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a b s t r a c t

A key part of software evolution and maintenance is the continuous integration from collaborative
efforts, often resulting in complex traceability challenges between software artifacts: features and
modules remain scattered in the source code, and traceability links become harder to recover. In this
paper, we perform a systematic mapping study dealing with recent research recovering these links
through information retrieval, with a particular focus on natural language processing (NLP).

Our search strategy gathered a total of 96 papers in focus of our study, covering a period from
2013 to 2021. We conducted trend analysis on NLP techniques and tools involved, and traceability
efforts (applying NLP) across the software development life cycle (SDLC). Based on our study, we have
identified the following key issues, barriers, and setbacks: syntax convention, configuration, translation,
explainability, properties representation, tacit knowledge dependency, scalability, and data availability.

Based on these, we consolidated the following open challenges: representation similarity across
artifacts, the effectiveness of NLP for traceability, and achieving scalable, adaptive, and explainable
models. To address these challenges, we recommend a holistic framework for NLP solutions to achieve
effective traceability and efforts in achieving interoperability and explainability in NLP models for
traceability.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Software traceability is a fundamentally important task in
oftware engineering: for some domains, traceability is even as-
essed by certifying bodies (Guo et al., 2017a). Given that trace-
bility permeates all aspects of software production, the need
or automated traceability has increased too, considering that
oftware projects have steadily become more complex and the
ver-increasing number of artifacts (Cleland-Huang et al., 2007;
uan et al., 2009; Guo et al., 2017b).
The underlying complexities of the logical relations between

rtifacts, at various stages in the software process, have prompted
variety of empirical studies (Maletic et al., 2003; Schwarz et al.,
010; Mäder et al., 2017) and several areas of research, partic-
larly in the inception of semantic domain knowledge (Marcus
nd Maletic, 2003; Zhao et al., 2017a). During the software pro-
ess life cycle, complex traceability challenges emerge due to
ifferential evolution and the heterogeneity of artifacts, rendering
race link retrieval to be onerous. This calls for a holistic frame-
work that requires tools and techniques to be able to promote

✩ Editor: Nicole Novielli.
∗ Corresponding author.

E-mail addresses: a.z.bin.mohamad.pauzi@rug.nl (Z. Pauzi),
.capiluppi@rug.nl (A. Capiluppi).
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0164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
extensibility and automation (by having a common representa-
tion), mapping of native representation to common representa-
tion, and rules defining consistency between artifacts (Pete and
Balasubramaniam, 2015).

As we endeavour to achieve this framework, it is inevitable
to acknowledge the role of natural language processing (NLP) in
these efforts; a viable research frontier solution to traceability
problems (Arunthavanathan et al., 2016). With recent advance-
ments in NLP, we are addressing a critical need to consolidate and
study all recent research efforts in this space.

Extracting information from a corpus of text to derive mean-
ingful output is a technique most often found in NLP. In other
words, semantic extraction is obtained from textual data and
arranged in formal grammars that specify relationships between
text units (Nadkarni et al., 2011). The role of NLP in software
traceability addresses limitations of conventional Information Re-
trieval (IR), particularly around natural language data composi-
tion (Russell-Rose and Stevenson, 2009). NLP plays a vital role in
these efforts, yet there is very little done to study the existing
research efforts in this space. We have devised the following
general topics of research focus:

1. Extracting meaningful information from software artifacts
using NLP tools;

2. Recovering traceability links through automatic or semi-

automatic approaches;

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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3. Binding the extracted information with domain-specific
concepts to decipher context or domain.

These topics form the basis and rationale for this systematic
apping study (SMS), addressing the problem of traceability re-
overy through solutions of information retrieval with NLP. Given
he width and the breadth of traceability in the software life-
ycle, an SMS is a more appropriate approach to uncover the ways
n which NLP has been instrumented and deployed, and in which
hase of the software life cycle. By conducting this study, we are
ble to consolidate diverse and scattered efforts across multiple
ranches, and identify key areas of gaps pertaining to traceability
olutions that necessitate more attention.
The following research questions were outlined based on ex-

sting research and work in NLP for software traceability, and will
e assessed as part of the SMS:
RQ1: What are the demographics of the published articles?
Rationale: This information gives us an overview of the publica-

ions’ metadata, enabling impact and quality analysis. We will also
nalyse high-impact publications as part of our study.
RQ2: What is the trend analysis of NLP techniques and tools

roposed and evaluated in the published articles?
Rationale: This allows us to establish the state of existing knowl-

dge and efforts, subsequently allowing us to identify research gaps
n our current understanding, and predict how future trends may be.

RQ3: What is the trend analysis across the phases of the SDLC?
Rationale: By using the SDLC framework, we can identify key

reas of NLP application in traceability that were proposed and
valuated in publications. Given the width and breadth of the SDLC,
n SMS appears to be a better choice than a Systematic Literature
eview (SLR).
RQ4: What are the reported key issues, barriers and setbacks?
Rationale: Through collating these, we are able to consolidate

ain points and bottlenecks. This allows us to understand the perils
nd pitfalls of NLP in traceability so we can identify focus areas for
uture research.

RQ5: What are the open challenges?
Rationale: From the key issues, barriers and setbacks identified,

e collate the themes covering these as open challenges.
This paper aims to tackle these questions by conducting a

horoughly focused, yet comprehensive, systematic mapping
tudy. This paper addresses the need to consolidate recent NLP ef-
orts in traceability, analyse what are the common issues, barriers,
nd setbacks to effective traceability, and provide recommen-
ations to address open challenges. Section 3 will explain the
ethodology and data process behind the study. Section 4 will
over the results and subsequently will be discussed and analysed
n Section 5. Section 7 finally concludes.

. Background

.1. Contextual definition

NLP is a branch of Artificial Intelligence and Linguistics that al-
ows the representation and analysis of human language compu-
ationally (Khurana et al., 2017). Due to the recent phenomenon
f vast amounts of unstructured textual data being collected and
sed for machine learning, applications of NLP to solve real-
orld problems is gaining more attention from researchers and
ractitioners alike. In the context of software engineering, NLP
s utilised to harness value from the natural language present in
oftware artifacts. Justification of the use of the textual format of
hese artifacts relates to the following (Yalla and Sharma, 2015):

• possibility for automation
• information that is naturally represented, thus making it

recognisable and readable for humans
2

• easy and practical to develop and use

By leveraging the syntactic and semantic nature of software
artifacts, we aim to study past and current efforts in trace-link
recovery between software artifacts that used NLP techniques and
tools. Our paper looks into multiple perspectives (orientation)
of software traceability, and the application of NLP to achieve
the goals of traceability between software artifacts, including
the ‘golden challenge’ of ubiquitous traceability (Cleland-Huang
et al., 2014), that is, instrumenting traceability to be built into
the engineering process.

2.2. Related work

A mapping study of IR approaches to software traceability
was completed in 2014, with a particular focus on previous
evaluations and evidence strength (Borg et al., 2014). The study;
however, was done excluding core techniques in NLP methods
such as machine learning (Spanoudakis et al., 2003) and seman-
tic networks (Lindvall et al., 2009). These were disregarded in
the study as they were too different to fit in the scope due to
the complexities in development and deployment. However, the
landscape in NLP research has witnessed major breakthroughs in
recent years, driving a new wave of tools and applications specifi-
cally for software engineering tasks (Sawant and Devanbu, 2021).
Some examples of applications: training word embeddings in the
software engineering domain space (Efstathiou et al., 2018), re-
quirements classification using deep learning (Navarro-Almanza
et al., 2017), and textual classification of natural language in
software engineering text mining pipelines (Mäntylä et al., 2018).

A more recent review was done, broadly focusing on adopting
NLP to mine unstructured data in software repositories (Gupta
and Gupta, 2019). The review was done by looking into general
applications of mining repositories, with a sub-focus on traceabil-
ity efforts. In terms of integrating NLP applications into the SDLC,
an assessment of how NLP is employed (in the different phases)
was mentioned in Yalla and Sharma (2015). This integration,
deemed as multidisciplinary research, highlights the potential
advantages: a more holistic approach to Computer Science and
Engineering, greater possibility for automation, and a step closer
to achieving universal programmability: the possibility to program
in a natural language, and without the need of a formal program-
ming language (Tichy et al., 2013). In the context of traceability
in artifacts, the need for precise semantics for trace links between
heterogeneous systems is critical due to inadequate available
tools (Mustafa and Labiche, 2017). This review highlighted the
need to define a taxonomy for trace links, as characteristics
of trace data are likely to be domain-, organisation-, or even
project-dependent.

Although machine learning (such as NLP) has gained an in-
credible amount of attention only in recent years, one of the
earliest systematic literature reviews of traceability approaches
(specifically for software architecture and source code) analysed
efforts in automatic traceability reconstruction using machine
learning classifiers to detect tactic-related classes (Javed and
Zdun, 2014): classes that were instrumental to implement the
tactical design decisions. This paper studies efforts in NLP appli-
cation for traceability in recent years, postdating the study done
in 2014 (Borg et al., 2014). Our study aims to look into recent
applications of NLP by leveraging (natural language) semantics
already present in these artifacts. This is an ongoing focus area
in the field of information retrieval, particularly due to recent
developments in computational power and the advent of large
amounts of linguistic data (Torfi et al., 2021). There is a great
amount of necessity to consolidate and study these sporadic
efforts across different platforms globally to analyse trends in the
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Fig. 1. Overview of steps in mapping study planning.
echniques and tools used, analyse trends of traceability across
he SDLC phases, and analyse the open challenges pertaining to
LP application for traceability. Our work contribution progresses
n this trajectory, similarly to a checkpoint of reference through
nalysis of past recent work and recommendations for future
fforts.

. Methodology

Following the updated guidelines for conducting systematic
apping studies in software engineering (Petersen et al., 2015),
e define our methodology through the process of identifying,
nalysing, and interpreting all available evidence in a way that is
nbiased and (to a degree) reproducible. The following steps were
aken to address our research questions outlined in Section 1.

.1. Mapping study planning

An overview diagram of our steps is shown in Fig. 1.
We extracted the content and metadata of each piece of lit-

rature using a systematic approach and applied various tools to
ather all publications necessary within our scope. As shown in
ig. 1, 3.55% of the total result entries have been included as part
f our study. This planning was done to ensure comprehensive-
ess in the study and to address the research questions at hand.
hreats to the validity of our study strategy will be discussed in
ection 5.

.2. Search string

Table 1 shows the terms relevant to our search and their
ynonyms. These were derived to expand the boundaries of se-
antic keywords that are relevant to the research topics. We
ave separated the terms according to the relevant theme it
3

belongs to, and only the most relevant synonyms (to our research
questions) are shown in the table.

Forming the search string is the core component of any search
strategy of a systematic review or mapping study that involves
searching indexed literature databases, as it enables transparency
for validation and reproducibility for others. An effective search
strategy is usually iterative and benefits from trial searches us-
ing various combinations of search terms derived from the re-
search question(s) (Kitchenham and Charters, 2007). This was
incorporated into our search strategy in our study as follows.

3.2.1. Evaluating synonym terms
Including all the identified synonym terms would yield a wide

coverage but be inundated with a great number of false positives.
Hence, we evaluate the potential candidate synonym terms to
determine those that will be included as our string output. The
three components (themes) of our search string will need to be
joined using the AND operator, which ensures that results will
reflect a ‘‘must" rule that all these themes need to be covered.
For the individual terms in each theme, we use the OR operator
to join them. This is to ensure that every theme is represented by
at least one of the terms.

3.2.2. Trial of potential candidate terms
Fig. 2 shows the combination of terms that were tested. We

grouped the synonyms according to common properties they
share, denoted by the ovals. Each of these groups are then eval-
uated on effectiveness through trials and decision is then made.
Green coloured groups were those chosen.

3.2.3. Decision and final string output
• Theme 1: (top-down order) Main terms, parent term, meth-

ods, model types, subject, and artificial intelligence.
• Theme 2: (top-down order) Main terms and offshoot terms.
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Table 1
Terms table.
Theme Term Synonyms

Natural language
Information Retrieval
(NL-IR)

NLP, natural language
processing

Information retrieval, natural language
understanding, text mining, language model,
embedding, linguistic, lexical, text extracting,
machine learning

Traceability Traceability Trace link recovery, trace retrieval

Software artifact Software artifact Source code, tests, documentation,
requirements
Fig. 2. Grouped synonym terms: potential candidates for search string.
• Theme 3: (top-down order) Main terms and types of arti-
facts.

For Theme 1, NLP and the meaning of its acronym had to be
ncluded. We also found out that the generic term ‘‘information
etrieval’’ widened the results beyond the scope of our RQs. The
ethods group for Theme 1 had to be included because the
ajority of efforts in text processing do include natural language,
lthough not explicitly mentioned in every case. ‘‘linguistic’’ as a
erm was producing similar results to ‘‘information retrieval’’ and
he artificial intelligence group was not effectively returning the
ight hits. NLP solutions that already use any form of machine
earning is already included when using just the main terms
‘NLP’’.

The terms in Theme 2 were more straightforward. We found
ut that using the term ‘‘traceability’’ was enough to generate the
elevant papers in scope of our RQ, as the term is a commonly
sed term in software engineering, even without including the
erm ‘‘software’’. We also discovered that lemmatising ‘‘trace-
bility’’ to ‘‘trace’’ and adding ‘‘link’’ was useful to pick up cases
here traceability happens without specifically mentioning that

t is a traceability problem. For example, locating bugs in the

ource code, or linking requirements to test cases.

4

For Theme 3, we found out that including the artifact types
into our search string restricted our scope of search — this is
particularly due to the nomenclature used to represent artifacts
produced throughout the SDLC, which can be numerous. We de-
cided to only use the main terms, both spellings of ‘‘artifact’’ and
‘‘artefact’’. As a result, we specified the following search string (in
order) to extract all related publications within our scope:

("NLP" OR "natural language processing" OR "text min-
ing" OR "text extracting")
AND
("traceability" OR "trace link")
AND
("source code" OR "software code" OR "software arti-
facts" OR "software artefacts")

As control papers, we used a 10% random sample of the set
of papers obtained in the query: for the updated search query,
the control papers used were (Pruski et al., 2015; Lin et al., 2021;
Khatiwada et al., 2017; Salih et al., 2021; Ali et al., 2018; Lam
et al., 2015; Capobianco et al., 2013a; Iammarino et al., 2020;
Scanniello et al., 2015). These were analysed by the second author
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Table 2
Details of index databases used.
Database Extraction type Results

Web of Science Web UI 9
Springer Link Web UI 198
ACM Digital Library Web UI 163
IEEE Xplore Web UI 18
Scopus API 27
Google Scholar API 2290

Total count 2705

to make sure that the search query was appropriate, or if it
needed different terms.

3.3. Inclusion and exclusion criteria

To ensure our results are reflective of recent research, we
ave imposed inclusion criteria in terms of period scope: years
013 to 2021. Spanning a period of 9 years in consideration, we
im to fill in the gap of studies that predated our start year and
ocus on more recent developments of NLP-based IR in software
raceability. For exclusion, we have disregarded content that is
nrelated to (software engineering) traceability, such as other
eviews and artifacts with no natural language.

For the exclusion criteria, we used the following filters to weed
ut the papers that are not within our scope:

1. Duplicates: repeated entries
2. Language: non-English papers
3. Data: incomplete (missing) data
4. Reviews: other reviews, surveys, and mapping studies
5. Context: irrelevance to our defined research topics

The exclusion process (filtering) of papers was necessary due
o the abundant false positive results majorly from Google Scholar.
uplicates were identified through automated checking of in-
egrity in titles and authors. For language, we only included those
ritten in English. Incomplete and missing data refers to search
esults that do not fully reflect published material, for example,
nly the publication source was mentioned with no article title.
e also excluded all other secondary and tertiary studies.
The final filter was ‘context’. We had to determine if the papers

ere relevant to our defined research topics. We start with the
bstract (as they typically serve as the first point of entry). If
elevance is not evident, we look into the research questions
nd methodology, as these describe the work done to achieve
goal and to answer the research questions. The first author
as responsible for this task: 9 control papers (as defined above)
ere read by the second author to make sure that the context
as relevant for the papers to be included. Since the control
apers (selected randomly) were all found to be relevant to the
ontext chosen by the research question, a Cohen’s kappa was not
valuated as not necessary to determine the agreement between
eviewers.

.4. Data extraction and management

Table 2 shows the literature databases that were used for our
irst step in data extraction. The aim was to gather all relevant
ublications related to our study topics, and by using the search
tring defined. The extraction was done either by exporting from
he web page (via manual extraction using the Web UI) or API.

Google Scholar was further used to widen our search results:
espite the abundance of false positives (noise), it has the po-
ential to considerably extend the outreach of the systematic
5

Fig. 3. Distribution of publication types.

earch (Harzing and van der Wal, 2008). The results in impact
nalysis (of publications) will be covered in Section 4.
After the cleaning step instrumented by the exclusion criteria,

e gathered a total of 96 papers held by libraries worldwide. We
ave also ensured that all these were peer-reviewed publications.
hese were extracted, along with the metadata, and compiled into
spreadsheet consisting of all the information and content for
ach paper.

. Results

The following are the results of our study based on our re-
earch topics. These results reflect our findings in NLP efforts
n software traceability in recent years, answering our research
uestions at hand.

.1. RQ1: Demographics of published articles

In terms of demographics for impact and quality analysis, we
ook at the following metrics:

• publication type, shown in Fig. 3
• citation count per year,1 shown in Fig. 4

The complete list of papers in scope can be found in Appendix
. We have also included the respective sources (e.g., confer-
nce name) of each paper. The distribution of accepted papers
s roughly two-thirds geared towards conference and workshop
ontributions, and the rest in more established venues (books and
ournals). This is further proof that conference papers still attract
uality contributions, although, as relevant and well-known as
conference might be, this does not define the quality of the
apers that are contained in one. Some noticeable conference
enues are namely the International Conference of Software En-
ineering (ICSE, 4 papers), International Conference on Software
aintenance and Evolution (ICSME, 4 papers), and International
equirements Engineering Conference (RE, 4 papers). These are
lso examples of A*/A rated software engineering conferences,

1 Number of citations / (current year–published year).
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Fig. 4. Box plot of citations per year — outliers are labelled with their respective values.
s listed in CORE conference rankings,2 which are labelled as
lagship and excellent conference venues.

For citation count per year, we can see 7 outliers that are
he top cited publications per year, corresponding to the pa-
ers (Panichella et al., 2013; Lam et al., 2015; Arora et al., 2015;
hokripour et al., 2013; Poshyvanyk et al., 2013; Wang et al.,
014; Lin et al., 2021). Despite the citation count to be, arguably,
weak indicator of research quality for some (Aksnes et al.,
019), for the purpose of our mapping study, we consider citation
ount as a factor in research impact, and we will analyse these in
ection 5.

.2. RQ2: Trend analysis of NLP techniques and tools for traceability

In this study, we identify how NLP is being used to achieve
raceability solutions. Not all NLP efforts are similar; hence, it is
seful to categorise these efforts by amount of task complexity,
o we can understand how much of NLP was involved in the
raceability solutions. We categorise according to the following
iers:

• Tier 1: Only basic complexity tasks, such as processing text
(stemming, pattern matching etc.) and tokenising. This cat-
egory typically only deals with text syntax and no training
is involved.

• Tier 2: Basic to intermediate tasks, such as training word
embeddings and topic modelling. This category involves
training models, pre-trained or otherwise. Semantics are
involved and this is closely related to the naturalness of
language.

• Tier 3: Basic to advanced tasks, such as implementing deep
learning models. This category is an extension of Tier 2
where the semantics (context) of language is derived by

2 http://portal.core.edu.au/conf-ranks
6

(essentially) deep learning. This commonly involves the ex-
tended implementation of pre-trained deep learning models
in the context of software traceability, such as augmenting
neural networks with vector space models (VSM).

Distinction between these tiers is solely determined by task
complexity: how much work (in processing natural language)
has been done (not only for traceability purposes) to achieve the
desired solution. For example, traceability work that uses a pre-
trained deep learning model (e.g., BERT) would be classified as
Tier 3 because deep learning is a relatively high-complexity task
albeit being already pre-trained. It is important to note that these
tiers are not disjointed, but rather, each tier is an extension of
the preceding tier. Tier 2 would include tasks in Tier 1 and Tier
3 would include tasks in Tiers 1 and 2. For example, to train a
transformer like BERT (Tier 3), basic work tokenisation still needs
to take place. Regardless, segregating these tiers is necessary as
it allows us to understand ‘up to’ what level of task complexity is
involved in each paper. Classification of these tiers was performed
based on the following steps:

1. In each paper, we extract two sections where present:
Introduction and Methodology.

2. In the order listed above, we locate the application of
NLP based on the proposed solution. Most of the proposed
solutions are explained in the Introduction, although when
not clear how NLP is applied, we use the Methodology
section to identify the keywords which describe the task
complexity involved.

3. Every solution typically involves multiple aspects, and
where multiple NLP techniques and tools are applied, only
the highest complexity is assigned.

The classification of papers into the three tiers was performed
by the first author. The second author, using the subset of pub-
lications used as control papers above, used the same three steps

http://portal.core.edu.au/conf-ranks
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Fig. 5. Paper count throughout the years.
o determine which tier a paper belongs to. The results of the
wo classifications were later discussed agreement was sought.
nsurprisingly, there was a 100% agreement between the two
uthors on this sample of papers: this is due to how the tiers
re formulated, and by how clearly each tier is defined from the
thers.
Based on our analysis, all the task complexity properties are

ransitive: Tier 1 tasks are a subset of Tier 2 tasks and Tier 2 tasks
re a subset of Tier 3 tasks. For example, one does not train a word
mbedding without having to pre-process the text and one does
ot train a deep learning model without having to embed layers
f word vectorisation models. Thus, these tiers are not disjointed
higher tiers will include tiers that have lower complexity levels,

n other words, an implicit ‘‘up to’’ is implied for each. Fig. 5
hows the trend of the tools and techniques involved from a
iered perspective, in terms of published paper count, and by year
f publication.
Within each tier, we have multiple techniques and tools that

ere used as part of traceability solutions in our study. Table 3
hows NLP techniques involved in traceability solutions with the
elevant papers involved. Table 4 shows external support tools
nd libraries that have been identified with the relevant papers
nvolved.

.3. RQ3: Trend analysis of NLP application for traceability across
he SDLC phases

We look into traceability applications through the phases of
he SDLC framework. Given that there is not one official SDLC
odel, we will be using the common de facto phases of the

ramework as our basis (Mishra and Dubey, 2013):

1. REQ: Requirements engineering (problem understanding)
2. DES: Design (planning)
3. CODE: Coding (implementation)
4. TEST: Testing
5. OPS: Deployment & Maintenance
7

To visualise the relationships identified effectively, we present
Fig. 6: a bubble chart of the pairwise SDLC phase relationship
counts over the years. The horizontal dotted line across ‘REQ-
CODE’ shows the SDLC phase relationship that is present in all
years, with 2019 showing the maximum count overall. Where
there is no bubble in place, it means that the count is zero.

Every paper in scope has been involved in one or more pair-
wise SDLC relationships. In cases where papers involve multiple
pairwise relationships (which is few), those papers will exist in
every bubble, where the pairwise relationship is present for that
year. In other words, every paper is not exclusive to every bubble
— multiple bubbles may represent one paper that has multiple
pairwise relationships. The distribution count is as follows:

• No. of papers with one pairwise relationship: 84
• No. of papers with two pairwise relationships: 11
• No. of papers with three pairwise relationships: 1
• Total no. of papers involved: 96

Fig. 6 also shows the ‘OTH’ (others) phase, which refers to arti-
facts involved outside of the SDLC phases identified in Section 4.3.
Some examples of artifacts identified at ‘OTH’ are (informal)
documentation, user queries, and release notes.

4.4. RQ4: Key issues, barriers, and setbacks

We have identified eight key issues, barriers, and setbacks,
outlined in Table 5, with relevant papers highlighting each of
these. These were identified through analysing the discussion of
results, which is typically found in the ‘Discussion’ section of each
paper. We extracted all identifiable (implicit or explicit) issues,
barriers, and setbacks that are direct results of using NLP in the
proposed traceability solutions. Each of these is explained in this
section and further discussed in Section 5.

4.4.1. Syntax convention
There does not exist a unified convention for naming syntax

of various references in the artifacts, such as functions, vari-
ables, and classes. Due to this, we cannot generalise every model
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Table 3
NLP techniques identified.

Paper reference Technique examples

Tier 1 Arunthavanathan et al. (2016), Wijesinghe et al. (2014), Salih and Sahraoui
(2018), Alobaidi and Mahmood (2015), Kchaou et al. (2019), Nishikawa et al.
(2015), Salih et al. (2021), Keim and Koziolek (2019), Pruski et al. (2015),
Keim et al. (2021), Kchaou. et al. (2017), Zamani et al. (2014), Lin et al.
(2017), Pruski et al. (2014), Rasekh et al. (2017), Li and Cleland-Huang (2013),
Shokripour et al. (2013)

Parts-of-Speech (POS) tagging, Stemming, Lemmatising,
Tokenising, Stopwords removal, Regular expressions, Key
phrase extraction, Terms frequency-inverse document
frequency (TF-IDF).

Tier 2 Falessi et al. (2016), Kicsi et al. (2021), Zhao et al. (2017b), Kicsi et al. (2018),
Csuvik et al. (2019b), Rubasinghe et al. (2018a), Hariri and Fredericks (2018),
Lapeña et al. (2017), Rubasinghe et al. (2020), Florez (2019), Singh (2022),
Pauzi and Capiluppi (2021), Lapeña et al. (2019), Tian et al. (2018), Hey
(2019), Wang et al. (2018), Yıldız et al. (2014), Wang et al. (2019), Rubasinghe
et al. (2018b), Liu et al. (2020a), Velasco and Aponte Melo (2019), Ali et al.
(2015), Effa Bella et al. (2019), Mahmoud and Bradshaw (2015), Panichella
et al. (2015), Csuvik et al. (2019a), Pauzi and Capiluppi (2020), Qusef et al.
(2014), Alazzam et al. (2014), Gadelha et al. (2021), Iammarino et al. (2020),
Rasekh et al. (2019), Mills and Haiduc (2017), Tsuchiya et al. (2015), Liu et al.
(2020b), Hey et al. (2021), Ali et al. (2018), Chen et al. (2019), Divya et al.
(2014), Huang et al. (2016), Zhang et al. (2016b), Mahmoud and Niu (2015),
Chen et al. (2021), Champagne and Carver (2020), Arora et al. (2015), Heck
and Zaidman (2014), Khatiwada et al. (2017), Liu et al. (2019), Effa Bella et al.
(2018), Mahmoud and Williams (2016), Mahmoud (2015), Scanniello et al.
(2015), Xia et al. (2014), Xie et al. (2019), Wang et al. (2014), Yang and Lee
(2021), Malhotra et al. (2018), Zhou et al. (2017), Eder et al. (2015), Zhang
et al. (2016a), Gharibi et al. (2018), Capobianco et al. (2013b), Thommazo
et al. (2013), Dasgupta et al. (2013), Panichella et al. (2013), Borg et al.
(2013), Poshyvanyk et al. (2013), Berta et al. (2017), Zhang et al. (2021)

Latent semantic indexing (LSI), Latent semantic analysis (LSA),
Embeddings, Vector space model (VSM), Topic modelling,
Translation (language), Named entity recognition (NER),
Document/Sentence/Word similarity.

Tier 3 Chen et al. (2018), Malik et al. (2016), Mahmood et al. (2015), Thommazo
et al. (2014), Lin et al. (2021), Csuvik et al. (2020), Keim et al. (2020b,a), Lam
et al. (2015), Jiang et al. (2020)

Deep learning, Neural net.
Fig. 6. Bubble chart of SDLC Phase Relationships throughout the years – each bubble size represents the count of papers corresponding to the SDLC phase relationship,
shown in the legend for reference.
to be trained on certain specifics, and this hampers effective
traceability efforts.

4.4.2. Configuration
Finding the optimum configuration may be possible for one

se case. However, in reality, artifacts evolve over time (through
8

active development), and (optimal) configurations change as well.
Although NLP has been effective in recovering missing and broken
trace links, it is still a pertinent issue in achieving effective trace-
ability. In deep learning tasks (Tier 3), searching for the optimal
configuration (exhaustive evaluation) poses other issues, such
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Table 4
External NLP supporting tools/libraries identified.
Tools Paper reference

WordNeta Arunthavanathan et al. (2016), Falessi et al. (2016), Rubasinghe et al. (2018a),
Hariri and Fredericks (2018), Rubasinghe et al. (2020), Alobaidi and Mahmood
(2015), Kchaou et al. (2019), Malik et al. (2016), Mahmood et al. (2015),
Wang et al. (2018), Rubasinghe et al. (2018b), Liu et al. (2020a), Mahmoud
and Bradshaw (2015), Rasekh et al. (2019), Liu et al. (2020b), Zhang et al.
(2016b), Mahmoud and Niu (2015), Pruski et al. (2015), Kchaou. et al. (2017),
Khatiwada et al. (2017), Lin et al. (2017), Liu et al. (2019), Mahmoud and
Williams (2016), Pruski et al. (2014), Rasekh et al. (2017), Gharibi et al.
(2018), Dasgupta et al. (2013), Berta et al. (2017)

StanfordNLPb Arunthavanathan et al. (2016), Falessi et al. (2016), Rubasinghe et al. (2018a),
Hariri and Fredericks (2018), Rubasinghe et al. (2020), Alobaidi and Mahmood
(2015), Malik et al. (2016), Mahmood et al. (2015), Wang et al. (2018),
Rubasinghe et al. (2018b), Zhang et al. (2016b), Arora et al. (2015), Pruski
et al. (2015), Khatiwada et al. (2017), Zamani et al. (2014), Lin et al. (2017),
Liu et al. (2019), Mahmoud and Williams (2016), Jiang et al. (2020), Zhou
et al. (2017)

Apache Lucenec Zhao et al. (2017b), Alobaidi and Mahmood (2015), Chen et al. (2018), Ali
et al. (2015), Alazzam et al. (2014), Mills and Haiduc (2017), Scanniello et al.
(2015), Yang and Lee (2021), Zhang et al. (2016a), Gharibi et al. (2018)

ANTLRd Arunthavanathan et al. (2016), Rubasinghe et al. (2018a, 2020, 2018b)
Dbpediae Alobaidi and Mahmood (2015), Malik et al. (2016), Mahmood et al. (2015)
Babelnetf Alobaidi and Mahmood (2015), Malik et al. (2016), Mahmood et al. (2015), Liu

et al. (2020b)
BERT (Devlin et al., 2018) Kicsi et al. (2021), Thommazo et al. (2014), Lin et al. (2021), Csuvik et al.

(2020), Keim et al. (2020b), Hey et al. (2021), Keim et al. (2020a)
NLTKg Falessi et al. (2016), Zhao et al. (2017b), Singh (2022), Wang et al. (2019), Liu

et al. (2020a), Gadelha et al. (2021), Hey et al. (2021), Gharibi et al. (2018),
Berta et al. (2017)

Gensimh Kicsi et al. (2021, 2018), Csuvik et al. (2019b), Singh (2022), Pauzi and
Capiluppi (2021), Wang et al. (2019), Effa Bella et al. (2019), Csuvik et al.
(2019a), Pauzi and Capiluppi (2020), Gadelha et al. (2021), Iammarino et al.
(2020), Chen et al. (2019), Champagne and Carver (2020), Liu et al. (2019),
Effa Bella et al. (2018)

FastTexti Pauzi and Capiluppi (2021, 2020), Hey et al. (2021)
SpaCyj Pauzi and Capiluppi (2021, 2020), Gadelha et al. (2021), Hey et al. (2021),

Gharibi et al. (2018)
GATEk Malik et al. (2016), Mahmood et al. (2015), Arora et al. (2015), Zamani et al.

(2014)
GloVel Effa Bella et al. (2019), Gadelha et al. (2021), Liu et al. (2019), Gharibi et al.

(2018)
Apache OpenNLPm Arunthavanathan et al. (2016), Lapeña et al. (2019), Salih et al. (2021),

Mahmoud and Niu (2015), Arora et al. (2015), Mahmoud and Williams (2016)

ahttps://wordnet.princeton.edu
bhttps://nlp.stanford.edu
chttps://lucene.apache.org
dANother Tool for Language Recognition: https://www.antlr.org
ehttps://www.dbpedia.org
fhttps://babelnet.org
gNatural Language ToolKit: https://www.nltk.org
hhttps://radimrehurek.com/gensim
ihttps://fasttext.cc
jhttps://spacy.io
kGeneral Architecture for Text Engineering: https://gate.ac.uk
lGlobal Vectors for World Representation: https://nlp.stanford.edu/projects/glove
mhttps://opennlp.apache.org
as computational costs, time complexities, and hardware carbon
footprint (Lauriola et al., 2022).

4.4.3. Translation (language)
Translation of languages is a service that is integral to any

traceability solution that involves unifying cross-language arti-
facts. Dependency on the effectiveness of this service (by the
accuracy of cross-language information retrieval output) proves
to be a setback to effective traceability. A comparative study done
in 2015 observed that different translation services can result in
considerably different retrieval behaviours for individual queries
for different language pairs and applications (Hosseinzadeh Vahid
et al., 2015).
9

4.4.4. Properties (representation) of artifacts
As we implement traceability solutions using NLP (such as

similarities in vectors), software artifact properties constantly
change and traceability solutions using NLP do not keep up.
Besides change management, this issue is also relevant for the
representation of software artifacts throughout different SDLC
phases. For example, in the Design phase where UML diagrams
are used, some form of parser needs to be implemented to
unify these representations with other artifacts from other SDLC
phases.

4.4.5. Explainability
The lack of explainable and interpretable models is a key

barrier to effective traceability. This becomes more prominent
in higher tiers of task complexity as state-of-the-art pre-trained

https://wordnet.princeton.edu
https://nlp.stanford.edu
https://lucene.apache.org
https://www.antlr.org
https://www.dbpedia.org
https://babelnet.org
https://www.nltk.org
https://radimrehurek.com/gensim
https://fasttext.cc
https://spacy.io
https://gate.ac.uk
https://nlp.stanford.edu/projects/glove
https://opennlp.apache.org
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Table 5
Papers highlighting key issues, barriers, and setbacks.
Issue, Barrier or Setback Paper reference

1. Syntax convention Kicsi et al. (2018), Csuvik et al. (2019b), Florez (2019), Kchaou et al. (2019),
Rubasinghe et al. (2018b), Keim et al. (2020b), Mahmoud and Williams
(2016), Mahmoud (2015), Keim et al. (2020a)

2. Configuration Hariri and Fredericks (2018), Singh (2022), Ali et al. (2015), Eder et al. (2015),
Panichella et al. (2013)

3. Translation (language) Yıldız et al. (2014), Liu et al. (2020a), Xia et al. (2014)
4. Properties (representation) of
artifacts

Florez (2019), Wang et al. (2018), Effa Bella et al. (2019), Panichella et al.
(2015), Csuvik et al. (2019a), Pauzi and Capiluppi (2020), Huang et al. (2016),
Mahmoud and Niu (2015), Arora et al. (2015), Khatiwada et al. (2017)

5. Explainability Arunthavanathan et al. (2016), Velasco and Aponte Melo (2019)
6. Dependency on tacit knowledge Lapeña et al. (2019), Keim and Koziolek (2019)
7. Scalability Rubasinghe et al. (2020), Chen et al. (2018), Velasco and Aponte Melo (2019),

Mahmoud and Bradshaw (2015), Tsuchiya et al. (2015)
8. Data availability Chen et al. (2021)
models, although scoring high in benchmarked NLP tasks, are
typically black-box in nature and serve very little purpose in sit-
uations where traceability becomes a core component mandated
by requirement standards and regulations, such as for medical
device software (Regan et al., 2013).

4.4.6. Dependency on tacit knowledge
There is still a considerable amount of dependency on tacit

nowledge that is integral to traceability solutions with NLP. This
ependency is hampering efforts in automated effective traceabil-
ty due to the limitations of models in every domain, which is also
elated to the artifacts property (representation) issue where it is
ot a one-size-fits-all policy for all SLDC phases.

.4.7. Scalability
Scaling the solutions in traceability efforts is identified as a key

arrier, particularly in large-scale systems. In object-oriented pro-
ramming, encapsulation of objects helps to improve scalability
ue to the isolation of internal modifications of any one ob-
ect (Corriveau, 1996). Despite this, traceability between software
rtifacts does not automatically follow this, especially when large
ystems involve complex trace links with the increasing number
f artifacts and developers involved. This is also an extension to
he configuration issue where scalability in compute and time
omplexities are severely affecting effective traceability efforts.

.4.8. Data availability
In supervised and semi-supervised strategies, we require vast

mounts of training data specific to the software engineering
omain. In an ideal world, all of this data is annotated and on-
ologies are well-defined; however, that is not the case in reality.
nnotation of data is an expensive and time-consuming laborious
ask that does not appeal to many – and this has prompted
variety of solutions such as crowdfunding through Amazon
echanical Turk (Snow et al., 2008).

.5. RQ5: Open challenges

From these key issues, barriers and setbacks, we identify 3
hemes that are presented as open challenges in recent applica-
ions of NLP in traceability.

.5.1. Syntax and semantic similarities in representation across ar-
ifacts

Traceability between artifacts stems from identifying com-
onents that are linked to one another. To achieve this, the
anifestation of concepts (through the artifacts’ components)
eeds to be synchronised in terms of syntax and semantic sim-
larities. This challenge is one that NLP solutions for traceability
ontinue to face.
10
4.5.2. Effectiveness in automated software traceability
As software systems continue to evolve in scale and com-

plexity, the call for automated traceability has never been more
critical. The number of traceability links that need to be cap-
tured exponentially grows with the size and complexity of the
software system (Cleland-Huang et al., 2003). Moreover, consis-
tent changes throughout the SDLC pose a significant challenge
to the maintenance of traceability links, with studies showing
that change can be expected throughout the life cycle of every
project (Boehm, 2003). In the noble quest for automated trace-
ability, the effectiveness of these solutions continues to be an
open challenge.

4.5.3. Achieving scalable, adaptive, and explainable models
Recent works (especially in deep learning and off-the-shelf so-

lutions) have resulted in an increasing number of black-box NLP
services and tools. Traceability solutions need to be transparent,
especially when traceability is a factor in requirements validation
and tracing of regulations. Moreover, the challenge of scaling
and adapting NLP solutions continues to be an open challenge
for interoperability. Any trade-offs between implementing an
NLP component to achieve successful traceability, and the extra
resource it needs, have to be justified.

5. Discussion

To further elaborate our findings based on our research ques-
tions outlined in Section 1, we will discuss the results of our
study.

5.1. RQ1: Demographics and quality analysis

Fig. 3 shows the percentage spread of publication type, with
conference proceedings (62%) and journal articles (34%) making
up most of the papers selected. All of the conferences and journals
(where the papers selected were published) were peer-reviewed
and some were shown as outliers for having higher citation per
year metrics compared to the dataset (Fig. 4).

In Computer Science, the citation count of conferences is no
higher than in journals. Moreover, analysis has shown that Com-
puter Science, as a discipline, values conferences as a publication
venue more highly than any other academic field of study (Vrettas
and Sanderson, 2015). As we look into our outliers more closely,
we present a summary of the traceability solutions proposed in
each and how NLP was applied – shown at Table 6 (only those
with cites per year ≥ 10 are shown). As visible in the table,
the majority of the outlier papers come from the top publishing
venues in software engineering (ACM/IEEE International Confer-
ence on Software Engineering and IEEE Transactions on Software
Engineering) and the citations reflect a growing trend as long as
the paper gets older.
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Table 6
Top cited papers per year identified as outliers.
Citations
per year

Paper title & reference Publication source Summary of NLP application for
traceability

38.11 How to effectively use topic models for software
engineering tasks? an approach based on genetic
algorithms (Panichella et al., 2013)

2013 35th International
Conference on Software
Engineering (ICSE)

LDA-GA: Using Genetic Algorithms (GA)
to determine near optimal configuration
for LDA topic modelling.

24.71 Combining deep learning with information
retrieval to localise buggy files for bug reports (n)
(Lam et al., 2015)

2015 30th IEEE/ACM International
Conference on Automated
Software Engineering (ASE)

HyLoc: Combining Deep Neural Network
(DNN) with rVSM (revised Vector Space
Model) for bug localisation.

19.00 Automated checking of conformance to
requirements templates using natural language
processing (Arora et al., 2015)

IEEE Transactions on Software
Engineering

Template Conformance Checking (TCC):
Text chunking and pattern matching to
automate requirements conformance.

17.67 Why so complicated? simple term filtering and
weighting for location-based bug report
assignment recommendation (Shokripour et al.,
2013)

2013 10th Working Conference on
Mining Software Repositories
(MSR)

Two phase location-based approach to
bug localisation by predicting relevant
files and creating a noun index.

14.00 Concept location using formal concept analysis
and information retrieval (Poshyvanyk et al.,
2013)

ACM Transactions on Software
Engineering and Methodology

Using LSI to map textual descriptions of
features or bugs to source code.

11.63 Compositional vector space models for improved
bug localisation (Wang et al., 2014)

2014 IEEE International
Conference on Software
Maintenance and Evolution
(ICSME)

Composing various VSM variants based
on Genetic Algorithms (GA) for bug
localisation.

10.00 Traceability transformed: Generating more
accurate links with pre-trained bert models (Lin
et al., 2021)

2021 43rd International
Conference on Software
Engineering (ICSE)

Trace BERT (T-BERT): Three step training
of T-BERT models to recover links
between issues and commits.
Table 7
Citation analysis per tier.
Category Total paper count Average citations per year

Tier 1 15 2.68
Tier 2 71 3.52
Tier 3 10 4.51

5.2. RQ2: Trend analysis of NLP techniques and tools for traceability

We look into how the techniques and tools in NLP evolved
ver the past recent years. Based on Fig. 5, we can see that
he majority of NLP efforts are in the Tier 2 category: involving
basic’ to ‘intermediate’ tasks, with a prominent spike in 2019.
uring the early years of our scope (2013–2017), these were used
ainly to process text and represent text into vectors, and using

he represented vectors in a space model (VSM etc.) to detect
imilarities. The role of NLP has evolved over recent years due to
he proliferation of efforts in combining machine learning with
asic text processing. This trend continues, with a focus on deep
earning, such as with transformers (Vaswani et al., 2017). The
pike in 2020 (for Tier 3) may be attributed to the increasing
esearch interest in state-of-the-art deep learning tools in NLP re-
ently, such as the introduction of Convolutional Neural Networks
ore commonly (prior) used in Computer Vision (Moreno Lopez
nd Kalita, 2017), BERT (Devlin et al., 2018), and Huggingface
ransformers in 2019 (Wolf et al., 2019).
To further understand the trend beyond using the period of

ears as our timeline, we should consider the research impact
hat each tier has (Which areas are being mostly cited? Where is the
ttention drawing to?). This can be done by using citation analysis
or each tier; citation per year (for each tier) indicates the amount
f attention (impact) the research has. Table 7 shows the average
itations per count of each tier category.3
From the table, we can see that despite Tier 3 having the least

mount of papers published overall, the average citation count
er year is the highest of all tiers (4.51). The aforementioned

3 Average citations per year = sum of all citation counts/number of papers.
11
spike in 2020 for Tier 3 is still considerably lower than Tier 2’s
spike in 2019; however, this citation analysis may indicate that
the research impact in deep learning (for NLP applications in
traceability) is the largest. It is still too early to conclude how the
trend of deep learning in NLP will go (in the field of traceability),
but in general, we can see an upward trend in deep learning
across software engineering (Ferreira et al., 2021).

5.3. RQ3: Trend analysis of NLP applications for traceability across
SDLC

Based on Fig. 6, we can see the SDLC phases where trace-
ability with NLP occurs more frequently, i.e., relationships in-
volving REQ, CODE, and DES phases. As noticed above, Require-
ments Engineering is the area with the most traceability activities
throughout recent years, followed by Design and Bug Localisation,
respectively.

5.3.1. Requirements traceability
The trend of tracing requirements to source code (and vice

versa) using NLP is very common throughout the years with a
considerable spike in 2019, as seen in Fig. 6. Artifacts pertain-
ing to the REQ phase (such as functional and non-functional
requirements) are generally written in natural language. There is
no observable unified structure behind the language and syntax.
Bi-directional traceability (Salih et al., 2021), linking to UML dia-
grams (Arunthavanathan et al., 2016; Salih and Sahraoui, 2018;
Kchaou et al., 2019; Salih et al., 2021; Panichella et al., 2015;
Kchaou. et al., 2017; Effa Bella et al., 2018), fuzzy logic (Thom-
mazo et al., 2013), reducing false positives (Effa Bella et al., 2019;
Capobianco et al., 2013b), are some examples of how NLP was
used during the REQ phase.

Tracing requirements to other artifacts, such as UML diagrams
and source code, is necessary, and in some cases, mandatory,
to adhere to regulatory compliance. For healthcare systems, we
have HIPAA (Healthcare Insurance Portability and Accountability
Act) (Florez, 2019; Velasco and Aponte Melo, 2019; Lin et al.,
2017; Effa Bella et al., 2018). In airspace systems, National Aero-

nautics and Space Administration (NASA) strives to ensure FAA
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Federal Aviation Administration) governance policies and stan-
ards are met (Malik et al., 2016). Templates facilitate good
uality (inherently an effective tool for conformance) by avoid-
ng complex structures, ambiguity, and inconsistency in require-
ents. However, managing this conformance is labour intensive
nd automated checking of conformance to template tool was
eveloped: REquirements Template Analyzer (RETA) (Arora et al.,
015). In some cases, these regulations are explicitly written as
on-functional requirements, such as corresponding to safety and
egal aspects (Mahmoud and Williams, 2016; Mahmoud, 2015).

.3.2. Bug localisation
In our study, bug localisation was also a major highlight in sev-

ral papers across different phases of the SDLC. NLP was used to
educe manual efforts in remedying faults outlined in bug reports
y automating redundant tasks such as reading and searching in
atural language artifacts, and locating areas of concern. Exam-
les include comparing bugs to generated patches (Csuvik et al.,
020), between bug reports and test cases (Gadelha et al., 2021),
etween bug reports and source code (Khatiwada et al., 2017; Liu
t al., 2019; Wang et al., 2014; Lam et al., 2015; Malhotra et al.,
018; Jiang et al., 2020; Zhou et al., 2017; Gharibi et al., 2018;
hokripour et al., 2013), cross-language bug tracing (Xia et al.,
014), and commit information (Yang and Lee, 2021).
In the current landscape of large evolving software systems,

ocating bugs (typically within the source code) is a challenging
ask. Our study looks into traceability between artifacts, and for
ug localisation, we have identified bug reports to be the focal
rtifact involved in bug localisation. Natural language in bug re-
orts is a common target for NLP tasks (such as traceability, which
s the entirety of our study), so de-noising these bug reports to
solate the non-natural languages helps the cause (Hirsch and
ofer, 2022).
One common example of bug localisation is tracing the com-

ponents of a bug report to source code. Bug reports are a form
of change request, which serves to change the existing program
elements (e.g. source code files) to correct an undesired behaviour
of the software (Dilshener et al., 2017). This allows developers to
identify what needs to be rectified and modified in the source
code to remove the bug, which is a core software maintenance
task. Through the lens of traceability using NLP, these compo-
nents may relate to terms that match between bug reports and
source code. Empirical studies have shown that vocabulary used
in bug reports was also present in the source code files (Moreno
et al., 2013; Saha et al., 2013) — be it an exact or partial match
of program elements (i.e. class, method, or variable names and
comments). This matching (syntax and semantic similarity) paves
a way for NLP to determine bug location more effectively.

5.3.3. Continuous developed tools
We have also identified some tools that were developed con-

tinuously across the years (covered by multiple papers reflect-
ing incremental development) across the SDLC phases, namely
Software Artifacts Traceability Analyzer (SAT-Analyzer) and TiQi.
NLP was first introduced in SAT-Analyzer for addressing artifact
inconsistencies due to natural language representation (Aruntha-
vanathan et al., 2016) — it improves the usability of SAT-Analyzer
through automated generation of XML input from requirement
artifacts, which was then evaluated by a case study on a Point-
of-sale (POS) system (Rubasinghe et al., 2018b). SAT-Analyzer
was also covered in DevOps practices (Rubasinghe et al., 2018a,
2020); a traceability management tool for continuous integration
and multi-user collaboration. TiQi, on the other hand, focuses on
trace queries that are generally complex and naturally worded,
transforming them into executable SQL statements (Pruski et al.,
2014). A more in-depth description of the architecture, design,
and heuristic rules was then published in a later paper (Pruski
et al., 2015), and a demo was made available online (Lin et al.,
2017).
12
5.4. RQ4: Key issues, barriers, and setbacks

We dive into each of these key points to understand further
how the papers have contributed to the aforementioned issues,
barriers, and setbacks.

5.4.1. Syntax convention
Our study has found that some assumptions had to be made

in the semantic representation of syntax used in artifacts. For
example, developers only use expressive, non-abbreviated vari-
able names, such as those that are contained in BERT’s dictio-
nary (Keim et al., 2020b,a).

Lack of generally used annotation of artifacts (Kicsi et al.,
2018) and imperfectly appropriate naming (Csuvik et al., 2019b)
typically lead to inaccurate links. The added challenge of artifacts,
such as non-functional requirements (Mahmoud and Williams,
2016), hinders traceability efforts due to the lack of homogeneity
in syntax representation: natural language pertaining to non-
functional requirements is less explicit in tracing links. Moreover,
the detection of constraints in non-functional requirements be-
comes more difficult due to the lack of robust modelling and
documentation techniques (Mahmoud, 2015).

In a case study for SAT-Analyzer, it was observed that the in-
accurate artifact elements extraction and identification with NLP
that contain different naming conventions and less meaningful
names in requirement artifacts, have led to the lack of accu-
racy (Rubasinghe et al., 2018b). Semantic ambiguities in artifacts
written in natural language pose a challenge in tracing explicit
links with other artifacts, based on the syntax used (Kchaou et al.,
2019).

In specific critical contexts, such as healthcare regulations,
desired levels of granularity in traceability are often not enough.
The regulations related to audit control standards and session
expiration in the implementation of healthcare systems were
the hardest to trace to source code statements — very few lines
and source code structures related to these requirements were
successfully mapped (Florez, 2019).

5.4.2. Configuration
Although NLP has been effective in recovering missing and

broken links in self-adaptive systems, it can introduce signifi-
cant overhead (Hariri and Fredericks, 2018). Threshold values of
semantic similarity are typically a ‘moving goalpost’ and high
confidence values, such as 95% (Singh, 2022), were chosen ar-
bitrarily to represent strong confidence. Selection and tuning of
parameters are an impact factor for the accuracy of results, and
static configurations are identified as an internal threat to the va-
lidity of results (Ali et al., 2015). Automated configurations, such
as for Latent Semantic Indexing (Eder et al., 2015), improve the
applicability, although computation overhead can be significant.

As mentioned in the previous section, exhaustive evaluation
for optimal configuration results in various complications, such
as significant computational costs and time complexities. This
is exacerbated by the continuously changing nature of artifacts
throughout the SDLC phases, rendering traceability efforts to
become even more challenging. Achieving this (near) optimal
configuration for topic modelling was the goal of one of our
papers, which introduced Genetic Algorithms (GA) with LDA to
boost accuracy of traceability link recovery (Panichella et al.,
2013), among other tasks. This paper also highlighted the need for
an efficient method to find the best configuration of parameters,
as an exhaustive analysis of all possible combinations is deemed
impractical.

Effective traceability is crucially dependent on the perfor-
mance of the models used, which is determined by their con-
figuration settings. One key aspect of this is the hyperparam-
eter tuning, which often can make the difference between a
mediocre performing model to a state-of-the-art (Eggensperger
et al., 2015).
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.4.3. Translation (language)
Reported setbacks in these efforts concern the effectiveness

f translation services that are readily available (Yıldız et al.,
014; Liu et al., 2020a; Xia et al., 2014). Despite these transla-
ion services being mainly black-box in nature, it is critical to
he effectiveness of traceability. There is no generic dictionary
model) for all languages, as each language has its own rules of
rammar (syntax) and its own semantic interpretation of words
sed. However, we do have a recent primer publication on pre-
rained multilingual embeddings (Doddapaneni et al., 2021), yet
o be fully utilised in software engineering.

.4.4. Properties (representation) of artifacts
In a dynamic continuously integrated, continuously develop-

ng environment (Rubasinghe et al., 2018a, 2020, 2018b), artifacts
ransform constantly and this hampers continuous traceability ef-
orts. In cases where traceability is necessary for regulations (Flo-
ez, 2019; Arora et al., 2015), the natural language used in these
ocuments is not represented similarly to other artifacts, such as
unctional and non-functional requirements. Adaptive standard
eedback was also proposed upon the consideration that software
rtifacts do not share the same properties of natural language
ocuments, on which the standard feedback relies (Panichella
t al., 2015).
Semantic similarities can also be challenging with natural

anguage due to polysemy (Wang et al., 2018), non-uniform iden-
ifiers (Pauzi and Capiluppi, 2020), ambiguity in content (Kchaou
t al., 2019; Pruski et al., 2014), and vocabulary mismatch (Khati-
ada et al., 2017).

.4.5. Explainability
Despite huge successes in large language models, their black-

ox nature hinders key goals of NLP, particularly in explain-
bility (Lin et al., 2021; Keim et al., 2020b,a). In cases where
raceability plays an important role (such as adherence to reg-
lations and auditing), the black-box nature of these advanced
olutions proves as a hindrance, as validation of results becomes
ifficult (Velasco and Aponte Melo, 2019).

.4.6. Dependency on tacit knowledge
This is more prominent in traceability use cases pertaining to

oftware architecture where experiential knowledge is vital in
ecovering architectural trace links (Keim and Koziolek, 2019) and
inks between requirements and process models (Lapeña et al.,
019).

.4.7. Scalability
Large-scale systems pose a challenge in traceability manage-

ent due to the complexity of trace links, particularly in visu-
lisation (Rubasinghe et al., 2020; Chen et al., 2018). This also
elates to time and compute resource complexities, and becomes
ven more challenging in environments where constant change
s present (Rubasinghe et al., 2018a,b).

.4.8. Data availability
The amount of labelled data to train classifiers is not as abun-

ant as we ideally need it to be, and this poses a setback for ef-
ective training in supervised models for traceability (Chen et al.,
021). The amount of annotated data in some domains is richer
han in others, which is heavily dependent on the efforts of the
ommunity. This translates to varying levels of model accuracy
or different domains, which affects traceability effectiveness.
odels can only train on data that is available, and the perfor-
ance of any model is entirely dependent on the data that it is

rained on.
13
5.5. RQ5: Open challenges

To answer RQ5, we first need to be able to identify the per-
tinent issues that arise; and second, through understanding the
pain points, we can derive and model the open challenges. Fig. 7
shows the mapping of open challenges from the key issues,
barriers, and setbacks that were identified in Section 5.4.

5.5.1. Syntax and semantic similarities in representation across ar-
tifacts

The first and foremost open challenge of NLP is primarily
derived from the most recurring issue reported in our study
(see Section 4.4.4), and centred around the role NLP plays in
traceability: processing natural language in artifacts. The natural
language present in artifacts needs to be represented uniformly
in various parts of the SDLC, and achieving similarity in each of
those representations is an open challenge that NLP continues to
play a major part in solving.

5.5.2. Effectiveness in automated software traceability
Software artifacts are not entirely similar to that of natu-

ral language, and NLP advancement efforts are majorly based
on use cases pertaining to human communication, such as de-
veloping cognitive (intelligent) skills through natural language
understanding. This direction is not entirely useful for software
engineering purposes, particularly relating to traceability. The
open challenge is in leveraging and harnessing the value of NLP
techniques, focusing NLP advancement efforts in the field of
software engineering. Moreover, pure automation of traceability
efforts continues to pose a common challenge despite recent
successes in language models.

5.5.3. Achieving scalable, adaptive, and explainable models
NLP models that are involved in traceability efforts face signif-

icant challenges to scale and adapt in tandem with how software
systems change and evolve throughout the SDLC. This open chal-
lenge is a derivative of identified issues pertaining to scalability,
data availability, and explainability. Explainable AI is a critical
component to adopting machine learning models in any decision
making process, with traceability being no different. In software
engineering, the adoption of these models are hindered by the
lack of explainability and understanding of how these models
work (Tantithamthavorn and Jiarpakdee, 2021).

5.6. Recommendations

Fig. 8 presents a mapping diagram to show the relationships
between the open challenges and recommendations. The follow-
ing are our points of recommendation in addressing the three
open challenges, as described above in Section 5.5.

5.6.1. A holistic framework model for NLP solutions to achieve effec-
tive traceability

NLP techniques and tools have played a major role in process-
ing and vectorising text; serving as some form of natural language
decoder to unify representations across artifacts for traceabil-
ity. We recommend efforts in developing a holistic framework
model to achieve effective traceability, subsequently addressing
key open challenges of NLP in traceability. A holistic framework
should fulfil the following:

• Techniques and tools in NLP that are representative of the
software engineering domain. Currently, efforts are sparse
and scattered, focusing on very specific parts of software
engineering that are isolated.
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Fig. 7. Mapping of key issues, barriers, and setbacks to open challenges.
• A unified ontology across the software engineering domain
space, through consolidating and integrating taxonomies
across multiple domains in software engineering.

• Models that ‘understand’ natural language across various
aspects of the SDLC phases. Natural Language Understanding
(NLU) is an extension of NLP where models are able to
comprehend terms that are specific to the SDLC phases, and
across these phases, through classifying intents, confidence
scores stability, and extracting entities (Abdellatif et al.,
2021).

5.6.2. Towards achieving interoperability and explainability
Models have to be transparent, scalable, and accurate in re-

overing trace links (i.e. effective traceability). We propose to
nsure applications of NLP in traceability to be transparent and
xplainable. Efforts in NLP research for traceability should not
nly focus on having the next best model that supersedes the
ccuracy scores of previous models in determining trace links, but
lso on proving scalability and providing explainability. We need
o have some form of global certification and validation process
o be able to certify models as experts. Moreover, we need to
ncorporate efforts in explainable Artificial Intelligence (AI) and
odel reasoning to reduce bias and fill in the gap of dependen-
ies on tacit knowledge from human experts; dependencies on
xperiential knowledge.

. Threats to validity

In this section, we outline the threats to validity identified
hroughout our mapping study process. Based on a recent map
14
of threats to validity in systematic mapping studies in software
engineering (Zhou et al., 2016), we looked into all possible threats
that emerge from conducting our study.

6.1. Construct validity

Our research questions and methodology may not entirely
cover every aspect of studying how NLP is used for software
traceability. However, we ensured that our research strategy was
thorough and comprehensive in fulfilling the secondary study
conducted to address key gaps of areas pertaining to NLP in soft-
ware traceability. We adhered to the guidelines outlined in Pe-
tersen et al. (2015). It is important to stress again that a sys-
tematic literature review would be less significant to uncover the
existing methods and approaches based on NLP, and it would
face a larger threat to construct validity than the mapping study
presented in this work.

6.2. Internal validity

The search for relevant papers to populate our mapping study
was thoroughly executed: multiple library databases were used,
including a search aggregate engine that covers a wide range of
multiple databases and libraries — Google Scholar engine. Ad-
dressing internal threats to validity is critical in mapping studies:
the findings need to be unbiased and the search string needs to
be reflective of our study scope.
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.3. External validity

The specificity of the techniques and tools and trends analysed
n our study may not be able to be generalised outside of our
earch scope. Research efforts in NLP and traceability continue
o evolve rapidly in recent years, and focus choice may affect
he results generated. In reducing this threat, and for the sake
f generalisability, we proposed tier categorisation for NLP tech-
iques and focused our recommendations on common key issues,
arriers, and setbacks rather than specific ones.

.4. Conclusion validity

The limited availability of published efforts in NLP and soft-
are traceability may impact the conclusions derived from our
tudy scope, especially on empirical evidence in the industry
or traceability efforts that are not published. Incorporating syn-
nyms of terms using the Google Scholar search engine as part of
ur data ingestion pipeline helped us reduce this threat, despite
eturning abundant false positives.

. Conclusion

This paper presents a systematic mapping study focusing on
LP and its applications, in the context of software traceability.
total of 96 papers were obtained – covering a period of years
013 to 2021 – during the selection process. We looked into the
ifferent ways NLP was leveraged to aid traceability efforts across
he various phases of the SDLC. We analysed the trend of tech-
iques and tools used, the trend of traceability activities that were
nvolved, and identified key issues, barriers, and setbacks to these
raceability efforts. From these, we identified open challenges and
resented key recommendations for addressing these.
15
The field of research in NLP is continuously evolving, and while
major use cases of these efforts are typically related to human
communication (i.e. human language), there is great potential
value for NLP to be further leveraged effectively in software
traceability. By conducting this mapping study, we are able to
consolidate recent efforts in attempting to take advantage of
these techniques and tools to solve traceability problems, partic-
ularly through automating redundant tasks and solving key issues
that arise from conventional IR techniques. This study serves as
a checkpoint for researchers and practitioners to have a wide
angle of view across the various efforts within our scope of the
study. Based on the trend analysis done and the open challenges
identified, this study has presented two key recommendations
in moving forward: a holistic framework for NLP solutions and
efforts in achieving interoperability and explainability in NLP
models.
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