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Giant magnon spin conductivity in ultrathin 
yttrium iron garnet films

X.-Y. Wei    1  , O. Alves Santos    1, C. H. Sumba Lusero    1, G. E. W. Bauer    1,2,3, 
J. Ben Youssef4 and B. J. van Wees1

Conductivities are key material parameters that govern various types of 
transport (electronic charge, spin, heat and so on) driven by thermodynamic 
forces. Magnons, the elementary excitations of the magnetic order, flow 
under the gradient of a magnon chemical potential1–3 in proportion to a 
magnon (spin) conductivity. The magnetic insulator yttrium iron garnet 
is the material of choice for efficient magnon spin transport. Here we 
report a giant magnon conductivity in thin yttrium iron garnet films with 
thicknesses down to 3.7 nm when the number of occupied two-dimensional 
subbands is reduced from a large number to a few, which corresponds to a 
transition from three-dimensional to two-dimensional magnon transport. 
We extract a two-dimensional magnon spin conductivity around 1 S at 
room temperature, comparable to the (electronic) conductivity of the 
high-mobility two-dimensional electron gas in GaAs quantum wells at 
millikelvin temperatures4. Such high conductivities offer opportunities to 
develop low-dissipation magnon-based spintronic devices.

The spin current density js in metals is the difference between 
the up-spin j↑ and down-spin j↓ charge current densities measured in 
amperes per square metre, which is driven by a gradient of the spin 
chemical potential (often called spin accumulation) μs. The spin con-
ductivity σs, defined as js = j↑ − j↓ = σs∂μs/e, can be expressed in electri-
cal units as siemens per metre; -e is the electron charge. In magnetic 
insulators, charge currents are absent, but each magnon carries angular 
momentum ħ, where ħ is the reduced Planck constant, which is equiva-
lent to the spin current in metals carried by a pair of spin-up (+ħ/2) and 
spin-down (−ħ/2) electrons that flow in opposite directions.

A magnon current jm can be defined as the magnon number cur-
rent times electron charge e. In magnetic-insulator-based spintronic 
devices, magnon spin currents are injected, detected and modulated by 
microwave striplines or electric contacts made from a heavy metal for 
charge–spin conversion5–9. The corresponding transport parameter is 
the magnon conductivity σm, i.e. the magnon current density divided by 
the gradient of its chemical potential. The unit of the magnon conduc-
tivity in jm = σm∂μm/e, where μm is the magnon chemical potential, is then 
the same as that of electrons in a metal1. The value of σm = 4 × 105 S m–1 

in a 210-nm-thick yttrium iron garnet (YIG) film at room temperature6 
corresponds to the electronic conductivity of bad metals.

The high magnetic and acoustic quality of magnetic insulators 
make them the ideal material for all-magnon logical circuits and 
magnon-based quantum information10. An example of recent progress 
in magnon-based computing is an integrated magnonic half-adder 
based on 350-nm-wide wave guides make from 85-nm-thick YIG films11. 
However, these devices operate with coherent magnons (on the scale 
of gigahertz) excited by narrow microwave striplines which can not 
be integrated into an all-electrical circuit. Therefore, it is attractive to 
inject magnons electrically12. Incoherent thermal magnons with ener-
gies up to the thermal energy at room temperature (several terahertz) 
carry the electrically injected spin current. Also, scalability to smaller 
structure sizes, essential for future high-performance processing units, 
requires micro- and nanofabrication in all dimensions.

The first step is the growth of films of a few or even a single unit 
cell. Previously, magnon transport was reported in transistor structures 
on films down to about 10 nm, which shows that ultrathin films can 
maintain high quality and display intriguing nonlinear magnon 
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The magnon conductivity σm as a function of the thickness tYIG of the 
YIG films in Fig. 1 then follows from the magnon spin conductance:

σm = Gmd
tYIGL

. (2)

For the films with tYIG much smaller than the magnon relaxation length 
λm as well as the lateral device dimension, μm can be considered constant 
in the z direction. Therefore, we use the following equation to describe 
magnon diffusion6,18:

Rnl =
σmtYIGηinjηdet

λm
csch d

λm
→

⎧
⎨
⎩

σmtYIGηinjηdet
d

2σmtYIGηinjηdet
λm

exp(− d
λm
)
for

d≪ λm
d≫ λm

.

(3)

When the spacing d is smaller than λm, it is the ohmic regime in which 
the magnons are conserved, Rnl(Gm) ∝ d−1. Otherwise, the signal decays 
exponentially as a function of distance due to magnon relaxation.

We measure Rnl at room temperature as a function of an exter-
nal in-plane magnetic field Hex with |Hex| = 50 mT, which we rotate 
in the plane (Fig. 1a). We modulate the current I by a low frequency 
(ω/2π = 18 Hz) and detect the first and second harmonic signals, 
Vnl(ω) and Vnl(2ω), respectively, by lock-in amplifier (Methods). Vnl(2ω) 
depends on the spin Seebeck generation and diffusion of magnons 
under an inhomogeneous temperature profile, which renders inter-
pretation difficult19,20 (Supplementary Section V). Therefore, we focus 
on Vnl(ω), from which we can extract the normalized non-local resist-
ance R1ω

nl,

Vnl(ω)
IL = R1ω

nl cos
2α + R1ω

0 , (4)

where R1ω
0  is an offset resistance (Methods) and α is the angle between 

Hex and the x axis. In Fig. 2, the angle-dependent measurements in YIG 
films of various thickness show that R1ω

nl  becomes four times larger 
when the film is over fifty times thinner, from 210 nm to 3.7 nm. We also 
observe a strongly increased non-local signal in ultrathin films in  
Fig. 3 as a function of contact separation for a wide range of tYIG values 
including results on ultrathin YIG films for 400-nm-wide Pt strips and 

effects13,14. However, the scattering by surface roughness is expected 
to increase in even thinner films15. This could be an obstacle for magnon 
spin transport in ultrathin YIG films as it hinders observation of a transi-
tion from a three-dimensional to a two-dimensional magnon gas when 
the thermal wavelength λthermal = √4𝜋𝜋ℏγD/(kBT) (~2 nm at room tem-
perature) approaches the film thickness tYIG, where γ is the gyromag-
netic ratio, D is the spin wave stiffness, T is the temperature and kB is 
the Boltzmann constant.

Here we report measurements of the magnon conductivity of 
YIG films with thicknesses down to 3.7 nm. Much to our surprise, the 
magnon transport turns out to be strongly enhanced in the ultrathin 
regime. We report a drastical increase in magnon conductivity of up to 
σm = 1.6 × 108 S m–1 at room temperature, which even exceeds the elec-
tronic spin conductivity of high-purity copper. This increase is intimately 
connected to the small number of occupied subbands and apparent domi-
nation by the lowest subband in our films. These results can importantly 
boost the performance of magnon-based information technology10,16.

We employ a non-local configuration6 (Fig. 1a) of two Pt thin film 
strips with length L at a distance d on top of YIG films grown on gal-
lium gadolinium garnet by liquid-phase epitaxy. An electric charge 
current I through the injector generates a transverse spin current due 
to the spin Hall effect (SHE)17, resulting in a spin accumulation μs in Pt 
at the interface to YIG. The injector-conversion coefficient ηinj = μs/(eI) 
depends on the properties and dimensions of the Pt strip as explained 
in Supplementary Section I. The effective interface spin conductance 
results from the exchange interaction across the interface and pro-
duces a magnon chemical potential μm on the YIG side of the interface 
that acts as a magnon source, where μm ≈ μs since the interface spin 
resistance can be ignored (Supplementary Section III). The detec-
tor electrode is a magnon drain that absorbs magnons and converts 
them into a spin current js entering the Pt detector electrode (js

det). The 
inverse spin Hall effect (ISHE) generates a non-local (nl) voltage Vnl at 
the detector with conversion coefficient ηdet = Vnl/js

det. By reciprocity, 
ηinj = ηdet when injector and detector contacts have the same properties 
(Supplementary Section I for details). Since the signal scales with L, a 
normalized non-local resistance can be defined as Rnl = Vnl/(IL). The 
magnon conductance follows from the measured non-local resistance:

Gm = 1
ηinjηdet

Vnl
I = RnlL

ηinjηdet
. (1)
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Fig. 1 | Device layout. a, Schematic representation of the experimental geometry. 
Two Pt strips deposited on top of YIG serve as the magnon detector and injector 
via the direct and inverse spin Hall effect. A low-frequency a.c. current with a 
r.m.s. value of I through the left Pt strip injects magnons. The centre-to-centre 
distance of the injector and the detector is d and the length of the injector/
detector is L. A spin accumulation μs is formed at the Pt|YIG interface due to the 
SHE when a charge current passes through the injector and excites a magnon 
non-equilibrium underneath the injector. The diffusive magnons are absorbed 

at the drain, which induces a spin current density js. Then, js is converted into 
a charge current density jc due to ISHE. Using a lock-in technique, the first 
harmonic voltage is measured simultaneously by the right Pt strip, that is, a 
magnon detector; α is the angle of the external magnetic field Hex. b, Scanning 
electron microscopy image of the geometry. The parallel vertical lines are the 
platinum injector and detector, and they are contacted by gold leads. 
 Current and voltage connections are indicated schematically. The scale bar 
represents 2 μm.
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for thicker films (tYIG ≥ 210 nm; refs. 6,21). Figure 4a emphasizes the dra-
matic enhancement of R1ω

nl  for the thinnest films down to tYIG = 3.7 nm 
and fixed d = 2.5 μm, which can be attributed to the tYIG dependence of 
σm because λm > 2.5 μm for all thicknesses (Supplementary Section IV 
for details). The R1ω

nl  value increases with decreasing thickness and 
saturates for both the thinnest and thickest films.

A finite-element model1 can simulate the depth (z) dependence of 
μm when tYIG > λm (Supplementary Section I for details). This leads to a 
limiting σm → 3 × 104 S m–1 in Fig. 4b for thicker films, which represents 
the bulk value. The simulated Rnl values for d = 2.5 μm in Fig. 4c have 
been fitted to R1ω

nl  in Fig. 4a by conductivities that are strongly enhanced 
in the regime tYIG < λm. For tYIG = 3.7 nm, the magnon conductivity 
σm = 1.6 × 108 S m–1 is four orders of magnitude larger than the bulk 

value, exceeding the electronic conductivity σe of pure metals such as 
copper with σe = 6 × 107 S m–1 (ref. 22). The observed saturation at tYIG → 0 
appears to reflect an increased role of surface roughness scattering 
that we do not model explicitly.

The σm and σe above are conductivities in three dimensions. To 
distinguish the conductivity in ν dimensions (ν = 2, 3), the conductivi-
ties now are labeled with ν, σm

(ν) and σe
(ν), where σm

(3) = σm and σe
(3) = σe. 

A magnon conductivity that diverges for tYIG → 0, such as σ(3)m ≈ σ(2)m /tYIG, 

simply suggests two-dimensional transport. In Fig. 4c, σ(2)m  has a local 
maximum at tYIG = 7.9 nm. The decrease for the thinnest layers is not 
statistically relevant, however. Within this uncertainty, magnon trans-
port approaches the two-dimensional limit in ultrathin YIG films, with 
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Fig. 2 | Angular dependence of the normalized non-local signal 
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IL . 

Dependence of the normalized non-local signal 
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 on the magnetization 
direction of YIG films for a short centre-to-centre distance between the injector 
and the detector. The offset R1ω

0  in Eq. (4) has been subtracted. The corresponding 
non-local resistance R1ω

nl  strongly increases with decreasing thickness. The 
dashed line is the thick-film reference from Cornelissen et al.6.
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Fig. 4 | Thickness dependence of the non-local magnon transport. a, The 
non-local resistance R1ω

nl  for d = 2.5 μm as a function of tYIG obtained by extraction 
by fitting the angle-dependent non-local resistance to Eq. (4). The error bars 
represent the standard statistical error from the least-squares analysis. The 
results for tYIG ≥ 210 nm are adopted from Cornelissen et al.6 and Shan et al.21.  
b, Thickness dependence of the magnon conductivity σm obtained by the best fit 
for different distances with statistical error bars. c, Thickness dependence of the 
two-dimensional magnon spin conductivity σ(2)m  and the non-local resistance Rnl 
from the simulation, with values based on the best fit for the magnon 
conductivity. The saturation at tYIG → 0 indicates that the film approaches the 
two-dimensional regime in the ultrathin limit. The obtained error bars in b  
and c indicate the scatter in the best fits by the numerical simulations 
(Supplementary Section II).

http://www.nature.com/naturematerials


Nature Materials | Volume 21 | December 2022 | 1352–1356 1355

Letter https://doi.org/10.1038/s41563-022-01369-0

a limiting σ(2)m  for tYIG < 10 nm; that is higher two-dimensional subbands 
do not contribute notably even though they are still populated (as 
discussed below). The two-dimensional subbands correspond to mag-
non modes that propagate in-plane but with confined out-of-plane 
dynamics in the form of perpendicular standing spin waves. Extrapola-
tion to zero thickness leads to σ(2)m ≈ 1 S. This value at room temperature 
is comparable to that of the high-mobility two-dimensional electron 
gas at millikelvin temperatures, where the two-dimensional electronic 
conductivityσ(2)e  is around 1.4 S in GaAs quantum wells4.

The magnons propagate in the plane with wave vector k and 
form perpendicular standing spin waves in the z direction labelled 
by an integer n. The exchange interaction scales like ~k2 and domi-
nates the magnon dispersion εnk at thermal energies (~kBT) with small 
m a g n e t o - d i p o l a r  c o r re c t i o n s .  A  m a g n o n  w i t h  e n e rg y 
εnk = ℏγD (k2 + (n𝜋𝜋/tYIG)

2)  contributes to the conduction propor-
tional to its thermal occupation Nnk = 1/ {exp [εnk/ (kBT)] − 1}. For YIG, 
γ/2π = 28 GHz T–1 and the spin wave stiffness23 D = 5 × 10−17 T m2.  
We define the highest occupied subband n as

n = int( tYIG
𝜋𝜋 √

kBT
ℏγD) (5)

at εn0 < kBT as a function of thickness24, where int(x) is the largest 
integer no more than x. For tYIG = 3.7 nm, only three approximately 
two-dimensional subbands are occupied at room temperature.

The simplest model for the magnon conductivity in ν dimensions 
(ν = 2, 3) follows from the Boltzmann equation with a constant relaxa-
tion time τ:

σ(ν)m = e2τ(ν)
kBT

∫ dk
(2𝜋𝜋)ν

( ∂εk
ℏ∂kz

)
2 eεk/(kBT)

(eεk/(kBT) − 1)
2 (6)

where εk = ħγDk2. Magnetic freeze-out experiments show that the 
contributions from the low-frequency magnons (on the scale of giga-
hertz) are notable even at room temperature, presumably reflecting low 
mobilities of thermal exchange magnons25–27. This can be represented 
by a high-momentum cut-off K∞ ≈ 1 nm–1 at magnon frequencies ε∞/ħ 
on the scale of terahertz. In the high-temperature limit kBT ≫ εk, the 
conductivities do not depend on γD:

σ(3)m = 2e2kBTτ(3)
3ℏ2𝜋𝜋2 K∞, (7)

σ(2)m = e2kBTτ(2)
𝜋𝜋ℏ2 log K∞K0

, (8)

where K0 is a low-momentum cutoff by the magnon gap of ε0/ħ, which 
is on the scale of gigahertz. By comparing these equations with the 
experimental results σ(3)m ≈ 3 × 104 Sm−1 and the present σ(2)m ≈ 1 S and 
using the scattering times as adjustable parameters, we arrive at 
τ(3) ≈ 40 fs and τ(2) ≈ 0.1 ns. Based on a diffusion model, Fang et al.28 
recently predicted that the magnon mean free path should be much 
larger in two dimensions than in three dimensions. The short scatter-
ing time in three dimensions can be explained by highly efficient mag-
non–phonon scattering at room temperature1. While the 
high-momentum cut-off plays an important role in three dimensions, 
the near independence of σ(2)m  emphasizes the importance of the near 
bandgap excitations for transport in two dimensions. Coherent  
magnons excited at gigahertz frequencies can propagate over centi-
metres in spite of their small group velocity because they scatter only 
weakly at phonons29. Their contribution has a much larger effect on 
transport in ultrathin films than in the bulk, which is consistent with 
the magnetic field and temperature dependences reported in the 

Supplementary Information. The estimated scattering time of 
τ(2) = 0.1 ns may be limited by the film roughness scattering. The pre-
cise mechanism can be elucidated only by more extensive experimen-
tal and theoretical studies of the temperature and field dependences.

While magnon-based devices do not suffer from Joule heating, 
magnon transport is not dissipationless6,30 even for transport on length 
scales shorter than the magnon relaxation length, where magnons are 
conserved. The observed giant magnon conductivity is therefore excel-
lent news, implying low dissipation from magnon–phonon scattering 
even at room temperature. Ultrathin films can therefore be driven with 
relative ease into the nonlinear regime in, for example, magnon spin 
transistors13,14, facilitating electrically induced magnon Bose–Einstein 
condensation and magnon spin superfluidity31,32. The robustness of 
the magnon mobility for thin films close to the monolayer thickness 
should allow magnon transport in nanostructures such as constric-
tions, wires and dots with feature sizes of a few nanometres without 
loss of magnetic functionality.
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Methods
Fabrication
The YIG films are grown on Gd3Ga5O12 (gallium gadolinium garnet) 
substrates by liquid-phase epitaxy at the Université de Bretagne Occi-
dentale in Brest, France, with thicknesses from 3.7 nm to 53 nm. The 
effective magnetization Meff and the magnetic relaxation (intrinsic 
damping parameter α and extrinsic inhomogeneous linewidth ΔHin) are 
determined by broadband ferromagnetic resonance in the frequency 
range 2–40 GHz (Supplementary Section IV). The device patterns are 
written by three electron-beam lithography steps, each followed by a 
standard deposition and lift-off procedure. The first step produces a Ti/
Au marker pattern, used to align the subsequent steps. The second step 
defines the platinum injector and detector strips, as deposited by d.c. 
sputtering in an Ar+ plasma at an argon pressure with a thickness of ~8 nm 
for all devices. The third step defines 5/75 nm Ti/Au leads and bonding 
pads, deposited by electron-beam evaporation. Devices have an injec-
tor/detector length L = 30/25 μm, and the strip widths W are 400 nm for 
series A and 100 nm for series B. The experimental results in the main 
text are obtained from series A. The distance-dependent non-local 
resistances for series B can be found in Supplementary Section III.

Measurements
All measurements were carried out by means of three SR830 lock-in 
amplifiers using an excitation frequency of 18 Hz. The lock-in amplifiers 
are set up to measure the first and second harmonic responses of the 
sample. The current was sent to the sample using a custom-built current 
source, galvanically isolated from the rest of the measurement equip-
ment. Voltage measurements were made using a custom-built pream-
plifier (gain 103) and amplified further using the lock-in systems. The 
typical excitation currents applied to the samples were 200 μA (r.m.s.) 
for series A and 20 μA for series B. The in-plane coercive field of the 
YIG, Bc, was below 10 mT for all YIG samples, and we applied an external 
field to orient the magnetization using a physical property measure-
ment system. The samples were mounted on a rotatable sample holder 
with stepper motor. All experimental data in the main text were col-
lected at 300 K (room temperature) at an applied magnetic field of 
50 mT. The offset resistance R1ω

0  arises from the spontaneous capacitive 
and inductive coupling between the measurement wires to and from 
the sample.

Simulations
Our finite-element model implements the magnon diffusion equation 
in insulators in order to simulate transport of electrically injected  
magnons. We carried out the simulations with the COMSOL MUL-
TIPHYSICS (v.5.4) software package, with technical details in Supple-
mentary Section I.
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