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Original Clinical Science—General

Background. Acceptance of organs from controlled donation after circulatory death (cDCD) donors depends on the 
time to circulatory death. Here we aimed to develop and externally validate prediction models for circulatory death within 
1 or 2 h after withdrawal of life-sustaining treatment. Methods. In a multicenter, observational, prospective cohort study, 
we enrolled 409 potential cDCD donors. For model development, we applied the least absolute shrinkage and selection 
operator (LASSO) regression and machine learning–artificial intelligence analyses. Our LASSO models were validated using 
a previously published cDCD cohort. Additionally, we validated 3 existing prediction models using our data set. Results. 
For death within 1 and 2 h, the area under the curves (AUCs) of the LASSO models were 0.77 and 0.79, respectively, 
whereas for the artificial intelligence models, these were 0.79 and 0.81, respectively. We were able to identify 4% to 16% 
of the patients who would not die within these time frames with 100% accuracy. External validation showed that the dis-
crimination of our models was good (AUCs 0.80 and 0.82, respectively), but they were not able to identify a subgroup with 
certain death after 1 to 2 h. Using our cohort to validate 3 previously published models showed AUCs ranging between 
0.63 and 0.74. Calibration demonstrated that the models over- and underestimated the predicted probability of death. 
Conclusions. Our models showed a reasonable ability to predict circulatory death. External validation of our and 3 exist-
ing models illustrated that their predictive ability remained relatively stable. We accurately predicted a subset of patients 
who died after 1 to 2 h, preventing starting unnecessary donation preparations, which, however, need external validation 
in a prospective cohort.
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INTRODUCTION
The number of patients donating their organs after con-
trolled donation after circulatory death (cDCD) is increas-
ingly leading to a large pool of potential organ donors 
apart from brain dead donors.1 A limiting factor in cDCD 
is that circulatory death must occur within a defined 
time frame after withdrawal of life-sustaining treatment 
(WLST) for organs to be medically suitable for transplan-
tation. Up to 1 out of 4 potential cDCD donors will not die 
within this defined time frame and thus will not be able to 
donate their organs.2 This leads to disappointment within 
the families of these donors and the patients on the wait-
ing list and to inefficient utilization of hospital facilities 
and wasted healthcare costs.3 Therefore, in several coun-
tries with DCD programs, for example, United Kingdom, 
the Netherlands, Australia, China, and the United States, 
efforts have been made to develop models predicting time 
to death.2,4-13 As clinical practices and donation policies 
differ considerably within countries, external validation of 
a prediction model is a necessary step before implementing 
a prediction model in daily practice. External validation 
provides insight into the extent of the reproducibility in a 
new cohort, as prediction models usually perform less in 
another setting14; however, this step is often omitted.2,9,15

The predictive performance of previous models showed 
that 10% to 18% of the patients who would die within the 
necessary time frame would be misclassified, which limits 
implementation with the current large shortage of trans-
plantable organs.4

However, if a model is highly accurate in detecting which 
patients would certainly not die within the necessary time 
frame, predicting even a small percentage of such patients 
could be beneficial, as it could be used to prevent start-
ing an organ donation procedure. The approach to predict 
which patients will die beyond the time frame with 100% 
accuracy for such a purpose has not been done before.

In this multicenter prospective observational study, 
including consecutive potential cDCD donors, our primary 
aim was to develop a prediction model for death in 1 or 
2 h. We also aimed to externally validate our model and 
previously published models using our data sets. Prediction 
model development studies rarely assessed the impact of 
WLST practices and palliative medication use and dosages 
on time to death.5 Therefore, we also aimed to assess the 
impact of end-of-life care on time to death.

MATERIALS AND METHODS

Study Population
We prospectively enrolled consecutive patients, meet-

ing the cDCD criteria used by the Dutch Transplant 
Foundation (Table S1, SDC, http://links.lww.com/TP/
C381), from 3 university and 3 teaching hospitals in the 
Netherlands.16 Patients were excluded if they were <18 or 
>75 y of age, were not mechanically ventilated, or were 
clinically brain dead at the time of assessment.

Study Design and Data Source
We performed a multicenter, observational, prospec-

tive cohort study of potential cDCD patients and collected 
data between June 2015 and July 2018. The study design 
has been previously published and registered at clinical-
trials.gov (NCT04123275).17 In short, hemodynamic, 

pulmonary, and neurological features were assessed no 
later than 30 min before WLST. Dosages of analgesics and 
opioids were recorded from 30 min before WLST until cir-
culatory death. Different types of opioids were converted 
into morphine equivalent doses (15 µg of intravenous 
fentanyl or remifentanil or 2 µg of intravenous sufentanil 
were equivalent to 1 mg of intravenous morphine).18,19

In each hospital, local researchers prospectively collected 
all data. Data were stored in an internet-based electronic 
Case Report Form supported by Research Manager (ISO/
IEC 27001 certified). Before patient enrollment, all local 
researchers received on-site personal training regarding the 
completion of the electronic Case Report Form. The lead 
research team performed regular site visits and randomly 
assessed data entry for accuracy and completeness.

Results of this study are reported according to the 
Transparent Reporting of a Multivariable Prediction Model 
for Individual Prognosis Or Diagnosis and Strengthening 
the Reporting of Observational Studies in Epidemiology 
statements.20,21

The Medical Ethics Committee Brabant, the Netherlands, 
has approved the study protocol (NW2014-36). The 
Medical Ethics Committee boards of all participating hos-
pitals assessed and consented with the study protocol.

External Validation or Our Model and Previously 
Published Models

In addition to internal validation, we also sought to exter-
nally validate our models. External validation is the process 
of evaluating a prediction model in a different cohort of 
patients. The prediction model tested can be newly devel-
oped or already existing. The same applies to the validation 
cohort, as long as it is independent of the cohort in which the 
prediction model was developed. As such, first, we contacted 
and asked the authors of previously published studies on 
prediction models, including a potential cDCD population, 
if we could obtain their data sets to externally validate the 
DCD III study models. This resulted in 3 data sets, 2 from the 
Netherlands and 1 from the United Kingdom (Table S2, SDC, 
http://links.lww.com/TP/C381).5,11,15 Variables included in 
the data sets of the 3 obtained cohorts had only a limited 
overlap with our developed prediction models (“least abso-
lute shrinkage and selection operator [LASSO] models”) and 
could therefore not be used to externally validate our models. 
In addition, we previously collected data on a cDCD cohort 
of 92 patients (“Elisabeth-TweeSteden Hospital [ETZ] 
cohort”).2 The data of the ETZ cohort were collected before 
the start of this DCD III study, and thus, there were no over-
lapping patients between the ETZ and DCD III cohorts. As 
such, we used the data set of the ETZ cohort to externally 
validate our DCD III models.

As a second step, we identified 8 previously published 
prediction models that we selected to validate externally 
using either the DCD III or ETZ cohorts (Table S3, SDC, 
http://links.lww.com/TP/C381). We contacted the corre-
sponding authors of these previous studies to obtain their 
data for external validation. Five models were excluded 
because not all the variables used in their prediction mod-
els were registered in our validation cohort (DCD III 
cohort).4,5,7,12,13 The remaining models, including patients 
from the Netherlands (de Groot) and the United Kingdom 
(Davila and Suntharalingam), were validated using the 
data sets of the DCD III and ETZ cohorts.6,9,11 Table S4 
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SDC, http://links.lww.com/TP/C381) shows the character-
istics of the prediction models.

Statistical Analysis
Categorical variables were expressed as a percentage 

and continuous variables as mean ± standard deviation or 
median and interquartile range, depending on homogene-
ity. Univariable logistic regression analysis was performed 
to explore the relationship between a set of variables on the 
binary outcome (death within 1 h, yes or no). Our database 
had <3.4% missing data encountered in only 2 variables.

We analyzed the probability to predict death within 
and beyond 1 or 2 h, as these are the thresholds that are 
mostly used internationally for cDCD donation. For the 
development of the prediction models, we applied 2 differ-
ent data analytic methods. First, the LASSO method was 
used for optimal variable selection and development of 
the multivariable logistic regression model on 80% of the 
patient population (development sample). The predictive 
performance of this model was internally validated on the 
remaining 20% of the population (validation sample). We 
aimed at an SE of 0.04 for the area under the curve (AUC), 
with an expected mortality of approximately 50% within 
1 h and 65% within 2 h after WLST, and an anticipated 
AUC of 0.84.2,5,7,11 The discriminatory ability of the pre-
diction model was assessed using the AUC. The AUC as 
found in the 20% testing part of the sample is presented. 
The sample size for this study was calculated (based on the 
LASSO method as the primary analysis) at 400 patients.

To identify the patients dying beyond 1 or 2 h, we used 
the same models as for death within 1 or 2 h. This approach 
was analyzed because if we were able to predict, 100% 
accurately, death after 1 or 2 h, this could be applicable in 
the daily clinical practice even if the model only predicted 
a small percentage of patients accurately. We determined 
the optimal threshold as the value (computed by the linear 
predictors of these models when applied on the validation 
data set) with the highest negative predictive value. A more 
detailed description of the statistical analysis can be found 
in the previously published study protocol.17

Second, for the development of the machine learning 
models, a light gradient boosting machine (LightGBM) 
algorithm was used for both variable selection and model 
development. To overcome the limited amount of data 
available, 10-fold cross-validation was performed on the 
complete data set and repeated 50 times to assure stabil-
ity of the model.22 The performance of the models was 
assessed by looking at the distribution of the AUC for the 
different folds. Within the model, we used a threshold on 
the likelihood of dying within or beyond 1 or 2 h. Recall is 
the number of donors identified for dying beyond 1 or 2 h. 
By using a precision–recall curve and threshold curve, we 
can adjust the model in a way that precision is higher, but 
recall is lower, enabling us to select a threshold at which 
the precision is high, but the recall is still relevant.

External validation of the LASSO models was performed 
by calculating the probability of death and thus the AUC, 
computed after application of the linear predictor on the 
data set of the ETZ cohort taking the outcome status 
(death) into account. The AUC determines discrimination of 
the models and refers to the ability to distinguish between 
circulatory death within 1 h (or 2 h) and longer. Calibration 
refers to the concordance between the absolute predicted 

probability and observed death and is graphically displayed 
in calibration plots.23 Over- or underestimation of pre-
dicted probabilities is often encountered in the new cohort. 
Recalibration of the models can overcome this problem. For 
that purpose, we used the offset procedure to update the 
intercept of the linear predictors and adjust the regression 
coefficients for optimism (shrinkage).23,24 We used the same 
approach for external validation of the existing models on 
the data set of our cohort.

Statistical analyses were performed using IBM SPSS, 
version 24, the R software (R Project for Statistical 
Computing, version Microsoft R Open 3.6.1), and Python 
version 3.8.5, 64-bit LightGBM package, version 3.1.1.

RESULTS

Patient Characteristics
In a period of 40 mo, 425 consecutive potential cDCD 

donors were evaluated. Sixteen patients were suspected to 
be brain dead and were excluded, leading to inclusion of 
409 patients, who formed the DCD III cohort.

Circulatory death within 1 or 2 h after WLST occurred 
in 55% and 63% of patients, respectively. The median 
time to death was 43 min (range, 17–432). In 9% of cases, 
death occurred after >24 h after WLST.

Table 1 shows the clinical characteristics of the patients. 
There were no differences in baseline characteristics between 
the patients dying within and after 1 h. Table 2 shows main 
collected characteristics and measures during the intensive 
care unit (ICU) and WLST process. More than 70% of 
patients in both groups experienced secondary neurologi-
cal injury during their ICU stay. Patients dying within 1 h 
had significantly lower Glasgow Coma Scale (GCS)/motor 
scores, more often absent brain stem reflexes, higher venti-
latory settings and oxygenation index, and spent less time 
spent on the ventilator than patients dying after 1 h.

Predicting Death Within 1 or 2 h
Table 3 shows the linear predictors (lp) and AUCs using 

LASSO for death within 1 or 2 h. The resulting models 
included easy-to-assess bedside clinical features incorporat-
ing several brain stem reflexes, ventilator triggering, (items 
of) the GCS, administration of vasopressors, the oxygena-
tion index, and subarachnoid hemorrhage, combined in a 
mathematical equation known as the lp, whose value can 
predict the probability of death with the following equation:  

lp=
1+

e

e

lp

lp
. In the validation sample, 3 patients (4%) had 

the highest predicted probability of death (77%). The 
group with the lowest observed death included 12 patients 
(16%) and had a predicted probability of death of 32% 
within 1 h. The model had a positive predictive value of 
66%. The prediction model was overoptimistic in the 
lower and intermediate observed death groups and under-
optimistic in the highest observed death group, meaning 
that potential donors are missed in the latter and unneces-
sary procedures will be started  in the former (Figure S1, 
SDC, http://links.lww.com/TP/C381). Similar calculations 
were performed for death within 2 h with comparable 
results (positive predictive value of 69%).

The variables selected after applying LightGBM are also 
shown in Table 3. The variable importance determined by 

D
ow

nloaded from
 http://journals.lw

w
.com

/transplantjournal by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4
X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
1y0abggQ

Z
X

dtw
nfK

Z
B

Y
tw

s=
 on 09/16/2022

http://links.lww.com/TP/C381
http://links.lww.com/TP/C381


© 2022 Wolters Kluwer	 	 1847Kotsopoulos et al

the permutation and gain method is shown in Figure S2 
(SDC, http://links.lww.com/TP/C381). The AUCs of the 
artificial intelligence (AI) models were comparable with 
the LASSO models. The prediction variables included in 
the LASSO and AI models also overlapped. The AUCs 
(range, 0.73–0.88) and variables included in the 8 pre-
viously published prediction models are summarized in 
Table S3 (SDC, http://links.lww.com/TP/C381).

Predicting Death Beyond the 1 or 2 h Time Frame 
With 100% Accuracy

Similar calculations as mentioned for predicting death 
within 1 h were performed to predict death beyond 1 h 
with a 100% accuracy, meaning that if the model predicts 
that a patient does not die within 1 or 2 h, no false posi-
tives should be present.

Using a threshold that 100% correctly classified patients 
dying after 1 h, we found that the LASSO model classified 
12 of 75 patients (16%) who died after 1 h with a 100% 
accuracy (Table S5, SDC, http://links.lww.com/TP/C381). 
Likewise, predicting death after 2 h led to a threshold that 
predicted 10 of 75 patients (13%) of the validation group 
without any false positives.

Similarly, we calculated the thresholds for 100% accu-
racy (no false positives) for the AI models, which led to 
the correct classification of 9 of 185 patients (5%) for the 
death after 1 h and 6 of 153 patients (4%) for death after 
2 h (Table 4).

External Validation of 3 Previously Published Models 
and the Current LASSO Models From the DCD III 
Study Using the ETZ Cohorts

The predictive performances expressed as the AUC and 
calibration are shown in Table  5 and Figures S3 and S4, 
(SDC, http://links.lww.com/TP/C381). All models showed 
a modest discrimination (AUC range, 0.63–0.86) when 
validated in the data sets of the DCD III and ETZ cohorts. 

Calibration plots showed that most models slightly overes-
timated the probabilities of death in those patients who died 
within the necessary time frame, whereas our LASSO mod-
els overestimated the probability of death in those who did 
not die within the time frame (see Figures S3 and S4, SDC, 
http://links.lww.com/TP/C381). Recalibration of the models 
was therefore performed. In our ETZ validation cohort, we 
were not able to replicate the finding of identifying a sub-
group with certain death after 1 or 2 h.

Because WLST practices could influence timing of death 
and are only rarely taken into account in previous studies, we 
also sought to assess the effect of WLST on timing of death.

Medication
Seventy-seven percent of patients used some type of 

sedation or analgesia, as a continuous infusion, during the 
course of WLST (Table 2). The mean midazolam dose was 
significantly higher before and after WLST in the <1 h group 
(Figure S5, SDC, http://links.lww.com/TP/C381). There 
were no significant differences in the doses of morphine 
equivalents administered before and after WLST in both 
groups (Figure S5, SDC, http://links.lww.com/TP/C381). 
Less than 10% of all patients received a bolus of midazolam 
(maximum dose 10 mg) or opioids before or after WLST.

WLST Practice
In all patients, supportive care was withdrawn simultane-

ously, meaning that together with the endotracheal tube, all 
medication (except medication for palliative care), tube feed-
ing, and fluid administration were discontinued. In 21% of 
all patients, external ventricular drainage was present, which 
was removed or closed in almost all cases at the time of WLST.

All patients were either extubated (98.5%) or disconnected 
from the ventilator (remaining 1.5%). Nursing care, such as 
secretion clearance or lateral tilt position variation after WLST, 
was applied significantly more frequently in the >1 h group 
(both P < 0.001), however, in a small number of patients (9.5%).

TABLE 1.

Baseline characteristics of 409 potential cDCD patients dying within or after 1 h after WLST

Variable Death within 1 h n = 224 (55%) Death after 1 hZn = 185 (45%) OR 95% CI P

Time to death, min, (range) 18 (11–26) 476 (177–1202)    
Age, mean (±SD), y 56.7 (±14.9) 58.6 (±11.7) 0.99 0.97-1.00 0.170
Male, 145 (65%) 104 (56%) 1.43 0.95-2.13 0.079
BMI, mean (±SD) 26.1 (±4.7) 26.2 (±4.9) 1.01 0.96-1.04 0.796
APACHE IV, mean (±SD) 94.4 (±25.9) 91.9 (±26) 1.00 0.99-1.01 0.298
Hemicraniectomy 22 (10%) 26 (14%) 0.18 0.66-0.36 0.121
Admission diagnosis      
  Anoxic encephalopathy 53 (24%) 50 (27%) 0.88 0.56-1.38 0.581
  Traumatic brain injury 51 (23%) 43 (23%) 1.06 0.62-1.79 0.834
 �� Subarachnoid
  hemorrhage

51 (23%) 33 (18%) 1.38 0.78-2.28 0.257

  Intracranial hemorrhage 36 (16%) 36 (19%) 0.93 0.53-1.64 0.817
  Cerebrovascular accident 18 (8%) 15 (8%) 1.49 0.65-3.42 0.342
  Respiratory 6 (3%) 4 (2%) 0.72 0.19-2.71 0.638
  Othera 9 (4%) 4 (2%) 2.12 0.61-7.33 0.234

Categorical variable are described as number (%) and continuous variables as mean (±SD).
P value was calculated using univariable logistic regression analysis.
aOther includes encephalitis, Huntington disease and trauma, meningitis, intracerebral abscess, aspiration pneumonia complicating minor trauma, complication after meningioma resection, methanol 
intoxication, and refractory epilepsy.
APACHE, acute physiology age chronic health evaluation; BMI, body mass index; cDCD, controlled donation after circulatory death; CI, confidence interval; OR, odds ratio; SD, standard deviation; 
WLST, withdrawal of life-sustaining treatment.
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DISCUSSION
This is the largest multicenter prospective cohort study 

of potential cDCD donors on time to circulatory death. 
Our study found that corneal and cough reflex, ventilator 
triggering, the motor score, administration of vasopressors, 

and the GCS are the main predictors for circulatory death 
using a regression analysis with an AUC of the model of 
0.77. This improved only slightly using AI–machine learn-
ing modeling, which is most likely because of the limited 
number of patients for AI modeling. Using such a model 

TABLE 2.

Clinical parameters and medication use just before and throughout WLST of 409 potential cDCD patients dying within 
or after 1 h after WLST

Variable
Death within 1 h  

n = 224 (55%)
Death after 1 h  
n = 185 (45%) OR 95% CI Pa

Neurological examination      
  Absent pupillary reflex bilateral 148 (66%) 80 (43%) 2.56 1.71-3.82 <0.001
  Absent corneal reflex bilateral 159 (71%) 76 (41%) 3.51 2.33-5.29 <0.001
  Absent cough reflex 139 (62%) 58 (31%) 3.58 2.37-5.40 <0.001
  GCS ≤4b 202 (92%) 120 (66%) 5.70 3.21-10.1 <0.001
  Absent motor response or extensor (M1–M2)b 206 (94%) 134 (74%) 5.61 2.73-9.74 <0.001
Ventilation      
  Controlled mode of ventilation 152 (68%) 73 (39%) 3.23 2.15-4.85 <0.001
  Triggering mechanical ventilation 117 (52%) 153 (83%) 0.22 0.14-0.35 <0.001
  Mechanical ventilation time, h, mean (±SD) 80 (±96) 128 (±151) 0.996 0.995-0.998 <0.001
  Mean FiO

2
, mean (±SD) 0.42 (±0.17) 0.36 (±0.13) 1.02 1.01-1.04 <0.001

  PEEP, cmH
2
O, mean (±SD) 7.4 (2.5) 6.7 (±2.2) 1.12 1.03-1.22 0.007

  Peak inspiratory pressure, cmH
2
O, mean (±SD) 19.6 (±6.2) 17.9 (±4.8) 1.01 1.06-1.14 <0.001

  Pao
2
, kPa, mean (±SD) 15.0 (±7.7) 13.6 (±5.7) 1.03 0.99-1.07 0.077

  OI,c mean (±SD) 6.3 (±5.4) 4.8 (±3.4) 1.09 1.04-1.16 <0.001
Hemodynamics      
  Mean arterial pressure, mm Hg, mean (±SD) 111 (±4) 90 (±3) 0.99 0.98-1.00 0.320
  Heart rate per minute, mean (±SD) 89 (±26.6) 87 (±24.6) 1.01 0.99-1.01 0.214
Secondary neurological injury      
  Total 175 (78%) 134 (72%) 1.35 0.86-2.13 0.183
  Vasospasm 6 (2%) 7 (4%) 0.70 0.23-2.12 0.528
  Recurrent hemorrhage 24 (11%) 18 (10%) 1.11 0.58-2.12 0.744
  Cerebral infarction 33 (15%) 42 (23%) 0.58 0.35-0.97 0.039
  Cerebral edema 48 (21%) 29 (16%) 1.46 0.88-2.44 0.140
  Epilepsy 31 (14%) 28 (15%) 0.90 0.51-1.56 0.711
  Hydrocephalus 56 (25%) 37 (20%) 1.33 0.83-2.13 0.231
  Cerebral herniation 70 (31%) 39 (21%) 1.70 1.08-2.67 0.021
Medication use      
  Norepinephrine use before WLST 64 (28%) 17 (9%) 3.95 2.22-7.03 <0.001
  Norepinephrine dose before WLST, ug/kg/min, mean (±SD) 0.18 (±0.21) 0.11 (±0.12) 15.0 0.21-1030 0.209
  Midazolam use before WLST 128 (57%) 120 (65%) 0.85 0.69-1.03 0.112
  Midazolam use after WLST 129 (57%) 126 (68%) 0.63 0.42-0.95 0.029
  Midazolam dose before WLST, mg/h, mean (±SD) 9.8 (±8.7) 7.4 (±6.3) 1.04 1.01-1.08 0.022
  Midazolam dose after WLST, mg/h, mean (±SD) 9.8 (±8.7) 7.7 (±6.3) 1.03 1.01-1.07 0.040
  Propofol use before WLST 46 (21%) 23 (12%) 1.16 1.01-1.33 0.031
  Propofol use after WLST 47 (21%) 23 (12%) 1.87 1.08-3.21 0.024
  Propofol dose before WLST, mg/h, mean (±SD) 188 (±109) 201 (±129) 0.99 0.99-1.00 0.645
  Propofol dose after WLST, mg/h, mean (±SD) 186 (±109) 204 (±132) 0.99 0.99-1.00 0.560
  Morphine equivalents use before WLST 157 (70%) 140 (75%) 0.75 0.48-1.17 0.208
  Morphine equivalent use after WLST 157 (70%) 147 (79%) 0.60 0.38-0.95 0.032
  Morphine equivalent dose before WLST, mg/h, mean (±SD) 10.8 (±23) 7.3 (±13.9) 1.01 0.99-1.02 0.148
  Morphine equivalent dose after WLST, mg/h, mean (±SD) 10.9 (±24) 7.8 (±13.6) 1.01 0.99-1.02 0.194
aP value was calculated using univariable logistic regression analysis.
bAnalysis as a dichotomous variable with GCS ≤4 vs GCS ≥ and M1/M2 vs ≥M3.
cMechanical ventilator settings and arterial blood gas analysis were integrated into the OI. OI is a continuous variable and is calculated as mean airway pressure × FiO

2
 × 100/Pao

2
 in kPa; mean airway 

pressure = peak inspiratory pressure + PEEP/2). An OI >4.2 was defined as elevated.
Categorical variables are described as numbers (%) and continuous variables as mean (±SD).
cDCD, controlled donation after circulatory death; CI, confidence interval; GCS, Glasgow Coma Scale; FiO

2
, fraction of inspired oxygen; M1, no response to stimulus; M2, extension response in 

response to pain; M3, Flexion in response to pain; N, number; OI, oxygenation index; OR, odds ratio; PEEP, positive end-expiratory pressure; Pao
2
, Po

2
 in arterial blood; SD, standard deviation; WLST, 

withdrawal of life-sustaining treatment.
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would mean that nearly 23% of the patients would be 
wrongly classified as not dying within 1 or 2 h. With the 
large shortage of transplantable organs, operationalizing 
such models in clinical practice would mean that an unac-
ceptable high percentage of potential organ donors would 
be missed. Previous models had similar issues as shown in 
Table S3 (SDC, http://links.lww.com/TP/C381).

As a second step, we calculated whether we could pre-
dict death after the 1 to 2 h time frame with 100% accu-
racy in order not to miss any donors. We were able to 
correctly identify 4% to 16% of the patients who would 
die beyond the 1 to 2 h time frame. Although this seems 
small, the high accuracy means that it could be used in 
clinical practice. Predicting which patients would not 
die within the necessary time frame, cases that should 
not be prepared for a donor procedure can be identi-
fied. This would prevent using precious resources, such 

as bed occupancy on the ICU, booking an operating 
theater, having a procurement team and transplantation 
team standby, use of ancillary diagnostics to test suitabil-
ity of the organs and matching with acceptors, selecting 
potential patients on the transplantation waiting list, etc. 
Costs of starting an unsuccessful organ donation proce-
dure have never been fully calculated, which we estimate 
would be at approximately €20.000 per patient in the 
Netherlands. Importantly, being able to accurately select 
which patients will die beyond the necessary time frame 
also prevents disappointment within the family of these 
patients and the ICU team when an organ donation pro-
cedure fails because of timing of death.

Our final step was external validation. We encountered 
several obstacles in that process. Previous models used 
different variables, which prevented us from perform-
ing extensive external validation. For the same reason, 

TABLE 3.

AUC of predicted probabilities for death for different time frames of circulatory death for the LASSO and AI models

 AUC Features per model

LASSO for death within 
1 h after WLST 

0.77a lpb: 1.05 – 0.32 × corneal reflex present (yes = 1, no = 0) – 0.33 × cough reflex present (yes = 1, no = 0) + 0.01 × motor 
score (M1 or M2 = 1, M3 or more = 0) + 0.11 × norepinephrine given (yes = 1, no = 0) –  0.21 × triggering mechanical 
ventilator (yes = 1, no = 0) – 0.09 × GCS

LASSO for death within 
2 h after WLST 

0.79a lpc: 1.18 – 0.26 × pupillary reflex present (yes = 1, no = 0) – 0.36 × corneal reflex present (yes = 1, no = 0) – 0.54 × cough 
reflex present (yes = 1, no = 0) + 0.57 × motor score ( M1 or M2 = 1, M3 or more = 0) + 0.02 × OI + 0.18 × norepinephrine 
given (yes = 1, no = 0) – 0.48 × triggering mechanical ventilator (yes = 1, no = 0) + 0.11 × SAH (yes = 1, 
no = 0) – 0.11 × GCS

AI for death within 1 hd 0.79 APACHE II × APACHE IV score, ventilatory hours, length of ICU stay (in hours), triggering the mechanical ventilator, 
FiO

2
, the GCS before WLST, and presence of cough reflex 

AI for death within 2 hd 0.81 Equal variables as for death within 1 h

OI is a continuous variable and is calculated as mean airway pressure × FiO
2
 × 100/Pao

2
 in kPa; mean airway pressure = peak inspiratory pressure + positive end-expiratory pressure/2.

aThis is the AUC as found in the validation sample, and it represents the model fit of the development sample.
bThis is the lp derived from the development sample.
cThis is the lp derived from the development sample.
dAll AI models included the same variables.
AI, artificial intelligence; APACHE, acute physiology age chronic health evaluation; AUC, area under the receiver operating characteristic curve; FiO

2
, fraction of inspired oxygen; GCS, Glasgow Coma 

Scale; ICU, intensive care unit; LASSO, least absolute shrinkage and selection operator; lp, linear predictor; M1, no response to stimulus; M2, extension response in response to pain; M3, Flexion in 
response to pain; OI, oxygenation index; SAH, subarachnoid hemorrhage; WLST, withdrawal of life-sustaining treatment.

TABLE 4. 

Precision–recall trade-off for different thresholds for death after 1 or 2 h of the AI prediction model

Threshold Total deaths after 2 h True positive False positive Precision Recall

0.50 153 89 48 0.65 0.58
0.80 153 21 6 0.78 0.14
0.85 153 6 2 0.75 0.04
0.88a 153 6 0 1 0.04
0.9 153 5 0 1 0.03
0.95 153 1  1 0.01
Threshold Total deaths after 1 h True positive False positive Precision Recall
0.50 185 122 49 0.71 0.66
0.80 185 47 6 0.89 0.25
0.85 185 30 4 0.88 0.16
0.88 185 17 2 0.89 0.09
0.9b 185 9 0 1 0.05
0.95 185 0 0 0 0
aFor each patient for whom the probability of not deceasing within 2 h was >0.88, it was 100% correctly predicted that he did not decease within 2 h. Using this threshold, the model would have 
predicted 6 patients of 153 who did not die within 2 h.
bFor each patient for whom the probability of not deceasing within 1 h was >0.9, it was 100% correctly predicted that he did not decease within 1 h. Using this threshold, the model would have 
predicted 9 patients of 185 who did not die within 1 h.
AI, artificial intelligence.
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we were only able to validate our LASSO models in a 
small retrospective data set. The size of the data set likely 
also influenced the results of the external validation of 
the LASSO models. In the external cohort, an equiva-
lent subset of patients who died after the 1 to 2 h time 
frame could not be addressed, as the LASSO models per-
formed less accurately. We anticipated this outcome, as a 
less accurate performance is often encountered in a dif-
ferent patient population. Almost all prediction studies 
have focused trying to predict correctly the majority of 
patients, and unfortunately, this has not resulted in tools 
that can be implemented. Our data show that it could 
be worthwhile to develop tools to predict a minority of 
patients with high accuracy instead. With regard to our 
models, these need external validation, ideally using pro-
spectively collected data, before their true potential can 
be valued.23

Before implementing prediction models, clinicians 
should be aware of the characteristics of their own patient 
population in relation to those in the models. Heterogeneity 
in clinical practices, for example, in timing of prognostica-
tion or end-of-life care, may influence patient selection and 
thus variables included in the models. A model that is not 
recalibrated in the new setting can result in over- or under-
estimation of predicted probabilities of death, hampering 
its use in clinical decision making.

With increasing share of cDCD donors, the effort of 
developing prediction models is clearly visible in the lit-
erature. Eighty percent of such studies have been pub-
lished in the past decade; however, despite these efforts, 
prediction models have not been implemented in clinical 
practice, mainly because of their modest predictive ability. 
The accuracy data of our models to predict which patients 
would die after 1 to 2 h show that this approach has poten-
tial and needs confirmation by other cohorts.

As mentioned in earlier reports, we found that seda-
tion and analgesia dosages did not influence timing of 
death.2,18,19,25,26 We could not support the finding of previ-
ous studies in a general ICU population in which lower 
doses of morphine were associated with more severe 

neurological damage.27 All hospitals adhered to the guide-
lines published by the Dutch Intensive Care Society on 
withholding and withdrawing of life-sustaining treatment 
and palliative care of ICU patients.28 Therapeutic treat-
ment provided (noncomfort medications such as vasopres-
sors, inotropes, antibiotics, intravenous fluids, [par]enteral 
feeding and endotracheal tube) was withdrawn simulta-
neously in almost all cases. Synchronous withdrawal of 
all treatments was also the practice in previous studies on 
cDCD patients.2,4-6,11

Our study also has some limitations. Prediction mod-
els are statistical models built on variables collected from 
patients in a specific setting. Therefore, the discrimi-
natory ability of some variables can vary in different 
cohorts; however, in contrast to several earlier reports, 
we only included patients fulfilling organ donation cri-
teria, which makes our sample more generalizable than 
many of the earlier prediction studies. Additionally, our 
data set is the largest prospective cohort. We included 
patients from different types of hospitals (university 
medical centers as well as teaching hospitals with dif-
ferences in their patient focus). We did not assess the 
clinical opinion of the medical team. Previous studies 
showed that the clinical opinion alone was not accurate 
enough.4,5 We also did not assess laboratory results.6 
Although severe abnormalities in laboratory findings 
could be related to timing of death, they also mirror a 
poor clinical organ condition. Such patients would most 
likely not fulfill the cDCD criteria. As such, we do not 
expect that laboratory criteria would have changed the 
prediction model significantly.

In summary, this large, multicenter, prospective cohort 
of potential cDCD donors found it easy to assess clini-
cal features and to estimate time to death after WLST. We 
were able to reliably predict a small percentage of patients 
who would die beyond 1 or 2 h. Selecting such patients not 
to enter the organ donation process could prevent unnec-
essary costs, use of precious resources, and disappointment 
within the donor and acceptor families; however, further 
evaluation in a large independent cohort is needed.

TABLE 5.

External validation of 3 existing models for death within 1 h of the DCD III cohort and ETZ cohort and LASSO models  
for death within 1 and 2 h of the ETZ cohort

Models

Published by the author

Cohorts for external validation

DCD III cohort (n = 409) ETZ cohort (n = 92)

AUC

95% CI

AUC

95% CI

AUC

95% CI

Lower Upper Lower Upper Lower Upper

de Groot et al9,a (n = 82) 0.77 0.69 0.90 0.74 0.70 0.79 0.86 0.77 0.95
Davila et al6,b (n = 178) 0.83 0.76 0.90 0.70 0.65 0.75 0.80 0.70 0.90
Suntharalingam et al11,c (n = 191)    0.63 0.58 0.68 0.63   
LASSO 1 h (n = 75) 0.77      0.80 0.69 0.91
LASSO 2 h (n = 75) 0.79      0.82 0.73 0.92

Analysis method: The AUC is based on the predicted probabilities of death within 1 h for each patient in the external validation data sets of the cohorts, calculated by the linear predictor per model 
as provided by the authors.
aLinear predictor = –2.52 + 1.54 × absent corneal reflex (yes = 1, no = 0) + 1.08 × absent cough reflex (yes = 1, no = 0) + 1.18 × extensor or absent motor response (yes = 1, no = 0) + 0.13 × oxygenation 
index × 0.13.
bLinear predictor = 2.4 + 1.6 × (0 = no inotropes;1 = yes inotropes) – 1.27 × (0 = ≤40 y, 1 = >41 y) – 1.92 × (0 = no gag/cough;1 = gag/cough present).
cSuntharalingam et al11 used Cox regression analysis. The baseline cumulative hazard for survival at 1 h was 0.44. The PI is 0.44 + (age 30–40 y × LN [0.70])+ (age 41–50 y × LN [0.46]) + (age >50 
y × LN [0.37]) + (pressure support ventilation × LN [1.67]) + (Fio

2
 × LN [1.012]). The baseline cumulative hazard of the DCD III cohort was 0.45.

AUC, area under the curve; CI, confidence interval; DCD, donation after circulatory death; ETZ, Elisabeth-TweeSteden Hospital; LASSO, least absolute shrinkage and selection operator; LN, natural 
logarithm; N, number of patients included in each cohort; PI, prognostic index.
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External validation of previously published models 
showed that all have modest accuracy, hampering their use 
in daily clinical practice. Based on our data, WLST prac-
tices are not associated with timing of death and as such 
have no influence on donor potential.
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