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Preface

The 16th International Workshop on Coalgebraic Methods in Computer Science
(CMCS 2022) was held during April 2–3, 2022, in Munich, Germany, as a satellite
event of the Joint Conference on Theory and Practice of Software, ETAPS 2022.

The aim of the workshop is to bring together researchers with a common interest
in the theory of coalgebras, their logics, and their applications. Coalgebras allow for a
uniform treatment of a large variety of state-based dynamical systems, such as transition
systems, automata (including weighted and probabilistic variants), Markov chains, and
game-based systems. Over the last two decades, coalgebra has developed into a field
of its own, presenting a deep mathematical foundation, a growing field of applications,
and interactions with various other fields such as reactive and interactive system theory,
object-oriented and concurrent programming, formal system specification, modal and
description logics, artificial intelligence, dynamical systems, control systems, category
theory, algebra, analysis, etc.

Previous workshops have been organized in Lisbon (1998), Amsterdam (1999),
Berlin (2000), Genoa (2001), Grenoble (2002) Warsaw (2003), Barcelona (2004),
Vienna (2006), Budapest (2008), Paphos (2010), London (2012), Grenoble (2014),
Eindhoven (2016), Thessaloniki (2018), and Dublin (2020, held online because of the
COVID-19 pandemic). Since 2004, CMCS has been a biennial workshop, alternating
with the International Conference on Algebra and Coalgebra in Computer Science
(CALCO), which, in odd-numbered years, has been formed by the union of CMCS
with the International Workshop on Algebraic Development Techniques (WADT).

The CMCS 2022 program featured a keynote talk by Ana Sokolova (University of
Salzburg), an invited talk by Renato Neves (University of Minho), and an invited talk by
Sam Staton (University of Oxford). In addition, the program included a special session
on data languages featuring invited tutorials by Sławomir Lasota (University ofWarsaw)
and Mahsa Shirmohammadi (CNRS, University of Paris).

This volume contains the revised regular contributions (9 papers accepted out of
12 submissions) and the abstracts of the three keynote/invited talks and the two invited
tutorial talks.

In addition to submissions of full-length regular papers for these post-proceedings,
the workshop also solicited short 2-page submissions for presentation of work-in-
progress or work published elsewhere that could be of interest to the CMCS community.
Submissions and the reviewing process were handled using Easychair. The reviewing of
both types of submissions was carried out single-blind, in which each regular submission
received three extensive reviews, and each short submission received two short reviews
that focused on relevance. PC members had 4 weeks for the reviewing and discussion of
one regular and three short submissions, or two regular and zero to one short submissions.
We intentionally chose a large PC to keep the review load light, in order to keep up the
high quality of reviewing that has been the standard at CMCS. PC members, including
PC chairs, were allowed to submit in both categories. To safeguard the integrity of the
reviewing process, PC members had to declare conflict with a submission if they were
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a co-author, share an affiliation or recent collaboration with one of the co-authors, or
if it could be otherwise perceived that the PC member would have a bias towards the
decision on the submission. Using an Easychair functionality, PCmembers were blocked
from seeing the reviews and the discussion on submissions for which they had declared
a conflict. In particular, one regular submission was co-authored by one of the PC
co-chairs, Helle Hvid Hansen, who therefore declared a conflict with this submission,
and the discussion and decision on this submissionwas handled by the other PC co-chair,
Fabio Zanasi.

We wish to thank all the authors who submitted to CMCS 2022, and the Program
Committee members and external reviewers for their thorough reviewing and help in
improving the papers that were accepted for CMCS 2022.

May 2022 Helle Hvid Hansen
Fabio Zanasi
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Tracing Coalgebras: A Case for Monads

Ana Sokolova

University of Salzburg, Austria
anas@cs.uni-salzburg.at

Trace semantics, also known as linear-time semantics, is the essential semantics of
systems, programs, objects, seen as black boxes with some observable behaviour. Unlike
its branching-time, step-wise sisters, trace semantics provides the whole observable
behaviour of a system. Trace semantics is hard to compute and originally seemed difficult
to study coalgebraically. This talk will provide an overview of coalgebraic approaches to
trace semantics, over the last fifteen years, focusing on transition systems and automata
with effects. Monads play a crucial role in the study of traces, which I will highlight
in all approaches using a class of examples. I will also mention some of the context of
this exciting line of work that in my view enabled and supported the coalgebraic trace
theories.



Coalgebra Meets Hybrid Systems

Renato Neves

University of Minho & INESC-TEC, Portugal
nevrenato@di.uminho.pt

Amain challenge of the 21st century is to engineer software systems that tightly interact
with physical processes such as velocity, movement, energy, and time. Such systems are
qualified as ‘hybrid’ to emphasise this cyber-physical interaction—which remarkably
forces a shift from standard software practices to amoremultifaceted view that combines
computer science, control theory, and analysis.

In this talk, I will discuss how Coalgebra can help advance hybrid systems theory.
In particular, I will describe previous applications of Coalgebra to tackle two central
problems in the field: the lack of a uniform framework for hybrid automata (currently, the
standard formalism for hybrid systems) and the lack of suitable semantics for interpreting
hybrid while-loops. As alluded above, we will see that hybrid systems deviate from
standard notions of computer science in many aspects. For example, whilst classical
while-loops give rise to a single divergence point, hybrid while-loops give rise to a
whole continuum of divergence points. Nonetheless, we will see that Coalgebra can still
properly guide us in providing a semantics for the latter kind of loop.

I will conclude with a brief mention of other significant challenges in the field of
hybrid systems and possible uses of Coalgebra to tackle them.



Coalgebraic Methods in Probability

Sam Staton

University of Oxford, UK
sam.staton@cs.ox.ac.uk

I will discuss some of the roles that coalgebra can play in probability theory and statis-
tics. Infinite dimensional systems are often described as generative models, and these
are often like coalgebras, as I will explain. I will look at some recent statistical models
that involve symmetries, such as the “Chinese Restaurant process” and “Indian Buffet
process”. Since these use names implicitly, I will connect this to nominal techniques. I
will also discuss our probabilistic programming library “lazyppl”, which uses coinduc-
tive structures extensively. I will not assumemuch familiarity with probability, statistics,
nominal techniques, or probabilistic programming.

The talkwill drawon jointworkwithAckerman,Dash, Freer, Jacobs,Kaddar, Paquet,
Roy, Sabok, Stein, Wolman, Yang, and others.



Some Recent Advances in Register Automata

Sławomir Lasota

University of Warsaw, Poland
s.lasota@uw.edu.pl

I shall recall themodel of register automata (RA), and relate it to the setting of orbit-finite
automata. Then I will mention two recent advances concerning language expressivity of
different types of RA, together with remaining open problems.

First, two complementing languages of nondeterministic RA are recognized by a
deterministic RA. For two such languages which are disjoint but not necessarily com-
plementing, one may ask if there is a deterministic (resp. unambiguous) RA whose
language separates the two. It is not known if existence of a deterministic separator is
decidable, and it is not known if (but conjectured that) an unambiguous separator always
exists.

The second advance considers orbit-finite rational expressions (with orbit-finite
unions in place of finite ones).While languages of nondeterministic RA are not definable
by such rational expressions, their Parikh (commutative) images are conjectured to be
so. This has been recently confirmed for automata (and grammars) with 1 register, but
is still open in case of 2 registers.



Learning Weighted Automata over Fields and Principal
Ideal Domains

Mahsa Shirmohammadi

CNRS, University of Paris, France
mahsa@irif.fr

In this talk, I will discuss learning algorithms for weighted automata over principal ideal
domains (PIDs). An example is Z-automata which can be seen as register automata
with affine integer updates over integers. I start with discussing properties of the Hankel
matrix of aweighted automaton.Then I reiterate briefly the idea behind learningweighted
automata over fields. For automata over PIDs, I recall an existing algorithm (Heerdt et al.,
FoSSaCS 2020) for exact learning that has no complexity bounds (but only termination).
I will recall a classical result of Fatou, and, inspired by its proof, draft a simpler learning
algorithm for learning weighted automata over PIDs. I also briefly talk about learning
algorithms for polynomial automata. I will conclude with mentioning that the automata
I talk about can be seen as coalgebras. It will be interesting to see whether the learning
algorithms can be simulated by general coalgebraic learning approaches.
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Predicate and Relation Liftings
for Coalgebras with Side Effects:
An Application in Coalgebraic

Modal Logic

Harsh Beohar1(B), Barbara König2, Sebastian Küpper3,
and Christina Mika-Michalski4

1 The University of Sheffield, Sheffield, UK
h.beohar@sheffield.ac.uk

2 Universität Duisburg-Essen, Duisburg, Germany
barbara koenig@uni-due.de

3 FernUniversität Hagen, Hagen, Germany
sebastian.kuepper@fernuni-hagen.de
4 Hochschule Rhein-Waal, Kleve, Germany

christina.mika-michalski@hochschule-rhein-waal.de

Abstract. We study coalgebraic modal logic to characterise behavioural
equivalence in the presence of side effects, i.e., when coalgebras live in a
(co)Kleisli or an Eilenberg-Moore category. Our aim is to develop a gen-
eral framework based on indexed categories/fibrations that is common to
the aforementioned categories. In particular, we show how the coalgebraic
notion of behavioural equivalence arises from a relation lifting (a special
kind of indexed morphism) and we give a general recipe to construct
such liftings in the above three cases. Lastly, we apply this framework to
derive logical characterisations for (weighted) language equivalence and
conditional bisimilarity.

Keywords: (co)Kleisli categories · Indexed morphisms · Indexed
categories/fibrations

1 Introduction

Coalgebra [32] offers a categorical framework for specifying and reasoning about
state-based transition systems in a generic way. In particular, new types of tran-
sition systems, behavioural equivalences (or distances), modal logics and games
can be obtained by suitably instantiating the theory of coalgebras. While many
types of transition systems can already be studied in the category Set, systems
with side effects – leading to a notion of trace equivalence or conditional bisimi-
larity – usually require to move to a setting beyond Set, using Kleisli, coKleisli
or Eilenberg-Moore categories, where the (co)monad specifies the side-effects.

Behavioural equivalences for such scenarios have already been studied exten-
sively (see e.g. [1,12,16,19]). Modal logics, on the other hand, have been
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
H. H. Hansen and F. Zanasi (Eds.): CMCS 2022, LNCS 13225, pp. 1–22, 2022.
https://doi.org/10.1007/978-3-031-10736-8_1
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2 H. Beohar et al.

considered to a lesser extent with side effects [9,21,23]; the emphasis (see the sur-
vey [27] and the recent articles [11,21,25,28]) has been on logical characterisation
of various notions of bisimulation relations and metrics. The aim of the present
paper is to close this gap by applying the dual adjunction setup for fibrations
developed by Kupke and Rot [28] to derive logical characterisations for coalge-
bras with side effects. Recently, another powerful approach [9] based on graded
monads has been developed to handle equivalences from the van Glabbeek spec-
trum and beyond. There the characterising notion is not coalgebraic behavioural
equivalence, but a refinement of it, called finite depth behavioural equivalence.
In addition, Kupke and Rot [28] when comparing their work with [9] noted that
“trace equivalences of various kinds covered in [9] cannot be captured directly
in their setup”. Hence, in this paper, we will show how to capture linear notions
such as trace, language, and failure equivalences in their setup.

Here, in order to treat these linear notions of equivalence uniformly, we follow
the approach of Hermida and Jacobs [14] to capture bisimulation relations using
the language of fibrations [15]; they have increasingly appeared in the coalgebraic
literature [6,7,13,17,22,24,28,34].

CoalgE(Fλ) � E
Fλ

� E

(1)

CoalgSet(F )
�

� Set
� F � Set

�

The general idea is as follows and is illustrated above in (1). First, a system is
modelled as a coalgebra X

α� FX for some endofunctor Set
F� Set. Second

a fibration E of binary relations on the working category of sets is realised, whose
fibres are all the relations on the underlying state space. Third, a mechanism
P(X × X)

λ� P(FX × FX) (aka relation lifting) is defined, which amounts
to the lifting of F to an endofunctor Fλ on E. Now one can study the coalgebras
induced by Fλ and, more importantly, this category CoalgE(Fλ) can be again
arranged (see (1)) as a fibration on CoalgSet(F ). Lastly, the applicability is
shown by characterising bisimulation relations on X as coalgebras of a certain
endofunctor living in the fibre above (X,α).

One of the objectives of this paper is to extend this ‘categorical’ picture (1)
w.r.t. coalgebraic notion of behavioural equivalence for dynamical systems hav-
ing side effects, i.e., those systems that can be modelled as coalgebras living in
a (co)Kleisli or Eilenberg-Moore category for some (co)monad on Set. Typical
examples, in the context of this paper, are the following: nondeterministic (lin-
ear weighted) automata modelled as coalgebras in the Kleisli category for the
powerset (multiset) monad (see Sect. 6); conditional transition systems (which
facilitate formal modelling of software product lines) modelled as coalgebas in
the coKleisli category for the writer comonad K× (see Sect. 7). We left out case
studies in Eilenberg-Moore categories in this paper; however, they are shown to
satisfy the assumptions of this paper [3].
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We explore the general conditions on relation liftings (technically they are
called indexed morphisms in the paper like the ones indicated by λ in (1)) to
ensure that behavioural equivalences can be viewed as coalgebras living in the
fibre above a given coalgebra (X,α) with side effects. Another contribution is
a recipe for obtaining relation and predicate liftings (a special type of indexed
morphisms) whose definition and correctness proof are otherwise (at least in the
Kleisli case) quite cumbersome to establish. Predicate liftings are instrumental
in providing interpretation to various modalities for coalgebras in (co)Kleisli or
Eilenberg-Moore categories, just like in the case of Set (cf. [17,30,33]). Techni-
cally, our study focuses on lifting an indexed morphism for a given endofunctor
F on Set to an indexed morphism for a (co)Kleisli extension/Eilenberg-Moore
lifting F̄ of F . And to the best of our knowledge, this question is open at least
for coalgebras with side effects.

Once we have captured behavioural equivalence in a fibration, we can then
apply the Kupke-Rot setup [28] based on dual adjunctions (see the survey
[27] on coalgebraic modal logic) to establish the logical characterisation of
behavioural equivalence. In particular, we first construct the Kupke-Rot setup
for behavioural equivalences and show that the sufficient conditions for adequacy
(i.e., behavioural equivalence is contained in logical equivalence) and expressiv-
ity (i.e., converse of adequacy) given in [28] are satisfied. This setup is later used
to derive the logical characterisation for (weighted) language equivalence and
conditional bisimilarity; note that these notions were not studied in [28].

While several ingredients (especially encompassing fibrations) used in this
paper are already known, our paper contains the following original contributions:

– We capture behavioural equivalences on coalgebras beyond Set as a fibred
notion by characterising them as special types of coalgebras.

– We give concrete recipes for defining predicate and relation liftings (which is
both tedious and error-prone) in (co)Kleisli and Eilenberg-Moore categories.

– We extend the dual adjunction framework for fibrations by Kupke and Rot
to side effects, in particular to Kleisli categories. Here we need a mechanism
to factor the state space of a coalgebra by behavioural equivalence, which is
difficult if the category has no coequalisers. We provide a technique based on
reflective subcategories to circumvent this issue.

This paper is organised as follows. Section 2 sets the relevant categorical prelim-
inaries required for this paper. It is assumed that the reader is already familiar
with basic category theory, particularly, how a Kleisli or an Eilenberg-Moore
category is induced by a monad. Section 3 introduces the assumptions that
ensure behavioural equivalence is a fibred notion (in the sense of (1)). Section 4
is devoted to coalgebraic modal logic where general adequacy and expressiv-
ity results for behavioural equivalence are derived from [28]. Section 5 gives the
recipe to construct relation/predicate liftings for coalgebras with side effects. In
the next sections, the results of this paper are applied in the context of non-
deterministic automata and conditional transition systems. Section 8 concludes
this paper with some discussions on future research. Note that proofs as well
as additional material on linear weighted and generalised Moore automata in
Kleisli and Eilenberg-Moore categories can be found in the technical report [3].
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2 Preliminaries

Coalgebraic Preliminaries [18,32]

Let C be a category and let C
F� C be an endofunctor modelling the branch-

ing type of the system of interest. Then the behaviour of a state-based system
will be modelled as an F -coalgebra (or, simply coalgebra), i.e., as a morphism
X

α� FX in the category C.

Definition 1. A coalgebra homomorphism f between (X,α) and (Y, β) is a
morphism X

f� Y ∈ C satisfying Ff ◦ α = β ◦ f . The collection of coalgebras
and their homomorphisms forms a category denoted CoalgC(F ).

Moreover, one can define behavioural equivalence on the (concrete) states of
a coalgebra under the assumption that there is a functor C

| |� Set. By the
concrete state-space of a coalgebra (X,α), we mean the set |X|. Typically, in our
case studies, the functor | | will be a forgetful functor and will have a left/right
adjoint ι. For instance, ι is left adjoint to | | when C = Kl(T ) or C = EM(T )
(for some monad Set

T� Set), while it is right adjoint when C = coKl(G)
for some comonad Set

G� Set.

Definition 2. Two states x, x′ ∈ |X| of a coalgebra (X,α) are behaviourally
equivalent iff there is a coalgebra homomorphism f such that |f |x = |f |x′.

Example 3. An interesting example of coalgebras living in Kleisli categories is
nondeterministic automata (NDA). Following [12] an NDA is a coalgebra living
in C = Kl(P), which is isomorphic to the category Rel of sets as objects and

relations as maps. Recall that a Kleisli extension Rel
F̄� Rel of Set

F� Set
(i.e. F̄ ◦ ι = ι ◦F ) is in correspondence [29, Theorem 2.2] with a distributive law
FT

ϑ� TF such that the following diagrams commute in Set.

FX =========== FX FTTX
ϑTX� TFTX

TϑX� TTFX

(2)

FTX

FηX

� ϑX � TFX

ηFX

�
FTX

FμX

� ϑX � TFX

μFX

�

Consider T = P, F = A× +1 (where 1 = {•}) with the distributive law [16]:

Act × PX + 1
ϑX� P(Act × X + 1) (a, U) �→ {a} × U, • �→ {•}. (3)

This induces a functor Rel
F̄� Rel which acts on a relation X

f� Y ,
seen as a Kleisli arrow X

f ′
� PY , as follows: F̄ f = ϑY ◦ Ff ′. Notice that

F̄ -coalgebras model implicit nondeterminism (i.e. this side-effect is hidden to
an outside observer) [12], thus behavioural equivalence typically coincides with
language equivalence (instead of bisimilarity) in this case.



Predicate and Relation Liftings 5

Predicate Liftings as Indexed Morphisms
Predicates and their liftings are quite common within the literature on (coalge-
braic) modal logic. In particular, a predicate is used as the semantics of a logical
formula [30], or as a relation on the state space of a coalgebra [14]. In the basic
setting, when C = Set, the predicates on a set X are given by the subsets of
X. Now, given a function X

f� Y , a predicate V on Y (i.e. V ⊆ Y ) can be
transformed into a predicate on X by the pullback operation f−1V ⊆ X in Set.
Note that this operation is functorial in nature; thus this ‘logical’ structure can

be organised as a functor Setop
P̂� Cat [17], where P̂X is the poset (PX,⊆)

viewed as a category. As noted by Jacobs in [17], predicate logic on a category
is given by an indexed category and predicate liftings are (endo)morphisms of
indexed categories.

Definition 4. An indexed category is a Cat-valued presheaf, i.e., a contravari-
ant functor Φ from C to Cat. In addition, a morphism between two indexed
categories Cop Φ� Cat and Dop Ψ� Cat is a pair of a functor C

G� D
and a natural transformation Φ

λ� Ψ ◦ Gop.

Note 5. Often the application of Φ on f ∈ C is denoted as f∗. We also omit the
use of superscript ‘op’ on functors and use the phrases ‘indexed morphism’ and
‘predicate lifting’ interchangeably.

Remark 6. Another, equivalent, way to organise logic is by specifying the fibra-
tion of predicates over a category [15]. The transformation of a fibration over
C into a contravariant pseudofunctor C � Cat is given by taking the fibres
at each object in C. Conversely one has to invoke the so-called Grothendieck
construction to get a fibration, which glues all the fibres (ΦX)X∈C to form a
total category of predicates E(Φ) defined as follows.

X ∈ C ∧ U ∈ ΦX

(X,U) ∈ E(Φ)

X
f� Y ∈ C ∧ U

f̄� f∗V ∈ ΦX

(X,U)
f,f̄� (Y, V ) ∈ E(Φ)

Moreover, there is an obvious ‘forgetful’ functor E(Φ)
p� C given by

(X,U) �→ X that induces a (split) fibration on C [15,17]. In the parlance of
concrete categories, the functor p is topological [2, Definition 21.1] when Φ has
fibred limits. Often, in applications, the fibres (ΦX,�) (at each X ∈ C) form
a poset (rather than a full-fledged category); we label such an indexed cate-
gory/fibration as thin. We restrict ourselves to thin fibrations in this paper.
Note that, under this restriction, a map (X,U)

f� (Y, V ) ∈ E(Φ) is Cartesian
iff U = f∗V .

Example 7. The contravariant powerset functor Set
P̂� Cat is an example

of an indexed category such that E(P̂) � Set is a bifibration [15]. This is
because the reindexing functor f−1 (for any function f) has a left adjoint given
by the direct image functor f!. Moreover, as an example of a predicate lifting,
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consider F = P over C = Set (which describes the branching type of unlabelled
transition systems) with P̂X

λX� P̂PX given by U �→ PU . It is well known
that the above predicate lifting encodes the box modality � from logic [17].

3 Behavioural Equivalence Through Indexed Morphisms

Indexed morphisms not only induce modalities of interest in Computer Science;
but they can also be used to characterise behavioural equivalence. The original
idea [14] is to work with an indexed category Setop

Ψ� Cat of binary relations,

i.e., Ψ is the composition Setop
×� Setop

P̂� Cat. In particular, ΨX is
the set of all relations on X. Then, for a relation lifting ΨX

λX� ΨFX and a
coalgebra X

α� FX ∈ Set, bisimilarity is the largest fixpoint of the functional:

ΨX
λX� ΨFX

α∗
� ΨX. (4)

Unfortunately, this idea of working with relations on the concrete state space
immediately does not generalise to coalgebras with side effects; e.g., in the case of
conditional transition systems (CTSs) viewed as coalgebras living in the coKleisli
category of the writer comonad K× (see Sect. 7). The problem essentially lies in
associating a fibre to be the set of all binary relations on the state space. There
are situations (as in CTSs) where the fibres will only be some subset of all the
relations on the state space. As a result, we impose the following restriction:

A1 our working category C has binary products ⊗.

Thus we can define an indexed category Ψ of relations as the composition:

Cop ⊗� Cop | |� Setop
P̂� Cat. (5)

We view the elements of ΨX (for some object X ∈ C) as ‘abstract’ relations on
X. Furthermore, A1 also ensures that for any object X ∈ C there is a function

|X ⊗ X| 〈|πX
1 |,|πX

2 |〉� |X| × |X|,

where X ⊗X
πX
1 ,πX

2� X are the two projection arrows in C. And thanks to these
functions, we can define abstract equality in the fibre ΨX. In particular,

≡X = 〈|πX
1 |, |πX

2 |〉−1
=|X| .

Notice that in some cases (like when C is a Kleisli or Eilenberg-Moore category)
the abstract equality ≡X coincides with the equality on the concrete state space
=|X| because the forgetful functor is product preserving. However, in the context
of CTSs, we will see that the two notions of equality differ.
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Proposition 8. Under Assumption A1 the square drawn in (6) commutes for
any arrow X

f� Y in C. As a result, there is a functor C
Eq� E(Ψ) (hence-

forth called equality functor) that maps an object X to the abstract equality
≡X .

|X ⊗ X| 〈|πX
1 |, |πX

2 |〉� |X| × |X|

(6)

|Y ⊗ Y |

|f ⊗ f |
� 〈|πY

1 |, |πY
2 |〉� |Y | × |Y |

|f | × |f |
�

The next proposition (originally from [17]) is a general result on indexed
categories useful in lifting an endofunctor on C to an endofunctor on the given
fibration E(Φ). Moreover the category of coalgebras of the lifted endofunctor can
be structured again as a fibration on the given category of coalgebras in which
our original system of interest is modelled.

Proposition 9. Consider the diagram in (7), then the following statements hold
for a given functor C

F� C and an indexed morphism Φ
λ� ΦF .

– The map λ induces a map E(Φ)
Fλ� E(Φ) of fibrations given by (X,U) �→

(FX, λXU).
– The category of coalgebras induced by Fλ forms a fibration on CoalgC(F ).

The corresponding indexed category CoalgC(F )op
ΦF

λ� Cat is given by the
mapping: (X,α) �→ CoalgΦX(α∗ ◦ λX).

Coalg
E(Φ)(Fλ) = E(ΦF

λ ) � E(Φ)

(7)

CoalgC(F )

pF
λ

�
� C

p

�

Now recall (4) and Ψ as indexed category of relations on Set (i.e. substitute ⊗ by
× and | | by the identity functor in (5)), an arbitrary bisimulation relation R on
a coalgebra X

α� FX ∈ Set is the relation R ∈ ΨX satisfying R ⊆ α∗λXR. In
other words, bisimulation relations on the state space X are again coalgebras of
the functor α∗ ◦λX living in the fibre ΨX. Next we show that the same holds for
behavioural equivalence in general, however, under the following assumptions:

A2 the given morphism Ψ
λ� ΨF preserves Eq, i.e., Fλ ◦ Eq = Eq ◦ F .

Equivalently, this means that λX(≡X) = ≡FX for every X ∈ C.
A3 the functor Eq has a left adjoint Q.

Remark 10. Assumption A3 already appeared in [14] to model quotient types
in the context of type theory. However, our usage is in the unit κ of Q  Eq
to construct a witnessing coalgebra homomorphism in Theorem 12. This idea is
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already known in type theory; for instance, see [10, Theorem 3.7] where a similar
result was proven albeit under the stronger assumption that the final coalgebra
for F exists. So when C = Set, Q maps an relation R on X to the quotient
generated by the smallest equivalence containing R; the unit κX (for any set X)
is the usual quotient function mapping an element to its equivalence class.

Theorem 11. Given an indexed morphism Ψ
λ� Ψ ◦ F , then under Assump-

tions A1 and A2, the behavioural equivalence induced by a coalgebra homomor-
phism f ∈ CoalgC(F ) on a coalgebra (X,α) ∈ CoalgC(F ) is a α∗ ◦λ-coalgebra
living in the fibre ΨX, i.e., f∗(≡Y ) ⊆ α∗λX(f∗ ≡Y ).

Theorem 12. Under Assumptions A1, A2, and A3 for every α∗◦λ-coalgebra R
there is a coalgebra homomorphism f ∈ CoalgC(F ) such that R ⊆ f∗(≡cod(f)),
where cod(f) denotes the codomain of f . Moreover, R = f∗(≡cod(f)) when the
unit of Q  Eq is Cartesian.

Remark 13. An application of Theorem 12 could be in establishing the complete-
ness of coalgebraic games (as in the spirit of [26]). For instance, if the winning
positions of Duplicator viewed as a relation R is a coalgebra in the fibre of Ψ ,
then Theorem 12 can be used to show that winning positions of Duplicator are
behaviourally equivalent. In the future, we would like to test this application by
working out a notion of 2-player games for coalgebra with side effects.

4 Coalgebraic Modal Logic

The ‘partial’ characterisation of behavioural equivalence as a fibred notion (cf.
Theorems 11 and 12) enables us to use the dual adjunction framework of Kupke
and Rot [28] in (8) to develop a logical characterisation of behavioural equiva-
lence. It should be noted that, although this framework can handle behavioural
preorders and distances, we prove our results only for behavioural equivalence,
i.e. in the context of Assumptions A1 and A2.

E(Ψ) � T̄
Aop

C

p
� S �

⊥
� T

Aop

�
�
�
�
�
�

(8)

⇓ δ

C

F
� S �

⊥
� T

Aop

L
�

Below we explain the role of various functors drawn in (8) in an incremental
manner; subsequently, we will establish our general adequacy and expressivity
results (Theorems 18 and 21) for behavioural equivalences.
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The fibration E(Ψ)
p� C will be used to define (internally) a behavioural

equivalence of interest. Often it is defined as a colimit of a diagram resembling the
final sequence in a fibre (cf. [13]). More abstractly, we assume that the indexed
category ΨF

λ (recall this notation from Proposition 9) has indexed final objects,

for some indexed morphism Ψ
λ� ΨF .

Lemma 14. Suppose Cop Φ� Cat has indexed final objects (i.e., the final
object exists in each fibre ΦX) and the reindexing functor f∗ preserves these
final objects. Then there is a functor C

1� E(Φ) that is right adjoint to p.

Usually, 1 is used (called the truth functor [15] in the context of logic)
when the underlying fibration E(Φ)

p� C has indexed final objects. How-
ever when ΨF

λ satisfies the conditions of the previous lemma, it results in a

functor CoalgC(F )
1λ

� Coalg
E(Ψ)(Fλ) (which we call the behavioural confor-

mance functor) that maps a coalgebra X
α� FX to the terminal element in

CoalgΨX(α∗ ◦ λX) denoted as 1λ
X . Note that 1λ

X in our applications will corre-
spond to the largest behavioural equivalence on a given system. Moreover, it is
not hard to arrive at the adjoint situation as indicated in (9).

Coalg
E(Ψ)(Fλ) = E(ΨF

λ ) � E(Ψ)

(9)

CoalgC(F )

pF
λ

�

 1λ
�

� C

p

�

So the behavioural conformance functor is right adjoint to the forgetful func-
tor that witnesses the fibration of behavioural conformance on coalgebras.

Example 15. Consider the indexed category Ψ induced by binary relations on
sets and a labelled transition system modelled as a coalgebra X

α� (PX)Act ,
i.e., our C = Set, F = (P )Act . Consider the function ΨX

λX� ΨFX that maps
a relation R ∈ ΨX to a relation λXR ∈ ΨFX s.t. q λXR q′, q, q′ ∈ (PX)Act iff:

∀a,x∃x′ (x ∈ qa =⇒ x′ ∈ q′a ∧ xR x′) ∧ ∀a,x′∃x (x′ ∈ q′a =⇒ x ∈ qa ∧ xR x′).

It is well known (as first noted in [14]) that a bisimulation relation is a α∗ ◦ λ-
coalgebra. Moreover, bisimilarity �X (the largest bisimulation relation on X)
corresponds to the final object in Ψλ(X,α), i.e., 1λ(X,α) = (X,α,�X).

As for the dual adjunction S  T in (8), it provides a connection (cf. [31])
between states and theories (the formulae satisfied by a state). The syntax of
the logic is given by a functor A

L� A and it is assumed that the initial
algebra LA h� A ∈ A exists for L, which models the typical Lindenbaum
algebra induced by the term algebra. Lastly, the natural transformation δ gives
the one-step interpretation to the formulae which can be given its mate θ as
described below (cf. [20, Proposition 2]).
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Proposition 16. Given C
F� C,A

L� A,C
S��
T

Aop with S  T , there

is a correspondence between FT δ� T L and SF
θ� LS.

Now given a coalgebra X
α� FX ∈ C, the semantics A � �X� SX of the

logic (L, δ) is given by the universal property of the initial algebra LA h� A. In
particular, it is the unique arrow in A that makes the following diagram (drawn
on the left) commutative. And the transpose of the semantics map � �X under
S  T gives a ‘theory’ map X

� �X� QA; it is the unique arrow in C that makes
the following diagram on the right commutative.

LA L� �X� LSX
θX� SFX X � �X

� T A

(10)

A

h

�
� �X

� SX

Sα

�
FX

α

� F � �X� FT A δA� T LA

T h

�

Once these niceties are set up, one can argue when a logic (L, δ) is adequate
and expressive. Intuitively, a logic (L, δ) is adequate if behaviourally equivalent
states satisfy the same logical formulae; while an adequate logic is expressive
if logically equivalent states are also behaviourally equivalent. The formulation
below is a straightforward formulation of adequacy and expressivity given in [28]
using the language of indexed categories.

Definition 17. Suppose the behavioural conformance functor 1λ exists (for

some λ) with Aop T̄� E(Ψ) such that p ◦ T̄ = T . Then a logic (L, δ) is
adequate (resp. expressive) w.r.t. T̄ if (X, 1λ

X)
� �X� T̄ A is a (resp. Cartesian)

map in E(Ψ), for every coalgebra X
α� FX ∈ C.

The role of T̄ is to encode a relationship between the theories of any two
states (cf. [28]); so we let T̄ = Eq ◦ T in the context of behavioural equivalence.
Next we state the main result of this section, which is a refinement of adequacy
and expressivity results given in [28].

Theorem 18. Under the assumptions of Theorem 11, if T̄ has a left adjoint S̄,
the logic (L, δ) is adequate. Moreover it is expressive if |δA| is injective.

In short, the Kupke-Rot logical setup for behavioural equivalence can be
summarised as drawn left in (11). Now if our indexed category Ψ satisfies A3
(like in the case of coKleisli and Eilenberg-Moore categories), then S̄ = S ◦Q as
indicated in (11). However, in the case of Kleisli categories we will construct S̄
under some restrictions (cf. Theorem 21).
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E(Ψ)
S̄ �
⊥�

Eq ◦ T
Aop

E(Ψ)
S ◦ Q �

⊥�
Eq ◦ T

Aop

C

Eq
�

p

� S �
⊥�
T

Aop

�
�
�
�
�
�
�
�
�
�

C

Q

�

 Eq
�

p

� S �
⊥�
T

Aop

�
�
�
�
�
�
�
�
�
�

(11)

Construction of S̄ for Kleisli Categories
Unfortunately, arbitrary (co)limits in general do not exists in a Kleisli category.
For instance, one of our working categories Kl(P) ∼= Rel (the category of sets
and relations) does not have all coequalisers, but Rel has a reflective subcategory
Setop that does. The presence of these coequalisers in the reflective subcategory
will then be used to construct S̄.

Definition 19. A subcategory B ⊂ j� C is reflective when the inclusion functor
j has a left adjoint r (often called as reflector).

Theorem 20 ([1]). If B ⊂ j� C is a reflective subcategory of C and C
F� C

preserves B, i.e., ∀B,f∈B (FB ∈ B ∧ Ff ∈ B) and F ◦ j = j ◦ F, then
CoalgB(F )

�r̄
j̄� CoalgC(F ) with r̄  j̄. Here, j̄ is the obvious inclusion.

The reflector r̄ typically results in a form of (on-the-fly) determinisation (cf.
Example 27). Moreover, in our case studies, these reflective subcategories will
also take the place of algebras in (11), and if these reflective subcategories have
coequalisers, then we can construct S̄ in general.

So let B = Aop,S = r, T = j, and (X,R) ∈ E(Ψ). Then the idea is to use
the following series of transformations (depicted below on the left) to construct
S̄ as the equaliser of the parallel arrows Sp′

1,Sp′
2 ∈ A. Below pi (for i ∈ {1, 2})

are the obvious projection functions and each p′
i is the transpose of pi under the

free-forgetful adjunction ι  | |.

R
p1�
p2

� |X| ∈ Set

ιR
p′
1�

p′
2

� X ∈ Kl(T )

SιR
Sp′

1�
Sp′

2

� SX ∈ Aop

S̄(X,R)
e � SX

Sp′
1�

Sp′
2

� S(ιR)

(12)

S̄(Y, S)

S̄f
�

e′
� SY

Sf

�

Sq′
1�

Sq′
2

� S(ιS)

Sιg
�

Let (S̄(X,R), e) be the equaliser of rp′
i in A. Now (X,R)

f� (Y, S) ∈ E(Ψ)
means that X

f� Y ∈ Kl(T ) and R ⊆ (|f | × |f |)−1
S. So there is a function

R
g� S such that |f | ◦ pi = qi ◦ g with pi, qi being the obvious projections

when the relations R,S are viewed as spans in Set. Moreover f ◦p′
i = q′

i ◦ ιg due
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to the naturality of the counit of ι  | |. So the two squares in (12) commute
and the universal property of equalisers gives the unique S̄f .

Theorem 21. Under A1 and Aop being a reflective subcategory of Kl(T ) having
coequalisers, the above defined S̄ is a functor and left adjoint to T̄ = Eq ◦ T .

5 Lifting of Predicate and Relation Liftings

In this paper, the indexed categories corresponding to predicates (or relations) on
our working category (like (co)Kleisli or Eilenberg-Moore categories) are always
induced by lifting an indexed category on the underlying base category Set (for
instance, recall Ψ from (5)). In a similar spirit, our aim is to construct indexed
morphisms on our working category by lifting an indexed morphism on Set.
So consider an indexed category Φ of predicates given by Φ = P̂ ◦ | | and an

endofunctor C
F̄� C modelling the branching type of behaviour of interest.

Lifting of Predicate Liftings. Next we give a recipe to construct a predicate
lifting, i.e., an indexed morphism of type Φ

λ� ΦF̄ . In particular, we need
an endofunctor Set

G� Set, a predicate lifting P̂ σ� P̂G, and a natural
transformation γ as indicated below.

C
F̄

� C

⇓ γ

Set

| |
� G � Set

| |
�

As a result, we can define λ by the composition:

P̂|X| σ|X|� P̂G|X| γ∗
X� P̂|FX|. (13)

Theorem 22. The above mapping λ is an indexed morphism.

Note that in the case of coKleisli and Eilenberg-Moore categories, we simply
let G = F and F̄ be a coKleisli extension/Eilenberg-Moore lifting of F , which
results in a distributive law of type |F̄ | γ� G| |; in the case of Eilenberg-Moore
categories, such natural transformations are also known as EM-laws [19].

In the case of Kleisli categories, the situation is slightly complicated. This
stems from the fact that the distributive law FT

ϑ� TF (which induces a
Kleisli extension F̄ of F ) results in a natural transformation in the ‘wrong’
direction F | | ϑ� |F̄ |. However, in various applications, G is typically asso-
ciated with the branching type of a deterministic version of the corresponding
system of interest (such as G = Act × 2 in the case of NDA), if it exists. The
next result helps in finding such a distributive law γ for a given G in a more
elementary way.
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Lemma 23. Let F̄ be a Kleisli extension of F induced by a distributive law
FT

ϑ� TF . Then a natural transformation TF
γ� GT compatible with ϑ

and μ (i.e., Square 14 commutes) induces a distributive law | | ◦ F̄ � G ◦ | |.
Moreover, the converse also holds.

TFTX
γTX

� GTTX

TTFX

TϑX
�

(14)

TFX

μFX
� γX � GTX

GμX

�

Remark 24. Note that the compatibility property in the above lemma appeared
in [19] as part of an ‘extension’ natural transformation. In short, the properties
of an extension natural transformation are more stringent than of Lemma 23.

Lifting of Relation Liftings. The above idea can also be used to construct a
relation lifting, i.e., an indexed morphism of type Ψ � ΨF̄ , where Ψ is the
indexed category of abstract relations given in (5). So now given a relation lifting

P̂(X × X)
σX� P̂(GX × GX) of G, then we can define Ψ

λ̄� ΨF̄ :

ΨX
〈πX

1 , πX
2 〉!� P̂(|X| × |X|)

σ|X|� P̂(G|X| × G|X|)

(15)

P̂(|F̄X| × |F̄X|)

(γX × γX)−1

� 〈πFX
1 , πFX

2 〉−1

� Ψ ¯FX.

Here, we use the fact that E(P̂) is a bifibration [15], i.e., for any function
X

f� Y the reindexing functor f−1 has the direct image functor f! as its left
adjoint. Now under the following assumption we can show that the λ̄ is indeed
an indexed morphism.

A4 The square drawn in (6) is a weak pullback in Set for every f ∈ C.

The above assumption ensures that, in the context of E(P̂), the square in (6)
satisfies the Beck-Chevalley condition, i.e., the following equation holds

〈|πX
1 |, |πX

2 |〉! ◦ (f ⊗ f)−1 = (|f | × |f |)−1 ◦ 〈|πY
1 |, |πY

2 |〉!.

In turn this equation is used in diagram chasing to show that λ̄ is a natural
transformation. Furthermore, A4 trivially holds when C is a Kleisli or Eilenberg-
Moore category (cf. Corollary 26) because the canonical function 〈|πX

1 |, |πX
2 |〉 is a

bijection for each X ∈ C. In other words, when C is a Kleisli or Eilenberg-Moore
category, Ψ can be alternatively defined as the composition P̂ ◦ (| | × | |).
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Theorem 25. Under A4 λ̄ as defined in (15) is an indexed morphism.

Corollary 26. If the forgetful functor C
| |� Set is product preserving, then

A4 is always satisfied. As a result, λ̄ defined in (15) is an indexed morphism.

6 Nondeterministic Automata (NDA)

Recall the necessary parameters from Example 3 for coalgebraic modelling of an
NDA, i.e., T = P, C = Kl(P) ∼= Rel, F = Act × + 1, the distributive law ϑ
given in (3), and the free-forgetful adjunction ι  | | associated with any Kleisli
category. To apply Theorem 21, we also recall the reflective subcategory Setop

of Rel from [1]. Below X
f� Y ∈ Set and X

g� Y ∈ Rel:

jX =X Y
jf� X ∈ Rel y jf x ⇐⇒ fx = y

rX =PX rX
rg� rY ∈ Setop rg(V ) = {x | ∃y∈V x g y}.

Next we illustrate the definition of S̄ and how the unit of S̄  T̄ maps an
NDA to the largest subautomaton (respecting language equivalence) obtained
after backward determinisation of the given NDA. It is worthwhile to note that
the abstract and concrete state space coincide (up to isomorphism) in the case of
NDA because forgetful functor preserves products, i.e., P(X + X) = |X + X| ∼=
|X| × |X| = PX × PX. Therefore, as mentioned earlier, we will simplify our
presentation by working with the indexed category P̂ ◦ (| | × | |).
Example 27. Consider the NDA drawn on the next page with the accepting state
z as a coalgebra X

α� Act × X + 1 ∈ Kl(P).

x z
a y

a, b

Logical equivalence � is the least equivalence R that equates {x, y} with {y}
(both accept the language {a, b}) and {x, y, z} with {y, z} (both accept the lan-
guage {a, b, ε}). Also, for any U,U ′ ⊆ X such that U R U ′ we have (U,U ′) p′

1

x ⇐⇒ x ∈ U and (U,U ′) p′
2 x ⇐⇒ x ∈ U ′. Note that p′

i are transpose of pi for
i ∈ {1, 2} (see (12)). So the equaliser S̄(X,�) of rp′

i is the set:

S̄(X,�) =
{

W ∈ PX | ∀U,V (U ∩ W �= ∅ ∧ U � V ) =⇒ V ∩ W �= ∅
}

.

The arrow S̄(X,�)
β� F S̄(X,�) ∈ Setop is defined by the following (depicted

below) universal property of equaliser in Set.

S̄(X,�) ⊂ eX � PX
π̃1 �

π̃2

� Pι �

F S̄(X,�)

β

�

⊂FeX � FPX

r̄α

�
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Here, r̄α is the backward determinisation of the given coalgebra (as described,
e.g. in [1] as a deterministic automaton accepting the reverse language), i.e. it
maps (a, U) �→ {x | ∃x′∈U (a, x′) ∈ α(x)} and • �→ {x | • ∈ α(x)}. Thus, in
essence, β acts like r̄α on the elements of S̄(X,�).

∅
{x, y}

{y}
{z}

{y, z}
{x, y, z}

y

x

z

a, b

a, b

a

ba

b

a

b

a, b

a
a, b

In this example, we obtain as β the automaton drawn above with six states.
The relation κX indicated by dotted line is the transpose of eX w.r.t. r  j;
concretely, x κX U ⇐⇒ x ∈ U . Furthermore κX ∈ Rel is a witnessing
coalgebra homomorphism because F̄ (κX) ◦ α = β ◦ κX . Note that |κX | maps
both {x, y}, {y} to {{x, y}, {y}, {y, z}, {x, y, z}}, witnessing the fact that they are
language equivalent. Hence, the coequaliser gives us the largest sub-automaton
of the backwards determinisation that respects logical equivalence (removing ∅,
{y, z}, and {x, y, z} will result in the smallest such sub-automaton).

Predicate Liftings for NDAs. To apply techniques from Sect. 5, we set G =
Act × 2 and define γ as follows:

P(Act × X + 1)
γX� (PX)Act × 2 Ū �→ (γAct

X Ū , γ2
X Ū),

where γAct
X Ū(a) = {x | (a, x) ∈ Ū} and γ2

X Ū = 1 ⇐⇒ • ∈ Ū .

Moreover, from [19] we know that γ is compatible with θ and
⋃

in the sense

of Lemma 23. Next consider the family of liftings P̂X
σa

X� P̂(XAct × 2) (for

each a ∈ Act) and P̂X
σ↓

X� P̂(XAct × 2): U �→ {(p, b) ∈ XAct × 2 | p(a) ∈ U}
and U �→ {(p, 1) | p ∈ XAct}, respectively.

Lemma 28. The above mappings σa
X and σ↓

X are indexed morphisms.

Thanks to Theorem 22, λa = γ−1 ◦ σa, λ↓ = γ−1 ◦ σ↓ are valid predicate

liftings for the functor Rel
Act× +1� Rel. Moreover, for any U ⊆ PX we find:

λa
X(U) = γX

−1σa
PX(U) λ↓

X(U) = γX
−1σ↓

PX(U)

= γX
−1{(p, b) ∈ (PX)Act × 2 | p(a) ∈ U} = γX

−1{(p, 1) | p ∈ (PX)Act}
=

{
Ū ∈ Act × X + 1 | {x | (a, x) ∈ Ū} ∈ U

}
=

{
Ū ∈ Act × X + 1 | • ∈ Ū

}
.
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The above indexed morphisms λa, λ↓ induce modalities that can be inter-
preted on determinised automata. Given an NDA (X,Act ,→, ↓) with ↓⊆ X

being the termination predicate (or X
α� P(Act × X + 1) ∈ Set), then the

determinised automaton has state space PX with dynamics given by the SOS
rules or abstractly by the composition γX ◦

⋃
◦Pα:

U ⊆ X Uα = {x′ | ∃x∈U x
a−→ x′}

U
a−→ Uα

U ⊆ X ∃x∈U x ↓
U ↓ .

In turn, we can now rewrite the two modalities to a simpler form:

|α|−1
λa

XU = |α|−1{Ū | {x | (a, x) ∈ Ū} ∈ U} |α|−1
λ↓

XU = |α|−1 {

Ū | • ∈ Ū
}

= {U | U
a−→ Uα =⇒ Uα ∈ U} = {U | U ↓}.

Language Equivalence Through Relation Lifting. First note that products exists
in Kl(P) and are given by disjoint union. Moreover, Assumption A4 is trivially
satisfied since the forgetful functor preserves all limits (cf. Corollary 26). So
we can create a relation lifting of F̄ from the following relation lifting P̂(X ×
X)

σ̄X� P̂(GX × GX) of G (below R ⊆ X × X):

(p, b) σ̄XR (p′, b′) ⇐⇒ b = b′ ∧ ∀a∈Act pa R p′a.

Lemma 29. The mapping σ̄ defined above is an indexed morphism.

So Ψ
λ̄� ΨF̄ given in (15) is an indexed morphism. Concretely, it maps a

relation R ⊆ PX × PX to a relation λ̄XR ⊆ PFX × PFX: Ū λ̄XR Ū ′ iff
(

• ∈ Ū ⇐⇒ • ∈ Ū ′) ∧
(

∀a∈Act {x | (a, x) ∈ Ū} R {x | (a, x) ∈ Ū ′}
)

.

Lemma 30. The indexed morphism σ̄ preserves arbitrary intersections at each
component; therefore, so does the predicate lifting λ̄. Moreover, λ̄ satisfies A2.

Theorem 31. Let X
α� FX ∈ Rel be an NDA. Then language equiva-

lence �X⊆ PX × PX on the determinised system is a Ψ(α) ◦ λ̄X-coalgebra,
i.e., �X⊆ (|α| × |α|)−1(λ̄X �X). Moreover, �X= (|f | × |f |)−1 �Y for any coal-
gebra homomorphism f between (X,α) and (Y, β); thus, there is a behavioural

conformance functor CoalgRel(F̄ )
1λ̄

� Coalg
E(Ψ)(F̄λ).

Logical Characterisation of Language Equivalence. Recall the adjoint situation
r  j that witnesses Setop is a reflective subcategory of Rel. We use this dual
adjunction to model our logic because (intuitively) conjunction is not needed
to characterise language equivalence. Thus we fix A = Set, S = r, and T = j.
Moreover, a left adjoint S̄ of T̄ exists due to Theorem 21.

Since to establish language equivalence one needs to ascertain whether a
word in Act� is accepting or not, so we take our syntax functor L = Act × + 1.
Note that the initial algebra of L exists and is given by A = Act�. As for the



Predicate and Relation Liftings 17

one-step semantics given by a natural transformation δ, we are going to define it
(indirectly) by defining its mate LSX = Act × PX + 1

θX� P(Act × X + 1) =
S ¯FX ∈ Set that acts on objects like the distributive law ϑX (see (3)). Note
that, however, they differ in their naturality conditions.

Proposition 32. The above defined mapping θ is a natural transformation.

The algebra Act × Act� + 1
h� Act� is given by the unary concatenation of

words and the constant ε (i.e., h(a,w) = aw and h• = ε). Consider the map
X

� �� A ∈ Rel that maps a state to the language accepted by it.

Corollary 33. The above map � � is indeed the theory map for a given NDA.
So the logic (L, δ) is both adequate and expressive for language equivalence on
determinised systems.

7 Conditional Transition Systems: An Application
in coKleisli Categories

We next consider conditional transition systems (CTSs) [1], strongly related to
the featured transition systems used for modelling software product lines [8]. A
conditional transition system is a compact representation of several transition
systems – one for each condition or product – where transitions are labelled
by products. Here we consider the simpler case of conditional transition systems
without upgrades and action labels; their full treatment [4,5] is left for the future.
In our earlier work, CTSs were coalgebras living in the Kleisli category induced
by the reader monad K (for a fixed set of conditions K). It is however more
convenient to treat CTSs as coalgebras in coKleisli categories, hence we start
with a relevant comonad G = K × whose counit is given by the projection of
the second component and comultiplication Δ is given by the diagonal map, i.e.
the map K×X

ΔX� K×K×X is given by (k, x) �→ (k, k, x) (for k ∈ K, x ∈ X).
Consider the coKleisli category coKl(G) whose objects, just like in any Kleisli

category, are sets; an arrow X
f� Y corresponds to a function GX

f� Y .
Now there is a forgetful functor coKl(G)

| |� Set; however, in contrast to
the Kleisli setting, it is now left adjoint to the inclusion Set

ι� coKl(G).
Concretely, this forgetful functor maps an object X �→ GX and an arrow
X

f� Y ∈ coKl(G) to a function |f | mapping (k, x) �→ (k, f(k, x)).
Next to model the branching type of CTSs, take F̄ to be the coKleisli exten-

sion [5] of F = P given by the following distributive law K×PX
γX� P(K×X):

γX(k, U) = {k}×U ; concretely, ¯FX = PX and F̄ f(k, U) = {f(k, x) | x ∈ U} for
X

f� Y ∈ coKl(G). A CTS modelled as a coalgebra X
α� ¯FX ∈ coKl(G)

is a function K×X
α� PX that assigns to each state x ∈ X and each condition

k ∈ K, the successors of x under condition k.
As mentioned earlier in Sect. 5, it is easier (than in the Kleisli case) to lift a

predicate lifting P̂ σ� P̂F of F to define a predicate lifting P̂| | λ� P̂|F̄ | of
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F̄ . In particular, λ is given by the composition in (13) and, moreover, Theorem 22
ensures that λ is indeed an indexed morphism once we have fixed the predicate
lifting σ of F . To this end, we simply take σ that corresponds to the box modality
(cf. Example 7). To answer whether these definitions give the right kind of ‘box’
modality for CTSs, let us first instantiate λX for any U ⊆ K × X:

λXU = γ−1
X σXU = γ−1

X {U ′ | U ′ ⊆ U} = {(k, U ′) | {k} × U ′ ⊆ U}. (16)

Now given a coalgebra K × X
α� PX ∈ Set, we derive the interpretation

of box modality for CTSs in the following way (below x
k−→ x′ ⇐⇒ x′ ∈ αxk):

|α|−1
λXU = {(k, x) | ∀x′ x

k−→ x′ =⇒ (k, x′) ∈ U}. (17)

Conditional Bisimilarity Through Relation Lifting
Next we introduce conditional bisimilarity in which two states might be bisimilar
for all conditions or only under certain conditions.

Definition 34. Given a CTS X
α� P̄X ∈ coKl(G), a conditional bisimula-

tion is a relation R ⊆ (K × X) × (K × X) satisfying:

1 ∀k,k′∈K,x,x′∈X (k, x) R (k′, x′) =⇒ k = k′.

2 ∀x1,x2,x3,k

(

x1
k−→ x3∧(k, x1) R (k, x2)

)

⇒ ∃x4∈X

(

x2
k−→ x4∧(k, x3) R (k, x4)

)

.

Two states x, x′ ∈ X are conditional bisimilar under k iff there is a conditional
bismulation relation R such that (k, x) R (k, x′). Moreover, two states x, x′ are
conditional bisimilar, denoted x �X x′, iff x and x′ are conditional bisimilar
under every condition k ∈ K.

In order to capture conditional bisimilarity, we first need a fibration Ψ of binary
relations on the state space. The first choice for Ψ is to consider the set of all
binary relations on the underlying state space, i.e., Ψ = P̂(| | × | |). Unfortu-
nately, Assumption A3 fails to hold which we explain next.

Remark 35. We argue that Eq cannot have a left adjoint since it does not pre-
serve finite limits (in particular, terminal objects). Clearly, ι1 = 1 = {•} is
the terminal object in coKl(G) because ι is the right adjoint of | |. Now sup-
pose Eq1 = (1,=K×1) is the terminal object in E(Ψ). Then, for any (X,R),
there is a unique arrow (X,R)

!X� Eq1, i.e., X
!X� 1 ∈ coKl(G) and

R ⊆ (|!X | × |!X |)−1 =K×1. But we argue that !X is not a map in E(Ψ) for
|K| ≥ 2. To see this, let k, k′ ∈ K with k �= k′ and let R ⊆ (K×X)× (K×X) be
an equivalence relation such that (k, x) R (k′, x). Then we find a contradiction

R ⊆ (|!X | × |!X |)−1 =K×1 =⇒ (k, !X(k, x)) = (k′, !X(k′, x)) =⇒ k = k′.
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So we need to restrict ourselves to relations satisfying the first property of
conditional bisimulation (see Definition 34). An elegant way to address this is
by working with the indexed category of abstract relations given in (5); thus,
enabling the applicability of constructions given in Sect. 5. Note that binary
products ⊗ exist in coKl(G) and is given by the Cartesian product of two sets.
Thus Ψ in (5) is well defined.

Lemma 36. Assumptions A3 and A4 are valid.

Now to invoke the definition of λ̄ in (15), it suffices to define a relation lifting
σ of the set endofunctor F = P. We take σ to be the relation lifting associated
with bisimulation relations as defined in Example 15.

Theorem 37. Alternatively, the indexed morphism Ψ
λ̄� Ψ P̄ given in (15)

can be defined as follows: λ̄XR = {(k, U, U ′) | ∀x∈U∃x′∈U ′(k, x, x′) ∈ R ∧
∀x′∈U ′∃x∈U (k, x, x′) ∈ R}. Moreover, λ̄ satisfies Assumption A2.

Corollary 38. Let X
α� PX ∈ coKl(G) be a CTS. A relation R on K×X is

a conditional bisimulation iff 〈πX
1 , πX

2 〉−1
R is an α∗ ◦ λ̄-coalgebra in ΨX. More-

over, for any (X,α)
f� (Y, β) ∈ coKl(G) we have �X= (|f | × |f |)−1

�Y ;

thus, there is a functor CoalgcoKl(G)(P̄)
1λ̄

� Coalg
E(Ψ)(P̄λ̄).

Modal Characterisation of Conditional Bisimilarity

coKl(K × )
| | �
⊥

� ι
Set

S �
⊥

� T
BAop

Consider the above adjoint situations where the adjoint situation on the right
is the well known duality (see, for instance [27]) between Set and the opposite
category of Boolean algebras BA; S is the contravariant powerset functor P̂ and
T maps a Boolean algebra to its set of ultrafilters. We follow [20] and use the
proposed syntax functor BA

L� BA and the interpretation PωT δ� T L
induced by the box modality on (unlabelled) transition systems. I.e., the initial
algebra A of L can be viewed as the Lindenbaum-Tarski algebra generated by
the following grammar:

� | ⊥ | ¬ϕ | ϕ ∧ ϕ′ | �ϕ

together with the axioms of ‘propositional’ logic and the following ones: �� = �
and �(ϕ ∧ ϕ′) = �ϕ ∧ �ϕ′.

Note that the above logic with finite conjunctions is expressive (i.e., δ is
injective [20]) only for image-finite transition systems, so we restrict F to be
finite powerset functor Pω. Moreover, since P̄ω is a coKleisli extension of Pω,
i.e., P̄ω ◦ ι = ι ◦ Pω, we consider the following logical interpretation

P̄ ◦ ι ◦ T = ι ◦ P ◦ T
ιδ� ι ◦ T ◦ L

for image-finite CTSs (i.e., coalgebras of type X � P̄ω ∈ coKl(G)).
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Corollary 39. Since the lifting λ̄ preserves equalities, the logic (L, ιδ) defined
above is adequate for conditional bisimilarity. Moreover, since δ is injective in
each component [20] when F = Pω, so the function |ιδA| is injective for F̄ = P̄ω.
Thus the logic (L, ιδ) is expressive for image-finite CTSs.

8 Conclusions

To recapitulate, we gave a systematic way to construct both predicate and rela-
tion liftings in (co)Kleisli categories and Eilenberg-Moore categories. Relation
liftings form the basis to define behavioural equivalence as a coalgebra of certain
lifted endofunctor in the fibre of relations, although in some cases (such as CTSs)
such fibres can be subtle to define.

Once behavioural equivalence is captured as a fibred notion, the Kupke and
Rot setup becomes applicable to obtain its corresponding logical characteri-
sation. In particular, we gave a recipe to find the left adjoint S̄ of T̄ which
is a sufficient condition for both adequacy and expressivity. For coKleisli and
Eilenberg-Moore categories, the construction (11) of S̄ is based on the existence
of coequalisers in the underlying categories, while in the Kleisli case one has to
resort to a reflective subcategory having coequalisers (cf. Theorem 21).

In the future, we plan to develop extend the 2-player game [26] to coalgebras
with side effects. Lastly, we also plan to investigate whether the given recipe of
constructing predicate/relation liftings can be extended to more general monads
(like the ones on pseudometric spaces). This should help in developing quanti-
tative modal logics for coalgebras with side effects; thus, providing a pertinent
litmus test for the categorical unification of quantitiative expressivity as claimed
in the recent work [25].
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Abstract. Game comonads have brought forth a new approach to
studying finite model theory categorically. By representing model com-
parison games semantically as comonads, they allow important logical
and combinatorial properties to be exressed in terms of their Eilenberg-
Moore coalgebras. As a result, a number of results from finite model
theory, such as preservation theorems and homomorphism counting the-
orems, have been formalised and parameterised by comonads, giving rise
to new results simply by varying the comonad.

In this paper we study the limits of the comonadic approach in the
combinatorial and homomorphism-counting aspect of the theory, regard-
less of whether any model comparison games are involved. We show that
any standard graph parameter has a corresponding comonad, classifying
the same class. This comonad is constructed via a simple Kan extension
formula, making it the initial solution to this problem and, furthermore,
automatically admitting a homomorphism-counting theorem.

Keywords: density comonads · graph parameters · Lovász’ theorem

1 Introduction

An important feature of the emerging theory of game comonads [1,2,4,12] is
that game comonads classify a number of important classes of finite relational
structures. We say that a comonad C classifies a class Δ if a finite structure
A is in the class Δ precisely when A admits a C-coalgebra. For example, the
Ehrenfeucht-Fräıssé comonad Ek classifies the structures of tree-depth ≤k and,
similarly, the pebbling comonad Pk classifies tree-width <k.

In this paper we study the theoretical limits of the comonadic approach.
In particular, we aim to identify classes of structures which can be classified by
comonads. We can readily predict two necessary requirements. Since the problem
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is stated in the language of category theory, we know that the classes of structures
classified by comonads need to be closed under isomorphisms and, moreover,
since finite coalgebras are closed under binary coproducts + (i.e. disjoint unions),
this must also be the case for the classes classifiable by comonads.

In fact, we show that one further, very natural requirement suffices in order
to be able to classify a class of structures by a comonad. It suffices to assume
that the class is closed under connected substructures.

We define a class Δ of finite relational structures or graphs to be component-
based if it is closed under

– isomorphisms,
– finite coproducts, and
– summands (i.e. if A + B is in Δ then so are A and B).

We can now state our first main result.

Theorem 1. Any component-based class Δ can be classified by a comonad.

The theorem applies to a wide variety of classes of structures studied in the
literature. In particular, these assumptions hold for all classes of finite structures
classified by our game comonads and, moreover, for a number of typical examples
of classes of structures for which a given graph parameter is bounded by a
constant. For example, we obtain comonads for planar graphs, bipartite graphs,
or graphs of degree or clique-width bounded by a constant. Moreover, we show
that the constructed comonad C is weakly initial among the comonads classifying
Δ, meaning that for any comonad D classifying Δ, there is a comonad morphism
C ⇒ D. This initiality allows us to obtain a characterisation of comonads that
classify monotone nowhere dense classes [27].

Another important aspect of game comonads is that they classify various well-
known binary relations between relational structures. We say that a comonad
C classifies relation � whenever A � B holds precisely when the cofree C-
coalgebras on A and B are isomorphic. For example, the comonad Ek classi-
fies the relation that expresses that Duplicator has a winning strategy in the
bijective k-round variant of the Ehrenfeucht-Fräıssé game [4] and, similarly, Pk

classifies the existence of a winning strategy in the bijective k-pebble game [1].
Furthermore, it was recently shown that the relation classified by Ek admits
a Lovász-type theorem. In particular, finite structures A,B have isomorphic
cofree Ek-coalgebras if, and only if, they admit the same homomorphism counts
from finite structures of tree-depth ≤ k, i.e. when there is a bijection between
hom(C,A) and hom(C,B) for every finite C of tree-depth ≤ k. Similar Lovász-
type theorems have also been shown for Pk and the pebble-relation PRk comon-
ads [13,26].

We show that the comonad constructed in the proof of Theorem 1 automat-
ically admits a Lovász-type theorem for the class of structures it classifies. In
fact, we show that such a comonad always has finite rank1, which ensures that
1 Comonads of finite rank should not be confused with finitary comonads, which is a

weaker notion.
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the category of coalgebras for the comonad is locally finitely presentable (cf. [14,
Proposition 1.12.1], see also [29, Appendix B]) and therefore, by a recent result
of Luca Reggio [29, Corollary 5.15], admits the following Lovász-type result.

Corollary 2. Let Δ be a component-based class of finite structures and let �
be the binary relation on finite structures such that, for any two finite structures
A,B,

A � B ⇐⇒ hom(C,A) ∼= hom(C,B) for all C ∈ Δ

The comonad classifying Δ by Theorem 1 also classifies �.

As an example, we obtain that the comonad obtained by Theorem 1 which
classifies planar graphs also classifies quantum isomorphism (cf. [25]), and sim-
ilarly, the comonad for coproducts of cycles classifies co-spectrality, and the
comonad for bipartite graphs classifies isomorphic bipartite double covers.

The density comonad construction is the main technical tool of this paper.
In fact, we develop most of our theory by means of discrete density comonads,
that is, density comonads of functors with discrete domain. A general overview
of the necessary categorical terminology and results is given in Sect. 2. Discrete
density comonads are introduced in Sect. 3 and Theorem 1 is proved in Sect. 4. In
Sect. 5 we take a look at how graph parameters correspond to coalgebra numbers
of graded comonads, compare discrete density comonads with game comonads,
and characterise comonads classifying monotone nowhere dense classes of graphs.
Lastly, in Sect. 6 we prove Corollary 2 by showing that, under mild conditions,
discrete density comonads have finite rank.

2 Preliminaries

In this section we fix notation and recall some basic facts about comonads and the
density construction. We assume the reader is familiar with elementary category
theory notions such as functors, natural transformations, adjunctions, limits and
colimits (see e.g. [5] or [9]).

Throughout the paper we use the following notation. Given a natural trans-
formation λ : E ⇒ F between functors E,F : A → B and functors G : B → B′

and H : A′ → A, we denote by Gλ and λH the obvious natural transformations
of type GE ⇒ GF and EH ⇒ FH, respectively.

2.1 Comonads and Coalgebras

A comonad (on category A) is a triple (C, ε, δ) where C : A → A is an endo-
functor, and ε : C ⇒ Id and δ : C ⇒ C

2 are natural transformations such that
the following diagrams commute.

C C
2

C
2

C
3

δ

δ δC

Cδ

C C
2

C

δ

id
εC

C C
2

C

δ

id
Cε
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A morphism α : A → C(A) is an (Eilenberg–Moore) C -coalgebra2 if the
following diagrams commute.

A

C(A) A

α id

εA

A C
2(A)

C(A) C
2(A)

α

α δA

Cα

(1)

We say that A admits a coalgebra if there exists a morphism A → C(A)
which is a C-coalgebra.

Coalgebras form a category EM(C) where morphisms between coalgebras
(A,α) → (B, β) are morphisms h : A → B such that β ◦h = C(h) ◦α. Moreover,
there is a pair of adjoint functors

UC : EM(C) → A and FC : A → EM(C)

between EM(C) and the underlying category A. The left adjoint is just a forgetful
functor, it sends a coalgebra α : A → C(A) to its underlining object UC(A,α) =
A. The right adjoint returns the cofree coalgebra FC(A) on A, represented by
the morphism δA : C(A) → C

2(A).

2.2 Comonad Morphisms

Given two comonads (C, εC, δC) and (D, εD, δD) on A, a natural transformation
λ : C ⇒ D is a comonad morphism if the following two diagrams of natural
transformations commute.

C D

Id

λ

εC εC

C D

C
2

CD D
2

δC

λ

δD

Cλ λD

(2)

Note that comonad morphisms can be equivalently presented as functors
L : EM(C) → EM(D) such that the following diagram of functors commutes.

EM(C) EM(D)

A
UC

L

UD

The functor L is constructed from the comonad morphism given as a natural
transformation λ by sending A

α−→ C(A) to A
α−→ C(A) λA−−→ D(A). For details,

see e.g. [30].

2 All coalgebras in this text are Eilenberg–Moore coalgebras. We do not work with
functor coalgebras at any point.
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2.3 Density Comonads

Next, we review basics of the theory of density comonads, introduced indepen-
dently by Appelgate and Tierney [8] and Kock [21] (who studied the dual notion
of codensity monads). The density comonad of a functor M : A → B is a functor
DM : B → B with a natural transformation η : M ⇒ DMM .

A B

B

M

M DM

η

Moreover, η is required to be the initial natural transformation with this
property. In other words, for any functor K : B → B and a natural transformation
ϕ : M ⇒ KM there is a unique ϕ∗ : DM ⇒ K such that ϕ = ϕ∗M ◦ η, i.e.
diagramatically

A B

B

M

M K
ϕ =

A B

B

M

M

DM

K

η

ϕ∗

Density comonads are special types of left Kan extensions. They do not exist
for all functors. However, when A is a small category and B is cocomplete then
DM exists for every functor M : A → B. In such case, DM (B) is computed as
the colimit of the diagram:

M ↓ B
V−→ A M−→ B

where V is the forgetful functor from the comma category M ↓ B, which consists
of pairs (A, f) where f : M(A) → B is a morphism in B, and morphisms (A, f) →
(A′, f ′) between such pairs are morphisms g : A → A′ in A making the following
triangle commute.

M(A) M(A′)

B
f

M(g)

f ′

We may express the same fact by the formula:

DM (B) = colim
A∈A, M(A)→B

M(A). (3)

Note that A does not have to be small nor B cocomplete in general. It is
enough that the colimit above exists. In such case we speak of pointwise density
comonads. Denote by

ιf : M(A) → DM (B)
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the inclusion morphism of the copy of M(A) corresponding to the morphism
f : M(A) → B into the colimit. Then, the component ηA : M(A) → DM (M(A))
of the natural transformation η : M ⇒ DMM is given as ιf for f equal to the
identity morphism id: M(A) → M(A).

2.4 The Comonad Structure

The initiality of η : M ⇒ DMM ensures that we can equip DM with a comonad
structure. In particular, the identity natural transformation M ⇒ Id ◦ M
uniquely factors as the composition of η with the counit ε : DM ⇒ Id and,
similarly, DM (η) ◦ η : M ⇒ DM ◦ DM ◦ M factors through the comultiplication
δ : DM ⇒ D

2
M . In other words, the counit and the comultiplication are uniquely

determined by the equations

εM ◦ η = id and δM ◦ η = DM (η) ◦ η. (4)

Moreover, these two equations guarantee that the functor

M† : A → EM(DM ) (5)

which sends A ∈ A to the coalgebra ηA : M(A) → DM (M(A)) is well-defined.
Lastly, we recall three equations of density comonads, following from (4),

which we use extensively throughout the paper. For morphisms f : M(A) → B
and h : B → C, the following three triangles commute.

M(A)

DM (B) DM (C)

ιf
ιh◦f

DM (h)

(DC1)

M(A)

DM (B) B

ιf
f

εB

(DC2)

M(A)

DM (B) DM (DM (B))

ιf

ιιf

δB

(DC3)

2.5 Comonad Morphisms from Composites

Let M be the composite of functors

A0
M0−−→ A M1−−→ B

such that the density comonads DM and DM1 exist. Let

η : M ⇒ DMM η1 : M1 ⇒ DM1M1

be the corresponding initial natural transformations. By initiality of η, there is
a unique natural transformation

λ : DM ⇒ DM1
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such that:

A0 A B

B

M0 M1

M1 DM1

η1 =

A B

B

M

M

DM

DM1

η
λ

Lemma 3. λ : DM ⇒ DM1 is a comonad morphism.

In fact, D(−) is a functor from the category of functors X → B which
admit density comonads into the category of comonads and comonad morphisms
(cf. page 73 in [15], see also [22]).

3 Discrete Density Comonads

Recall that a category is discrete whenever it only has identity morphisms. By
discrete density comonads we mean density comonads for functors whose domain
is discrete. An important feature of discrete density comonads is that the formula
in (3) simplifies dramatically. Indeed, assume that

M : A → B

is a fixed functor from a small and discrete category A. Then, since A is discrete,
there are no morphisms between objects M(A), given by morphisms M(A) → B,
in the colimit formula (3). Therefore, the density comonad DM : B → B is com-
puted as a coproduct, that is, the colimit of a discrete diagram. Concretely, for
an object B in B,

DM (B) =
∐

A∈A

∐

f : M(A)→B

M(A). (6)

Note that DM exists whenever the above coproduct exists in B, for every
object B ∈ B. In particular, DM exists whenever B has all coproducts.

As with general density comonads, we have inclusion morphisms

ιf : M(A) → DM (B)

for every f : M(A) → B, which satisfy axioms (DC1)–(DC3) from Sect. 2.4.

For the proof of Theorem 1, the category B is either the category R(σ)
of σ-structures (i.e. relational structures in a fixed relational signature σ) or
the category Graph of graphs (where by graphs we mean undirected loopless
graphs). The morphisms in these categories are the structure-preserving func-
tions: σ-structure homomorphisms f : A → B satisfy that RA(x1, . . . , xn) implies
RB(f(x1), . . . , f(xn)) and, likewise, graph homomorphisms preserve the edge
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relation. For example, in the former case, we may describe the comonad DM

explicitly as follows. For a σ-structure B, the universe of DM (B) consists of
tuples

(A, f, x)

where f : M(A) → B is a homomorphism of relational structures and x is an
element of M(A). Further, an n-ary relation R in σ is interpreted as the set of
all tuples

(A, f, x1), . . . , (A, f, xn)

such that R(x1, . . . , xn) in M(A).

Example 4. Let A be the discrete subcategory of graphs, consisting of only the
triangle graph, and let M : A → Graph be the inclusion of A into the category
of graphs. Then, given an arbitrary graph G, the graph computed as DM (G) is
the disjoint union of k × l triangles, where k is the number of triangles in G and
l is the number of automorphisms of the triangle graph, i.e. l = 6.

4 The Abstract Classification Theorem

In this section we prove Theorem 1. Since the entire argument can be carried
out at the abstract categorical level, we actually prove a general categorical
statement that can be applied in other scenarios too. In the following we fix a
functor

M : A → B
from a discrete category A into B. We further assume that the pointwise density
comonad DM exists on B (i.e. it is given by the formula (6)).

We start with a useful observation. Recall that an object C is connected iff,
for every morphism f : C →

∐
i Ai into a coproduct, the morphism f factors

uniquely through one of the inclusion morphisms ιi : Ai →
∐

i Ai.3 Whenever a
connected C is such that A ∼= C+X for some A,X, we say that C is a component
of A.

Lemma 5. Let ξ : X → DM (X) be a DM -coalgebra and let ιC : C → X be
a component inclusion. Furthermore, let f : M(A) → X be the morphism for
which ξ ◦ ιC decomposes through ιf , as shown below.

C X

M(A) DM (X)

ιC

z ξ
f

ιf

(7)

Then, also the two triangles in the diagram above commute, that is, ιC = f ◦z
and ιf = ξ ◦ f .

3 Equivalently, C is connected iff hom(C, −) preserves coproducts.
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Proof. The first equality is obtained immediately from the triangle law of coal-
gebras (cf. (1)) together with (DC2) from Sect. 2.4 as

ιC = εC ◦ ξ ◦ ιC = εC ◦ ιf ◦ z = f ◦ z.

To show that also ιf = ξ ◦ f we apply the square law of coalgebras (cf. (1)).
Observe that

– δX ◦ ξ ◦ ιC = δX ◦ ιf ◦ z = ιιf
◦ z by (DC3), and

– DM (ξ) ◦ ξ ◦ ιC = DM (ξ) ◦ ιf ◦ z = ιξ◦f ◦ z by (DC1).

Because C is connected, the factorisation C → M(A) → DM (DM (C)) into
the coproduct must be unique, hence ιf = ξ ◦ f . ��

In the following we need to assume that B is a componental category, i.e. that

– every object in B is (isomorphic to) a coproduct of connected objects, and
– inclusion morphisms into coproducts ιi : ai →

∐
i ai are monomorphisms.

We say that an object of B is essentially in A if it is isomorphic to M(A),
for some A in A.

Lemma 5 directly implies a version of Theorem 1 for connected objects.

Lemma 6. If B is a componental category, then a connected object of B is essen-
tially in A iff it admits a DM -coalgebra.

Since the non-trivial direction is proved similarly to Lemma 8 below, we omit
its proof. Next, we show a useful feature of componental categories.

Lemma 7. In a componental category, a component inclusion C → Y which
factors through a monomorphism X → Y is a component of X as well.

Proof. Assume Y is equal to the coproduct
∐

i Ci and X is equal to
∐

j Dj

for some collections of connected objects {Ci}i and {Dj}j . By assumption, the
component inclusion ι : C → Y factors as m◦h for some monomorphism m : X →
Y and a morphism h : C → X.

Since C is connected, h factors through a component inclusion ιj : Dj → X
as shown in the left diagram below:

Dj C

X Y

ιj
h ι

h0

m

Dj Ck

Y

u

m◦ιj

ιk

Since Dj is connected, m ◦ ιj factors through some inclusion ιk : Ck → Y ,
as shown in the right diagram above. But then i = k and u ◦ h0 = id since
ιi = m ◦ h = m ◦ ιj ◦ h0 = ιk ◦ u ◦ h0 and component inclusions are unique.
Furthermore, since both m and ιj are monomorphisms by our assumptions, so
must be u because ι
 ◦ u = m ◦ ιj . Consequently, u is an isomorphism because it
is both a monomorphism and a split epimorphism. ��
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To make progress, we need to assume that A is component-based. This means
that, whenever B ∈ B is essentially in A then so is every component of B. Note
that this condition mirrors the third item in the definition of component-based
classes. With this we show the main technical lemma of this section.

Lemma 8. If A is component-based and B is a componental category, then any
component C of an object X of B which admits a DM -coalgebra ξ : X → DM (X)
is essentially in A.

Proof. Let ιC : C → X be the inclusion morphism of C into X. Furthermore,
let f : M(A) → X be the morphism such that ξ ◦ ιC decomposes through
ιf : M(A) → DM (X) and recall that, by Lemma 5, the following diagram com-
mutes.

C X

M(A) DM (X)

ιC

z ξ

ιf

f (8)

Observe that f is a monomorphism since ιf is. Therefore, by Lemma 7, C is
a component of M(A). Consequently, C is essentially in A because A is compo-
nent-based. ��

The main classification theorem, which we state in full, is obtained as a
consequence of the previous lemma.

Theorem 9. Let M : A → B be a functor from a discrete component-based cat-
egory A into a componental category B such that the pointwise density comonad
DM exists.

Then an object b ∈ B is isomorphic to a coproduct of objects essentially in A
if and only if b admits a DM -coalgebra.

Proof. The left-to-right implication follows the fact that M†(A) is a coalgebra on
M(A), for every A ∈ A (cf. (5)), and that coalgebras are closed under coproducts
that exist in B. Conversely, if ξ : X → DM (X) is a coalgebra then, by our
assumptions, X is isomorphic to a coproduct

∐
i Ci of connected objects by

Lemma 8 and all those components are essentially in A. ��

Observe that both the category of relational structures R(σ) and the cate-
gory of graphs Graph are componental categories.4 Therefore, the previous the-
orem immediately yields Theorem 1. Indeed, given a component-based class Δ
of relational structures or graphs, let ΔC be the subclass of Δ consisting of con-
nected structures only. We then set A to be a discrete subcategory of R(σ) or
Graph consisting of one representative from every isomorphism class in ΔC .
Since we picked only one representative from every equivalence class, the cate-
gory A is small. Therefore, the density comonad DM , for the inclusion functor
4 Note that for R(σ), the connected objects are those structures whose Gaifman graphs

are connected.
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M : A → R(σ), exists because both R(σ) and Graph have all (small) coprod-
ucts. Observe that the comonad DM classifies Δ. Indeed, by Theorem 9, a finite
relational structure B has a DM -coalgebra if and only if there exist C1, . . . , Cn

in ΔC such that B ∼= C1 + · · · + Cn. In turn, this is equivalent to B being in Δ,
which follows from being component-based as then C1 + · · · + Cn is in Δ iff all
the individual structures C1, . . . , Cn are.

Remark 10. In the proof of Theorem 1, in the previous paragraph, we made sure
that all objects in the image of M are connected. This is stronger than assuming
that A is component-based. By carefully inspecting the proof of Theorem 9 and
the preceding lemmas one can check that this extra assumption allows us to drop
the requirement that B is componental. See Lemma 21 below for details.

Remark 11. Theorem 1 says that, for a class Δ of structures closed under iso-
morphisms and finite coproducts, if Δ is also closed under summands then it can
be classified by a comonad. However, the converse does not hold. Let C and D
be two graphs with no homomorphism C → D nor any homomorphisms D → C.
This happens, for example, if C is the triangle and D is the cycle on five vertices.
Take A to be the discrete subcategory of Graph consisting of C+D only and let
M : A → Graph be the subcategory inclusion. Then, despite C + D admitting
a DM -coalgebra, no connected graph admits a DM -coalgebra (by Lemma 6). It
is easy to see that the class of finite structures classified by DM is the class
consisting of graphs isomorphic to

C + · · · + C + D + · · · + D

where both C and D appear in at least one copy in the coproduct. Consequently,
the class of structures classified by DM is not closed under summands.

4.1 Examples

The category R(σ) of σ-structures is a componental category. Therefore, in our
applications we only need to check that a class Δ of σ-structures is closed under
finite coproducts and summands. These are fairly weak conditions, satisfied by
many well-known examples of classes from the literature. In particular, this
includes classes of finite structures closed under finite coproducts which are

1. monotone, i.e. class closed under taking substructures,
2. hereditary, i.e. class closed under taking induced substructures, or
3. closed under taking graph minors.

Further examples include

4. Fräıssé classes closed under free amalgamations, or
5. classes of coproducts of connected cores.

Recall that a core is a structure with the property that all of its endo-
morphisms are automorphisms. An example of a class from (5) is the class of
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coproducts of cycles. Note that the discrete density comonad for this class cap-
tures co-spectrality, see Sect. 6.

As an example of a non-example, take the class of graphs that can be drawn
on a surface of genus n, for n > 1. This class is characterised by a finite set of
forbidden minors. However, it is not closed under taking coproducts and hence is
not a component-based class. On the other hand, any minor-closed class can be
completed under finite coproducts. The resulting class is then still minor closed
[11, Lemma 5] and hence is classified by a comonad.5

Remark 12. The proof of Theorem 1 is carried out abstractly, in the language
of category theory, and thus can be dualised. In the dual statement we have
monads instead of comonads and instead of component-based classes we have
classes closed under isomorphisms, products, and factors, i.e. with the property
that if A × B is in the class then so are A and B. For such classes there is a
monad which classifies the class, i.e. a finite structure is in the class iff it admits
an algebra for the monad. An example of a class of graphs which can be classified
in this way is the class of connected non-bipartite graphs, cf. Chapter 8 in [19].

5 Graph Parameters

A graph parameter is a mapping μ : Graphfin → R, from the class of finite graphs
Graphfin to the class of extended real numbers R = [−∞,+∞], which gives the
same value to any two isomorphic graphs. Moreover, we say that it is standard6

if μ(G1 + G2) = max{μ(G1), μ(G2)}.
Standard graph parameters cover many well-known examples of graph

parameters from the literature, such as

– clique number, chromatic number, max-degree,
– tree-depth, tree-width, path-width, clique-width, etc.

In this section we show that every standard graph parameter μ gives rise
to a graded comonad (Ck)k, that is, a sequence of comonads (Ck)k indexed by
extended real numbers and comonad morphisms gk,l : Ck ⇒ Cl, for every k ≤ l
in R, such that gk,l = gj,l ◦ gk,j for any k ≤ j ≤ l in R.7 Given a graded
comonad (Ck)k we define the coalgebra number κC(G), of a graph G, to be the
infimum of k ∈ R such that G admits a Ck-coalgebra [1,4]. We show that the
coalgebra number for the constructed graded comonad agrees with the standard
graph parameter μ we started with. In other words, we have that μ(G) ≤ k iff
G admits a Ck-coalgebra.

Note that every graded comonad (Ck)k trivially determines a graph param-
eter, by setting μ(G) := κC(G). We have already mentioned graded comon-
ads characterising graph parameters this way. For example, the (graded)
5 We are grateful to Anuj Dawar for pointing out these facts.
6 Also known as maxing, e.g. in [24].
7 In fact, this is a special type of graded comonad, with the grading being over the

fixed monoid (R, min, +∞). For details see [4].
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Ehrenfeucht-Fräıssé comonad (Ek)k characterises tree-depth [4], the pebbling
comonad (Pk)k characterises tree-width [1] and the pebble-relation comonad
(PRk)k classifies path-width [26].

To start with, observe that there is a one-to-one correspondence between
graph properties, i.e. graph parameters valued in {0, 1}, and classes of finite
graphs which are closed under isomorphisms. Furthermore, it is easy to see that
the correspondence restricts to that of standard graph properties and compo-
nent-based classes of graphs:

Lemma 13. Given a standard graph property μ : Graphfin → {0, 1}, the class of
graphs G such that μ(G) = 0 is closed under isomorphisms, finite coproducts, and
summands. In fact, every such class is obtained from a standard graph property
this way. ��

Therefore, by Theorem 1, there is a comonad C
μ which classifies the class Δ

of finite graphs G such that μ(G) = 0, for every standard graph property μ.
We construct C

μ explicitly, as the pointwise density comonad for the inclusion
functor

A → Graph, (9)

where A is a discrete subcategory of finite connected graphs consisting precisely
of one graph from every isomorphism class in Δ. Then, by Theorem 9, Cμ clas-
sifies Δ.

5.1 Grading Graph Parameters

We use this to construct a sequence of comonads for a given standard graph
parameter μ. For every extended real number k, we turn μ into a graph property

μ≤k : Graph → {0, 1}

by setting μ≤k(G) = 0 iff μ(G) ≤ k. Then, the density comonad C
μ
k , defined

as C
μ for μ := μ≤k, classifies finite graphs G such that μ(G) ≤ k.

Moreover, we can make sure that there is a linearly ordered chain of embed-
dings of discrete categories

A−∞ ↪→ . . . ↪→ Ak ↪→ Al ↪→ . . . ↪→ A+∞ (with k ≤ l)

where each Ak is a category as in (9), for the class of graphs G such that
μ(G) ≤ k. Then, by Lemma 3 in Sect. 2.5, the composite

Ak ↪→ Al → Graph,

for k ≤ l, gives rise to a comonad morphism gk,l : C
μ
k ⇒ C

μ
l . In fact, we have

gk,l = gj,l ◦ gk,j for every k ≤ j ≤ l, by functoriality of D(−). Hence, (Cμ
k)k is a

graded comonad with the property that κC
μ

(G) = μ(G) for every finite graph G.
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Remark 14. The procedure to produce sequences of comonads for standard
graph parameters can be defined dually for graph parameters μ with the prop-
erty that −μ is standard, i.e. graph parameters such that μ(G1 + G2) =
min{μ(G1), μ(G2)}. This is done by constructing a sequence of standard graph
properties

μ≥k : Graph → {0, 1}
and inducing comonads classifying the classes of graphs such that μ(G) ≥ k in
a similar spirit as before. This then covers examples of graph parameters such
as min-degree and girth.

5.2 Comparison with Game Comonads

For some graph parameters and classes of structures we already knew how to
construct comonads that classify them. In particular, this holds for the classes
of structures classified by the comonads Pk, Ek, and PRk. In this section, we
explain the relationship between those comonads and discrete density comonads
constructed directly for given classes.

In fact, we show that discrete density comonads are weakly initial in the
category of comonads that classify the same class. To this end, denote by DΔ

the discrete density comonad constructed as in (9) above, for a component-based
class Δ.

Proposition 15. Let Δ be a component-based class of relational structures or
graphs and let C be a comonad that classifies a class Γ . Then, Δ ⊆ Γ if, and
only if, there exists a comonad morphism DΔ ⇒ C.

Observe that the right-to-left direction is immediate as a comonad morphism
DΔ ⇒ C lifts to a functor L : EM(DΔ) → EM(C) making the following diagram
commute (cf. Sect. 2.2).

EM(DΔ) EM(C)

B
UDΔ

L

UC

(Here B is either the category of relational structures or graphs.) For a struc-
ture B in Δ, let β : B → DΔ(B) be a DΔ-coalgebra, which exists because DΔ

classifies Δ. Then, by the commutativity of the above triangle L(β) is a C-
coalgebra B → C(B) making B ∈ Γ because C classifies Γ .

We carry out the left-to-right direction of the proof abstractly, for arbitrary
categories rather than just relational structures or graphs. Let D := DM be the
density comonad of a functor M : A → B from a discrete category A. Further,
assume that C is a comonad on B such that for every A ∈ A, there exists a
coalgebra

ϕA : M(A) → C(M(A)).
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Observe that, since A is a discrete category, the collection of morphisms
{ϕA | A ∈ A} trivially forms a natural transformation ϕ : M ⇒ CM . Since D

is a density comonad of M , there is a natural transformation ϕ∗ : D ⇒ C such
that

ϕ = ϕ∗M ◦ η (10)

where η : M ⇒ DM is the initial natural transformation determining D (cf.
Sect. 2.3). Then, Proposition 15 follows from the following lemma, which is a
direct consequence of Theorem II.1.1 in [15].

Lemma 16. ϕ∗ : D ⇒ C is a morphism of comonads.

Example 17. Proposition 15 gives us that that for our running examples of
comonads Ek, Pk, PRk, there exist comonad morphisms

DT Dk
⇒ Ek, DT Wk

⇒ Pk, and DPWk
⇒ PRk,

where T Dk, T Wk, and PWk are the classes of finite structures of tree-depth,
tree-width, and path-width ≤k, respective.

Note that unlike the game comonads Ek, Pk, and PRk, the discrete density
comonads DT Dk

, DT Wk
, and DPWk

do not classify infinite structures with the
corresponding properties.

5.3 Nowhere Dense Comonads

A direct consequence of Proposition 15 is that we can characterise comonads that
classify monotone nowhere dense classes of graphs in terms of non-existence of
certain comonad morphisms. Recall that a class Δ is somewhere dense if there
exists a natural number p such that, for every n, the p-th subdivision Kp

n of all
edges in the clique graph Kn on n vertices is a subgraph of some graph in Δ.8

Then, a class is nowhere dense [27] if it is not somewhere dense.
It is immediate that a monotone class of graphs Δ (i.e. a class closed under

substructures) is somewhere dense if and only if Clip ⊆ Δ, for some p, where

Clip = {Kp
n | n ∈ N}

is the class of p-th subdivisions of all cliques. We can now state the characteri-
sation.

Proposition 18. Assume C classifies a monotone class of graphs Δ. Then, Δ
is nowhere dense if, and only if, there is no comonad morphism DClip ⇒ C for
any p ∈ N.

Proof. Define Clip to be the closure of Clip under finite coproducts. Observe that
Clip is component-based and, since the connected objects in Clip are precisely
the objects in Clip, the comonad DClip classifies Clip. Moreover, since any class
classified by a comonad needs to be closed under finite coproducts, Clip ⊆ Δ iff
Clip ⊆ Δ. The result follows by monotonicity of Δ and by Proposition 15. ��
8 A subdivision of a set of edges in a graph replaces each edge in the set by a path of

length 2 through a new vertex.
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6 Lovász-Type Theorems for Free

A classic result of Lovász [23] says that two finite structures are isomorphic
if and only if they admit the same number of homomorphisms from all finite
structures. This result has been extended in many different ways. In one type
of generalisation, isomorphisms are replaced by a selected equivalence relation
� on finite structures, and the class of all finite structures by a class of selected
finite structures Δ. Then a typical Lovász-type theorem expresses that, for finite
structures A,B,

A � B ⇐⇒ hom(C,A) ∼= hom(C,B) for every C ∈ Δ.

A number of well-known equivalence relations on finite structures have been
characterised in this way. See Fig. 1 for an overview of some Lovász-type results9.

Fig. 1. Examples of Lovász-type theorems

Note that the equivalence relations � in Fig. 1 corresponding to winning
strategies of Duplicator can be equivalently described as logical equivalences with

9 The bipartite double cover of a graph G is the product graph G×K2 where K2 is the
clique on two vertices. The fact that isomorphic bipartite double covers correspond
to counting homomorphisms from bipartite graphs was worked out by Böker in his
master thesis [10]. He later observed (in private communication) that the same result
already follows from Section 5.4.2 in [24].
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respect to a fragment of first-order logic with counting quantifiers. A comonadic
proof of the first two Lovász-type theorems that identify a logic fragment was
established in [13] and later adapted in [26] to obtain the new result for path-
width. For the comonadic proof to work it is necessary that the comonad C

classifies the relation �, i.e. that A � B holds precisely whenever the cofree
coalgebras FC(A) and FC(B) are isomorphic.

Anuj Dawar has asked (in private communication) whether there are comon-
ads covering the other listed cases as well. In our terminology, this means finding
comonads that classify both the class Δ as well as the corresponding � rela-
tion, in the same row of the table. We answer this question in the positive for
any component-based class Δ. We show that the discrete density comonad C

that classifies such class also classifies the relation �, with A � B whenever
hom(C,A) ∼= hom(C,B) for every C ∈ Δ, thereby proving Corollary 2.

The main ingredient of our proof is the following recent result due to Luca
Reggio, proved abstractly for locally finitely presentable categories.

Theorem 19. (Corollary 5.15 in [29]). Let C be a comonad of finite rank
on Graph or R(σ). Then, for two finite structures A,B,

FC(A) ∼= FC(B) iff hom(C,A) ∼= hom(C,B),

for every finite C which admits a C-coalgebra.

We see that in order to prove Corollary 2, it is enough to show that the
comonad C constructed in the proof of Theorem 1 has finite rank. In the
next section we define finite rank comonads and show that the discrete den-
sity comonad constructed in the proof of Theorem 1 does have finite rank.

6.1 Finite Rank Comonads

We work in the general setting of categories, rather than the more concrete
setting of relational structures or graphs. Recall that an object C of a category
B is finitely presentable [7] if the functor hom(C,−) preserves filtered colimits.

Let C be a comonad over a category B and let U : EM(C) → B be the usual
forgetful functor. We say that a comonad C has finite rank if

1. C is finitary, i.e. its underlying functor preserves filtered colimits,
2. if every morphism of the form f : C → U(ξ), from a finitely presentable C,

admits a factorisation

f = C
f0−→ U(ξ0)

U(γ)−−−→ U(ξ)

for some γ : Y → X such that U(ξ0) is finitely presentable, and
3. this factorisation is essentially unique, i.e. if g : C → U(ξ0) satisfies f =

U(γ) ◦ g then for some factorisation of γ into λ : ξ0 → ξ′
0 and γ′ : ξ′

0 → ξ such
that U(ξ′

0) is finitely presentable, U(λ) ◦ f0 = U(λ) ◦ g.
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Observe that if U(γ) in the second item is a monomorphism, then essential
uniqueness is automatic. In fact, this is the case in our construction.

In the following we fix a functor

M : A → B

from a discrete category A and assume that the pointwise density comonad DM

for M exists.

Proposition 20. If all objects in the image of M are finitely presentable, then
DM is finitary.

Proof (by courtesy of an anonymous referee). It is enough to check the proof for
M : 1 → B where 1 = {�} is the discrete category with one object. Indeed, the
density comonad for any A → B with A discrete is computed as a coproduct
of density comonads for individual restrictions 1 → B and coproducts commute
with colimits. Then, for an M : 1 → B, the density comonad is

DM (X) = B(M(�),X) · M(�)

where · denotes copower. Consequently, since M(�) is finitary in B copowers
commute with colimits, for a (small) directed diagram D : I → B with a colimit
colimi D(i),

DM (colim
i

D(i)) = B(M(�), colim
i

D(i)) · M(�)

∼= (colim
i

B(M(�),D(i))) · M(�)

∼= colim
i

(B(M(�),D(i)) · M(�)) ∼= colim
i

DM (D(i)). ��

Next, we prove a technical lemma, which is (in some sense) a strengthening
of Lemma 8, and which is needed in the proof of Proposition 22 below.

Lemma 21. Assume that all objects in the image of M are connected. Let C
be a component of X and let ξ : X → DM (X) be a DM -coalgebra. Then, C
can be equipped with a DM -coalgebra γ : C → DM (C) such that the inclusion
ιC : C → X is a coalgebra homomorphism (C, γ) → (X, ξ).

Proof. As in the proof of Lemma 8, we arrive at the diagram (8). This time
M(A) is connected. Therefore, since f is a monomorphism (because so is ιf ),
by Lemma 7, z is an isomorphism. Next we show that f is a coalgebra mor-
phism from ηA : M(A) → DM (M(A)) to ξ : X → DM (X). To this end, recall
that ηA = ιg for g = id: M(A) → M(A). Therefore, we obtain the desired
DM (f) ◦ ηA = ιf◦id = ιf = ξ ◦ f by (DC1). Consequently, ιC is also a coalgebra
morphism, for C equipped with the coalgebra structure of ηA transported along
the isomorphism z. ��

Lastly, we show that also conditions (2) and (3) are satisfied for discrete
density comonads.



Discrete Density Comonads and Graph Parameters 41

Proposition 22. Assume that all objects in the image of M are connected and
finitely presentable, and that B is a componental category with finite coproducts.
Then, every morphism f : A → U(ξ) in B, for finitely presentable A in B, admits
a unique factorisation (up to isomorphism)

f = A
g−−→ U(ξ0)

U(γ)−−−−→ U(ξ)

where U(ξ0) is finitely presentable.

Proof. In the following, we denote by U the forgetful functor UC : EM(DM ) → B.
By Theorem 9, we may assume that the underlying object X of ξ : X → DM (X)
is a coproduct

∐
i∈I Ci of a collection of connected, finitely presentable objects Ci

essentially in A.
Recall that

∐
i∈I Ci is isomorphic to the directed colimit of the following

directed diagram
{
∐

i∈F

Ci | F is a finite subset of I}

with the obvious morphisms between these finite coproducts. Since A is finitely
presentable, f : A → X decomposes as

f = A
g−→

∐

i∈F

Ci
ιF−→ X

for some finite F ⊆ I. By Lemma 21, for each i ∈ F , the inclusion morphism
ιi : Ci → X is a coalgebra morphism (Ci, ξi) → (X, ξ), for some comonad coal-
gebra ξi : Ci → DM (Ci).

Lastly, because the forgetful functor U : EM(DM ) → B creates colimits (see
e.g. Proposition 20.12 in [6]),

∐
i∈F Ci can be equipped with the coalgebra struc-

ture of the coproduct of the coalgebras ξi : Ci → DM (Cj). Moreover, the mor-
phism ιF :

∐
i∈F Ci → X is a coalgebra morphism because each of its compo-

nents is. Also,
∐

i∈F Cj is finitely presentable because it is a finite coproduct of
finitely presentable objects (see e.g. Proposition 1.3 in [7]). Finally, g is unique
because B is a componental category and ιF is the inclusion morphism of

∐
F Ci

into the coproduct
∐

I Ci and hence a monomorphism. ��
As a corollary of Propositions 20 and 22 we obtain the main theorem of this

section.

Theorem 23. Let M : A → B be a functor from a discrete category A to a
componental category B with finite coproducts and assume that the pointwise
density comonad DM for M exists. If all objects in the image of M are connected
and finitely presentable then DM has finite rank.

Observe that the constructed functor M : A → B in the proof of Theorem 1
(cf. the paragraph following Theorem 9) automatically satisfies the assumptions
of Theorem 23. Indeed, M is an inclusion of a class of finite connected structures
and finite structures are precisely the finitely presentable objects in the category
of relational structures or the category of graphs. Therefore, Theorem 23 together
with Theorem 19 concludes the proof of Corollary 2.
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7 Conclusion

In this paper we have shown that classes of structures closed under isomor-
phism, disjoint unions, and summands can always be classified by a comonad,
and moreover this comonad admits a Lovász-type theorem. We have also shown
that standard graph parameters give rise to graded comonads, i.e. sequences of
comonads indexed by real numbers, such that the graph parameter is captured
by the coalgebra number of a given structure. Both results cover a huge range
of examples of structure classes and graph parameters from the literature.

The comonads we construct are, in some sense, the minimal solutions to this
problem in that they are weakly initial among the comonads that classify the
same class of structures. Our proofs show is that the classifying comonads (or
graded comonads) can be very simple and do not need to be specifically tailored
for the concept at hand.

Conversely, however, the power of game comonads is that they shed light
on previously known constructions and reveal new connections between them.
This can lead to new results. For example, the links between game comonads,
logic fragments and combinatorial parameters established in [1,4] are leveraged
in [20] and [26] to obtain new results for other combinatorial properties simply
by changing the comonad at hand.

In [3] the common structure exhibited by game comonads is axiomatised in
terms of arboreal categories and arboreal covers. This suggests one line of further
development, by relating the general results using discrete density comonads of
the present paper to the axiomatic setting of [3]. This can provide a basis for
general transfer results of this kind between comonads arising from arboreal
covers.

Another potential source of useful comonads is when a particular class of
structures is given by a construction, similar to the inductive definition of clique-
width or the algebraic definition of planar graphs found e.g. in [25]. We hope to
explore comonads arising from inductive constructions in future work.
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Abstract. This paper provides a coalgebraic approach to the language
semantics of two types of non-deterministic automata over nominal sets:
non-deterministic orbit-finite automata (NOFAs) and regular nominal
non-deterministic automata (RNNAs), which were introduced in previ-
ous work. While NOFAs are a straightforward nominal version of non-
deterministic automata, RNNAs feature ordinary as well as name bind-
ing transitions. Correspondingly, words accepted by RNNAs are strings
formed by ordinary letters and name binding letters. Bar languages are
sets of such words modulo α-equivalence, and to every state of an RNNA
one associates its accepted bar language. We show that the semantics of
NOFAs and RNNAs, respectively, arise both as an instance of the Kleisli-
style coalgebraic trace semantics as well as an instance of the coalgebraic
language semantics obtained via generalized determinization. On the way
we revisit coalgebraic trace semantics in general and give a new compact
proof for the main result in that theory stating that an initial algebra
for a functor yields the terminal coalgebra for the Kleisli extension of
the functor. Our proof requires fewer assumptions on the functor than
all previous ones.

1 Introduction

Classical automata and their language semantics have long been understood in the
theory of coalgebras. For example, it is a well-known exercise [37] that standard
deterministic automata over a fixed alphabet can be modelled as coalgebras, that
the terminal coalgebra is formed by all formal languages over that alphabet, and
the unique homomorphism into the terminal coalgebra assigns to each state of an
automaton the language it accepts. Non-deterministic automata are also coalge-
bras for a functor extending the one for deterministic automata in order to acco-
modate non-deterministic branching. Their language semantics can be obtained
coalgebraically in two different ways. First, in the coalgebraic trace semantics by
Hasuo et al. [18] one considers coalgebras for composed functors TF where F is
a set functor modelling the type of transitions and T is a set monad modelling
the type of branching; for example, for non-deterministic branching one takes the
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power-set monad. Under certain conditions on F and T , including that F has an
extension F̄ to the Kleisli category of T , an initial F -algebra is seen to lift to the
terminal coalgebra for F̄ . Its universal property then yields the coalgebraic trace
semantics. Among the instances of this is the standard language semantics of non-
deterministic automata.

Second the coalgebraic language semantics [7] is based on generalized deter-
minization by Silva et al. [40]. Here one considers coalgebras for composed func-
tors GT where G models transition types and T again models the branching type.
Assuming that G has a lifting to the Eilenberg-Moore category for T , generalized
determinization turns such a coalgebra into a G-coalgebra by taking the unique
extension of the coalgebra structure to the free Eilenberg-Moore algebra on the
set of states. Moreover, taking the unique homomorphism from that coalgebra
into the terminal G-coalgebra yields the coalgebraic language semantics. In the
leading instance of non-deterministic automata, generalized determinization is
the well-known power-set construction and coalgebraic language semantics the
standard automata-theoretic language semantics once again.

These two approaches were brought together by Jacobs et al. [21] who study
those species of systems which can be modelled as coalgebras in both of the above
ways. They show that whenever there exists an extension natural transformation
TF → GT satisfying two natural equational laws, then the two above semantics
are canonically related, and they agree in the instances studied in op. cit.

It is our aim in this paper to draw a similar picture for non-deterministic
automata for languages over infinite alphabets. Such alphabets allow to model
data, such as nonces [28], object identities [16], or abstract resources [8], and
the ensuing languages are therefore called data languages. There are several
species of automata for data languages in the literature. We focus on two types
which are known to have a presentation as coalgebras over the category of
nominal sets: non-deterministic orbit-finite automata (NOFA) [4] and regular
non-deterministic nominal automata (RNNA) [39]. For both of these types of
automata one works with the category of nominal sets and takes the set of names
as the alphabet. While NOFAs are a straightforward nominal version of standard
non-deterministic automata, RNNAs feature binding transitions, which can be
thought as storing an input name in a ‘register’ for comparison with future input
names. Correspondingly, they accept words including name binding letters and
which are taken modulo α-equivalence; such words form bar languages (the name
stems from the bar in front of name binding letters a). However, while these
automata are understood as coalgebras, their semantics has not been studied
from a coalgebraic perspective so far.

We fill this gap here and prove that the data language accepted by a NOFA
and the bar language accepted by an RNNA arise as instances of both coalgebraic
trace semantics (Theorems 3.18 and 3.21) and coalgebraic language semantics
(Corollaries 4.16 and 4.22). The latter result is obtained by using canonical
extension natural transformations obtained from the result by Jacobs et al. [21].

While these results will perhaps hardly surprise the cognoscenti, and the
treatment of NOFAs indeed appears as an(other) exercise in coalgebra, we should
like to point out that there are a number of technical subtleties arising in the
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treatment of RNNAs. Essentially, what causes some trouble is the presence of the
abstraction functor in their type. We solve all these difficulties by working with
the uniformly finitely supported power-set monad Pufs on nominal sets in lieu of
the more common finitely supported power-set monad Pfs (which provides the
power objects of the topos of nominal sets). Note also that for a nominal set X,
neither PfsX nor PufsX form cpos (so, in particular, they do not form complete
lattices). Hence, it may come as a bit of a surprise that the Kleisli categories of
both monads are nevertheless enriched over complete lattices (Proposition 3.7),
one of the key requirements for coalgebraic trace semantics.

We present our results in a modular way so that they may be reusable for the
study of coalgebraic semantics for other types of nominal systems, such as nom-
inal tree automata. For example, we show that all binding polynominal functors,
e.g. those functors arising from a binding signature in the sense of Fiore et al. [10]
have a canonical extension to the Kleisli category of Pufs (Corollary 3.13). Anal-
ogously, we show a lifting result for terminal coalgebras to the Eilenberg-Moore
category for a subclass of these functors (Corollary 4.11).

Last but not least, on the way to the coalgebraic semantics of NOFAs and
RNNAs we take a fresh look at coalgebraic trace semantics in general. We pro-
vide a new compact proof for the main theorem of that theory. It states that
for a functor F and a monad T satisfying certain conditions, including that F
has an extension F̄ to the Kleisli category of T , the initial F -algebra extends to
a terminal coalgebra for F̄ (Theorem 3.5). We obtain this essentially as a com-
bination of Hermida and Jacobs’ adjoint lifting theorem [19, Theorem 2.14] and
an argument originally given by Freyd [11] that for locally continuous endofunc-
tors on categories enriched in cpos an initial algebra yields a terminal coalgebra.
Here we adjust this argument to work for locally monotone endofunctors on cat-
egories enriched in directed-complete partial orders. As a consequence, our proof
does not require the existence of a zero object in the Kleisli category of T and,
notably, we only need the mere existence of the initial algebra for F and not that
it is obtained after ω steps of the initial-algebra chain given by Fn0 (n < ω).

2 Preliminaries

2.1 Nominal Sets

Nominal sets form a convenient formalism for dealing with names and freshness;
for our present purposes, names play the role of data. We briefly recall basic
notions and facts and refer to Pitts’ book [34] for a comprehensive introduction.
Fix a countably infinite set A of names, and let Perm(A) denote the group
of finite permutations on A, which is generated by the transpositions (a b) for
a �= b ∈ A (recall that (a b) just swaps a and b). A nominal set is a set X
equipped with a (left) group action Perm(A) × X → X, denoted (π, x) �→ π · x,
such that every element x ∈ X has a finite support S ⊆ A, i.e. π ·x = x for every
π ∈ Perm(A) such that π(a) = a for all a ∈ S. Every element x of a nominal
set X has a least finite support, denoted supp(x). Intuitively, one should think
of X as a set of syntactic objects (e.g. strings, λ-terms, programs), and of supp(x)
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as the set of names needed to describe an element x ∈ X. A name a ∈ A is fresh
for x, denoted a # x, if a /∈ supp(x). The orbit of an element x ∈ X is given by
{π · x : π ∈ Perm(A)}. The orbits form a partition of X. The nominal set X is
orbit-finite if it has only finitely many orbits.

A map f : X → Y between nominal sets is equivariant if f(π ·x) = π ·f(x) for
all x ∈ X and π ∈ Perm(A). Equivariance implies supp(f(x)) ⊆ supp(x) for all
x ∈ X. We denote by Nom the category of nominal sets and equivariant maps.

Putting π · a = π(a) makes A into a nominal set. Moreover, Perm(A) acts
on subsets A ⊆ X of a nominal set X by π · A = {π · x : x ∈ A}. A subset
A ⊆ X is equivariant if π · A = A for all π ∈ Perm(A). More generally, it is
finitely supported if it has finite support w.r.t. this action, i.e. there exists a
finite set S ⊆ A such that π · A = A for all π ∈ Perm(A) such that π(a) = a for
all a ∈ S. The set A is uniformly finitely supported if

⋃
x∈A supp(x) is a finite

set. This implies that A is finitely supported, with least support supp(A) =⋃
x∈A supp(x) [12, Theorem 2.29]. (The converse does not hold, e.g. the set A

is finitely supported but not uniformly finitely supported.) Uniformly finitely
supported orbit-finite sets are always finite (since an orbit-finite set contains only
finitely many elements with a given finite support). We denote by Pufs : Nom →
Nom and Pfs : Nom → Nom the endofunctors sending a nominal set X to its set
of (uniformly) finitely supported subsets and an equivariant map f : X → Y to
the map A �→ f [A].

The coproduct X + Y of nominal sets X and Y is given by their disjoint
union with the group action inherited from the two summands. Similarly, the
product X ×Y is given by the cartesian product with the componentwise group
action; we have supp(x, y) = supp(x)∪ supp(y). Given a nominal set X equipped
with an equivariant equivalence relation, i.e. an equivalence relation ∼ that is
equivariant as a subset ∼ ⊆ X × X, the quotient X/∼ is a nominal set under
the expected group action defined by π · [x]∼ = [π · x]∼.

A key role in the theory of nominal sets is played by abstraction sets, which
provide a semantics for binding mechanisms [13]. Given a nominal set X, an
equivariant equivalence relation ∼ on A × X is defined by (a, x) ∼ (b, y) iff
(a c) ·x = (b c) · y for some (equivalently, all) fresh c. The abstraction set [A]X is
the quotient set (A×X)/∼. The ∼-equivalence class of (a, x) ∈ A×X is denoted
by 〈a〉x ∈ [A]X. We may think of ∼ as an abstract notion of α-equivalence, and
of 〈a〉 as binding the name a. Indeed we have supp(〈a〉x) = supp(x) \ {a} (while
supp(a, x) = {a} ∪ supp(x)), as expected in binding constructs.

The object map X �→ [A]X extends to an endofunctor [A] : Nom → Nom
sending an equivariant map f : X → Y to the equivariant map [A]f : [A]X →
[A]Y given by 〈a〉x �→ 〈a〉f(x) for a ∈ A and x ∈ X.

2.2 Nominal Automata

In this section, we recall two notions of nominal automata earlier introduced
in the literature: non-deterministic orbit-finite automata (NOFAs) [4] and regu-
lar non-deterministic nominal automata (RNNAs) [39]. The former accept data
languages (consisting of finite words over an infinite alphabet) while the latter
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accept bar languages (consisting of finite words formed by ordinary letters and
name binding ones, taken modulo α-equivalence).

Definition 2.1 [4]. (1) A NOFA A = (Q,R,F ) is given by an orbit-finite nomi-
nal set Q of states, an equivariant relation R ⊆ Q×A×Q specifying transitions,
and an equivariant set F ⊆ Q of final states. We write q

a−−→ q′ in lieu of
(q, a, q′) ∈ R.
(2) Given a string w = a1a2 · · · an ∈ A

∗ and a state q ∈ Q, a run for w from q

is a sequence of transitions q
a1−−−→ q1

a2−−−→ · · · an−−−→ qn. The run is accepting if
qn is final. The state q accepts w if there exists an accepting run for w from q.
The data language accepted by q is given by {w ∈ A

∗ : q accepts w}.

NOFAs are known to be expressively equivalent to finite memory
automata [25]. We note that in contrast to [4] we do not require NOFAs to
have an initial state q0 ∈ Q; this is more natural from a coalgebraic point of
view. Moreover, the orbit-finiteness of the states is not relevant for our results
and could be dropped.
Remark 2.2. (1) Given an endofunctor F on a category C , an F -coalgebra is a
pair (C, c) of an object C and a morphism c : C → FC on C . A homomorphism
of F -coalgebras from (C, c) to (D, d) is a morphism h : C → D with d ·h = Fh ·c.
(2) A NOFA corresponds precisely to an orbit-finite coalgebra 〈f, δ〉 : Q −→
2 × Pfs(A × Q) for the functor on Nom given by

Q �→ Pfs(1 + A × Q) ∼= 2 × Pfs(A × Q).

In fact, f : Q → 2 defines the equivariant set F ⊆ Q of final states and δ : Q →
Pfs(A × Q) defines the transitions via q

a−−→ q′ iff (a, q′) ∈ δ(q).

In order to incorporate explicit name binding into the automata-theoretic
setting, we work with bar strings, i.e. finite words over the infinite alphabet

Ā := A ∪ { a : a ∈ A}.

We denote the nominal set of all bar strings by Ā
∗, and we equip it with the

group action defined pointwise. The letter a is interpreted as binding the name a
to the right. Accordingly, a name a ∈ A is said to be free in a bar string w ∈ Ā

∗

if (1) the letter a occurs in w, and (2) the first occurrence of a is not preceded
by any occurrence of a. For instance, the name a is free in a aba but not free in
aaba, while the name b is free in both bar strings. This yields a natural notion
of α-equivalence:

Definition 2.3 (α-equivalence). Let =α be the least equivalence relation
on Ā

∗ such that x av =α x bw for all a, b ∈ A and x, v, w ∈ Ā
∗ such that

〈a〉v = 〈b〉w. We denote by Ā
∗/=α the sets of α-equivalence classes of bar strings,

and we write [w]α for the α-equivalence class of w ∈ Ā
∗.

Remark 2.4. (1) Pitts [34, Lemma 4.3], for every pair v, w ∈ Ā
∗ the condition

〈a〉v = 〈b〉w holds if and only if

a = b and v = w, or b # v and (a b) · v = w.
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(2) The equivalence relation =α is equivariant. Therefore, Ā∗/=α forms a nom-
inal set with the group action π · [w]α = [π · w]α for π ∈ Perm(A) and w ∈ Ā

∗.
The least support of [w]α is the set of free names of w.

Definition 2.5 [39]. (1) An RNNA A = (Q,R,F ) is given by an orbit-finite
nominal set Q of states, an equivariant relation R ⊆ Q × Ā × Q specifying
transitions, and an equivariant set F ⊆ Q of final states. We write q

σ−−→ q′ if
(q, σ, q′) ∈ R. The transitions are subject to two conditions:

(a) α-invariance: if q
a−−→ q′ and 〈a〉q′ = 〈b〉q′′, then q

b−−→ q′′.
(b) Finite branching up to α-invariance: For every q ∈ Q the sets

{(a, q′) : q
a−−→ q′} and {〈a〉q′ : q

a−−→ q′}
are finite (equivalently, uniformly finitely supported).

(2) Given a bar string w = σ1σ2 · · · σn ∈ Ā
∗ and a state q ∈ Q, a run for w from

q is a sequence of transitions q
σ1−−−→ q1

σ2−−−→ · · · σn−−−→ qn. The run is accepting
if qn is final. The state q accepts w if there exists an accepting run for w from
q. The bar language accepted by q is given by {[w]α : w ∈ Ā

∗, A accepts w}.

Remark 2.6. As for NOFAs, we do not equip RNNAs with explicit initial
states. Similar to Remark 2.2, RNNAs are seen to correspond to coalgebras
〈f, δ, τ〉 : Q −→ 2 × Pufs(A × Q) × Pufs([A]Q) for the functor on Nom given by

Q �→ Pufs(1 + A × Q + [A]Q) ∼= 2 × Pufs(A × Q) × Pufs([A]Q).

Here f and δ correspond to final states and free transitions, and the equivariant
map τ : Q → Pufs([A]Q) defines the α-invariant bound transitions via q

a−−→ q′

iff 〈a〉q′ ∈ τ(q). The use of Pufs (in lieu of Pfs) ensures that if Q is orbit-finite,
then the finiteness conditions in the definition of an RNNA are met.

However, we note that while our results on coalgebraic semantics are stated
for RNNAs they actually hold without orbit-finiteness assumptions.

Our goal is to interpret the above ad-hoc definition of the data languages of
a NOFA and the bar languages of an RNNA within the coalgebraic framework.

2.3 Initial Algebras in DCPO⊥-enriched Categories

For the Kleisli-style coalgebraic trace semantics we shall make use of a result
which shows that in categories where the hom-sets are enriched over directed-
complete partial orders, the initial algebra and terminal coalgebra coincide.

Recall that a subset D ⊆ P of a poset P is directed if every finite subset of D
has an upper bound in D; equivalently, D is nonempty and for every x, y ∈ D,
there exists a z ∈ D with x, y ≤ z. The poset P is a dcpo with bottom if it has
a least element and directed joins, that is, every directed subset has a join in P .
We write DCPO⊥ for the category of dcpos with bottom and continuous maps
between them; a map is continuous if it is monotone and preserves directed joins.
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Definition 2.7. (1) A category C is left strictly DCPO⊥-enriched provided that
each hom-set is equipped with the structure of a dcpo with bottom, and com-
position preserves bottom on the left and is continuous: for every morphism f
and appropriate directed sets of morphisms gi (i ∈ D) we have

⊥ · f = ⊥, f · ∨i∈D gi =
∨

i∈D f · gi,
( ∨

i∈D gi

) · f =
∨

i∈D gi · f.

(2) A functor on C is locally monotone if its restrictions C (A,B) → C (FA,FB)
to the hom-sets are monotone.

Theorem 2.8 [1, Prop. 5.6]. Let F be a locally monotone functor on a
left strictly DCPO⊥-enriched category. If an initial algebra (μF, ι) exists, then
(μF, ι−1) is a terminal coalgebra.

(This uses that the structure ι : F (μF ) → μF of the initial algebra is an iso-
morphism by Lambek’s Lemma [29].) This result is an adaptation of an earlier
related result proved by Freyd [11] for locally continuous functors on ω-cpo-
enriched categories. Note that preservation of bottom on the right (f · ⊥ = ⊥)
is not needed for this result.

3 Coalgebraic Trace Semantics

In this section we shall see that the (bar) language semantics of NOFAs and
RNNAs is an instance of coalgebraic trace semantics. To this end we first adapt
and generalize the coalgebraic trace semantics for set functors by Hasuo et al. [18]
to arbitrary categories. Here one considers coalgebras for composed functors TF ,
where T is a monad modelling a branching type like non-determinism or prob-
abilistic branching, and F models the type of transitions of systems. We then
instantiate this to coalgebras in Nom for functors TF , where T is Pfs and F a
polynominal functor or T = Pufs and F a binding polynomial functor. Specifi-
cally, we obtain the two desired types of nominal automata as instances.

3.1 General Coalgebraic Trace Semantics Revisited

We begin by recalling a few facts about extensions of functors to Kleisli
categories.

Remark 3.1. Let F be a functor and (T, η, μ) a monad, both on the category C .
(1) The Kleisli category Kl(T ) has the same objects as C and a morphisms f from
X to Y is a morphism f : X → TY of C . The composition of f with g : Y → TZ
is defined by μZ · Tg · f and the identity on X is ηX : X → TX. We have the
identity-on-objects functor J : C → Kl(T ) defined by J(f : X → Y ) = ηY · f .
(2) An endofunctor F̄ : Kl(T ) → Kl(T ) extends the functor F if F̄ J = JF . It is
well known and easy to prove (see Mulry [33]) that extensions of F to Kl(T ) are
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in bijective correspondence with distributive laws of F over T ; these are natural
transformations λ : FT → TF compatible with the monad structure of T :

F FT

TF

Fη

ηF
λ

FTT TFT TTF

FT TF

λT

Fμ

Tλ

μF

λ

(3) Let G be a quotient functor of F , which means that we have a natural
transformation with epimorphic components q : F � G. Suppose that F extends
to Kl(T ) via a distributive law λ : FT → TF . Then an object-indexed family of
morphisms �X : GTX → TGX is a distributive law of G over T provided that
the following squares commute

FTX TFX

GTX TGX

λX

qT X TqX

�X

for every object X of C .

Example 3.2. (1) Constant functors and the identity functor on C obviously
extend to Kl(T ).
(2) For a pair F,G of endofunctors which extend to Kl(T ), their composition
extends, too, and we have GF = ḠF̄ .
(3) Suppose that C has coproducts. Then F + G = F̄ + Ḡ, for a pair F,G of
endofunctors which extend to Kl(C ). Indeed, for a coproduct F +G one uses that
J : C → Kl(T ), being a left adjoint, preserves coproducts. Given extensions F̄
and Ḡ, it is then clear that F̄ +Ḡ extends F +G: for every morphism f : X → TY
in Kl(T ) one has

F + G(f) =
(
FX + FY

F̄ f+Ḡf−−−−−−→ TFY + TGY
[T inl,T inr]−−−−−−−→ T (FY + GY )

)
,

where FY
inl−−→ FY + GY

inr←−−− GY are the coproduct injections. This works
similarly for arbitrary coproducts.
(4) Suppose that C has finite products. Then finite products of functors with
an extension can be extended when the monad T is commutative; this notion
was introduced by Kock [26, Definition 3.1]. It is based on the notion of a strong
monad, that is a monad T equipped with a natural transformation sX,Y : X ×
TY → T (X × Y ) (called strength) satisfying four natural equational laws (two
w.r.t. 1 and × on C and two w.r.t. the monad structure).
We do not recall these laws explicitly since they are not needed for our
exposition. A strength gives rise to a costrength tX,Y : TX × Y → T (X × Y )
defined by

tX,Y =
(
TX × Y ∼= Y × TX

sY,X−−−−→ T (Y × X)
T (∼=)−−−−→ T (X × Y )

)
.
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The monad T is commutative if the following diagram commutes:

T (TX × Y ) TT (X × Y )

TX × TY T (X × Y )

T (X × TY ) TT (X × Y )

TtX,Y

μX×YsT X,Y

tX,T Y

dX,Y

TsX,Y μX×Y

The ensuing natural transformation d in the middle is used to extend the
product F × G of endofunctors on C having extensions F̄ and Ḡ on Kl(T ): for
every morphism f : X → TY in Kl(T ) one puts

F × G(f) =
(
FX × GX

F̄ f×Ḡf−−−−−−→ TFY × TGY
dF Y,GY−−−−−−→ T (FY × GY )

)
.

Remark 3.3. (1) Every set monad is strong via a canonical strength; this fol-
lows, for example, from Moggi’s result [32, Theorem 3.4]. For example, the power-
set functor P : Set → Set is commutative via its canonical strength

sX,Y : X × PY → P(X × Y ) defined by (x, S) �→ {(x, s) : s ∈ S}. (3.1)

(2) As a consequence of what we saw in Example 3.2 every polynomial set functor
has a canonical extension to the Kleisli category of any commutative set monad
(cf. [18, Lemma 2.4]).
(3) More generally, this results holds for analytic set functors [30, Theorem 2.9].
That notion was introduced by Joyal [23,24], and he proved that analytic set
functors are precisely those set functors which weakly preserve wide pullbacks.

With the help of Hermida and Jacobs’ result [19, Theorem 2.14] on extending
adjunctions to categories of algebras one easily obtains the following extension
result for initial algebras:

Proposition 3.4. Let T be a monad on the category C and let F : C → C have
an extension F̄ on Kl(T ). If (μF, ι) is an initial F -algebra, then μF is an initial
F̄ -algebra with the structure Jι = ημF · ι : F (μF ) → T (μF ).

Coalgebraic trace semantics can be defined when the extended initial algebra
above is also a terminal coalgebra for F̄ .

Theorem 3.5. Let F be a functor and T a monad on the category C . Assume
that Kl(T ) is left strictly DCPO⊥-enriched and that F has a locally monotone
extension F̄ on Kl(T ) and an initial algebra (μF, ι). Then (μF, Jι−1) is a termi-
nal coalgebra for F̄ .

Proof. Immediate from Proposition 3.4 and Theorem 2.8. ��
Compared to the previous result for Set [18, Theorem 3.3] our assumption

on the enrichment of the Kleisli category is slightly stronger; in op. cit. only
enrichment in ω-cpos is required. A related result [20, Theorem 5.3.4] for general
base categories uses enrichment in directed-complete partial orders. However, in
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contrast to both of these results, we do not require that Kl(T ) has a zero object
and, most notably, we only need the mere existence of μF and not that the initial
algebra for F is obtained by the first ω steps of the initial-algebra chain, that is,
as the colimit of the ω-chain given by Fn0 (n < ω). The technical reason for this
is that the proof of Theorem 2.8 does not make use of the classical limit-colimit
coincidence technique used e.g. by Smyth and Plotkin in their seminal work [42].
Consequently, our proof is easier and shorter than the previous ones.

Definition 3.6 (Coalgebraic Trace Semantics). Given F and T on C sat-
isfying the assumptions in Theorem 3.5 and a coalgebra c : X → TFX. The
coalgebraic trace map is the unique coalgebra homomorphism trc from (X, c) to
(μF, Jι−1); that is, the following diagram commutes in Kl(T ):

X μF

F̄X F̄ (μF )

c

trc

Jι−1

F̄ trc

(3.2)

Among the instances of coalgebraic trace semantics are the trace seman-
tics of labelled transition systems with explicit termination [18], which are the
coalgebras for the set functor P(1 + Σ × X), and that of probabilistic labelled
transitions systems [17, Chapter 4], which are the coalgebras for the set functor
D≤(1 + Σ × X), where D≤ denotes the subdistribution monad.

3.2 Coalgebraic Trace Semantics of Non-deterministic Nominal
Systems

We will now work towards showing that the semantics of nominal automata is
an instance of the coalgebraic trace semantics. To this end we will instantiate
Theorem 3.5 to C = Nom, FX = 1 + A × X and T = Pfs (for NOFAs), or
to FX = 1 + A × X + [A]X and T = Pufs (for RNNAs), cf. Remarks 2.2
and 2.6. More generally, we show that every endofunctor arising from a nominal
algebraic signature in the sense of Pitts [34, Definition 8.2] has a locally monotone
extension to Kl(Pufs). For T = Pfs most of the development also works out, as we
shall see. However, the distributive law for the abstraction functor in the proof
of Proposition 3.11 is not well-defined for Pfs.

But the first obstacle is that the nominal sets PfsX and PufsX are in general
no complete lattices (and not even ω-cpos) since the union of a chain of (uni-
formly) finitely supported sets may fail to be (uniformly) finitely supported.In
this light, the following result is slightly surprising.

Proposition 3.7. For every pair X,Y of nominal sets, the sets Kl(Pfs)(X,Y )
and Kl(Pufs)(X,Y ) form complete lattices (whence dcpos with bottom).

Corollary 3.8. If a locally monotone endofunctor H on Kl(Pfs) or Kl(Pufs) has
an initial algebra (μH, ι), then (μH, ι−1) is its terminal coalgebra.
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This is a consequence of Theorem 2.8 since the composition in Kl(Pfs) and
Kl(Pufs) is easily seen to preserve the bottom (empty set) on the left and all
joins (unions).

Extending functors to Kl(Pfs) and Kl(Pufs). We now show that endofunc-
tors arising from a nominal algebraic signature (with one name and one data
sort) [34, Definition 8.2] have a canonical locally monotone extension to Kl(Pufs).
For instance, the functor F used for RNNAs has a locally monotone extension F̄
on Kl(Pufs).

Definition 3.9. The class of binding polynomial functors on Nom is the smallest
class of functors containing the constant and identity and abstraction functors
and being closed under coproducts, finite products and composition.

In other words, binding polynomial functors are formed according to the
grammar:

F ::= C | Id | [A](−) | F × F | ∐
i∈I Fi | FF, (3.3)

where C ranges over all constant functors on Nom and I is an arbitrary index
set. Functors arising from a binding signature in the sense of Fiore et al. [10]
and those associated to a nominal algebraic signature with one name sort and
one data sort (see Pitts [34, Definition 8.12]) are instances of binding polynomial
functors.

Proposition 3.10. The monads Pfs and Pufs are commutative w.r.t. to the
strengths obtained by restricting the one in (3.1).

Proposition 3.11. The abstraction functor [A](−) has a locally monotone
extension on Kl(Pufs).

Proof (Sketch). One uses Remark 3.1(3): the abstraction functor is a quotient
of the functor FX = A × X which is equipped with the canonical distribu-
tive law λX : A × PufsX → Pufs(A × X) obtained using the strength of Pufs

(Example 3.2(4) and cf. (3.1)). The maps �X : [A](PufsX) → Pufs([A]X) are
defined by �X(〈a〉S) = {〈a〉s : s ∈ S}. ��
Remark 3.12. For the monad Pfs our proof does not work. The problem is
that �X above is not well-defined in general if S is not uniformly finitely sup-
ported. For example, for A ∈ PfsA we have 〈a〉A = 〈b〉A for every pair a, b of
names. However, if a �= b, then the sets {〈a〉c : c ∈ A} and {〈b〉c : c ∈ A} differ:
〈a〉b is contained in the former but not in the latter set. In fact, since a �= b,
〈a〉b = 〈b〉c can hold only if a#{b, c} and b = (a b) ·c (see Pitts [34, Lemma 4.3]).
The latter means that c = a contradicting freshness of a.

Corollary 3.13. Every binding polynomial functor has a canonical locally
monotone extension to Kl(Pufs).

Unsurprisingly, an analogous result holds for polynomial functors and Pfs by
the same reasoning applied to a grammar as in (3.3) that does not include the
abstraction functor:
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Corollary 3.14. Every polynomial functor has a canonical locally monotone
extension to Kl(Pfs).

Nominal Coalgebraic Trace Semantics. Every binding polynomial func-
tor F is finitary and therefore has an initial algebra. In particular, if F arises
from a nominal algebraic signature, we know from Pitts [34, Theorem 8.15] its
initial algebra μF is carried by the nominal set of terms modulo α-equivalence
(defined in Definition 8.6 of op. cit.) of the nominal algebraic signature. If F
is polynomial, then α-equivalence is trivial and μF the usual set of terms. By
Corollary 3.8 we have

Corollary 3.15. (1) For every polynomial functor F the terminal coalgebra
of its canonical extension F̄ on Kl(Pfs) is carried by the nominal set μF .
(2) For every binding polynomial functor F the terminal coalgebra of its canon-
ical extension F̄ on Kl(Pufs) is carried by the nominal set μF .

According to Definition 3.6 we can thus define a coalgebraic trace semantics
for every coalgebra X → PfsFX with F a polynomial functor, as well as for
every coalgebra X → PufsFX with F a binding polynomial functor. We now
instantiate this to the two types of nominal automata introduced in Sect. 2.2.

Coalgebraic Trace Semantics of NOFAs. Recall from Remark 2.2 that
NOFAs are coalgebras X → PfsFX where FX = 1 + A × X on Nom.

Proposition 3.16. The initial algebra for F is the nominal set A∗ with struc-
ture ι : 1 + A × A

∗ → A
∗ defined by ι(∗) = ε and ι(a,w) = aw.

Indeed, the functor F arises from from the algebraic signature with a constant ε
and unary operations a(−) for every a ∈ A, and clearly the corresponding term
algebra is isomorphic to the algebra A

∗.

Corollary 3.17. The terminal coalgebra for the extension F̄ : Kl(Pfs) → Kl(Pfs)
is (A∗, Jι−1) for ι from Proposition 3.16.

Theorem 3.18. For every NOFA c : X → PfsFX its coalgebraic trace map
trc : X → Pfs(A∗) assigns to every state of X its accepted data language.

Indeed, one readily works out that assigning to every state of X its data language
is a coalgebra homomorphism from (X, c) to (μF, Jι−1) in Kl(Pfs).

Coalgebraic Trace Semantics of RNNAs. Recall from Remark 2.6 that
RNNAs are coalgebras X → PufsFX where FX = 1 + A × X + [A]X on Nom.

Proposition 3.19. The initial algebra for F : Nom → Nom is the nominal set
Ā

∗/=α of all bar strings modulo α-equivalence with the algebra structure ι : 1 +
A × (Ā∗/=α) + [A](Ā∗/=α) → Ā

∗/=α defined by

ι(∗) = [ε]α, ι(a, [w]α) = [aw]α, ι(〈a〉[w]α) = [|aw]α. (3.4)
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Indeed, the functor F arises from a nominal algebraic signature with a constant ε,
unary operations a(−) for every a ∈ A and one unary name binding operation
. Terms over this signature are obviously the same as bar strings. Moreover, it
is not difficult to show that Pitts’ notion of α-equivalence for terms [34, Defini-
tion 8.6] is equivalent to α-equivalence for bar strings in Definition 2.3. Finally,
the algebra structure in (3.4) above corresponds to the one given by term forma-
tion by Pitts [34, Theorem 8.15]. Using Theorem 3.5 we thus obtain the following
result.

Corollary 3.20. The terminal coalgebra for the extension F̄ : Kl(Pufs) →
Kl(Pufs) is (Ā∗/=α, Jι−1) for ι from (3.4).

Theorem 3.21. For every RNNA c : X → PufsFX its coalgebraic trace map
trc : X → Pufs(Ā∗/=α) assigns to every state of X its accepted bar language.

Indeed, one readily works out that assigning to every state of X its bar language
is a coalgebra homomorphism from (X, c) to (μF, Jι−1) in Kl(Pufs).

4 Coalgebraic Language Semantics

In this section we shall see that the language semantics of NOFAs and RNNAs
is an instance of coalgebraic language semantics [7]. The latter is based on the
generalized determinization construction by Silva et al. [40]. Here one considers
coalgebras for a functor GT , where T models a branching type and G models
the type of transition of a system (similarly as before in the coalgebraic trace
semantics, but this time the order of composition is reversed). Again, we will
apply this to coalgebras in Nom for functors GT , where T = Pfs and G is
functor composed of products and exponentials, or to T = Pufs and G composed
of products, exponentials and binding functors. Specifically, we obtain the two
desired types of nominal automata as instances.

4.1 A Recap of General Coalgebraic Language Semantics

We begin by recalling a few facts about liftings of functors to Eilenberg-Moore
categories.

Remark 4.1. Let G be a functor and (T, η, μ) be a monad on the category C .
(1) The Eilenberg-Moore category EM(T ) consists of algebras (A, a) for T , that is,
pairs formed by an object A and a morphism a : TA → A such that a · ηA = idA

and a · μA = a · Ta. A morphism in EM(T ) from (A, a) to (B, b) is a morphism
h : A → B of C such that h·a = b·Th. We write U : EM(T ) → C for the forgetful
functor mapping an algebra (A, a) to its underlying object A.
(2) A lifting of G is an endofunctor Ĝ : EM(T ) → EM(T ) such that GU = UĜ.
As shown by Applegate [2] (see also Johnstone [22]), liftings of G to EM(T ) are
in bijective correspondence with distributive laws of T over G. The latter are
natural transformations λ : TG → GT compatible with the monad structure:

Gη = λ · ηG, λ · μG = Gμ · λT · Tλ.
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(3) Suppose that G has a terminal coalgebra (νG, τ) and the lifting Ĝ on EM(T )
via the distributive law λ. It follows from the work of Turi and Plotkin [35]
(see also Bartels [3, Theorem 3.2.3]) that the terminal coalgebra for G lifts to
a terminal coalgebra for Ĝ. In fact, one obtains a canonical structure of a T -
algebra on νG by taking the unique coalgebra homomorphism α in the diagram
below:

T (νG) TG(νG) GT (νG)

νG G(νG)

Tτ

α

λνG

Gα

τ

It is then easy to prove that α is indeed the structure of an algebra for T
and that τ : νG → G(νG) is a homomorphism of Eilenberg-Moore algebras (in
fact, this is expressed by the commutativity of the above diagram). Moreover,
(νG, τ) is the terminal Ĝ-coalgebra.

Proposition 4.2. Let T : C → C be a monad and L � R : C → C an adjunction
with the counit ε : LR → Id. Given a distributive law λ : LT → TL, we obtain a
distributive law � : TR → RT as the adjoint transpose of LTR

λR−−−→ TLR
Tε−−−→ T.

Recall that the adjoint transpose of a morphism LX → Y is the corresponding
morphism X → RY under the natural isomorphism C (LX, Y ) ∼= C (X,RY ).

Example 4.3. (1) The identity functor on C obviously lifts to EM(T ), and so
does a constant functor on the carrier object of an Eilenberg-Moore algebra
for T .
(2) Suppose that C has products. Then for a product F ×G of functors one uses
that U preserves products. Given liftings F̂ and Ĝ, it is clear that F̂ × Ĝ is a
lifting of F × G. This works similarly for arbitrary products.
(3) Suppose that C is cartesian closed and that the monad T is strong (cf. Exam-
ple 3.2(4)). Then the exponentiation functor (−)A lifts to EM(T ) for every object
A of C . In fact, we apply Proposition 4.2 to the adjunction A × (−) � (−)A and
use that two of the axioms of the strength A × TX → T (A × X) state that it is
a distributive law of A × (−) over T .

Remark 4.4. Recall that, for every monad (T, η, μ) on C , the pair (TX, μX) is
the free algebra for T on X with the universal morphism ηX : X → TX. Given
an Eilenberg-Moore algebra (A, a) for T and a morphism f : X → A in C , we
have a unique morphism f 
 : (TX, μX) → (A, a) in EM(T ) such that f 
 ·ηX = f .
We call f 
 the homomorphic extension of f .

Construction 4.5 (Generalized Determinization [40]). Let T be a monad
on the category C and G an endofunctor on C having a lifting Ĝ on EM(T ).
Given a coalgebra c : X → GTX its (generalized) determinization is the G-
coalgebra obtained by taking the homomorphic extension c
 : TX → GTX using
that Ĝ(TX, μX) is an algebra for T carried by GTX.
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Among the instances of this construction are the well-known power-set con-
struction of deterministic automata [40] as well as the non-determinization of
alternating automata and that of Simple Segala systems [21].

Definition 4.6 (Coalgebraic Language Semantics [7]). Given T , G and a
coalgebra c : X → GTX as in Construction 4.5, the coalgebraic language mor-
phism ‡c : X → νG is the composite of the unique coalgebra homomorphism
h from the determinization of (X, c) to νG with the unit ηX of the monad T ,
which is summarized in the diagram on the left below:

X TX νG

GTX G(νG)

c

ηX

‡c

h

c�

τ

Gh

Among the instances of coalgebraic language
semantics are the language semantics of non-
deterministic [21,40], weighted and proba-
bilistic automata, but also the languages gen-
erated by context-free grammars [31,43], con-
structively S-algebraic formal power series for
a semiring S (the ‘context-free’ weighted lan-

guages) [31,44]. Less direct instances are the languages accepted by machines
with extra memory such as (deterministic) push-down automata and Turing
machines [15].

Relation of Coalgebraic Trace and Language Semantics. Jacobs et al. [21]
show how the coalgebraic trace semantics and coalgebraic language semantics
are connected in cases where both are applicable. We now give a terse review of
this.

Assumption 4.7. We assume that T is a monad and F,G are endofunctors, all
on the category C , such that F has the extension F̄ on Kl(T ) via the distribu-
tive law λ : FT → TF and G has the lifting Ĝ on EM(T ) via the distributive
law � : TG → GT . Moreover, we assume that we have an extension natural
transformation ε : TF → GT compatible with the two distributive laws:

TFT TTF TF

GTT GT

Tλ

εT

μF

ε

Gμ

TTF TF

TGT GTT GT

μF

Tε ε

�T Gμ

(4.1)

Remark 4.8. (1) For every object X of C the morphism εX is a homomorphism
of Eilenberg-Moore algebras for T from (TFX, μFX) to Ĝ(TX, μX). Indeed, this
is precisely what the commutativity of the diagram on the right in (4.1) expresses.
(2) For every coalgebra c : X → TFX the extension natural transformation
yields a coalgebra εX · c : X → GTX, and we take its determinization (TX, (εX ·
c)
). This is the object assignment of the functor E : Coalg(F̄ ) → Coalg(Ĝ) which
maps an F̄ -coalgebra homomorphism h : (X, c) → (Y, d) to Eh = h
 : TX → TY ,
the homomorphic extension of h : X → TY (in C ). One readily proves that
h
 is a Ĝ-coalgebra homomorphism using the naturality of ε as well as the
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laws in (4.1). Functoriality follows since E is clearly a lifting of the canonical
comparison functor Kl(T ) → EM(T ); see Jacobs et al. [21, Theorem 2] for the
proof.
(3) We obtain a canonical morphism e : T (μF ) → νG by applying the func-
tor E to the coalgebra Jι−1 : μF → TF (μF ) (cf. Proposition 3.4) and tak-
ing the unique coalgebra homomorphism from it to the terminal Ĝ-coalgebra
(Remark 4.1(3)).

Now recall the coalgebraic trace semantics from Definition 3.6. The following
result follows from Jacobs et al.’s result [21, Prop. 5].

Proposition 4.9. For every coalgebra c : X → TFX we have

‡(εX · c) =
(
X

trc−−−→ T (μF ) e−−→ νG
)
.

4.2 Coalgebraic Language Semantics of Nominal Systems

We will now work towards that the language semantics of nominal automata is
an instance of coalgebraic language semantics. To this end we will instantiate
the results of Sect. 4.1 to C = Nom, GX = 2 × XA and T = Pfs (for NOFAs),
or to GX = 2 × XA × [A]X and T = Pufs (for RNNAs). More generally, in the
former case we show that certain polynomial functors G with exponentiation
lift to EM(Pfs), and in the latter case, certain binding polynomial functors with
exponentation lift to EM(Pufs). For our specific instances of interest we show
that the terminal coalgebra νG is given by (data or bar) languages. The desired
end result then follows by an application of Proposition 4.9.

The class of functors G we consider are formed according to the grammar

G ::= A | Id | [A](−) | ∏
i∈I Gi | GN , (4.2)

where A ranges over all nominal sets equipped with the structure a : PufsA → A
of an algebra for the monad Pufs, I is an arbitrary index set, and N ranges
over all nominal sets. Every such functor G has a canonical lifting to EM(Pufs).
This can be proved by induction over the grammar using Example 4.3 and the
following result.

Proposition 4.10. The abstraction functor has a canonical lifting to EM(Pufs).

Proof. The abstraction functor [A](−) has a left-adjoint A∗(−), where ∗ denotes
the fresh product defined for two nominal sets X and Y by

X ∗ Y = {(x, y) : x ∈ X, y ∈ Y, supp(x) ∩ supp(y) = ∅},
see [34, Theorem 4.12]. The strength of Pufs restricts to the fresh product; we
have

sX,Y : X ∗ PufsY → Pufs(X ∗ Y ) (x, S) �→ {(x, s) : s ∈ S}.

Indeed, if supp(x) ∩ supp(S) = ∅, then supp(x) ∩ supp(s) = ∅ for every s ∈ S
because S is uniformly finitely supported and thus supp(s) ⊆ supp(S). It follows
that sA,X : A∗PufsX → Pufs(A∗X) yields a distributive law of A∗ (−) over Pufs.
By Proposition 4.2 we thus obtain a distributive law of Pufs over [A](−). ��
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Corollary 4.11. For every functor G according to the grammar in (4.2) the
terminal coalgebra νG lifts to a terminal coalgebra of Ĝ on EM(Pufs).

The terminal coalgebra νG exists since every such G is an accessible functor on
Nom. This can be shown by induction on the structure of G; for exponentiation
in the induction step one argues similarly as Wißmann [45, Cor. 3.7.4] has done
for orbit-finite sets: an exponentiation functor (−)N is λ-accessible iff the set of
orbits of N has cardinality less than λ. Now use Remark 4.1(3).

Consequently, one can define a coalgebraic language semantics for every func-
tor G according to the grammar (4.2).

Remark 4.12. (1) For T = Pfs one has the same results for functors G on
Nom according to the grammar obtained from the one in (4.2) by dropping the
abstraction functor [A](−) and letting A range over all nominal sets equipped
with the structure a : PfsA → A of an algebra for the monad Pfs. Every functor
according to the changed grammar has a canonical lifting to EM(Pfs). More
generally, this works whenever T is a strong monad on a cartesian closed category
(by Example 4.3).
(2) We have dropped the abstraction functor in the previous item because our
proof of Proposition 4.10 does not work for Pfs. The problem is that the strength
in (3.1) does not restrict to the fresh product for all finitely supported subsets.
Indeed, even if supp(x) and supp(S) are disjoint, the support of x may not be
disjoint from that of every element s ∈ S, whence (x, s) does not lie in X ∗ Y .
For example, take X = Y = A and S = A \ {a} for some a ∈ A. Clearly,
supp(S) = {a}. Thus, for every b �= a, we see that (b, S) lies in A∗PfsA. However,
while b ∈ S we do not have that (b, b) ∈ A ∗ A = {(a, a′) : a, a′ ∈ A, a �= a′},
which means that sA,A(b, S) does not lie in Pfs(A ∗ A).

Coalgebraic Language Semantics of NOFAs. We now apply the previous
results to T = Pfs and GX = 2 × XA.

Remark 4.13. We have a canonical isomorphism Pfs(A × X) ∼= (PfsX)A given
by S �→ (a �→ {x : (a, x) ∈ S}). This follows from the fact that Pfs is the power
object functor on the topos Nom and so we have PfsX ∼= 2X .

Consequently, a NOFA may be regarded as a coalgebra for GPfs:

X → Pfs(1 + A × X) ∼= 2 × (PfsX)A = GPfsX.

Proposition 4.14. The terminal coalgebra for G is the nominal set Pfs(A∗) of
all data languages with the structure

Pfs(A∗) τ−−→ 2 × Pfs(A∗)A, L �→ (b, a �→ a−1L),

where b = 1 if ε ∈ L and 0 else, and a−1L = {w ∈ A
∗ : aw ∈ L}.

The proof is analogous to the one that for every alphabet A the set functor
X → 2 × XA has the terminal coalgebra P(A∗), see e.g. Rutten [38].

We may thus define the coalgebraic language semantics for NOFAs as in
Definition 4.6.
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Remark 4.15. We take FX = 1 + A × X as in Theorem 3.18 and obtain
μF = A

∗ (Proposition 3.16) and νG = Pfs(A∗) (Proposition 4.14). Moreover,
analogous to ordinary non-deterministic automata [21, Sec. 7.1], we have an
extension natural transformation εX : Pfs(1 + A × X) → 2 × (PfsX)A given by

εX(S) = (b, a �→ Sa),

where b = 1 iff the element ∗ of 1 lies S and Sa = {x : (a, x) ∈ S}. The ensuing
canonical morphism e : Pfs(μF ) → νG from Remark 4.8 is then easily seen to be
just the identity map on Pfs(A∗).

Corollary 4.16. The coalgebraic language semantics assigns to each state of a
NOFA the data language it accepts.

Indeed, this follows from Theorem 3.18 and Proposition 4.9 using that in the
latter result e is the identity map on Pfs(A∗).

Coalgebraic Language Semantics of RNNAs. We now apply the previous
results to T = Pufs and GX = 2 × XA × [A]X.

Remark 4.17. (1) The canonical isomorphism from Remark 4.13 restricts to an
injection i : Pufs(A×X) � (PufsX)A. Indeed, take a uniformly finitely supported
subset S ⊆ A × X. Then for every a ∈ A, every element x of the set i(S)(a) =
{x : (a, x) ∈ S} satisfies supp(x) ⊆ {a} ∪ supp(x) = supp(a, x) ⊆ supp(S) and
therefore that set lies in PufsX. However, note that the inverse of the isomorphism
from Remark 4.13 does not restrict to uniformly finitely supported subsets.
(2) The components �X : [A]PufsX → Pufs([A]X) of the distributive law
from the proof of Proposition 3.11 are in fact isomorphisms with inverses
ψX : Pufs([A]X) → [A]PufsX defined by ψX(S) = 〈a〉{x : 〈a〉x ∈ S}, where a is
fresh for S. These inverses can also be gleaned from Pitts’ result [34, Prop. 4.14]
which shows that the abstraction functor preserves exponentials specializing to
Pfs([A]X) ∼= [A]PfsX. However, note that �X has a more involved description in
the case of Pfs.

It follows that for every nominal set X we have an injection

mX : 2 × Pufs(A × X) × Pufs([A]X) � 2 × (PufsX)A × [A](PufsX). (4.3)

Thus every RNNA (Remark 2.6) may be regarded as a coalgebra for GPufs.
A description of the terminal coalgebra for G has previously been given by

Kozen et al. [27, Theorem 4.10]. We provide a different (of course, isomorphic)
description as a final ingredient for our desired result.

Proposition 4.18. The terminal coalgebra for G is the nominal set Pfs(Ā∗/=α)
of all bar languages with the structure

Pfs(Ā∗/=α) τ−−→ 2 × (Pfs(Ā∗/=α))A × [A]Pfs(Ā∗/=α), S �→ (b, a �→ Sa, S a),

where b = 1 if [ε]α ∈ S and 0 else, Sa = {[w]α : [aw]α ∈ S} and S a = 〈a〉{[w]α :
[ aw]α ∈ S} for any a which is fresh for S.
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We may thus define the coalgebraic language semantics for RNNAs as in
Definition 4.6.

Remark 4.19. We take FX = 1+A×X +[A]X as in Theorem 3.21 and obtain
μF = Ā

∗/=α (Proposition 3.19) and νG = Pfs(Ā∗/=α) (Proposition 4.18).
We also define a natural transformation ε : PufsF → GPufs by composing the
canonical isomorphism Pufs(1 + A × X + [A]X) ∼= 2 × Pufs(A × X) × Pufs([A]X)
with the injection mX from (4.3). For every uniformly finitely supported subset
S ⊆ 1 + A × X + [A]X we have εX(S) = (b, a �→ Sa, S a), where b = 1 iff the
element ∗ of 1 lies in S, Sa = {s : (a, s) ∈ S} and S a = 〈a〉{s : 〈a〉s ∈ S}, where
a is fresh for (all elements 〈b〉s in) S.

Lemma 4.20. The natural transformation ε : PufsF → GPufs is an extension.

Lemma 4.21. The canonical morphism e : Pufs(μF ) → νG from Remark 4.8 is
the inclusion map Pufs(Ā∗/=α) ↪→ Pfs(Ā∗/=α).

Corollary 4.22. The coalgebraic language semantics assigns to each state of an
RNNA the bar language it accepts.

Indeed, this follows from Theorem 3.21 and Proposition 4.9 using that in the
latter result e : Pufs(Ā∗/=α) ↪→ Pfs(Ā∗/=α) is the inclusion map by Lemma 4.21.

5 Conclusions and Future Work

We have worked out coalgebraic semantics for two species of non-deterministic
automata for data languages: NOFAs [4] and RNNAs [39]. We have seen that
their semantics arises both as an instance of the Kleisli style coalgebraic trace
semantics and from the Eilenberg-Moore style coalgebraic language semantics,
which is based on generalized determinization. To see that both semantics coin-
cide we have employed the results by Jacobs et al. [21].

We have also revisited coalgebraic trace semantics in general and given a new
compact proof of the main extension result for initial algebras in that theory.
Our proof avoids assumptions on the convergence of the initial algebra chain;
mere existence of an initial algebra suffices.

Having provided coalgebraic semantics for non-deterministic nominal sys-
tems makes the powerful toolbox of coalgebraic methods fully available to those
systems. For example, generic constructions like coalgebraic ε-elimination [5,41]
can be instantiated to them. Or coalgebraic up-to techniques starting with the
work by Rot et al. [36] might lead to new proof principles and algorithms, cf. [6].

Our general extension and lifting results for nominal systems may be applied
to related kinds of systems, e.g. nominal transition systems and the coalgebraic
study of equivalences for them. Going a step beyond the standard coalgebraic
trace and language semantics, graded semantics [9] should lead to a nominal spec-
trum of equivalences generalizing van Glabbeek’s famous linear time – branching
time spectrum [14].
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9. Dorsch, U., Milius, S., Schröder, L.: Graded monads and graded logics for the
linear time - branching time spectrum. In: Fokkink, W.J., van Glabbeek, R. (eds.)
Proceedings of 30th International Conference on Concurrency Theory (CONCUR).
LIPIcs, vol. 140, pp. 36:1–36:16. Schloss Dagstuhl (2019)

10. Fiore, M., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: Pro-
ceedings of Logic in Computer Science (LICS), pp. 193–202. IEEE Computer Soci-
ety (1999)

11. Freyd, P.: Remarks on algebraically compact categories. In: Fourman, M.P., John-
stone, P.T., Pitts, A.M. (eds.) Applications of category theory in computer science:
Proceedings of the London Mathematical Society Symposium, Durham 1991. Lon-
don Mathematical Society Lecture Note Series, vol. 177, pp. 95–106. Cambridge
University Press (1992)

12. Gabbay, M.J.: Foundations of nominal techniques: logic and semantics of variables
in abstract syntax. Bull. Symb. Log. 17(2), 161–229 (2011)

13. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders.
In: Logic in Computer Science, LICS 1999, pp. 214–224. IEEE Computer Society
(1999)

14. van Glabbeek, R.: The linear time - branching time spectrum i; the semantics
of concrete, sequential processes. In: Bergstra, J., Ponse, A., Smolka, S. (eds.)
Handbook of Process Algebra, pp. 3–99. Elsevier (2001)

15. Goncharov, S., Milius, S., Silva, A.: Towards a uniform theory of effectful state
machines. ACM Trans. Comput. Log.21(3), 63 (2020). (article 23)

16. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification
based on register automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013.
LNCS, vol. 7795, pp. 260–276. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36742-7 19

https://doi.org/10.1007/978-3-662-45917-1_7
https://doi.org/10.1007/978-3-662-45917-1_7
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1007/978-3-642-36742-7_19


Coalgebraic Semantics for Nominal Automata 65

17. Hasuo, I.: Tracing Anonymity with Coalgebras. Ph.D. thesis, Radboud University
Nijmegen (2008)

18. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log.
Methods Comput. Sci. 3(4:11), 1–36 (2007)

19. Hermida, C., Jacobs, B.: Structural induction and conduction in a fibrational set-
ting. Inform. Comput. 145, 107–152 (1998)

20. Jacobs, B.: Introduction to Coalgebra. Towards Mathematics of States and Obser-
vation, Cambridge University Press, Cambridge (2016)

21. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. J. Comput.
System Sci. 81, 859–879 (2015)

22. Johnstone, P.T.: Adjoint lifting theorems for categories of algebras. Bull. London
Math. Soc. 7, 294–297 (1975)
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27. Kozen, D., Mamouras, K., Petrişan, D., Silva, A.: Nominal Kleene coalgebra. In:
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Abstract. Automata learning is a popular technique used to automat-
ically construct an automaton model from queries. Much research went
into devising ad hoc adaptations of algorithms for different types of
automata. The CALF project seeks to unify these using category theory
in order to ease correctness proofs and guide the design of new algo-
rithms. In this paper, we extend CALF to cover learning of algebraic
structures that may not have a coalgebraic presentation. Furthermore,
we provide a detailed algorithmic account of an abstract version of the
popular L� algorithm, which was missing from CALF. We instantiate the
abstract theory to a large class of Set functors, by which we recover
for the first time practical tree automata learning algorithms from an
abstract framework and at the same time obtain new algorithms to learn
algebras of quotiented polynomial functors.

1 Introduction

Automata learning—automated discovery of automata models from system
observations—is emerging as a highly effective bug-finding technique with appli-
cations in verification of passports [3], bank cards [2], and network protocols [19].
The design of algorithms for automata learning of different models is a funda-
mental research problem, and in the last years much progress has been made
in developing and understanding new algorithms. The roots of the area go back
to the 50s, when Moore studied the problem of inferring deterministic finite
automata. Later, the same problem, albeit under different names, was studied
by control theorists [21] and computational linguists [17]. The algorithm that
caught the attention of the verification community is the one presented in Dana
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Angluin’s seminal paper in 1987 [8]. She proves that it is possible to infer mini-
mal deterministic automata in polynomial time using only so-called membership
and equivalence queries. Vaandrager’s CACM article [42] provides an extensive
review of the literature in automata learning and its applications to verification.

Angluin’s algorithm, called L�, has served as a basis for many extensions
that work for more expressive models than plain deterministic automata: I/O
automata [4], weighted automata [13,28], register automata [1,31,37], nominal
automata [36], and Büchi automata [9]. Many of these extensions were developed
independently and, though they bear close resemblance to the original algorithm,
arguments of correctness and termination had to be repeated every time. This
motivated Silva and Jacobs to provide a categorical understanding of L� [32]
and capture essential data structures abstractly, in the hope of developing a
generic, modular, and parametric framework for automata learning based on
(co)algebra. Their early work was taken much further in Van Heerdt’s master
thesis [23], which then formed the basis of a wider project on developing a
Categorical Automata Learning Framework—CALF.1 CALF was described in
the 2017 paper [29], but several problems were left open:

1. An abstract treatment of counterexamples: in the original L� algorithm, coun-
terexamples are a core component, as they enable refinement of the state space
of the learned automaton to ensure progress towards termination.

2. The development of a full abstract learning algorithm that could readily be
instantiated for a given model: in essence, CALF provided only the abstract
data structures needed in the learning process, but no direct algorithm.

3. Finding suitable constraints on the abstract framework to cover interesting
examples, such as tree automata [16], that did not fit the constraints in [29].

In this paper, we resolve the open problems above, and develop CALF further
to provide concrete learning algorithms for models that are algebras for a given
functor, which notably include tree automata. In a nutshell, the contributions
and technical roadmap of the paper are as follows. After recalling some categor-
ical notions, the basics of L� (Sect. 2), and CALF (Sect. 3), we provide:

1. A general treatment of counterexamples (Sect. 4), together with an abstract
analysis of progress, that enables termination analysis of a generic algorithm.

2. A step-by-step generalisation of all components of L� for models that are
algebras of a given functor (Sect. 5).

3. An instantiation of the abstract algorithm to concrete categories (Sect. 6),
providing the first abstractly derived learning algorithm for tree automata.

The present paper complements other recent work on abstract automata learning
algorithms: Barlocco, Kupke, and Rot [12] gave an algorithm for coalgebras of a
functor, whereas Urbat and Schröder [41] provided an algorithm for structures
that can be represented as both algebras and coalgebras. More recently, Col-
combet, Petrisan, and Stabile [15] gave an abstract learning algorithm based on
modelling automata as functors. Our focus is on algebras, such as tree automata,
1 http://www.calf-project.org.

http://www.calf-project.org
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that cannot be covered by the aforementioned frameworks. A detailed compar-
ison is given in Sect. 7. We conclude with directions for future work in Sect. 8.
Proofs can be found in the extended version [26].

2 Preliminaries

We now introduce some categorical notions that we will need later in our techni-
cal development, and describe Angluin’s original L� algorithm. We assume some
prior knowledge of category theory (categories, functors); see e.g., [11,33].

An (E ,M)-factorisation system on a category C consists of classes of mor-
phisms E and M, closed under composition with isos, such that for every mor-
phism f in C there exist e ∈ E and m ∈ M with f = m ◦ e, and we have a
unique diagonal fill-in property. Given a morphism f , we write f� and f� for the
E-part and M-part of its factorisation, respectively.

We work in a category C with finite products and coproducts. When f :
X → Z and g : Y → Z, we write [f, g] for the unique arrow from X + Y to Z
induced by the coproduct. We assume that C admits a fixed factorisation system
(E ,M), where E consists of epis and M consists of monos. We fix a varietor F
in C, that is, an endofunctor such that there is a free F -algebra monad (T, η, μ).
We write γX for the F -algebra structure FTX → TX, which is natural in X.
Given an F -algebra (Y, y), we write f � : (TX, μX) → (Y, y) for the extension of
f : X → Y and denote y∗ = id�

Y : (TY, μY ) → (Y, y). We often implicitly apply
forgetful functors. We fix an input object I and an output object O and write
FI for the functor I + F (−). Lastly, we assume F preserves E .

2.1 Abstract Automata

We recall the automaton definition from Arbib and Manes [10], which we will
use in this paper, and its basic properties of accepted language and minimality.

Definition 1 (Automaton). An automaton is a tuple A = (Q, δ, i, o) consist-
ing of a state space object Q, dynamics δ : FQ → Q, initial states i : I → Q, and
an output o : Q → O. A homomorphism from A to A′ = (Q′, δ′, i′, o′) is an F -
algebra morphism h from (Q, δ) to (Q′, δ′)—that is to say, a function h : Q → Q′

with δ′ ◦ Fh = h ◦ δ—such that h ◦ i = i′ and o′ ◦ h = o.

We will use the case of deterministic automata as a running example.

Example 2. If C = Set with the (surjective, injective) factorisation system,
F = (−) × A for a finite set A, I = 1 = {∗}, and O = 2 = {0, 1}, we recover
deterministic automata (DAs) as automata: the state space is a set Q, the tran-
sition function is the dynamics, the initial state is represented as a function
1 → Q, and the classification of states into accepting and rejecting ones is rep-
resented by a function Q → 2. In this case we obtain the monad T = (−) × A∗,
with its unit pairing an element with the empty word ε and the multiplication
concatenating words. The extension of δ : Q × A → Q to δ∗ : Q × A∗ → Q is the
usual one that lets the automaton read a word starting from a given state.
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Algorithm 1. Make table closed and consistent
1: function Fix(S, E)
2: while T is not closed or not consistent do
3: if T is not closed then
4: find t ∈ S, a ∈ A such that ∀s ∈ S. T(ta) �= T(s)
5: S ← S ∪ {sa}
6: else if T is not consistent then
7: find s1, s2 ∈ S, a ∈ A and e ∈ E such that

T(s1) = T(s2) and T(s1a)(e) �= T(s2a)(e)
8: E ← E ∪ {ae}
9: return S, E

Algorithm 2. L� algo-
rithm
1: S ← {ε}
2: E ← {ε}
3: S, E ← Fix(S, E)
4: while EQ(HT) = c do
5: S ← S ∪ prefixes(c)
6: S, E ← Fix(S, E)

7: return HT

Definition 3 (Language). A language is a morphism TI → O. The language
accepted by an automaton A = (Q, δ, i, o) is given by LA = TI

reachA−−−−→ Q
o−→ O,

where reachA : TI → Q is the reachability map of A given by i�.

Definition 4 (Minimality [10]). An automaton A is said to be reachable if
reachA ∈ E. A is minimal if it is reachable and every reachable automaton A′

s.t. LA = LA′ admits a (necessarily unique) homomorphism to A.

Example 5. Recall the setting from Example 2. The reachability map reachA : 1×
A∗ → Q for a DA A = (Q, δ, i, o) assigns to each word the state reached after
reading that word from the initial state. The language LA : 1×A∗ → 2 accepted
by A is precisely the language accepted by A in the traditional sense. Reach-
ability of A means that for every state q ∈ Q there exists a word that leads
to q from the initial state. If this is the case, the unique homomorphism into a
language-equivalent minimal automaton identifies states that accept the same
language. Here, minimality is equivalent to having a minimal number of states.

A general study of existence of minimal automata in this setting is given in [7];
see also [25].

2.2 The L� Algorithm

In this section, we recall Angluin’s algorithm L�, which learns the minimal DFA
accepting a given unknown regular language L. The algorithm can be seen as
a game between two players: a learner and a teacher. The learner can ask two
types of queries to the teacher:

1. Membership queries: is a word w ∈ A∗ in L?
2. Equivalence queries: is a hypothesis DFA H correct? That is, is LH = L?

The teacher answers yes or no to these queries. Moreover, negative answers
to equivalence queries are witnessed by a counterexample—a word classified
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incorrectly by H. The learner gathers the results of queries into an observa-
tion table: a function T : S ∪ S · A → 2E , where S,E ⊆ A∗ are finite and
T(s)(e) = L(se). This function can be depicted as a table where elements of
S ∪ S · A label rows (· is pointwise concatenation) and elements of E label
columns.

E

ε b ab
S

[
ε 1 0 1

S · A
[

a 0 1 0
b 0 0 0

As an example, consider the table on the right, over
the alphabet A = {a, b}, where S = {ε} and E =
{ε, b, ab}. This table approximates a language that con-
tains ε, ab, but not a, b, bb, aab, bab. Following the visual
intuition, we will refer to the part of the table indexed
by S as the top part of the table, and the one indexed
by S · A as the bottom part.

Intuitively, the content of each row labelled by a word s approximates the
Myhill–Nerode equivalence class of s. This is in fact the main idea behind the
construction of a hypothesis DFA HT from T: states of HT are distinct rows of
T, corresponding to distinct Myhill–Nerode equivalence classes. Formally, HT =
(Q, q0, δ, F ) is defined as follows:

– Q = {T(s) | s ∈ S} is the set of states;
– F = {T(s) | s ∈ S,T(s)(ε) = 1} is the set of final states;
– q0 = T(ε) is the initial state;
– δ : Q × A → Q, (T(s), a) �→ T(sa) is the transition function.

For F and q0 to be well-defined we need ε in E and S respectively. Moreover,
for δ to be well-defined we need T(sa) ∈ Q for all sa ∈ S · A, and we must
ensure that the choice of s to represent a row does not affect the transition.
These constraints are captured in the following two properties.

Definition 6 (Closedness and consistency). A table T is closed if for all
t ∈ S and a ∈ A there exists s ∈ S such that T(s) = T(ta). A table is consistent
if for all s1, s2 ∈ S with T(s1) = T(s2) we have T(s1a) = T(s2a) for any a ∈ A.

Closedness and consistency form the core of L�, described in Algorithm 2. The
sets S and E are initialised with the empty word ε (lines 1 and 2), and extended
as a closed and consistent table is built using the subroutine Fix, given in
Algorithm 1. The main loop uses an equivalence query, denoted EQ, to ask the
teacher whether the hypothesis induced by the table is correct. If the result is a
counterexample c, the table is updated by adding all prefixes of c to S (line 5)
and made closed and consistent again (line 6). Otherwise, the algorithm returns
with the correct hypothesis (line 7). See Appendix A of the extended version [26]
for an example.

3 The Abstract Data Structures in CALF

We recall the basic notions underpinning CALF [29]: generalisations of the obser-
vation table, closedness, consistency and hypothesis. The generalised table is
called a wrapper :
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Definition 7 (Wrapper). A wrapper for an object Q is a pair of morphisms

W =
(
S

α �� Q , Q
β
�� P

)

We denote the factorisation of β ◦ α by S
eW �� �� HW ��

mW �� P .

This will be instantiated with Q the state space of the target automaton, S
a collection of row labels of an observation table, and P a collection of possi-
ble values of the rows. Then α selects states in Q, and β classifies them into
P . We note that although such α and β underly the learning algorithm, they
are not actually known to the learner, as they explicitly involve the unknown
target automaton. However, we will see that we only need to represent certain
compositions involving these morphisms, and that when α and β are chosen
appropriately it will be possible to compute these compositions.

Example 8 (Observation table wrapper). Recall the DA setting from Example 2
and consider a DA A = (Q, δ, i, o). For S ⊆ A∗ and E ⊆ A∗, we can define a

wrapper W =
(

S
αS �� Q , Q

βE �� 2E
)

for Q as follows:

αS(w) = reachA(∗, w) βE(q)(e) = (o ◦ δ∗)(q, e).

The composition βE ◦ αS : S → 2E is precisely the top part of the observation
table of L�, with rows S and columns E. In fact, we have (βE ◦ αS)(s)(e) =
LA(∗, se). The image of βE ◦αS is the set of rows that appear in the table. In L�,
this set is used as states of the hypothesis, and in our setting can be obtained as
HW , recalling that the (surjective, injective) factorisation system in Set gives
factorisation through the image.

Before we define hypotheses in this abstract framework, we need generalised
notions of closedness and consistency.

Definition 9 (Closedness and consistency). Given a wrapper

W =
(
S

α �� Q , Q
β
�� P

)
,

where Q is the state space of an automaton (Q, δ, i, o), we say that W is closed
if there exist morphisms iW : I → HW and closeW : FS → HW making the
diagrams below commute.

I Q

HW P

i

iW β

mW

FS FQ Q

HW P

Fα

closeW

δ

β

mW
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Furthermore, we say that W is consistent if there exist morphisms oW : HW → O
and consW : FHW → P making the diagrams below commute.

S HW

Q O

eW

α oW

o

FS FHW

FQ Q P

Fα

FeW

consW

δ β

Example 10. In the DA case, generalised closedness and consistency instantiate
to the conditions allowing the hypothesis to be well-defined in L� (see Sect. 2.2):

Closedness: The wrapper (αS , βE) is closed if: (i) there exists s ∈ S such
that (βE ◦ αS)(s) = (βE ◦ i)(∗) and; (ii) for all s ∈ S and a ∈ A there
exists sa ∈ S such that (βE ◦ αS)(sa) = (βE ◦ δ)(αS(s), a). Condition (i)
holds immediately if ε ∈ S—the function (βE ◦ i)(∗) : E → 2 maps e ∈ E
to LA(∗, e). Condition (ii) corresponds to closedness in Definition 6. In fact,
βE ◦ δ ◦ (αS × idA) : S × A → 2E represents the lower part of the observation
table associated with S and E.

Consistency: The wrapper (αS , βE) is consistent if: (iii) for all s1, s2 ∈ S such
that (βE ◦ αS)(s1) = (βE ◦ αS)(s2) we have (o ◦ αS)(s1) = (o ◦ αS)(s2) and;
(iv) for all a ∈ A we have (βE ◦ δ)(αS(s1), a) = (βE ◦ δ)(αS(s2), a). Condition
(iii) holds immediately if ε ∈ E—the function o ◦ αS : S → 2 maps s ∈ S to
LA(∗, s). Condition (iv) corresponds to consistency in Definition 6.

To determine these properties, we do not need the individual descriptions of
αS and βE , which refer to the target automaton and are thus not available to
the learner; we just need the compositions βE ◦ αS , βE ◦ i, βE ◦ δ ◦ (αS × idA),
and o ◦ αS , which can be determined using membership queries in this case. In
general, for any instantiation of our abstract algorithm it will be important to
show that these compositions (adapted to the wrapper and functor involved)
can be determined and used concretely by the instantiated algorithm.

So far, we have used the wrapper to obtain the state space HW of the hypoth-
esis. When a wrapper is closed and consistent, we can equip HW with a full
automaton structure, leveraging the unique diagonal fill-in property of the fac-
torisation.

Definition 11 (Hypothesis). A closed and consistent wrapper

W =
(
S

α �� Q, Q
β
�� P

)
for (Q, δ, i, o) induces a hypothesis automaton HW = (HW , δW , iW , oW), where
δW is the unique diagonal in the commutative square below.

FS FHW

HW P

FeW

closeW consW
δW

mW
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4 Counterexamples, Generalised

We now provide a key missing element for the development and analysis of an
abstract learning algorithm in CALF: counterexamples. In the original L� algo-
rithm, counterexamples are used to refine the state space of the hypothesis—
namely the representations of the Myhill–Nerode classes of the language being
learned. A crucial property for termination, which we prove at a high level of
generality in this section, is that adding counterexamples to a closed and con-
sistent table results in a table which is either not closed or not consistent, and
hence needs to be extended. Such an extension, in turn, results in progress being
made in the algorithm. We show how we can use recursive coalgebras [38,40] as
witnesses for discrepancies—i.e., as counterexamples—between a hypothesis and
the target language in our abstract approach.2 Here, and throughout the paper,
we fix a target automaton At = (Qt, δt, it, ot) whose language we want to learn.

Definition 12 (Recursive coalgebras). An F -coalgebra ρ : S → FS is recur-
sive if for every algebra x : FX → X there is a unique morphism xρ : S → X
making the diagram below commute.

FS FX

S X

Fxρ

x

xρ

ρ

Example 13. A prefix-closed subset S ⊆ A∗ is easily equipped with a coalgebra
structure ρ : S → 1+S×A that detaches the last letter from each non-empty word
and assigns ∗ to the empty one. Such a coalgebra is recursive, with the unique
map into an algebra being defined as a restricted reachability map. In fact, under
certain conditions that are satisfied in the DA setting, recursivity of a coalgebra
is equivalent to having a coalgebra homomorphism into the initial algebra [5,
Corollary 5.6]. This means that every recursive coalgebra is isomorphic to one
given by a prefix-closed multiset of words. If the unique morphism into the initial
algebra is injective, then the multiset becomes a set.

Given an automaton A = (Q, δ, i, o) and a recursive coalgebra ρ : S → FIS, the

map S
[i,δ]ρ−−−→ Q can be seen as a generalised reachability map, allowing states

in Q to be reached from S. We use this map to derive a notion of generalised
language induced by a recursive coalgebra. This will be used to compare lan-
guages of the hypothesis and of the target automaton with respect to a specific
recursive coalgebra, i.e., a specific counterexample.

Definition 14 (ρ-languages). Given a recursive coalgebra ρ : S → FIS and

an automaton A = (Q, δ, i, o), the ρ-language of A is Lρ
A = S

[i,δ]ρ−−−→ Q
o−→ O.

2 Recursive coalgebras have been used to generalise prefix-closedness in an automata
learning context in earlier work [24], as well as to generalise counterexamples [12,41].
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For instance, in the case of a DA A and a recursive coalgebra as in Example 13,
Lρ

A is the restriction of the language of A to the prefix-closed set of words S.
In Algorithm 2, a counterexample is produced by the teacher (line 4) when

the hypothesis does not agree with the target automaton. We now generalise
counterexamples to wrappers: counterexamples are recursive coalgebras on which
the languages of the hypothesis and of the target automaton disagree.

Definition 15 (Counterexample). A closed and consistent wrapper W is said
to be correct up to a recursive ρ : S → FIS if Lρ

HW = Lρ
At

. A counterexample
for W (or HW) is a recursive ρ : S → FIS such that W is not correct up to ρ.

The following guarantees incorrect hypotheses yield counterexamples.

Proposition 16 (Language equivalence via recursion). Given an automa-
ton A = (Q, δ, i, o), we have LAt = LA if and only if Lρ

At
= Lρ

A for every
recursive coalgebra ρ : S → FIS.

Corollary 17 (Counterexample existence). Given a closed and consistent
wrapper W for Qt, we have LHW 	= LAt iff there exists a counterexample for W.

The next step in Algorithm 2 is to fix the table by adding all prefixes of
the counterexample to S (line 5). We generalise this step by incorporating the
counterexample given by a recursive coalgebra into the wrapper. In the DA case,
this precisely corresponds to adding a prefix-closed subset to S. The following
results say that doing so will lead to either a closedness or a consistency defect.
In other words, we give theoretical guarantees that resolving counterexamples
results in progress being made towards convergence.

Theorem 18 (Resolving counterexamples). Given a closed and consistent

wrapper W =
(

S
α �� Qt , Qt

β
�� P

)
and a recursive coalgebra ρ : S′ → FIS

′,
the following holds. If the wrapper W ′ = ([α, [it, δt]

ρ], β) is closed and consistent,
then W is correct up to ρ.

This theorem is used contrapositively: given a closed and consistent wrap-
per, adding a counterexample yields a wrapper that is either not closed or
inconsistent.

5 Generalised Learning Algorithm

We are now in a position to describe our general algorithm. Similarly to
L� (Sect. 2.2) it is organised into two procedures: Algorithm 3, which contains the
abstract procedure for making a wrapper closed and consistent, and Algorithm4,
containing the learning iterations. These generalise the analogous procedures in
L�, Algorithm 1 and Algorithm 2, respectively. We note again that although the
algorithmic description operates on a wrapper (α, β), these individual morphisms
will not be known to the learner. In fact, at this level of abstraction the descrip-
tions should be seen as algorithmic templates rather than concrete algorithms.
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Algorithm 3. Make wrapper closed
and consistent
1: function Fix(α, β)
2: while (α, β) not closed

or not consistent do
3: if (α, β) not closed then
4: α ← α′ such that (α′, β) is

locally closed w.r.t. α
5: else if (α, β) not consistent then
6: β ← β′ such that (α, β′) is

locally consistent w.r.t. β

7: return α, β

Algorithm 4. Abstract automata
learning algorithm
1: α, β ← Fix(! : 0 → Qt, ! : Qt → 1)
2: while EQ(H(α,β)) = ρ : S → FIS do
3: α ← α′ s.t. α′� = [α, [it, δt]

ρ]�

4: α, β ← Fix(α, β)

5: return H(α,β)

An instantiation must ensure that at least the compositions required to deter-
mine the closedness and consistency conditions and to construct the hypothesis
can be maintained. These compositions are β ◦ α, β ◦ it, β ◦ δt ◦ Fα, and ot ◦ α.
We have previously shown how these instantiate to recover L�, and in Sect. 6 we
will discuss the class of examples given by generalised tree automata.

In Algorithm 4, the wrapper is initialised with trivial maps and extended to
be closed and consistent using the subroutine Fix (line 1). The equivalence query
for the main loop (line 2) returns a counterexample in the form of a recursive
coalgebra, which is used to update the wrapper (line 3, which will be explained
in more detail later, when we define runs). The updated wrapper is passed on
to the subroutine Fix (line 4) to be made closed and consistent.

A crucial point for Algorithm 3 is defining what it means to resolve the
“current” closedness and consistency defects. We call these local defects, meaning
the ones that can be directly detected in the current wrapper. For DAs, local
closedness defects are rows from the bottom part missing in the top part, and the
empty word row if it is missing. Local consistency defects are pairs of row labels
which are distinguished by the target language, or with differing rows when the
labels are extended with a single symbol.

We first introduce additional notions to formalise these ideas. We partially
order the subobjects and quotients of the target automaton’s state space Qt in
the usual way. Given two subobjects j : J ↪→ Qt and k : K ↪→ Qt, we say j ≤ k if
there is f : J → K such that k ◦ f = j. Intuitively, j is “contained” in k. Given
two quotients x : Qt � X and y : Qt � Y , we say x ≤ y if there exists g : X → Y
such that y = g ◦ x. Intuitively, x is “finer” than y.

Now, consider a wrapper (α, β) for Qt. We have that α� and β� are a subobject
and a quotient of Qt, respectively. For instance, in the DA case, α� is the set of
states in Qt currently represented by the table, and β� is the equivalence relation
on states induced by the rows. We can now say another wrapper (α′, β′) is a locally
closed extension of (α, β) if (a) it represents at least the same states of the target
automaton as α, formalised α� ≤ α′�, and; (b) it solves the closedness defects
present in α. Local consistency is analogous: it requires the extended wrapper to
distinguish at least the same states of Qt as the original one.
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Definition 19 (Local closedness and consistency). Consider a wrapper

W =
(

S′ α′
�� Qt , Qt

β′
�� P ′ )

We call W locally closed w.r.t. a morphism α : S → Qt if α� ≤ α′� and there
are morphisms iW : I → HW and lcloseW,α : FS → HW s.t. these diagrams
commute:

I Qt

HW P ′

it

iW β′

mW

FS FQt Qt

HW P ′

Fα

lcloseW,α

δt

β′

mW

Given β : Q → P , we say that W is locally consistent w.r.t. β if β′� ≤ β� and
there exist morphisms oW : HW → O and lconsW,β : FHW → P making the
diagrams below commute.

S′ HW

Qt O

eW

α′ oW
ot

FS′ FHW

FQt Qt P

Fα′

FeW

lconsW,β

δt β

A wrapper (α, β) is closed if and only if it is locally closed w.r.t. α and consistent
if and only if it is locally consistent w.r.t. β.

Example 20. For the case of DAs, consider a wrapper (αS′ , βE′) representing an
observation table (S′, E′) for the target DA At (see Example 8):

Local closedness: Given αS : S → Qt, (αS′ , βE′) is locally closed w.r.t. αS

if (1) S ⊆ S′ (to ensure α�
S ≤ α�

S′); (2) S′ contains the empty word (left
diagram); and (3) any row in the bottom part of the table (S,E′) occurs in
the top part of (S′, E′) (right diagram).

Local consistency: Similarly, given βE : Qt → 2E , (αS′ , βE′) is locally consis-
tent w.r.t. βE if (1) E ⊆ E′ (to ensure β�

E′ ≤ β�
E); (2) E′ contains the empty

word (left diagram); and (3) for all s, s′ ∈ S′ and a ∈ A, if s and s′ map to
the same row in the top part of (S′, E′), then the rows for sa and s′a are the
same in the bottom part of (S′, E) (right diagram).

In Algorithm 3 we assume that we can always find locally closed and consistent
wrappers (lines 4 and 6 respectively). This assumption holds in general for local
closedness: for each wrapper (α, β) for Qt we can always find α′ such that (α′, β)
is locally closed w.r.t. α.

Lemma 21. Given a wrapper (α, β) for Qt, ([α, [it, δt]◦FIα], β) is locally closed
w.r.t. α.

This result is enabled by the algebraic nature of automata. Local consistency is
not inherently algebraic, so ensuring it takes more effort. We shall see in Sect. 6
that existence of locally closed/consistent extensions can be proved construc-
tively for a broad class of automata.
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Termination. To analyse termination of Algorithm 4, we introduce its runs.

Definition 22 (Run of the algorithm). A run of the algorithm is a stream
of wrappers Wn = (αn, βn) satisfying the following conditions:

1. α0 : 0 → Qt and β0 : Qt → 1 are the unique morphisms;
2. if Wn is not closed, then βn+1 = βn and αn+1 is s.t. (αn+1, βn) is locally

closed w.r.t. αn;
3. if Wn is closed but not consistent, then αn+1 = αn and βn+1 is s.t. (αn, βn+1)

is locally consistent w.r.t. βn;
4. if Wn is closed and consistent and we obtain a counterexample ρ : S → FIS

for Wn, then α�
n+1 = [αn, [it, δt]

ρ]� and βn+1 = βn; and
5. if Wn is closed and consistent and correct up to all recursive FI-coalgebras,

then Wn+1 = Wn.

Note that, in point 4 above and in line 3 of Algorithm 4, we admit a more gen-
eral counterexample resolution than Theorem 18: we only require that αn+1 and
[αn, [it, δt]

ρ] represent the same states of the target automaton. This captures
how observation tables are updated in practice; for instance in L� a counterex-
ample prefix already in the table is discarded.

Proposition 23. Algorithm 4 halts if and only if for all runs {Wn}n∈N
there

is n with Wn+1 = Wn.

We can establish an invariant on the order of subsequent wrappers in runs.

Lemma 24. Let {Wn = (αn, βn)}n∈N
be a run. For all n ∈ N, we have α�

n ≤
α�

n+1 and β�
n+1 ≤ β�

n. Moreover, if α�
n+1 ≤ α�

n, then αn+1 = αn; if β�
n ≤ β�

n+1,
then βn+1 = βn.

Putting these results together, we conclude that the algorithm terminates
with a correct automaton, which is minimal under certain conditions. Satisfac-
tion of the requirement on recursive coalgebras ρk depends on the implementa-
tion of counterexamples and closing of wrappers; for DAs, it suffices to keep the
set of row labels S prefix-closed.

Theorem 25 (Termination). If Qt has finitely many subobject and quotient
isomorphism classes, then for all runs {Wn = (αn, βn)}n∈N

there exists n ∈ N

such that Wn is closed and consistent and its hypothesis is correct. If At is
minimal and for all k ∈ N there exists a recursive ρk : Sk → FISk such that
αk = [it, δt]

ρk , then the final hypothesis is minimal.

6 Generalised Tree Automata

We now instantiate the above development to a wide class of Set endofunctors.
This yields an abstract algorithm for generalised tree automata—i.e., automata
accepting sets of trees, possibly subject to equations—including bottom-up tree
automata and unordered tree automata. We first introduce the running exam-
ples.
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Example 26 (Tree automata). Let Γ be a ranked alphabet, i.e., a finite set where
γ ∈ Γ comes with arity(γ) ∈ N. The set of Γ -trees over a finite set of leaf symbols
I is the smallest set TΓ (I) such that I ⊆ TΓ (I), and for all γ ∈ Γ we have that
t1, . . . , tarity(γ) ∈ TΓ (I) implies (γ, t1, . . . , tarity(γ)) ∈ TΓ (I). The alphabet Γ gives
rise to the polynomial functor FX =

∐
γ∈Γ Xarity(γ). The free F -algebra monad

is precisely TΓ , where the unit turns elements into leaves, and the multiplication
flattens nested trees into a tree. A bottom-up deterministic tree automaton [16]
is then an automaton over F , with finite I and O = 2.

Example 27 (Unordered tree automata). Consider the finite powerset functor
Pf : Set → Set, mapping a set to its finite subsets. The corresponding free Pf -
monad maps a set X to the set of finitely-branching unordered trees with nodes
in X. Automata over Pf , with output set O = 2 and finite I, accept sets of such
trees. Note that unordered trees can be seen as trees over a ranked alphabet
Γ = {si | i ∈ N}, where arity(si) = i, satisfying equations that collapse duplicate
branches and identify lists of branches up to permutations.

Automata in these examples are algebras for endofunctors with the following
properties: they are strongly finitary [6]—i.e., they are finitary and preserve finite
sets—and they preserve weak pullbacks. We turn these into a global assumption,
used in several places; in particular, that F is strongly finitary is used to guar-
antee the existence of finite counterexamples.

Assumption 28. In the remainder we take C = Set with the (surjective, injec-
tive) factorisation system, assume F is strongly finitary and preserves weak pull-
backs, and I finite.

If the target automaton At is finite, the algorithm terminates by Theorem 25.
We start with the central notion of contextual wrapper, a specific form of

wrapper using contexts to generalise string concatenation to trees. We then
show that contextual wrappers enable effective procedures for local closedness
and consistency, and for computing hypotheses. Moreover, they can always be
updated via finite counterexamples. Altogether, this makes the ingredients of
our abstract algorithm concrete for generalised tree automata.

6.1 Contextual Wrappers

Denote by 1 the set {�}. Given x ∈ X for any set X, we write ex for the function
1 → X that assigns x to �. We use the set 1 to define the set of contexts T (I+1),
where the holes � occurring in a context c ∈ T (I + 1) can be used to plug in
further data such as another context or a tree, e.g., in the case of Examples
26 and 27. In fact, it is well known that T (I + (−)) forms a monad with unit
η̂X turning each hole from X into a context, and multiplication μ̂X plugging a
context into another context [35].

Definition 29 (Contextual wrapper). Let S ⊆ TI and E ⊆ T (I + 1). Now:

– αS : S → Qt is defined as the restriction of the reachability map of At to S;
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– βE : Qt → OE is defined as the function given by βE(q)(e) = (ot ◦ [it, eq]
�)(e).

A wrapper is called contextual if it is of the form (αS , βE) for some S and E.

Intuitively, βE classifies states by plugging them into every context in E and com-
paring the resulting outputs. In the DA case, contextual wrappers are equivalent
to those of Example 8, where row labels are plugged into word contexts—i.e.,
words of the form � · e, with e ∈ A∗—to achieve string concatenation.

We now show how to compute several morphisms induced by a wrapper.
These morphisms, intuitively, correspond to different parts of an observation
table, and are used for (local) closedness and consistency, and to construct the
hypothesis. In particular, we show that they can be computed concretely by
querying the language LAt , i.e., via membership queries.

Proposition 30 (Computing wrapper morphisms). Given S ⊆ TI with
inclusion j : S → TI and E ⊆ T (I + 1) with inclusion k : E → T (I + 1), we
have:

– The top observation table βE ◦ αS : S → OE, s �→ LAt ◦ μI ◦ T [ηI , j ◦ es] ◦ k;
– The bottom observation table βE ◦ δt ◦ FαS : FS → OE, t �→ LAt ◦ μI ◦

T [ηI , γI ◦ Fj ◦ et] ◦ k;
– The input rows βE ◦ it : I → OE given by (βE ◦ it)(x) = LAt ◦ T [idI , ex] ◦ k;
– The row output ot ◦ αS : S → O given by (ot ◦ αS)(s) = LAt(s).

Example 31 For tree automata, a contextual wrapper is as follows: S ⊆ TΓ (I)
is a set of Γ -trees over I, and E ⊆ TΓ (I + 1) is formed by contexts, i.e., Γ -trees
where a special leaf � may occur, or equivalently Γ + �-trees, where Γ + � is
the signature Γ extended with an additional constant �. Plugging into a context
intuitively amounts to replacing this leaf with a tree.

We now give the intuition behind the maps of Proposition 30:

– The top part of the observation table has rows labelled by trees in S, columns
by contexts in E, and rows are computed by plugging their tree labels into
each column context and querying the language. When E contains only con-
texts with exactly one instance of �, this corresponds precisely to the obser-
vation tables of [14,18].

– The bottom part contains rows labelled over elements of FS =
∐

γ∈Γ Sarity(γ),
i.e., trees obtained by adding a new root symbol to those from S. This gen-
eralises adding an alphabet symbol to row labels, as done in the bottom
observation table of L�. Rows are computed as in the top part, by plugging
their tree labels into contexts E and querying.

– The input rows are those for the leaves I, and the row output function queries
the language for each row label.

The case of unordered trees is analogous, with a key difference: wrapper maps
are now up to equations, as both S and E are sets of unordered trees. The
corresponding observation table can be understood as containing equivalence
classes of rows and columns. For instance, the bottom part has only one successor
row for each set of trees in S, whereas in the previous case we have one successor
row for each symbol γ ∈ Γ and arity(γ)-list of trees from S.
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Hypotheses. Recall that, given a closed and consistent wrapper (αS , βE), the
state space of the associated hypothesis is given by the image of βE ◦ αS : S →
OE . Since S and E are finite sets, we can compute the image of this function.
For bottom-up and unordered tree automata, as in the DA case (see Example
8), this image consists of distinct rows. The initial states, outputs and dynamics
of the hypothesis automaton are defined as follows:

iHW (x) = (βE ◦ it)(x) oHW (eW(s)) = (ot ◦ αS)(s)

δHW (F (eW)(x)) = (βE ◦ δt ◦ FαS)(x).

Closedness and consistency ensure well-definedness. We know from Proposition
30 how to compute those functions via membership queries.

6.2 Witnessing Local Closedness and Consistency

We now consider local closedness and consistency. In the current setting, these
amount to equality checks on finite structures, which can be performed effec-
tively.

Lemma 32 (Local closedness for Set automata). Given S, S′ ⊆ TI and
E ⊆ T (I +1) such that S ⊆ S′, (αS′ , βE) is locally closed w.r.t. αS if there exist
k : I → S′ and � : FS → S′ such that (1) αS′ ◦ k = it and (2) αS′ ◦ � = δt ◦ FαS.

Example 33. For bottom-up tree automata, local closedness holds if the table
(S′, E) already contains each leaf row (Eq. 1), and it contains every successor
row for S, namely FS =

∐
γ∈Γ Sarity(γ) (Eq. 2). For unordered tree automata the

condition is similar, and now involves successor trees in Pf(S).

Lemma 34 (Local consistency for Set automata). Let S ⊆ TI and E ⊆
E′ ⊆ T (I + 1), with S finite. Furthermore, suppose that for s, s′ ∈ S with
(βE′ ◦ αS)(s) = (βE′ ◦ αS)(s′) we have: (1) (ot ◦ αS)(s) = (ot ◦ αS)(s′); and
(2) βE ◦ δt ◦ F (αS ◦ [idS , es]) = βE ◦ δt ◦ F (αS ◦ [idS , es′ ]). Then W = (αS , βE′)
is locally consistent w.r.t. βE.

Example 35. For bottom-up tree automata, local consistency amounts to require
the following for the table for (S,E′). For all s, s′ ∈ S corresponding to the same
row we must have: (1) s and s′ are both accepted/rejected; (2) successor rows
obtained by plugging s and s′ into the same one-level context from F (S + 1) =∐

γ∈Γ (S + {�})arity(γ) are equal.
For unordered-tree automata, we need to compare s and s′ only when they

are equationally inequivalent. Note that one-level contexts are also up to equa-
tions, which means that the position of the hole in the context is irrelevant for
computing extensions of s and s′.

We now develop procedures for fixing local closedness and consistency defects.
First, we show that we can always extend S to make the wrapper locally closed.
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Proposition 36. Given finite S ⊆ TI and E ⊆ T (I + 1), there exists a finite
S′ ⊆ TI such that (αS′ , βE) is locally closed w.r.t. αS. If there exists a recursive
ρ : S → FIS such that [ηI , γI ]

ρ : S → TI is the inclusion, then there exists a
recursive ρ′ : S′ → FIS

′ such that [ηI , γI ]
ρ′

: S′ → TI is the inclusion.

The condition of [ηI , γI ]
ρ : S → TI being the inclusion map in the above result

amounts to prefix closedness of S in tree automata, see Example 37 below.
Further, under this condition we have that αS = [it, δt]

ρ, since the reachability
map is an algebra morphism, and similarly for αS′ . This is crucial to satisfy the
requirements for minimality of the termination theorem.

Example 37. To better understand the above proposition, it is worth describ-
ing what recursive coalgebras are for the automata of Examples 26 and 27.
For bottom-up tree automata, they are coalgebras ρ : S → ∐

γ∈Γ Sarity(γ) + I
satisfying suitable conditions. Subtree-closed subsets of TΓ (I) are sets of trees
closed under taking subtrees. Every subtree-closed S can be made into a recur-
sive coalgebra that returns the root symbol and its arguments, if applied to
a tree of non-zero depth, and a leaf otherwise. For unordered tree automata,
ρ : S → PfS + I will just return the set of subtrees or a leaf.

The proof of Proposition 36, which can be found in ??, is constructive and
describes a naive procedure to make a table locally closed: adding all (finitely-
many) successor rows to the table. For instance, in the case of tree automata,
one adds rows obtained by adding a new root symbol to trees labelling rows in all
possible ways, for each symbol in the alphabet. One may optimise the algorithm
by instead adding only missing rows.

We now show how to fix local consistency, by extending a finite set of column
labels E to a finite set E′ such that the resulting wrapper is locally consistent.

Proposition 38. Given finite S ⊆ TI and E ⊆ T (I + 1), define E′ ⊆ T (I + 1)
by E′ = E ∪ {(ηI+1 ◦ κ2)(�)} ∪ {(μ̂1 ◦ T (idI + cx))(e) | e ∈ E, x ∈ F (S + 1)}
where cx : 1 → T (I + 1), with cx = γI+1 ◦ F [Tκ1 ◦ j, η̂1] ◦ ex, and j : S → TI is
set inclusion. It holds that E′ is finite and (αS , βE′) is locally consistent w.r.t.
βE.

For tree automata, E′ is E plus the empty context � and the trees obtained
by plugging one-level contexts formed from the current row labels (see Example
35) into all contexts in E. This amounts to extending columns so that all consis-
tency defects are fixed. One can optimise the procedure above by incrementally
adding to E only those elements of E′ that result in new pairs of rows being
distinguished.

6.3 Finite Counterexamples

Finally, we show that the teacher can always supply a finite counterexample.

Proposition 39 (Language equivalence via finite recursion). Given an
automaton A = (Q, δ, i, o), we have LAt = LA iff Lρ

At
= Lρ

A for all recursive
ρ : S → FIS such that S is finite.
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Corollary 40 (Finite counterexamples). Given a closed and consistent
wrapper W for Qt, we have LHW 	= LAt iff there exists a counterexample
ρ : S → FIS for W such that S is finite.

Example 41. Recall from Example 37 that finite recursive coalgebras for bottom-
up (resp. unordered) tree automata are coalgebras ρ : S → ∐

γ∈Γ Sarity(γ) + I
(resp. ρ : S → PfS + I). Thus, finite counterexamples are recursive coalgebras
of this form where S is finite or, more concretely, a finite subtree-closed set of
trees.

Given a finite counterexample, if αS arises from a recursive coalgebra ρ (e.g.,
when S is prefix-closed), updating the wrapper in line 3 of Algorithm 4 can be
done as follows: (1) combine ρ with the recursive coalgebra in Corollary 40 via
a coproduct (which preserves recursiveness); (2) take a suitable factorisation to
make sure that there is an inclusion of S into TI, and thus that the updated
αS′ forms a contextual wrapper (see ?? for a formal justification). Concretely,
the latter step amounts to removing multiple copies of rows with the same label.
Altogether, these steps take the union of the current rows with the (prefix-closed)
counterexample, and guarantee that αS′ again arises from a recursive coalgebra.

6.4 Minimality

Theorem 25 gives sufficient conditions for minimality of the automaton obtained
from the algorithm, namely: each α arises from a recursive coalgebra, and the
target automaton should be minimal. For the first condition to hold, there are
two parts of the algorithm that need to be implemented appropriately, as they
change α: closing the table and adding counterexamples. This can always be
done: for closing the table, this follows from Proposition 36; for counterexamples,
the strategy outlined in the previous section yields a wrapper of the desired
form. As for the second condition, a minimal automaton exists if the functor F
preserves arbitrary cointersections, which is the case iff F is finitary [7].

7 Related Work

This paper proceeds in the line of work on categorical automata learning started
in [32], and further developed in the CALF framework [29,30]. CALF provides
abstract definitions of closedness, consistency, and hypothesis and several tech-
niques to analyse and guide the development of concrete learning algorithms.
CALF operates at a high level of abstraction and previously did not include an
explicit learning algorithm. We discuss two further recent categorical approaches
to learning, which make stronger assumptions than CALF in order to allow for
the definition of concrete algorithms. The present paper is a third such approach.

Barlocco et al. [12] proposed an abstract algorithm for learning coalgebras,
where tests are formed by an abstract version of coalgebraic modal logic. On the
one hand, the notion of wrapper and closedness from CALF essentially instan-
tiate to that setting; on the other hand, the combination of logic and coalgebra
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is what enables to define an actual algorithm in [12]. The current work focuses
on algebras rather than coalgebras, and is orthogonal. In particular, it covers
(bottom-up) tree automata, which are outside the scope of [12].

Urbat and Schröder proposed another categorical approach to automata
learning [41], which—similarly to the work of Barlocco et al.—makes stronger
assumptions than CALF in order to define a learning algorithm. Their work
focuses primarily on automata, assuming that the systems of interest can be
viewed both as algebras and coalgebras, and the generality comes from allowing
to instantiate these in various categories. Moreover, it allows covering algebraic
recognisers in certain cases, through a reduction to automata over a carefully con-
structed alphabet; this (orthogonal) extension allows covering, e.g., ω-languages
as well as tree languages. However, the reduction to automata makes this pro-
cess quite different than the approach to tree learning in the present paper: it
makes use of an automaton over all (flat) contexts, yielding an infinite alphabet,
and therefore the algorithmic aspect is not clear. The extension to an actual
algorithm for learning tree automata is mentioned as future work in [41]. In the
present paper, this is achieved by learning algebras directly.

Yet another categorical approach to learning was proposed recently by Col-
combet, Petrisan, and Stabile [15]. Here, the way automata are modelled is
rather different: not as algebras or coalgebras within a category, but as functors
from a structure category to an output category. So far this has led the authors
to develop an abstract automata learning algorithm that generalises algorithms
for DFAs, weighted automata, and subsequential transducers. However, as their
structure category is built by generating morphisms representing words by start-
ing with a morphism for each alphabet symbol and closing under composition,
it is unclear whether this approach could cover tree automata.

Concrete algorithms for learning tree automata and languages have appeared
in the literature. The inference of regular tree languages using membership and
equivalence queries appeared in [18], extending earlier work of Sakakibara [39].
Later, [14] provided a learning algorithm for regular tree automata using only
membership queries. The instantiated algorithm in our paper has elements (such
as the use of contexts) close to the concrete algorithms. The focus of the present
paper is on presenting an algebraic framework that can effectively be instantiated
to recover such concrete algorithms in a modular and canonical fashion, with
proofs of correctness and termination stemming from the general framework.

8 Future Work

This paper makes use of the free monad of a functor F in the formulation of
the generalised learning algorithm, and hence can only deal with quotienting
in a restricted setting, namely by flat equations in the presentation of F . It
remains an open challenge to extend the present algorithm to a setting with more
general equations. For the concrete case of pomset languages [20,22] represented
by bimonoids [34], we note that we have successfully instantiated the abstract
algorithm described in this paper, and augmented it to include optimisations
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specific to the equations that hold in that setting [27]. In future work, we aim
to extend the ideas behind these optimisations to the abstract setting, as well.

Another direction is to extend the framework with side-effects, encoded by a
monad, in the style of [30]. This would enable learning more compact automata—
albeit with richer, monadic, transitions—representing languages and, as a con-
crete instance, provide an active learning algorithm for weighted tree automata.
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In: Petrişan, D., Rot, J. (eds.) CMCS 2020. LNCS, vol. 12094, pp. 68–89. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57201-3 5

31. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
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Abstract. We show that the category of coalgebras for the compact
Vietoris endofunctor V on the category Top of topological spaces and
continuous mappings is isomorphic to the category of all modally sat-
urated Kripke structures. Extending a result of Bezhanishvili, Fontaine
and Venema [4], we also show that Vietoris subcoalgebras as well as
bisimulations admit topological closure and that the category of Vietoris
coalgebras has a terminal object.

Keywords: Saturated Kripke structures · Vietoris functor · Vietoris
coalgebras · Vietoris convergence · Bisimulations

1 Introduction

The theory of coalgebras has provided Computer Science with a much needed
general framework for dealing with all sorts of state based systems, with their
structure theories and their logics. The varied types of systems, be they determin-
istic or nondeterministic automata, transition systems, probabilistic or weighted
systems, neighborhood systems or the like, are fixed by the choice of an appro-
priate endofunctor F on the category of sets. From there on, with hardly any fur-
ther assumptions, a mathematically pleasing structure theory and corresponding
modal logics can be developed, see e.g. [10,20].

A particularly well behaved situation arises when choosing for F the finite-
powerset functor Pω(−), perhaps augmented with a constant component P(Φ)
representing sets of atomic formulas. Coalgebras for the functor Pω(−) × P(Φ)
are precisely all image finite Kripke structures. Their logic is the standard modal
logic based on the atomic formulae in Φ, and they possess a terminal coalgebra
T , even though its description is usually of an “indirect” nature (see [2,3,11]).

The well known Hennessy-Milner theorem [12], relating bisimulations and
logical equivalence, is a consequence of image finiteness and will not continue
to hold for arbitrary Kripke structures, i.e. for coalgebras of type P(−) × P(Φ),
see [14].

The theory of modal logic knows of a class of Kripke structures, which lies
between image finite structures and arbitrary Kripke structures and which con-
tinues to enjoy the Hennessy-Milner theorem. These structures are called modally
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saturated, m-saturated in [9], or simply saturated. Unfortunately, though, there
seems to be no Set-functor F , somehow located in between Pω(−) × P(Φ) and
P(−) × P(Φ), whose coalgebras would be just the saturated Kripke structures.

It is well known, that much of the theory of coalgebras can be generalized
by turning to other categories than Set, provided they are co-complete and
come with a reasonable factorization structure. Some of the examples studied
in the literature replace the base category Set with the category Rel of sets
and relations [15], with the category Pos of posets [1] or Cpo of complete partial
orders, with the category Meas of measurable spaces [6,17], or the category Stone
of Stone spaces. Relevant to this present work will be the works of Kupke, Kurz
and Venema [16] as well as Bezhanishvili, Fontaine and Venema [4] regarding
coalgebras for the Vietoris functor on the category of Stone spaces, i.e. compact
zero-dimensional Hausdorff spaces with continuous mappings.

When extending the Vietoris functor from Stone spaces to arbitrary topolo-
gical spaces X , two natural choices offer themselves for the object map: either
the collection of all closed subsets of X or the collection of all compact subsets
of X , both equipped with appropriate topologies. Each of these choices yields a
functor, generalizing the mentioned Vietoris functor on Stone spaces. Named the
lower Vietoris functor, resp. the compact Vietoris functor, these endofunctors on
the category Top of topological spaces and continuous functions were explored
in recent work by Hofmann, Neves and Nora [13].

For our investigation of saturated Kripke structures, the compact Vietoris
functor, which we denote by V(−), turns out to be appropriate. To model sat-
urated Kripke-Structures, we choose the endofunctor V(−) × P(Φ) on the cate-
gory Top of topological spaces and continuous mappings, where the P(Φ)-part
is a constant component equipped with an appropriate topology, intuitively rep-
resenting a set of atomic propositions, as above. We show that V(−) × P(Φ)
coalgebras precisely correspond to saturated Kripke structures, in fact there is
an isomorphism of categories between the category of saturated Kripke struc-
tures and the category of all topological coalgebras for the compact Vietoris
functor V(−) × P(Φ).

This correspondence also yields a direct description of the terminal V(−) ×
P(Φ) coalgebra, which seems to be simpler and more natural than the terminal
Pω(−) × P(Φ) coalgebra mentioned above: it is simply the Vietoris coalgebra
corresponding to the canonical model of normal modal logic over Φ.

For Stone coalgebras we know from [4], that the topological closure R̄ of
a bisimulation R is itself a bisimulation, again. We extend this result to the
more general case of arbitrary Vietoris coalgebras, and we show also that a
corresponding result holds true for subcoalgebras in place of bisimulations. For
this we need to prepare some topological tools which may be interesting in their
own right, relating convergence in the Vietoris space V(X ) to convergence in the
base space X . In particular, nets (κi)i∈I converging to κ in the Vietoris space
V(X ) are shown to correspond, up to subnet formation, to nets (ai)i∈I with
ai ∈ κi, converging in the base space X to some a ∈ κ, and conversely.
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2 Preliminaries

For the remainder of this article we shall fix a set Φ, the elements of which shall
be called propositional variables or atomic propositions.

2.1 Kripke Structures

Definition 1. A Kripke structure (also called Kripke model) K = (X,R, v)
consists of a set X of states together with a relation R ⊆ X × X, and a map
v : X → P(Φ), where P denotes the powerset functor.

In applications, X will typically be a set of possible states of a system, R is
called the transition relation, describing the allowed transitions between states
from X, and v is called the valuation, since v(x) consists of all atomic propositions
true in state x. Instead of (x, y) ∈ R we write x � y (or x �R y, if necessary).
The idea is that x � y expresses that it is possible for the system to move from
state x to state y. Instead of a relation, we can alternatively consider R as a
map R : X → P(X). This justifies the notation

R(x) := {y ∈ X | (x, y) ∈ R},

so R(x) denotes the successors of x, i.e. all states reachable from x in one step.

Definition 2. For subsets V ⊆ X define 〈R〉V := {x ∈ X | ∃y ∈ V.(x, y) ∈ R}
and [R]V := {x ∈ X | ∀y ∈ X.(x, y) ∈ R =⇒ y ∈ V }.

Thus x ∈ 〈R〉V if from x it is possible to reach an element of V in one step,
and x ∈ [R]V says that starting from x, each transition will necessarily take us
to V . Obviously, 〈R〉(X − V ) = X − [R]V , and [R](X − V ) = X − 〈R〉V , so 〈R〉
and [R] are mutually expressible if complements are available.

2.2 Modal Logic

Starting with the elements of Φ as atomic formulae, we obtain modal formulae
by combining them with the standard boolean connectors ∧, ∨,¬ or prefixing
with the unary modal operator �. We also allow the usual shorthands

∨
i∈I0

φi

and
∧

i∈I0
φi, whenever I0 is a finite indexing set and each φi is a formula. Let

LΦ be the set of all modal formulae so definable.
Validity x � φ, is defined for x ∈ X and φ ∈ LΦ in the usual way (see [5]):

x � p : ⇐⇒ p ∈ v(x), whenever p ∈ Φ

x � �φ : ⇐⇒ ∀y ∈ X. (x � y =⇒ y � φ).

For the boolean connectives ∧,∨,¬, validity is defined as expected. We extend
it to sets of formulas Σ ⊆ LΦ, by

x � Σ : ⇐⇒ ∀φ ∈ Σ. x � φ.
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For any x ∈ X we put �x� := {φ ∈ LΦ | x � φ} and, similarly, for any φ ∈ LΦ we
set �φ� := {x ∈ X | x � φ}. Two elements x, y from (possibly different) Kripke
structures are called logically equivalent (in symbols x ≈ y), if for each formula
φ ∈ LΦ we have x |= φ ⇐⇒ y |= φ. Restricted to a single Kripke structure, ≈
is the kernel of the semantic map x �→ �x�, and hence an equivalence relation.
Similarly, two modal formulae φ, ψ are equivalent, and we write φ ≡ ψ, if for
each element x in any Kripke structure we have x � φ ⇐⇒ x � ψ.

Adding a further modality ♦ to our logical language by defining ♦φ := ¬�¬φ
provides more than only a convenient abbreviation. The resulting equivalences
¬�φ ≡ ♦¬φ and ¬♦φ ≡ �¬φ allow one to push negations inside, just as De
Morgan’s laws permit to do so for ∨ and ∧, so that each modal formula becomes
equivalent to a modal formula in negation normal form (nnf ), where negations
may only occur only in front of an atomic formula. We state this here for later
reference:

Lemma 1. Every modal formula is equivalent to a modal formula in negation
normal form (nnf).

2.3 Bisimulations

Definition 3. A bisimulation between two Kripke structures K1 = (X1, R1, v1)
and K2 = (X2, R2, v2) is a relation B ⊆ X1 × X2 such that for each (x, y) ∈ B:

1. v1(x) = v2(y),
2. ∀x′ ∈ X1. x �R1 x′ =⇒ ∃y′ ∈ X2. y �R2 y′ ∧ x′B y′,
3. ∀y′ ∈ X2. y �R2 y′ =⇒ ∃x′ ∈ X1. x �R1 x′ ∧ x′B y′.

The empty relation ∅ ⊆ X1 ×X2 is clearly a bisimulation, and the union of a
family of bisimulations between K1 and K2 is again a bisimulation, hence there
is a largest bisimulation between K1 and K2, which we call ∼K1,K2 or simply ∼,
when K1 and K2 are clear from the context.

If B1 ⊆ X1 × X2 is a bisimulation between K1 and K2, then the converse
relation B−1

1 ⊆ X2 × X1 is a bisimulation between K2 and K1. Given another
bisimulation B2 between Kripke structures K2 and K3 then the relational com-
position B1 ◦ B2 is a bisimulation between K1 and K3.

A bisimulation on a Kripke structure K = (X,R, v) is a bisimulation between
K and itself. The identity ΔX = {(x, x) | x ∈ X} is always a bisimulation on K.
Consequently, the largest bisimulation on K is an equivalence relation, denoted
by ∼K or simply ∼. We say that two points x ∈ X1 and y ∈ X2 are bisimilar, if
there exists a bisimulation B with xB y, which is the same as saying x ∼ y. It
is well known and easy to check by induction:

Lemma 2. Bisimilar points satisfy the same formulae φ ∈ LΦ.

A converse to this lemma was shown by Hennessy and Milner for the case
of image finite Kripke structures. Here, an element x in a Kripke structure K is
called image finite if it has only finitely many successors, i.e. {x′ | x � x′} is
finite. K is called image finite if each x from K is image finite. Thus Hennessy
and Milner proved in [12]:
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Proposition 1. If x and y are image finite elements of Kripke structures K1

and K2, then x ∼ y iff x ≈ y.

2.4 Homomorphisms and Congruences

Definition 4. A homomorphism ϕ : K1 → K2 between Kripke structures K1 =
(X1, R1, v1) and K2 = (X2, R2, v2) is a map whose graph

G(ϕ) := {(x, ϕ(x)) | x ∈ X1}
is a bisimulation.1

We call K1 a homomorphic preimage of K2, and if ϕ is surjective (which we
indicate by writing ϕ : K1 � K2) then we call K2 a homomorphic image of K1.
If X1 ⊆ X2 and the inclusion map ι : K1 → K2 is a homomorphism, then K1 is
called a Kripke substructure of K2.

It is easy to check that a subset X1 ⊆ X2 with the restrictions of R2 and v2
to X1 is a substructure of K2 if and only if R2(x) ⊆ X1 for each x ∈ X1.

If ϕ : K1 → K2 is a homomorphism, then its kernel

ker ϕ := {(x, x′) ∈ X1 × X1 | ϕ(x) = ϕ(x′)}
is called a congruence relation. This is clearly an equivalence relation and a
bisimulation as well, since we can express it as a relation product of G(ϕ), the
graph of ϕ, with its converse G(ϕ)−1 as

ker ϕ = G(ϕ) ◦ G(ϕ)−1.

3 Saturated Structures

The notion of saturation goes back to a similar concept of Fine in [7]. The
terminology m-saturation (or modal saturation) is used in [5] and [9].

Definition 5. An element x is called saturated, if for each set Σ of formulas,
such that each finite subset Σ0 ⊆ Σ is satisfied at some successor y0 of x, there
is a successor y of x satisfying all formulas in Σ. A Kripke structure is called
saturated, if each of its elements is saturated.

In the following we shall find it convenient to informally use infinitary dis-
junctions

∨
i∈I φi – not as as logical expressions but as shorthands. In particular

we write
x � �

∨

i∈I

φi

as an abbreviation for

∀y.(x � y =⇒ ∃i ∈ I. y |= φi).

With this shorthand, the above definition can be reformulated:
1 In the literature on Modal Logic (see e.g. [5,9]), homomorphisms are usually called
“bounded morphisms”.
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Lemma 3. An element x in a Kripke model K = (X,R, v) is saturated, if for
each family (φi)i∈I such that x � �

∨
i∈I φi there exists a finite subset I0 ⊆ I

with x � �
∨

i∈I0
φi.

Image finite elements are clearly saturated, but they are not the only ones.
Below, we consider two examples of Kripke structures. In both cases, we assume
v(x) := ∅ for each x:

Example 1. On the set S := {s}∪{si | i ∈ N} consider the relation R = {(s, si) |
i ∈ N}∪{(si+1, si) | i ∈ N}. Then for each si we have si � �i+1⊥, but si �� �j⊥
for j ≤ i. Therefore (S,R, v) is not saturated, since s � �

∨
i∈N

(�i+1⊥), but for
no finite I0 ⊆ N do we have s � �

∨
i∈I0

(�i+1⊥).

s

��� ��
���

���
���

���
�

�  �
��
��
��
��
�

���

...

s0 s1
��� s2

��� ...
���

Next, we modify the above structure by adding a “point at infinity” s∞
together with a self-loop s∞ � s∞ to obtain the following structure:

Example 2.
s

��� ��
���

���
���

���
�

�  �
��
��
��
��
�

���

...

� ��			
			

			
			

			

s0 s1
��� s2

��� ...
��� s∞ ��

The point at infinity changes the situation. We claim:

Lemma 4. The Kripke structure in Example 2 is saturated.

Proof. We first observe that for s∞ and any formula φ we have:

s∞ � ♦φ ⇐⇒ s∞ � φ ⇐⇒ s∞ � �φ.

Next we prove for each formula φ:

Claim. If s∞ � φ, then there is some k ∈ N such that si � φ for each i ≥ k.

We prove this claim by induction over the construction of nnf-formulae:

– For φ = ⊥ and φ = �, the claim is vacuously true. For φ = φ1 ∧ φ2, from
s∞ � φ1 ∧ φ2, the induction hypothesis yields k1 and k2 such that si � φ1

for each i ≥ k1 and si � φ2 for each i ≥ k2. With k = max(k1, k2) we
obtain si � φ1 ∧ φ2 for i ≥ k. For φ = φ1 ∨ φ2 we could similarly choose
k = min(k1, k2).

– For φ = �φ1 we have s∞ � φ ⇐⇒ s∞ � φ1. By assumption, there is some
k such that si � φ1 for each i ≥ k. It follows that si � �φ1 for i ≥ k + 1.
Similarly we argue for φ = ♦φ1.
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Now, to show that s in the structure of Example 2 is saturated, assume that
s � �

∨
i∈I φi, then there is some i∞ ∈ I such that s∞ � φi∞ . The claim above

provides a k such that for each j ≥ k we have sj � φi∞ . Also, for each j < k there
is some ij ∈ I with sj � φij . Altogether then with I0 := {i0, i1, ..., ik−1} ∪ {i∞}
we have s � �

∨
i∈I0

φi.
Thus s is saturated, and all other points in the structure are image finite,

hence they are saturated, too.
We can extend Lemma 2 to “infinitary formulas” in the following sense:

Lemma 5. [Bisimulations preserve saturation] If B ⊆ X1×X2 is a bisimulation
and (x, y) ∈ B, then x is saturated iff y is saturated.

Proof. Assume that x is saturated and (x, y) ∈ B. Suppose y � �
∨

i∈I φi, then
each y′ with y � y′ satisfies one of the formulas φi. Each x′ with x � x′ is
bisimilar to some y′ with y � y′, so by Lemma 2 each x′ satisfies one of the φi.
This means that x � �

∨
i∈I φi. By saturation of x there is a finite subset I0 ⊆ I

with x � �
∨

i∈I0
φi. The latter, being an honest modal formula, is preserved by

bisimulation, so y � �
∨

i∈I0
φi.

If ϕ is a homomorphism, then Lemma 2 implies that for each element x and
each formula φ we have

x � φ ⇐⇒ ϕ(x) � φ (3.1)

and Lemma 5 tells us that x is saturated iff ϕ(x) is saturated, which we might
combine to:

Corollary 1. Homomorphisms preserve and reflect saturation.

On the level of Kripke structures, rather than elements, this translates to:

Corollary 2. Homomorphic images and homomorphic preimages of saturated
Kripke structures are saturated.

Let K1 = (X1, R1, v1) and K2 = (X2, R2, v2) be Kripke structures. Recall
that for elements x ∈ X1 and y ∈ X2 we write x ≈ y, if they are logically equiv-
alent, i.e. they satisfy the same modal formulae. The following generalization
of the Hennessy-Milner theorem [12] is credited in [5] to unpublished notes of
Alfred Visser:

Proposition 2. Let K1 = (X1, R1, v1) and K2 = (X2, R2, v2) be saturated
Kripke structures. Then elements x ∈ X1 and y ∈ X2 are bisimilar if and only
if they are logically equivalent. In short: ∼K1,K2 = ≈K1,K2 .

We shall next show that saturation allows us to describe the minimal homo-
morphic image of a Kripke structure:

Lemma 6. If a Kripke structure K = (X,R, v) is saturated, then ≈ is a con-
gruence relation on K.
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Proof. Clearly, ≈ is an equivalence relation and therefore it is the kernel of the
map π≈ sending arbitrary elements x to x/≈, which denotes the equivalence class
of ≈ containing x. To show that π≈ is a homomorphism, we need to exhibit a
coalgebra structure on X/≈, the factor set of X. Put

x/≈ � p : ⇐⇒ ∃ x′ ≈ x . x′ � p.]
x/≈ � y/≈] : ⇐⇒ there exist x′ ≈ x and y′ ≈ y such that x′

� y′.

We check that π≈ : K → K/≈ is indeed a Kripke homomorphism:

– Clearly, x � p iff x/≈ � p by definition of � on X/≈, and
– if x � y, then x/≈ � y/≈ is also immediate by definition. Conversely,

given π≈(x) = x/≈ � y/≈ for some y, we must find a y′′ with x � y′′

and π≈(y′′) = y/≈. Since x/≈ � y/≈, we know that there are x′ ≈ x and
y′ ≈ y with x′

� y′. By Proposition 2, ≈ is a bisimulation, so it follows
that there is some y′′ with x � y′′ and y′′ ≈ y′. Consequently, x � y′′ and
π≈(y′′) = π≈(y′) = y/≈, as required.

x

���

≈










� π≈ �� x/≈

���

x′

���

� π≈

		������

y′′

≈

� �� y/≈

y′ � π≈

		������

Thus, π≈ is a homomorphism with kernel ≈, which makes the latter a con-
gruence relation.

Definition 6. A Kripke structure is called simple, if it does not have a proper
homomorphic image.

Clearly, if x �≈ y then there cannot be a homomorphism ϕ with ϕ(x) = ϕ(y),
since x ≈ ϕ(x) and y ≈ ϕ(y). Thus, if ≈ is a congruence, K/≈ must be simple.
It follows:

Theorem 1. A Kripke structure is saturated iff it has a simple and saturated
homomorphic image.

Observe that Example 2 is a Kripke structure, which is saturated and simple,
but not image finite. In particular it does not have a homomorphism to an image
finite Kripke structure.

4 F -coalgebras

Given a category C and an endofunctor F : C → C , an F -coalgebra A = (A,α)
is an object A from C together with a morphism α : A → F (A). The object A is



96 H. P. Gumm and M. Taheri

called the base object and α is called the structure morphism of the F -coalgebra
A = (A,α).

Given a second coalgebra B = (B, β), a homomorphism ϕ : A → B is a
C -morphism ϕ : A → B which renders the following diagram commutative:

A

α




ϕ �� B

β




F (A)
F (ϕ)

�� F (B)

F -coalgebras with homomorphisms, as defined above, form a category, which
we shall call CF , or simply CoalgF when the base category is understood. When
ϕ in the above figure is a monomorphism in the base category, then we call A a
subcoalgebra of B.

Kripke structures are prime examples of coalgebras. Indeed, the successor
relation R ⊆ X × X can be understood as a map R : X → P(X) and the
valuation v as a map v : X → P(Φ), where P is the powerset functor and Φ
is the fixed set of propositional atoms. Thus a Kripke structure is simply an
F -coalgebra for the combined functor P(−) × P(Φ), that is a map

α : X → P(X) × P(Φ),

whose first component models the successor relation R and whose second com-
ponent is the valuation v.

It is easy to check (see [19]), that a homomorphism of Kripke structures, as
introduced earlier, is the same as a homomorphism of coalgebras when Kripke
structures are understood as P(−) × P(Φ)-coalgebras.

Choosing the finite-powerset functor Pω(−) instead of P(−), coalgebras for
the functor Pω(−) × P(Φ) are precisely the image finite Kripke structures.

Saturated Kripke structures, however, lying between image finite and arbi-
trary Kripke structures, do not seem to allow such a simple modelling by an
appropriate Set-functor between Pω(−) and P(−). Instead, we shall have to
pass to the category Top of topological spaces and continuous mappings and
model them as coalgebras over Top.

5 Topological Models

Definition 7. A topological model is a Kripke model K = (X,R, v) together
with a topology τ on X, such that

1. ∀x ∈ X.R(x) is compact
2. ∀O ∈ τ. 〈R〉O ∈ τ
3. ∀O ∈ τ. [R]O ∈ τ
4. ∀p ∈ Φ.�p� ∈ τ and (X − �p�) ∈ τ.
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A homomorphism ϕ : K1 → K2 between topological models K1 =
(X1, R1, v1) and K2 = (X2, R2, v2) is simply a Kripke-homomorphism (see
Definition 4) which additionally is continuous with respect to the topologies
on X1 and X2.

We need two simple technical lemmas:

Lemma 7. If C is closed, then so are 〈R〉C and [R]C.

Proof. Let C = X − O where O is open, then 〈R〉C = 〈R〉(X − O) = X − [R]O
and [R]C = [R](X − O) = X − 〈R〉O.

Lemma 8. In every topological model the sets �φ� where φ ∈ LΦ, are clopen
(closed and open).

Proof. By induction on the construction of φ :
For p ∈ Φ the assertion is part of the definition. If the claim is true for φ, φ1

and φ2, then it is obviously true for all boolean compositions, in particular for
¬φ and for φ1 ∧ φ2.

Lemma 7 and Definition 7 ensure that the claim remains true for �φ and
♦φ, since ��φ� = [R]�φ� and �♦φ� = 〈R〉�φ�.

Topological models with continuous Kripke-Homomorphisms obviously form
a category which we shall call KTop.

6 The Compact Vietoris-Functor

Leopold Vietoris, in his 1922 paper [21], defined his domains of second order
(“Bereiche zweiter Ordnung”) as the collection of closed subsets of a compact
Hausdorff space. Later several generalizations and modifications of this topology
were introduced and studied under the heading of hypertopology.

In connection with Kripke structures, Bezhanishvili, Fontaine and Venema
[4] consider the Vietoris functor and Vietoris coalgebras over Stone spaces, i.e.
compact and totally disconnected Hausdorff spaces.

In compact Hausdorff spaces, all closed subsets are compact. Hence, when
extending the Vietoris functor to act on arbitrary topological spaces X = (X, τ),
one has the choice to take as base set for V(X ) all closed subsets or all compact
subsets of X. In [13] the authors show that both choices lead to endofunctors
on the category Top of topological spaces, the “lower” Vietoris functor, and the
compact Vietoris functor. Here we shall only need to work with the latter, which
for us then is “the” Vietoris functor:

Given a topological space X = (X, τ), the Vietoris space V(X ) takes as base
set the collection of all compact subsets K ⊆ X.

The Vietoris topology on V(X ) is generated by a subbase consisting of all
sets

〈O〉 := {K ∈ V(X ) | K ∩ O �= ∅}, and
[O] := {K ∈ V(X ) | K ⊆ O}
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where O ∈ τ .
The Vietoris functor sends a continuous function f : X → Y to a continuous

map (Vf) : V(X ) → V(Y) where (Vf)(K) := f(K). (Recall that the image
f(K) of a compact set K by a continuous map f is always compact.) It is easy
to calculate that (Vf)−1(〈O〉) =

〈
f−1(O)

〉
and (Vf)−1([O]) = [f−1(O)], hence

Vf is continuous. In fact, (Vf)−1 takes the defining subbase of V(Y) to the
defining subbase of V(X ). Thus V is indeed an endofunctor on Top.

Let now P(Φ) be the powerset of Φ, equipped with the topology having as a
base the set of all

↑p := {u ⊆ Φ | p ∈ u}
where p ∈ Φ, together with their complements P(Φ)− ↑p. This topology, trivially,
is Hausdorff, but in general not compact.

Definition 8. The product V(−)×P(Φ) of the Vietoris functor V with the con-
stant functor of value P(Φ), carrying the above topology, will be called the Φ-
Vietoris functor, or simply the Vietoris functor, when Φ is clear.

The Vietoris functor is an endofunctor on the category Top of topological
spaces with continuous maps. We can now define:

Vietoris coalgebras are the coalgebras over Top for the Φ-Vietoris functor
V(−) × P(Φ). The following result shows that they agree with our topological
models:

Theorem 2. Vietoris coalgebras with coalgebra homomorphisms are the same
as topological models with continuous Kripke-homomorphisms.

Proof. Given a topological model K = (X,R, v) with underlying space X =
(X, τ), we can consider it as a Vietoris coalgebra A = (X , α) by defining the
structure map α : X → V(X ) × P(Φ) as α(x) := (R(x), v(x)). To show that α is
continuous, we must verify that both components are continuous.

Continuity of (the map) R : X → V(X ) needs to be tested only on the
subbase for the Vietoris topology on V(X ). Indeed, assume O ∈ τ, then

R−1([O]) = {x ∈ X | R(x) ∈ [O]}
= {x ∈ X | R(x) ⊆ O} = [R]O

is open in τ and so is

R−1(〈O〉) = {x ∈ X | R(x) ∈ 〈O〉}
= {x ∈ X | R(x) ∩ O �= ∅} = 〈R〉O.

To see that v also is continuous, let ↑p ⊆ P(Φ) be given, then

v−1(↑p) = {x ∈ X | p ∈ v(x)} = �p� ∈ τ
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as well as

v−1(P(X)− ↑p) = {x ∈ X | p /∈ v(x)} = (X − �p�) ∈ τ.

Conversely, let (X , α) be a Vietoris coalgebra, with X = (X, τ) as base
space and α : X → V(X ) × P(Φ) as structure morphism, then α = (R, v)
with R := π1 ◦ α : X → V(X ) and v := π2 ◦ α : X → P(Φ), both of which
are continuous. Since R(x) ∈ V(X ), it is necessarily compact. If O is open in
X = (X, τ) then [O] is open in V(X ), hence R−1([O]) must be open in (X, τ),
hence so is

[R]O = {x ∈ X | R(x) ⊆ O} = {x ∈ X | R(x) ∈ [O]} = R−1([O]).

Similarly, for O open in X = (X, τ) we have 〈O〉 open in V(X ), hence R−1(〈O〉)
is open in X , which means that

〈R〉O = {x ∈ X | R(x) ∩ O �= ∅} = {x ∈ X | R(x) ∈ 〈O〉} = R−1(〈O〉)

is open as well.
Finally, for p ∈ Φ we have ↑p = {u ⊆ Φ | p ∈ u} clopen in the topology on

P(Φ), so also �p� = {x ∈ X | p ∈ v(x)} = v−1({u ⊆ Φ | p ∈ u}) = v−1(↑ p) as
well as its complement X − �p� are open in τ .

Coalgebra homomorphisms between Vietoris coalgebras, as coalgebras over
Top, must be continuous and preserve both R and v which means they are the
same as continuous Kripke homomorphisms between the corresponding topolog-
ical models.

7 Characterization Theorem

The following theorem shows that saturated Kripke structures arise precisely as
the algebraic reducts of Vietoris coalgebras when forgetting the topology. Put
differently, a Kripke structure is saturated if and only if it can be equipped with
a topology to turn it into a topological model, resp. into a Vietoris coalgebra.

Bezhanishvili, Fontaine and Venema [4] show one direction of this result for
Vietoris coalgebras over Stone spaces. In contrast to their work, we consider the
Vietoris functor over arbitrary topological spaces, which allows us to obtain an
equivalence:

Theorem 3. For a Kripke structure K the following are equivalent:

1. K is saturated,
2. K is the algebraic reduct of a topological model,
3. K is the algebraic reduct of a Vietoris coalgebra.
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Proof. “(1) → (2)”: Assuming that K = (X,R, v) is saturated, let τ be the
topology on X generated by the sets �φ� for φ ∈ LΦ. It follows that each �φ� is
clopen (closed and open), so each open set can be written as O =

⋃
i∈I�φi� and

each closed set as C =
⋂

i∈I�φi�.
To show that K with this topology τ is a topological model, we show first,

that R(x) is topologically compact. For that, assume R(x) ⊆ ⋃
i∈I Oi, then

R(x) ⊆ ⋃
i∈I

⋃
j∈Ji

�φj�, i.e.

x � �
∨

i∈I

∨

j∈Ji

φj .

By saturation of K, there are finitely many ji1 ∈ Ji1 , ..., jin ∈ Jin with

x � �(φji1
∨ ... ∨ φjin

),

so R(x) ⊆ Oi1 ∪ ... ∪ Oin .
Next, to see that 〈R〉O is open, we calculate

〈R〉O = 〈R〉(
⋃

i∈I

�φi�)

=
⋃

i∈I

〈R〉 �φi�

=
⋃

i∈I

{x ∈ X | x |= ♦φi}

=
⋃

i∈I

�♦φi� ,

which is open, and similarly

[R]O = [R](
⋃

i∈I

�φi�)

= {x ∈ X | R(x) ⊆
⋃

i∈I

�φi�}

= {x ∈ X | R(x) ⊆
⋃

i∈Jx

�φi� for some finite Jx ⊆ I}

= {x ∈ X | x |= �
∨

i∈Jx

φi for some finite Jx ⊆ I }

=
⋃

J⊆I, J finite

�

�
∨

i∈J

φi

�

,

which is open as well.
“(2) ↔ (3)” is Theorem 2.
“(2) → (1)”: Given a Kripke model K which is the algebraic reduct of a

topological model, assume x � �
∨

i∈I φi, then R(x) ⊆ ⋃
i∈I�φi�. By Lemma 8,
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the right hand side is a union of open sets, thus by compactness of R(x) there
is a finite subset I0 ⊆ I with R(x) ⊆ ⋃

i∈I0
φi, which means x � �

∨
i∈I0

φi.

Given a saturated Kripke-structure K = (X,R, v), let A(K) denote the Vie-
toris coalgebra, as constructed above, and conversely, given a Vietoris coalgebra
A, let K(A) be the corresponding saturated Kripke structure. On objects, A(−)
and K(−) are clearly inverses to each other.

On morphisms, this is true as well, since a homomorphism ϕ : K1 → K2

between saturated Kripke structures preserves (and reflects) modal formulae (see
Lemma 2) and the topologies on A(K1) and A(K2) are generated by validity sets
of formulae. Conversely, a morphism between Vietoris coalgebras A1 and A2 is
automatically a Kripke-homomorphism by forgetting continuity.

Corollary 3. Saturated Kripke structures, topological models, and Vietoris coal-
gebras are isomorphic as categories.

8 Closure of Vietoris Structures

In those topological spaces where each point has a countable base for its neigh-
bourhoods, such as, for instance, in metric spaces, continuity can be conveniently
dealt with in terms of convergent sequences (xn)n∈N. For general spaces (X, τ),
this intuitive approach is not sufficient, but its spirit and its power can be sal-
vaged if one allows the linearly ordered set N, indexing a sequence, to be replaced
by arbitrary directed sets I indexing the elements (xi)i∈I of a net. Often, a
proof based on convergence of sequences can be easily generalized by replacing
sequences with nets. Therefore net convergence can be considered more intuitive
than the equally powerful notion of filter convergence. The following definitions
and results on nets in general topological spaces will be needed. They can be
found as a series of exercises in Munkres [18].

8.1 Nets and Subnets

A partially ordered set (I,≤) is called directed, if for each pair i1, i2 ∈ I there is
some i ∈ I such that i1 ≤ i and i2 ≤ i, i.e. i is an upper bound for {i1, i2}. It
follows that each finite subset I0 ⊆ I has a common upper bound.

Definition 9. A subset J ⊆ I is called cofinal in I, if for each i ∈ I there is
some j ∈ J with i ≤ j. A map f : J → I between ordered sets (J,≤) and (I,≤)
is called cofinal if its image f [J ] is cofinal in I.

Clearly, if J1 is cofinal in J2 and J2 cofinal in I then J1 is cofinal in I. Also,
compositions of cofinal maps are cofinal.

Let X = (X, τ) be a topological space and x ∈ X. By U(x) we denote the
collection of all open neighborhoods of x. Observe that U(x), when ordered by
reverse inclusion, is a directed set.

Definition 10. A net in X is a map σ : I → X from a directed set I to X.
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If σ(i) = xi, then one often denotes the net σ as (xi)i∈I and if I is clear from
the context one simply writes (xi).

The net (xi)i∈I converges to x ∈ X and we shall write (xi)i∈I
� x, or

when I is understood, simply (xi
� x), provided that

∀U ∈ U(x).∃iU ∈ I.∀i ≥ iU . xi ∈ U. (8.1)

In this case, x is called a limit point of (xi)i∈I . Colloquially, condition (8.1) can
be expressed as “(xi) is eventually in every neighborhood of x”.

Limit points need not exist, nor need they be unique, unless X is Hausdorff.
In any case though, one has (see [18]):

Proposition 3. Let (X, τ) and (Y, γ) be arbitrary topological spaces.

1. A map ϕ : X → Y is continuous at x if and only if it “preserves convergence”,
i.e. for all nets (xi)i∈I in X:

(xi
� x) =⇒ (ϕ(xi) � ϕ(x)) .

2. Given a subset A ⊆ X, then x ∈ X belongs to the topological closure A of
A if and only if some net (ai) in A converges to x. Thus, A is closed iff it
contains all limit points of nets in A.

x ∈ X is called an accumulation point of the net (xi)i∈I if

∀U ∈ U(x).∀i ∈ I.∃j ≥ i. xj ∈ U. (8.2)

Condition (8.2) can be phrased as: “xi is frequently in every neighborhood of x”.
A characterization of compactness using nets is [18]:

Lemma 9. A subset A ⊆ X is compact if and only if every net in A has an
accumulation point in A.

Definition 11. A net λ : J → X is a subnet of σ : I → X if there is a
monotonic and cofinal map f : J → I with λ = σ ◦ f :

I
σ �� X

J

f

���
�

λ

��

Thus, if σ = (xi)i∈I then λ = (xf(j))j∈J . One easily checks that the subnet
relation is reflexive and transitive, but mainly:

Lemma 10. If (xi)i∈I converges to x then so does each subnet (xf(j))j∈J .

Lemma 11. x ∈ X is an accumulation point of the net σ : I → X if and only
if there is a subnet λ of σ converging to x.

Corollary 4. A subset A ⊆ X is compact iff every net in A has a subnet
converging to some a ∈ A.
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8.2 Convergence in Vietoris Spaces

In this section, we prepare our main result on net convergence in Vietoris spaces.
Let X = (X, τ) be a topological space. Recall that the Vietoris space V(X )
consists of all compact subsets K ⊆ X, with a topology generated by a subbase
consisting of all sets

〈U〉 := {K ∈ V(X ) | K ∩ U �= ∅}
[U ] := {K ∈ V(X ) | K ⊆ U ]

where U ranges over all open subsets of X . The following result establish the
relevant connections between convergence in V(X ) and convergence in X =
(X, τ).

Lemma 12. Let κ : I → V(X ) be a net in the Vietoris space V(X ). If
( κi

� K ) and K �= ∅, then κ has a subnet, each member of which is
nonempty.

Proof. Since K �= ∅, we have K ∈ 〈X〉, so 〈X〉 is a neighborhood of K in V(X ).
As κ converges to K, there must be some i0 ∈ I such that ∀i ≥ i0. κi ∈ 〈X〉,
i.e. ∀i ≥ i0. κi �= ∅. Put J = ({i ∈ I | i ≥ i0},≤) and let f : J ↪→ I be the
natural inclusion, then f is clearly monotonic and cofinal. Therefore τ := κ ◦ f
is a subnet of κ and τj = κf(j) = κj �= ∅, owing to j ∈ J.

Lemma 13. Given a net κ : I → V(X ) converging to K ∈ V(X ) and bi ∈ κi for
each i ∈ I. Then the net (bi)i∈I has a subnet converging to some b ∈ K.

Proof. It is enough to show that (bi)i∈I has an accumulation point b ∈ K. As K
is compact, we then obtain a subnet (bf(j))j∈J converging to b. By Lemma 10,
the subnet (κf(j))j∈J of κ still converges to K.

For every x ∈ K which is not an accumulation point of (bi)i∈I , we obtain
by negating (8.2) an open neighborhood Ux of x and an ix ∈ I such that for all
i ≥ ix we have bi �∈ Ux.

Assuming that no x ∈ K is an accumulation point, the family (Ux)x∈K forms
an open cover of K. By compactness, there is a finite subcover U = Ux1 ∪...∪Uxn

.
Choose iU ≥ ix1 , ..., ixn

, then for every i ≥ iU we have bi �∈ U ⊇ K.
But [U ] is also an open neighborhood of K in V(X ) and (κi

� K), so
there exists i[U ] with κi ∈ [U ], that is bi ∈ κi ⊆ U for i ≥ i[U ]. For i ≥ {iU , i[U ]}
we enter the contradiction bi ∈ U and bi �∈ U .

Lemma 14. Given a net κ : I → V(X ) converging to K ∈ V(X ) and a ∈ K.
Then there is a subnet (κj)j∈J and elements aj ∈ κj converging to a.

Proof. By Lemma 12 and Lemma 10, we may assume that κi �= ∅ for all i ∈ I.
For every open set U ∈ U(a) we have a ∈ U ∩K, so K ∩U �= ∅, which means

that K ∈ 〈U〉, so 〈U〉 is an open neighborhood of K in V(X ).
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Since κ converges to K we have

∀U ∈ U(a).∃iU ∈ I.∀i ≥ iU .κi ∈ 〈U〉. (8.3)

Consider a partial order on

J := {(i, U) ∈ I×U(a) | κi ∈ 〈U〉}

by defining:
(i1, U1) ≤ (i2, U2) : ⇐⇒ i1 ≤ i2 ∧ U1 ⊇ U2.

To verify that J = (J,≤) is directed, let arbitrary j1 = (i1, U1) and j2 =
(i2, U2) be given. Pick U = U1 ∩ U2 then by (8.3) there is an iU ∈ I with
κi ∈ 〈U〉 for all i ≥ iU . It suffices to choose i ≥ i1, i2, iU , then (i, U) ∈ J and
(i, U) ≥ (i1, U1), (i2, U2).

The map π1 : J → I given as π1(i, U) := i is clearly monotonic. For each i ∈ I
we have (i,X) ∈ J since κi �= ∅. Hence π1 is cofinal. Therefore κ◦π1 : J → V(X )
is a subnet of κ and therefore also converges to K.

For each (i, U) ∈ J we can pick some a(i,U) ∈ κi ∩ U . This defines a net
(aj)j∈J in X.

To show that (aj)j∈J converges to a, let U be any open neighborhood of
a. By (8.3) there exist some iU such that in particular jU := (iU , U) ∈ J. We
therefore have ajU := a(iU ,U) ∈ U and for each j = (i, U ′) ≥ (iU , U) = jU , i.e.
for i ≥ iU and U ′ ⊆ U we have aj = a(i,U ′) ∈ κi ∩ U ′ ⊆ U.

We can combine the previous two lemmas to a theorem relating convergence
in Vietoris spaces to convergence in their base spaces:

Theorem 4. Let (κi)i∈I converge to K in the Vietoris space V(X ). Then

1. for each a ∈ K there is a subnet (κj)j∈J and elements aj ∈ κj such that
(aj

� a), and
2. each net (bi)i∈I with bi ∈ κi has a subnet (bj)j∈J converging to some b ∈ K.

8.3 Closure of Subcoalgebras and Bisimulations

In this section we shall show that in topological Kripke structures, i.e. for Vietoris
coalgebras, the topological closure of a substructure is again a substructure and
the closure of a bisimulation is a bisimulation. The second of these results has
previously been shown for Vietoris coalgebras over Stone spaces in [4], but now
we work in the more general context of Vietoris coalgebras over arbitrary topo-
logical spaces, so we were forced to prepare our tools in the previous sections.

Theorem 5. Let A = (X , α) be a Vietoris coalgebra. If U ⊆ X is a Kripke
substructure of K(A), then so is its topological closure U .

Proof. We may consider A as a topological model K = (X,R, v) where R(x) =
(π1 ◦α)(x) for each x ∈ X is the compact set of all successors of x. Assume that
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U is a Kripke-substructure, i.e. a subset U ⊆ X such that R(u) ⊆ U for each
u ∈ U. We need to show that the same property holds for U .

Thus let u ∈ U be arbitrary and let w be a successor of u, i.e. w ∈ R(u). We
need to show that w ∈ U .

Due to Proposition 3, there is a net (ui)i∈I converging to u with each ui ∈ U.
By continuity of α, the net R(ui)i∈I converges to R(u) in the Vietoris topology.

As w ∈ R(u), we may assume by Lemma 12, that each R(ui) is nonempty.2

Next, we may assume by Theorem 4 that we can pick a wi from each R(ui) so
that the net (wi)i∈I converges to w in X.

Since U was a subcoalgebra, R(ui) ⊆ U, so each wi must belong to U .
Therefore, we have found a net in U which converges to w, hence w ∈ U.

Theorem 6. If S is a Kripke bisimulation between Vietoris coalgebras A =
(A,α) and B = (B, β), then so is its topological closure S.

Proof. Again, we consider A and B as topological models with α = (RA, vA)
and β = (RB , vB). Given (a, b) ∈ S, we need to show that

1. vA(a) = vB(b) and
2. whenever a � u then there is some w with b � w and (u,w) ∈ S.

The third case of Definition 3 will follow by a symmetric proof.
First note that by Proposition 3 there is a net (ai, bi)i∈I converging to (a, b)

with each (ai, bi) ∈ S. The component nets (ai), resp. (bi), converge to a, resp.
to b, since the projection maps are continuous.

Also by continuity, vA(ai) and vB(bi) converge to vA(a) and vB(b) ∈ P(Φ).
Since (ai, bi) ∈ S, we know vA(ai) = vB(bi) for each i ∈ I. Since the topology
on P(Φ), the second component of the Vietoris functor, is Hausdorff, we get
vA(a) = vB(b) as required.

Next, assume a � u, i.e. u ∈ RA(a), then we need to find some w with b � w
and (u,w) ∈ S.

By continuity of RA and RB, the nets (RA(ai))i∈I resp. (RB(bi)i∈I), converge
to RA(a), resp. to RB(b) in the Vietoris spaces V(A), resp. V(B).

a

� 

�

RA




S

aj
limA

�
�

RA




S bj
limB

�
�

RB




b

���

�
�
�
�

�
�

�

RB




RA(a) RA(aj)
limV(A)� RB(bj)

limV(B) � RB(b)

u

∈

S

∃uj
limA�� � � � � � � �

∈

S wj

∈
limB ��������� ∃w

∈

2 With the phrase “we may assume” we often hide the technicality that we might have
to pass to a subnet, such as here to (α(uf(j)))j∈J and retroactively replace (ui)i∈I

by the subnet (uf(j))j∈J , which is always justified by Lemma 10.
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In the sense mentioned previously, we may assume that the RA(ai) are
nonempty and further, using part 1 of Theorem 4, and possibly passing to a
subnet indexed by some J , we find uj ∈ RA(aj) with (uj

� u).
Since S is a bisimulation and aj S bj for each j and uj ∈ RA(aj) it follows

that there are wj ∈ RB(bj) with (uj , wj) ∈ S for each j ∈ J. Since (bj
� b)

it follows (RB(bj) � RB(b)) by continuity of RB. Therefore, part 2 of
Theorem 4 forces (wj)j∈J to converge to some w ∈ RB(b).

Consequently, (uj , wj) � (u,w) where (uj , wj) ∈ S for each j ∈ J, hence

by Lemma 3 (u,w) ∈ S as desired.

9 The Terminal Vietoris Coalgebra

To obtain the terminal Vietoris coalgebra, we utilize the equivalence with sat-
urated Kripke structures and look for a terminal saturated Kripke structure
instead. This will be found in the “canonical model”. The existence of a termi-
nal object in the class of all saturated coalgebras could, in fact, be derived from
a very general result by Goldblatt [8], which shows that a terminal coalgebra
can actually be found for any Set-functor F with a “small logic” having the
Hennessy-Milner property.

Here, we describe a construction using the notation introduced above and
based on a classical method from [5]. Recall that the canonical model for a
normal modal logic consists of all maximally consistent subsets of LΦ. Here
u ⊆ LΦ is called

– consistent, if no contradiction can be derived from the formulae in u, and
– maximally consistent, if additionally for each formula φ ∈ LΦ, either φ ∈ u

or ¬φ ∈ u.

Typical sets of formulas which are maximally consistent arise as

�x� := {φ | x � φ},

where x is any element of any Kripke structure. Moreover, any consistent set of
formulas can be extended to a maximally consistent set.

It is also essential to know that a set u is consistent, if and only if every finite
subset u0 ⊆ u is consistent, see [5].

The canonical model is now defined as M := (M,�M, vM) where M is the
collection of all maximally consistent subsets of LΦ, and �M and vM are defined
as

u �M w :⇔ ∀φ.(�φ ∈ u =⇒ φ ∈ w), (9.1)

and
vM(u) := u ∩ Φ. (9.2)

The latter definition extends to the important “truth lemma”:
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Lemma 15. For each formula φ ∈ LΦ and each u ∈ M we have:

u � φ ⇐⇒ φ ∈ u.

As an immediate corollary, we note:

Corollary 5. ∀u,w ∈ M.u ≈ w =⇒ u = w.

First, we shall verify, that M is saturated: Given u ∈ M and Σ a set of
formulas such that for every finite subset Σ0 ⊆ Σ there is some w0 such that
u � w0 and w0 �

∧
Σ0. It follows that every finite subset of the set

S := {φ | �φ ∈ u} ∪ Σ

is satisfied in some w0, and hence consistent. Thus, the whole set S itself is
consistent. Let w be any maximal consistent set containing S, then w ∈ M and
clearly u � w as well as w � σ for each σ ∈ Σ. Therefore:

Lemma 16. M is saturated.

Let us see that moreover:

Theorem 7. M is the terminal object in the category of all saturated Kripke
structures.

Proof. First note that Corollary 5 yields uniqueness: If ϕ1, ϕ2 : K → M were
different homomorphism, then for some x ∈ K we would have ϕ1(x) �= ϕ2(x).
However, x ≈ ϕ1(x) as well as x ≈ ϕ2(x) according to (3.1), whence ϕ1(x) ≈
ϕ2(x), which contradicts Corollary 5.

For any Kripke structure K, we show that the map �−� : K → M which sends
an element x ∈ K to �x� := {φ | x � φ} is a homomorphism, see Definition 4:

First, for each p ∈ Φ we have: x � p in K implies p ∈ �x�, so �x� � p in M,
by the Truth Lemma.

Next, suppose x, y ∈ K and x �K y. Then for each φ ∈ LΦ with x � �φ it
follows y � φ, which by the truth lemma says �φ ∈ �x� =⇒ φ ∈ �y�, hence
�x� �M �y� by (9.1).

Finally, let us assume �x� �M w for some maximally consistent set w. We
need to find some y ∈ K with x �K y and �y� = w.

x
� ��

���

�x�

���
yi � φi /∈ w

For this we invoke a Hennessy–Milner style argument again: Let (yi)i∈I be
the collection of all successors of x. If �yi� = w for some i, then we are done.
Otherwise, assume that �yi� �= w for each i ∈ I, then there are formulae φi with
φi ∈ �yi� but φi /∈ w, or, in other words, yi � φi, but w �� φi.
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Hence x |= �
∨

i∈I φi. By assumption K is saturated, so x ∈ K is saturated,
which means that we can find a finite subset I0 ⊆ I with x � �

∨
i∈I0

φi. This
is now an honest formula, so from �x� � w, and Definition 9.1 we conclude
w |= ∨

i∈I0
φi. This means that w � φi for some i ∈ I0, contradicting our

assumption.
Theorem 3 tells us explicitly, how to obtain the terminal Vietoris coalgebra,

so we have:

Theorem 8. The category of all Vietoris coalgebras has a terminal object. Its
base structure is the canonical model, consisting of all maximally consistent sets
of LΦ-formulas, and its topology is generated by the open sets �φ�M = {u ∈ M |
φ ∈ u} for all φ ∈ LΦ.

10 Conclusion

Starting from an arbitrary set Φ of atomic proposition, we have characterized
modally saturated Kripke structures as Top-coalgebras for V(−)×P(Φ), which is
the compact Vietoris functor on the category Top of topological spaces and con-
tinuous mappings, augmented with a constant part, representing sets of atomic
propositions.

In fact, the categories of saturated Kripke structures and the category of all
Vietoris coalgebras over the category Top are isomorphic. We have described the
relation of convergence in the Vietoris space V(X ) to convergence in the base
space X , from which we could derive that the Kripke-closure of bisimulations and
of subcoalgebras are again bisimulations, resp. subcoalgebras. Finally, we have
shown that the final Vietoris coalgebra exists, and is derived from the canonical
Kripke model.
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Abstract. Monads and their composition via distributive laws have
many applications in program semantics and functional programming.
For many interesting monads, distributive laws fail to exist, and this
has motivated investigations into weaker notions. In this line of research,
Petrişan and Sarkis recently introduced a construction called the semifree
monad in order to study semialgebras for a monad and weak distribu-
tive laws. In this paper, we prove that an algebraic presentation of the
semifree monad M s on a monad M can be obtained uniformly from an
algebraic presentation of M . This result was conjectured by Petrişan and
Sarkis. We also show that semifree monads are ideal monads, that the
semifree construction is not a monad transformer, and that the semifree
construction is a comonad on the category of monads.

Keywords: algebraic theory · monad · algebraic presentation ·
semifree

1 Introduction

Monads [25,26] are widely used in the coalgebraic semantics of programs with
nondeterminism, probabilistic branching and other features, see e.g. [8,14,19,21,
28]. In functional programming, monads are used for structuring programs with
computational effects, see e.g. [31,33,39]. In order to reason about programs
that combine several effects, compositions of monads have been studied such
as monad transformers [20,24], coproducts [3,12] and tensors [15,34]. The main
approach for studying compositions of two monads with functor parts M and T
into a monad with functor part MT is via distributive laws [6]. However, dis-
tributive laws do not always exist [22,38,40]. These negative results motivated
investigations into weaker notions of distributive laws [9,11,37]. For some of the
most prominent examples, including the lack of a distributive law of the proba-
bility distributions monad over the powerset monad [38], the failure was located
at one of the two unit axioms. To overcome this, Garner [11] defines a notion of
weak distributive law which drops the problematic axiom. The usefulness of this
concept has been demonstrated as several monads have been proven to result
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from weak distributive laws: the Vietoris monad [11], the convex powerset monad
[13] and the monad of finitely generated convex subsets [7].

Following this line of research, Petrişan & Sarkis [32] defined the semifree
monad for a monad M on the functor coproduct M s ..= id +M . They demon-
strated a one-to-one correspondence between weak distributive laws with M and
distributive laws with M s satisfying an extra condition. To achieve this, they first
proved the existence of an isomorphism of categories between M s-algebras and
M -semialgebras, the latter being M -algebras that only satisfy the associativity
axiom, but not necessarily the unit axiom. A similar result was proved by Hyland
and Tasson [16, Proposition 27] in the context of 2-monads and 2-categories.

The algebraic presentation of finitary monads by algebraic theories allows for
equational reasoning about programs with computational effects, and is currently
an active area of research, see e.g. [7,8,29,30,40].

The main contribution of this paper is to show that an algebraic presentation
of the semifree monad M s can be obtained uniformly from an algebraic presen-
tation of M (Corollary 16). This uniform presentation was conjectured in [32].
We apply the result to obtain algebraic presentations of the semifree monad over
the exception monad, the list monad, the multiset monad, the finite powerset
monad and the state monad.

We give a brief sketch of the proof. Given an algebraic theory (Σ,E), we
first note that it suffices to prove the result for the free monad T of the theory,
which is clearly presented by it. Let (Σs, Es) be the proposed presentation of
T s, where the signature Σs consists of all operations in Σ plus a new unary,
idempotent operation denoted a. Due to the isomorphism between T s-algebras
and T -semialgebras it suffices to show an isomorphism between the categories of
T -semialgebras and (Σs, Es)-algebras.

– Given a T -semialgebra (X,α), we obtain a (Σs, Es)-algebra by interpreting
the new unary operation a by embedding elements of X into TX using the
unit ηX of T and then applying α. The old operations from Σ are interpreted
similarly. We then verify by inductive arguments that this algebra satisfies
all equations in Es.

– Given a (Σs, Es)-algebra, we obtain an T -semialgebra (X,α) using that ele-
ments of TX are congruence classes of terms. This allows us to show that α
is indeed associative by an induction on the term structure of the elements
of TTX.

Apart from providing equational reasoning for semifree monads, this uniform
presentation result provides a means to study weak distributive laws via the
presentations of the monads involved, using a similar approach as Zwart & Mars-
den [40]. We discuss their work below and in Sect. 6.

The paper is organised as follows. Section 2 introduces preliminary defini-
tions of monads, universal algebra, and semifree monads. Section 3 states and
proves the main result, Corollary 16. Section 4 presents examples of the applica-
tion of Corollary 16. Section 5 investigates the relationship between the semifree
construction and the notions of ideal monad and monad transformer. Section 6
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concludes and discusses future work. Omitted proofs can be found in an online
version on arXiv [36].

Related Work: The work in the present paper concerns the question of how
to obtain a monad presentation from existing ones, in a uniform manner.

Zwart & Marsden [40] use presentations of monads to give general results
about the non-existence of distributive laws (“no-go theorems”). This approach
allowed them to answer several open questions, including the 50 year-old conjec-
ture by Beck [6, Example 4.1] that addition cannot distribute over multiplication.
On the positive side, when a distributive law exists, they show how to obtain a
presentation of the composite monad from the monads and the distributive law.

Monads of the form C +1 and other modifications of C, the monad of convex
subsets of distributions are studied in [29]. Both positive and negative results are
obtained in different categories. No uniform presentation result such as Corollary
16 is given.

Recent work on algebraic presentations of specific monads include a pre-
sentation of the monad C [8], and presentations for monads arising via weak
distributive laws that combine the monads of semilattices and semimodules [7].

2 Preliminaries

We assume the reader is familiar with basic notions of category theory [4,25,35].
In this section, we recall basic definitions and fix notation concerning monads,
algebraic theories and presentations. We also recall basic definitions and results
of semifree monads.

Definition 1. A monad (M,η, μ) on a category C is a triple consisting of an
endofunctor M : C → C, and two natural transformations, the unit η : id ⇒ M
and the multiplication μ : M2 ⇒ M that make (1) and (2) commute. We refer
to (2) as the associativity of μ.

M M2 M

M

Mη

μ

ηM

(1)
M3 M2

M2 M

Mμ

μM

μ

μ

(2)

For convenience, we often refer to a monad (M,η, μ) by its functor part M .

Definition 2. Given two monads (M,ηM , μM ) and (T, ηT , μT ) on a category
C, a monad morphism from M to T is a natural transformation σ : M ⇒ T
that makes (3) and (4) commute, where σσ ..= σT ◦ Mσ = Tσ ◦ σM .

M

id

T

σ

ηM

ηT

(3)
M2 T 2

M T

μM

σσ

μT

σ

(4)
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If each component of σ is an isomorphism, we say that the two monads are
isomorphic. The category of monads on a category C and monad morphisms is
denoted Mon(C).

Definition 3. Let (M,η, μ) be a monad on category C. An (Eilenberg-Moore)
M -algebra is a C-morphism α : MX → X for some X ∈ C, denoted (X,α)
for short, such that (5) and (6) commute. An M -semialgebra is a C-morphism
α : MX → X that satisfies (6).

X MX

X

ηX

α (5)
M2X MX

MX X

Mα

μX

α

α

(6)

An M -(semi)algebra homomorphism f : (X,α) → (Y, β) between two
M -(semi)algebras is a function f : X → Y such that the following diagram
commutes:

MX MY

X Y

α

Mf

β

f

The category of M -algebras and M -algebra homomorphisms is denoted
EM(M) and called the Eilenberg-Moore category of M . The category
EMs(M) consists of M -semialgebras and M -semialgebra homomorphisms.

We denote the coproduct of two objects X and Y in a category C by X +Y ,
the left and right injections by inlX+Y : X → X + Y and inrX+Y : Y → X + Y ,
and the arrow given by the universal property of the coproduct for arbitrary
f : X → Z and g : Y → Z by [f, g] : X + Y → Z. Given f : X → X ′ and
g : Y → Y ′, we denote f + g ..= [inlX

′+Y ′
◦f, inrX

′+Y ′
◦g] : X + Y → X ′ + Y ′.

We now recall a few basic notions of universal algebra.

Definition 4. – An algebraic signature Σ is a set of operation symbols
each having its own arity n ∈ N, denoted (op : n) for an n-ary op ∈ Σ.

– Given an algebraic signature Σ and a set X, the set TΣ(X) of Σ-terms over X
is defined inductively as follows. Elements in X are terms, and they are said to
be of depth zero, written dp(v) = 0. If t1, . . . , tn are terms, and (op : n) ∈ Σ,
then t ..= op(t1, . . . , tn) is a term of depth dp(t) ..= max{dp(t1), . . . , dp(tn)}+1.
We define constants (i.e., nullary operations) to have depth 1.

– We fix a set Var = {v1, v2, v3, . . .} of variables. To indicate that the variables
appearing in t ∈ TΣ(Var) are in the set {v1, . . . , vn}, we write t(v1, . . . , vn).

– A Σ-algebra is a pair (X, ⟦·⟧), where X is a set and ⟦·⟧ is a collection of
interpretations: for each (op : n) ∈ Σ, we have ⟦op⟧ : Xn → X.

– Given a Σ-algebra (X, ⟦·⟧), any function f : Y → X extends to a unique
homomorphism, ⟦·⟧f : TΣ(Y ) → X:
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⟦y⟧f
..= f(y), and (7)

⟦op(t1, . . . , tn)⟧f
..= ⟦op⟧(⟦t1⟧f , . . . , ⟦tn⟧f ). (8)

When f is the identity idX , the subscript is omitted. The function f is often
a variable assignment σ : Var → X to obtain an interpretation of TΣ(Var).

– An equation over Σ is a pair of terms (s, t) ∈ TΣ(Var) × TΣ(Var).
– An algebraic theory is a pair (Σ,E) consisting of an algebraic signature

Σ and set E of equations over Σ.
– A (Σ,E)-algebra is a Σ-algebra (X, ⟦·⟧) for which the interpretation satisfies

all equations in E, meaning that for all (s, t) ∈ E and all variable assignments
σ, ⟦s⟧σ = ⟦t⟧σ.

– A (Σ,E)-algebra homomorphism between two (Σ,E)-algebras (X, ⟦·⟧)
and (X ′, ⟦·⟧′) is a function f : X → X ′ such that f ◦ ⟦op⟧ = ⟦op⟧′ ◦ fn

for all (op : n) ∈ Σ.
– The category Alg(Σ,E) consists of (Σ,E)-algebras and (Σ,E)-algebra homo-

morphisms.
– Given terms s and t, we write E � s = t to denote that s = t is derivable from

E in equational logic, and E � s = t to denote that the equation s = t holds in
all (Σ,E)-algebras. Birkhoff’s theorem states that E � s = t ⇐⇒ E � s = t.

– The free (Σ,E)-algebra on a set X is the (Σ,E)-algebra (TΣ(X)/E, ⟦·⟧X)
with carrier set consisting of TΣ(X) modulo the smallest congruence relation
containing E. The congruence class of a term t is denoted t. The interpreta-
tion of an operation (op : m) ∈ Σ is

⟦op⟧X(t1, . . . , tn) ..= op(t1, . . . , tn).

– The free functor F : Set → Alg(Σ,E) sends a set X to the free (Σ,E)-
algebra (TΣ(X)/E, ⟦·⟧). The adjective “free” is also true in the categorical
sense, i.e., we have a free-forgetful adjunction

F : Set Alg(Σ,E) : U⊥

The composite TΣ,E
..= UF is a monad (see e.g. [25, VI.1]). Its unit ηΣ,E

sends an element to its equivalence class x �→ x and its multiplication μΣ,E

flattens terms t[ti/vi] �→ t[ti/vi].

We can finally define the central concept of algebraic presentation.

Definition 5. An algebraic theory (Σ,E) is an algebraic presentation of a
Set-monad (M,η, μ) if (TΣ,E, ηΣ,E, μΣ,E) ∼= (M,η, μ).

Note that a monad can have multiple presentations. From the definition,
we immediately have the trivial example that an algebraic theory (Σ,E) is an
algebraic presentation of its free monad TΣ,E.
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The class of monads that admit presentations is precisely the class of finitary
monads; for the definition and also the proof of this correspondence see e.g. [2,
Section 3.18, p. 149]. We therefore work only with finitary monads in the article.

Given a Set-monad M and an algebraic theory (Σ,E), the categories of
algebras EM(M) and Alg(Σ,E) are concrete categories, and in this paper, it
turns out to be more convenient to work with an equivalent definition of algebraic
presentation formulated in terms of concrete isomorphisms.

Definition 6. A category C is concrete if there is a faithful functor U : C →
Set, usually a forgetful functor. A functor F : C → D between concrete categories
is itself concrete if it commutes with the faithful functors UD ◦ F = UC. We
write C ∼=conc D to denote that categories C and D are concretely isomorphic.

The following lemma is well-known and is a direct consequence of e.g. [5,
Theorem III.6.3].

Lemma 7. For Set-monads (M,ηM , μM ), (T, ηT , μT ), we have

(M,ηM , μM ) ∼= (T, ηT , μT ) ⇐⇒ EM(M) ∼=conc EM(T ).

It gives the following alternative formulation of algebraic presentation.

Lemma 8. An algebraic theory (Σ,E) is an algebraic presentation of a (fini-
tary) monad (M,η, μ) if and only if EM(M) ∼=conc Alg(Σ,E).

Proof. Since Alg(Σ,E) ∼=conc EM(TΣ,E) (see e.g. [25, VI.8.1]), the result follows
immediately from Lemma 7. 
�

Remark 9. In the literature, the definition of algebraic presentation is often
stated as the condition EM(M) ∼= Alg(Σ,E), i.e., it leaves the “concrete” part
implicit, see e.g. [7,8,29,30,32]. The “concrete” part is not necessary in these
papers, since they establish algebraic presentations (by indeed establishing con-
crete isomorphisms), but they do not prove results that assume the existence of
an algebraic presentation. In the present paper, we assume that a presentation
for M is given, and establish one for Ms, and the proof requires the isomorphism
EM(M) ∼=conc Alg(Σ,E) to be concrete.

The following lemma states two well-known facts that we will need later in
proofs.

Lemma 10. Let (Σ,E) be an algebraic theory and T denote its free monad
TΣ,E. Given a function f : Y → X, then the following are (Σ,E)-algebra homo-
morphisms:

μX : (TTX, ⟦·⟧TX) → (TX, ⟦·⟧X),

T f : (TY, ⟦·⟧Y ) → (TX, ⟦·⟧X).

The semifree monad M s for a monad M was introduced in [32] by Petrişan
and Sarkis.
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Definition 11 ([32]). Given a monad (M,η, μ) on a category C having all finite
coproducts, the semifree monad on M is a monad (M s, ηs, μs), where

M s ..= idC +M,

ηs ..= inlid+M ,

μs ..= [idid+M , inrid+M ◦μ ◦ M [η, idM ]].

Note that the unit ηs injects a set X to its copy on the left in X + MX.
Petrişan and Sarkis showed in Theorems 3.4 and 4.3 of [32] that:

– There is a (concrete) isomorphism EM(M s) ∼=conc EMs(M).
– There is a bijection between weak distributive laws λ : MT ⇒ TM and

distributive laws δ : M sT ⇒ TM s satisfying an extra condition.

The semifree construction takes a monad as input and outputs another
monad. The semifree construction can be made into a functor on Mon(C) as
follows. Given a monad morphism σ : M ⇒ T , and a set X, let

σs
X

..=
(
X + MX

idX +σX−−−−−−→ X + TX
)
. (9)

Lemma 12. The mapping (−)s : Mon(C) → Mon(C) is a functor.

Since functors preserve isomorphism, we have the following consequence.

Corollary 13. Take two monads (M,ηM , μM ), (T, ηT , μT ) on a category C that
has all finite coproducts. If they are isomorphic M ∼= T , then their respective
semifree monads are also isomorphic M s ∼= T s.

3 Algebraic Presentation of Semifree Monads

In this section, we state and prove the main result of the paper. We prove that
given an algebraic presentation of a (finitary) Set-monad (M,η, μ), we can derive
an algebraic presentation of the semifree monad (M s, ηs, μs). In particular, if M
is a finitary monad, then its semifree monad M s is finitary too.

Before we state the theorem, we give some intuitions for the presentation of
(M s, ηs, μs). Recall that M s = X + MX and the unit ηs

X : X → X + MX is
the left injection. In terms of presentation, this means that the left copy of X
becomes the “new” set of variables. As a consequence, the “old” set of variables
ηX(X) ⊆ MX is now free in M s of the constraints, such as the unit laws (1) and
(5), that it had in M . The inclusion of X via ηX in M sX corresponds to a new
unary operation (a : 1) in the presentation of M s. On the semantic level, suppose
we have an M s-algebra γ : M sX → X. By Theorem 3.4 in [32] and by looking
at its proof, we see that γ must be of the form [idX , α] where α : MX → X is
an M -semialgebra. Notice the following:

α ◦ ηX ◦ α
η nat.
= α ◦ Mα ◦ ηMX

(6)
= α ◦ μX ◦ ηMX

(1)
= α. (10)

Hence, α◦ηX is an idempotent. This map will be our choice for the interpretation
of the new symbol (a : 1).
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Definition 14. Given an algebraic theory (Σ,E), we define a new algebraic
theory (Σs, Es) by Σs ..= Σ  {a : 1} and Es containing the following:

aav1 = av1, (11)
a(op(v1, . . . , vn)) = op(v1, . . . , vn), (12)
op(av1, . . . , avn) = op(v1, . . . , vn), (13)
t(av1, . . . , avn) = s(av1, . . . , avn), (14)

for all (op : n) ∈ Σ and (t(v1, . . . , vn) = s(v1, . . . , vn)) ∈ E.

We have the trivial fact that an algebraic theory (Σ,E) is an algebraic presen-
tation of its free monad TΣ,E. The next theorem states that the algebraic theory
(Σs, Es) of Definition 14 is an algebraic presentation of T s

Σ,E, the semifree monad
on TΣ,E.

Theorem 15. (Σs, Es) is an algebraic presentation of (T s
Σ,E, ηs

Σ,E, μs
Σ,E).

The proof of this theorem is the goal of the rest of Sect. 3. As a direct conse-
quence, we have the following corollary. It was originally formulated as Conjec-
ture 5.4 in [32] by Petrişan and Sarkis.

Corollary 16. If (Σ,E) is an algebraic presentation of a monad (M,η, μ), then
(Σs, Es) is an algebraic presentation of (M s, ηs, μs), the semifree monad on M .

Proof. Assume that we have a monad isomorphism TΣ,E
∼= M . By Corollary

13, their semifree monads are also isomorphic T s
Σ,E

∼= M s. By Theorem 15,
T s

Σ,E
∼= TΣs,Es . Hence, M s ∼= TΣs,Es , which means that (Σs, Es) is an algebraic

presentation of M s. 
�
We will need a few technical lemmas. The next one shows that Eqs. (12) and

(13) extend inductively to all terms of depth at least 1.

Lemma 17. For all t ∈ TΣ(Var) of depth at least 1, an Σs-algebra that satisfies
(11)–(13) also satisfies

at(v1, . . . , vn) = t(v1, . . . , vn), and (15)
t(av1, . . . , avn) = t(v1, . . . , vn). (16)

Proof of Lemma 17. Take (X, �·�) that satisfies (11) to (13), and a term t ∈
TΣ(Var). The proof goes by induction. When t is of depth 1, these are just Eqs.
(12) and (13), which we already know are satisfied. For the induction step, take
t = op(t1, . . . , tm) and suppose that (15) and (16) hold for t1, . . . , tm. Among
the subterms, say that p of them are of depth at least 1, w.l.o.g. the first p
ones t1, . . . , tp. Thus, the q ..= m − p last subterms are variables w1, . . . , wq ∈
{v1, . . . , vn}. Then,

�at(v1, . . . , vn)�σ = �a(op(t1, . . . , tp, w1, . . . , wq)�σ
= �op(t1, . . . , tp, w1, . . . , wq))�σ (by (12))
= �t(v1, . . . , vn)�σ,
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and

�t(av1, . . . , avn)�σ
= �op� (�t1(av1, . . . , avn)�σ, . . . , �tp(av1, . . . , avn)�σ, �aw1�σ, . . . , �awq�σ)
= �op� (�t1(v1, . . . , vn)�σ, . . . , �tp(v1, . . . , vn)�σ, �aw1�σ, . . . , �awq�σ) (I.H.)
= �op(t1, . . . , tp, aw1, . . . , awq)�σ
= �op(at1, . . . , atp, aaw1, . . . , aawq)�σ (by (13))
= �op(at1, . . . , atp, aw1, . . . , awq)�σ (idempotency (11))
= �op(t1, . . . , tp, w1, . . . , wq)�σ (by (13))
= �t(v1, . . . , vn)�σ.


�

In Definition 14, Eq. (14) tells us that equations from E give rise to equations
in Es by substituting v �→ av, for all variables v. The next lemma indicates that
the same procedure can be done for theorems, i.e., that a theorem deducible
from E becomes, after the substitution v �→ av, a theorem deducible from Es.

Lemma 18. For all terms t(v1, . . . , vn), s(v1, . . . , vn) ∈ TΣ(Var),

E � t(v1, . . . , vn) = s(v1, . . . , vn) =⇒ Es � t(av1, . . . , avn) = s(av1, . . . , avn).

The last lemma is purely technical. Its reasoning appears multiple times in
different proofs. Stating it here allows us to prove it once for all.

Lemma 19. Let (Σ,E) be an algebraic theory with free monad (TΣ,E, ηΣ,E,
μΣ,E). For every TΣ,E-semialgebra α : TΣ,EX → X and operation symbol
(op : n) ∈ Σ, we have

α ◦ ⟦op⟧X = α ◦ ⟦op⟧X ◦ ηn
X ◦ αn. (17)

We now tackle the proof of Theorem 15. For simplicity, we will denote in the
rest of this section the free monad (TΣ,E, ηΣ,E, μΣ,E) simply by (T, η, μ). To prove
that (Σs, Es) is an algebraic presentation of T s, it suffices by Lemma 8 to prove
that Alg(Σs, Es) ∼=conc EM(T s). Recall that EM(T s) ∼=conc EMs(T ), by The-
orem 3.4 in [32], i.e., T s-algebras are concretely isomorphic to T -semialgebras.
Therefore, it suffices to prove that EMs(T ) ∼=conc Alg(Σs, Es).

3.1 From T -semialgebras to (Σs, Es)-algebras

In the forward direction, suppose we have a semialgebra α : TX → X. We want
to obtain an (Σs, Es)-algebra. It will be constructed with carrier X, since we are
aiming for a concrete isomorphism.
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Definition 20. We define the mapping

G : EMs(T ) → Alg(Σs, Es)

by G(X,α) ..= (X, �·�) on objects, where the interpretation �·� is defined on the
operation symbols a : 1 and (op : n) ∈ Σ as

�a� :=
(
X

ηX−−→ TX
α−→ X

)
, (18)

�op� :=
(

Xn (ηX)n

−−−−→ (TX)n ⟦op⟧X

−−−−→ TX
α−→ X

)
, (19)

and G(f) ..= f on morphisms.

The goal now is to demonstrate that G is well-defined on objects and arrows.
It then follows immediately that G is a functor due to being essentially identity
on arrows. To this end, we first establish in Lemma 21, a property that generalises
both (18) and (19) into one formula. Then, we show in Lemma 22 that G indeed
outputs (Σs, Es)-algebras. Lastly, we show in Lemma 23 that G outputs (Σs, Es)-
algebra homomorphisms, and hence is also well-defined on arrows.

Lemma 21. For all terms t(v1, . . . , vn) ∈ TΣ(Var) of depth at least 1, and all
variable assignments σ : Var → X, we have

�t�σ = α ◦ ⟦t⟧X
ηX◦σ. (20)

Lemma 22. For all T -semialgebras α : TX → X,G(X,α) is a (Σs, Es)-algebra.

Proof. We check that (X, �·�) ..= G(X,α) satisfies the equations in Es. Let
σ : Var → X be a variable assignment.

(i) For Es-equations arising from (11), we have:

�aav1�σ = �a��a�(σv1)
= (α ◦ ηX) ◦ (α ◦ ηX)(σv1) (by (18))
= α ◦ ηX(σv1) (by (10))
= �av1�σ.

(ii) For Es-equations arising from (12).

�a(op(v1, . . . , vn))�σ
= �a� ◦ �op�(σv1, . . . , σvn)

= α ◦ ηX ◦ α ◦ ⟦op⟧X ◦ (ηX)n(σv1, . . . , σvn) (by (18), (19))

= α ◦ ⟦op⟧X ◦ (ηX)n(σv1, . . . , σvn) (by (10))
= �op(v1, . . . , vn)�σ (by (19))
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(iii) For Es-equations arising from (13), we have:

�op(av1, . . . , avn)�σ
= �op�(�av1�σ, . . . , �avn�σ)

= α ◦ ⟦op⟧X ◦ ηn
X(α ◦ ηX(σv1), . . . , α ◦ ηX(σvn)) (by (18), (19))

= α ◦ ⟦op⟧X ◦ ηn
X ◦ αn ◦ ηn

X(σv1, . . . , σvn)

= α ◦ ⟦op⟧X ◦ ηn
X(σv1, . . . , σvn) (by (17))

= �op(v1, . . . , vn)�σ. (by (19))

(iv) For Es-equations arising from (14), let (t(v1, . . . , vn) = s(v1, . . . , vn)) ∈
E. We have so far verified (11)–(13) and we can thus invoke Lemma 17.
Since (TX, ⟦·⟧X) is a (Σ,E)-algebra, and ηX ◦ σ : Var → TX is a variable
assignement, we have ⟦t⟧X

ηX◦σ = ⟦s⟧X
ηX◦σ. We distinguish cases:

– Suppose t and s are variables, v1 and v2 respectively:

⟦v1⟧
X
ηX◦σ = ⟦v2⟧

X
ηX◦σ ⇔ ηX ◦ σ(v1) = ηX ◦ σ(v2) (def (7))

⇒ α ◦ ηX ◦ σ(v1) = α ◦ ηX ◦ σ(v2)
⇒ �av1�σ = �av2�σ. (def (18))

– Suppose one is a variable and the other is not, say w.l.o.g. that t is v1:

⟦v1⟧
X
ηX◦σ = ⟦s⟧X

ηX◦σ ⇔ ηX ◦ σ(v1) = ⟦s⟧X
ηX◦σ (def (7))

⇒ α ◦ ηX ◦ σ(v1) = α ◦ ⟦s⟧X
ηX◦σ

⇒ �av1�σ = �s(v1, . . . , vn)�σ (def (18); (20))
⇒ �av1�σ = �s(av1, . . . , avn)�σ. (by (16))

– Suppose neither of t and s is a variable:

⟦t⟧X
ηX◦σ = ⟦s⟧X

ηX◦σ ⇒ α ◦ ⟦t⟧X
ηX◦σ = α ◦ ⟦s⟧X

ηX◦σ

⇒ �t(v1, . . . , vn)�σ = �s(v1, . . . , vn)�σ (by (20))
⇒ �t(av1, . . . , avn)�σ = �s(av1, . . . , avn)�σ. (by (16))


�
Lemma 23. G maps T -semialgebra homomorphisms to (Σs, Es)-algebra homo-
morphisms.

Proof. Suppose f : (X,α) → (Y, β) is a T -semialgebra homomorphism. Let
(X, �·�X) ..= G(X,α) and (Y, �·�Y ) ..= G(Y, β). We check that G(f), which is
defined as f in Definition 20, is an (Σs, Es)-algebra homomorphism, or in other
words, that it commutes with the interpretations of the operations a and each
(op : n) ∈ Σ.
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X TX X

Y TY Y

f

ηX

�a�X

(η nat.)

α

Tf (f hom.) f

ηY

�a�Y

β

Xn (TX)n TX X

Y n (TY )n TY Y

fn

(ηX)n

�op�X

(η nat.)n
(Tf)n

⟦op⟧X

(Lem.10) Tf

α

(f hom.) f

(ηY )n

�op�Y

⟦op⟧Y β 
�

3.2 From (Σs, Es)-algebras to T -semialgebras

For the backward direction, given a (Σs, Es)-algebra (X, �·�), we want to define
a T -semialgebra α : TX → X. Since the elements of TX are equivalence classes
of terms, we can construct the desired semialgebra and the backward functor H
as follows.

Definition 24. We define the mapping

H : Alg(Σs, Es) → EMs(T )

by H(X, �·�) ..= (X,α) on objects, where α is defined as follows:

α : TX → X : t �→ �t��a�, (21)

and H(f) ..= f on morphisms.

We now show that H is well-defined on objects and morphisms. It then follows
immediately that H is a functor due to being essentially identity on morphisms.
Since the definition of α relies on equivalence classes, we first show in Lemma
25 that α is well-defined, i.e., that changing representatives does not matter.
Then, we prove in Lemma 27 that α is indeed a T -semialgebra. Lastly, we show
in Lemma 28 that H outputs T -semialgebra homomorphisms.

Lemma 25. Given a (Σs, Es)-algebra (X, �·�), and (X,α) ..= H(X, �·�), then α
from (21) is a well-defined function.

The next lemma states two identities that give more insight into how α works
on distinct elements. It makes future manipulations of α easier.

Lemma 26. Given a (Σs, Es)-algebra (X, �·�), and (X,α) ..= H(X, �·�), then
for all x ∈ X, (op : n ∈ Σ), and c1, . . . , cn ∈ TΣ(X)/E, it holds that

α ◦ ηX(x) = �a�(x), and (22)

α ◦ ⟦op⟧X(c1, . . . , cn) = �op�(αc1, . . . , αcn), (23)

The proof of the associativity of α highlights the use of term representatives.

Lemma 27. Given a (Σs, Es)-algebra (X, �·�), and (X,α) ..= H(X, �·�), then α
is a T -semialgebra, i.e., it satisfies the associativity axiom (6).
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Proof of Lemma 27. We have to show that α ◦ Tα(t) = α ◦ μX(t) for all t ∈
TTX = TΣ(TX)/E. We do an induction on t:

– For the base case suppose t is some s ∈ TX = TΣ(X)/E. The goal can be
reformulated as α ◦ Tα ◦ ηTX(s) = α ◦ μX ◦ ηTX(s). By the unit law (1), it is
the same as proving α ◦ Tα ◦ ηTX(s) = α(s). We distinguish cases for s:

• If s is some x ∈ X, i.e., s = ηX(x):

α ◦ Tα ◦ ηTX ◦ ηX(x) = α ◦ ηX ◦ α ◦ ηX(x) (η nat.)
= �a� ◦ �a�(x) (by (22))
= �a�(x) (idempotence (11))
= α ◦ ηX(x) (by (22))

• If s = op(s1, . . . , sm) for s1, . . . , sn ∈ TΣ(X) and (op : m) ∈ Σ:

α ◦ Tα ◦ ηTX

(
s
)

= α ◦ Tα ◦ ηTX

(
op(s1, . . . , sm)

)

= α ◦ Tα ◦ ηTX

(
⟦op⟧X(s1, . . . , sm)

)
(def. ⟦·⟧X)

= α ◦ ηX ◦ α ◦ ⟦op⟧X(s1, . . . , sm) (η nat.)

= �a� ◦ �op�(α(s1), . . . , α(sm)) (by (22), (23))

= �op�(α(s1), . . . , α(sm)) (equation (12))

= α ◦ ⟦op⟧X(s1, . . . , sm) (by (23))

= α
(
op(s1, . . . , sm)

)
(def. ⟦·⟧)

= α
(
s
)
.

– For the induction step of t, suppose α ◦ Tα(ti) = α ◦ μX(ti) holds for
t1, . . . , tn ∈ TΣ(TX) and let us prove it for t = op(t1, . . . , tn).

α ◦ Tα
(
t
)

= α ◦ Tα
(
op(t1, . . . , tn)

)

= α ◦ Tα ◦ ⟦op⟧TX(t1, . . . , tn) (def. ⟦·⟧TX)

= α ◦ ⟦op⟧X ◦ (Tα)n(t1, . . . , tn) (Lemma 10)

= �op� ◦ (α ◦ Tα)n(t1, . . . , tn) (by (23))

= �op� ◦ (α ◦ μX)n(t1, . . . , tn) (by I.H.)

= α ◦ ⟦op⟧X ◦ μn
X(t1, . . . , tn) (by (23))

= α ◦ μX ◦ ⟦op⟧TX(t1, . . . , tn) (Lemma 10)

= α ◦ μX

(
op(t1, . . . , tm)

)
(def. ⟦·⟧TX)

= α ◦ μX

(
t
)

This concludes the proof that α is associative. 
�
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Lemma 28. H maps (Σs, Es)-algebra homomorphisms to T -semialgebra homo-
morphisms.

Proof. Suppose f : (X, �·�X) → (Y, �·�Y ) is a (Σs, Es)-algebra homomorphism.
Let (X,α) ..= H(X, �·�X) and (Y, β) ..= H(Y, �·�Y ). We want to check that H(f),
which is equal to f , is a T -semialgebra homomorphism, i.e. the following com-
mute:

TX TY

X Y

α

Tf

β

f

We prove f ◦ α(t) = β ◦ Tf(t) for all t ∈ TX = TΣ(X)/E by an induction on t:

– Suppose t is some x ∈ X:

f ◦ α(x) = f ◦ α ◦ ηX(x) (def. ηX)

= f ◦ �a�X(x) (by (22))

= �a�Y ◦ f(x) (f homom.)
= β ◦ ηY ◦ f(x) (by (22))
= β ◦ Mf ◦ ηX(x) (η nat.)

= β ◦ Mf(x). (def. ηX)

– Suppose that it holds for t1, . . . , tn and let us prove it for t = op(t1, . . . , tn):

f ◦ α(op(t1, . . . , tn)) = f ◦ α ◦ ⟦op⟧X(t1, . . . , tn) (def. ⟦·⟧X)

= f ◦ �op�X(α(t1), . . . , α(tn)) (by (23))

= �op�Y (f ◦ α)n(t1, . . . , tn) (f homom.)

= �op�Y (β ◦ Tf)n(t1, . . . , tn) (by I.H.)

= β ◦ ⟦op⟧Y ◦ (Tf)n(t1, . . . , tn) (by (23))

= β ◦ Tf ◦ ⟦op⟧X(t1, . . . , tn) (Lemma 10)

= β ◦ Tf(op(t1, . . . , tm)). (def. ⟦·⟧X)


�

3.3 Joining both Constructions

We have shown in the two previous sections that we have functors G and H as
shown here:

G : EMs(T ) � Alg(Σs, Es) : H.

It remains to show that they are inverses.
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Lemma 29. The functors G and H are inverses.

Proof. – Suppose we start with a T -semialgebra α : TX → X. Let (X, �·�) ..=
G(X,α) and (X,α′) ..= H(X, �·�). We prove α′(t) = α(t) for all t ∈ TX =
TΣ(X)/E by induction on t:

• Suppose t is some x ∈ X:

α′(x) = α′ ◦ ηX(x) (def. ηX)
= �a�(x) (by (22))
= α ◦ ηX(x) (def.of �a� in(18))

= α ◦ (x). (def. ηX)

• Suppose it holds for t1, . . . , tn and let us prove it for t = op(t1, . . . , tn):

α′(t) = α′(op(t1, . . . , tn)
)

= α′ ◦ ⟦op⟧X(t1, . . . , tm) (def. ⟦·⟧X)

= �op�(α′(t1), . . . , α′(tn)) (by (23))

= �op�(α(t1), . . . , α(tn)) (by I.H.)

= α ◦ ⟦op⟧X ◦ ηn
X ◦ αn(t1, . . . , tn) (def. �op� in(19))

= α ◦ ⟦op⟧X(t1, . . . , tn) (by (17))

= α
(
op(t1, . . . , tn)

)
(def. ⟦·⟧X)

= α(t)

– Suppose we start with an (Σs, Es)-algebra (X, �·�). Let (X,α) ..= H(X, �·�)
and (X, �·�′) ..= G(X,α). We want to prove that �·�′ = �·�. Let us check first
for (a : 1) ∈ Σs:

�a�
′ = α ◦ ηX (def. �·�′ in(18))
= �a�, (by (22))

and then for (op : n) ∈ Σ:

�op�
′ = α ◦ ⟦op⟧X ◦ (ηX)n (def. �·�′ in(19))
= �op� ◦ (α ◦ ηX)n (by (23))
= �op� ◦ �a�n (by (22))
= �op�. (equation (13) in Es)


�
The proof of Theorem 15 is now complete and contained in Lemmas 22, 23,

25, 27, 28, and 29.
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4 Examples

We now give multiple examples to illustrate the applicability of Corollary 16.
First, notice that some equations in Es can be simplified to equations in E. More
precisely, equations in Es that arise via (14) from an equation t = s in E where t
and s are terms of depth at least 1, reduces to t = s due to Lemma 17. Similarly,
if t is variable v and s is not a variable, then the equation in Es arising from
(14) becomes av = s; the case when s is a variable and t is not is analogous.

The presentations of the semifree monads on the maybe monad (−) + 1,
the semigroup monad (−)+ and the distribution monad D were proven each
individually by hand in [32]. Those three examples gave a strong intuition that
a uniform presentation was possible, which lead the authors of [32] to conjecture
Corollary 16 that we proved in this article.

Example 30. The exception monad X �→ X + K, where K is a fixed set (meant
to contain a list of possible exception states) is presented by the theory of K-
pointed sets Σ = {ck : 0 | k ∈ K}, E = ∅. Its semifree monad has functor
X �→ X + (X + K), and presentation

Σs = {ck : 0 | k ∈ K} ∪ {a : 1},

Es = {aav = av} ∪ {ack = ck | k ∈ K}.

Its algebras (X, ⟦·⟧) are sets X with a retract Y = im(⟦a⟧) ⊆ X, the retraction
being ⟦a⟧ : X → X, and with a set of distinguished elements {yk | k ∈ K} ⊆ Y
in the retract.

Example 31. The list monad X �→ X∗ =
⊔

n�0 Xn is presented by the theory of
monoids Σ∗ = {e : 0, · : 2}, E∗ = {(u · v) · w = u · (v · w), e · v = v, v · e = v},
see e.g. [4, Example 10.7]. Its semifree monad has functor X �→ X + X∗. Notice
that its presentation can be simplified. By (14) and Lemma 17, we obtain the
equations e · v = av and v · e = av. These equations show that the new symbol
(a : 1) is not needed since it can be expressed using the operations (e : 0) and
(· : 2). However, we then need to add the equation e · v = v · e. If we continue
this simplification, we end up with

Es
∗ =

{
e · v = v · e, e · e = e,

e · (u · v) = u · v, (u · v) · w = u · (v · w)

}
.

This corresponds to the theory of semigroups (S, ·) that admit a retract R = S ·S
which is a monoid (R, ·, e). The retraction is e · (−) = (−) · e : S → S.

Example 32. The multiset monad M(X) = {φ : X → N | supp(φ) finite}, where
supp(φ) means the support of φ, is presented by the theory of commutative
monoids ΣM = {e : 0, · : 2}, EM = E∗  {u · v = v · u} [18, Section 2]. Its
semifree monad has functor Ms(X) = X + M(X). Its presentation can be built
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direct on the simplified presentation of the semifree monoid monad of Example
31. Furthermore, u · v = v · u renders the equation e · v = v · e redundant.
Therefore, this presentation ends up being Σs

M = {e : 0, · : 2} and

Es
∗ =

{
u · v = v · u, e · e = e,

e · (u · v) = u · v, (u · v) · w = u · (v · w)

}
.

This corresponds to the theory of commutative semigroups (S, ·) that admits a
retract R = S · S, which is a commutative monoid (R, ·, e). The retraction is
e · (−) : S → S.

Example 33. The finite powerset monad P(X) = {Y ⊆ X | Y finite} is pre-
sented by the theory of join-semilattices with bottom ΣP = {e : 0, · : 2}, EP =
EM {v · v = v} [17, p. 81]. Its semifree monad has functor Ps(x) = X +P(X).
The equation v · v = v becomes v · v = av, and as in Example 31, the symbol a
can be replaced by e · −. We end up with

Σs
P = {e : 0, · : 2}, Es

P = Es
M  {v · v = e · v}.

Example 34. The state monad State(X) = (S × X)S , where S is a fixed finite
set (generally of states), is presented by the theory of global states (see [27,33])
ΣState = {f : n} ∪ {gi : 1 | 1 � i � n}, where n ..= |S|, and

EState =
{

gigjv = gjv, gif(v1, . . . , vn) = givi, f(g1v, . . . , gnv) = v
}

.

The semifree monad on State has functor States(x) = X + (S × X)S . Its pre-
sentation can be simplified. The equation f(g1v, . . . , gnv) = av implies that a
can be expressed as f(g1(−), . . . , gn(−)). Then, some equations turn out to be
redundant, like giav = giv or aav = av. After simplifications, we end up with
Σs

State = {f : n} ∪ {gi : 1 | 0 � i � n}, and

Es
State =

{
f(g1v1, . . . , gnvn) = f(v1, . . . , vn), gigjv = gjv,

f(giv, . . . , giv) = giv, gif(v1, . . . , vn) = givi

}
.

Example 35. Consider the repeated semifree construction on the identity monad
id on Set.

– id is presented by Σ = E = ∅. Note that id-algebras are identity morphisms
because of the unit axiom (1), and (Σ,E)-algebras are just sets with no oper-
ations. The presentation sends an id-algebra (X, idX) to the (Σ,E)-algebra
(X, ∅).

– ids(X) = X + X is presented by Σs = {a : 1} and Es = {aav = av}.
– ids2(X) = X + (X + X) is presented by Σs2 = {a, b : 1} and

Es2 = {bbv = bv, bav = av, abv = av, aav = av}.

The equation directly given by (14) is aabv = abv, which simplifies to aav = av

using Lemma 17. We can summarize Es2 as saying that a and b are idempo-
tent, and that a absorbs b on the left and on the right.
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– Repeating the procedure n times, we inductively obtain a monad on n + 1
disjoint copies of X, idsn

(X) = X+. . .+X ∼= n∞×X, where n∞ ..= n{∞} =
{0, . . . , n − 1,∞}. The set n∞ is a linear order, as a subset of the extended
natural numbers N  {∞}. It is also a monoid, with unit ∞ and operation
min. Hence, we have a writer monad. Its presentation is given by n unary
idempotents Σsn

= {a0, . . . , an−1 : 1}. An idempotent ai absorbs another one
aj on both sides whenever i < j:

Esn

= {aiajv = amin(i,j)v | 0 � i, j � n − 1}.

An idsn

-algebra with carrier set X corresponds then to having a left-action
of n∞ on X. This is not a surprise, as algebras of writer monads are always
actions. Being a linear order, n∞ is also a meet-semilattice. Such an idsn

-
algebra can thus be viewed as a semi-lattice automaton, similar to the lattice
automata of [23]. The carrier X is the set of states, the ai are the letters of
the alphabet, and a transition on ai is simply associated with the value of ai

in the semilattice n∞.

5 Relation Between Semifree Monads and Other Monad
Constructions

Ideal monads were introduced by Aczel et al. [1] to study solutions to guarded
recursive equations using coalgebraic methods. The authors investigated com-
pletely iterative monads, following earlier work from Elgot et al. [10] on iterative
algebraic theories. Ideal monads are an abstraction of the core properties of
completely iterative monads, and, in particular, completely iterative monads are
ideal. Moreover, Ghani & Uustalu [12] showed that ideal monads have the right
mathematical structure to avoid the problems encountered in the construction
of monad coproducts, and they gave a simple construction of coproducts of ideal
monads by investigating coalgebraic fixed points. This same construction was
later proved to be applicable to the class of consistent Set-monads [3].

We now define ideal monads and show that semifree monads are ideal.

Definition 36. In a category with finite coproducts, an ideal monad is a quin-
tuple (T, η, μ, T0,m0) where (T, η, μ) is a monad with functor T = id +T0, unit
η = inlid+T : id → id +T0, and where μ : TT → T “restricts” to the natural
transformation m0 : T0T → T0, meaning that the following square commutes.

T0T TT

T0 T

inrid +T ◦T

m0 μ

inrid +T

(24)
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Notice that having (24) commute is equivalent to having

μ = [idid+T0 , inr
id+T0 ◦m0]. (25)

Examples of ideal monads include (free) completely iterative monads [1,
Example 4.4], algebraically free monads, exception monads, and interactive out-
put monads [12].

Example 37. Semifree monads are ideal. Take a semifree monad (M s, ηs, μs). It
is enough to show that its multiplication μs satisfies (25). For that, let

m0
..=

(
MM s M [η,idM ]−−−−−−→ MM

μ−→ M
)

and notice that the equation on the right-hand side of (25) becomes the exact
definition of μs in Definition 11. Hence, (M s, ηs, μs,M,m0) is ideal.

Semifree monads thus enjoy all the nice properties of ideal monads such as
having simple coproducts [12].

The concrete isomorphism between M s-algebras and M -semialgebras can be
phrased as, any semialgebra structure for M on an object X can be replaced by
an Eilenberg-Moore algebra structure for M s. We will show that this property
has an analogue for ideal monads. However, since T0 is only assumed to be an
endofunctor, there is no notion of T0-semialgebra, but we can use the ideal monad
structure to define an analogue of the associativity diagram of Eilenberg-Moore
algebras (6). This leads us to consider functor T0-algebras (i.e., morphisms of
the type a : T0X → X), such that a square, analogous to the associativity square
of (6), commutes (diagram (26) below). We denote the category of functor T0-
algebras and T0-algebra morphisms by Alg(T0).

Lemma 38. Let (T, η, μ, T0,m0) be an ideal monad. There is an isomorphism
between EM(T ) and the full subcategory of Alg(T0) of all a : T0X → X that
makes (26) commute.

T0TX T0X

T0X X

T0[idX ,a]

m0,X a

a

(26)

As observed in Lemma 12, the semifree construction is an endofunctor on
the category of monads Mon(C). We therefore ask whether (−)s is a monad
transformer, i.e., a pointed endofunctor on Mon(C) [24]. Here, pointed means to
admit a natural transformation idMon(C) ⇒ (−)s. It turns out that this functor is
not pointed, but it is co-pointed, meaning that it admits a natural transformation
ε : (−)s ⇒ idMon(C). We have, in fact, a comonad ((−)s, ε, δ) on Mon(C).

We collect the above observations in the following lemmas.

Lemma 39. Given a category C with finite coproducts, the semifree endofunctor
(−)s : Mon(C) → Mon(C) is not pointed.
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Lemma 40. Given a category C with finite coproducts, the triple ((−)s, ε, δ) is
a comonad on Mon(C) by defining for a monad (M,η, μ) and an object X:

εM,X : X + MX
[ηX ,idMX ]−−−−−−−→ MX, and

δM,X : X + MX
idX + inrX+MX

−−−−−−−−−−→ X + (X + MX).

As consequence of the above, the semifree construction is not a monad trans-
former. In general, a monad transformer TL is defined on a “base” monad L
such that L = TL(idC). In our case, we have (idC)s = idC + idC. This is an inter-
esting monad in itself, even though it was not the starting point of the semifree
construction.

6 Conclusion

In this paper, we proved a uniform algebraic presentation of semifree monads
M s(X) = X +M(X) when an algebraic presentation of the monad M is known.
We also showed that semifree monads are instances of ideal monads, and that
the semifree construction is not a monad transformer, but it is a comonad on
the category of monads.

There are several directions for future work. Given that the functor part of
the semifree monad M s is a functor coproduct id +M , it would be interesting to
understand better the relationship to coproducts of monads, and whether Corol-
lary 16 could be generalised to give presentations of (certain) monad coprod-
ucts [12]. Similarly, we would like to investigate if the observations we made
in Example 35 on algebras for the iterated semifree monad on identity can be
generalised to other monads.

The presentation of semifree monads provides a means to study no-go theo-
rems for weak distributive laws, using the correspondence between weak distribu-
tive laws for M and certain distributive laws for M s [32], and a similar approach
as in [40]. In [40], no-go theorems for distributive laws are proved using criteria
on presentations of the monads. However, their no-go theorems are not directly
applicable for the semifree monad, as they require equations where one side is
a single variable, e.g., unitality e ∗ v = v or idempotence v ∗ v = v. Such equa-
tions never occur in the presentations of M s, as the simplest terms that those
equations contain are of the form av. Hence new problematic equations in pre-
sentations of monads must be identified. Furthermore, weak distributive laws
for M correspond to distributive laws for M s satisfying an extra condition, and
hence to a subclass of the composite theories for M s. This subclass may satisfy
more equations, which could be helpful in establishing no-go theorems for weak
distributive laws for M .

A more fundamental question related to the definition of algebraic presenta-
tion is whether, over the category Set, an isomorphism between Eilenberg-Moore
categories of algebras implies an isomorphism of Set-monads. This fails over gen-
eral categories, but an argument may exist for the specific case of Set.
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Finally, since Set-monads sometimes have interesting liftings to other cate-
gories, one could consider the following question. Suppose we have a uniform
presentation for a construction on a certain Set-monad which can be lifted to a
category C, does this presentation also lift to C? This was investigated in [29] for
the non-empty convex distribution monad and its Hausdorff-Kantorovich lifting
to metric spaces.
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Abstract. Up-to techniques are a widely used family of enhancements
of corecursion and coinduction. The soundness of these techniques can
be shown systematically through the use of distributive laws. In this
paper we propose instead to present up-to techniques as causal trans-
formations, which are a certain type of natural transformations over the
final sequence of a functor. These generalise the approach to proving
soundness via distributive laws, and inherit their good compositionality
properties. We show how causal transformations give rise to valid up-to
techniques both for corecursive definitions and coinductive proofs.

Keywords: Coalgebra · Corecursion · Coinduction · Final sequence

1 Introduction

We assume familiarity with the most basic concepts of universal coalgebra [21]
in this introduction; we formally define them in Sect. 2.

Let us recall the corecursion up-to principle from [31,32], which encompasses
(and is implicit in) various results from the literature [8,11,20,24,26,39].

Let B be a functor with a final coalgebra (Z, ζ), and let F be a functor with
an algebra a : FZ → Z on the final coalgebra. Corecursion up to the algebra
a is valid if for every BF -coalgebra (X, f), there exists a unique morphism
fa : X → Z making the following diagram commute.

X Z

BFX BFZ BZ

f

fa

ζ

BFfa
Ba

(1)

When F is the identity functor (and a the identity morphism), this is just plain
corecursion. Plain corecursion makes it possible, for instance, to define pointwise
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addition on streams. Indeed, streams (of real numbers, Rω) form the final coal-
gebra for the functor BX = R× X on sets. Let us write x0 for the first element
of a stream x, and x′ for its tail. If f is the following B-coalgebra structure on
(Rω)2,

(Rω)2 → B((Rω)2)
(x, y) �→ (x0 + y0, (x′, y′))

then f id : (Rω)2 → R
ω is nothing but pointwise addition on streams: the only

binary operation ⊕ satisfying the following equations.

(x ⊕ y)0 = x0 + y0

(x ⊕ y)′ = x′ ⊕ y′

(Where x0 and x′ respectively denote the head and tail of a stream x.)

Corecursion up-to proves useful to define more complex operations like shuffle
product (⊗), satisfying the following equations:

(x ⊗ y)0 = x0 × y0

(x ⊗ y)′ = (x ⊗ y′) ⊕ (x′ ⊗ y)

Indeed, in such a situation we need to call a function (pointwise addition) on
objects which are not fully defined yet (the two corecursive calls x⊗y′ and x′⊗y).
Using the functor FX = X2 and seeing ⊕ as an F -algebra on R

ω, we can define
shuffle product using corecursion up-to (1) and the following BF -coalgebra:

(Rω)2 → BF ((Rω)2)
(x, y) �→ (x0 × y0, ((x, y′) , (x′, y)))

Here, the inner pairs ((x, y′) and (x′, y)) correspond to the corecursive calls to
⊗, while the intermediate pair ((x, y′) , (x′, y)) corresponds to a call to the F -
algebra, i.e., in this case, pointwise addition.

Of course, not every algebra on a final coalgebra yields a valid corecursion
up-to principle. Here are two sufficient conditions:

1. [6,7] a is induced by a distributive law λ : FB ⇒ BF and the base category
has countable coproducts (or F is a monad and λ a distributive law of this
monad over the functor B);

2. [31] B is a polynomial set functor, and a is a causal F -algebra.

While the first condition is nice and well-known, it requires the machinery of
distributive laws, and it is not always easy to show that a given algebra arises
from a distributive law. The second condition does not suffer from this: causality
is rather simple to check in practice (for instance, an algebra on streams is causal
if and only if the n-th element of its output only depends on the n first elements
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of its inputs), but the condition that the starting functor is a polynomial set
functor is often too strong (e.g., the finite powerset functor is not polynomial).

Shuffle product on streams is simple enough, so that the two approaches can
both be used: the algebra we want to use, ⊕, arises from a simple distributive
law, and it is obviously causal. In fact, the algebra induced by a distributive law
on the final coalgebra of an ω-continuous1 set functor is always causal.

Causal Transformations

Here we propose yet another condition based on the final sequence B of the
functor B. Assuming that B is an endofunctor on a complete category C, recall
that this final sequence is a sequence of objects indexed by ordinals, which, if
it stabilises, yields a final coalgebra for B (cf. [5, Theorem 1.3], or earlier for
the dual case of algebras [2]). Here we shall present this sequence as a functor
B : Ordop → C from the category of ordinals to the base category. We call a
natural transformation of type FB ⇒ B a causal transformation for B.

Assuming that the final sequence stabilises at ordinal κ, so that for all causal
transformations α, ακ is an algebra on the final coalgebra, our new condition is
the following:

3. a is the κ-th element ακ of a causal transformation α.

Intuitively, looking at the final sequence as a sequence of approximations of the
final coalgebra, an algebra satisfying the above condition must be defined not
only on the final coalgebra, but also on all its approximations.

Example 1.1. Let Pf be the finite powerset functor, whose final coalgebra (Tf , c)
consists of all finitely branching trees quotiented by bisimilarity, and the function
c mapping a tree to its finite set of children. Consider the “delay” function
d : Tf → Tf that adds a unary node at the root of the given tree (formally,
d(t) = c−1({t})), and suppose we want to define the function e that corecursively
delays all inner nodes of a given tree. For all trees t, this function should satisfy

c(e(t)) = Pf (d ◦ e)(c(t)) .

Graphically, on two examples, we have:

d

⎛
⎜⎜⎝

.

. .

.

⎞
⎟⎟⎠ =

.

.

. .

.

e

⎛
⎜⎜⎜⎜⎝

.

. ..

. .

.

⎞
⎟⎟⎟⎟⎠

=

.
.
.

.

.
.
.

..

.

.

.

1 I.e., preserving limits of ωop-chains.
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We can obtain e by corecursion up-to, using the identity functor for F , d for the
algebra a, and c as Pf Id-coalgebra: in this case, diagram (1) precisely yields the
above equation for the solution e = cd.

In this example, condition 2/ is not satisfied: Pf is not polynomial. Moreover,
it is not obvious how to construct a distributive law yielding the algebra d, in
order to fulfil condition 1/. In contrast, one can easily extend the algebra d into a
causal transformation δ : Pf ⇒ Pf . To this end, recall that the final sequence of
Pf stabilises at ω +ω [41], and that it consists of all finite trees of depth at most
n at all finite ordinals n, and of all compactly branching trees which are finitely
branching up-to depth n at all ordinals ω+n for n finite. Intuitively, we can thus
define a counterpart to the function d at all stages of this sequence: take a tree,
add a unary node at the root, and, for the finite stages, truncate the resulting tree
at the given depth. This is even easier formally: just set δk(t) = Pf (k+1, k)({t}),
where Pf (k+1, k) is the morphism from Pf (k+1) to Pf (k) in the final sequence.

�	

For polynomial set functors, the three conditions turn out to be equivalent
(a consequence of [32, Theorem 8.6 and Corollary 9.6]) In the general case,
condition 3/ is implied by condition 1/: every distributive law yields a causal
transformation whose κ-th element is its induced algebra on the final coalge-
bra [32, Lemma 6.2]. The converse is not true, cf. end of Sect. 5, but it is if
the functor B has a companion [32]. Condition 3/ also generalises condition 2/:
on sets, when B is ω-continuous, there is a one-to-one correspondence between
causal algebras and causal transformations [32, Theorem 8.6].

That correspondence is non-trivial to establish, like the fact that condition
2/ provides corecursion up-to (1). For the latter, the approach in [32] goes via
the construction of a distributive law starting from a causal algebra.

We use a much simpler path here, and we prove directly that condition 3/
implies validity of corecursion up-to (1), without mentioning any distributive
law. And we actually get more: we obtain a corecursion up-to principle even in
those cases where the final sequence does not stabilise.

Recall the notion of corecursive algebra [12] (dual to recursive coalge-
bras [14]): a B-algebra (A, a) is said to be corecursive if for all B-coalgebras
(X, f), there is a unique morphism f ′ : X → A such that the following diagram
commutes

X A

BX BA

f

f ′

Bf ′
a

Paul Levy observed that all elements of the final sequence (which are B-algebras
by definition), are corecursive [25, p. 5, footnote 2].

When we have a causal transformation α : FB ⇒ B, we prove here that for
each stage k of the final sequence and for every BF -coalgebra (X, f), there is a
unique morphism fα

k : X → B(k) such that
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X B(k)

BFX BFB(k) BB(k)

f

fα
k

BFfα
k Bαk

B(k+1,k)

In other words, the BF -algebra B(k, k+1)◦Bαk is corecursive. This generalises
Levy’s observation when F is the identity functor, and we recover that condition
3/ guarantees validity of corecursion up-to ακ when the final sequence stabilises
at κ (so that B(κ, κ + 1) is an isomorphism, with inverse the final coalgebra).

This result shows that we can use up-to techniques to define operations on all
approximations of the final coalgebra, even when this coalgebra does not exist!

Example 1.2. Consider the full powerset functor (P), which does not admit a
final coalgebra. At ordinal ω, its final sequence yields compactly branching trees
Tω � P(ω) [41]. Therefore, in order to define an operation on compactly branch-
ing trees, we can use PF -coalgebras for any causal transformation FP ⇒ P. For
instance, we can define a similar operation as in Example 1.1. Call c : Tω → PTω

the function mapping a (compactly branching) tree to its set of children, and
define δ : P ⇒ P as before: δk(t) � P(k + 1, k)({t}), so that d � δω : Tω → Tω is
a “delay” function on compactly branching trees. At ordinal ω, we get a unique
function e such that

Tω Tω

PTω PTω PTω

c

e

Pe Pd

P(ω+1,ω)

(Note however that here, unlike in Example 1.1, c is not an inverse of the mor-
phism on the right: we only have P(ω + 1, ω) ◦ c = id. Therefore, this diagram is
weaker than the one with a c going down on the right. �	

We prove the aforementioned results in Sect. 3. Then we discuss composition-
ality of causal transformations (Sect. 4), and their lifting to coinductive predi-
cates (Sect. 5).

Compositionality

A delicate point about up-to techniques for corecursion is compositionality.
Indeed, given two algebras a : FZ → Z and b : GZ → Z on a final coalgebra,
which are both valid for corecursion up-to (1), nothing guarantees that their com-
position (a ◦ Fb : FGZ → Z) or their coproduct ([a; b] : (F + G)Z → Z) remains
valid for corecursion up-to. For instance, knowing that for streams, both core-
cursion up-to ⊕ and corecursion up-to ⊗ are valid is not enough to deduce that
corecursion up-to both ⊕ and ⊗ is valid too.



138 D. Pous et al.

In the context of bisimilarity and coinductive predicates, such questions have
been studied extensively by Davide Sangiorgi [36] early after the introduction of
up-to techniques by Robin Milner [27]. This resulted in the concepts of respectful
functions and then compatible functions [29], subclasses of valid up-to techniques
enjoying nice compositionality properties.

In the context of categorical corecursion, distributive laws (condition 1/)
and causal algebras (condition 2/) also enjoy such compositionality proper-
ties [11,32]. We show in Sect. 4 that the situation is similar with causal trans-
formations (condition 3/): these can be organised as a category with arbitrary
products, in which some generic and useful basic transformations always exist.
As a consequence, simple causal transformations can be assembled into more
complex ones, achieving the expected modularity for corecursion up-to.

Liftings and Coinductive Predicates

Corecursion (up-to) makes it possible to define operations on final coalgebras
(e.g., ⊕ and ⊗ on streams). Once such operations have been defined, one often
needs to reason about them, to establish some of their properties (e.g., both ⊕
and ⊗ are associative and commutative). This is why we also need to develop the
theory of coinductive predicates, and to provide up-to proof techniques for those.
Typically, reasoning about an operation defined by corecursion up-to requires
related coinduction up-to techniques.

We exploit the fibrational approach to coinductive predicates [10,15,16] in
Sect. 5, where we show how to get coinductive up-to techniques from causal
transformations, provided that these causal transformation lift.

2 Preliminaries

We recall the basic categorical concepts we use in the paper. The reader familiar
with universal coalgebra [21] may safely skip this section.

Coalgebras, Algebras. For a category C and a functor F : C → C, an F -coalgebra
is a pair (X, f) with X an object in C and f : X → FX. A homomorphism of
F -coalgebras h : (X, f) → (Y, g) is a map h : X → Y such that g ◦ h = Fh ◦ f .
Coalgebras for F form a category and an F -coalgebra is final if it is final in that
category. An F -algebra is a pair (X, a) with X an object of C and a : FX → X.

Ordinals. We write ω for the first infinite ordinal. The category Ord of ordinals
has as objects the ordinals themselves, and there is a unique arrow j → k iff
j ≤ k. This is similar to the usual view of a poset as a category, except that the
ordinals do not form a set.
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Final Sequence. The final sequence of a functor B : C → C in a complete cate-
gory C is an ordinal indexed sequence of objects Bi with connecting morphisms
Bj,i : Bj → Bi, i ≤ j constructed in the following way. The first object is B0 � 1,
the final object of C and for a successor ordinal j +1 we have Bj+1 � BBj . Fur-
ther, Bi,i � id, Bi,0 � !i : Bi → 1 and Bj+1,i+1 � BBj,i. For a limit ordinal λ we
have Bλ � limi<λ Bi and (Bλ,i)i<λ forms a limiting cone. We write B for the
final sequence of B, seen as a functor Ordop → C. Accordingly, we write B(i) for
Bi and B(j, i) for Bj,i.

We say that the final sequence B stabilises at ordinal κ if B(κ + 1, κ) is an
isomorphism. In this case, B(κ) is a final coalgebra [5, Theorem 1.3] (shown for
the dual case of algebras in [2]). For ω-continuous functors (e.g., polynomial set
functors), the final sequence stabilises at ω.

Fact 2.1. Given a coalgebra f : X → BX, we can construct a cone fi : X → Bi

over the final sequence, inductively. We start with the unique map f0 � !X : X →
1 and for a successor we define fi+1 = Bfi ◦ f . For a limit ordinal k, the map
fk : X → Bk is the unique map obtained from the induction hypothesis and
universality of Bk.

Distributive Laws. For functors F,B : C → C, a distributive law of F over B is a
natural transformation λ : FB ⇒ BF . When F comes with a monad structure
(F, η, μ), we call λ : FB ⇒ BF a distributive law of a monad if it satisfies
Bη = λ ◦ ηB and λ ◦ μB = Bμ ◦ λF ◦ Fλ.

Every distributive law λ : FB ⇒ BF over a functor B admitting a final
coalgebra (Z, ζ) induces an algebra on Z by considering the coalgebra λZ ◦
Fζ : FZ → BFZ and using finality.

3 Corecursion Up-to Causal Transformations

Our main result does not explicitly mention corecursion. Remember that we call
a natural transformation of the form FB ⇒ B a causal transformation. Given
such a causal transformation, we inductively construct morphisms from any BF -
coalgebra into each object of the final sequence B. We get validity of corecursion
up-to as a special case, when we have a final B-coalgebra at ordinal κ in the
final sequence (Corollary 3.4 below).

Theorem 3.1. Let B,F : C → C be endofunctors on a complete category C and
let α : FB ⇒ B be a causal transformation. For every BF -coalgebra g : X →
BFX and every ordinal k, there is a unique map g†

k making the following diagram
commute:

X B(k)

BFX BFB(k) BB(k)

g

g†
k

BFg†
k

Bαk

B(k+1,k)



140 D. Pous et al.

Proof. We proceed by transfinite induction on the ordinal k, additionally proving
that for all ordinals i < k, we have

B(k, i) ◦ g†
k = g†

i (2)

When k = 0, we have

X 1

BFX BF1 B1

g

!X

BF !X Bα0

!B1

Uniqueness and commutativity both follow from the uniqueness of the arrow !X
from X into the final object. The property (2) holds trivially.

For the case k = j + 1 for some ordinal j, we assume the following commu-
tative diagram:

X B(j)

BFX BFB(j) BB(j)

g

g†
j

BFg†
j

Bαj

B(j+1,j) (3)

Now consider the following diagram, where g†
j+1 is the map we wish to define:

X B(j + 1)

BFB(j)

BFX BFB(j + 1) BB(j + 1)

g

g†
j+1

Bαj

BFg†
j+1

BFg†
j

Bαj+1

BFB(j+1,j)

B(j+2,j+1) (4)

The lower left triangle commutes as we have B(j + 1, j) ◦ g†
j+1 = B(j + 1, j) ◦

Bαj ◦BFg†
j ◦ g = g†

j by Eq. (3), meaning also BFB(j +1, j) ◦BFg†
j+1 = BFg†

j .
The lower right trapezium commutes by naturality of α and functoriality of B:

FB(j) B(j)

FB(j + 1) B(j + 1)

αj

αj+1

FB(j+1,j) B(j+1,j)

BFB(j) BB(j)

BFB(j + 1) BB(j + 1)

Bαj

Bαj+1

BFB(j+1,j) BB(j+1,j)

Taking g†
j+1 � Bαj ◦BFg†

j ◦g, we see that this is the unique map we require,
as it makes the diagram of Eq. (4) commute, and any such map making the
successor case of (3) commute, must satisfy the above equation.
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To show the property (2), let i < k and consider the following diagram

B(i)

X B(j)

B(k = j + 1)

g†
i

g†
j

g†
k

B(j,i)

B(k,j)

Then (2) follows by the induction hypothesis and definition of g†
k.

Finally, we have the case of a limit ordinal k. In this case, we assume we have
the diagram as in (3) commuting for all j < k and note that, by definition of
the final sequence, the maps B(k, j) for j < k form a limiting cone. We would
like to use the universal property of such a limiting cone to construct a map into
its apex, the object B(k). To do this, we require that the maps g†

j : X → B(j)
form a cone over the final sequence. This holds by the induction hypothesis,
specifically the property of (2) for all j < k, and so by the universal property,
we have a map g†

k : X → B(k). This also immediately establishes the limit case
of property (2).

Now consider the following diagram:

B(j)

X B(k)

BFX BFB(j) B(j + 1)

BFX BFB(k) B(k + 1)

g†
k

g

g†
j

B(k,j+1)

B(k,j)

BFg†
j Bαj

B(j+1,j)

BFg†
k

BFB(k,j)

Bαk

BB(k,j)

B(k+1,k)

(5)

We would like, for all j < k, the outer route from X to B(j) to be equal to g†
j

(in an equation: g†
j = B(k, j)◦B(k +1, k)◦Bαk ◦BFg†

k ◦ g). Then, by definition
of g†

k as the unique map such that B(k, j) ◦ g†
k = g†

j we will have commutativity
of diagram (3) for the ordinal k, i.e., g†

k = B(k + 1, k) ◦ Bαk ◦ BFg†
k ◦ g.



142 D. Pous et al.

Equationally, the proof goes as follows:

B(k, j) ◦ B(k + 1, k) ◦ Bαk ◦ BFg†
k ◦ g (6)

= B(j + 1, j) ◦ B(k, j + 1) ◦ B(k + 1, k) ◦ Bαk ◦ BFg†
k ◦ g (7)

= B(j + 1, j) ◦ BB(k, j) ◦ Bαk ◦ BFg†
k ◦ g (8)

= B(j + 1, j) ◦ Bαj ◦ BFB(k, j) ◦ BFg†
k ◦ g (9)

= B(j + 1, j) ◦ Bαj ◦ BFg†
j ◦ g (10)

I.H.= g†
j (11)

To show this diagrammatically, we have included the inner part in Eq. (5).
Then the upper right and right-hand triangles commute by definition of the
final sequence (7), (8). The lower right trapezium commutes by naturality of α
and functoriality of B (9). Commutativity of the lower left square follows by
property (2) as well as functoriality of BF (10). The final equality (11) holds by
the induction hypothesis. Together, this gives the required commutativity, and
uniqueness of g†

k. �	

As announced in the introduction, the above theorem actually generalises
some well-known facts:

Corollary 3.2 ([25, p. 5, footnote 2]). Every element B(k) of the final
sequence B, seen as a B-algebra with structure map B(k + 1, k), is corecursive.

Proof. This is the special case of Theorem 3.1 where we take the identity functor
for F , and the identity causal transformation for α. �	

Corollary 3.3. [2,5] If the final sequence B stabilises at ordinal κ, then B(κ)
is a final coalgebra (with structure map B(κ + 1, κ)−1).

Proof. This is the special case of the previous corollary where we select the κ-th
element of the final sequence. �	

More importantly for the present paper, Theorem 3.1 justifies condition 3/
from the introduction, for corecursion up to an algebra.

Corollary 3.4 (Corecursion up-to from causal transformations). If the
final sequence B stabilises at ordinal κ, and if α is a causal transformation for
B, then corecursion up-to the algebra ακ is valid for B.

The above corollary does not require any distributive law to start with, only
a causal transformation. This is the point we want to emphasise in the present
work, and we shall study causal transformations in the following sections. Nev-
ertheless, this result also gives a new way to get validity of corecursion up-to
from a distributive law, which we discuss in the remainder of this section:

Corollary 3.5 (Corecursion up-to from distributive laws). Let λ : FB ⇒
BF be a distributive law. If the final sequence B yields a final coalgebra at ordinal
κ, then corecursion up-to the algebra induced by λ on this final coalgebra is valid.
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Proof. It is shown in [32, Lemma 6.2] that such a distributive law induces a
unique α : FB ⇒ B with the property that ακ : FB(κ) → B(κ) is the algebra
induced by the distributive law on B(κ). These properties allow us to apply the
above corollary, giving the required result. �	

The statement of this last corollary is very close to the work of Falk Bartels
on generalised coinduction [6,7]: in our terminology, Theorems 3.8 and 3.9 of [6]
can be summarised as follows:

Theorem 3.6. Let λ : FB ⇒ BF be a distributive law. If B has a final coalgebra
and either of the following two conditions holds:

– the category C has countable coproducts, or
– F is a monad and λ is a distributive law of a monad,

then corecursion up-to the algebra induced by λ on the final coalgebra is valid.

In [32, Theorem 9.2] we showed a result analogous to Corollary 3.4 for the
case of polynomial functors on Set (with κ = ω). The proof uses the companion
of B (the final distributive law in a suitable sense) and uses Theorem 3.6 to
conclude. The above direct proof from causal transformations is much simpler.

Let us highlight the differences between Theorem 3.6 and Corollary 3.5, first
concerning the statements: 1/ we require a complete category where Bartels only
needs countable coproducts (if any); and 2/ we require that the final sequence
stabilises where he only needs the existence of a final coalgebra. Those differences
disappear in the category of sets, which is complete and where the mere existence
of a final coalgebra ensures that the final sequence stabilises [3].

Now let us compare the two proofs.
Under the first assumption of Theorem 3.6, Bartels uses the given distribu-

tive law to construct a B-coalgebra with the countable coproduct
∑∞

i=0 F iX as
carrier. There is a unique map from that coalgebra into the final B-coalgebra,
which is used to obtain the unique solution for the BF -coalgebra structure.
Under the second assumption, the monad structure on F can be used to con-
struct more directly a B-coalgebra with carrier FX. This idea also underlies the
generalised powerset construction developed in [37]: one determinises the given
BF -coalgebra into a B-coalgebra with a larger carrier.

Interestingly, we never construct such a B-coalgebra in our proof, instead
giving a direct construction of the required map into the final coalgebra, by
transfinite induction. The downside is that we need ordinals and transfinite
induction, where Falk Bartels does not. Therefore, in a sense his argument is
more constructive (e.g., it can be formalised in type theory).

4 Compositionality

In this section, we show that the natural transformations of the form FA ⇒ B,
which we will call causal transformations from A to B, enjoy good composi-
tionality properties. This generalises the transformations FB ⇒ B of earlier
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sections and in fact, we define a category in which such causal transformations
are the morphisms. This category has all products, and we obtain composition-
ality properties which are similar to those established in [11, Proposition 3.3] for
compatible functors.

Definition 4.1. For functors F : C → D, A : C → C and B : D → D, a causal
transformation from A to B is a natural transformation α : FA ⇒ B.

Theorem 4.2. We have a category K with the following data:

– objects are pairs (A, C) with A : C → C a functor on a complete category C.
– morphisms from (A, C) to (B,D) are pairs (F, α) with α : FA ⇒ B.

Proof. The identity on an object (A, C) is the pair (Id, id). The composition of
two morphisms (F, α) : (X, C) → (Y,D) and (G, β) : (Y,D) → (Z, E) is given by

(G ◦ F )X GY ZGα β

�	
When the categories C and D are clear from the context, we write A →̇ B

for the homset from (A, C) to (B,D) in K.

Theorem 4.3. The category K has all products.

Proof. We only deal with binary products to ease notation, leaving the general
case to the reader.

For objects (A1, C1)(A2, C2) in K we construct the pair (A1×A2, C1×C2), tak-
ing products in the category Cat. The projections must be causal transformations
pi : FiA1 × A2 ⇒ Ai. To obtain these we take Fi to be exactly the projection
πi in Cat, together with families of maps pi(k) : πi ◦ A1 × A2(k) → Ai(k) which
necessarily consist of identity maps, as we show now.

First, we claim that A1 × A2 = 〈A1, A2〉. To prove this we use transfinite
induction. For the successor case, assume that A1 × A2(i) = 〈A1, A2〉(i) =
(A1(i), A2(i)) for some i. Then, we have

A1 × A2(i + 1) = (A1 × A2)(A1 × A2(i)) (12)

= (A1 × A2)(A1(i), A2(i)) (13)

= (A1(A1(i)), A2(A2(i))) (14)

= (A1(i + 1), A2(i + 1)) (15)

= 〈A1, A2〉(i + 1) (16)

where Eq. (13) follows from the induction hypothesis.
For the limit case, let k be some limit ordinal and assume that A1 × A2(l) =

〈A1, A2〉(l) holds for all l < k. Now, we have

A1 × A2(k) = lim
l<k

A1 × A2(l) (17)

= lim
l<k

〈A1, A2〉(l) (18)

= 〈A1, A2〉(k) (19)



Corecursion Up-to via Causal Transformations 145

where Eq. (18) follows from the induction hypothesis. The last step, Eq. (19),
follows from how limits are computed in a product category; the important point
being that cones over a pairing of functors are the same as pairs of cones over
the component functors.

From the established equality A1 × A2 = 〈A1, A2〉, we conclude that πi ◦
A1 × A2(k) = Ai(k) so that we can take each component pi(k) of our projections
to be the identity. Naturality then holds trivially. It remains to show that the
above construction is universal.

Suppose we have an object (Q : D → D,D) ∈ K with morphisms
(Fi, αi) : Q → (Ai, Ci) for i = 1, 2. Then we can construct the pair (〈F1, F2〉,
(α1, α2)) of the functors and causal transformations so that (α1, α2) :
〈F1, F2〉Q → A1 × A2 is a map in C1 × C2. As this is a product in Cat, we
have the required property that for all j = 1, 2

(πj , id) ◦ (〈F1, F2〉, (α1, α2)) = (Fj , αj)

More concretely, the components of the causal transformations are maps of type

〈F1, F2〉Q(l) → (A1(l), A2(l)) = (F1Q(l), F2Q(l)) → (A1(l), A2(l))

which, by definition of the product category, consist of maps in C1 and C2 which
we consider in parallel. Further, uniqueness follows from the definition of the
pairing 〈F1, F2〉 and of maps in the product category. Finally, naturality follows
by assumption on the αi, thus, we indeed have a categorical product. �	

Finally, we have the following basic morphisms in K, giving access to up-to
constant techniques and to coproduct of up-to techniques.

Proposition 4.4. For every endofunctor B : C → C, we have the following mor-
phisms in K:

1. (ΔX , δf ) : B →̇ B where X is the carrier of a coalgebra f : X → BX and
ΔX is the constant functor associated to X.

2.
(∐

: CI → C, γ
)

: BI →̇ B, assuming that coproducts in C exist.

Proof. For Item 1, we define δf as the cone given by Fact 2.1. Item 2 follows
from the universal property of coproduct. �	

Together with Theorem 4.2 and Theorem 4.3, the above proposition makes it
possible to define complex causal transformations out of basic ones, thus enabling
compositional proofs of validity for complex corecursion up-to schemes.

Example 4.5. Suppose we work with streams, and we want to define a unary
operation f satisfying the following equations

f(x)0 = x0

f(x)′ = (x ⊕ f(x′)) ⊕ f(x′′)
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In order to use corecursion up-to, we need an algebra combining the ability to
call ⊕ twice in a row, with arguments which are either an existing stream (x),
or corecursive calls to f on some existing streams (f(x′) and f(x′′)).

We can use for that the functor F (F (Rω + Id) + Id) where FX = X2, and
the associated algebra ⊕ ◦ [⊕ ◦ [id; id]; id] on R

ω.
Thanks to the above results, showing that such an algebra arises from a causal

transformation amounts to showing that ⊕ arises from a causal transformation,
which is straightforward. This is sufficient because we know that we have identity
morphisms in K and we can cope with the constant R

ω functor via Item 1
of Proposition 4.4 since R

ω is a coalgebra (the final one). Since we can take
coproducts in Set, we can finally apply Item 2 of Proposition 4.4 and compose
these constructions in K to obtain the required causal transformation. �	

As is the case for distributive laws [22,24,32,34,40], we can also define maps
between causal transformations.

Definition 4.6. Given two causal transformations (F, α), (G, β) : A →̇ B, an
arrow from (F, α) to (G, β) is a natural transformation κ : F ⇒ G such that
β ◦ κA = α. These arrows turn K into a 2-category.

We claim that the arrows of the above definition turn K into a 2-category,
however we have not checked the details and the consequences of this are cur-
rently unclear. Of most interest is a possible correspondence with an analogous
category DL with endofunctors as objects and distributive laws as maps [32,
Definition 6.1]. The definition of maps between distributive laws again yields
a 2-category, from which there may be a 2-functor whose image on distribu-
tive laws are exactly the causal transformations obtained via the construction
in [32, Lemma 6.2]. There, it is already shown that the construction extends to
a functor from distributive laws of A over B to causal transformations from A
to B, so giving a 2-functor should generalise this result to the setting where A
and B are not fixed. It is further known that, under certain conditions (e.g. the
existence of the companion), we can also go back from causal transformations
to distributive laws. We would like to further investigate this correspondence in
the 2-categorical context and its relation to up-to techniques.

5 Up-to Techniques for Coinductive Proofs

As explained in the previous sections, a causal transformation α : FB ⇒ B
gives rise to a valid corecursion-up-to principle. In this section we show how
it also induces up-to techniques for coinductive proofs. We take a fibrational
view on coinductive predicates [15,16], where coalgebras in the base category
are viewed as state-based systems, and coinductive proofs arise as coalgebras in
the fibre above the state space. These fibres are often assumed to be a complete
lattices in this setting. The key technical result in this section is that any causal
transformation in the base category gives rise to a causal transformation in the
fibre above the final coalgebra (assumed to be a complete lattice), which enables
its use as an up-to technique for coinductive proofs.
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5.1 Coinduction Up-to in a Lattice

Let us first briefly recall the basic notions of coinduction and up-to techniques
in complete lattices [33]. This can be viewed as a special case of the theory of
coalgebras and corecursion (up-to), by instantiating the base category with a
complete lattice viewed as a posetal category.

Let b : L → L be a monotone map on a complete lattice L. By the Knaster-
Tarski theorem, b has a greatest fixed point νb, which is also the greatest post-
fixed point. This gives a coinduction principle: if x ≤ b(x), then x ≤ νb.

The definition of corecursion up-to given in the Introduction (1) instantiates
to the following coinduction up-to principle. Given a function f : L → L such
that f(νb) ≤ νb (this is the algebra structure), coinduction up to f is valid if
x ≤ bf(x) implies x ≤ νb. This amounts to the established notion of soundness
in this setting, with the additional requirement that f preserves νb.

Conditions similar to 1/ from the Introduction have been developed inde-
pendently in this setting [29,36]: a function f is called b-compatible if fb ≤ bf ,
that is, there is a distributive law of f over b. Compatibility implies validity in
the above sense, and enjoys good compositionality properties (which the class of
valid or sound functions does not).

Condition 2/ has no clear counterpart in this setting. In contrast, we consid-
ered condition 3/ in previous work [31,32]. In this case, a causal transformation
fb ⇒ b is just a function which preserves the final sequence at any point, i.e.,
fbi(�) ≤ bi(�) for every ordinal i. In op. cit. we show that f satisfies this prop-
erty if and only if f ≤ t, where t is the companion of b, that is, the greatest
compatible function [30]. Such a property is very close to Parrow and Weber’s
characterisation of the greatest respectful function [28] (which happens to coin-
cide with the greatest compatible function—the companion). A constructive ver-
sion was also used later in the context of Agda [13].

In the lattice-theoretic setting, these causal transformations form a class of
valid enhancements which can be more convenient to work with than the stricter
requirement of being compatible. In the remainder of this section, we show how
to move from “categorical” causal transformations, in a base category where
coalgebras are state-based systems, to these lattice-theoretic causal transforma-
tions. This is enabled by the use of fibrations, which provide us precisely with the
infrastructure to move from coalgebras (as state-based systems) to coinductive
proofs thereon.

5.2 Background on Coinduction in a Fibrational Setting

We recall the basics of coinductive predicates in a fibration, but only briefly; see,
for instance, [15] for a detailed introduction. First, let B : Set → Set and recall
that relation lifting assigns to every relation R ⊆ X × X a relation Rel(B)(R)
on BX, defined by

Rel(B)(R) = {(Bπ1(t), Bπ2(t)) | t ∈ BR} .



148 D. Pous et al.

A bisimulation on a B-coalgebra (X, f) is then a relation R ⊆ X × X such that
R ⊆ (f × f)−1(Rel(B)(R)), and bisimilarity is the greatest fixed point of the
monotone map (f ×f)−1(Rel(B)(−)) : RelX → RelX , where RelX is the lattice of
relations on X. It arises as the limit of the final sequence of (f×f)−1(Rel(B)(−)).

The situation can be massively generalised by moving from relations on sets
to a fibration p : E → C, and from the relation lifting to arbitrary liftings of
endofunctors on C. We omit the definition of fibration here (see [19]); we however
recall the key notions associated to them.

For such a fibration p, we say an object R in E is above an object X in
C if p(R) = X, and similarly for morphisms. Further, the fibre EX above an
object X in C is the subcategory of E consisting of all objects above X, and all
morphisms above idX . For every arrow f : X → Y there is a reindexing functor
f∗ : EY → EX .

Throughout this section, we assume that p : E → C is a CLat∧-fibration
(e.g., [38]), which means that each fibre EX is a complete lattice, and reindexing
preserves arbitrary meets. Below, we shall often refer explicitly to this poset
structure, by writing R ≤ S if there exists an arrow from R to S in EX . These
are instances of topological functors [17]. Every CLat∧-fibration is a bifibration,
which means every reindexing functor f∗ has a left adjoint

∐
f .

A lifting of a functor B : C → C is a functor B : E → E such that p◦B = B ◦p.
For such a lifting and an object X in C, the functor B restricts to a functor
between fibres BX : EX → EBX . A lifting (B,B) is a fibration map if

(Bf)∗ ◦ BY = BX ◦ f∗

for any arrow f : X → Y in C (the inequality from right to left holds for any
lifting).

Given a B-coalgebra (X, g) and a lifting (B,B), we define the functor (that
is, monotone map)

g∗ ◦ BX : EX → EX .

Its final coalgebra (greatest fixed point) ν(g∗◦BX) exists by the assumption that
each fibre is a complete lattice, and is referred to as the coinductive predicate
defined by BX . It is the greatest post-fixed point (coalgebra) of g∗◦BX ; such post-
fixed points are called invariants in [15]. This gives rise to the lattice-theoretic
coinductive proof technique: to prove that an object R in E is below the greatest
fixed point, it suffices to show it is a post-fixed point of g∗ ◦ BX .

Example 5.1. Consider the category Rel where an object is a pair (R,X) of
sets with R ⊆ X × X, and an arrow from (R,X) to (S, Y ) is a map f : X →
Y such that f(R) ⊆ S. Reindexing is given by inverse image. The forgetful
functor p : Rel → Set mapping (R,X) to X is a CLat∧-fibration. The relation
lifting Rel(B) is a lifting of B, often referred to as the canonical lifting in this
general setting. For a coalgebra (X, g), g∗ ◦ Rel(B)X is precisely the monotone
map described at the beginning of this subsection, whose greatest fixed point is
bisimilarity on (X, g). �	
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Other liftings of B give rise to other coinductive predicates. For instance, for
the powerset functor P : Set → Set, consider the lifting

Rel≤(P)(R) = {(S,U) | ∀x ∈ S.∃y ∈ U. (x, y) ∈ R} .

Coalgebras for P are transition systems, post-fixed points of g∗ ◦ Rel≤(P) are
simulations, and its greatest fixed point is similarity. This is an instance of a
much more general fibrational characterisation of similarity [18]. Other examples
of coinductive predicates that have been explored in a fibrational setting are
behavioural distances [4,9,38] and various unary predicates and invariants [10,
15] in the fibration of predicates over sets.

In the abstract setting of coinductive predicates via liftings, we can consider
up-to techniques in the fibre as well, basically by instantiating the setting in
Sect. 3. A systematic construction of such up-to techniques in a fibration is in [11].
Of particular interest is the contextual closure: given a lifting F of F and an
algebra a : FX → X, it is defined as the map

∐
a ◦ FX : EX → EX .

Example 5.2. On streams, the algebra ⊕ : FR
ω → R

ω for the squaring functor
FX = X2, together with the canonical lifting of F , gives rise to the following
monotone function on relations on streams:

�⊕� : P(Rω × R
ω) → P(Rω × R

ω)
R �→ {(x ⊕ y, z ⊕ t) | x R y and z R t}

Such a function often proves useful as an up-to technique in bisimulation proofs
on streams: it makes it possible to use the coinductive hypothesis under calls to
pointwise addition, and to get rid of common sub-expressions. This is typically
convenient to reason about operations defined by corecursion up to ⊕, like shuffle
product (see, e.g., the example in [30, Section 5]). �	

In [10, Theorem 6.7], it is shown that
∐

a ◦ FX is valid (even compatible) if
there is a distributive law λ : FB ⇒ BF such that (X, a, g) is a λ-bialgebra, and
λ lifts to a distributive law FB ⇒ BF.

5.3 Causal Transformations in the Fibre

We now show how to move from a causal transformation in the base category of
a fibration to one in the fibre above the state space of the final coalgebra.

Assumption 5.3. Throughout this subsection, we assume:

– a CLat∧-fibration p : E → C into a complete category C;
– endofunctors B,F : C → C such that the final sequence of B stabilises at some

ordinal κ; thus the final coalgebra is given by (B(κ), ζ);
– liftings B,F of B and F respectively;
– a causal transformation α : FB ⇒ B.
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Now, consider the final B-coalgebra (B(κ), ζ). The key idea is to extract from
the above data a causal transformation

∐
ακ

◦ FB(κ) ◦ (ζ∗ ◦ BB(κ)) ≤ (ζ∗ ◦ BB(κ)) .

Here, f �
∐

ακ
◦ FB(κ) : EB(κ) → EB(κ) is the up-to technique induced by the

lifting F and the algebra ακ, whereas b � (ζ∗ ◦ BB(κ)) : EB(κ) → EB(κ) is the
monotone map in the fibre above B(κ), whose greatest fixed point (final coal-
gebra) is the coinductive predicate defined by B. Having such a causal transfor-
mation means that the up-to technique f is a valid enhancement for b. This is
the contents of Theorem 5.5.

In the proof of Theorem 5.5, we use the following lemma, which relates the
final sequence of ζ∗ ◦ BB(κ) in the fibre to the final sequence of the lifting B.
Recall from Fact 2.1 that every coalgebra (X, g) induces a cone gi : X → B(i)
over the final sequence.

Lemma 5.4. Suppose (B,B) is a fibration map, and let g : X → BX be a coal-
gebra. For any ordinal i, we have (g∗ ◦ BX)(i) = g∗

i ◦ B(i).

Proof. By transfinite induction on i. The base and successor case are shown
in [23, Lemma 5.4]. For k a limit ordinal, we compute:

g∗
k(lim

i<k
B(i)) = g∗

k(
∧
i<k

B∗
k,i(B(i)))

=
∧
i<k

g∗
k ◦ B(k, i)∗(B(i))

=
∧
i<k

(B(k, i) ◦ gk)∗(B(i))

=
∧
i<k

g∗
i (B(i))

=
∧
i<k

(g∗ ◦ BX)(i) .

The first step follows from the computation of limits in CLat∧-fibrations, see,
e.g., [38]; this is a consequence of [19, Prop. 9.2.1]. The second step follows from
the definition of CLat∧-fibrations. The third since CLat∧-fibrations are split. The
fourth since the gi’s form a cone over the final sequence. And the last by the
induction hypothesis. �	

This brings us to the main result of this section:

Theorem 5.5. Suppose (B,B) is a fibration map, and suppose that for every
ordinal i, we have

∐
αi

(FB(i)) ≤ B(i) Then for every ordinal i:
∐
ακ

◦ FB(κ) ◦ (ζ∗ ◦ BB(κ))(i) ≤ (ζ∗ ◦ BB(κ))(i) .
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Proof. For any i, we have
∐
ακ

◦ FB(κ) ◦ (ζ∗ ◦ BB(κ))(i)

=
∐
ακ

◦ FB(κ) ◦ ζ∗
i (B(i)) (Lemma 5.4)

≤
∐
ακ

◦ (Fζi)∗ ◦ FB(i)(B(i)) (basic property liftings)

≤ ζ∗
i ◦

∐
αi

◦ FB(i)(B(i)) (follows from naturality α)

≤ ζ∗
i (B(i)) (by assumption)

For the one-but-last step, note that ζi = B(κ, i), and thus naturality of α implies
αi ◦ Fζi = ζi ◦ ακ, and hence (Fζi)∗ ◦ α∗

i = α∗
κ ◦ ζ∗

i . The desired inequality is
obtained as the mate:

∐
ακ

◦ (Fζi)∗ ≤
∐
ακ

◦ (Fζi)∗ ◦ α∗
i ◦

∐
αi

=
∐
ακ

◦ α∗
κ ◦ ζ∗

i ◦
∐
αi

≤ ζ∗
i ◦

∐
αi

,

using the unit of the adjunction
∐

αi
� α∗

i in the first step, and the counit of∐
ακ

� α∗
κ in the last step. �	

The condition that
∐

αi
(FB(i)) ≤ B(i) holds for all i is equivalent to the

requirement that α lifts to a natural transformation FB ⇒ B. In our setting
of CLat∧-fibrations, it basically says that F and α need to preserve all approxi-
mations of the coinductive predicate of interest. For instance, for the lifting for
similarity of transition systems defined below Example 5.1, the i-th component
of the final sequence of Rel≤(P) consists of the i-steps similarity relation ≤i; and
the condition that α lifts means that the direct image of F(≤i) under α × α is
contained in ≤i. This is the case, for instance, if F takes the transitive closure
(and F is the identity functor, α the identity map); in that case, the requirement
simply amounts to the fact that each element in the final sequence of Rel≤(P)
is transitive. Indeed, up-to transitive closure is valid for similarity.

If F = Rel(F ) and B = Rel(B) in the relation fibration Rel → Set, the
condition that α lifts vacuously holds. This follows, for instance, by the following
lemma, which is closely related to the coinduction principle in [16]. It makes use
of the equality functor Eq : Set → Rel, which maps a set X to the diagonal
{(x, x) | x ∈ X}.

Lemma 5.6. For any functor B : Set → Set, we have Rel(B) = Eq ◦ B.

Proof. By transfinite induction. For a limit ordinal k, use that Eq has a left
adjoint (quotients, see [16]) so that it preserves limits. Then

Rel(B)(k) = lim
i<k

Rel(B)(i) = lim
i<k

Eq(B(i)) = Eq(lim
i<k

B(i)) = Eq ◦ B(k) .



152 D. Pous et al.

For a successor ordinal, we use that relation lifting preserves equality [21], that
is, Rel(B) ◦ Eq = Eq ◦ B:

Rel(B)(i + 1) = Rel(B)(Rel(B)(i))

= Rel(B)(Eq(B(i)))

= Eq(BB(i))

= Eq(B(i + 1)) .

�	

Using the above lemma we get Rel(F ) ◦ Rel(B) = Rel(F ) ◦ Eq ◦ B = Eq ◦ F ◦
B, again using that relation lifting preserves equality, and thus we can define
the lifting of α simply as Eq(α). Alternatively, we expect the fact that any
causal transformation lifts in this way also follows similarly to the fact that any
distributive law lifts in this case [10], using that Rel is a 2-functor [21].

Curiously, in Theorem 5.5 we assumed that (B,B) is a fibration map. For
the canonical relation lifting Rel(B), this means that B needs to preserve weak
pullbacks for the above theorem to apply. This is in contrast to the result in [10],
which does not make this requirement.

However, Theorem 5.5 cannot be easily generalised to functors that do not
preserve weak pullbacks. Consider, for instance, the case where F = Id, α = id,
and F(R) is the least equivalence relation containing R. The requirement that
α lifts then says that each element of the final sequence of B is an equivalence
relation.

A classical simple example of a functor B : Set → Set which does not preserve
pullbacks is the one defined on objects as B(X) = {(x, y, z) | |{x, y, z}| ≤ 2},
see [1]. The final sequence of B stabilises immediately. The final sequence of its
canonical lifting Rel(B) consists simply of the equality relation on a singleton (cf.
Lemma 5.6). This is clearly an equivalence relation., and therefore the condition
that α lifts holds in this case (thus taking B to be Rel(B)). But up-to-equivalence
is not sound for this functor (a counterexample for up-to-bisimilarity is given
in [35], this can be adapted).

Indeed, the condition from [10] that the distributive law between F and B
lifts, is much stronger: it says that Rel(B) should commute with the equivalence
closure functor F. This is not the case in general, if B does not preserve weak
pullbacks. In fact, this example shows that not all causal transformations are
definable by a distributive law.
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Abstract. Pavlović and Pratt obtained several presentations of sets
such as the half-open interval [0, 1) as the final coalgebra of a very basic
functor on the category of sets, namely product with the natural num-
bers. We re-prove and extend some of their results, and we establish some
new presentations as well. More importantly in this paper, we exhibit
several corecursive algebra structures on sets of real numbers, and we
connect to continued fractions and to linear fractional transformations.
We present a general result which, under hypotheses, shows that a core-
cursive algebra has as a subalgebra the final coalgebra with the inverse
structure.

Keywords: corecursive algebra · final coalgebra · real numbers ·
infinite series · continued fractions · linear fractional transformations

1 Introduction

Twenty years ago, Pavlović and Pratt obtained several presentations of sets such
as the real interval [0, 1) as the final coalgebra of the functors F (X) = N × X
and G(X) = N × X + 1 on the category of sets, namely product with the nat-
ural numbers, where N is the set of natural numbers. This paper continues the
exploration of continuous mathematics from the point of view of coalgebra. The
difference is that we are not aiming only at final coalgebras but at the more plen-
tiful corecursive algebras. We exhibit some new corecursive algebras which are
connected either to continued fractions or to linear fractional transformations.
We propose a general result which allows one to read off a final coalgebra from a
corecursive algebra, provided some conditions are met. This general result allows
us to recover the final coalgebras related to subsets of the real numbers which
were found by Pavlović and Pratt, and to establish some new ones besides. For
both the corecursive algebras and the final coalgebras, the structure maps are
very simple.

Sources. Much of this paper is not original. The definition and basic properties
of corecursive algebras are from Capretta et al. [3], connections to sums of series
were perhaps first pointed out in Feys et al. [4], and the original source on final
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coalgebra presentations of the real numbers and subsets thereof is Pavlović and
Pratt [10]. The main contribution of this paper is in Sects. 4 and 5, and much of
Sect. 4 will also appear in the forthcoming book by Adámek et al. [1].

2 Background

This section contains the main background for the results in this paper.

2.1 The Contraction Mapping Theorem

Let (X, d) be a metric space. A contraction maping on X is a function f : X → X
such that for some ε < 1, d(f(x), f(y)) < ε · d(x, y) for all x, y.

Proposition 2.1 [Banach’s Contraction Mapping Theorem]. A contraction
mapping on a nonempty complete metric space X has a unique fixed point.

2.2 Continued Fractions

Our work calls on results from the theory of continued fractions. We begin with
notation pertaining to sums of finite lists of non-zero real numbers. Define

[b] = b, [b0, . . . , bk+1] = b0 + 1/[b1, . . . , bk].

This notation makes sense for lists of real numbers, but we are only going to use
it with lists of positive natural numbers.

The next result contains most of what we need.

Proposition 2.2.(1) For all infinite sequences a0, a1, . . . , ak, . . . of natural
numbers with ak > 0 for k ≥ 1, the limit

lim
k→∞

[a0, . . . , ak]

exists.
(2) Let a0, a1, . . . , ak, . . . be a sequence of natural numbers with ak > 0 for k ≥ 1.

Then

lim
k→∞

[a0, . . . , ak] = a0 + ( lim
k→∞

[a1, . . . , ak])−1.

(3) Again, for an infinite sequence of natural numbers with ak > 0 for k ≥ 1,
limk→∞[a0, . . . , ak] is an irrational number.

(4) For every irrational number r there is a unique sequence a0, a1, . . . , ak, . . .
of natural numbers with ak > 0 for k ≥ 1 such that r = limk→∞[a0, . . . , ak].
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Proof. For the proof of (1), see Hardy and Wright [5, Thm. 165], Loya [7,
Cor. 8.13], or Niven et al. [9, Thm. 7.6].

Part (2) is an easy consequence of part (1) and the definition of [a0, . . . , ak].
We are going to see an elementary proof of (3) in Lemma 4.5.
Here is a sketch of a coalgebraic argument for (4). Let A>1 be the set of

irrational numbers > 1. Let N≥1 be the set of natural numbers ≥ 1. The functor
F (X) = N≥1×X has as a final coalgebra the set (N≥1)∞ of infinite sequences of
elements of N≥1, with structure given by head and tail. Consider the coalgebra
e : A>1 → N × A>1 given by

e(r) = (�r�, 1/(r − �r�)).
(The notation �r� is for the greatest integer ≤ r, so �2.1� = �2� = 2.) By finality,
there is a unique map e† : A>1 → (N≥1)∞. For r ∈ A>1, e†(r) is the canonical
continued fraction representation of x. It has the property that head(e†(r)) =
�r�, and tail(e†(r)) = e†(1/(r − �r�)).

Write e†(r) as (a0, a1, . . . , ak, . . .). By Loya [7, Thm. 8.14],

lim
k→∞

[a0, a1, . . . , ak] = r.

This is what is behind the existence of the continued fraction representation. The
uniqueness of the infinite sequence (a0, a1, . . . , ak, . . .) mentioned in (4) follows
from Hardy and Wright [5, Thm. 170], or Niven et al. [9, Thm. 7.10].

This completes our sketch of the proof.

Incidentally, limk→∞[a0, a1, . . . , ak] is denoted in several ways in the litera-
ture, such as

a0 +
1

a1+
+

1
a2+

· · · or a0 +
1

a1 +
1

a2 +
1

· · ·

.

2.3 Corecursive Algebras

The notion of a corecursive algebra originates in Capretta et al. [3].

Definition 2.3. Let H : A → A be an endofunctor on any category. An algebra
α : HA → A is corecursive if for every coalgebra e : X → HX there is a unique
coalgebra-to-algebra morphism e† : X → A. This means that e† = α · He† · e:

X
e ��

e†

  

HX

He†

  
A HA

α
��

The map e† is also called the solution of e in the algebra (A,α).
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We call on a basic result on corecursive algebras related to fixed points, and
a result from [1] which relates final coalgebras and corecursive algebras under
hypotheses.

A fixed point of a functor is an algebra (A,α) whose structure α is invertible.
We thus also have a coalgebra (A,α−1).

Proposition 2.4 [3]. If a corecursive H-algebra (A,α) is a fixed point, then
(A,α−1) is a final coalgebra. If (A,α) is a final coalgebra, then (A,α−1) is a
corecursive algebra.

Proof. In the first assertion, a coalgebra-to-algebra morphism e† : (X, e) →
(A,α) is the same as a coalgebra-to-coalgebra morphism e† : (X, e) → (A,α−1).
In the second assertion, we use a result known as Lambek’s Lemma (initial
algebra structures are isomorphisms) in dual form.

Lemma 2.5 [1]. Let (A,α) be a corecursive H-algebra, and let (B, β) be a fixed
point of H which is a subalgebra via the monic m : (B, β) � (A,α). Suppose
that for every coalgebra e : X → HX, the unique solution e† : X → A factors
through m. Then (B, β−1) is a final H-coalgebra.

Proof. Fix a coalgebra e : X → HX, and factor the solution e† through m:

e† =
(
X B Aê m )

.

By the solution property of e†, the outside of the diagram below commutes:

X B A

FX HB HA

ê

e†

e β−1

m

Hê

He†

Fm

α

The right-hand square commutes since m is a homomorphism of algebras. The
upper part is our factorization of e†. The lower part is the upper part with H
applied. Notice that

m · ê = e† definition of m and ê
= α · He† · e using the outside of the figure
= α · Fm · Hê · e using the bottom part
= m · β · Hê · e m is an algebra homomorphism

Since m is monic, ê = β ·Hê·e. This is just to say that ê is a coalgebra morphism.
For the uniqueness of ê, let f : (X, e) → (B, β−1) be any coalgebra morphism.

Then m · f satisfies the equation that uniquely defines e† in the corecursive
algebra A. By the uniqueness of e†, m · f = e†. But then m · f = m · ê. Since m
is monic, f = ê.
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3 Summation of Geometric Series Related to Corecursive
Algebra Structure

This section contains a corecursive algebra related to infinite sums of real num-
bers. First fix a real number 0 ≤ δ < 1. The rest of this example depends on
this parameter. Let K be the real interval [0, 1 − δ].

For the functor, we take H : Set → Set to be given by HX = K × X. For a
function f : X → Z, Hf : HX → HZ is given by Hf(y, x) = (y, f(x)). We have
an algebra (I, ι), where I is the unit interval [0, 1], and

ι : H[0, 1] = K × [0, 1] → [0, 1]

is given by ι(y, x) = y + δx, for y ∈ K and x ∈ I. By viewing I as a space with
the usual metric, K as a space with the discrete metric and K × [0, 1] with the
product (maximum) metric, we see that ι is a short (also called non-distance-
increasing) map.

Proposition 3.1. ι : HI → I is a corecursive algebra for H.

Proof. Let X be a set, and consider a coalgebra (X, e : X → K × X). The
function set IX = [0, 1]X is a complete metric space under the metric d(f, g) =
sup
x∈X

dI(f(x), g(x)). This space is non-empty due to the constant functions. We

have an endofunction Φ : IX → IX given by Φ(f) = ι · Hf · e. (To check that Φ
maps into IX , take any x ∈ X. For this x, write e(x) as (y, z), where y ∈ [0, 1−δ].
Then Φ(f)(x) = y + δf(z) ≤ (1 − δ) + (δ · 1) = 1.) And Φ is a contraction,
since δ < 1 and we are using the discrete metric on K. The fixed points of
Φ are exactly the coalgebra-to-algebra morphisms X → I. So the Contraction
Mapping Theorem (Proposition 2.1) implies our result.

Remark 3.2. We used that I and HI come with metrics such that I is non-empty
and complete, ι is short, and Φ is a contraction. In fact, this is all we need to
know: see [2] for a general result in this direction.

Also, the proof above works even when X = ∅. In that case IX = {!I}, where
!I : ∅ → I is the empty function, Φ is the unique function IX → IX , !I is its fixed
point, and !I = e† by initiality of ∅.

Here is a way to think about what is going on. Given a coalgebra e : X →
K × X, denote its components as u : X → K and next : X → X. As we know, a
solution of e is a function e† : X → I = [0, 1] satisfying the equation e† = ι·He†·e.
That is, for all x,

e†(x) = u(x) + δ · e†(next(x)). (3.1)

We used the Contraction Mapping Theorem to prove that every system of equa-
tions e has a unique solution e†. But we could have simply explicitly defined the
solution. For each x ∈ X, let

s(x) = u(x) + δ · u(next(x)) + δ2 · u(next2(x)) + · · · + δ� · u(next�(x)) + · · ·
=

∑∞
�=0 δ� · u(next�(x))
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(Note that the infinite sum is ≤ (1−δ)
∑∞

�=0 δ� = 1.) Then s with this definition
is a solution to e, because for all x,

s(x) =
∑∞

�=0 δ� · u(next�(x))

= u(x) +
∑∞

�=1 δ� · u(next�(x))

= u(x) +
∑∞

�=0 δ�+1 · u(next�+1(x))

= u(x) + δ · ∑∞
�=0 δ� · u(next�(next(x)))

= u(x) + δ · s(next(x))

Then knowing that there is a unique solution to e, our function s is the solution.
Our development allows us to use the fixed point equations instead of infinite

summation.

4 Corecursive Algebras Related to Subsets of the Reals,
and Associated Final Coalgebra Structures

This section, the centerpiece of our paper, exhibits some corecursive algebra
structures on certain subsets of the reals. Figure 1 summarizes our results. We
discuss them first, mentioning points of notation and also a comparison with the
first results in the area, those of Pavlović and Pratt [10].

We have two sets of results, one set using continued fractions and the other
set using linear fractional transformations. The two sets correspond to the two
charts in the figure. In the top chart, we first show that the set R≥0 of non-
negative real numbers is a corecursive algebra of FX = N × X with structure
α(n, r) = n+ 1

1+r . This result is new. By applying Lemma 2.5, we infer that the
set A of positive irrationals is a final coalgebra of this same functor using the
inverse of the restriction of the same map α. We exhibit this structure explicitly,
using �x� to denote the largest natural number ≤ x and x mod 1 to denote
x − �x�. We have an isomorphism f : R≥0

∼= (0, 1] given by f(x) = 1
1+x . This

restricts to an isomorphism, also denoted by f : A ∼= B, where B is the Baire
space, the set of irrationals in [0, 1]. It transfers a final F -coalgebra structure
from A to B. We give the explicit formulas for the structure morphisms, thereby
recovering Theorem 3.2 of [10].

Moving to the right-hand column of top chart, we change the functor from F
to G(X) = N×X+1. Adding the extra point allows us to extend the F -coalgebra
structure on R≥0 to a G-coalgebra structure, and we do this by mapping the
extra point (the element of the summand 1) to 0. This is what we mean by the
notation [α, 0] : N×R≥0 +1 → R≥0. This map is a corecursive G-algebra whose
structure is an isomorphism, hence we have a final G-coalgebra (by taking the
inverse). The inverse of [α, 0] structure here is given explicitly in Fig. 1. Then we
use the isomorphism f : R≥0

∼= (0, 1] mentioned above to get a final coalgebra
structure on the half-open interval (0, 1]. Incidentally, this work in the right-
hand column is a little easier than the work in the left-hand column because the
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latter calls on a classical fact about irrational numbers which we prove from first
principles in Lemma 4.5.

The second chart turns to a different method of finding corecursive algebra
structure, using linear fractional transformations. The main result here is a core-
cursive algebra structure for F on the closed unit interval I = [0, 1]. We show in
Proposition 5.10, the F -algebras R≥0 and I are not isomorphic. The structure
τ : N × I → I is not injective. But its restriction to N × [0, 1) is a bijection,
hence [0, 1) is a fixed point of F . We observe that the solution of every coalge-
bra in (I, τ) takes values in [0, 1). That is, the solution morphism e† : X → I

factors through the inclusion [0, 1) ↪→ I. So we again use Lemma 2.5 to obtain
a final F -coalgebra structure on [0, 1) We also have an isomorphic copy of the
final F -coalgebra, obtained by using the isomorphism h : [0, 1) → R≥0 given by
h(r) = r/(1 − r).

4.1 Verifications

Proposition 4.1. Concerning the functions in Fig. 1:

(1) The function α : N × R≥0 → R≥0 is injective.
(2) The function σ : N × [0, 1) → [0, 1) is a bijection.
(3) Let f : R≥0 → (0, 1] be f(x) = 1

1+x . Then f is a bijection, and the diagram
on the left below commutes:

N × R≥0 R≥0

N × (0, 1] (0, 1]

α

N×f f

β

R≥0 N × R≥0

[0, 1) N × [0, 1)

ξ

h−1

ζ

N×h (4.1)

Also, h : [0, 1) → R≥0 given by h(x) = x
1−x is a bijection, and the diagram

on the right above commutes.
(4) We have the following facts about inverses: [α, 0]−1 = χ, [β, 1]−1 = �, σ−1 =

ζ, and ϑ−1 = ξ.

Proof. (1): For α, note that for all r, 0 < 1
1+r ≤ 1. If α(n, r) = α(m, s) is a

natural number, then r = 0 = s, and also α(n, r) = n + 1 and α(m, r) = m + 1.
In this case, n = m. When α(n, r) = α(m, s) is not a natural number,

1
1 + r

= α(n, r) mod 1 = α(m, s) mod 1 =
1

1 + s
.

And so r = s. In this case we also have n = m, since 0 < 1
1+r ≤ 1.

In part (2) concerning σ : N × [0, 1) → [0, 1), notice that σ = i · g · h, where
h : N × [0, 1) → [1,∞) is h(n, r) = 1 + n + r, g : [1,∞) → (0, 1] is g(x) = 1/x,
and i : (0, 1] → [0, 1) is i(x) = 1 − x. All three maps are bijections.
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Fig. 1. Corecursive algebras obtained, and some final coalgbras derived from them.
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For (3), the inverse of f is given by f−1(x) = 1−x
x . For n ∈ N and r ∈ R≥0,

f(α(n, r)) = f(n + 1
1+r)

= 1
(1+n+ 1

1+r )

= β(n, f(r))

= β((N × f)(n, r))

We turn to the square on the right. The inverse of h is given by h−1(x) = x
1+x .

To see that the square commutes, let x ∈ R≥0. Then

ζ(h−1(x)) = (�x�, x mod 1)

And so

(N × h) · (ζ · h−1)(x) = (�x�, x mod 1
1 − x mod 1

) = ξ(x).

Finally, we turn to point (4). Throughout our work, we elide the coproduct
injections; we have already done so in the chart. For example, when x is a
natural number ≥ 1, we wrote χ(x) = (x − 1, 0), and technically we mean
inl((x − 1, 0)) ∈ N × R≥0 + 1. And we write the element of 1 as ∗.

Let us first check that [α, 0]−1 = χ. First, ([α, 0] · χ)(0) = 0. For x ≥ 1 in N,
([α, 0] · χ)(x) = α(x − 1, 0) = (x − 1) + 1 = x. For all other x,

[α, 0](χ(x)) = �x� +
1

1 + ( 1

x mod 1
− 1)

= �x� + (x mod 1) = x.

In the other direction, we have a few cases. With ∗ ∈ 1, [α, 0](∗) = 0, and so
χ · [α, 0](0) = ∗. When r = 0, α(n, r) = n + 1, and so χ · [α, 0]((n, r)) = (n, r).
When r > 0,

χ([α, 0](n, r)) = (�n + 1
1 + r

�, 1
(n + 1

1+r)mod 1
− 1) = (n, r).

We next show that � = [β, 1]−1. First, ([β, 1] ◦ �)(1) = 1. For x ∈ (0, 1] such
that 1/x ∈ N \ {1},

([β, 1] ◦ �)(x) = [β, 1]((1/x) − 2, 1) =
1

1 + (1/x) − 2 + 1
= x.

Finally, for all other x,

([β, 1] ◦ �)(x) = β(� 1
x

� − 1,
1
x

mod 1) =
1

1 − � 1
x� − 1 + 1

x mod 1
= x.
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In the other direction, for ∗ ∈ 1 in G((0, 1]), (� ◦ [β, 1])(∗) = �(1) = ∗. For
(n, r) ∈ N × (0, 1), note that since r ∈ (0, 1), 1

1/(1+n+r) /∈ N. So

�([β, 1](n, r)) = �( 1
1+n+r )

= (�1 + n + r� − 1, (1 + n + r) mod 1)

= (n, r)

Finally, for (n, 1), (� ◦ [β, 1])(n, 1) = �( 1
2+n ), so since 2 + n ∈ N \ {1}, �( 1

2+n ) =
(2 + n − 2, 1) = (n, 1).

We verify that ζ = σ−1. Notice that for h as in part (3), h( n+r
n+1+r ) =

h(h−1(n + r)) = n + r. Also, we have

ζ(x) = (�h(x)�, h(x) mod 1).

Thus for n ∈ N and r ∈ [0, 1),

ζ(σ(n, r)) = (�h( n+r
n+1+r )�, h( n+r

n+1+r ) mod 1)

= (�n + r�, (n + r) mod 1)

= (n, r)

In the other direction, for all x ∈ [0, 1),

σ(ζ(x)) = σ(�h(x)�, h(x) mod 1) = h(x)/(1 + h(x)) = h−1(h(x)) = x.

We used the fact that �h(x)� + (h(x) mod 1) = h(x).
We conclude by verifying that ϑ−1 = ξ:

ϑ(ξ(x)) = �x� + h−1( x mod 1

1−x mod 1
)

= �x� + h−1(h(x mod 1))

= �x� + (x mod 1)

= x

In the other direction, use h−1(r) ∈ [0, 1), so h−1(r) mod 1 = h−1(r):

ξ(ϑ(n, r)) = ξ(n + h−1(r)) = (n, h(h−1(r)) = (n, r).

Theorem 4.2. The F -algebra (R≥0, α) is corecursive.

Proof. It is convenient to work with a naturally isomorphic functor, HX =
N≥1 × X, where N≥1 is the set of positive natural numbers. The natural
isomorphism η : F → H has components ηX(n, x) = (n + 1, x). There is a
bijective correspondence between F -coalgebras e : X → FX and H-coalgebras
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ηX · e : X → HX. This extends to a bijective correspondence between solutions
with respect to F and those with respect to H; indeed in the diagram below the
upper square commutes if and only if the outside commutes:

X R≥0

FX FR≥0

HX HR≥0

e†

e

Fe†

ηX

α

He†

η−1
R≥0

Furthermore, the function j(x) = x + 1 is an isomorphism j : R≥0 → R≥1, and
it is an H-algebra isomorphism j : (R≥0, α · η−1

R≥0
) ∼= (R≥1, α

′), where α′(n, r) =
n + 1/r. As a result, it is sufficient to prove that the H-algebra (R≥1, α

′) is
corecursive.

Given a coalgebra e : X → N≥1×X, again denote its components as u : X →
N≥1 and next : X → X. For each x ∈ X, we have an infinite sequence ax

i , i ∈ N,
where

ax
i = u(nexti(x)). (4.2)

Thus, we may use Proposition 2.2(1) to define e† by

e†(x) = lim
k→∞

[ax
0 , . . . , ax

k].

By Proposition 2.2(2),

e†(x) = u(x) + 1/(e†(next(x))).

(See also Niven et al. [9, Lem. 7.8].) This states that e† : X → R≥1 is a
solution of e in the H-algebra (R≥1, α

′).
We conclude by checking the uniqueness of e†. Let s : X → R≥1 be any

solution of e. Then for all x, s(x) = u(x)+1/s(next(x)). By Loya [7, Thm. 8.14],
s(x) = limk→∞[ax

0 , . . . , ax
k]. This is also e†(x). This completes the proof.

Corollary 4.3. The G-algebra (R≥0, [α, 0]) is corecursive.

Proof. Let e : Y → N × Y + 1 be a coalgebra. For k ≥ 0, we say that y ∈ Y
is k-grounded if there are y = y1, y2, . . . , yk+1 ∈ Y and n1, n2, . . . , nk ∈ N such
that e(yi) = (ni, yi+1) ∈ N × Y for i < k, and e(yk+1) = ∗ ∈ 1.

Let Z ⊆ Y be the set of elements which are not k-grounded for any k. Then
there is a unique map f : Z → N × Z such that the diagram below commutes,
where j : Z → Y is the inclusion:

Z N × Z N × Z + 1

Y N × Y + 1

j

f inl

N×j+1

e
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Indeed, f is the domain-codomain restriction of e. Hence (Z, f) is a coalgebra
for the functor FX = N × X, and so we have a unique solution f† : Z → R≥0.

If e(y) is not the element of the singleton set 1, let us write e(y) as
(u(y), next(y)), where u(y) ∈ N, and next(y) ∈ Y . Notice that if y is k-grounded
and k ≥ 1, then next(y) is (k − 1)-grounded. By Theorem 4.2, (R≥0, α) is a
corecursive algebra for N × X. Let f† : Z → R≥0 be the unique solution of f .
Then the map e† : Y → R≥0 below is easily seen to be the unique solution of e:

e†(y) =

⎧
⎪⎨

⎪⎩

f†(y) if y ∈ Z,

0 if y is 0-grounded,

u(y) + 1/(e†(next(y)) + 1) if y is k-grounded for k ≥ 1.

This concludes the proof.

We continue with the right-hand column of the top chart in Fig. 1.

Corollary 4.4. The following are final G-coalgebras:

(1) R≥0 with structure [α, 0]−1 = χ.
(2) (0, 1] with structure [β, 1]−1 = �.

Proof. Using Proposition 4.1 (1), the algebra structure [α, 0] is a bijection: α
is injective, the only value which it does not take is 0, and this is rectified in
[α, 0]. Proposition 2.4 and Corollary 4.3 thus imply that (R≥0, [α, 0]−1) is a final
coalgebra for G. We have seen that [α, 0]−1 = χ in Proposition 4.1(4).

For (2), we have seen that f in (4.1) is an isomorphism of F -algebras. Since
f(0) = 1, f is also an isomorphism of G-algebras, f : R≥0 → (0, 1]. We have
already checked that � = [β, 1]−1. Thus f is an isomorphism of G-coalgebras
(R≥0, χ) ∼= ((0, 1], �).

We turn back to the left-hand column of the top chart in Fig. 1. Our next
result is also found in the standard theory of continued fractions. We present an
elementary proof.

Lemma 4.5. Let e : X → N × X be a coalgebra, and let e† be the solution in
(R≥0, α). For all x ∈ X, the number e†(x) is irrational.

Proof. The proof recalls Euclid’s proof of the irrationality of
√

2. Suppose not.
Let Y ⊆ X be the set of x ∈ X such that e†(x) is rational. Note that each
e†(x) is non-zero. For each x ∈ Y , write e†(x) as px/qx, where this fraction is in
lowest terms. Let x ∈ Y minimize the sum px + qx. Write e(x) as (n, y). By the
definition of e†,

e†(x) = α(n, e†(y)) = n +
1

1 + e†(y)
.

Thus, e†(y) is rational, too. That is, y ∈ Y . So we have py and qy such that
e†(y) = py/qy, and gcd(py, qy) = 1. Our choice of x tells us that px+qx ≤ py+qy.
Now

px

qx
= n +

1

1 +
py

qy

.
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Hence
px − nqx

qx
=

qy

py + qy
.

The fraction on the right is in lowest terms, because gcd(qy, py + qy) =
gcd(qy, py) = 1. Therefore the denominator on the right must divide that on
the left. So

py + qy ≤ qx < px + qx

The second inequality above is strict because px > 0, since it is the numerator
of a fraction in lowest terms representing a non-zero number. And the overall
strict inequality above gives a contradiction.

Corollary 4.6 ([10]). FX = N × X has the following final coalgebras:

(1) The set A of positive irrational numbers, with structure γ.
(2) The Baire space B (the set of irrational numbers in [0, 1]), with structure δ.

Proof. (1) We first check that A is a fixed point of N × X. By Proposition
4.1(1), α : N×R≥0 → R≥0 is injective. Hence so is its restriction α0 : N×A.
Moreover, every irrational number x is α(n, r) for n = �x� and r = 1/(x−n)−
1; indeed, observe that r is a positive irrational and that α(n, r) = x. Thus,
α0 is a bijection α0 : N × A → A. Further, the inclusion i : A ↪→ R≥0 is an
algebra homomorphism i : (A, α) → (R≥0, α). By Lemma 2.5 and Theorem
4.2, (A, α−1

0 ) is a final coalgebra.
(2) The isomorphism of F -algebras which we saw in Proposition 4.1(3) restricts

to the isomorphism below:

N × A A

N × B B

α0

N×f f

β0

(4.3)

We use f for the map f : A → B with the definition as before: f(x) =
1

1+x . Thus, f is an isomorphism of F -coalgebras, hence (B, β0) is a final
F -coalgebra.

We saw in Proposition 4.1 that [α, 0]−1 = χ and [β, 1]−1 = �. These facts
imply that α−1

0 = γ, and β−1
0 = δ.

5 Using Linear Fractional Transformations

We return to our results as presented in Fig. 1. We have completed the discussion
of all of the results in the top chart, and we turn to the bottom chart.

In what follows, we regard the unit interval I = [0, 1] as a metric space with
the usual metric d(x, y) = |x − y|. For any set X, the function space IX is a
complete space, where the distances are defined using the pointwise supremum:

sd(f, g) = sup
x∈X

|f(x) − g(x)|. (5.1)



168 L. S. Moss and V. Noquez

5.1 The Algebra τ : N × I → I Presented in Terms of Linear
Fractional Transformations

Let SL(2,Z) be the group of 2 × 2 matrices M with integer coefficients and
determinant 1. Let s : N → SL(2,Z) be

s(n) =
(

1 n

1 n + 1

)
.

We are going to write S for the subsemigroup of SL(2,Z) generated by the image
of s. So S is the set of non-empty finite products s(n1)× s(n2)× · · ·× s(nk). We
regard s as a function s : N → S. For M ∈ S and x ∈ I, let γ(M,x) ∈ I be

γ

((
a c

b d

)
, x

)
=

ax + c

bx + d
. (5.2)

To check that γ(M,x) ∈ I, we check this first for matrices M = s(n) and x ∈ I:
if a = b = 1, c ≥ 1, and d = c + 1 in (5.2), then ax + c ≥ 0, bx + d > 0, and
ax + c < bx + d. So γ(M,x) ∈ [0, 1). Then recall that SL(2,Z) gives rise to a
group action: for M1,M2 ∈ S,

γ(M1 × M2, x) = γ(M1, γ(M2, x)). (5.3)

So indeed γ(M,x) ∈ I for M ∈ S. Moreover, for n ∈ N and x ∈ I, we have

τ(n, x) =
n + x

n + 1 + x
=

x + n

x + (n + 1)
= γ

((
1 n

1 n + 1

)
, x

)
= γ(s(n), x). (5.4)

That is, the diagram below commutes:

N × I I

S × I

τ

s×I γ

Let e : X → N× X. We would like to use the general method from Proposi-
tion 3.1 in order to find a unique solution morphism e† in the algebra (I, τ). We
consider φ : IX → IX given by

φ(f) = τ · (N × f) · e (5.5)

We would like it to be the case that φ is a contraction on the complete metric
space (IX , d), with d as in (5.1). As we shall see, this is not always true, and
most of our work below concerns the situation when φ is not a contraction. But
we do have the following fact:

φ(f) = γ · (S × f) · (s × X) · e (5.6)
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The reason that (5.5) implies (5.6) comes from the diagram below. In it, the
upper-right square commutes (trivially), and we have seen that the bottom part
commutes.

X X N × X S × X

I I N × I S × I

f

e

φ(f)

s×X

N×f S×f

s×Iτ

γ

5.2 Contractivity Constants Associated to Matrices

Let f : X → Y be a map of bounded metric spaces. We define the Lipschitz
constant of f , Lip(f), by

sup
x,y∈X,x�=y

d(f(x), f(y))
d(x, y)

.

It is easy to see that Lip(g·f) ≤ Lip(g)·Lip(f). For a matrix M in S, we associate
the function fM : I → I by fM (x) = γ(M,x). By (5.3), fM×N = fM · fN . Then
we define the contractivity of M , con(M), by

con(M) = Lip(fM ).

What interests us is con(s(n)) = supx,y∈[0,1] |fs(n)(x) − fs(n)(y)|/|x − y|.
Proposition 5.1. (1) For all M and N , con(M × N) ≤ con(M) · con(N).
(2) For all natural numbers n, con(s(n)) = 1

(n+1)2 .
(3) If n1, . . . , nk is a non-empty sequence of numbers which is not all 0, then

con(s(n1) × · · · × s(nk)) ≤ 1
4
.

Proof. For part (1), con(M × N) = Lip(fM×N ) = Lip(fM · fN ). And then as we
have seen, this last number is ≤ Lip(fM ) · Lip(fN ) = con(M) · con(N).

For (2), we saw in (5.4) that fs(n)(x) = γ(s(n), x) = (n + x)/(x + (n + 1)),
and then a routine calculation shows that

∣
∣
∣
∣

x + n

x + (n + 1)
− y + n

y + (n + 1)

∣
∣
∣
∣

|x − y| =
1

(x + n + 1)(y + n + 1)
.

And so

Lip(fs(n)) = sup
x,y∈[0,1],x �=y

1
(x + n + 1)(y + n + 1)

=
1

(n + 1)2
.

Part (3) then follows from the previous parts; note that for n ≥ 1, 1
(n+1)2 ≤ 1

4 .



170 L. S. Moss and V. Noquez

Remark 5.2. The idea of deriving contractivity constants for matrices comes
from Heckmann [6, Proposition 3.1]. Indeed, that result gives an upper bound
on con(M) for all M in SL(2,R), the set of 2 × 2 real matrices with non-zero
determinant. We could have simply used Heckmann’s result in what follows; it
is much more useful than what we saw in Proposition 5.1(2). On the other hand,
Heckmann changes the metric on I. That is, in [6], the metric on IX is not
the metric one would at first expect. So this is why we have chosen to present
Proposition 5.1(2). Incidentally, much of the work below comes from the fact
that fs(0) is not a contraction on IX (since its contractivity is 1). Unfortunately,
this would not change if we adopted Heckmann’s metric on this space.

5.3 A Corecursive Algebra

Consider a F -coalgebra e : X → N × X. As earlier in this paper, we denote
the components of e as u : X → N and next : X → X. So for all x ∈ X, e(x) =
(u(x), next(x)). We shall show that there is a unique coalgebra-to-algebra map
e† : (X, e) → (I, γ). Let

Z = {x ∈ X : u(x) = 0}
Z = {x ∈ X : u(x) > 0}

Y = {x ∈ X : (∀j ≥ 0)(∃k ≥ j) nextk(x) ∈ Z}
Y = {x ∈ X : (∃j ≥ 0)(∀k ≥ j) nextk(x) ∈ Z}

“Z” here stands for “zero”. Y is the set of x ∈ X such that for all but finitely
many n, u(nextn(x)) = 0. Note that Z = X \Z and Y = X \Y . The ideas which
led to Y and Y may be found in Lemmas 5.6 and 5.7.

Proposition 5.3. If Z = ∅, then the map φ : IX → IX from (5.6) is a contrac-
tion.

Proof. Fix f, g ∈ IX and also x ∈ X. Recall that e(x) = (u(x), next(x)). Using
(5.6), we have

|φ(f)(x) − φ(g)(x)| = |γ(s(u(x)), f(next(x))) − γ(s(u(x)), g(next(x)))|

For our fixed x, u(x) > 0. So by Proposition 5.1(2), con(s(u(x))) ≤ 1
4 . The

definition of con(s(u(x))) tells us that

|γ(s(u(x)), f(next(x))) − γ(s(u(x)), g(next(x)))|
≤ 1

4 |f(next(x)) − g(next(x))|
≤ 1

4d(f, g)

This for all x ∈ X shows that in the space IX , d(φ(f), φ(g)) ≤ 1
4d(f, g).

Proposition 5.4. If Z = X, then constant function e†(x) = 0 is the unique
solution of e. More generally, if x ∈ X has the property that for all k ≥ 0,
nextk(x) ∈ Z, then for all solutions e†, we have e†(x) = 0.
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Remark 5.5. It might be helpful to consider as a special case the system of
equations with X = {xn : n ∈ N}:

xn = xn+1/(xn+1 + 1)

Proposition 5.4 implies that the only solution in ([0, 1], γ) is the constant
e†(xn) = 0. Our argument below shows that the only solution in R≥0 is the
constant 0. But there are other solutions if we allow negative real numbers, such
as e†(xn) = b

a−bn when a and b are natural numbers and b is not a divisor of a.

Proof. We only prove the first statement in our result; the second is an elabora-
tion of it. For a solution map e†, we write x† for e†(x). So for all x, x† ≥ 0, and
also

x† = (next x)†/(1 + (next x)†). (5.7)

We cannot have x† ≥ 1, since the values of x
x+1 for non-negative x lie in [0, 1).

Now an induction on m ≥ 1 shows that we cannot have x† ≥ 1
m for any x ∈ X.

For suppose that x† ≥ 1
m+1 . Due to (5.7), we get (next x)† ≥ 1

m . This completes
our induction. It follows that x† = 0 for all x ∈ X.

Lemma 5.6. If X = Y , then e has a unique solution e†.

Proof. Let X0 = {x ∈ X : (∀k ≥ 0) nextk(x) ∈ Z}. Then we set e†(x) = 0 for
x ∈ X0. For all other x, there is some least number j > 0 such that nextj(x) ∈
X0. We take e†(x) = γ(s(u(x)), e†(next(x))). So formally we are defining e† by
recursion on the least j such that nextj(x) ∈ X0. It is easy to see that e†(x) is a
solution to e, and Proposition 5.4 implies that it is the only solution.

Lemma 5.7. If X = Y , then e has a unique solution e†.

Proof. We define an (S×−)-coalgebra structure e∗ : Y → S×Y with the property
that e and e∗ have the same solutions, where a solution to e is e† : X → I

satisfying e† = τ · (N × e†) · e, and a solution to e∗ is e† : X → I satisfying
e† = γ · (S × e†) · e∗. We shall arrange that for all x ∈ Y ,

con(π(e∗(x))) ≤ 1
4
, (5.8)

where π : S × Y → S is the projection. This last point implies that e∗ has a
unique solution, using Proposition 5.3 (or rather the analog of it for coalgebras
of S × −), and the argument which we saw in the proof of Proposition 3.1.

The idea in the construction of e∗ is that we should take some x ∈ Z and
replace the right-hand side of e(x) = (0, next(x)) with pair consisting of a matrix
of contractivity ≤ 1

4 , and then an element of X other than next(x). For example,
if next(x) ∈ Z, then we would like to have

e∗(x) = (s(0) × s(u(next(x))), next2(x))
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(In this proof, the function next is from the original equation morphism e; the
new e∗ has its own next morphism, but we will not introduce notation for it.)
But of course next(x) could itself belong to Z, so we need a more complicated
definition; we need infinitely many elements of Z reachable from each x ∈ X.
This is what is behind the definition of the set Y above. And we need to see that
the replacement which we define does not change the solutions.

For x ∈ X = Y , take the least number n(x) ≥ 0 such that nextn(x)(x) ∈ Z.
(Such a number n(x) exists since x ∈ Y . Also, n = 0 iff x ∈ Z.) Write x′ for
nextn(x)(x) to save on notation. Let

e∗(x) = (M(x), next(x′)),

where M(x) is the following matrix:

M(x) = s(0)n(x) × s(u(x′)). (5.9)

Then (5.8) for x follows from Proposition 5.1.
We must check that e and e∗ have the same solutions. Let e† be a solution

to e. We claim that for all natural numbers m and all x such that n(x) = m,

e†(x) = γ(M(x), e†(next(x′))). (5.10)

We argue by induction on m. When m = n(x) = 0, x ∈ Z, M(x) = s(u(x)),
x′ = x, and

e†(x) = τ(u(x), e†(next(x))) e† is a solution to e

= γ(s(u(x)), e†(next(x))) by (5.4)

= γ(M(x), e†(next(x′)))

Now assume about m that (5.10) holds whenever n(x) = m. Let x be such that
n(x) = m + 1. Write y for next(x). Then x ∈ Z, and M(x) = s(0) × M(y).
Moreover, n(y) = m, so that x′ = y′, and nextn(y)+1(y) = nextn(x)+1(x). Let
r = e†(x′) = e†(y′). Let us start with a calculation which we will also use later
in this proof:

γ(M(x), r) = γ(s(0) × M(y), r) = γ(s(0), γ(M(y), r)) (5.11)

Then we have

e†(x) = τ(0, e†(y)) e† is a solution to e

= γ(s(0), γ(M(y), e†(y′))) by induction hypothesis

= γ(M(x), e†(x′)) by (5.11)

This is (5.10) for x. This induction shows that e† is a solution to e∗.
In the other direction, assume that e† is a solution to e∗. That is, (5.10) holds

for all x ∈ X. We claim that for all x ∈ X,

e†(x) = τ(u(x), e†(next(x))). (5.12)
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If n(x) = 0, then M(x) = s(u(next(x)) and x′ = x. By (5.10) and (5.4),

e†(x) = γ(s(u(x)), e†(next(x))) = τ(u(x), e†(next(x))).

If n(x) > 0, then x ∈ Z, and u(x) = 0. Let us again write y for next(x), so that
M(x) = s(0) × M(y), and n(y) + 1 = n(x), and x′ = y′. And we write r for
e†(x′) = e†(y′). So

e†(x) = γ(M(x), e†(x′)) by (5.10)

= γ(M(x), r)

= γ(s(0), γ(M(y), r)) see (5.11)

= τ(u(x), e†(y)) by (5.10) for y

We have (5.12). Thus e and e∗ have the same solutions.

Theorem 5.8. (I, τ) is a corecursive algebra for N × X.

Proof. Let e : X → N×X. Both Y and Y are closed under next. So the coalgebra
(X, e) splits into disjoint subcoalgebras with carriers Y and Y . Each of these has
a unique solution, by Lemmas 5.6 and 5.7. So X itself has a unique solution.

Corollary 5.9 ([10]). The functor FX = N× X has the following final coalge-
bras:

(1) The half-open interval [0, 1) with structure ζ as given in Fig. 1.
(2) The set R≥0 with structure ξ as given in Fig. 1.

Proof. (1) We again use Lemma 2.5, this time in conjunction with Theorem 5.8.
The point is that τ in Theorem 5.8 does not take the value 1, so we have a map
σ : N× [0, 1) → [0, 1), using the same formula as for τ . By Proposition 4.1(2),
σ is a bijection. In other words, ([0, 1), σ) is a fixed point of F . Also, for each
coalgebra e : X → N × X, its solution e† : X → I (I, τ) does not take the
value 1. (This is because e† = τ · (N × e†) · e, and τ does not take the value
1.) Therefore e† factors through the inclusion m : [0, 1) → I. This verifies that
([0, 1), σ−1) is a final F -coalgebra. Finally, we have seen in Proposition 4.1(2)
that σ−1 = ζ.

(2) The bijection h in Proposition 4.1(3) is an isomorphism of coalgebras, and
so (R≥0, ξ) is a final coalgebra.

5.4 Addendum

As we close the section and then the paper, we make two additional points.
First, the reader has likely noticed the missing second column in the bottom

chart in Fig. 1. For the functor GX = N × X + 1, we can take any s ∈ [0, 1]
and get a corecursive G-algebra using the structure [τ, s]. This is equivalent to
saying that the F -algebra (I, τ) is completely iterative (see [8]). However, we are
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not able to take this corecursive algebra (I, [τ, s]) and extract a final G-coalgebra
using Lemma 2.5. Such a coalgebra would be (the inverse of) a subalgebra (A,α)
of (I, [τ, s]) which includes the image of every G-coalgebra and with a bijective
structure. Let e : [0, 1) → N × [0, 1) + 1 be inl · ζ. It is easy to check that the
solution e† is the inclusion [0, 1) ↪→ I. And so A is either [0, 1) or I itself. Now A
cannot be I, since [τ, s] is not injective due to τ(1, 0) = τ(0, 1). Further, A cannot
be [0, 1), since the algebra structure would have to be [σ, s] : [0, 1)×N+1 → [0, 1)
with σ the restriction of τ to [0, 1), and s ∈ [0, 1), which is not injective. But as
σ is surjective, s has a preimage s′ under σ. Thus [σ, s] cannot be injective.

Finally, we comment on the corecursive algebras in Theorems 4.2 and 5.8.

Proposition 5.10. The F -algebras (R≥0, α) and (I, τ) are not isomorphic.

Proof. Assume towards a contradiction that j : I → R≥0 were an isomorphism
of F -algebras. Then j is an isomorphism in Set, so it is a bijection. Let q ∈
[0, 1] be any number such that q �= 1 and such that j(q) is rational. Recall
from Corollary 5.9(1) that we have a final F -coalgebra ([0, 1), ζ). Since (I, τ) is
corecursive, there is a unique ζ† : [0, 1) → I such that ζ† = τ · (N × ζ†) · ζ. The
inclusion i : [0, 1) → I satisfies this condition, and so ζ† = i. But (R≥0, α) is also
corecursive, and so there is a unique ζ‡ : [0, 1) → R≥0 so that ζ‡ = α ·(N×ζ‡) ·τ .
Since j is an algebra morphism, ζ‡ = j · ζ† = j · i. Then ζ‡(q) = (j · i)(q) = j(q).
So ζ‡(q) is rational. But this contradicts Lemma 4.5.

6 Conclusion

The main ideological point in this paper is that in looking at algebraic treat-
ments of topics in continuous mathematics, one should not look only at final
coalgebras but also should consider corecursive algebras. We demonstrated this
by looking at infinite sums, and more extensively at corecursive algebra struc-
tures related to the real numbers. On a technical level, the main contribution of
this paper is the work in Sect. 4, giving new corecursive algebra structures and
new final coalgebra structures on sets of real numbers. One might have thought
that since the original paper on this topic, Pavlović and Pratt [10], used contin-
ued fractions, that all future work in the area would do so. Thus the use of the
linear fractional transformations in Theorem 5.8 is surprising because it avoids
continued fractions.

The ideological point of the paper relates to the feeling that “. . . coinduction
is new only by name, while it had actually been around for a long time, concealed
within the infinitistic methods of mathematical analysis.” [10, p. 106] We agree
with this point. What we have not done, and thus what cries out to do next, is to
show the use of the structures which we brought to light. A possible application
of this work would be to give algebraic proofs of correctness of one or another
algorithm for infinite-precision arithmetic using continued fractions.
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Abstract. Stick breaking is an elementary operation that has been for-
mulated and used within stochastic process theory. This paper extracts
the essentials of stick breaking in terms of isomorphisms between discrete
probability distributions (with full support) and sequences of numbers
between zero and one. This works for both finite and infinite distri-
butions. Stick breaking is a repetitive construction with a strong coal-
gebraic flavour. Indeed, it is shown that stick breaking turns discrete
distributions with infinite full support on the natural numbers into a
final coalgebra. Once isolated as a separate construction, the usefulness
of stick breaking is illustrated in the description of various probability
distributions, such as binomial & multinomial and beta & Dirichlet.

1 Introduction

Consider the following mixture of paints, of four different colours: a quarter of
red (R), a third of green (G), also a quarter of blue (B) and finally a sixth of
yellow (Y ). We write this ‘convex’ combination as:

1
4 |R〉 + 1

3 |G〉 + 1
4 |B 〉 + 1

6 |Y 〉.

The ket notation | − 〉 is meaningless syntactic sugar, used to separate the frac-
tions from the colours. This combination is called ‘convex’ since the probabilities
add up to one. We call this convex combination a (discrete, finite) probability
distribution over the set of colours {R,G,B, Y }. Let’s write Dfs

({R,G,B, Y })
for the set of all such distributions:

Dfs

({R,G,B, Y }) =
{

r0|R〉 + r1|G〉 + r2|B 〉 + r3|Y 〉
∣
∣
∣ r0, r1, r2, r3 ∈ (0, 1)

with r0 + r1 + r2 + r3 = 1
}

.

We use the subscript fs, for ‘full support’; this means that none of the ri may
be zero. It is needed below to prevent division by zero. We enforce fullness of
support by requiring that the ri are in the open unit interval (0, 1) ⊆ R, without
endpoints.
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The above equation describes the set of distributions (on these four colours)
as a simplex, of dimension three. Indeed, it is easy to see that one of the
ri is superfluous, since it is determined by the others. Explicitly, there is an
isomorphism:

Dfs

({R,G,B, Y }) ∼=
{

(r0, r1, r2) ∈ (0, 1)3
∣
∣
∣ r0 + r1 + r2 < 1

}
.

The above set on the right-hand-side is clearly a proper subset of the cube (0, 1)3.
In essence, the stick breaking construction that plays a central role in this paper
provides an isomorphism:

Dfs

({R,G,B, Y }) ∼= (0, 1)3. (1)

This may not be immediate at first sight. One has to do (appropriate) rescaling.
There is an intuitive explanation of stick breaking in terms of successively

breaking up a stick. We adapt this account to the above set of four colours.
We start from three numbers s0, s1, s2 ∈ (0, 1) and intend to turn them into a
distribution on the set of colour {R,G,B, Y }.

0

1

�

�
s0

�
�

s1(1−s0)

�
�

s2(1−s1)(1−s0)

��(1−s2)(1−s1)(1−s0)
Imagine a stick of length one, as described verti-

cally on the right. We take our first number s0 ∈ (0, 1)
and decide to paint the lower part/proportion s0 red.
We now have an unpainted part of length 1 − s0. We
paint the s1 proportion of it green. The newly painted
part then has length s1(1 − s0). The unpainted part
is now (1 − s2)(1 − s0). We paint the s2-proportion
of this remainder blue. The final remainder is then of
length (1 − s2)(1 − s2)(1 − s0). We paint it yellow.
Note that the resulting distribution has full support.

This construction can also be described in terms of breaking a stick, at each
position where we have a change of colour in the above picture. The effect is a
map (0, 1)3 → Dfs

({R,G,B, Y }). We leave it at this stage to the reader to define
an (inverse) map, in the opposite direction. Details will be provided in Sect. 3.

Stick breaking emerged in the description of stochastic processes, see [29] for
an early source and [11] for an overview. The stick breaking isomorphism in (1)
is applied to an iterated product (power) of spaces (0, 1) on the right-hand-
side, without any dependencies. One can take for instance a (tensor) product of
beta distributions on this product of (0, 1)’s, and then transfer the result to a
distribution on a space of the form Dfs(X) via stick breaking. In this way one
obtains the (continuous) Dirichlet distribution (on discrete distributions) via
multiple beta distributions and stick breaking. This is a known result—but not
a very well known one—which we redescribe in Sect. 6 in the present setting.

Interestingly, the stick breaking construction can also be used for infinite
products. It then yields an isomorphism D∞

fs (N) ∼= (0, 1)N, where we write D∞
fs

for (discrete) distributions with infinite, full support. The above stick breaking
construction is clearly repetitive, which suggests a coalgebraic structure. Indeed,
as we shall see, the set of distributions D∞

fs (N) carries a coalgebra, which is even
final.
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It is especially this infinite form of stick breaking that is exploited in [29],
and other sources like [6,11,24,25], to describe stochastic processes via infinite
products followed by stick breaking. We give an impression of how this works,
but only scratch the surface. The contribution of this paper lies in extracting the
stick breaking operation from stochastic applications, in studying stick breaking
on its own right, from a coalgebraic perspective, both in finite and infinite form,
and then in re-applying the resulting insights in a few probabilistic illustrations.

The paper first fixes notation for discrete probability distributions, in order to
introduce stick breaking in a coalgebraic setting, in Sect. 3. Then, after describing
the essentials of multisets (bags) in Sect. 4, stick breaking is used to express
multinomial draws from an urn in terms of successive binomial draws. This
shows how drawing several balls from an urn with balls of multiple colours can
be mimicked via urns with balls having only two colours (say black and white).
This is a priori not entirely trivial.

The paper then moves on to continuous probability. It first shows how to
express Dirichlet distributions as parallel beta distributions, followed by stick
breaking—in analogy with the connection between multinomials and binomials
via stick breaking. Insiders of the field will probably say “sure, we are aware of
such connections”, but to (relative) outsiders they may provide useful insight.
At this stage it is assumed that the reader has a basic level of familiarity with
these standard distributions. Subsequently, the use of infinite stick breaking
is illustrated for the definition of stochastic processes in terms of countably
many parallel beta distributions. In this setting a mean is calculated. In the
end it is shown that this mean arises by finality from a very simple coalgebraic
construction.

2 Discrete Probability Distributions

Let X be an arbitrary set. There are two equivalent ways of describing (discrete,
finite) probability distributions on X.

– As finite convex combinations r1|x1 〉 + · · · rn|xn 〉 of elements xi ∈ X, with
probabilities ri ∈ [0, 1] satisfying

∑
i ri = 1.

– As functions ω : X → [0, 1] with finite support supp(ω) := {x ∈ X | ω(x) �= 0}
and with

∑
x ω(x) = 1.

We freely switch between these two descriptions. We write D(X) for the set of
such distributions on X, and Dfs(X) ⊆ D(X) for the subset of distributions with
full support, that is, with supp(ω) = X. Thus, writing Dfs(X) only makes sense
when the set X is finite.

This D is a monad on the category Sets. We make occasional use of this
fact, so we do not spell out the details here; we refer to external sources instead,
like [13,14].

We shall write D∞(X) for arbitrary functions ω : X → [0, 1] with
∑

x ω(x) =
1. We then put no restriction on the support of ω, but it is not hard to show
that when

∑
x ω(x) = 1 the support is countable, or finite.
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We write D∞
fs (X) ⊆ D∞(X) for the subset of distributions with full support.

This only makes sense if the set X is countable. We use it especially for X = N.

3 Stick Breaking

We fix a set A and consider the functor A × (−) : Sets → Sets. It is well known
that the final coalgebra of this functor is the set AN of infinite sequences of
(an)n∈N of elements an ∈ A.

Similarly, the functor A + A × (−) has the set A∞ := A+ + AN of non-
empty finite and infinite sequences as final coalgebra. Details can be found in
any introductory text to coalgebra, see e.g. [1,13,17,27].

In the sequel we take A = (0, 1), the open unit interval (0, 1) ⊆ R of numbers
between zero and one. We introduce stick breaking first in the infinite case.
Subsequently, the finite case is handled.

3.1 Infinite Stick Breaking

By finality we introduce a function f : D∞
fs (N) → (0, 1)N in the following diagram.

(0, 1) × D∞
fs (N)

id×f
�������� (0, 1) × (0, 1)N

D∞
fs (N)

shift

  

f
����������� (0, 1)N

〈head,tail〉∼=
  

(2)

The shift coalgebra on the left is defined as:

shift(ω) :=

(

ω(0),
∑

n∈N

ω(n + 1)
1 − ω(0)

∣
∣n

〉
)

. (3)

This shift operation does three things: (1) it takes the head ω(0) of the infinite
sequence ω = (ω(0), ω(1), . . .); (2) it shifts the remaining tail one position for-
wards, so that ω(1) becomes the new head; (3) it renormalises this tail to a new
distribution via division by 1 − ω(0) =

∑
n≥1 ω(n).

Since each ω ∈ D∞
fs (N) has full support, each probability ω(n) is non-zero,

for n ∈ N. But then none of these ω(n) can be equal to one. This ensures that
the shift map is well-defined.

Proposition 1. The function f : D∞
fs (N) → (0, 1)N introduced in (2) by finality

is an isomorphism. We shall write sb = f−1 for the inverse and call it (infinite)
stick breaking.

As a result, the shift coalgebra is also final—and thus an isomorphism.

Proof. Via commutation of Diagram (2) we get:

f(ω) =

(

ω(0),
ω(1)

1−ω(0)
,

ω(2)
1−ω(0)−ω(1)

, . . . ,
ω(i)

1−∑
j<i ω(j)

, . . .

)

.
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For instance, the second entry is obtained as:
(

ω(2)
1−ω(0)

)

1 − ω(1)
1−ω(0)

=
ω(2)

1−ω(0)−ω(1)
.

In the other direction one obtains stick breaking as:

sb
(
r0, r1, . . .

)
:= r0

∣
∣0

〉
+ r1(1−r0)

∣
∣1

〉
+ · · · + ri

∏

j<i

(1−rj)
∣
∣i

〉
+ · · · (4)

If we abbreviate ρ := sb
(
r0, r1, . . .

)
then we get as basic property, for each i ∈ N

1 −
∑

j≤i

ρ(j) =
∏

j≤i

(1−rj). (5)

This follows by induction on i. The statement trivially holds for i = 0. Next,

1 −
∑

j≤i+1

ρ(j) =

⎛

⎝1 −
∑

j≤i

ρ(j)

⎞

⎠ − ρ(i + 1)

(IH)
=

∏

j≤i

(1−rj) − ri+1

∏

j≤i

(1−rj)

= (1−ri+1)
∏

j≤i

(1−rj) =
∏

j≤i+1

(1−rj).

We can now see that the sequence ρ forms a proper distribution:
∑

i∈N

ρ(i) = lim
i→∞

∑

j≤i

ρ(j) = 1 − lim
i→∞

1 −
∑

j≤i

ρ(j)

(5)
= 1 − lim

i→∞

∏

j≤i

(1−rj) = 1 − 0 = 1.

This works because an infinite product of numbers si ∈ (0, 1) is zero.
It is not hard to see that these two functions f : D∞

fs (N) → (0, 1)N and
sb : (0, 1)N → D∞

fs (N) are each other’s inverses. �

Example 2. Consider the infinite distribution:

ω =
∑

n∈N

2
5 · (

3
5

)n∣
∣n

〉
= 2

5

∣
∣0

〉
+ 6

25

∣
∣1

〉
+ 18

125

∣
∣2

〉
+ 54

625

∣
∣3

〉
+ · · ·

We can see that it is a distribution via the familiar formula:
∑

n≥0

rn =
1

1 − r
for r ∈ (0, 1). (6)

Then: ∑

n≥0

ω(n) = 2
5 ·

∑

n≥0

(
3
5

)n (6)
= 2

5 · 1
1 − 3/5

=
2

5 − 3
= 1.
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The sequence of numbers in (0, 1) corresponding to ω is constant:

sb−1(ω) = (25 , 2
5 , 2

5 , . . .).

In general, for r ∈ (0, 1), we have sb(r, r, r, . . .) =
∑

n≥0 r(1 − r)n|n〉.

3.2 Finite Stick Breaking

Having seen the isomorphism D∞
fs (N) ∼= (0, 1)N in Proposition 1 one wonders if it

can be restricted to distributions with finite support. We write n = {0, 1, . . . , n−
1}, where n ∈ N, for a chosen set with n elements.

We look at the set of distributions Dfs(n). Given a distribution ω ∈ Dfs(n)
we can apply a shift operation like in (3), to peel off the first element ω(0).
However, what remains is a (full) distribution on n−1. This gives a function
Dfs(n) → (0, 1) × Dfs(n−1), for n > 0. This is not a coalgebra, in the ordinary
sense—but it may be understood as a coalgebra in dependent type theory.

We need a trick. We incorporate Dfs(n) into a subset of D∞(N), namely the
subset were probabilities may be zero, but once they are zero, they remain zero
in all subsequent positions. We use the following ad hoc notation.

D∞
fs<(N) :=

{
ω : N → [0, 1)

∣
∣ ∑

n ω(n) = 1 and ∀n. ω(n) = 0 ⇒ ∀m > n. ω(m) = 0
}

⊆ D∞(N).

Notice that the ‘shortest’ list in D∞
fs<(N) is of the form r|0〉 + (1− r)|1〉 for

r ∈ (0, 1). For each n > 1 there is an inclusion Dfs(n) ↪→ D∞
fs<(N).

We can now define a shift map of the following form, for n > 0.

D∞
fs<(N) shift �� (0, 1) + (0, 1)×D∞

fs<(N)

This function is defined as:

shift(ω) :=

{
r if ω = r|0〉 + (1−r)|1〉
(ω(0),

∑
n

ω(n+1)
1−ω(0) |n〉) otherwise

(7)

In the first case we have reached a distribution of minimal size. The second case
is as in (3).

As mentioned in the beginning of this section, the set (0, 1)∞ = (0, 1)+ +
(0, 1)N of non-empty finite and infinite sequences of numbers in the open interval
(0, 1) forms a final coalgebra of the functor (0, 1) + (0, 1) × (−). By finality we
thus get a map g in:

(0, 1) + (0, 1) × D∞
fs<(N)

id+(id×g)
�������� (0, 1) + (0, 1) × (0, 1)∞

D∞
fs<(N)

shift

  

g
��������������� (0, 1)∞ = (0, 1)+ + (0, 1)N

next∼=
  

(8)
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It is not hard to see that the map g sends a distribution 1
16 |0〉+ 1

4 |1〉+ 3
16 |2〉+ 1

2 |3〉
to the sequence 〈 1

16 , 4
15 , 3

11 〉 ∈ (0, 1)∞.
We now get the finite analogue of Proposition 1. The proof is essentially as

in the infinite case, and is left to the reader.

Proposition 3. For each n > 1 the function g defined in (8) restricts to a func-
tion Dfs(n) → (0, 1)+. In fact, it forms an isomorphism g : Dfs(n) ∼=−→ (0, 1)n−1.
Its inverse sb : (0, 1)n−1 ∼=−→ Dfs(n) will be called stick breaking. It is given by:

sb
(
r0, . . . , rn−2

)

= r0
∣
∣0

〉
+ r1(1−r0)

∣
∣1

〉
+ r2(1−r1)(1−r0)

∣
∣2

〉
+ · · · +

rn−2(1−rn−3) · · · (1−r0)
∣
∣n−2

〉
+ (1−rn−2) · · · (1−r0)

∣
∣n−1

〉
.

�

Example 4. For instance,

sb
(
1
4 , 1

3 , 3
4

)
= 1

4 |0〉 + 1
4 |1〉 + 3

8 |2〉 + 1
8 |3〉

sb
(
7
8 , 2

3 , 3
4

)
= 7

8 |0〉 + 1
12 |1〉 + 1

32 |2〉 + 1
96 |3〉.

Stickbreaking does not preserve convex combinations. For instance:

1
4 · sb(

1
4 , 1

3 , 3
4

)
+ 3

4 · sb(
7
8 , 2

3 , 3
4

)
= 23

32 |0〉 + 1
8 |1〉 + 15

128 |2〉 + 5
128 |3〉

�= 23
32 |0〉 + 21

128 |1〉 + 45
512 |2〉 + 15

512 |3〉
= sb

(
1
4 · 〈14 , 1

3 , 3
4 〉 + 3

4 · 〈78 , 2
3 , 3

4 〉).

4 Multisets

A multiset (or bag) is a ‘subset’ except that elements may occur multiple times.
We write a multiset on a set X also in ket form, as a finite formal sum n1|xi 〉 +
· · · + nk|xk 〉 of elements xi ∈ X and natural numbers ni ∈ N. Such a multiset
can equivalently be described as a function ϕ : X → N with finite support. We
write M(X) for the set of finite multisets on X, and Mfs(X) ⊆ M(X) for the
subset of multisets with full support, that is, with ϕ(x) �= 0 for each x ∈ X;
again, this only makes sense when the set X is finite. The multiset operation M
is a monad on Sets, like D.

We associate several numbers with a multiset ϕ ∈ M(X).

– The size ‖ϕ‖ :=
∑

x∈X ϕ(x) is the total number of elements in the multiset,
including multiplicities.

– The factorial is the product of (ordinary) factorials of the
multiplicities.

– The multinomial coefficient is .

We write M[K](X) ⊆ M(X) for the subset of multisets with size K ∈ N.
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4.1 Binomial and Multinomial Distributions

Drawing coloured balls from an urn is one of the most basic probabilistic mod-
els, see e.g. [18,21,23,26] and many other references. Here we look at draws
with replacement, known as binomial draws (when there are two colours) or
multinomial draws (when there are multiple colours).

For a fixed number K ∈ N we describe the familiar binomial distributions
via a function:

[0, 1]
bn[K]

�� D({0, 1, . . . ,K})

It captures the probability of drawing i ∈ {0, 1, . . . ,K} black balls from an urn
with (only) black and white balls, out of K independent draws, each with black
ball probability r ∈ [0, 1]. Thus:

bn[K](r) :=
∑

0≤i≤K

(
K

i

)
· ri · (1−r)K−i

∣
∣i

〉
.

There is a multinomial version which assigns a probability to a multiset of size
K, as a draw (with replacement) of K-many balls from an urn with balls whose
colours are described by a set X. The distribution of colours over the balls
in the urn is captured abstractly via a distribution ω ∈ D(X). Multinomial
distributions will thus be described as a function:

D(X)
mn[K]

�� D(M[K](X)
)

The definition is:

mn[K](ω) :=
∑

ϕ∈M[K](X)

(ϕ) ·
∏

x∈X

ω(x)ϕ(x)
∣
∣ϕ

〉
.

The binomial version is a special case, when X is a two-element set 2, via the
isomorphisms D(2) ∼= [0, 1] and M[K](2) ∼= {0, 1, . . . ,K}. For more information,
see e.g. [15,16].

We present one result about multinomials. It is useful to recall as preparation
for a similar but more complicated result later on.

Lemma 5. Let ω ∈ D(X) be an ‘urn’ and K the size of draws. The mean of the
multinomial mn[K](ω) is K · ω. Explicitly,

mean
(
mn[K](ω)

)
:=

∑

ϕ∈M[K](X)

mn[K](ω)(ϕ) · ϕ = K · ω.

Strictly speaking, K ·ω is not a multiset, since we allow only natural numbers
as multiplicities. But for a result like this one may wish to allow non-negative
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reals too. Once we do so, we can use inclusions D(Y ) ↪→ M(Y ) and see this result
as an application of the multiplication map μ of the multiset monad M, in:

D(X)
mn[K]

��

K·(−) ��

D(M[K](X)
) �  �� M(M(X)

)

μ
��

M(X)

(9)

Proof. Fix an arbitrary element y ∈ X.
(
mean

(
mn[K](ω)

))
(y)

=
∑

ϕ∈M[K](X)

mn[K](ω)(ϕ) · ϕ(y)

=
∑

ϕ∈M[K](X), ϕ(y) �=0

ϕ(y) · K!∏
x ϕ(x)!

·
∏

x
ω(x)ϕ(x)

=
∑

ϕ∈M[K](X), ϕ(y) �=0

K · (K−1)!

(ϕ(y)−1)! · ∏
x �=y ϕ(x)!

· ω(y) · ω(y)ϕ(y)−1 ·
∏

x �=y

ω(x)ϕ(x)

= K · ω(y) ·
∑

ϕ∈M[K−1](X)

(K − 1)!∏
x ϕ(x)!

·
∏

x
ω(x)ϕ(x)

= K · ω(y) ·
∑

ϕ∈M[K−1](X)

mn[K−1](ω)(ϕ)

= K · ω(y). �

5 Multinomials as Iterated Binomials

A simple question is: can we mimic a draw of multiple coloured balls from an urn
in terms of draws of only two colours? More precisely, can we express a multino-
mial draw in terms of several binomial draws? We then encounter the problem
that binomial draws use probabilities between zero and one and multinomials
draws use distributions, as convex combinations. We show that stick breaking sb
provides the connection. We first give a concrete formulation and then express
it more abstractly.

Lemma 6. Fix n ≥ 1 and K ≥ 0. For probabilities �r = r0, . . . , rn−2 ∈ (0, 1)n−1

and a multiset ϕ =
∑

i<n ki|i〉 ∈ M[K](n),

mn[K]
(
sb(�r)

)
(ϕ) = bn[K](r0)(k0) · bn[K−k0](r1)(k1)

· . . . · bn[K−∑
i<n−2 ki](rn−2)(kn−2).

Notice that the last multiplicity kn−1 = ϕ(n−1) is not used. It is superfluous
if we know that the multiset has size K, since then kn−1 = K−∑

i<n−1 ki.
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Proof. One can use induction on n. When n = 1 the above equation formu-
lates a binary multinomial as binomial, via the isomorphisms D(2) ∼= [0, 1] and
M[K](2) ∼= {0, 1, . . . ,K}. Concretely:

mn[K]
(
r|0〉 + (1−r)|1〉)(k0|0〉 + k1|1〉) = bn[K](r)(k0).

Next, let ϕ =
∑

i≤n ki|i〉 ∈ M[K](n+1) and �r = r0, . . . , rn−1 ∈ (0, 1)n be given.
We use a shifted multiset ϕ′ =

∑
i<n−1 ki+1|i〉 of size K−k0. Then:

bn[K](r0)(k0) · bn[K−k0](r1)(k1) · . . . · bn[K−∑
i<n−1 ki](rn−1)(kn−1)

(IH)
= bn[K](r0)(k0) · mn[K−k0]

(
sb(r1, . . . , rn−1)

)
(ϕ′)

=
(

K

k0

)
· rk0

0 · (1−r0)K−k0 · (ϕ′ ) ·
∏

i>0

sb(r1, . . . , rn−1)(i)ki

=
K!

k0! · (K−k0)!
· (K−k0)!
k1! · · · kn−1!

· rk0
0 ·

∏

i>0

(
sb(r1, . . . , rn−1)(i) · (1−r0)

)ki

= (ϕ) ·
∏

i≥0

sb(r0, . . . , rn−1)(i)ki

= mn[K]
(
sb(�r)

)
(ϕ). �

We reorganise this result a bit. For K,n ∈ N with n > 0 we define a set of
sequences of natural numbers.

S[K](n) := {(k0, . . . , kn−2) ∈ N
n−1 | ∀i. ki ≤ K − ∑

j<i kj}.

Next we define the sequential binomial map sbn[K] : (0, 1)n−1 → D(S[K](n)
)

by:
sbn[K](�r)(�k) = bn[K](r0)(k0) · bn[K−k0](r1)(k1)

· . . . · bn[K−∑
i<n−2 ki](rn−2)(kn−2).

Theorem 7. In the situation described above, multinomial distributions can be
described as sequential binomial distributions via stick breaking, as in the follow-
ing commuting diagram.

D(S[K](n)
) ∼= �� D(M[K](n)

)

(0, 1)n−1

sbn[K]

  

sb
∼=

�� D(
n
)

mn[K]

  

Proof. This is just a fancy reformulation of Lemma 6. It uses the obvious iso-
morphism S[K](n) ∼=−→ M[K](n), given by (k0, . . . , kn−2) → ∑

i<n−1 ki|i〉 +
(K−∑

i ki)|n−1〉, at the top, together with the functoriality of D. �
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6 Dirichlet via Parallel Beta’s

This section describes an application of stick breaking in continuous probability
theory. It reformulates the famous Dirichlet distribution in terms of parallel
beta distributions, with stick breaking forming the connection. This is similar
to the result in the previous section, since beta distributions can be understood
as binary versions of Dirichlet distributions—just like binomials being binary
versions of multinomials. For background information on the beta and Dirichlet
distributions we refer to standard textbooks, like [2,3,8,19,30].

We shall describe these continuous distributions via the Giry monad G, which
generalises the discrete probability monad D, see [12,14,22] for details. We shall
use continuous probability distributions on subsets S ⊆ R

n, given by a proba-
bility density function (pdf) f : S → R≥0, satisfying

∫
f(x) dx = 1. The distri-

bution itself is given by a mapping from the Borel σ-algebra ΣS of measurable
subsets of S, to [0, 1]. Thus, it is the mapping on measurable subsets M ⊆ S,

M −→
∫

x∈M

f(x) dx.

We write G(S) for the set of such distributions. For φ ∈ G(S) and χ ∈ G(T )
there is a parallel product φ ⊗ χ ∈ G(S × T ) determined by (φ ⊗ χ)(M × N) =
φ(M) · χ(N), for measurable subsets M ⊆ S, N ⊆ T .

We illustrate this for the beta distributions on (0, 1), which we describe as
parameterised by numbers a, b ∈ N>0. This can be generalised to more general
numbers, but we don’t need that here. The pdf pbf Beta(a, b) : (0, 1) → R≥0 is
given by:

pbf Beta(a, b)(r) :=
ra−1 · (1−r)b−1

B(a, b)
where B(a, b) =

(a−1)! · (b−1)!
(a+b−1)!

. (10)

The Dirichlet distribution takes the form of a map:

Mfs(n) Dir �� G(Dfs(n)
)
. (11)

For a multiset ψ ∈ Mfs(n) we describes its pdf Dfs(n) → R≥0 as:

This looks very much like the multinomial distribution mn[K]. Indeed, there
is a close connection: if we view the multinomial as a map mn[K] : Dfs(n) →
D(M[K](n)) ∼= G(M[K](n)) then Dirichlet is its dagger [4,5,10] in the opposite
direction (11), using a uniform prior. Details will be elaborated elsewhere. A
further basic fact is that the Kleisli composition ‘multinomial after Dirichlet’
yields Pólya distributions [21].

Our focus lies on the theorem below that expresses the Dirichlet distribution
as parallel product ⊗ of beta’s, connected via stick breaking. This is a known
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‘folklore’ result, for which it is hard to find a precise reference and/or formulation,
but see [11, §3.1] for a brief description. As an aside, there is also a way to express
Dirichlet via gamma distributions that is more familiar, see e.g. [30, 7.7.1] or [7,
Prop. 4.1].

Here we can precisely formulate Dirichlet via beta’s because we have explicitly
identified the (finite) stick breaking isomorphism sb : (0, 1)n−1 ∼=−→ Dfs(n). The
formulation below uses functoriality of Giry G.

Theorem 8. For n > 0 and ψ ∈ M(n),

Dir(ψ) = G(sb)
(
Beta

(
ψ(0),

∑
i>0ψ(i)

) ⊗ Beta
(
ψ(1),

∑
i>1ψ(i)

) ⊗ · · ·
· · · ⊗ Beta

(
ψ(n−3), ψ(n−2)+ψ(n−1)

) ⊗ Beta
(
ψ(n−2), ψ(n−1)

))
.

Proof. One proceeds like in the proof of Lemma 6, in combination with integra-
tion by substitution. We give an exemplaric proof, for n = 3, illustrating how
this works.

The Dirichlet distribution involves, in this case, an integral over Dfs(3). This
means that we integrate over (0, 1), say with a variable s0, and then over (0, 1−
s0), say with s1, and then use s2 = 1 − s0 − s1. We thus restrict the inverse of
the stick breaking isomorphism sb : (0, 1)2 ∼=−→ Dfs(3) to an isomorphism:

D2 := {(s0, s1) | s0 ∈ (0, 1), s1 ∈ (0, 1−s0)} h
∼=

�� (0, 1)2

There is an isomorphism Dfs(3) ∼= D2 via dropping the last number. This func-
tion h = (h0, h1) is thus given by:

h(s0, s1) = (s0, s1
1−s0

).

In order to do (multidimensional) integration by substitution we need the
determinant of the matrix of partial derivatives of h. This is:

∣
∣
∣
∣
∣
∣
∣

∂h0

∂s0
(�s)

∂h0

∂s1
(�s)

∂h1

∂s0
(�s)

∂h1

∂s1
(�s)

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1 0
s1

1−s0

1
1−s0

∣
∣
∣
∣
∣
∣

=
1

1−s0
. (*)

We are now ready to prove the equation in the theorem, for n = 3. We fix
ψ ∈ Mfs(3). Let M ⊆ Dfs(3) be an arbitrary measurable subset; we identify it
with M ⊆ D2 when needed, via the isomorphism Dfs(3) ∼= D2 described above.
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The proof in general, for arbitrary n > 0, works in the same way, but involves
much more book keeping. �

7 Infinite Stick Breaking and Beta Distributions

In the literature on stochastic processes infinite stick breaking sb : (0, 1)N ∼=−→
D∞

fs (N) from Proposition 1 is used as construction to produce (continuous) distri-
butions on (discrete, infinite) distributions in D∞

fs (N). For numbers an, bn ∈ N>0

one can define:

sbB(a, b) := G(sb)

(
⊗

n∈N

Beta(an, bn)

)

∈ G(D∞
fs (N)

)
. (12)

The abbreviation sbB stands for ‘stick break Beta’; it is described as ‘stick-
breaking prior’ in [11, §1.1]. When we pull out the parameters we get a function:

(
N>0

)N × (
N>0

)N sbB �� G(D∞
fs (N)

)
(13)

Examples of such stochastic processes sbB(a, b) are Dirichlet-Poisson [6,9,20]
and Pitman-Yor [24,25]. For instance, in the Dirichlet-Poisson case the sequence
a is constantly one, and the sequence b is also constant, determined by a param-
eter. For Pitman-Yor only a is constant. These stochastic processes are used for
infinite mixture models, as “stick breaking priors”, see [11] for an overview.
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As an aside, the probabilities in distributions in D∞
fs (N) are sometimes used

in descending order, see e.g. [20, Appendix], so that what is commonly called
Dirichlet-Poisson is a quotient of our general formulation (12). However, here
we abstract away from such matters and will simply work with the above
formulation.

We concentrate on one small thing, namely computing the mean of a stick
break beta process (12). This allows us to conclude this article with a coalge-
braic observation. Thus, in the style of Diagram (9) our goal is to describe the
composite:

(
N>0

)N × (
N>0

)N sbB �� G(D∞
fs (N)

) �  �� G(G(N)
)

μ

��

G(N)

(14)

where μ is the multiplication of the Giry monad. Interestingly, the outcome is a
discrete distribution on N.

We first observe that the mean can also be computed as Kleisli extension,
which we write as =�. Indeed:

mean
(
sbB(a, b)

)
= μ

(

G(sb)

(
⊗

n∈N

Beta(an, bn)

))

= sb =�
(

⊗

n∈N

Beta(an, bn)

)

.

We first calculate the latter expression in the finite case. For instance, at position
0 ∈ 3 of the distribution in Dfs(3) one has:

(
sb =�

(
Beta(a0, b0) ⊗ Beta(a1, b1)

))
(0)

=
∫ 1

0

∫ 1

0

sb(r0, r1)(0) · pbf Beta(a0, b0)(r0) · pbf Beta(a1, b1)(r1) dr1 dr0

=
∫ 1

0

r0 · ra0−1
0 · (1−r0)b0−1

B(a0, b0)
·
(∫ 1

0

pbf Beta(a1, b1)(r1) dr1

)
dr0

=
B(a0 + 1, b0)

B(a0, b0)
(10)
=

a0! · (b0−1)!
(a0+b0)!

· (a0+b0−1)!
(a0−1)! · (b0−1)!

=
a0

a0+b0
.

Similarly, at position 1,
(
sb =�

(
Beta(a0, b0) ⊗ Beta(a1, b1)

))
(1)

=
∫ 1

0

∫ 1

0

sb(r0, r1)(1) · pbf Beta(a0, b0)(r0) · pbf Beta(a1, b1)(r1) dr1 dr0

=
∫ 1

0

(1−r0) · ra0−1
0 · (1−r0)b0−1

B(a0, b0)
·
∫ 1

0

r1 · ra1−1
1 · (1−r1)b1−1

B(a1, b1)
dr1 dr0

=
B(a0, b0 + 1)

B(a0, b0)
· B(a1 + 1, b1)

B(a1, b1)
=

b0
a0+b0

· a1

a1+b1
.
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Thus, Kleisli extension =� gives the following distribution on 3.

sb =�
(
Beta(a0, b0) ⊗ Beta(a1, b1)

)

=
a0

a0+b0

∣
∣0

〉
+

a1b0
(a0+b0)(a1+b1)

∣
∣1

〉
+

b0b1
(a0+b0)(a1+b1)

∣
∣2

〉
.

This reveals the pattern. It can be extended to infinity.

Lemma 9. For sequences a, b ∈ (
N>0

)N the mean of stick-break-beta yields the
following distribution in D∞

fs (N).

mean
(
sbB(a, b)

)
= sb =�

(
⊗

n∈N

Beta(an, bn)

)

=
∑

n∈N

an

∏
i<n bi∏

i≤n(ai+bi)

∣
∣n

〉
.

�

For instance, for Poisson-Dirichlet we have an = 1 and bn = t, where t ∈ N>0

is a parameter. The resulting mean is the infinite discrete distribution:

∑

n∈N

tn−1

(1+t)n

∣
∣n

〉
=

1
1+t

∑

n∈N

(
t

1+t

)n ∣
∣n

〉

We conclude by returning to a coalgebraic narrative. It turns out that the
non-entirely trivial distribution in Lemma 9 can be obtained by finality from
a completely trivial and standard coalgebra, involving the derivative a′ of a
sequence/stream a, see [28] for many more examples.

Proposition 10. Consider the finality diagram:

(0, 1) ×
((

N>0

)N × (
N>0

)N)
id×h

�������� (0, 1) × D∞
fs (N)

(
N>0

)N × (
N>0

)N

c

  

h ������������ D∞
fs (N)

shift∼=
  

The coalgebra c on the left is defined as:

c(a, b) :=
(

a0

a0 + b0
, a′, b′

)
where

{
a′

n = an+1

b′
n = bn+1.

The function h :
(
N>0

)N × (
N>0

)N → D∞
fs (N) obtained by finality is then the

mean of stick-break-Beta, as described in Lemma 9.

Proof. We recall that the shift coalgebra (3), in the rectangle on the right, is
final, by Proposition 1. Let’s write:

h(a, b) = mean
(
sbB(a, b)

)
=

∑

n∈N

an

∏
i<n bi∏

i≤n(ai+bi)

∣
∣n

〉
.
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It suffices to show that this h makes the above rectangle commute. We look at
the first and second projections separately.

(
π1 ◦ shift ◦ h

)
(a, b)

(3)
=h(a, b)(0) =

a0

a0 + b0
=

(
π1 ◦ c)(a, b).

And:

(
π2 ◦ shift ◦ h

)
(a, b)

(3)
=

∑

n∈N

h(a, b)(n + 1)
1 − h(a, b)(0)

∣
∣n

〉
=

∑

n∈N

an+1
∏

i<n+1 bi∏
i≤n+1(ai+bi)

1 − a0
a0+b0

∣
∣n

〉

=
∑

n∈N

an+1
∏

i<n+1 bi∏
i≤n+1(ai+bi)

b0
a0+b0

∣
∣n

〉

=
∑

n∈N

an+1

∏
0<i<n+1 bi∏

0<i≤n+1(ai+bi)

∣
∣n

〉

=
∑

n∈N

a′
n

∏
i<n b′

i∏
i≤n(a′

i+b′
i)

∣
∣n

〉

= h(a′, b′)

=
(
h ◦ π2 ◦ c

)
(a, b). �

8 Concluding Remarks

This paper extracts stick breaking from stochastic process theory and investi-
gates it in a coalgebraic setting. This works smoothly for infinite stick breaking,
yielding a new description D∞

fs (N) of the final coalgebra of the functor (0, 1)×(−).
In the finite case, the coalgebraic treatment of stick breaking is a bit artificial.
Nevertheless, the following two stick breaking isomorphisms are both fundamen-
tal and useful.

(0, 1)n−1
∼= �� Dfs(n) and (0, 1)N

∼= �� D∞
fs (N).

This usefulness has been illustrated by relating multinomials to iterated bino-
mials and by relating Dirichlet to parallel Beta’s. Also, one, coalgebraic, aspect
of the use of infinite stick breaking in stochastic processes has been elaborated,
namely the computation of the mean, via finality. This area of stochastic pro-
cesses may benefit also in other ways from coalgebraic techniques.

Acknowledgements. Thanks are due to the anonymous reviewers for their useful
feedback.
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21. Mahmoud, H.: Pólya Urn Models. Chapman and Hall, London (2008)
22. Panangaden, P.: Labelled Markov Processes. Imperial College Press, London (2009)
23. Pishro-Nik, H.: Introduction to probability, statistics, and random processes.

Kappa Research LLC (2014). https://www.probabilitycourse.com
24. Pitman, J.: Random discrete distributions invariant under size-biased permutation.

Adv. Appl. Probab. 28(2), 525–539 (1995). https://doi.org/10.2307/1428070
25. Pitman, J., Yor, M.: The two-parameter Poisson-Dirichlet distribution derived from

a stable subordinator. Ann. Probab. 25(2), 855–900 (1997). https://doi.org/10.
1214/aop/1024404422

26. Ross, S.: A First Course in Probability, 10th edn. Pearson Education, London
(2018)

27. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249,
3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

28. Rutten, J.: A coinductive calculus of streams. Math. Struct. Comput. Sci. 15(1),
93–147 (2005). https://doi.org/10.1017/S0960129504004517

29. Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650
(1994). https://doi.org/10.21236/ada238689

30. Wilks, S.: Mathematical Statistics. Wiley, Hoboken (1962)

https://doi.org/10.1098/rspa.1978.0089
https://www.probabilitycourse.com
https://doi.org/10.2307/1428070
https://doi.org/10.1214/aop/1024404422
https://doi.org/10.1214/aop/1024404422
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1017/S0960129504004517
https://doi.org/10.21236/ada238689


Author Index

Abramsky, Samson 23

Beohar, Harsh 1

Endrullis, Jörg 110

Frank, Florian 45

Gumm, H. Peter 88

Hansen, Helle Hvid 110
Heerdt, Gerco van 67

Jacobs, Bart 176
Jakl, Tomáš 23

Kappé, Tobias 67
König, Barbara 1

Küpper, Sebastian 1

Mika-Michalski, Christina 1
Milius, Stefan 45
Moss, Lawrence S. 155

Noquez, Victoria 155

Paine, Thomas 23
Pous, Damien 133

Rosset, Aloïs 110
Rot, Jurriaan 67, 133

Sammartino, Matteo 67
Silva, Alexandra 67

Taheri, Mona 88
Turkenburg, Ruben 133

Urbat, Henning 45


	 Preface
	 Organization
	Abstracts of Invited Talks
	 Tracing Coalgebras: A Case for Monads
	 Coalgebra Meets Hybrid Systems
	 Coalgebraic Methods in Probability
	 Some Recent Advances in Register Automata
	 Learning Weighted Automata over Fields and Principal Ideal Domains
	 Contents

	Predicate and Relation Liftings for Coalgebras with Side Effects: An Application in Coalgebraic Modal Logic
	1 Introduction
	2 Preliminaries
	3 Behavioural Equivalence Through Indexed Morphisms
	4 Coalgebraic Modal Logic
	5 Lifting of Predicate and Relation Liftings
	6 Nondeterministic Automata (NDA)
	7 Conditional Transition Systems: An Application in coKleisli Categories
	8 Conclusions
	References

	Discrete Density Comonads and Graph Parameters
	1 Introduction
	2 Preliminaries
	2.1 Comonads and Coalgebras
	2.2 Comonad Morphisms
	2.3 Density Comonads
	2.4 The Comonad Structure
	2.5 Comonad Morphisms from Composites

	3 Discrete Density Comonads
	4 The Abstract Classification Theorem
	4.1 Examples

	5 Graph Parameters
	5.1 Grading Graph Parameters
	5.2 Comparison with Game Comonads
	5.3 Nowhere Dense Comonads

	6 Lovász-Type Theorems for Free
	6.1 Finite Rank Comonads

	7 Conclusion
	References

	Coalgebraic Semantics for Nominal Automata
	1 Introduction
	2 Preliminaries
	2.1 Nominal Sets
	2.2 Nominal Automata
	2.3 Initial Algebras in DCPO-enriched Categories

	3 Coalgebraic Trace Semantics
	3.1 General Coalgebraic Trace Semantics Revisited
	3.2 Coalgebraic Trace Semantics of Non-deterministic Nominal Systems

	4 Coalgebraic Language Semantics
	4.1 A Recap of General Coalgebraic Language Semantics
	4.2 Coalgebraic Language Semantics of Nominal Systems

	5 Conclusions and Future Work
	References

	A Categorical Framework for Learning Generalised Tree Automata
	1 Introduction
	2 Preliminaries
	2.1 Abstract Automata
	2.2 The L-star Algorithm

	3 The Abstract Data Structures in CALF
	4 Counterexamples, Generalised
	5 Generalised Learning Algorithm
	6 Generalised Tree Automata
	6.1 Contextual Wrappers
	6.2 Witnessing Local Closedness and Consistency
	6.3 Finite Counterexamples
	6.4 Minimality

	7 Related Work
	8 Future Work
	References

	Saturated Kripke Structures as Vietoris Coalgebras
	1 Introduction
	2 Preliminaries
	2.1 Kripke Structures
	2.2 Modal Logic
	2.3 Bisimulations
	2.4 Homomorphisms and Congruences

	3 Saturated Structures
	4 F-coalgebras
	5 Topological Models
	6 The Compact Vietoris-Functor
	7 Characterization Theorem
	8 Closure of Vietoris Structures
	8.1 Nets and Subnets
	8.2 Convergence in Vietoris Spaces
	8.3 Closure of Subcoalgebras and Bisimulations

	9 The Terminal Vietoris Coalgebra
	10 Conclusion
	References

	Algebraic Presentation of Semifree Monads
	1 Introduction
	2 Preliminaries
	3 Algebraic Presentation of Semifree Monads
	3.1 From T-semialgebras to (s, Es)-algebras
	3.2 From (s, Es)-algebras to T-semialgebras
	3.3 Joining both Constructions

	4 Examples
	5 Relation Between Semifree Monads and Other Monad Constructions
	6 Conclusion
	References

	Corecursion Up-to via Causal Transformations
	1 Introduction
	2 Preliminaries
	3 Corecursion Up-to Causal Transformations
	4 Compositionality
	5 Up-to Techniques for Coinductive Proofs
	5.1 Coinduction Up-to in a Lattice
	5.2 Background on Coinduction in a Fibrational Setting
	5.3 Causal Transformations in the Fibre

	References

	Corecursive Algebras in Nature
	1 Introduction
	2 Background
	2.1 The Contraction Mapping Theorem
	2.2 Continued Fractions
	2.3 Corecursive Algebras

	3 Summation of Geometric Series Related to Corecursive Algebra Structure
	4 Corecursive Algebras Related to Subsets of the Reals, and Associated Final Coalgebra Structures
	4.1 Verifications

	5 Using Linear Fractional Transformations
	5.1 The Algebra :NII Presented in Terms of Linear Fractional Transformations
	5.2 Contractivity Constants Associated to Matrices
	5.3 A Corecursive Algebra
	5.4 Addendum

	6 Conclusion
	References

	Stick Breaking, in Coalgebra and Probability
	1 Introduction
	2 Discrete Probability Distributions
	3 Stick Breaking
	3.1 Infinite Stick Breaking
	3.2 Finite Stick Breaking

	4 Multisets
	4.1 Binomial and Multinomial Distributions

	5 Multinomials as Iterated Binomials
	6 Dirichlet via Parallel Beta's
	7 Infinite Stick Breaking and Beta Distributions
	8 Concluding Remarks
	References

	Author Index

