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Artificial Intelligence Algorithm 
Development for Biomedical Imaging

Peter M. A. van Ooijen and Leonardus B. van den Oever

 Introduction

The development of artificial intelligence (AI) in imaging 
gained momentum with the ability to use deep learning for 
image classification purposes in the image challenge that 
was won by Geoff Hinton and his team [1]. From the moment 
of this feat, medical imaging became one of the prominent 
areas of research of artificial intelligence and deep learning 
up to a point where the same Geoff Hinton claimed in a state-
ment in November 2016 at the Machine Learning and Market 
for Intelligence Conference in Toronto that “we should stop 
training radiologists now” because they would be replaced 
by deep learning in a couple of years’ time [2]. Since then, a 
lot of progress has been made, but we are far from replacing 
medical doctors with AI and the sentiment has changed to 
the view of AI as an addition to the human expert or aug-
mented intelligence instead of artificial intelligence.

Traditional medical imaging tasks that were supported by 
conventional image processing software are the segmentation 
of anatomy or pathology, the detection of pathology, and the 
classification of pathology. Artificial intelligence started to play 
its role in these domains but also opened possibilities that were 
not seen before, such as the generation of synthetic images and 
the implementation of image data-based predictive algorithms 
for preventive medicine and treatment planning.

The fast and diverse developments in both the hardware 
required and the software supporting the development and 
deployment of AI algorithms create an environment in which 
the capabilities of AI flourish. However, actual clinical appli-
cation is still not widespread. Besides ethical and legal rea-
sons, which are enforced because of the weight that medical 
decisions often carry, this also has technical reasons. The 

“black-box” nature of deep learning makes it difficult to 
reproduce and/or explain experimental results and, therefore, 
renders AI based decision-making incomprehensible for 
both physicians and patients. This lack of transparency and 
explainability is also often regarded the main reason that 
trust in AI among its potential users is still low.

However, it is highly probable that this will change in the 
coming years when repeated validation of designed AI models 
will result in more robust and explainable AI implementations, 
thereby increasing the trust in AI.  That hard work is being 
done to get to that stage as soon as possible can be seen from 
the sharp increase in the number of papers published on AI, 
machine learning, and deep learning in cardiology and cardio-
vascular imaging in the past decade [3]. These papers cover a 
wide variety of application areas of AI in cardiovascular imag-
ing, ranging from acquisition and reconstruction to prediction 
and reporting and spanning the full range of data acquisition 
devices used in cardiovascular imaging from echocardiogra-
phy [4, 5] to computed tomography (CT) and magnetic reso-
nance imaging (MRI) [6]. With this, it should be noted that all 
of these currently developed AI systems are so-called narrow 
AI solutions, or in a more popular term, they are “one-trick 
ponies.” This means that the AI systems developed nowadays 
are only good in performing one specific task in a very con-
trolled environment and will fail when, for example, unknown 
new data or data of different quality is presented as input.

Based on the papers published, we can observe reported 
performance gradually increasing to a level where it is equal 
to or even better than the human expert. Therefore, it seems 
that we are on the brink of a more widespread implementa-
tion of AI-based tools and many publications have discussed 
and demonstrated this AI future of cardiovascular imaging 
[3, 6, 7]. To help get an overview of these rising possibilities 
and what is technically required to achieve them, this chapter 
provides insight in the different tasks that can be performed 
by AI tools based on cardiovascular imaging data and gives 
an overview of the steps involved in the AI development 
process.

P. M. A. van Ooijen, MSc, PhD, CPHIMS (*)  
L. B. van den Oever, MSc 
Department of Radiation Oncology and Data Science Center in 
Health, University Medical Center Groningen,  
Groningen, The Netherlands
e-mail: p.m.a.van.ooijen@umcg.nl; l.b.van.den.oever@umcg.nl

3



28

 AI in Medical Imaging

AI can have impact on all steps in the medical imaging pro-
cess from image acquisition to predictive medicine (Fig. 3.1) 
to provide additional capabilities, automation of tasks, and 
augmentation of the human operator by providing automated 
support in a user-guided task.

 Image Acquisition

Part of the image acquisition process is the determination of 
the image quality of the data produced. On the one hand, 
this is important to the AI algorithms using the data; on the 
other hand, AI algorithms could also be employed to deter-
mine the image quality. This utilization of AI algorithms to 
assess image quality is especially important in imaging 
modalities that can have a high variety in image accuracy 
and quality depending on the equipment used and/or have a 
high dependency on user experience and skills such as echo-
cardiography. In echocardiography, AI-based image quality 
assessment could be implemented and used during the 
actual image acquisition process in real time to guide the 
user to obtain consistent images of high quality of the cor-
rect anatomical positions independent of the experience and 
skill of the user [4, 8].

Another step in the process of echocardiography acquisi-
tion that could benefit from AI is view classification. In clini-
cal practice, the classification of the plane of recorded 

echocardiography videos is done manually and susceptible 
to misreporting. Therefore, automatic classification could 
reduce the workload of the analysts and reduce mistakes. 
This automation can be achieved using convolutional neural 
networks (CNN) with cluster analysis to sort input images 
into five predetermined standard views (e.g., standard car-
diac MR views such as short axis, long axis, 2 chamber, 3 
chamber, 4 chamber), with a reported accuracy for such clas-
sification models of 91–98% [4, 9, 10].

In combination, these kinds of models could be applied to 
guide the user in obtaining the right images for a certain clin-
ical question, thus allowing less experienced operators to 
acquire high-quality data of the different views.

Another application of AI in image acquisition is the 
guidance of the technologist in the acquisition of CT or MR 
examinations to automatically target the right field of view 
with optimal settings for the individual patient.

 Image Reconstruction

Noise reduction is one of the applications of AI during the 
image reconstruction phase. To achieve noise reduction, a 
deep learning network is trained – for example – to transform 
(ultra)low-dose CT data into data that closely resembles the 
image quality of a full-dose diagnostic CT. This would allow 
to decrease dose even further and still obtaining diagnostic 
images. Both convolutional neural networks (CNNs) and 
generative adversarial networks (GANs) are reported to be 
able to perform such noise reduction without deterioration of 
the structure of the image and retaining the diagnostic value 
of the images [11, 12].

Another benefit of deep learning in the phase of image 
reconstruction is the ability to decrease the time required to 
perform cardiac MRI (CMR) examinations by undersam-
pling data collection and using deep learning to estimate the 
sparse domain based on existing data [13, 14]. Like many AI 
applications, this method requires large amounts of data to 
properly train, something that has often been an issue in 
CMR-related research. Current work, therefore, is restricted 
to only very specific MR sequences.

 Image Segmentation

The most popular application of AI in cardiovascular imag-
ing is undoubtedly the segmentation of cardiac structures in 
the acquired imaging data, and it is applied to echocardiog-
raphy, MRI, and cardiac CT in over 100 publications to seg-
ment a variety of anatomical and pathological structures 
[14]. According to the current knowledge base of published 
work, there is not one specific AI methodology most favor-
able for the segmentation task. Selected algorithms depend 

Image acquisition

Image Reconstruction

Image Segmentation

Computer Aided Detection and 

Diagnosis

Synthetic data

Prediction

Fig. 3.1 Different possible applications of AI in cardiovascular 
imaging
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on factors like the imaging modality, protocol used, and car-
diac structure to be segmented [15].

One of the possible implementations of automated image 
segmentation in cardiovascular disease is the segmentation 
of the cardiac chambers. Several imaging methodologies 
such as echocardiography, CT, and MRI can employ AI to 
perform cardiac chamber segmentation, and based on these 
segmentations, assessment of dynamic parameters such as 
left ventricular function and size can be automated. High 
performance is reported on echocardiography using CNNs 
with an accuracy of 84% [16]. In comparison, left ventricle 
(LV) segmentation on CT with CNN reported a Dice similar-
ity coefficient of 0.85 with a mean absolute surface distance 
of 1.1 mm [17]. Most of the work on segmentation of the 
cardiac chambers using CNN was, however, done in MRI 
with a variety of techniques. Dice coefficients of 0.94 
(Hausdorff distance, 3.5 mm; average symmetric surface dis-
tance (ASSD), 0.7 mm) and 0.95 (average perpendicular dis-
tance, 1.81  mm) using CNN [18] and CNN with stacked 
autoencoders [19], respectively, were achieved. Other publi-
cations on CNN [20, 21] and deep belief network combining 
deep learning and level sets [22] also report good perfor-
mance resembling manual expert segmentation.

Other publications have shown the applicability of AI on 
segmentation of cardiac valves [23], coronary calcifications 
[24, 25], and coronary arteries [26, 27].

 Computer-Aided Detection and Diagnosis

Classification into multiple categories is a task that can be 
performed in a supervised or unsupervised manner depend-
ing on the task at hand and the available dataset. In a super-
vised method, both the source data and the corresponding 
annotations/labels that are the required outcome or endpoint 
are available. With unsupervised training, only the source 
data is used to determine clusters of datapoints with similar 
properties.

Although most of the developed AI applications employ 
the supervised method, some demonstrations of successful 
unsupervised methods are available in the literature. For 
example, Cikes et  al. used an unsupervised clustering 
approach based on a set of parameters to identify patients 
with heart failure that benefit from cardiac resynchronization 
therapy [28], and Shah et al. used unsupervised phenomap-
ping to diagnose heart failure with preserved ejection frac-
tion with an AUC of 0.70–0.76 [29].

Supervised AI was employed to determine myocardial 
disease from a variety of imaging modalities based on quan-
tification. Examples of such applications using echocardiog-
raphy imaging are the automatic determination of the left 
ventricular ejection fraction using CNN with high accuracy 

of 81–95% [4, 16, 30–32], the detection of mitral regurgita-
tion with accuracy >99% using a support vector machine 
(SVM) [33], and myocardial infarction diagnosis with accu-
racy ranging from 87% [34] to 99.5% [35]. Wall motion 
abnormalities could be classified using CNN with a reported 
AUC of 0.97 [36] and accuracy of 75% [37] and using con-
ventional machine learning classifiers with an accuracy of 
96% [38].

Additionally, in cardiac MR, projects on the determination 
and calculation of cardiac function parameters have reported 
high accuracy and low mean absolute difference ranging from 
3 to 8.5 mL between manual and automatic measurement of 
the left ventricular end-diastolic volume, end-systolic vol-
ume, stroke volume, ejection fraction, and mass [39, 40].

Where MR and echocardiography have their focus on the 
functional parameters of the heart, CT has mainly been applied 
to explore the presence and extent of coronary plaque or cal-
cium and the presence and severity of stenotic lesions. For 
example, for determination of the coronary calcium score, 
Wolterink et  al. described a method where candidates were 
extracted by intensity-based thresholding and described by 
location features derived from estimated coronary artery posi-
tions, as well as size, shape, and intensity features. Next, a 
two-class classifier distinguished between coronary calcifica-
tions and negatives or a multiclass classifier labeled CAC per 
coronary artery. Candidates that could not be labeled with high 
certainty were identified by entropy-based ambiguity detec-
tion and presented to an expert for review and possible relabel-
ing with an intra-class correlation coefficient of 0.95 [41].

Both machine learning techniques such as boosted ensem-
ble algorithms [42] and CNNs [43] were used for the quanti-
tative analysis of coronary stenosis and plaque measurement 
with reported accuracies of >80%. Another application uti-
lizing machine learning is the determination of fractional 
flow reserve (FFR) based on CT, resulting in an accuracy of 
up to 83% [44, 45].

 Synthetic Data Generation

AI also allows to use available (imaging) data to generate 
new data, so-called synthetic data. This ability to create syn-
thetic data got a lot of public attention because of demonstra-
tions from Deepfake and sites like http://
thispersondoesnotexist.com but so far has not proven to be 
very popular to apply in medical imaging research. A tech-
nique that is commonly used to construct synthetic data is 
the generative adversarial network (GAN) as proposed by 
Goodfellow et al. in 2014 [46]. A GAN makes use of two 
neural networks that compete against each other, a genera-
tive and a discriminative network. The generative network 
generates an image based on a random input, and the 

3 Artificial Intelligence Algorithm Development for Biomedical Imaging
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discriminative network tries to distinguish between real data 
and the generated fake. When the discriminative network is 
unable to make the distinction, the result is a successful fake 
(or synthetic) image. The error or loss of the discriminative 
network is, therefore, the reverse loss of the generative net-
work. The higher the loss of the discriminative network, the 
lower the loss of the generative network, hence the name 
adversarial network. The generative network can then be 
used to generate more synthetic data.

For cardiovascular imaging applications, different variet-
ies of synthetic data can be constructed that could prove use-
ful in clinical practice.

First, synthetic data can be generated based on an avail-
able database to increase the number of samples that can be 
used for training a deep learning network. For example, 
Diller et al. used a dataset of 303 cardiac MRI scans of tetral-
ogy of Fallot patients to generate 100,000 new synthetic 
images that were then used as a training set to train a U-net 
segmentation [47]. They found that on visual inspection, all 
synthetic samples were classified as anatomically plausible 
by human observers and that the U-net trained on synthetic 
data performed comparable to the same U-net architecture 
trained on real patient data. This shows that the use of syn-
thetic data to extend a training set in order to train a deep 
learning network is a feasible solution when the amount of 
available data is limited.

A second application of synthetic data generation is the 
transition from data acquired on one imaging modality to a 
new synthetic dataset that looks like it was acquired on 
another imaging modality. Common transitions under inves-
tigation in different domains are to synthesize CT data from 
an acquired MRI or to synthesize CT data from an acquired 
cone beam CT.  Applications that could benefit from syn-
thetic data generation are MR-only radiotherapy planning or 
synthetic CT based on cone beam CT (CBCT) obtained dur-
ing radiation therapy in order to enable adaptive treatment 
planning [48]. Direct applications of this type of data conver-
sions in cardiovascular imaging are not yet found.

Another possibility of using generative networks is syn-
thetic contrast enhancement, where contrast media enhance-
ment is synthetically added to a non-contrast enhanced scan. 
Although not many papers exist on this particular topic, it 
shows promise for some clinical applications and could be 
valuable for patients that are allergic to the contrast agent or 
to further reduce the amount or concentration of contrast 
media administered. Santini et al. showed synthetic contrast 
enhancement in cardiac CT with deep learning to be feasible 
and achieved a high Dice score of 0.88 ± 0.03 and a low vol-
ume percentage error of 9.1 ± 6.2% for segmentation of the 
synthetically enhanced left ventricle [49]. However, they 
only used a small dataset and limited themselves to a 2D 
representation of the long axis view of the cardiac chambers, 
thus not providing actual 3D information.

 Prediction

Predictive algorithms can be applied to implement early pre-
diction of disease in order to start preventive treatment or to 
determine future treatment response to allow patient-specific 
treatment selection.

One concrete example of the prediction possibilities is the 
prediction of major adverse cardiac events (MACE) based on 
a combination of clinical, stress-testing, and imaging-derived 
variables. This kind of prediction relies on the discovery of 
features in a multi-layered model [6].

Motwani et al. performed prediction of all-cause mortal-
ity among patients with suspected coronary artery disease 
by employing ML techniques (boosted ensemble algorithm) 
in cardiac CT achieving an AUC of 0.79 [50]. Comparable 
results with an AUC of 0.771 were achieved by van 
Rosendael et  al. also using a boosted ensemble algorithm 
(XGBoost) on CT data to predict risk score for all-cause 
death and non-fatal myocardial infarction during a >3-year 
follow-up [51]. Based on MRI, Dawes et  al. reported an 
AUC of 0.73 for predictive modeling of survival in patients 
with pulmonary hypertension using principal component 
analysis [52]. Also using MRI, Samad et al. performed pre-
dictive modeling of deterioration of left ventricular function 
in patients with a repaired tetralogy of Fallot using a SVM 
classifier, resulting in an AUC of 0.82 for predicting any 
deterioration [53].

It is common in ML techniques that use clinical or image- 
derived variables to first reduce the number of variables used 
for the targeted prediction. The higher the number of input 
variables, the more difficult it becomes for an ML technique 
to train correctly and achieve high accuracy. These dimen-
sionality reduction techniques use one of two basic tech-
niques, feature elimination or feature extraction. The 
aforementioned XGBoost, a feature elimination method, 
tests the input variables for their impact on the accuracy of 
the ML algorithm and discards variables that have little 
impact on the prediction results, making the ML algorithm 
more efficient and easier to train. Feature extraction creates 
new variables by combining the old variables and then drop-
ping all the old variables and the new combined variables 
that do not add to the prediction accuracy.

 AI Development Process

For all of the previously described AI developments, the pro-
cess is quite similar regardless of whether developing a tool 
for the technician supporting image acquisition or one for a 
radiologist or cardiologist to provide outcome prediction 
(Fig.  3.2). However, differences do exist in certain steps 
because of the inherent difference in the different methodol-
ogies available to the data scientist or AI engineer.

P. M. A. van Ooijen and L. B. van den Oever
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Machine learning or deep learning methodologies can 
roughly be divided into three groups, being supervised learn-
ing, unsupervised learning, and reinforcement learning.

In supervised learning, the system learns by knowing the 
truth for the training dataset and using the difference between 
the truth and the prediction (based on the so-called loss func-
tion) to iteratively improve the prediction. The known “truth” 
that is connected to the data can be in the form of annotations 
or labels to the image. Annotation involves the actual selec-
tion of the region of interest on the image itself. This is often 
used for segmentation tasks. The selection can vary from just 
identifying the region of interest by placement of a rough 
bounding box to the full (manual) segmentation of the region 
of interest by detailed contour drawing. Labeling involves 
the linking of a textual or numerical label to the image with-
out annotation on the image itself. Such a label could, for 
example, be a diagnosis (e.g., the existence of a certain dis-
ease visible in the image) or a number (e.g., the number of 
abnormalities shown in the image). Another distinction that 
can be made in the labeling is a simple binary (yes/no) label-
ing or a multi-class labeling describing a number of different 
outcomes. The same holds for annotations where a single 
region of interest can be available indicating one region with 
specific properties, or multiple regions can be selected each 
with their own specific properties. In supervised learning, 
there are two kinds of learning tasks: classification and 

regression. Classification models try to predict distinct 
classes, while regression models predict numerical values.

In unsupervised learning, the system tries to discover the 
hidden structure of data or associations between variables. In 
that case, training data consists of instances without any cor-
responding labels or annotations. The associations between 
variables are defined in the form of clusters. Clusters are 
informative patterns occurring through clustering, which 
means the separation of a whole dataset into groups of data, 
so that instances belonging to the same group are as similar 
as possible and instances belonging to different groups differ 
as much as possible.

The term reinforcement learning is a general term given 
to a family of techniques in which the system attempts to 
learn through direct interaction with the environment so as to 
maximize some notion of a cumulative reward. It is impor-
tant to mention here that the system has no prior knowledge 
about the behavior of the environment and the only way to 
find out is through trial and error. Reinforcement learning is 
mainly applied to autonomous systems due to its indepen-
dence in relation to its environment but can also play a role 
in medical imaging by providing systems that learn by doing. 
In such a system, there is no pre-definition of the labels or 
annotations of the data, but they are provided by the user 
while the system is learning in the background. After provid-
ing sufficient input to the model to obtain a certain level of 
confidence, the model will start providing the predictions to 
the user who can then provide input by correcting mistakes 
to further train and improve the model. One of the major 
challenges of such systems in clinical practice is that they 
keep learning and thus change behavior over time, which 
hampers the legal acceptance and quality assurance of such a 
model. The learning/training process is dependent on the 
experience of the user. When a less experienced user is feed-
ing such a system with wrong answers, the system will also 
learn from this faulty input assuming that it is correct, and 
eventually the system will adjust itself and start producing 
answers tailored to the faulty input.

Because of the complex nature, in almost every step of the 
AI process, the collaboration in a multidisciplinary group of 
healthcare professionals, data scientists, and deep learning 
experts is crucial to get to the optimal result.

 Clinical Problem

The clinical problem should be the start of every AI project. 
This problem could be related to the inability of a human 
observer to retrieve the required information from imaging 
data, or the time-consuming process of manual processing of 
images, but also about the inability of the human observer to 
provide predictions of future events or progression of disease 
because of the vast amount of data available, which makes it 

Clinical Problem

Data Collection

Data Annotation

Training

Testing

External Validation

Fig. 3.2 Steps in the AI development process
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impossible for a human observer to assess it all. All these 
could lead to the exploration of the support of artificial 
 intelligence to solve the problem. After definition of the clin-
ical problem faced, multiple subsequent steps have to be 
taken to perform in the AI development process.

 Data Collection

The next step to develop an AI algorithm is the collection of 
a large enough dataset of high quality that represents the tar-
get population and holds as little bias as possible. The quality 
of such a dataset is one of the most important factors of the 
AI development process and very often the limiting factor. 
Just as in conventional image processing, the adage “garbage 
in is garbage out” also holds in the case of artificial intelli-
gence; consistent quality of the data is of utmost importance 
as is standardization.

When collecting data, it is important to do this based on 
the clinical question. The data collection should resemble the 
target population of the eventual tool, contain a large enough 
portion per subset related to the different endpoints, and have 
as little bias as possible.

The challenge of bias lies not only in the obvious target 
population features such as gender, age, and race but also in 
the data origin. This becomes even more difficult in medical 
imaging, where the anatomy of patients has a large variation. 
For training purposes, this means that a dataset needs to 
include as many samples as possible. In case of limited avail-
ability of data, this is often achieved by using either patches 
from volumes or extracting 2D slices out of volumes, which 
are often remarkably similar, or by data augmentation during 
the training phase.

Many of the publications mentioned in this chapter only 
provide results of an AI system trained, tested, and validated 
on a single-institution dataset. However, radiological images 
can vary a lot in their presentation because of the depen-
dency on the imaging equipment used. Because of the bias 
introduced by training on a database with images of the 
locally used equipment, acquisition and reconstruction 
parameters, similar performance is not guaranteed on a data-
base obtained at another institution where these factors dif-
fer. For example, Biondetti et  al. demonstrated that CNNs 
can learn to distinguish the scanner manufacturer and that 
this bias can substantially impact model performance for 
both classification and segmentation tasks [54].

 Data Annotation or Labeling

Besides the data itself, the quality of the annotations or labels 
connected to the data is also extremely important. The train-
ing, test, and validation phase of supervised learning 

approaches heavily rely on the quality of these data annota-
tions and labeling. Therefore, a number of questions can be 
asked concerning the annotation and labeling.

A first question is whether previously acquired labels are 
already available. The previous labels could be obtained 
from the clinical databases or the reports from a clinical trial 
or research project. However, this leads to the question 
whether we can actually retrieve the labels from the clinical 
or research system used in a usable and readable format. It 
could therefore also be necessary to specifically (re)label the 
data because no previous labels exist, or they are not usable 
for technical or practical reasons. The annotation or labeling 
is – in many cases – performed by one or multiple human 
experts and provided as consensus or majority vote of those 
human experts. This leads to the next question of whether the 
previously acquired labels are appropriate for the task at 
hand. This concerns questions about not only the strength of 
the label but also the consistency of labels that were previ-
ously added by multiple people with different methodology 
or experience. It is important for an ML algorithm to learn a 
single method of annotating the data. Biases caused by 
inconsistency of the labels can cause the network to become 
less accurate. Similarly, for validation and testing, the labels 
need to be consistent. The ML algorithm will learn to anno-
tate the data in a certain method; if the validation data is then 
inconsistently labeled, mismatches will negatively influence 
accuracy. Once we have a labeled or annotated dataset, we 
also need to consider if there is class balance between the 
different labels.

In some cases, additional information about the ground 
truth can be obtained besides the labeling of human observ-
ers; if this is possible – for example, pathology results for 
malignancy prediction – these could be used to strengthen 
the labels provided.

 Training and Testing

The dataset collected will be divided into a train and a test 
set, often 80% and 20% of the total dataset. This split can be 
performed in different ways. First, a random split can be per-
formed. However, this will only be sufficient if the dataset is 
large enough to avoid unwanted bias in either the train or test 
set. Therefore, a balanced split is also possible where certain 
factors are balanced over the train and test set, for example, 
concerning the population (age/gender) or the outcomes 
(same distribution of the outcomes in both training and test 
set).

Due to the nature of medical data, most of the times, the 
classes in a dataset are very imbalanced, usually either 
toward the healthy prediction or the opposite. This makes the 
algorithm predictions incline to the majority class, creating 
poor accuracy on the minority classes that are usually the 
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diseased classes. It should be noted that some quantification 
methods commonly used will still find high accuracy for 
these algorithms, since the error will be small if the minority 
class is also a minority in the test dataset. Oversampling the 
minority class and undersampling the majority class are 
techniques commonly employed in the training phase of an 
ML algorithm to alleviate the class imbalance problem.

The training itself is an iterative process in which a 
training dataset is provided to the AI model, which will 
then produce predictions. These predictions are – in case of 
supervised learning – compared in smaller batches to the 
true labels, and the difference (or loss) is used to tweak the 
model to reduce the loss by changing its weights after each 
batch. After each iteration over the complete training data-
set, a separate validation will be done with a part of the 
dataset that is not used for the training. After n iterations (or 
epochs) over the full dataset, the training will be complete 
and result in a trained model.

So in this process, the AI model learns by calculating how 
wrong its predictions are by using the provided correct in- 
and output.

Many of the deep learning networks are data hungry when 
training the network and require a lot of data. The number of 
cases presented to the training phase can be extended by so- 
called data augmentation. In the case of imaging data, this 
means that besides the original images, also slightly adjusted 
images are fed to the deep learning network to expose it to a 
higher variety of images with different presentations. 
Possible augmentation adjustments are image mirroring, 
rotation, zooming, and stretching. This data augmentation is 
usually performed on the fly during the training process.

 External Validation

Sometimes, internal validation is performed by providing a 
part of the dataset to the model that it never saw before from 
the own dataset (e.g., by dividing it into 60%/20%/20%). 
However, a better approach is to obtain a true independent 
validation by including an external validation set obtained 
from one or more different institutions. This could be col-
lected, dedicated for this one occasion, but often publicly 
available datasets are used that are posted on open reposito-
ries or were previously released as part of a data science 
challenge. Using such a set also allows to compare algo-
rithms that report on using the same dataset in their pub-
lished work.

 Multistage Pipelines

Currently, the capabilities of AI software are often not 
advanced enough for single neural networks to solve the 

complex problems seen in medical imaging and clinical 
workflows. Therefore, multistage pipelines of combined 
neural networks, each for a specific task, are used. One of the 
examples would be the reduction of variables as discussed in 
the prediction subchapter. More convoluted problems, such 
as locating a pneumothorax, will first identify and segment 
the lungs with a neural network and then train another neural 
network to classify the segmented image for the presence of 
a pneumothorax. During development of these kinds of 
workflows, the pipelines are usually based on clinical work-
flow. When reading a chest x-ray, intuitively, a reader would 
identify the lungs and then look for abnormalities. AI does 
not have intuition, so we have to help it with these steps.

 Conclusion

As can be observed from the successful implementations 
showcased in the growing number of publications, artificial 
intelligence shows great promise in cardiovascular imaging 
for different goals [55]. However, most of the studies pub-
lished are descriptive in nature, and its widespread imple-
mentation is still hampered by low availability and 
reproducibility. Therefore, in the development of AI, careful 
attention to the different steps in the development process 
should be taken to avoid suboptimal training of the network. 
Many challenges still exist in the development of AI tools 
such as suboptimal training data with bias or incorrect labels, 
insufficient training and validation, and many more.

However, it can also be observed that AI has made great 
progress in the past decade and has already made impact in 
cardiovascular imaging in both acquisition and diagnosis. 
This shows that AI has the potential to increase the quality of 
care and reduce the burden on both the healthcare profes-
sional and the patient.
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