method to estimate the marginal likelihood,
such as Laplace Integration or Bayesian thermodynamic integration, can
be a possible improvement.
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DOEL VAN HET WERK

Wiskundige modellen van hematopoëse bieden relevante inzichten ter
ondersteuning van het ontwerp van nieuwe gentherapiestrategieën [1, 2].
Clonal tracking is een recente high-throughput technologie die het mo-
gelijk maakt om dergelijke wiskundige modellen te kalibreren door de
evolutie van hematopoëtische stamcellen kwantitatief te volgen [3]. Met
name celdifferentiatienetwerken en klonaliteit zijn belangrijke elementen
in surveillancestudies in gentherapie [4, 5]. Terwijl celdifferentiatienet-
werken de hiërarchische relaties beschrijven die ten grondslag liggen aan
hematopoëse, is klonaliteit gericht op het kwantificeren van de complexi-
teit van de klonale populatie (klonale diversiteit) en het detecteren van
mogelijke therapie-bijwerkingen, zoals gebeurtenissen van klonale domi-
nantie [6].

In dit werk onderzoeken we celdifferentiatie met behulp van stochas-
tische quasi-reactienetwerken gecombineerd met uitgebreide Kalman-
filtering, wat leidt tot het door ons voorgestelde Kalman Reaction Networks
raamwerk Karen [7]. Dit raamwerk houdt er rekening mee dat typische
klonale trackinggegevens te kampen hebben met ontbrekende celtypen
en fout-negatieven. Het bestaat uit een continu-discreet toestandsruim-
temodel met een stochastisch reactienetwerk dat de dynamiek beschrijft,
gekoppeld aan een lineair Gaussiaans meetmodel dat de onzekere waar-
nemingen koppelt aan de onderliggende toestanden. In het bijzonder (i)
ontwikkelen we een verwachtingsmaximaliserend inferentie-algoritme;
(ii) we testen onze methode uitgebreid op verschillende simulatiestudies,
waaronder een directe vergelijking met de state-of-the-art methoden, en
tot slot (iii) passen we ons raamwerk toe op vijf in-vivo klonale tracking-
datasets om verschillende biologisch plausibele datasets te vergelijken
modellen van celdifferentiatie.

Om mogelijke nadelige gebeurtenissen van klonale dominantie te de-
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tecteren, combineren we vervolgens stochastische quasi-reactienetwerken
met hierarchische effecten (RestoreNet) [8]. Onze voorgestelde methode
bestaat uit een reeks biochemische reacties vertaald in een algemeen
mixed-effects-model inclusief hierarchische effecten op de klonen voor de
dynamische parameters. De onbekende parameters worden geschat met
een op maat gemaakt algoritme voor verwachtingsmaximalisatie. In het
bijzonder (i) valideren we onze inferentiemethode in verschillende syn-
thetische studies, (ii) vergelijken we de prestaties ervan met de nieuwste
benaderingen, en tot slot (iii) passen we deze toe in twee in-vivo klonale
tracking-studies. Ten slotte stellen we, om de klonale complexiteit objec-
tief te meten, een methode voor die shape-constrained splines (SCS) com-
bineert met de Shannon-entropie-index [9]. Onze voorgestelde methode
maakt gebruik van het effect van technische artefacten van de Shannon-
entropie-index, en biedt zo een onpartijdige maatstaf voor klonale di-
versiteit. Onze SCS-herschalingsmethode is allereerst gevalideerd in een
specifiek ontworpen in-vitro-assay en vervolgens gebruikt om de impact
van vectorgenotoxiciteit op het entropieverval van tumorgevoelige muizen
objectief te evalueren.

HOOFDSTUKBIJDRAGE

De inhoud van het proefschrift kan als volgt worden samengevat:

• Hoofdstuk 1 introduceert eerst de onderzoeksvragen die we behan-
delen, en geeft relevante biologische achtergrondinformatie. Vervol-
gens volgt een korte discussie over de state-of-the-art methoden en
onze voorgestelde benaderingen.

• Hoofdstuk 2 richt zich op ons Kalman-reactienetwerkraamwerk
Karen gericht op het afleiden van celdifferentiatienetwerken uit ty-
pische klonale volggegevens. We introduceren en valideren eerst
onze methode, daarna passen we deze toe op vijf in-vivo klonale
trackingstudies.

• Hoofdstuk 3 introduceert onze voorgestelde random-effects sto-
chastische reactienetwerken RestoreNet om mogelijke bijwerkingen
van klonale dominantie te detecteren in onderzoeken naar klonale
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tracking van gentherapie. Na validatie van ons raamwerk met ver-
schillende synthetische studies, analyseren we twee in-vivo model-
len van hematopoëse.

• Hoofdstuk 4 richt zich op onze voorgestelde vormbeperking her-
schaalde Shannon entropie-index om een artefactvrije maatstaf van
klonale diversiteit te bieden. We valideren eerst onze SCS-methode
op een specifiek ontworpen in-vitro klonale tracking-studie, daarna
passen we deze toe op een preklinische genotoxiciteitsstudie.

TOEKOMSTIGE RICHTINGEN

De belangrijkste benadering in zowel de basale LLA- als de random-effects
RestoreNet-formuleringen is de stuksgewijze lineariteit van het proces.
Dat wil zeggen, in beide gevallen beschouwen we eerst een lokale line-
aire benadering van de Ito-vergelijking, die we vervolgens gebruiken om
de procesparameters met of zonder hierarchische effecten af te leiden.
Hoewel de aanname van lineariteit alle berekeningen eenvoudiger maakt,
wordt deze benadering slecht naarmate de tijdsvertraging toeneemt (de
∆ts) van de verzamelde gegevens. Dit kan worden verholpen door in de
waarschijnlijkheid benaderingstermen van hogere orde in te voeren dan
degene die worden overwogen door de Euler-Maruyama-methode. De
Milstein-benadering is een mogelijke keuze. Een andere, geheel andere
benadering is het gebruik van uitgebreide Kalman-filtering (EKF) die ge-
schikt is voor niet-lineaire formuleringen van toestandsruimten, zoals we
deden voor Karen. Bovendien kan RestoreNet geen fout-negatieven of
ontbrekende waarden van klonale trackinggegevens in overweging nemen,
zoals Karen doet. Ook voor deze beperking zou een EKF-formulering een
mogelijke uitbreiding van RestoreNet kunnen zijn.

Hoewel de Gaussiaanse aanname van Karen de analytische formule-
ringen van de waarschijnlijkheden expliciet beschikbaar maakt, kan deze
benadering slecht worden wanneer de gegevens uitschieters bevatten of
niet-Gaussiaans gedrag vertonen. Een distributievrije aanpak, zoals de
Kernel Kalman Rule, zou een mogelijke uitbreiding [10, 11] kunnen zijn.
Bovendien beschouwen beide frameworks RestoreNet en Karen de reactie-
snelheden als constant voor de hele studieperiode. Uitbreidingen die het
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mogelijk maken om reactiesnelheden te modelleren als spline-functies
van klinisch relevante variabelen liggen binnen handbereik en zullen het
doel zijn van toekomstig onderzoek.

Bovendien, aangezien onze SCS-benadering voor het herschalen van
Shannon-entropie op regressie is gebaseerd, heeft de belangrijkste be-
perking te maken met de beschikbare steekproefomvang, een mogelijk
probleem bij het definiëren van een spline-basis. Het aantal knopen van
de splines moet dus zorgvuldig worden gekozen. Onze modelmiddelings-
benadering maakt het mogelijk om de impact van de confounders te rang-
schikken op basis van hun geschatte inclusiekansen door middel van
het Bayesiaanse informatiecriterium. Een meer precieze methode om de
marginale waarschijnlijkheid in te schatten, zoals Laplace-integratie of
Bayesiaanse thermodynamische integratie, kan een mogelijke verbetering
zijn.
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