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A Memory-efficient Deep Framework
for Multi-Modal MRI-based Brain Tumor Segmentation

Nima Hashemi1, Saeed Masoudnia2, Ashkan Nejad3 and Mohammad-Reza Nazem-Zadeh2

Abstract— Automatic Brain Tumor Segmentation (BraTS)
from MRI plays a key role in diagnosing and treating brain
tumors. Although 3D U-Nets achieve state-of-the-art results in
BraTS, their clinical use is limited due to requiring high-end
GPU with high memory. To address the limitation, we utilize
several techniques for customizing a memory-efficient yet ac-
curate deep framework based on 2D U-nets. In the framework,
the simultaneous multi-label tumor segmentation is decomposed
into fusion of sequential single-label (binary) segmentation
tasks. In addition to reducing the memory consumption, it
may also improve the segmentation accuracy since each U-net
focuses on a sub-task, simpler than whole BraTS segmentation
task. Extensive data augmentations on multi-modal MRI and
the batch dice-loss function are also employed to further
increase the generalization accuracy. Experiments on BraTS
2020 demonstrate that our framework almost achieves state-of-
the-art results. Dice scores of 0.905, 0.903, and 0.822 for whole
tumor, tumor core, and enhancing tumor are accomplished
on the testing set. Moreover, our customized framework is
executable on budget-GPUs with minimum requirement of
only 2G RAM. Clinical relevance— We develop a memory-
efficient deep Brain tumor segmentation tool that significantly
reduces the hardware requirement of tumor segmentation while
maintaining comparable accuracy and time. These advantages
make our framework suitable for widespread use in clinical
applications, especially in low-income regions. We plan to
release the framework as a part of a free clinical brain
imaging analysis tool. The code for this framework is publicly
available:https://github.com/Nima-Hs/BraTS.

I. INTRODUCTION

Automatic segmentation of brain tumors from Magnetic
Resonance Imaging (MRI) images constitutes an essential
step in today’s clinical diagnosis and treatment planning and
assessment. However, it is a challenging task due to not only
tumor’s inherent heterogeneous tissue but also its small ratio
within large volume of brain [1].

Numerous deep learning studies have tried to address the
challenges, while U-net architecture is the most successful
model among them for Brain Tumor Segmentation (BraTS)
[2]. This architecture is designed based on a deep encoder-
decoder convolution network with skip connections. Many
extensions of U-Net have been proposed based on different
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losses and architectures. Deep-learning segmentation frame-
works rely not only on the choice of network architecture
but also on the choice of loss function. Several works
introduced different losses in U-net model in order to address
the mentioned challenges for BraTS, [3], [4], [5]. Although
Cross Entropy (CE) was suggested in the original U-net
[2], other losses, e.g., dice loss also used [6], specially, in
the unbalanced segmentation tasks [7]. Moreover, different
modifications were suggested for dice loss to better handle
unbalanced segmentation challenges. Carole H Sudre et al.
[3] suggested weighting each class by the inverse of its
volume, thus balancing between them. Oldřich Kodym et
al. [5] proposed batch dice loss in which loss computation is
extended over whole data mini-batches and considered them
as a single 4-dimensional tensor. The authors declare that this
regularization avoids disturbance in mini-batch optimization
if few individual gradients are very different. Moreover, U-
Nets based on different architectures were proposed. The
first introduced U-nets are based on 2D CNNs, taking a
single slice as input, can not take advantage of context from
adjacent slices. 3D U-nets address this limitation by using 3D
convolution filters on a 3D input volume. This improvement
enables 3D U-nets to exploit inter-slice context, which leads
to better segmentation. However, it comes at a cost of high
computational and memory requirements due to increased
number of parameters [8].

Although 3D U-nets achieve state-of-the-art results in
BraTS task [9], [10], [4], they only could be runnable on
high-end GPUs with high RAM. This heavy computational
requirement severely limits the widespread clinical applica-
tions of these networks, especially in low-income commu-
nities. Due to this consideration, we attempt to provide a
feasible solution based on 2D U-net for BraTS. In this paper,
we address the mentioned BraTS challenges by combining
the idea proposed in [3], [5]. Some technical modifications
are also proposed to enhance the performance in order to
be comparable with state-of-the-arts, while yet runnable on
budget GPUs.

II. DATASET

Multimodal 3T MRI scans of glioblastoma (GBM/HGG)
and lower grade glioma (LGG) are provided in BraTS2020
dataset [11]. The multimodal scans are native (T1), post-
contrast T1-weighted (T1Gd), T2-weighted (T2), and T2
Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes
(Fig. 1). These volumes were acquired through different clin-
ical protocols and various scanners from multiple institutions.
All Images have been manually segmented to GD-enhancing
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Fig. 1. Different MRI modalities in the BraTS dataset. There are 155 axial slices in each volume, and each slice is 256×256. Each subject has four MRI
modalities: T1, T1Gd, T2, and T2 Flair.

Fig. 2. Five samples of ten augmented images generated from a single slice. The augmentations and their parameters are in Table I.

tumor (ET – label 4), the peritumoral edema (ED – label 2),
and the necrotic and non-enhancing tumor core (NCR/NET
– label 1). The volumes are co-registered, interpolated to the
same resolution(1mm3) and skull-stripped.

III. METHOD

A. Pre-processing

The 369 subjects are divided into three parts for training,
validation, and testing. The training set has 295 subjects
(80%), 37 subjects (10%) for the validation set, and 37
subjects (10%) for the test set. Each volume has 155 axial
slices, which are separated to be used for the 2D networks.
On average, out of the 155 slices, 17.2±5.82 slices are empty.
For every modality, the average and standard deviation are
calculated to measure the z-score of the volume. The empty
slices are removed from the normalized training set but not
from the validation and test sets.

The remaining slices of the training set are then augmented
to increase the size of the training set and increase the vari-
ability of the data to improve the results. The augmentation
transformations and their parameters are provided in Table I.
Each slice is augmented ten times with these transforms to
increase the size of the dataset (Fig. 2).

The image transformations use interpolation to map the
voxels to the calculated coordinate. This process usually
reduces the quality of the image. Calculating the mapped
coordinates after each transformation and finally applying
a single interpolation can prevent further image quality
reduction.

TABLE I
AUGMENTATION PARAMETERS. NINE DIFFERENT TRANSFORMATIONS

ARE APPLIED TO EACH SLICE WITH RANDOM PARAMETERS.

Parameter Value
Horizontal flip p = 0.5
Vertical Translation |∆y| < 0.1y
Horizontal Translation |∆x| < 0.1x
Vertical Scale 0.9 ≤ sy ≤ 1.1
Horizontal Scale 0.9 ≤ sx ≤ 1.1
Vertical Shear |ry | ≤ 0.05y
Horizontal Shear |rx| ≤ 0.05x
2D rotation |θ| < 15◦

Elastic Transform[12] α = 600, σ = 30

B. Network Architecture

The used network architecture is similar to the base 2D
U-Net network [2] which is a fully convolutional neural
network. The model has four input channels corresponding
to 4 MRI modalities in the dataset. Three separate networks
are trained for three different labels, which are Whole Tumor
(WT), Tumor Core (TC), and Enhancing Tumor (ET). Each
of these three networks has two output channels, one for
the foreground and one for the background. A softmax is
applied to these two channels so that the values are between
zero and one. Another network is also trained, which has
three output channels for three different labels. A sigmoid
function is applied to these three channels so that the values
are between zero and one.
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TABLE II
TEST SET DICE COEFFICIENT COMPARED TO STATE-O-THE-ART. OUR PROPOSED METHODS TEST SET DICE COEFFICIENT AND GPU ARE COMPARED

TO BRATS 2020 AND BRATS 2019 RANKS. (U-NET 3C: A SINGLE U-NET WITH THREE OUTPUT CHANNELS. U-NET 2C: THREE SEPARATE U-NET

NETWORKS EACH WITH TWO OUTPUT CHANNELS. U-NET 2C AU: SAME AS U-NET 2C BUT TRAINED WITH AUGMENTED DATA.)

Method WT TC ET GPU Memory

Proposed
U-Net 3C 0.884 0.867 0.813 NVIDIA GTX 1050TI 4GB
U-Net 2C 0.900 0.877 0.813 NVIDIA GTX 1050TI 4GB
U-Net 2C AU 0.905 0.903 0.822 NVIDIA GTX 1050TI 4GB

BraTS 2020 Ranks

nnU-Net[4] 0.890 0.851 0.820 RTX 2080 ti 17GB
H2NF-Net[10] 0.889 0.854 0.828 NVIDIA Tesla P40 GPU 11GB
Modality-Pairing[13] 0.891 0.842 0.816 NVIDIA Tesla V100 32GB
SA-Net[14] 0.883 0.843 0.818 NVIDIA GTX 1080 TI 11GB

BraTS 2019 Ranks
Two-stage Cascaded U-Net[9] 0.888 0.837 0.833 Nvidia Titan V 12GB
Bag of Tricks[15] 0.883 0.861 0.810 Nvidia Titan V 12GB
DeepSCAN[16] 0.89 0.83 0.81 - -

C. Loss Function

The loss function is based on the dice coefficient. Since
the GPU memory is limited, all 155 slices cannot be passed
through the networks simultaneously, and a batch size of 10
is used. The dice coefficient can be calculated for each slice
differently and then use the average of these dice values to
calculate the loss (1c). Since the output has multiple channels
and the size of the ROI in each region is different, each
channel must have a different contribution to the loss (1a).

wbc = 1−

∑
x,y

g(b, c, x, y)∑
k,x,y

g(b, k, x, y)
(1a)

Dbc =

2
∑
x,y

p(b, c, x, y)g(b, c, x, y) + s∑
x,y

p(b, c, x, y) +
∑
x,y

g(b, c, x, y) + s
(1b)

Ldice =
∑
b,c

wbc(1−Dbc) (1c)

The weights, wbc, are used to assign a different weight for
each channel. Dbc is the dice coefficient calculated for each
channel and sample in the batch. g and p are the ground
truth and predicted image. The smoothing factor, s, is used
to prevent division by zero. b, c, x, and y represent the index
of samples, index of channels, index of spatial direction x,
and index of spatial direction y.

The other approach is to assume that different samples
are from a 3D image and calculate the weights and dice
coefficients for this 3D volume. (2c).

wc = 1−

∑
n,x,y

g(n, c, x, y)∑
n,k,x,y

g(n, k, x, y)
(2a)

Dc =

2
∑

n,x,y
p(n, c, x, y)g(n, c, x, y) + s∑

n,x,y
p(n, c, x, y) +

∑
n,x,y

g(n, c, x, y) + s
(2b)

Lbatch dice =
∑
c

wc(1−Dc) (2c)

D. Evaluation Metrics

The voxels of the prediction, p, are between zero and
one, and the ground truth image, g, is a binary image.
In the test set, the dice coefficient is calculated for each
subject separately. The true positives, false positives, and
false negatives are calculated for each slice and summed up.
Finally, the dice coefficient for a single subject is calculated
using:

DSC =
2TP

2TP + FP + FN
(3)

E. Training, Validation, and Testing

Three different methods are experimented:
• U-Net 3C: U-Net with three output channels correspond-

ing to WT, TC, and ET regions. This is our baseline
method. In this method, data augmentation is removed
from the pre-processing step. A sigmoid activation func-
tion is applied to the output channels.

• U-Net 2C: Three separate U-Net networks with two out-
put channels. The two output channels are the foreground
and background voxels, and each of these three U-Nets
segments one of the WT, TC, and ET labels. A softmax
is applied to the last two channels of each network
so that the voxel values show the probability of being
in the background or foreground class. In this method,
data augmentation is disabled to examine the effect of
separating the baseline U-Net into three U-Nets.

• U-Net 2C AU: Three separate U-Net with enabled data
augmentation. In this method, the effects of data augmen-
tation are examined.

Each method is trained for 80 epochs using the ADAM
optimizer and a batch size of 10. All experiments were
performed on PyTorch 1.9.0. An NVIDIA GTX 1050 TI was
used to train the networks. The validation and test sets are not
augmented and are the same for all the methods examined.

IV. EXPERIMENTAL RESULTS

In this section, the results of our experiments are dis-
cussed. The dice coefficients of the examined methods and
state-of-the-art are compared in Table II. The baseline U-Net
(U-Net 3C) achieved dice coefficients close to BraTS 2019
ranks. It can be concluded that the frequency weighted dice
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Fig. 3. Segmentation of a single axial slice using U-Net 2C AU. The predicted segmentation and ground truth masks are overlayed on four different
modalities of a single axial slice.

loss has improved the results, and the baseline U-Net reached
state-of-the-art accuracies.

The separated version of U-Net showed better results in
segmenting whole tumor and tumor core, while the en-
hancing tumor segmentation dice coefficient did not change
compared to baseline. The dice coefficients of WT and TC
were better than state-of-the-art methods.

The third method, U-Net 2C AU, achieved the best score
compared to the two other methods. This method reached
the highest accuracy in segmenting WT and TC compared
to the state-of-the-art. The ET segmentation dice coefficient
increased with data augmentation, but the H2FN-Net[10]
achieved a better score. Fig. 3 shows a segmented slice from
a test subject compared to the ground truth labels.

Regardless of the training time that is not important in
clinical applications, all three methods have the same speed
in segmenting the test data and can segment a 256×256×155
MRI image in about 2 seconds. All three methods have a
peak memory usage of 630MB, which is very good compared
to other state-of-the-arts with much higher memory usages.

V. DISCUSSION

The need for high-end and expensive GPUs for running
state-of-the-art deep frameworks in diagnosing neurological
disease, e.g. brain tumors, has limited their wide applications
in clinics. This challenge is much more restrictive in low-
income communities (as our local challenge). We provide a
memory-efficient 2D-Unet framework for BraTS, executable
on a budget GPU in a few seconds, but achieves high ac-
curacy comparable with state-of-the-arts. We plan to release
the framework as a free clinical brain imaging analysis tool.
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