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Abstract
Objectives Differentiating benign gallbladder diseases from gallbladder cancer (GBC) remains a radiological challenge because
they can appear very similar on imaging. This study aimed at investigating whether CT-based radiomic features of suspicious
gallbladder lesions analyzed by machine learning algorithms could adequately discriminate benign gallbladder disease from
GBC. In addition, the added value of machine learning models to radiological visual CT-scan interpretation was assessed.
Methods Patients were retrospectively selected based on confirmed histopathological diagnosis and available contrast-enhanced
portal venous phase CT-scan. The radiomic features were extracted from the entire gallbladder, then further analyzed by machine
learning classifiers based on Lasso regression, Ridge regression, and XG Boosting. The results of the best-performing classifier
were combined with radiological visual CT diagnosis and then compared with radiological visual CT assessment alone.
Results In total, 127 patients were included: 83 patients with benign gallbladder lesions and 44 patients with GBC. Among all
machine learning classifiers, XG boosting achieved the best AUC of 0.81 (95% CI 0.72–0.91) and the highest accuracy rate of
73% (95% CI 65–80%). When combining radiological visual interpretation and predictions of the XG boosting classifier, the
highest diagnostic performance was achievedwith an AUC of 0.98 (95%CI 0.96–1.00), a sensitivity of 91% (95%CI 86–100%),
a specificity of 93% (95% CI 90–100%), and an accuracy of 92% (95% CI 90–100%).
Conclusions Machine learning analysis of CT-based radiomic features shows promising results in discriminating benign from
malignant gallbladder disease. Combining CT-based radiomic analysis and radiological visual interpretation provided the most
optimal strategy for GBC and benign gallbladder disease differentiation.
Key Points
& Radiomic-based machine learning algorithms are able to differentiate benign gallbladder disease from gallbladder cancer.
& Combining machine learning algorithms with a radiological visual interpretation of gallbladder lesions at CT increases the

specificity, compared to visual interpretation alone, from 73 to 93% and the accuracy from 85 to 92%.
& Combined use of machine learning algorithms and radiological visual assessment seems the most optimal strategy for GBC

and benign gallbladder disease differentiation.

Keywords Gallbladder neoplasms .Machine learning .Medical oncology . Tomography, spiral computed

Abbreviations
GBC Gallbladder cancer
IBSI Image biomarker standardization initiative
XG Extreme gradient

Introduction

Gallbladder cancer (GBC) is known to have a poor prognosis,
with overall 5-year survival rates of only up to 13% [1–4].
This dismal prognosis of GBC can be explained by its non-
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specific symptoms, leading to a high number of patients in
whom GBC is diagnosed at an advanced stage when surgery
is not an option anymore [5]. However, in patients with T1b/
T2 tumors undergoing radical resection, 5-year survival rates
can be increased to 53% [4]. Thus, early detection of GBC is
crucial to improve the survival rates of these patients.
Furthermore, adequate characterization of gallbladder lesions
(i.e., correct differentiation between benign and malignant en-
tities) is very important, because GBC patients should be treat-
ed at specialized hepatobiliary hospitals.

Ultrasound is the primary imaging modality for gallbladder
disease diagnosis, and CT and MRI have been used as addi-
tional imaging modalities to evaluate gallbladder lesions.
However, differentiating benign gallbladder diseases such as
chronic or xanthogranulomatous cholecystitis and
adenomyomatosis from GBC remains a challenge because they
can appear very similar on imaging [6–10]. In a recent study
investigating the radiologist’s ability to visually discriminate
benign gallbladder disease from GBC based on CT scans, a
relatively high sensitivity of 90% was achieved. However, the
specificity was relatively low, merely approximately 60% [11].
In that study, irregular lesion aspect, absence of fat stranding,
and locoregional lymphadenopathy were identified as predic-
tors of GBC [11].

Radiomics is an emerging method for quantitative medical
image analysis, which uses a high number of automatically
extracted radiomic features for analysis. Radiomic features are
thought to represent CT-based radiological lesion characteris-
tics more accurately and objectively than a radiological judg-
ment [12]. Liu et al used various machine learning methods to
model the radiomic features for predicting survival outcomes

of GBC patients [13]. Their study showed that CT-based
radiomic features extracted from the gallbladder could distin-
guish high-risk patients with lower long-term survival from
low-risk patients with better survival rates [13]. Given these
results, we hypothesized that radiomics-based machine learn-
ing models could provide a more automatic and quantified
differentiation between benign gallbladder disease and GBC
that can be complementary to standard visual assessment by
the radiologist.

The primary aim of the current study was to determine
whether CT-based radiomic features of suspicious gallbladder
lesions analyzed by machine learning algorithms, could ade-
quately discriminate between benign gallbladder disease and
GBC. The secondary aim was to investigate the additional
value of machine learning models to radiological visual inter-
pretation of CT scans in the same patient group.

Materials and methods

Study population

All patients referred to our hospital (which is a tertiary referral
center) between January 2007 and October 2020 for suspicion
of GBC or because of an incidentally found GBC after chole-
cystectomy, were included in the study. The patient exclusion
diagram is shown in Fig. 1, including the following exclusion
criteria: no contrast-enhanced portal venous phase CT scan
available (for incidentally found GBC, CT had to be perform-
ed prior to cholecystectomy), and missing histopathological
confirmation of the diagnosis. Reasons for suspicion of GBC

Fig. 1 Flowchart study
population
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and subsequent referral to our hospital were: a polyp with a
diameter > 10 mm, a focal or diffuse wall thickening without
obvious signs of benign disease, a mass lesion, or a porcelain
gallbladder that has been considered to increase the risk of
GBC [1]. Used CT systems were of multivendor origin.
However, scan parameters were harmonized between our hos-
pital and surrounding referring hospitals as follows: automatic
tube current modulation and tube voltage selection, slice
thickness of 1 mm, delay of 75 s after IV injection of 90–
100 mL of contrast medium at a flow rate of 3.6–4.0 mL/s
followed by 32 mL of saline solution. All patients were iden-
tified in a prospectively maintained surgical institutional data-
base and analyzed retrospectively. In addition, to ensure the
inclusion of all eligible cases, multidisciplinary team meeting
lists were manually searched. Approval of the Institutional
Review Board was obtained, and the need for written in-
formed consent was waived. Part of the study population of
the current study (N = 118, 93%) was also the subject of a
previous study [11].

Collected data included: patient age, gender, date, and type
of surgery, date of CT, and histopathology results. Each re-
section and biopsy specimen underwent routine histopatholo-
gical examination, performed by a specialized hepatobiliary
pathologist.

Image processing and radiomic feature extraction

The workflow of the radiomic analysis for gallbladder disease
characterization is shown in Fig. 2. The 3D portal venous
phase CT scans were used as initial input. To enhance the
contrast among abdominal organs, a soft tissue window cen-
tering at 50 HU with a width of 400 HU was applied to the
segmented gallbladder image. To normalize the CT scans, the
images were resampled to the same spacing (0.7 mm, 0.7 mm,
1.0 mm) by BSpline interpolator, and the gray-level of the
scan was discretized with a fixed bin width of 1.

The entire gallbladder was used for analysis, which was
manually segmented by an abdominal radiologist using ITK-
SNAP software, blinded to the final diagnosis [14]. Examples
of benign gallbladder disease and GBC are shown in Figs. 3
and 4. In total, 110 radiomic features were extracted from the
segmented 3D CT volume of the gallbladder according to the
image biomarker standardization initiative (IBSI) [15], which
included 18 first-order statistical features, 24 gray-level co-
occurrence matrix features, 16 gray-level size zone matrix
features, 16 gray level run length matrix features, 5 neighbor-
ing gray-tone difference matrix features, 14 gray level depen-
dence matrix features, and 17 3D shape-based features. To
minimize differences between CT scans and to optimize the

Fig. 2 Workflow of the radiomic analysis for gallbladder disease characterization

Fig. 3 Example of a segmented
gallbladder with gallbladder
cancer on computed tomography
in the axial direction
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learning efficiency of machine learning classifiers, radiomic
features were standardized by the standard scaler. Feature ex-
traction was performed with Python 3.7.9 in the open-source
library with Pyradiomics 3.0 [16].

Machine learning classifiers

Due to the rarity of GBC, the size of the database was not
sufficient for deep learning, requiring large numbers of images
to be trained. Therefore, logistic regression with L1 penalties
(Lasso regression) and L2 penalties (Ridge regression) was
used, which are suitable for small-scale data analysis tasks
[17]. No preselection of the radiomic features was performed,
because the L1 and L2 penalties were used as the regulariza-
tion of the logistic regression classifier, which can penalize
high-valued regression coefficients to eliminate features that
are redundant and reduce multi-collinearity in feature sets.
The radiomic features that were correlated with benign gall-
bladder disease and GBC were automatically selected by lo-
gistic regression classifiers with L1 or L2 penalty during train-
ing. The feature importance for Lasso regression and Ridge
regression was measured by the corresponding feature
weights in the trained classifiers. Meanwhile, Extreme
Gradient Boosting (XG boost) was also used. The XG boost
classifier is constructed by decision trees, enabling the selec-
tion of the most powerful features to discriminate benign dis-
eases from GBC at each split node [18]. The feature impor-
tance of the XG boost classifier was measured by Gini impor-
tance (mean decrease in impurity) [19].

The dataset was randomly split into the training set and test
set by open-source library scikit-learn [20], thereby ensuring
that the positive-negative ratio resembled the original dataset.
The machine learning classifiers were trained by 80% of the
patients based on five-fold cross-validation. The modulated
machine learning models were then tested in the remaining
20% of the patients and the discrimination ability was repre-
sented by the AUC of the ROC curve, accuracy, sensitivity,
and specificity values.

The datasets of patients with benign gallbladder diseases
and GBC were imbalanced, which could influence machine
learning classifiers’ ability to learn from the minority class. To

address this problem, we increased the class weight of the
minority. Increasing the weight of patients with GBC can
force the classifier to take the asymmetry of cost error between
benign gallbladder disease and GBC into consideration. The
model will be penalized more when misclassifying GBC dur-
ing training. The trained model was tested by a dataset mim-
icking the prevalence of GBC in the original dataset so that the
evaluation of performance is unbiased. The model was devel-
oped by the open-source library scikit-learn 0.23.2 with
Python 3.7.9 [20].

Combining machine learning results with radiological
visual interpretation

In a previous study investigating the radiologists’ ability to
visually discriminate benign gallbladder disease from
GBC, the specificity was relatively low [11]. Combining
predictions provided by the machine learning classifier
with the radiological diagnosis could possibly improve the
specificity rates. As a result, the overall performance of
discriminating between GBC and benign gallbladder dis-
ease could possibly also be improved.

To test this hypothesis, the five-point scale of the radiolog-
ical visual interpretation (Appendix 1 illustrates the CT char-
acteristics on which the radiological visual interpretation was
based) performed by two radiologists after consensus reading
[11] was converted into the probability of GBC, namely def-
initely benign = 0.0, probably benign = 0.25, equivocal = 0.5,
probably GBC = 0.75, and definitely GBC = 1.0. This con-
verted probability of the radiological visual interpretation and
the predicted probability of GBC by the machine learning
classifier were summed up with an equal weight of 0.5 as
the combined prediction. The accuracy, sensitivity, specifici-
ty, and AUC were calculated accordingly from the combined
prediction (a probability score ≥ 0.5 was considered GBC).

Radiomic analysis of the gallbladder combined with
surrounding liver parenchyma

A recent study found that suspicion of invasion of adjacent
liver parenchyma at CT was more frequently observed in

Fig. 4 Example of a segmented
gallbladder with benign
gallbladder disease (chronic
cholecystitis) on computed
tomography in the axial direction
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patients with GBC, compared to benign gallbladder disease
[11]. Therefore, a subanalysis was performed including the
radiomic features extracted from both the gallbladder and a
surrounding rim of liver parenchyma to discriminate benign
gallbladder disease from GBC. One hundred and ten hepatic
radiomic features were extracted from a rim of 2 cm of liver
parenchyma surrounding the gallbladder, which was automat-
ically segmented and subsequently checked by an abdominal
radiologist, blinded to the final diagnosis. The radiomic fea-
tures extracted from the surrounding liver parenchyma were
combined with the radiomic features extracted from the gall-
bladder for further analysis. Used machine learning models
and performance metrics were similar to the other analyses
in this study.

Results

Study population characteristics

In total, 127 patients were included in the study (Table 1 and
Fig. 1). The median age of the patients was 66 years (inter-
quartile range: 58–73 years), and among them, there were 80

women (63%) and 47 men (37%). Details on types of
(surgical) treatment and results of histopathological examina-
tion are summarized in Table 1.

Radiomics model

The XG boost classifier trained by the weighted dataset
outperformed Lasso regression and Ridge regression, result-
ing in the highest AUC of 0.81 (95% CI 0.72–0.91) and an
accuracy rate of 73% (95% CI 65–80%) in the test set for the
differentiation between benign and malignant gallbladder dis-
ease. The results of the test set for different classifiers, the
radiological visual interpretation, and the combined results
of the radiological visual interpretation and the XG boosting
classifier are shown in Table 2, and the corresponding ROC
curves are plotted in Fig. 5.

Although the AUC of the classifiers trained by the original
dataset seem decent, the sensitivity rates varied between 18
(95% CI 0–29%) and 36% (95% CI 22–57%). After applying
techniques to address the class imbalance problem, the sensi-
tivity rates of all classifiers largely improved, varying between
55 (95% CI 38–75%) and 64% (95% CI 50–83%) (Table 2).

Table 1 Demographics table
Characteristic Patient number

Median age, IQR 66 (58–73) 127 (100%)

Gender Female 80 (63%)

Male 47 (37%)

Benign gallbladder
disease

Acute cholecystitis 1 (1%)

Chronic cholecystitis 49 (39%)

Xanthogranulomatous cholecystitis 6 (5%)

Adenoma 4 (3%)

Adenomyomatosis 15 (12%)

Porcelain gallbladder 2 (2%)

Other benign entities 6 (5%)

Gallbladder cancer Adenocarcinoma 37 (29%)

Adenosquamous carcinoma 3 (2%)

High-grade dysplasia 2 (2%)

Other types of malignancy 2 (2%)

Types of (surgical)
treatment

Open cholecystectomy 42 (33%)

Laparoscopic cholecystectomy 13 (10%)

Cholecystectomy combined with resection of liver segment 4/5 5 (4%)

Cholecystectomy combined with a wedge resection of the liver
parenchyma

41 (32%)

Cholecystectomy combined with extensive surgery* 4 (3%)

Cholecystectomy combined with lymphadenectomy 6 (5%)

Open-closure procedure 10 (8%)

Biopsy without any further operation 6 (5%)

Abbreviation: IQR interquartile range

* e.g. ≥ 3 liver segments, and/or pancreaticoduodenectomy
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The top 5 most important features and the total number of
features used by the corresponding classifiers are shown in
Table 3. The Ridge regression and XG boosting classifier
made use of various features, while Lasso regression used
only few shape-based features. The full list of radiomic fea-
tures with corresponding weights assigned by each classifier
can be found in Appendices 2–4 (weighted dataset).

Combined radiomic analysis of the gallbladder and
surrounding liver parenchyma

When using the XG boosting classifier trained by the weight-
ed dataset for discriminating between benign gallbladder dis-
ease and GBC, an AUC of 0.77 (95% CI 0.67–0.88), an ac-
curacy rate of 72% (95% CI 63–80%), sensitivity rate of 71%

(95% CI 57–83%), and specificity rate of 73% (95% CI 60–
90%) were achieved. Lasso regression achieved an AUC of
0.71 (95% CI 0.62–0.88) and an accuracy of 69% (95% CI
60–80%), and Ridge regression achieved an AUC of 0.70
(95% CI 0.62–0.86) and an accuracy of 0.58 (95% CI 0.46–
0.70). These results did not outperform the radiomic analysis
based solely on the gallbladder (Table 2).

Combined prediction of the machine learning model
and radiological visual interpretation

Using the five-point scale, the radiological visual interpreta-
tion resulted in a sensitivity of 100%, a specificity of 73%
(95% CI 60–90%), an accuracy of 85% (95% CI 80–95%),
and an AUC of 0.94 (95% CI 0.90–0.95) (Table 2).

Table 2 Radiomic analysis results

Classifier Methods to deal with class imbalance AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Logistic Regression
(L1 penalty)*

Original dataset 0.77 (0.67, 0.88) 0.65 (0.55, 0.75) 0.27 (0.13, 0.43) 0.93 (0.90, 1.00)

Adding class weight 0.76 (0.66, 0.88) 0.65 (0.55, 0.75) 0.64 (0.50, 0.83) 0.67 (0.55, 0.82)

Logistic Regression
(L2 penalty)#

Original dataset 0.77 (0.68, 0.88) 0.62 (0.50, 0.75) 0.18 (0.00, 0.29) 0.93 (0.90, 1.00)

Adding class weight 0.75 (0.64, 0.86) 0.65 (0.55, 0.75) 0.55 (0.38, 0.75) 0.73 (0.60, 0.90)

XG Boosting Original dataset 0.72 (0.62, 0.86) 0.69 (0.60, 0.80) 0.36 (0.22, 0.57) 0.93 (0.90, 1.00)

Adding class weight 0.81 (0.72, 0.91) 0.73 (0.65, 0.80) 0.64 (0.50, 0.83) 0.80 (0.70, 0.92)

Combined results
of XG Boosting and
radiological diagnosis

Radiological diagnosis on weighted dataset 0.94 (0.90, 0.95) 0.85 (0.80, 0.95) 1.00 (1.00, 1.00) 0.73 (0.60, 0.90)

Weighted XG boost with radiological diagnosis 0.98§ (0.96, 1.00) 0.92^ (0.90 1.00) 0.91 (0.86, 1.00) 0.93 (0.90, 1.00)

*Lasso regression; #Ridge regression; § p < 0.001 when comparing the AUC of the radiological diagnosis with the combined diagnostic results;
^ p < 0.001 when comparing the accuracy of the radiological diagnosis with the combined diagnostic results

Abbreviations: AUC area under the receiver operating characteristic curve, CI confidence interval

Fig. 5 Receiver operating
characteristic (ROC) curves of
machine learning classifiers, ra-
diological diagnosis by visual in-
terpretation, and the combined
results of the radiological judg-
ment and XG boosting classifier.
The area under the ROC curve
(AUC) was significantly higher
when combining radiological
judgment with the XG boosting
classifier, compared with radio-
logical judgment alone
(p < 0.001)
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Given the performance results of the XG boosting clas-
sifier trained by radiomic features of the gallbladder com-
pared to the other machine learning classifiers, we com-
bined the radiological visual interpretation with the results
of the XG boosting classifier trained by the weighted
dataset. This way, the diagnostic accuracy of the radiolog-
ical visual interpretation increased from 85 to 92% (95% CI
90–100%), and the AUC increased from 0.94 to 0.98
(95% CI 0.96–1.00) (both p < 0.001; Table 2). In addition,
the specificity of the radiological visual interpretation in-
creased from 73 to 93% (95% CI 0.90–1.00) after combin-
ing the results of the XG boosting classifier.

Discussion

In the current study, our hypothesis that radiomics-based ma-
chine learning models provide more automatic and quantified
differentiation between benign gallbladder disease and GBC
and that it can be complementary to standard visual radiolog-
ical assessment was tested.

In a total of 127 patients, 83 patients with benign gallblad-
der lesions and 44 patients with GBC, XG boosting achieved
the best AUC of 0.81 and the highest accuracy rate of 73%. In
addition, when combining radiological visual interpretation
and CT-based radiomic features, the highest diagnostic per-
formance was achieved with an AUC of 0.98, a sensitivity of
91%, a specificity of 93%, and an accuracy of 92%. Of note,
the performance is based on a relatively small test set, namely
20% of our dataset.

To our knowledge, this is the first study using radiomic
features analyzed by machine learning methods to discrimi-
nate between benign gallbladder diseases and GBC, as well as
the first study combing radiomics with standard visual assess-
ment. Compared with the visual interpretation of experienced
radiologists [11, 21–23], radiomic-based machine learning
evaluated the difference between benign gallbladder disease
and GBC in a more quantitative way by using automatically
calculated radiographic features from the CT scan [12].
However, the results of the radiomic-based machine learning
classifiers trained by the original dataset showed high speci-
ficity rates and low sensitivity rates due to an imbalance of the
data between benign gallbladder disease and GBC. After in-
creasing the class weight of the minority during model train-
ing, the XG boost classifier obtained decent and balanced
sensitivity and specificity rates.

In this study, the entire gallbladder including the gallblad-
der wall and bile was used as a volume of interest. As shown
in Fig. 3, some GBC patients only have a small amount of bile
in their gallbladder, which could introduce a difference be-
tween benign gallbladder disease and GBC. However, this
can also be the case in patients with chronic cholecystitis.
The same holds true for the presence of gallstones. Thus, the

exact influence on the discriminating ability of the radiomics
analysis when including the bile (and sludge and/or stones) in
the region of interest, in other words, their potential contribu-
tion to the intensity, gray value distribution, and/or shape of
the gallbladder on which radiomics analysis is based, is un-
clear. Besides, a precise segmentation of only the gallbladder
wall and the lesion is difficult and very time-consuming.

The visual discrimination of benign gallbladder disease and
GBC at CT scans of patients with suspicious gallbladder le-
sions by a radiologist resulted in high sensitivity rates of 100%
but a relatively low specificity of 73%. After combining the
results of the radiomic-based machine learning methods with
the radiological diagnosis, the specificity rate increased to
93%. The accuracy and AUC also improved by 7% and 4%,
respectively, compared with the radiological judgment alone.
Therefore, at this moment, the most ideal interpretation of CT
scans of patients with suspicious gallbladder lesions seems to
be a combination of visual interpretation by a radiologist and
radiomic-based machine learning analysis. This might lead to
the more adequate characterization of gallbladder lesions, and
thereby, an improvement of patient survival and better use of
specialized hepatobiliary healthcare.

Often, the liver parenchyma surrounding the gallbladder is
involved in the case of GBC, which might be an important
clue in the differential diagnosis when a gallbladder lesion is
present [9, 24]. Therefore, a subanalysis was performed in
which a rim of 2 cm of liver parenchyma around the gallblad-
der was included in the CT-based radiomic analysis.
However, adding surrounding liver parenchyma to the
radiomic-based models did not improve the performance sig-
nificantly compared to the results based only on the gallblad-
der. Perhaps, the parenchymal invasion of GBC might be too
small to be reflected as a difference in texture features.
Another explanation could be that inflammatory conditions
such as cholecystitis can lead to infiltration of the surrounding
liver parenchyma resulting in a similar aspect as can be seen in
GBC [25].

Regarding the important features used by machine learning
classifiers, Lasso regression only used a small number of fea-
tures, which could indicate that Lasso regression mainly uses
morphological changes to differentiate GBC from benign gall-
bladder diseases. Besides, various features are used by Ridge
regression and XG boosting classifier as illustrated by Table 3
and Appendices 2–4, and the XG boosting classifier achieved
better performance than the other radiomic-based machine
learning methods. This could indicate that including different
radiographic information can be helpful and complicated
models such as XG boosting classifier are more capable to
exploit useful information from high dimensional features
for discriminating benign gallbladder disease from GBC.

Due to the fact that GBC is a relatively rare disease and the
single-center study design, the current study was based on a
relatively small population. To overcome this problem, future
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studies should bemulticentric in design. Ideally, deep learning
methods should also be used when evaluating gallbladder le-
sions in large study populations. In addition, the impact of
including bile (and sludge and/or stones) in the gallbladder
segmentation on the discriminating ability of machine learn-
ing methods should be subject of future research, as this is
currently unknown.

In conclusion, machine learning analysis of radiomic fea-
tures shows promise to discriminate benign gallbladder le-
sions from malignant gallbladder disease. In addition, the
combination of CT-based radiomic analysis and radiological
visual interpretation provided the best results. More specifi-
cally, the radiomic models seem to recompense the low spec-
ificity of radiological visual assessment, thereby optimizing
the ability to differentiate between benign and malignant gall-
bladder lesions.
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