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b Université de Caen, Normandie, 14032, Cedex 5, Caen, France 
c Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, (SS Patologia Animale – Simona; SS Microbiologia Comparativa Specialistica - Centro di 
Riferimento Tipizzazione delle Salmonelle (CeRTiS) – Monica), via Bologna 148,Torino, Italy 
d Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Nuremberg, Germany 
e Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany 
f Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany 
g Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany 
h Department of Medical Technology and Sciences, School of Health Sciences, Fukuoka International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 
Japan 
i Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary 
j Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, the Netherlands 
k Department of Clinical Microbiology, Odense University Hospital, 5000 Odense C, Denmark 
l Operative Unit of Microbiology, IRCCS-Azienda Ospedaliero Policlinico Sant’Orsola-Universitaria di Bologna, 40138 Bologna, Italy 
m Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 43126, Italy 
n Institute for Hygiene and Environment, City of Hamburg, 20539 Hamburg, Germany 
o Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany 
p University Medical Center Hamburg-Eppendorf (UKE), Tropical Medicine II, Hamburg, Germany 
q Department of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Balkenstrasse 17-19, 44137 Dortmund, Germany   

A R T I C L E  I N F O   

Keywords: 
Salmonella enterica 
FT-IR spectroscopy 
FTIRS 
Salmonella typing 
IR Biotyper 
Machine learning 

A B S T R A C T   

Background: Salmonella enterica is among the major burdens for public health at global level. Typing of salmo
nellae below the species level is fundamental for different purposes, but traditional methods are expensive, 
technically demanding, and time-consuming, and therefore limited to reference centers. Fourier transform 
infrared (FTIR) spectroscopy is an alternative method for bacterial typing, successfully applied for classification 
at different infra-species levels. 
Aim: This study aimed to address the challenge of subtyping Salmonella enterica at O-serogroup level by using 
FTIR spectroscopy. We applied machine learning to develop a novel approach for S. enterica typing, using the 
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FTIR-based IR Biotyper® system (IRBT; Bruker Daltonics GmbH & Co. KG, Germany). We investigated a mul
ticentric collection of isolates, and we compared the novel approach with classical serotyping-based and mo
lecular methods. 
Methods: A total of 958 well characterized Salmonella isolates (25 serogroups, 138 serovars), collected in 11 
different centers (in Europe and Japan), from clinical, environmental and food samples were included in this 
study and analyzed by IRBT. Infrared absorption spectra were acquired from water-ethanol bacterial suspensions, 
from culture isolates grown on seven different agar media. In the first part of the study, the discriminatory 
potential of the IRBT system was evaluated by comparison with reference typing method/s. In the second part of 
the study, the artificial intelligence capabilities of the IRBT software were applied to develop a classifier for 
Salmonella isolates at serogroup level. Different machine learning algorithms were investigated (artificial neural 
networks and support vector machine). A subset of 88 pre-characterized isolates (corresponding to 25 serogroups 
and 53 serovars) were included in the training set. The remaining 870 samples were used as validation set. The 
classifiers were evaluated in terms of accuracy, error rate and failed classification rate. 
Results: The classifier that provided the highest accuracy in the cross-validation was selected to be tested with 
four external testing sets. Considering all the testing sites, accuracy ranged from 97.0% to 99.2% for non- 
selective media, and from 94.7% to 96.4% for selective media. 
Conclusions: The IRBT system proved to be a very promising, user-friendly, and cost-effective tool for Salmonella 
typing at serogroup level. The application of machine learning algorithms proved to enable a novel approach for 
typing, which relies on automated analysis and result interpretation, and it is therefore free of potential human 
biases. The system demonstrated a high robustness and adaptability to routine workflows, without the need of 
highly trained personnel, and proving to be suitable to be applied with isolates grown on different agar media, 
both selective and unselective. Further tests with currently circulating clinical, food and environmental isolates 
would be necessary before implementing it as a potentially stand-alone standard method for routine use.   

1. Introduction 

Salmonella enterica is one of the leading causes of foodborne diseases 
worldwide, representing a major public health burden for both low- 
income and industrialized countries. It is responsible of 180 million 
cases of salmonellosis, up to 24.2 million cases of typhoid fever, and 
298,000 estimated deaths per year (Antillón et al., 2017; CDC, 2017; 
EFSA and ECDC, 2017; WHO, 2016). S. enterica is transmitted to humans 
by consumption of a wide range of contaminated foods, thereby it is 
involved both in endemic and epidemic scenarios (Antunes et al., 2016, 
2017; EFSA and ECDC, 2017; Mourão et al., 2014; Painter et al., 2013). 
Differentiation of S. enterica at subspecies level is crucial for epidemio
logical investigations and for the control of foodborne outbreaks, as well 
as for the clinical management of infections. Many methods are used for 
S. enterica typing (serotyping, phage typing, DNA-based methods) (Tang 
et al., 2019), which allow subspecies discrimination at different levels, 
but these are laborious and cost-intensive, and often require high tech
nical expertise (Sabat et al., 2013). Globally, serotyping, based on the 
agglutination reaction with specific antisera targeting the somatic O- 
antigen and flagellar H-antigens (Grimont and Weill, 2007), is still the 
recognized and most widely used approach to classify S. enterica. 
Discrimination at serogroup level is the most frequently applied 
phenotypic method, since few serotypes, belonging to serogroups D, B, C 
and E, namely S. Eenteritidis, S. Ttyphimurium and its monophasic 
variant (S. 1,4,[5],12:i:-), and the emerging S. Stanley, S. Infantis, S. 
Rissen, S. Newport and S. Kentucky cause the majority of infections 
worldwide (CDC, 2017; EFSA and ECDC, 2017; Grimont and Weill, 
2007). However, any deeper discrimination at serotype level, despite its 
potential clinical or epidemiological relevance, is restricted to reference 
laboratories, since it is complex, expensive, and time-consuming 
(Parmley et al., 2013). 

Fourier Transform Infrared (FTIR) Spectroscopy, traditionally used 
in analytical chemistry for decades, has also been successfully applied 
for the discrimination of bacteria at different taxonomic levels (genera, 
species, serogroup/type, and even at strain level), based on the analysis 
of the intact microbial cells or of the outer membrane components 
(Baker et al., 2014; Griffiths and De Haseh, 2007; Helm et al., 1991; 
Lasch and Naumann, 2015; Naumann et al., 1991). It proved to be a 
simple, quick, high-throughput and cost-effective technique (Davis and 
Mauer, 2010; Preisner et al., 2007; Quintelas et al., 2018; Stuart, 2004; 
Wenning and Scherer, 2013; Zamowiec et al., 2015). Salmonella enterica 
has been shown an interesting and promising bacterial species to be 

investigated with FTIR spectroscopy, because of its high antigenic di
versity and the associated varying clinical relevance. The different 
length of somatic antigens, and the high carbohydrate diversity of O- 
units, supposed to have a great impact on the cell surface structure, have 
the potential to enable a differentiation based on FTIR methodology. 
Several research groups investigated this approach to discriminate 
S. enterica serotypes using multivariate analysis and different bacterial 
collections (De Lamo-Castellví et al., 2010; Kim et al., 2006; Männing 
et al., 2008; Preisner et al., 2010; Sundaram et al., 2012). More recently, 
the potential of FTIR spectroscopy was assessed by Campos et al. in a 
study including comprehensive and robust Salmonella collections 
(Campos et al., 2018). The study proved that this methodology repre
sents a reliable and alternative technique for an accurate discrimination 
of Salmonella isolates belonging to B, C, D and E serogroups, C1, C2 and 
C3, and E1-E2-E3 and E4 subgroups, as well as for a classification of 
particularly relevant serotypes (S. Rissen, S. Enteritidis and S. Senften
berg). However, further studies are required to provide more thorough 
molecular assessment-based insights into the potential and limitations of 
this methodology. 

In the present study, the IR Biotyper® system (IRBT, Bruker Dal
tonics GmbH & Co. KG), an FTIR-based commercially available system 
for microbial typing, was evaluated for S. enterica typing at O-serogroup 
level. An innovative typing approach was developed, applying artificial 
intelligence and machine learning (ML). ML uses specific software al
gorithms to automate computers to make predictions based on biolog
ical data. The algorithms learn to identify and recognize the features of 
the training set. Based on the data they have learnt, they allow the 
automated classification of unknown samples by application of the 
marker model calculated on the set of training spectra. To date, several 
ML techniques are available, well described and established, and they 
have been applied in almost all disciplines of biological sciences, 
including medicine. In this study, artificial neural network (ANN) and 
support vector machine (SVM) algorithms, two of the most widely used 
ML algorithms, implemented in the IR Biotyper® software, were used to 
build classifiers for the typing of Salmonella species at O-serogroup level. 
A large collection of strains, isolated from human, food-related, and 
environmental samples collected at different European sites was 
included, and a training and the testing sets were defined. The spectra 
were measured from bacterial cultures on the most widely used culture 
media. The performance of the classifiers was evaluated in terms of 
accuracy and error rate, testing different collections of isolates and 
spectra from different locations. In addition, the impact of the culture 
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medium on classification accuracy was also evaluated. 

2. Materials and methods 

2.1. Bacterial collection 

Overall, a total of N = 958 Salmonella enterica non-duplicate isolates 
of clinical, environmental, veterinary, food-related origins and from 
culture collections were included in this study. The strains were isolated 
in/from 11 different hospitals and reference centers, located in different 
European countries (Université de Caen, Normandie, France; University 
Medical Center Groningen, the Netherlands; Odense University Hospi
tal, Odense, Denmark; Paracelsus Medical University, Nuremberg, Ger
many; Institute for Hygiene and Environment, City of Hamburg, 
Hamburg, Germany; MVZ Dr. Eberhard & Partner Dortmund, Dort
mund, Germany; University of Szeged, Szeged, Hungary; University 
Hospital IRCCS Policlinico Sant’Orsola-Malpighi, Bologna, Italy; Istituto 
Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 
Parma, Italy; Istituto Zooprofilattico Sperimentale del Piemonte, Liguria 
e Valle d’Aosta, Torino, Italy; School of Health Sciences, Fukuoka, 
Japan). In most centers the strains were collected prospectively, without 
any selection, for a given time frame, while in some cases the isolates 
were selected from frozen culture collections, with a specific focus (para 
(typhoidal) serovars, rarer serogroups). Culture collection strains from 
Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell 
Cultures (DSMZ) and Collection of the Institute Pasteur (CIP) were also 
included. Overall, the samples included in the study covered 25 
serogroups and 138 serovars. The vast majority (n = 925, 96.6%) of 
isolates belonged to S. enterica subsp. enterica (subgenus I), while n = 32 
(3.4%) belonged to other subspecies, namely n = 12 subsp. salamae (II), 
n = 2 subsp. arizonae (IIIa), n = 12 subsp. diarizonae (IIIb), n = 5 subsp. 
houtanae (IV) and n = 1 subsp. indica (VI). Also, one isolate of Salmonella 
bongori (V) was included. The most quantitatively dominating group was 
O:4 (n = 422 strains, 44.1%), followed by O:9 (n = 186, 19.4%), O:7 (n 
= 111, 11.6%), O:8 (n = 60, 6.3%), O:3,10 (n = 33, 3.4%), O:13 (n = 29, 
3.0%), O:2 (n = 29, 3.0%), O:11 (n = 21, 2.2%) and O:28 (n = 12, 1.3%), 
while the remaining groups were represented by <10 isolates each. 
(Table S1). 

All isolates were identified at the genus level in the primary col
lecting laboratories by MALDI-TOF MS or biochemical methods (API 
20E, bioMérieux, Marcy l’Etoile, France). Typing was performed in 
accordance with the established procedures of each center (serotyping at 
serotype level (Tang et al., 2019), PFGE (Ribot et al., 2006), PCR for S. 
Typhimurium (Barco et al., 2011; EFSA, 2010; Tennant et al., 2010) or 
whole genome sequencing). Overall, n = 881 isolates were typed at the 
serovar level, while additional n = 77 at the serogroup level. 

2.2. Sample preparation 

Solid agar cultures for spectra acquisition were incubated at 35 ±
2 ◦C for 24 ± 1 h in normal atmosphere. Sample preparation for IRBT 
analysis was performed following manufacturer’s instructions. Briefly, a 
1 μl overloaded loop with bacterial colony material taken from the 
confluent part of the plate culture was resuspended in 50 μl of 70% 
ethanol solution in an IRBT suspension vial. After vortexing, 50 μl of 
deionized water were added, and the solution mixed by pipetting. 
Fifteen μl of the bacterial suspension were spotted in three technical 
replicates onto the 96-spots silicon IRBT target and left to dry for 15–20 
min at 35 ± 2 ◦C in normal atmosphere. The quality controls Infrared 
Test Standards (IRTS 1 and IRTS 2) of the IRBT kit were resuspended in 
90 μl of deionized water, then 90 μl of absolute ethanol were added and 
mixed. Twelve μl of the suspension were spotted in duplicate onto the 
IRBT target and left to dry as described for the samples. All steps for 
IRBT sample preparation and measurements were carried out at a 
standard laboratory bench, without controlled room temperature and 
humidity conditions. 

The strains tested at Bruker, Bremen, Germany (culture collection 
strains and isolates collected in the first seven of the above-mentioned 
centers), were stored in cryovials (Microbanks, PRO-LAB DI
AGNOSTICS, Richmond Hill, Canada), and retrieved on Columbia sheep 
blood agar (CBA - Becton, Dickinson and Company, Sparks, MD, USA), 
and subcultured on CBA, chocolate agar (CHO), Tryptose Soy agar 
(TSA), Mueller-Hinton agar (MHA), MacConkey agar, (MacC) (Becton, 
Dickinson and Company, Sparks, MD, USA), Xylose Lysine Desoxy
cholate agar and Salmonella-Shigella agar (XLD and SSA – Carl Roth 
GmbH & Co. KG, Karlsruhe, Germany). Furthermore, a subset of n = 385 
strains were analyzed from culture on RAPID’ Salmonella Medium (RA, 
Bio-Rad, Marine-la-Coquette, France). Among these, n = 152 strains, 
representing all serogroups and most of serovars, were analyzed also on 
ChromID® Salmonella Agar (bioMérieux, Marcy-l’Etoile, France). 

The strains analyzed at the University Hospital IRCCS Policlinico 
Sant’Orsola-Malpighi, Bologna, Italy (also including the isolates from 
Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia- 
Romagna), were retrieved from long-term storage cultures (on TSA, 
Meus, Piove di Sacco, Italy) and subcultured for the IRBT measurement 
on Tryptose Soy agar with 5% sheep blood (TSA-SB, Meus). The strains 
analyzed at the School of Health Sciences of Fukuoka International 
University of Health and Welfare, Okawa, Japan, were retrieved from 
frozen cultures onto Salmonella Shigella agar (Eiken Chemical Co., Ltd., 
Tokyo, Japan), and then subcultured on Mueller-Hinton agar (Eiken 
Chemical) for IRBT measurement. The strains analyzed at Istituto Zoo
profilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Torino, 
Italy, were retrieved from cryovials on CBA (Becton Dickinson and 
directly analyzed by IRBT. 

All samples were analyzed in one independent biological replicate, 
with the exception of CBA in Bremen, from which three independent 
cultures on three different days were tested. 

2.3. Spectra acquisition and analysis 

IRBT spectra were acquired in three centers: the Bruker Daltonics 
bacteriology laboratory in Bremen, Germany (n = 552 isolates), Bologna 
and Torino, Italy (n = 327 and n = 36 isolates, respectively) and Okawa, 
Japan (n = 39). Spectra acquisition was performed in transmission mode 
in the spectral range 4000–500 cm− 1 (mid-IR) using the IRBT spec
trometer and OPUS software (Bruker Optics GmbH & Co. KG). Pro
cessing and visualization of spectra was performed with the IR Biotyper 
Client Software (Bruker Daltonics), applying the versions available at 
the moment of the measurement (V2.1, V.3.0, or V3.1) and using default 
settings recommended by the manufacturer. After spectra smoothing 
using the Savitzky-Golay algorithm over 9 data points, the second de
rivative of the spectra was calculated. Spectra were then cut to 
1300–800 cm− 1 [14] and vector-normalized to correct for preparation- 
related variance of biomass and hence absorption. 

IRTS 1 and IRTS 2 were measured as quality control prior to sample 
spectra acquisition, in each run. All spectra were acquired intercalating 
a background spectrum between each sample/control measurement. 

2.4. Exploratory unsupervised and supervised multivariate analysis 

IRBT data analysis was performed in Bremen. Principal components 
analysis (PCA) and linear discriminant analysis (LDA) were applied to 
the whole dataset of isolates measured in Bremen (n = 552), for a first 
investigation of the clustering capability and the discriminatory power 
of IRBT for Salmonella at O serogroup level. PCA and LDA were also used 
to estimate the degree of heterogeneity within the most numerous 
serogroups, especially regarding the most common and most clinically 
relevant serogroups (O:2, O:4, O:7, O:8, O:9, O:3,10, O:1,3,19, O:13). 

2.5. Machine learning and development of automated classifiers 

IRBT classifiers consist of a machine learning algorithm (ML), 
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presently an artificial neural network (ANN) or a support vector ma
chine (SVM), and an outlier detector (OD). The ML is trained with a set 
of well characterized isolates, to recognize the specific characteristics of 
each class (O-serogroups). Based on the discriminatory features that it 
has “learned” during the training, the classifier assigns the unknown 
samples to one of the predefined classes (O-serogroups). Thus, the 
classification process represents the attribution of unknown Salmonella 
isolates to one of the O-serogroups included in the training dataset, 
according to the model calculated by the algorithm. In addition, the OD 
determines the spectral distance of a sample from the training set and 
can be used to evaluate similarity of unknown samples with training 
samples, as well as to detect and disregard unrelated samples. The 
outlier value enables to deliver a classification result with a “traffic 
light” color code scoring system, which depicts the reliability of the 
classification. The cut-off values applied to define the outlier categories 
are extrapolated from the distribution of the outlier values of the vali
dation cohort of samples (samples not included in the training set), 
considering the Youden index. A “green score” result means that the 
sample spectrum is located within the spectral space of the training set, 
therefore it can be considered highly reliable. A “yellow score” result 
means that the sample spectrum is located at the periphery of the 
spectral space of the training set, therefore it can be considered 
moderately reliable. A “red score” value means that the sample spectrum 
is located far from the samples included in the training set, therefore it 
cannot be considered reliable, as the isolate could either not belong to 
any known class included in the training set (in this case, another O- 
serogroup, or also an unknown serotype of a known serogroup), or the 
acquisition/incubation conditions differ too much from the ones in the 
training set. 

In this study, different versions of a Salmonella O-group classifier 
were built applying the above-mentioned ML algorithms to the same 
training set. Presently, ANN and SVM with either linear or Gaussian 
radial basis function (RBF) kernel are available algorithms in the IRBT 
software. During the training of the classifiers, a 4-fold cross validation 
was performed automatically to assess accuracy (= true positives / all 
classifications) and check for overfitting. The parameters of the classi
fication algorithms (PCs used, number of training cycles or C value) were 
optimized for best accuracy by trial-and-error, and the classifier version 
that delivered the best results was selected and further validated with 
the external testing set (Fig. 1). 

The training set overall included n = 2300 spectra, originating from 
n = 88 strains, from which 84 isolates were measured in Bremen (on 
CBA, CHO, TSA, MHA, MacC, SSA and XLD), and n = 4 S. Typhi isolates 
were measured in Bologna (only on CBA and TSA-SB). These strains 
corresponded to a total of 25 serogroups and 53 serovars. Each 
serogroup was represented by at least one isolate. The number of strains 
included for each serogroup varied in relation to their prevalence in the 
whole dataset (which reflects their frequency of isolation). Nevertheless, 
to minimize the unbalancing between the most frequent serogroups and 
the rarer ones, as well as to further test the robustness of the method, for 
the most numerous serogroups (O:4, O:7, O:8, O:9, O:3,10 and O:13), 
only the most common serovars were included. For each serovar, only 
one isolate was included (randomly chosen), except for the most 
numerous ones (S. Typhimurium, S. Enteritidis, etc.), for which the se
lection of the training isolates considered also the inter-serovar het
erogeneity, previously investigated by PCA/LDA. Three isolates were 
included also for S. Senftenberg, given the high similarity degree be
tween O:1,3,19 and O:3,10 groups and the need to maximize the dif
ferentiation capabilities for them. 

The testing set included the remaining isolates measured in Bremen, 
grown on all culture media (n = 468) and the isolates measured at the 
external sites, grown on the culture media in use in the local routine 
workflow (n = 327 in Bologna, n = 39 in Japan and n = 36 in Torino). 
The composition of training and testing sets is shown in Table 1. The 
performance of the classifier was evaluated in terms of accuracy, error 
rate and failed classification rate, calculated for the “whole” isolate 
(comprising all spectra from all culture media) and also for the single 
media. Accuracy was defined as number of isolates correctly classified 
(green and yellow) out of the total number of isolates. Error rate was 
defined as number of isolates erroneously classified (misclassification, 
green and yellow) out of the total number of isolates. Failed classifica
tion rate was defined as number of isolates delivering a “red” result out 
of the total number of isolates. In cases where IRBT and reference 
method disagreed, IRBT analysis and agglutination test were repeated, 
to ensure that no mix-ups occurred during the analytical processes. 

3. Results 

Overall, 19,367 spectra were included in this study (16,515 
measured in Bremen by 4 different operators, 2852 at external sites). 

Fig. 1. Diagram of the IRBT general machine learning process.  
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3.1. Exploratory multivariate analysis 

PCA and LDA showed good clustering of the different serogroups, 
with a clear differentiation of the vast majority of serogroups (Fig. 2). 

A high degree of relatedness (i.e., a low spectral distance) was 
observed, as expected, between closely related serogroups (O:7/O:8 and 
O:3,10/O:1,3,19), but also between O:7/O:13/O:21. Nevertheless, the 
groups were clearly differentiable. A partial spectral overlapping was 
observed only for the non-paratyphoidal O:2 serovars (Nitra, Kiel and 
Koessen), some O:7 strains and the O:6,14,24 (S. Carrau) isolates. 

Among the most numerous serovars included in this study, S. 
Typhimurium, S. Paratyphi B, S. Paratyphi C and S. Enteritidis showed a 

certain degree of heterogeneity in their distribution in the spectral 
space. On the contrary, S. Paratyphi A, S. Typhi, S. Infantis, S. Kentucky, 
S. Dublin, S. Goldcoast, S. Brandenburg and S. Derby showed a low 
heterogeneity. The differentiation among (para)typhoidal and non- 
(para)typhoidal serovars among serogroups O:2, O:4, O:7 and O:9 pre
viously described by our group (Cordovana et al., 2021) could be 
confirmed. Nevertheless, no interference of this intra-serogroup differ
entiation could be detected with respect to the classification at O- 
serogroup level. 

Concerning the different media, exploratory analysis showed a very 
high similarity between spectra measured from CBA, TSA, CHO, and 
MHA. Spectra from MacC and ChromID® Agar showed a lower simi
larity, but still often falling close within the spectral area. On the con
trary, spectra from SSA, XLD and RAPID’ Salmonella agar fell far away 
both from spectra measured from the non-selective media, and from 
each other (Fig. 3). 

3.2. Performance of the automated classifiers 

The classifier version showing the best results in the cross-validation 
was built with the linear SVM algorithm using 20 PCs, and its perfor
mance was further tested with external testing sets. All isolates delivered 
a classification result with an outlier value ≤4.0. The outlier was not 
used as an indicator of the reliability of the classification since no 
reasonable threshold values could exclude misclassifications. This is 
likely because the training set contains a high diversity of serogroups 
and many different media. It therefore spans a wide spectral space, 
rendering exclusion of outliers by a measure of distance futile. 

Among the isolates tested in Bremen, accuracy for the different 
culture media included in the training set was 97.6% (457/468) for CBA, 
97.0% (454/468) for CHO, 97.4% (456/468) for TSA, 97.7% (458/468) 
for MHA, 96.4% (451/468) for MacC, 95.1% (445/468) for XLD and 
94.7% (443/468) for SSA. Considering the two chromogenic media (not 

Table 1 
Accuracy (defined as number of isolates correctly classified in relation to the 
total number of isolates) and error rate (defined as number of isolates wrongly 
classified in relation to the total number of isolates) provided by the classifier on 
the different culture media. ChromID®, RAPID’ Salmonella agar and TSA-SB 
were not included in the training set.  

Media tested (nr. of isolates) Center/s Accuracy (%, 
n) 

Error rate (%, 
n) 

CBA (504) Bremen, 
Torino 

97.8 (493) 2.2 (11) 

TSA (468) Bremen 97.4 (456) 2.6 (12) 
CHO (468) Bremen 97.0 (454) 3.0 (14) 
MHA (507) Bremen, 

Okawa 
97.2 (493) 2.8 (14) 

MacC (468) Bremen 96.4 (451) 3.6 (17) 
XLD (468) Bremen 95.1 (445) 4.9 (23) 
SSA (468) Bremen 94.7 (443) 5.3 (25) 
ChromID®* (152) Bremen 82.2 (125) 17.8 (27) 
RAPID’ Salmonella agar* 

(385) 
Bremen 9.1 (35) 90.9 (350) 

TSA-SB* (327) Bologna 99.4 (325) 0.9 (2)  

* Not included in the training set 

Fig. 2. 3D scatter plot showing the distribution of O-serogroups of Salmonella species in IR spectral space. Thirty principal components were used to create an LDA by 
O groups. The first three LD axes are shown in the diagram. The spectra are colored by O-serogroups, and the shapes correspond to different isolates. The dis
criminability of so many groups can be achieved in multidimensional space, but will not be visible in a low-dimensional scatter plot. 
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included in the training set), accuracy was 82.2 (125/152) for Chro
mID® Agar and 9.1 (35/385), for RAPID’ Salmonella agar. 

Overall, 451/468 (96.4%) isolates were correctly identified from all 
non-selective media. Among them, 427/468 (91.3%) were correctly 
classified also from selective media, while 24/468 (5.1%) showed a 
misclassification result for one selective medium ((n = 11 from XLD, n =
11 from SSA and n = 2 from MacC). Another eight isolates (1.7%) 
showed a misclassification result for one or more media, among which a 
non-selective one (n = 1 S. Strathcona, n = 1 S. Goldcoast, n = 1 S. 
Infantis, n = 1 S. Panama, n = 1 S. Enteritidis, n = 1 S. Paratyphi C, n = 1 
S. enterica subsp. enterica O:9, n = 1 S. diarizonae O:48). Nine isolates 
(1.9%) were wrongly classified from all media. These latter nine isolates 
comprise four strains exhibiting a rough phenotype (n = 2 S. Typhi
murium and n = 2 S. Enteritidis), n = 2 S. diarizonae (O:11 and O:7), n 
= 1 S. Senftenberg, n = 1 S. Isangi and n = 1 S. Anatum. Agglutination 
testing confirmed the original typing result. 

Among the isolates from Okawa, 35/39 (89.8%) were correctly 
classified. The misclassifications involved n = 1 S. Kande (O:1,3,19), n 
= 1 S. Memphis (O:18), n = 1 S. Harburg (O:6,14) and n = 1 S. Clai
bornei (O:9). 

Among the isolates from Bologna, 324/327 (99.1%) were correctly 
classified. Misclassification involved n = 2 O:16 isolates (n = 1 S. 
Szentes and n = 1 S. Hvittingfoss). 

Among the isolates from Torino, 36/36 (100%) were correctly 
classified. 

A summary of the results is shown in Table 1. 
Accuracy for the different serogroups is reported in Table 2. For 

strains measured in Bremen, isolates were considered and counted as 
correctly classified only in those cases in which they showed a correct 
classification result from all the seven media included in the training set. 

4. Discussion 

Detection and appropriate identification of Salmonella enterica iso
lates is of importance for various purposes, ranging from clinical 
microbiology to veterinary medicine, food hygiene and environmental 
monitoring. Different levels of typing are required for the different 
purposes, but all of them are technically challenging because of the 
required deepness of intra-species discrimination involved (serogroup, 
serotype, strain type in case of outbreaks) and comprise both expensive 
and laborious analytical methods. From the clinical point of view, 

recognition of typhoidal serovars is crucial to estimate their etiological 
relevance, to optimize the calculated treatment and to recognize po
tential outbreak situations. Similarly, the recognition of specific 
serogroups/serotypes is pivotal in for food and veterinary hygiene to 
draw properly epidemiological layouts. 

FTIR spectroscopy is a technology explored for typing of different 
bacterial genera and species (especially Enterobacterales, Enterococcus, 
Streptococcus, Staphylococcus, Listeria, Bacillus and Lactobacillus species) 
(Quintelas et al., 2018). It has been proposed for, typing below species 
level, including the detection of multidrug resistant bacteria outbreaks, 
aiming at defining an alternative to the established, but cost-intensive, 

Fig. 3. Hierarchical cluster analysis of spectra of one isolate measured from different media (listed in the column on the right side of the image – “Incubation 
protocol”), performed using Euclidean average linkage. On the left side of the figure, the dendrogram is displayed, showing that the non-selective media form one 
cluster, together with MacC and ChromID® agar, while the iron-containing media (XLD and SSA) and RAPID Agar form another more diverse cluster. 

Table 2 
Accuracy delivered by the IRBT classifier stratified for O-serogroups. Regarding 
the O:2 serogroup, accuracy for S. paratyphi A was 100% (19/19), as the 
misclassification results involved only non-Paratyphi A serovars (S. Kiel and S. 
Koessen).  

O-serogroup Total. isolates in the testing set (n) Accuracy (%, n) 

O:4 398 97.5 (388) 
O:9 180 95.6 (172) 
O:7 106 94.4 (100) 
O:8 54 96.3 (52) 
O:3,10 29 96.6 (28) 
O:13 24 87.5 (21) 
O:2 23 91.3 (21) 
O:11 16 100 (16) 
O:28 10 90.0 (9) 
O:1,3,19 8 87.5 (7) 
O:16 4 100 (4) 
O:18 4 100 (4) 
O:48 3 66.7 (2) 
O:61 3 100 (3) 
O:38 2 100 (2) 
O:9,46 2 100 (2) 
O:21 1 100 (1) 
O:35 1 100 (1) 
O:47 1 100 (1) 
O:6,14,25 1 0 (0) 
O:41 – – 
O:6,14,24 – – 
O:45 – – 
O:51 – – 
O:66 – – 
Tot. 870 95.9 (834)  
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time-consuming and still hardly large-scale applicable DNA-based 
techniques commonly used for epidemiological purposes (Sabat et al., 
2013; Dinkelacker et al., 2018; Burckhardt et al., 2019; Martak et al., 
2019; Vogt et al., 2019; Hu et al., 2021; Guerrero-Lozano et al., 2022; 
Lombardo et al., 2021)In this study, we evaluated the performance of 
the FTIR-based IRBT system to discriminate Salmonella serogroups by 
testing >900 well characterized isolates, including 25 serogroups and 
138 serovars, applying machine learning. The strain collection 
comprised the globally most frequently isolated serovars (Enteritidis, 
Infantis, Typhimurium and its monophasic variant) but also the clini
cally most relevant ones (Typhi, Paratyphi), the emerging ones (Rissen, 
Heidelberg, Infantis, Newport, Mbandaka, Stanley, Senftenberg) and 
several less common ones (Table 1). The strains were collected in several 
countries, from different origins (human, animal, food, environment, 
culture collections), in some cases prospectively, in other cases selected 
based on precise requirements (paratyphoidal serovars, rare serogroups, 
etc.), in order to include the broadest biological, geographic and 
epidemiological variability possible in this multicentric evaluation. 

In the first part of the study, an exploratory analysis with PCA/LDA 
was performed to get an overview on the discriminatory power between 
the O-serogroups, and to spot possible issues and sources of misclassi
fication. Each serogroup exhibits a high spectral variance, related to 1) 
the presence of 25 serogroups and >100 serovars and 2) the inclusion of 
spectra from isolates grown on very heterogeneous culture media. 
Notwithstanding, the exploratory analysis with PCA/LDA enabled a 
clear differentiation of the most serogroups, with a spectral distance 
coherent with their genomic and antigenic relatedness. When looking at 
the 3D scatterplot, an apparent and partial overlapping of serogroups 
could be observed in the spectral space where the serogroups O:2/O:21/ 
O:4/O:13/O:11 and O:6,14,24 are located. Nevertheless, the 3D scat
terplot shows only the first three dimensions, while the total number of 
dimensions included in this LDA analysis is 24 (the total number of di
mensions in an LDA analysis is, by definition, equal to the number of 
classes (O-serogroups) minus one). Despite the fact that often the first 3 
dimensions are the most discriminating, in several cases the discrimi
nation of some classes can be achieved in dimensions beyond the third, 
and in those cases it is not visible in a 3D scatter plot. In this study, the 
machine learning algorithms, that takes into account all the dimensions, 
proved to be able to differentiate also the above-mentioned serogroups 
with high accuracy,(Table 2).In concordance with the previous study by 
Campos et al. (Campos et al., 2018), the discrimination of closely related 
serogroups such as O:3,10 and O:1,3,19 (former E1-E2-E3 and E4), O:7 
and O:8 (formerly C1 and C2-C3) and O:9 and O:9,46 (former D1 and D2) 
was also reliably achieved. 

In the last years, several studies evaluated the potential of machine 
learning applied in general to the field of Salmonella (Tanui et al., 2022; 
Bolinger et al., 2021; Munck et al., 2020; Nguyen et al., 2019). Never
theless, all of them mainly focused on epidemiological (source tracking) 
or genetic purpose, and none investigated this approach for typing at 
infra-species level. In this study, the novel artificial intelligence capa
bilities implemented into the IRBT software were thoroughly investi
gated, to develop a classifier that allows the differentiation of Salmonella 
isolates at O-serogroup level. The training set included 25 serogroups, 
53 serovars and seven among the globally most widely used solid agar- 
based culture media. Different machine learning algorithms, set with 
different training parameters, were applied and the classifier which 
showed the best accuracy in the internal cross-validation (build with 
linear SVM) was then tested with external datasets. To assess the 
robustness of the method, the validation set included isolates measured 
in the Bruker laboratory, as well as isolates measured at different sites by 
collaboration partners. The classifier delivered a good accuracy, with all 
datasets. For the strains measured in Bremen accuracy was >97% for 
non-selective media, and ranged from 94.7 to 96.4% for selective 
media). Overall, 427 out of 468 isolates (91.3%) were correctly classi
fied from all media, while further 32 (6.8%) showed a misclassification 
for one or two media (in most cases SSA or XLD agar). These findings 

show that the considerably different growth conditions resulting from 
the use of selective media did not have a relevant impact on the typing 
capabilities of the IRBT software, which enabled a data analysis that 
succeeded in nullifying the spectral differences due to different incu
bation conditions. Also, the presence of the black precipitate which 
Salmonella isolates can produce in iron-containing media did not seem to 
interfere significantly with the IRBT typing. 

Nine isolates were incorrectly classified from any culture medium. In 
all cases, the PCA/LDA analysis was coherent with the result delivered 
by machine learning, as the spectra of those isolates were located far 
away from the serogroup they belong to. Possible explanation for this 
misclassification could be an atypical phenotype (four isolates grew with 
rough colonies), or other unusual strain-related features (two isolates 
belonged to non-enterica subspecies). 

Surprisingly, the classifier delivered a moderate accuracy even with 
the testing set of isolates grown on ChromID® Agar (82.2%), The ac
curacy with another chromogenic medium, RAPID’ Salmonella agar, 
was very poor (9%), so the use of chromogenic media for FTIR spec
troscopy should be evaluated on case-by-case basis, considering the 
possibility to build a specific classifier. 

5. Conclusion 

In this study, the IRBT system proved to be a promising and useful 
tool for Salmonella typing at the O-serogroup level. The application of 
artificial intelligence enables a novel approach, which is fully auto
mated, and does not need any operator-depending interpretation of the 
results. The classifier can be applied on already acquired spectra, or can 
be implemented into the IRBT measurement software, allowing the 
classification in real time during the spectra acquisition. The simple 
sample preparation, the short handling time, the user-friendliness of the 
software, the possibility to analyze samples as soon as colonies on 
standard solid agar media are grown, as well as the system’s lacking 
requirement of a minimum number of samples to set up a run or to 
optimize reagents, should enable an easy implementation of FTIR 
spectroscopy into routine laboratories as a rapid typing technology. In 
contrast to reference methods, which are mainly used retrospectively, 
IRBT can be used for real-time investigation providing results in a very 
short time (20 min − 2 h) after cultivation of bacteria. 

Further studies including more serogroups, more isolates of the 
rarest serogroups and more spectra from selective media will be neces
sary to widen the typing capabilities, as well as to further strengthen the 
robustness of the method. In addition, an evaluation of the potential of 
the method in terms of classification of serovars or even at the strain 
level would be desirable, in order to define the usefulness of the system 
and also for the tracking and monitoring of outbreaks. 
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