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Preface

NMR is the premier forum for results in the area of non-monotonic reasoning.
Its aim is to bring together active researchers in this broad field within knowl-
edge representation and reasoning (KR), including belief revision, uncertain
reasoning, reasoning about actions, planning, logic programming, preferences,
argumentation, causality, and many other related topics including systems and
applications. NMR has a long history - it started in 1984, and has been held
every two years since then.

This volume contains the papers accepted for presentation at the 19th edition
of the workshop, held virtually on November 3–5, 2021, and collocated with the
18th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2021). There were 37 submissions, each of which has been
reviewed by two program committee members. The committee has decided
to accept 33 papers. The program also includes three invited talks by Nina
Gierasimczuk (Technical University of Denmark), Vered Shwartz (University of
British Columbia, Canada) and Tran Cao Son (New Mexico State University,
USA).
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Multiple Selective Revision

Fillipe Resina∗ , Renata Wassermann
Universidade de São Paulo
{fmresina, renata}@ime.usp.br

Abstract

One of AGM revision’s main properties is success, which
guarantees that new information is always accepted by a ra-
tional agent, even when it has to give up a reasonable belief
previously held. However, in more realistic scenarios, when
dealing with a new belief that contradicts previous ones, an
agent has the option to reject it. Selective Revision, then,
came up as a third possibility, allowing the agent to accept
only part of a new belief. Selective Revision was initially de-
fined for single sentences as inputs but, in many situations,
new pieces of information come simultaneously (a set of be-
liefs). This paper proposes a generalization of Selective Re-
vision to the multiple case for both belief sets (theories) and
belief bases. We provide constructions, postulates and repre-
sentation theorems for different classes of Multiple Selective
Revision.

1 Introduction
The belief corpus of an agent is usually not static, and, in
this context, a rational agent needs to know how to deal with
its dynamics. That is the purpose of the studies in Belief
Revision, in which the most used framework is the AGM
paradigm (Alchourrón, Gärdenfors, and Makinson 1985). A
revision occurs when an agent receives a new piece of in-
formation possibly inconsistent with its previous beliefs and
has to accommodate the new one consistently while preserv-
ing as much of the old beliefs as possible.

One of the AGM revision assumptions is that a new belief
is always accepted, a property known as success. Revision
operations of this kind are classified as prioritized revision.
However, sometimes the agent should have the option to re-
ject a piece of incoming information, either because of pos-
sible low reliability of the new belief (or of its source) or
because of strong confidence in the beliefs previously held.
That is why the field of non-prioritized revision (Hansson
1999a) started to be explored, in which the success property
is not guaranteed.

Among the different varieties of non-prioritized revision1,
Selective Revision (Fermé and Hansson 1999) came up as a
third possibility for the agent, since this operation allows it
not only to accept or reject a new belief but also to accept

∗Supported by the Brazilian funding agency CAPES
1For an overview see (Fermé and Hansson 2018, Chapter 8).

just a part of it, that is, a weakening of the input sentence
may be applied. This weakening is performed by a trans-
formation function, to which the incoming information is
submitted to perform an evaluation. Then the agent applies
a traditional (prioritized) revision of its beliefs by the out-
come of that function. The following figure summarizes the
general behaviour of selective revision:

New Beliefs

Decision Component

Accepted Beliefs

Revision Component

New Belief Set/Base

As well as AGM revision, selective revision was initially
defined for single sentences as inputs. Nevertheless, in many
situations, an agent receives not only a single new belief
but a set of them and has to make decisions in the face of
it, a problem known as Multiple Revision (Fuhrmann 1997;
Fuhrmann and Hansson 1994). Barber and Kim (2001), for
example, state that in the real world, an agent is in contact
with several information sources and deals with limited, in-
complete, unsure or even wrong knowledge. Therefore, they
developed a belief revision process2 which assesses the rep-
utation of information sources and use it to define the next
decision steps. Another example of the importance of multi-
ple contexts is explored in (Pantoja et al. 2016) and (Stabile,
Pantoja, and Sichman 2018), in which the authors analyze
the application of perception filters in agents. They con-
sider simulation systems and robotic domains and observe
that agents may be overwhelmed by unnecessary informa-
tion without any goal control, thus generating a needless in-
crease in processing time. The more sensors an agent has
(to perceive an environment), the more perceptions it has to

2The belief revision process defined by them is a numerical for-
malism, unlike AGM, which is a logical formalism.
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process, which becomes a bottleneck. Hence, using a kind
of pre-processing of the information may decrease the cost
effects of processing everything and advance an agent’s per-
formance. In order to illustrate the idea, consider the follow-
ing example.
Example 1. Imagine that three robots (including a coordi-
natorC) are in a house that needs to be cleaned up. Initially,
C knows that the bedroom is organized but full of dust, the
bathroom is flooded, the kitchen is full of food scraps, but the
living room is neat. Before starting the job, robots A and B
collected some perceptions. After some time, they jointly re-
port to C. A said that (i) the beds in the bedroom need to
be made and that (ii) there is a silver tap in the bathroom
that is open. B told that (iii) a dinosaur broke a vase in the
living room and that (iv) the kitchen is clean and organized.
Before revising its beliefs, C applies a filter, which accepts
(i) and (ii), except for the information about the tap’s mate-
rial, as there is no silver in that country. From (iii), the filter
accepts that there is a broken vase in the living room but re-
jects the dinosaur part. (iv) is fully rejected. After that, C
performs a prioritized multiple revision of its beliefs.

Selective revision was also initially defined for sets of sen-
tences closed under logical consequence, known as belief
sets or theories. Due to their usually infinite nature, they are
more suitable for idealized agents and, as a consequence,
challenging to be handled computationally. As an alterna-
tive, one can represent knowledge using belief bases - sets
of sentences not necessarily closed, an approach closer to
realistic scenarios.

This article proposes a generalization of Selective Re-
vision to the multiple change context for both belief sets
and belief bases. We provide constructions, postulates for
the operators, properties for the transformation function
and representation theorems to link everything for different
classes of Multiple Selective Revision. The model of belief
bases considered in this work is the one defined by Hans-
son (1991).

It is essential to observe that, in a multiple-revision con-
text, differently from the case of singleton inputs, the partial
acceptance characteristic of selective revision can have two
different meanings: either the simple choice of a subset of
the input set or the logical weakening of a chosen subset
(from the input). We are going to address both cases.

This paper proceeds as follows. Section 2 provides the
necessary background. Multiple Selective Revision for be-
lief sets is presented in Section 3, while for belief bases is
given in Section 4. Analysis of related work comes in Sec-
tion 5 and conclusion and future work come in Section 6.

2 Background
In this section, we briefly present the necessary background
on selective and multiple revision.

2.1 Formal Preliminaries
We will assume that a logic is a language L provided with
a consequence operator Cn. L contains all the available
sentences of the logic. Cn is a function that maps sets of
sentences to sets of sentences and that satisfies the standard

Tarskian axioms, namely iteration, inclusion and monotony,
and also compactness. For A,B ⊆ L, we say that A im-
plies B iff B ⊆ Cn(A). We will sometimes use K ` α for
α ∈ Cn(K), ` α for α ∈ Cn(∅), K 6` α for α 6∈ Cn(K)
and 6` α for α 6∈ Cn(∅). For formulas and sentences, we
will use lowercase greek letters (such as α, β). For sets of
sentences, uppercase Latin letters (such as A,B,C,K ). ⊥
is the falsity constant, and K⊥ is the inconsistent belief set.

2.2 AGM Revision
The revision of a belief set aims to absorb a new belief in that
set. In a revision mechanism, some previous beliefs may be
given up in order to achieve, as result, a consistent belief set.
The postulates below are usually known as the basic AGM
postulates for revision:

(closure) K ∗ α is a belief set
(success) K ∗ α ` α
(inclusion) K ∗ α ⊆ Cn(K ∪ {α})
(consistency) If 0 ¬α then K ∗ α 6= K⊥
(vacuity) If K 0 ¬α, then Cn(K ∪ {α}) ⊆ K ∗ α
(extensionality) If ` α↔ β, then K ∗ α = K ∗ β
The authors also provided constructions and a repre-

sentation theorem. For more details, see (Alchourrón,
Gärdenfors, and Makinson 1985).

2.3 Selective Revision
Here we present Selective Revision for singleton inputs in
its two variants: belief sets and belief bases. Both of them
were axiomatically characterized in their respective works.

Selective Theory Revision Fermé and Hansson (1999) in-
troduced a new operator named selective revision to deal
with the partial acceptance of new information.

Among the six basic AGM revision postulates, four are
also plausible for selective revision: closure, inclusion, con-
sistency and extensionality. Three new postulates were pro-
posed - two weakening versions of success and one to con-
trol minimality of change:

(proxy success) There is a sentence β, such that K ◦ α `
β, ` α→ β and K ◦ α = K ◦ β
(weak proxy success) There is a sentence β, such that
K ◦ α ` β and K ◦ α = K ◦ β
(consistent expansion) If K 6⊆ K ◦ α, then K ∪ (K ◦
α) `⊥
Selective theory revision is defined as follows:

Definition 1. (Fermé and Hansson 1999) Let K be a belief
set, ∗ a basic AGM revision operator for K and f a function
from L to L. The selective revision ◦ based on ∗ and f is the
operation such that for all sentences α: K ◦ α = K ∗ f(α).
f is called the transformation function on which ◦ is based.

Roughly speaking, a transformation function f selects the
reliable part of every sentence. A natural constraint is that
f(α) should not return more information than what is ex-
pressed in α (i.e., ` α→ f(α)). Nevertheless, it is possible
to apply a function without this constraint. Some of the pro-
posed properties for transformation functions are:
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(implication) ` α→ f(α)

(weak implication) If K 0 ¬α, then ` α→ f(α)

(idempotence) ` f(f(α))↔ f(α)

(extensionality) If ` α↔ β, then ` f(α)↔ f(β)

(consistency preservation) If 6` ¬α, then 6` ¬f(α)
(weak maximality) If K 6` ¬α, then ` f(α)↔ α

Fermé and Hansson (1999) provided representation the-
orems for three classes of selective theory revision. What
distinguishes the three classes are the properties required for
the transformation f , such as f being idempotent or being
a proper weakening in the logical sense (satisfying implica-
tion).

Selective Base Revision Resina et al. (2020) extended
selective revision to belief bases. Some postulates were
adapted from the ones for belief sets and others were newly
proposed:

(consistency) If α 6`⊥, then B ~ α 6`⊥
(vacuity) If B 6` ¬α, then B ∪ {α} ⊆ B ~ α
(proxy success) There is a sentence β, such that β ∈ B~
α, ` α→ β and B ~ α = B ~ β
(weak proxy success) There is a sentence β ∈ B~α and
B ~ α = B ~ β
(stability) If α ∈ B, then α ∈ B ~ α
(uniform success) If for all subsetsB′ ⊆ B,B′∪{α} `⊥
iff B′ ∪ {β} `⊥, then α ∈ B ~ α iff β ∈ B ~ β
(weak inclusion) If α ∈ B ~ α, then B ~ α ⊆ B ∪ {α}
(conditional uniformity) If α ∈ B~α and for all subsets
B′ of B it holds that B′ ∪ {α} `⊥ iff B′ ∪ {β} `⊥, then
B ∩ (B ~ α) = B ∩ (B ~ β)
(weak relevance) If α ∈ B ~ α, β ∈ B and β 6∈ B ~ α,
then there is some B′ such that B ~ α ⊆ B′ ⊆ B ∪
{α}, B′ 6`⊥ but B′ ∪ {β} `⊥
Differently from Definition 1, the revision operator ∗ ap-

plied in the definition was one for bases (Hansson 1999b).
New and adapted properties for f were also defined:

(idempotence) f(f(α)) = f(α)

(weak maximality) If A 6` ¬α, then f(α) = α

(lower boundary) If α ∈ A, then f(α) = α

(uniform identity) If for all A′ ⊆ A,A′ ∪ {α} `⊥ iff
A′ ∪ {β} `⊥, then f(α) = α iff f(β) = β

After the definition of two kinds of construction, four rep-
resentation theorems were obtained for two classes of selec-
tive base revision (Resina et al. 2020).

2.4 Multiple Revision
In this section, we will present two variants of multiple revi-
sion3, one for theories and one for belief bases.

3In the literature, this kind of multiple revision is also known as
package revision, in which the whole input set is incorporated.

Multiple Theory Revision Fuhrmann (1988; 1997) gen-
eralized the AGM revision operation for dealing with sets
instead of a single formula as input:
Definition 2. (Fuhrmann 1997) An operator ∗p is called a
multiple theory revision iff ∗p satisfies

(closure) K ∗p A is a belief set
(success) A ⊆ K ∗p A
(inclusion) K ∗p A ⊆ Cn(K ∪A)
(weak consistency) If A 0 ⊥ then K ∗p A 0 ⊥
(relevance) If β ∈ K but β /∈ K ∗p A, then there is some
K ′ such that (K ∗p A) ∩K ⊆ K ′ ⊆ K, K ′ ∪A 0 ⊥ but
K ′ ∪ {β} ∪A ` ⊥.
(extensionality) IfA andB are pairwise equivalent4, then
K ∗p A = K ∗p B

Observation 1. If an operator ∗p for a belief set K satisfies
success, inclusion and relevance, then it satisfies

(vacuity) If K ∪A 0 ⊥ then K ∗p A = Cn(K ∪A)
Proof. This proof can be straightforwardly adapted from the
version for sentence revision in (Hansson 1999b).

Multiple Base Revision Hansson (1993) also generalized
base revision to multiple revision of belief bases:
Definition 3. (Hansson 1993) An operator ∗p is called a
multiple base revision if and only if ∗p satisfies

(inclusion) B ∗p A ⊆ B ∪A.
(success) A ⊆ B ∗p A.
(weak consistency) If A 0 ⊥ then B ∗p A 0 ⊥.
(uniformity) If, for all subsets B′ of B, B′ ∪ A ` ⊥ iff
(B′ ∪ C) ` ⊥, then B ∩ (B ∗p A) = B ∩ (B ∗p C).
(relevance) If β ∈ B\(B∗pA) then there is a setB′ such
that B ∗pA ⊆ B′ ⊆ (B ∪A), B′ 0 ⊥ but B′ ∪{β} ` ⊥.

Fallapa et al. (2012) defined two different constructions
for multiple base revision and provided representation theo-
rems for both.

3 Multiple Selective Theory Revision
In this section, we will show how to define and axiomati-
cally characterize multiple selective revision for belief sets
(theories).

3.1 Properties
Some of the postulates for Multiple Theory Revision (Sec-
tion 2.4) remain the same: closure, inclusion, weak con-
sistency, extensionality and vacuity. However, vacuity is a
questionable postulate because, although intuitive in some
sense, the agent may decide not to accept parts of the in-
coming beliefs.

As we already discussed, due to the non-prioritized nature
of Selective Revision the success postulate is not suitable in
this context. So we generalized the two weaker versions for
success presented in (Fermé and Hansson 1999) in order to

4Two sets of sentences A and B are pairwise equivalent (mod-
ulo Cn) just in case: ∀α ∈ A : ∃β ∈ B s.t. Cn(α) = Cn(β) and
∀β ∈ B : ∃α ∈ A s.t. Cn(β) = Cn(α).

3



consider sets of sentences as input. The same was done for
consistent expansion and a weaker version of relevance.

Let K be a belief set, A and C be sets of sentences and �
be a binary selective revision operator that takes a belief set
and a set of sentences as input. We propose the following
reasonable postulates for multiple selective theory revision:

(choice success) There is a set B such that B ⊆ Cn(K�
A), B ⊆ A and K �A = K �B
(proxy success) There is a set B such that B ⊆ Cn(K �
A), B ⊆ Cn(A) and K �A = K �B
(weak proxy success) There is a set B such that B ⊆
Cn(K �A) and K �A = K �B
(stability) If A ⊆ K, then A ⊆ K �A.
(consistency) K �A 0 ⊥
(weak consistency) If A 0 ⊥ then K �A 0 ⊥
(consistent expansion) IfK * K�A thenK∪(K�A) `
⊥
(weak relevance) IfA ⊆ K�A, β ∈ K and β /∈ K�A,
then there is someK ′ such that (K�A)∩K ⊆ K ′ ⊆ K,
K ′ ∪A 0 ⊥ but K ′ ∪ {β} ∪A ` ⊥.

Choice success states that the selective revision should in-
corporate a subset of the input set. Proxy success establishes
that the selective revision should accept some of the input’s
logical consequences, while weak proxy success is a weaker
version of it. Stability brings that if the input set is already
part of the agent’s beliefs, it should be kept by the selec-
tive revision. Consistency guarantees an always consistent
result, while weak consistency demands a consistent input
for that. Consistent expansion and weak relevance express
the idea that nothing is given up from the original set unless
it leads the new belief set to consistency. Except for weak
consistency and consistent expansion (already presented in
(Krümpelmann et al. 2011)), the other postulates are new.

3.2 Constructing the Operation
Definition 4. Let K be a belief set, ∗p a multiple theory re-
vision for K and f a function from 2L to 2L. The multiple
selective theory revision �, based on ∗p and f , is the oper-
ation such that for all sets A: K �A = K ∗p f(A). f is the
transformation function on which � is based.

Selective theory revision becomes, then, a particular case
of this new operator�. One can question why a multiple re-
vision operator is needed to construct the operation, perhaps
suggesting a sequence of singleton input revisions by the
elements of f(A). Nonetheless, multiple revision is differ-
ent from iterated revision (Darwiche and Pearl 1997) as the
sequence in which you process the sentences can result in
different outcomes. Thus, we want here to treat all the sen-
tences with equal priority, processing them simultaneously.

The following is a list of properties that the transformation
function may satisfy:

(choice) f(A) ⊆ A
(implication) f(A) ⊆ Cn(A)
(weak implication) If K ∪A 0 ⊥, then f(A) ⊆ Cn(A)

(lower boundary) if A ⊆ K, then Cn(f(A)) = Cn(A)

(idempotence) Cn(f(f(A))) = Cn(f(A))

(consistency preservation) If A 0 ⊥, then f(A) 0 ⊥
(consistency) f(A) 0 ⊥
(maximality) Cn(f(A)) = Cn(A)

(weak maximality) If K ∪ A 0 ⊥, then Cn(f(A)) =
Cn(A)

(extensionality) If A and B are pairwise equivalent, then
f(A) and f(B) are pairwise equivalent.

Choice sets the transformation function to simply choose a
subset of the input set A. Implication allows the function
to choose from the logical consequences of the input, while
weak implication restricts to the the consequences of the in-
put only if the input is consistent with the previous beliefs.
Lower boundary states that if an input A is already part of
the previous beliefs, then f(A) and A have the same con-
sequences. While consistency preservation demands con-
sistency from f(A) only if A is consistent, consistency al-
ways guarantees a consistent f(A). Maximality states that
f(A) and A are logically equivalent, while weak maximality
states a precondition for that. Finally, extensionality guar-
antees a coherent behavior of f when different inputs are
pairwise equivalent. Choice, consistency preservation, con-
sistency and extensionality had already been suggested in
(Krümpelmann et al. 2011). The observation below estab-
lishes some links between the properties for f and the pos-
tulates for �:

Observation 2. Let K be a belief set in a language L, ∗p
be a multiple theory revision operator for K that satisfies
the six postulates referred in Definition 2, and f be a trans-
formation function. Let � be the multiple selective revision
function on K based on ∗p and f . Then � satisfies closure
and consistent expansion. In addition, if f satisfies:

1. weak implication then � satisfies inclusion.
2. consistency then � satisfies consistency.
3. maximality then � satisfies success.
4. implication then � satisfies weak consistency.

Proof. 1. We prove by cases: (a) If K ∪ A ` ⊥, then
Cn(K ∪A) = K⊥ and, therefore, K�A ⊆ Cn(K ∪A).
(b) If K ∪ A 0 ⊥, then K � A = K ∗p f(A) and, by
∗p-inclusion, K ∗p f(A) ⊆ Cn(K ∪ f(A)). By weak
implication we have that Cn(K ∪ f(A)) ⊆ Cn(K ∪A).
Hence, K �A ⊆ Cn(K ∪A).

2. Since f(A) 0 ⊥, by ∗p-weak consistency we have that
K ∗p f(A) 0 ⊥. Thus, K �A 0 ⊥.

3. Trivial, since by definition ∗p satisfies success and by
maximality K �A = K ∗p f(A) = K ∗p A.

4. If A 0 ⊥ then f(A) 0 ⊥ and, by ∗p-weak consistency,
K �A = K ∗p f(A) 0 ⊥.

The following representation theorems have been ob-
tained for three classes of multiple selective theory revision
functions. Once more, the differences between them lie on
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the properties of the transformation function (which directly
influences the properties of the operation.

Theorem 1. Let L be a finite language, K a belief set in
L and � an operator on K. The following conditions are
equivalent:

1. � satisfies closure, inclusion, vacuity, weak consistency,
extensionality, stability, weak relevance and weak proxy
success.

2. There exists a multiple theory revision ∗p forK that satis-
fies the six postulates referred in Definition 2, and a trans-
formation function f that satisfies extensionality, lower
boundary, consistency preservation, weak maximality and
idempotence, such that K �A = K ∗p f(A) for all A.

Proof. (1) implies (2): we first define f and ∗p:

f(A) =





A if K ∪A 0 ⊥ or A ⊆ K �A;
r(A) otherwise, where r is a (well-defined)

function from 2L to 2L such that r(A) ⊆
Cn(K �A), K �A = K � r(A) and for
all A and A′ such that K � A = K � A′,
r(A) = r(A′).

This definition is possible since � satisfies weak proxy
success.

K∗A =




K �A if A ⊆ Cn(K �A);
K ∗′p A otherwise, where ∗′p is any operation that

satisfies the six axioms from Definition 2.

We need to show that:

(a) f is a (well-defined) transformation function;
(b) f satisfies the properties;
(c) ∗ is a multiple theory revision (see Definition 2);
(d) K �A = K ∗ f(A), for all A.

The proofs are given below:

(a) To prove that f is a (well defined) function we must show
that for all A ⊆ L there exists A′ ⊆ L such that f(A) =
A′ and that, if A1 = A2, then f(A1) = f(A2).
Let A ⊆ L. If K ∪ A 0 ⊥ or A ⊆ K � A, then f(A) =
A. Otherwise, f(A) = r(A) = A′, for some A′ such
that A′ ⊆ K � A = K � A′. Such A′ exists since �
satisfies weak proxy success and closure. Assume now
that A1 = A2. If K ∪ A1 0 ⊥, then K ∪ A2 0 ⊥, or
if A1 ⊆ K � A1, then A2 ⊆ K � A2. Thus, in both
cases f(A1) = A1 = A2 = f(A2). If K ∪ A1 ` ⊥ and
A1 * K � A1, then K ∪ A2 ` ⊥ and A2 * K � A2.
Thus, f(A1) = r(A1) and f(A2) = r(A2). r is a (well-
defined) function. Hence, from A1 = A2 it follows that
r(A1) = r(A2). Therefore, f(A1) = f(A2).

(b) That f satisfies weak maximality follows from the defini-
tion of f . To show that f satisfies consistency preserva-
tion, let A 0 ⊥; if K ∪ A 0 ⊥ or A ⊆ K � A, then
f(A) = A and f(A) 0 ⊥; otherwise, then f(A) = r(A)
and r(A) ⊆ Cn(K �A); since A 0 ⊥, by �-consistency

K � A 0 ⊥, which implies that r(A) 0 ⊥ and, finally,
that f(A) 0 ⊥. To show that f satisfies extensionality
suppose that A and B are pairwise equivalent belief sets;
if K ∪ A 0 ⊥ then K ∪ B 0 ⊥, or if A ⊆ K � A then
B ⊆ K�B and in both cases we have that f(A) = A and
f(B) = B; hence, f(A) and f(B) are pairwise equiva-
lent. If K ∪ A ` ⊥ and A * K � A, then f(A) = r(A),
K ∪ B ` ⊥ and B * K � B. Then f(B) = r(B). By
�-extensionality, K � A = K � B and from the defini-
tion of r it follows that r(A) = r(B). Therefore, f(A)
and f(B) are pairwise equivalent. To show that f satisfies
lower boundary, assume that A ⊆ K. From �-stability
it follows that A ⊆ K � A and, by the definition of f ,
f(A) = A. Finally, we show that f satisfies idempotence.
If K ∪A 0 ⊥ or A ⊆ K �A then, from the definition of
f , f(f(A)) = f(A) follows directly. Otherwise, f(A) =
r(A) and, by the definition of r, r(A) ⊆ K�r(A). From
the definition of f , since r(A) ⊆ K � r(A), we have that
f(r(A)) = r(A) and, given that f(A) = r(A), we have
that f(f(A)) = f(r(A) = r(A) = f(A).

(c) In order to show that ∗ is a multiple theory revision, we
need to prove that it satisfies the six axioms from Defini-
tion 2. That ∗ satisfies closure, inclusion, extensionality
and weak consistency is trivial, since both � and ∗′ sat-
isfy these four postulates. That ∗ satisfies success also
follows directly from the definition. In order to show that
∗ satisfies relevance, if A * Cn(K � A), we are done
(given that ∗′p satisfies relevance). If A ⊆ Cn(K � A),
then K ∗ A = K � A. Suppose that ∃β ∈ K such that
β /∈ K � A. By �-vacuity, K ∪ A ` ⊥. By �-weak
relevance, ∃K ′ such that (K � A) ∩ K ⊆ K ′ ⊆ K,
K ′ ∪ A 0 ⊥ and K ′ ∪ {β} ∪ A ` ⊥. Therefore, as
K ∗A = K �A, we can conclude that relevance is satis-
fied.

(d) We need to prove that K �A = K ∗ f(A). If K ∪A 0 ⊥
or A ⊆ K � A, f(A) = A and K � f(A) = K � A. In
the case of K ∪ A 0 ⊥, by �-vacuity it follows that A ⊆
K�A and, then, f(A) ⊆ K�f(A). By the definition of
∗, K ∗ f(A) = K � f(A). Hence, K ∗ f(A) = K � A.
If K ∪ A ` ⊥ and A * K � A then it follows from
the definitions of f and r that f(A) ⊆ Cn(K � A) and
K � A = K � f(A), from which follows that f(A) ⊆
Cn(K � f(A)). Then, from the definition of ∗ it follows
that K ∗ f(A) = K � f(A) = K �A.

(2) implies (1): That � satisfies closure is trivial since by
Definition 2 ∗p satisfies closure.

In order to prove extensionality, let A and B be pairwise
equivalent. Then, by f -extensionality, f(A) and f(B) are
pairwise equivalent and, by ∗p-extensionality, K ∗p f(A) =
K ∗p f(B) or, equivalently, K �A = K �B.

In order to prove inclusion, weak maximality implies
weak implication; then, inclusion follows from item 1 of
Observation 2.

For vacuity, suppose that K ∪ A 0 ⊥. Then, by f -weak
maximality, Cn(f(A)) = Cn(A). Since K � A = K ∗p
f(A), by ∗p-success f(A) ⊆ K ∗p f(A) and, by ∗p-closure,
Cn(f(A)) ⊆ K ∗p f(A). Since Cn(f(A)) = Cn(A), we
also have that Cn(A) ⊆ K ∗p f(A). From K ∪ A 0 ⊥ and

5



Cn(f(A)) = Cn(A), we have that K ∪ f(A) 0 ⊥. Thus,
by ∗p-vacuity, K ∗p f(A) = Cn(K∪f(A)) = Cn(K∪A).
Therefore, K �A = Cn(K ∪A).

For weak consistency, let A 0 ⊥. Then, by consistency
preservation we have that f(A) 0 ⊥ and, by ∗p-weak con-
sistency, we have that K ∗p f(A) 0 ⊥. Thus, K �A 0 ⊥.

In order to prove weak proxy success, we have that by
Definition 4 and idempotence, K�A = K ∗p f(A) = K ∗p
f(f(A)) = K�f(A). We therefore have f(A) ⊆ Cn(K∗p
f(A)),K�A = K�f(A) and f(A) ⊆ Cn(K�A), which
is sufficient to prove that � satisfies weak proxy success.

For stability, let A ⊆ K. Then, since f satisfies lower
boundary we have that Cn(f(A)) = Cn(A). Since K �
A = K ∗p f(A), by ∗p-extensionality K ∗p f(A) = K ∗pA.
Hence K � A = K ∗p A. From ∗p-success it follows that
A ⊆ K ∗p A = K �A.

It only remains to prove that � satisfies weak relevance.
Suppose thatA ⊆ K�A and ∃β ∈ K such that β /∈ K�A.
As K � A = K ∗p f(A), we have that β /∈ K ∗p f(A). By
∗p-relevance, ∃K ′ such that (K ∗p f(A)) ∩ K ⊆ K ′ ⊆
K, K ′ ∪ f(A) 0 ⊥ but K ′ ∪ {β} ∪ f(A) ` ⊥. Since
K � A = K ∗p f(A), (K � A) ∩ K ⊆ K ′ ⊆ K. So, it
remains to prove that K ′ ∪A 0 ⊥. Given that A ⊆ K �A,
then A ⊆ K ∗p f(A) and, by ∗p-inclusion we have three
possibilities. If A ⊆ K, by f -lower boundary we have that
Cn(f(A)) = Cn(A), and also if A ⊆ f(A). If ((K �
A) ∩K) ∩A 6= ∅ 6= A ∩ f(A), we can conclude that, since
(K�A)∩K ⊆ K ′, A ⊆ K ′∪ f(A). Therefore, K ′ is such
that K ′ ∪ A 0 ⊥ but K ′ ∪ {β} ∪ A ` ⊥. Thus, �-weak
relevance is satisfied.

Theorem 2. Let L be a finite language, K a belief set in L
and � an operator on K. Then the following conditions are
equivalent:

1. � satisfies closure, inclusion, vacuity, weak consistency,
extensionality, stability, weak relevance and proxy suc-
cess.

2. There exists a multiple theory revision ∗p forK that satis-
fies the six postulates from Definition 2, and a transforma-
tion function f that satisfies extensionality, lower bound-
ary, consistency preservation, weak maximality, idempo-
tence and implication, such that K �A = K ∗p f(A) for
all A.

Proof. This proof is quite similar to that of Theorem 1. To
show that (1) implies (2), we define f to be a function like
that of the previous proof but with an additional restriction
whenK∪A ` ⊥ andA * K�A: f(A) ⊆ Cn(A). The ex-
istence of such a function follows from proxy success. The
proofs for f are essentially the same, and the implication
property follows trivially. To show that (2) implies (1) we
only have to add a proof for proxy success, which we obtain
from Theorem 1 and f -implication.

Theorem 3. Let L be a finite language, K a belief set in L
and � an operator on K. Then the following conditions are
equivalent:

1. � satisfies closure, weak inclusion, vacuity, weak consis-
tency, extensionality, stability, weak relevance and choice
success.

2. There exists a multiple theory revision ∗p forK that satis-
fies the six postulates from Definition 2, and a transforma-
tion function f that satisfies extensionality, lower bound-
ary, consistency preservation, weak maximality, idempo-
tence and choice, such that K � A = K ∗p f(A) for all
A.

Proof. This proof is quite similar to that of Theorem 1. To
show that (1) implies (2), we define f to be a function like
that of the previous proof but with an additional restriction
when K ∪ A ` ⊥ and A * K � A: f(A) ⊆ A. The
existence of such a function follows from choice success.
The proofs for f are essentially the same, and the choice
property follows trivially. To show that (2) implies (1) we
only have to add a proof of choice success, which we obtain
from Theorem 1 and f -choice.

Theorem 1 embraces very general operations which do
not demand f(A) to be derived from A. Theorem 2 looks
at the operations in which f(A) does not return more infor-
mation than what is expressed in A. Finally, Theorem 3,
although more restrictive, represents the most intuitive pro-
cedure when f(A) selects a subset of A.

4 Multiple Selective Base Revision
As an alternative to the previous section’s approach, we now
show how to define and characterize axiomatically multiple
selective revision for belief bases.

4.1 Postulates
In comparison to what was defined for belief sets, we have
the exclusion of the closure postulate, an exchange of exten-
sionality for uniformity, adaptations in inclusion and vacuity
(removing the logical closure) and new versions for the suc-
cess and inclusion postulates (due to the context of belief
bases). From Multiple Base Revision (Section 2.4), inclu-
sion, vacuity 1 and weak consistency remain the same.

Let B be a belief set, A and C be sets of sentences and
� be a binary selective revision operator. We bring the fol-
lowing reasonable postulates for multiple selective base re-
vision:

(choice success) There is a set C such that C ⊆ B � A,
C ⊆ A and B �A = B � C.

(proxy success) There is a set C such that C ⊆ B � A,
C ⊆ Cn(A) and B �A = B � C.

(weak proxy success) There is a set C such that C ⊆
B �A and B �A = B � C.

(conditional success) IfA\B ⊆ B�A, thenA ⊆ B�A.

(uniform success) If for all subsets B′ ⊆ B,B′ ∪A ` ⊥
iff B′ ∪ C ` ⊥, then A ⊆ B �A iff C ⊆ B � C.

(weak inclusion) B �A ⊆ B ∪ Cn(A)
(very weak inclusion) B �A ⊆ Cn(B ∪A)
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(conditional inclusion) If A ⊆ B � A, then B � A ⊆
B ∪A.

(vacuity 2) If B ∪A 0 ⊥, then B �A = B ∪A
(consistency) B �A 0 ⊥
(weak relevance) If A ⊆ B �A, β ∈ B and β 6∈ B �A,
then there is some B′ such that B � A ⊆ B′ ⊆ B ∪
A,B′ 0 ⊥ but B′ ∪ {β} `⊥.

(conditional uniformity) If A ⊆ B � A and for all sub-
sets B′ of B it holds that B′ ∪ A ` ⊥ iff B′ ∪ C ` ⊥,
then B ∩ (B �A) = B ∩ (B � C).
The last two postulates are weakened by establishing the

precondition A ⊆ B �A.
Conditional success guarantees that if the difference be-

tweenA andB is part of the final result, then so is the whole
A, which means that ifA\B is accepted the intersection be-
tween them will not be rejected. Uniform success says that if
two sets are inconsistent with exactly the same subsets ofB,
then one of them should be absorbed in the selective revision
by it iff the same happens to the other one. Weak inclusion
shows that the selective revision of B by A is contained in
the union ofB and the logical consequences ofA, while very
weak inclusion says that it is contained in the logical conse-
quences of the union of B and A. Conditional inclusion is
a weakening of the traditional inclusion postulate for multi-
ple by preconditioning A in the final result. For conditional
uniformity, if A is in the outcome and two consistent sets
are inconsistent with the same subsets of the original base,
then the respective retained sentences of B should be identi-
cal. The other postulates’ intuition is the same for Multiple
Selective Theory Revision (Section 3.1).

Still about the rationale of inclusion, weak inclusion and
very weak inclusion, it is possible to associate them to some
of the success postulates. Inclusion makes sense when an
agent simply chooses a subset of the input set, which links it
to choice success. Weak inclusion represents the possibility
for an agent to weaken a subset of the input, which links
it to proxy success. Finally, very weak inclusion is related
to a very general context in which the decision of the agent
in relation to the input set is not restricted to the set itself,
which links the postulate to weak proxy success.

Except for the new postulates choice success, conditional
success, weak inclusion and very weak inclusion, the other
ones are straightforward generalizations of postulates for Se-
lective Base Revision (Resina et al. 2020).

4.2 Constructing the Operation
Definition 5. Let B be a belief base, ∗p be multiple base re-
vision forB and f be a function from 2L to 2L. The multiple
selective base revision �, based on ∗p and f , is the opera-
tion such that for all sets A: B � A = B ∗p f(A). f is the
transformation function on which � is based.

Similarly to the previous section, selective base revision
becomes a particular case of this new operator �.

From Multiple Selective Theory Revision, some poten-
tial properties for f remain the same: choice, implication,
weak implication, consistency and consistency preservation.

Some others needed to be adapted for belief bases. Exten-
sionality was substituted by another with similar intuition.

(maximality) f(A) = A

(weak maximality) If B ∪A 0 ⊥, then f(A) = A

(conditional maximality) ifA\B ⊆ f(A), then f(A) =
A

(idempotence) f(f(A)) = f(A)

(uniform identity) if for all B′ ⊆ B,B′ ∪ A ` ⊥ iff
B′ ∪ C ` ⊥, then f(A) = A iff f(C) = C.

Uniform identity is a version of uniformity for f . Con-
ditional maximality states that if the difference between A
and B is chosen by the transformation function, then actu-
ally the function chose the whole A. Maximality and weak
maximality were suggested in (Krümpelmann et al. 2011).

Observation 3. LetB be a belief base, ∗p be a multiple base
revision operator onB that satisfies the postulates described
in Definition 3 and f be a transformation function. Let� be
the multiple selective base revision operator on B based on
∗p and f . Then if f satisfies:

1. weak implication, then � satisfies very weak inclusion.
2. consistency preservation then � satisfies weak consis-

tency.
3. implication, then � satisfies weak inclusion and weak

consistency.
4. choice, then � satisfies inclusion.
5. weak maximality, then� satisfies very weak inclusion and

vacuity 2.

Proof. 1. We prove by cases: (a) IfB∪A ` ⊥, thenCn(B∪
A) = K⊥ and, therefore, B � A ⊆ Cn(B ∪ A). (b) If
B ∪ A 0 ⊥, then B � A = B ∗p f(A), B ∗p f(A) ⊆
B ∪ f(A) (∗p-inclusion), B ∪ f(A) ⊆ B ∪Cn(A) (weak
implication). Hence, B �A ⊆ Cn(B ∪A).

2. Let A 0 ⊥. Then, by f -consistency preservation, f(A) 0
⊥ and, by ∗p-weak consistency, B ∗p f(A) 0 ⊥. There-
fore, B �A 0 ⊥ and weak consistency is satisfied.

3. We have that B � A = B ∗p f(A); then by ∗p-inclusion
B ∗p f(A) ⊆ B ∪ f(A) and, since f satisfies implication,
B∗pf(A) ⊆ B∪Cn(A). Thus,B�A ⊆ B∪Cn(A) and
weak inclusion is satisfied. That � satisfies weak consis-
tency follows from item 2, since implication implies con-
sistency preservation.

4. We have that B � A = B ∗p f(A); then by ∗p-inclusion
B ∗p f(A) ⊆ B ∪ f(A) and, since f satisfies choice,
B ∗p f(A) ⊆ B∪A. Thus, B�A ⊆ B∪A and inclusion
is satisfied.

5. Weak maximality implies weak implication; then, very
weak inclusion follows from item 1. For vacuity, suppose
that B ∪ A 0 ⊥. Then, by weak maximality, A = f(A)
so that B � A = B ∗p A and, by ∗p-vacuity, B � A =
B ∗p A = B ∪A.

The observation below clarifies an important property:
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Observation 4. LetB be a belief base, ∗p be a multiple base
revision operator on B that satisfies ∗-inclusion and f be a
transformation function. Let� be the multiple selective base
revision operator on B based on ∗p and f . If A ⊆ B � A
and f satisfies conditional maximality, then f(A) = A.

Proof. Assume thatA ⊆ B�A. SinceB�A = B∗pf(A),
we have that A ⊆ B ∗p f(A) and, by ∗-inclusion, A ⊆
B ∪ f(A). Then we have three possibilities: (i) A ⊆ B,
which implies that A \ B = ∅ ⊆ f(A). (ii) A ⊆ f(A),
which also implies that A \B ⊆ f(A). (iii) A∩B 6= ∅ and
A \ B ⊆ f(A). By f -conditional maximality, in all of the
three cases we have that f(A) = A.

The following representation theorems have been ob-
tained for three classes of multiple selective base revision
functions.

Theorem 4. Let B be a belief base in L and � be an oper-
ator on B. Then the following conditions are equivalent:

1. � satisfies conditional inclusion, weak consistency, con-
ditional uniformity, weak proxy success, conditional suc-
cess, uniform success and weak relevance.

2. There exists a multiple base revision ∗p forB and a trans-
formation function f that satisfies conditional maximality,
consistency preservation, idempotence, choice, uniform
identity and such that B � A = B ∗p f(A), for every
A.

Proof. (1) implies (2): we first define f and ∗:

f(A) =





A if A ⊆ B �A;
r(A) otherwise, where r is a (well defined)

function from 2L to 2L such that r(A) ⊆
B �A and B �A = B � r(A).

This definition is possible since � satisfies weak proxy
success.

B∗A =




B �A A ⊆ B �A;
B ∗′ A otherwise, where ∗′ is any operation that

satisfies the five axioms from Definition 3
.

We need to show that:

(a) f is a (well-defined) transformation function;
(b) f satisfies the properties;
(c) ∗ is a multiple base revision, according to Definition 3;
(d) B �A = B ∗ f(A), for all A.

The proofs are given below:

(a) To prove that f is a (well defined) function we must show
that for all A ⊆ L there exists A′ ⊆ L such that f(A) =
A′ and that, if A1 = A2, then f(A1) = f(A2).
Let A ⊆ L. If A ⊆ B � A, then f(A) = A. Otherwise,
f(A) = r(A) = A′, for some A′ such that A′ ⊆ B �
A = B �A′. Such A′ exists since � satisfies weak proxy
success. Assume now that A1 = A2. If A1 ⊆ B � A1,
then by �-uniform success it follows that A2 ⊆ B � A2.

Thus f(A1) = A1 = A2 = f(A2). IfA1 * B�A1, then
A2 * B�A2. Thus f(A1) = r(A1) and f(A2) = r(A2).
r is a (well-defined) function. Thus, from A1 = A2 it
follows that r(A1) = r(A2). Therefore, f(A1) = f(A2).

(b) To show that f satisfies conditional maximality, assume
that A \ B ⊆ f(A). From the definition of f we have
that f(A) ⊆ B �A, which implies that A \B ⊆ B �A.
Then, by � conditional success, A ⊆ B � A and, from
the definition of f , we have that f(A) = A.
We will now show that f satisfies consistency preserva-
tion. Assume thatA 0 ⊥. IfA ⊆ B�A, then f(A) = A,
from which it follows that f(A) 0 ⊥. IfA * B�A, then
from the definition of f it follows that f(A) ⊆ B � A.
By � weak consistency it follows that B � A 0 ⊥ and,
hence, f(A) 0 ⊥.
To show that f satisfies idempotence, we prove by cases:
(1) A ⊆ B �A. Thus f(A) = A and f(f(A)) = f(A).
(2) A * B � A. Thus f(A) = r(A) and
r(A) ⊆ B � r(A). Hence, from the definition of f
it follows that f(r(A)) = r(A). From the latter and
f(A) = r(A) it follows that f(f(A)) = f(A).
We will now show that f satisfies uniform identity.
Assume that it holds for all subsets B′ ⊆ B,B′ ∪ A ` ⊥
iff B′ ∪ C ` ⊥. Let f(A) = A. From the definition
of f it holds that f(A) ⊆ B � A. Thus A ⊆ B � A.
By � uniform success it follows that C ⊆ B � C, from
which follows that f(C) = C. By symmetry of the case
it follows that if f(C) = C, then f(A) = A. Hence it
holds that f(A) = A iff f(C) = C.

(c) That ∗ satisfies success follows trivially from definition of
∗. That ∗ satisfies weak consistency and inclusion follows
from the fact that both � and ∗′ satisfy weak consistency
and inclusion.
Relevance follows from the definition of ∗, � weak rele-
vance and ∗′ relevance.
In order to show that ∗ satisfies uniformity, assume that it
holds for all subsets B′ ⊆ B,B′∪A ` ⊥ iff B′∪C ` ⊥.
By � uniform success it follows that A ⊆ B � A iff
C ⊆ B � C. We prove by cases:
(1) A ⊆ B � A. Then C ⊆ B � C and, hence, B ∗ A =
B � A and B ∗ C = B � C, from which it follows by �
conditional uniformity that B ∩ (B ∗A) = B ∩ (B ∗ C).
(2) A * B�A. Then C * B�C. Thus B ∗A = B ∗′A
and B ∗ C = B ∗′ C. Hence by ∗′ uniformity it follows
that B ∩ (B ∗A) = B ∩ (B ∗ C).

(d) We will now prove that B �A = B ∗ f(A).
case 1)A ⊆ B�A. Hence f(A) = A andB∗A = B�A.
Thus B ∗ f(A) = B �A.
case 2) A * B � A. From the definition of f it holds
that B � A = B � f(A) and f(A) ⊆ B � A. Hence
f(A) ⊆ B � f(A). Thus, from the definition of * it
follows thatB ∗f(A) = B�f(A), from which it follows
that B �A = B ∗ f(A).

(2) implies (1): For conditional success, let A \B ⊆ B �
A. Since B�A = B ∗p f(A), by ∗p-inclusion we have that
A\B ⊆ B∪f(A), which implies thatA\B ⊆ f(A). From
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f -conditional maximality we have that f(A) = A and, by
∗p-success, it follows that A ⊆ B ∗A. Thus A ⊆ B �A.

In order to prove conditional inclusion, let A ⊆ B � A.
Since f satisfies conditional maximality, from Observation
4 we have that f(A) = A and, since B � A = B ∗p f(A),
by ∗-inclusion we have that B �A ⊆ B ∪A.

For weak relevance, let A ⊆ B � A and suppose that
there is some β ∈ B such that β /∈ B � A. Since B � A =
B ∗p f(A), we have that β ∈ B \ (B ∗p f(A)) and, by ∗p-
relevance, there is a set B′ such that B ∗p f(A) ⊆ B′ ⊆
B∪f(A), B′ 0 ⊥ but B′∪{β} ` ⊥. So it remains to prove
that B′ ⊆ B∪A. Since from A ⊆ B�A and f -conditional
maximality we have from Observation 3 that f(A) = A, it
follows directly.

Weak consistency follows from item 2 of Observation 3.
For uniform success, consider that it holds for all subsets

B′ of B that B′ ∪ A ` ⊥ iff B′ ∪ C ` ⊥. Hence, since
f satisfies uniform identity, f(A) = A holds iff f(C) =
C holds. Assume that A ⊆ B � A. From f -conditional
maximality and Observation 4 we have that f(A) = A. On
the other hand, by f -uniform identity it follows that f(C) =
C. From the definition of� it holds thatB�C = B∗pf(C).
By ∗p-success it follows that C = f(C) ⊆ B � C. Thus
C ⊆ B � C. By symmetry of the case it holds that if C ⊆
B � C, then A ⊆ B � A. Hence it holds that A ⊆ B � A
iff C ⊆ B � C.

In order to show that � satisfies conditional uniformity,
consider that it holds for all subsetsB′ ofB thatB′∪A ` ⊥
iff B′ ∪ C ` ⊥. Let A ⊆ B � A. From f -conditional
maximality and Observation 4 we have that f(A) = A and
from f -uniform identity it follows that f(C) = C. By ∗p-
uniformity it follows that B ∩ (B ∗p A) = B ∩ (B ∗p C).
Thus B ∩ (B �A) = B ∩ (B ∗p f(A)) = B ∩ (B ∗p A) =
B ∩ (B ∗p C) = B ∩ (B ∗p f(C)) = B ∩ (B � C).

To conclude, the proxy success and choice success ver-
sions:

Theorem 5. Let B be a belief base in L and � be an oper-
ator on B. Then the following conditions are equivalent:

1. � satisfies conditional inclusion, weak consistency, con-
ditional uniformity, proxy success, conditional success,
uniform success and weak relevance.

2. There exists a multiple base revision ∗p forB and a trans-
formation function f that satisfies conditional maximality,
consistency preservation, idempotence, implication, uni-
form identity and such thatB�A = B ∗p f(A), for every
A.

Proof. This proof is quite similar to that of Theorem 6. To
show that (1) implies (2), we define f to be a function like
that of the previous proof but with an additional restriction
for r: r(A) ⊆ Cn(A). The existence of such a function
follows from proxy success. The proofs for f are essentially
the same, and the implication property follows trivially. To
show that (2) implies (1) we only have to add a proof of
proxy success, which we obtain from Observation 3.

Theorem 6. Let B be a belief base in L and � be an oper-
ator on B. Then the following conditions are equivalent:

1. � satisfies inclusion, weak consistency, conditional uni-
formity, choice success, conditional success, uniform suc-
cess and weak relevance.

2. There exists a multiple base revision ∗p forB and a trans-
formation function f that satisfies conditional maximality,
consistency preservation, idempotence, choice, uniform
identity and such that B � A = B ∗p f(A), for every
A.

Proof. This proof is quite similar to that of Theorem 4. To
show that (1) implies (2), we define f to be a function like
that of the previous proof but with an additional restriction
for r: r(A) ⊆ A. The existence of such a function follows
from choice success. The proofs for f are essentially the
same, and the choice property follows trivially. To show that
(2) implies (1) we only have to add proofs for inclusion and
choice success, which we obtain from item 4 of Observation
3 and from Theorem 4 and f -choice.

The intuition behind these theorems is pretty much the
same for theories. Theorem 4 allows very general operations
which do not demand f(A) to be derived from A. Theorem
5 refers to the operations in which f(A) is limited to A and
its logical consequences. Finally, Theorem 6 represents the
most restrictive ones since f(A) is limited to the subsets of
A.

Example 2. (Example 1 revisited) Consider a representa-
tion in propositional logic for C’s beliefs: the bedroom is
organized (p) but full of dust (q), the bathroom is flooded
(r), the kitchen is full of food scraps (s), and the living room
is neat (t). In addition, a clean kitchen (z) is not consistent
with food scraps (s→ ¬z), and a broken object in the living
room (x) makes it not neat (x → ¬t). The other robots tell
that the beds need to be made (¬p), there is a silver tap in
the bathroom (v) that is open (u, thus u ∧ v), there is a bro-
ken vase in the living room (x) because of a dinosaur that
has entered there (d, thus d∧x) and the kitchen is clean (z).

Here, we are going to adapt the filter f in order to return
only subsets of input. Then a possible filter is f({¬p, u ∧
v, d∧x, z}) = {¬p, u∧v}. After that, a prioritized revision
is applied: {p, q, r, s, t, s → ¬z, x → ¬t} ∗p {¬p, u, x}. A
possible final result could be {¬p, q, r, u∧v, s, s→ ¬z, x→
¬t, }

5 Related Work
There is broad literature about non-prioritized revision op-
erations for singleton inputs. Screened Revision (Makinson
1997) explores the context in which an agent, in addition to
its set of beliefs K, makes use of a set of core beliefs A that
cannot be retracted. Then, an input sentence is accepted for
revision only if it is consistent with K ∩A. In a slightly dif-
ferent approach, Credibility-limited Revision (Hansson et al.
2001) considers that there is a set C of credible sentences
and an input sentence α is accepted for revision only if
α ∈ C. Still, on the use of core beliefs but in a multiple
context, Evaluative Multiple Revision (Yuan, Ju, and Wen
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2014) works with belief states formed by a belief base B
and a subset A of it that is immune to revision. An input set
is submitted to a pre-processing that classifies its sentences
in two disjoint sets of plausible or implausible information
(consistent or not with A), and both sets are considered in
the revision process sinceB can be initially inconsistent. All
implausible information has to be given up. Besides work-
ing with multiple revision, our approach does not assume
that there is a core or a set of credible sentences and permits
partial acceptance (including weakening), which makes the
transformation function more general.

In (Krümpelmann et al. 2011) the authors proposed a con-
crete implementation of a transformation function using De-
ductive Argumentation (Besnard and Hunter 2001) as the
tool to evaluate the desirability of new information for a
belief base. To allow a new belief to contain arguments,
they worked with a multiple version of Selective Revision
for bases. However, they explored a smaller set of proper-
ties, not working with different success/inclusion cases or
relevance, for example. Also, the input sets considered in
this paper do not originate from argumentation, and we also
brought a generalization for theories.

6 Conclusion and Future Work
In this paper, we presented a thorough study of Multiple Se-
lective Revision - revision operators that may reject part of
the input set. Based on existing definitions and characteri-
zations of both Multiple and Selective Revision, we studied
the generalization of partial acceptance via Selective Revi-
sion to make it possible to deal with sets of sentences as
input (instead of a single one).

Multiple Selective Revision can be constructed by means
of applying a transformation function to the input and then
performing a multiple revision by the transformed input.

We have provided lists of plausible postulates for the op-
erations and also for the transformation functions, and re-
lations between them were observed. Constructions were
defined, and representation theorems showed the connection
between the postulates and the constructions. The general-
ization was proposed for both beliefs sets and belief bases.

Future work includes exploring more postulates (such as
the supplementary AGM ones), more constructions for mul-
tiple selective revision and the analysis of other possible sce-
narios (for example, when the input is inconsistent but has a
consistent subset).
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Abstract

We present a brief survey of representation theorems in
belief revision which capture different notions of ordered
structures; in particular total preorders, partial orders, and
semiorders. Although most of the results are known (Kat-
suno and Mendelzon 1991, Benferhat et al 2005, Peppas and
Williams 2014), we give a new and compact presentation,
their proofs and a synthetic view of the postulates’ landscape
which allows defining belief change operators in correspon-
dence with every kind of structure mentioned previously.

1 Introduction
Belief revision aims at understanding how to integrate a
new piece of information in a corpus of beliefs obeying
certain principles. The main problem comes from the
fact that the new piece of information can be in conflict
with the current beliefs. The logical model of belief
revision(Alchourrón, Gärdenfors, and Makinson 1985;
Gärdenfors 1988) has given a satisfactory answer to this
problem. It has been deeply studied in the last forty years.

Representation theorems have been an interesting and
important tool in this study because they give a constructive
and practical view of revision operators. They give a clear
materialization of the idea that beliefs are organized in
concentric spheres: as the beliefs are more entrenched, the
concentric sphere which contains them is smaller. This
materialization becomes clear in terms of ordered structures
over the interpretations.

In this work, we present a survey of some representation
theorems. One interesting feature of this survey is to have
a more global vision of them. In particular, they give
information about the behavior of operators via the links
between certain sets of postulates and their relationships
with the semantics structures representing them.

We use here the Katsuno-Mendelzon approach (Katsuno
and Mendelzon 1991) in which all data is of the same type:
logical formulas. In particular, the epistemic state of an
agent is represented by a formula, the new piece of informa-
tion and the resulting epistemic state after incorporating the
new piece of information is also represented by a formula.

Let us recall the general form of a representation theorem:

An operator satisfies a special set of postulates of ratio-
nality iff there is a special function mapping epistemic
states ϕ in a ordered structure ≺ϕ over interpretations
such that the models of the resulting state of revising ϕ
by α are the models of the new information αwhich are
minimal elements (the most preferred) in the ordered
structure ≺ϕ associated to the old epistemic state.

Here the words ordered structure refer to binary relations
which can have some properties of “orderings” in a very
general way and not necessarily in the strict notion of order
in mathematics.

Our main contribution consits in giving an complete
account of representation theorems for the most natural
ordered structures: total preorders, semiorders, partial or-
ders and some special types of partial orders and semiorders.

We organize this work in four sections following this brief
introduction. Section 2 is devoted to the logical notions and
the ordered structures. Section 3 is devoted to postulates
and the assignments. In Section 4 we state the representa-
tion theorems. Finally, in the Appendix we give the proofs.
We consider this Appendix containing all the proofs as a
contribution of the work because they show in extenso the
techniques allowing to make the links between syntactical
properties and structural properties.

2 Preliminaries
2.1 Some logical notation
We denote by L the set of formulas of a propositional lan-
guage built over a finite set of propositional variables P plus
the constants > and ⊥with the usual meaning of true and
false. The elements of L are denoted by lower case Greek
letters α, β, γ, ϕ . . . (possibly with subscripts). The set of
valuation functions (interpretations) from the set of propo-
sitional variables into the boolean set {0, 1} (false, true) is
denoted Ω. As usual, we write ω |= α when a valuation
ω ∈ Ω satisfies a formula α, i.e. when ω is a model of α.
The set of models of a formula α is denoted by [[α]]. If M
is a set of models we denote by αM a formula such that
[[αM ]] = M . When the size of M is small we often omit the
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ω2

ω4

ω1

ω3

ω1 ≺ ω3

ω2 ≺ ω4

Figure 1: An example of partial order

braces, by writing, e.g., αωω′ instead of α{ω,ω′}. The set of
consistent formulas will be denoted L∗.

2.2 Structures
In this subsection we present the different types of ordered
structures that will be used in this work. Actually, our or-
dered structures are binary relations over a finite set. We
suppose that the finite set is Ω and the relations will be de-
noted by the symbol ≺ with subscript when necessary. The
choice of this notation is due to the fact that our relations will
be asymmetric, in particular irreflexive. We call this kind of
relations strict ordered structures.

A binary relation ≺ over Ω is irreflexive when ω ⊀ ω for
every ω ∈ Ω. The relation ≺ is transitive when for every
triple ω1, ω2, ω3 ∈ Ω, if ω1 ≺ ω2 and ω2 ≺ ω3 then ω1 ≺
ω3. The relation ≺ is asymmetric when for every couple
ω1, ω2 ∈ Ω, if ω1 ≺ ω2 then ω2 ⊀ ω1. When M ⊆ Ω,
the minimal elements of M with respect to the relation ≺,
denoted by min(M,≺) is the set defined by

min(M,≺) = {ω ∈M : 6 ∃ω′ ∈M,ω′ ≺ ω}
We denote min(Ω,≺) by min(≺).

The most general class of structures we consider is the
class of partial orders:

Definition 1. Let ≺ be a binary relation over Ω. The rela-
tion ≺ is a partial order if it is irreflexive and transitive.

It is easy to see that a partial order is asymmetric and
acyclic (there are no cycles). Moreover, the set min(≺) is
always nonempty.

Definition 2. Let ≺ be a partial order over Ω. The relation
≺ is a min-partial order if for every ω ∈ min(≺) and every
ω′ 6∈ min(≺) we have ω ≺ ω′.

Figures 1 and 2 illustrate a partial order and a min-partial
order respectively. Note that the partial order of Figure 1 is
not a min-partial order.

Let≺ be a partial order over Ω. We define the indifference
relation ∼ over Ω associated to ≺ by putting ω ∼ ω′ iff
ω ⊀ ω′ and ω′ ⊀ ω.

Another interesting subclass of partial orders is that of the
ranking orders defined as follows:

Definition 3. Let ≺ be a partial order over Ω. The relation
≺ is a ranking order if for every ω1, ω2, ω3 ∈ Ω if ω1 ∼ ω2

and ω1 ≺ ω3 then ω2 ≺ ω3.

It is well known that if ≺ is a ranking order then the re-
lation � defined by ω � ω′ iff ω ≺ ω′ or ω ∼ ω′ is a total
preorder, that is, a transitive relation which is total, i.e., all

ω3

ω1

ω2

ω4
ω1 ≺ ω2

ω1 ≺ ω3

ω2 ≺ ω4

ω1 ≺ ω4

Figure 2: An example of a min-partial order

its elements are comparable under�; in particular the reflex-
ivity is satisfied for total preorders. Moreover, it is also well
known that ≺ is a ranking order iff there exists a ranking
function r : Ω −→ R such that

ω ≺ ω′ ⇔ r(ω) < r(ω′)

Because of this property, we will call these relations ranking
orders.

We are going to consider also a class of partial orders
which can be defined via ranking functions in a special way
as we will see later.
Definition 4. Let ≺ be a binary relation over Ω. The rela-
tion ≺ is a semiorder if for every ω1, ω2, ω3, ω4 ∈ Ω

(SO1) ω1 6≺ ω1

(SO2) If ω1 ≺ ω2 ≺ ω3 and ω′ ∈ V al, then ω1 ≺ ω′ or
ω′ ≺ ω3

(SO3) If ω1 ≺ ω2 and ω3 ≺ ω4, then ω1 ≺ ω4 or ω3 ≺ ω2

Indeed, it is not hard to see that a semiorder is a par-
tial order, i.e., the transitivity is satisfied. Moreover, it is
well known (Pirlot and Vincke 1997) that the relation ≺ is a
semiorder iff there exist a ranking function r : Ω −→ R and
a real q > 0 such that

ω ≺ ω′ ⇔ (r(ω′)− r(ω)) > q

It is interesting to note that every ranking order is also a
semiorder. The converse, of course, is not true. Moreover,
the indifference relation ∼ associated to a semiorder is not,
in general, transitive.

Finally, we consider the following subclass of semiorders:
Definition 5. Let ≺ be a semiorder over Ω. The relation
≺ is a min-semiorder if for every ω ∈ min(≺) and every
ω′ 6∈ min(≺) we have ω ≺ ω′.

Figures 3 and 4 illustrate a semiorder and a min-semiorder
respectively. Note that the semiorder in Figure 3 is not a
min-semiorder. Figure 5 summarizes the inclusion relations
between the ordered classes introduced so far.

3 Postulates and assignments
All operators ◦ considered in this work are functions of the
following type

◦ : L∗ × L −→ L
As usual ◦(ϕ, α) is denoted by ϕ ◦ α.
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Figure 4: A min-semiorder with its ranking function and q = 1
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min-partial orders semiorders

partial orders

Figure 5: The landscape of structured orders

3.1 Postulates and classes of operators
(R1) ϕ ◦ α ` α
(R2) If ϕ ∧ α 0 ⊥ then ϕ ◦ α ≡ ϕ ∧ α
(R2’) ϕ ◦ > ≡ ϕ
(R3) If α 0 ⊥ then ϕ ◦ α 0 ⊥
(R4) If ϕ1 ≡ ϕ2 and α1 ≡ α2 then ϕ1 ◦ α1 ≡ ϕ2 ◦ α2

(R5) (ϕ ◦ α) ∧ β ` ϕ ◦ (α ∧ β)

(R6) If (ϕ ◦ α) ∧ β 0 ⊥ then ϕ ◦ (α ∧ β) ` (ϕ ◦ α) ∧ β
(R7) If (ϕ ◦ α) ` β and ϕ ◦ β ` α then ϕ ◦ α ≡ ϕ ◦ β
(R8) (ϕ ◦ α) ∧ (ϕ ◦ β) ` ϕ ◦ (α ∨ β)

(R9) If (ϕ ◦ α) ∧ β 6` ϕ ◦ β then (ϕ ◦ β) ∧ α ` ϕ ◦ α
(R10) If (ϕ ◦ α) ∧ β ` ⊥ and (ϕ ◦ α) ∧ γ 6` ⊥ then

(ϕ ◦ γ) ∧ (α ∧ β) ` ϕ ◦ (α ∧ β)

Postulates R1-R6 encode in the finite case the postu-
lates AGM of belief revision (Alchourrón, Gärdenfors, and
Makinson 1985). They were introduced in (Katsuno and
Mendelzon 1991). Postulates R7 and R8 were also intro-
duced in (Katsuno and Mendelzon 1991). Postulates R9 and
R10 were introduced by (Peppas and Williams 2014). Pos-
tulate R2’ was introduced by (Benferhat, Lagrue, and Papini
2005). It is a weakening of postulate R2.

Definition 6. An operator ◦ is called a revision operator iff
it satisfies the postulates R1-R6.

Postulates R1-R5 plus R7 and R8 together give a special
kind of operators introduced by (Katsuno and Mendelzon
1991).

Definition 7. An operator ◦ is called a partial KM (p-KM
for short) revision operator iff it satisfies the postulates R1-
R5 plus R7 and R8.

As we will see this class of operators is more general than
the class of revision operators. Even a more general class
of operators, introduced by (Benferhat, Lagrue, and Papini
2005), is obtained when we replace in the previous set of
postulates, the postulate R2 by R2’.

Definition 8. An operator ◦ is called a partial (p for short)
revision operator iff it satisfies the postulates R1, R2’, R3-R5
plus R7 and R8.

Another combination of postulates give us an interest-
ing class of operators introduced by (Peppas and Williams
2014).

Definition 9. An operator ◦ is called a semiorder PW (so-
PW for short) revision operator iff it satisfies the postulates
R1-R5 plus R8-R10.

A more general class is obtained by replacing R2 by R2’
in the previous set of postulates.

Definition 10. An operator ◦ is called a semiorder (so for
short) revision operator iff it satisfies the postulates R1, R2’,
R3-R5 plus R8-R10.
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3.2 Assignments
The assignments we are considering are functions from L∗
into a set of structured relations having always a set of min-
imal elements. They map a consistent formula ϕ into an
ordered relation ≺ϕ with the following two properties:

1. If ϕ ≡ ϕ′ then ≺ϕ=≺ϕ′ .
2. min(≺ϕ) = [[ϕ]].

Now we proceed to do a classification of different classes
of assignments following the type of the ordered relation≺ϕ
associated to ϕ.
Definition 11. Let ϕ 7→≺ϕ be an assignment. This assign-
ment is said to be

1. a faithful assignment iff for every ϕ, the relation ≺ϕ is a
ranking order;

2. a p-KM-faithful assignment iff for every ϕ, the relation
≺ϕ is a min-partial order;

3. a p-faithful assignment iff for every ϕ, the relation ≺ϕ is
a partial order;

4. a so-PW-faithful assignment iff for every ϕ, the relation
≺ϕ is a min-semiorder;

5. a so-faithful assignment iff for every ϕ, the relation ≺ϕ is
a semiorder.

4 Representation
In this section we give the main representation theorem. The
proofs are in Appendix A.

4.1 The classical representation theorem
Theorem 1. The operator ◦ is a revision operator if and
only if there exists a unique faithful assignmentϕ 7→≺ϕ such
that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

4.2 Representation for a kind of partial structures
Theorem 2 (Katsuno and Mendelzon, 91). The operator ◦ is
a p-KM-revision operator if and only if there exists a unique
p-KM-faithful assignment ϕ 7→≺ϕ such that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

4.3 Representation for general partial structures
The following theorem is implicit in (Benferhat, Lagrue, and
Papini 2005). However, in that work, the proof is not given.
Theorem 3. The operator ◦ is a p-revision operator if and
only if there exists a unique p-faithful assignment ϕ 7→≺ϕ
such that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

4.4 Representation for a kind of semiorders
The following theorem is essentially due to (Peppas and
Williams 2014). However, in that work, the formulation is
different.
Theorem 4. The operator ◦ is a so-PW-revision operator if
and only if there exists a unique so-PW-faithful assignment
ϕ 7→≺ϕ such that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

Operators Postulates Structure of the assignment
Revision R1-R6 Ranking orders

R1-R5
p-KM-revision R7-R8 min-partial orders

R1,R2’
p-revision R3-R5 partial orders

R7-R8
R1-R5

so-PW-revision R8-R10 min-semiorders
R1,R2’

so-revision R3-R5 semiorders
R8-R10

Table 1: Summary of representation theorems

Revision operators

so-PW-revision operators

p-KM-revision operators so-revision operators

p-revision operators

Figure 6: The hierarchy of operators

4.5 Representation for general semiorders
Finally, we obtain a slightly more general representation the-
orem.

Theorem 5. The operator ◦ is a so-revision operator if and
only if there exists a unique so-faithful assignment ϕ 7→≺ϕ
such that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

Table 1 summarizes the results of this section.

5 Conclusion
We conclude this work with a corollary of the representation
theorems presented here. It can be summarized in the graph
representing the inclusion given in Figure 6.

An important consequence of the graph in Figure 6 is that
the set of postulates characterizing a vertex v in the graph
entails every postulate of a class accessible from this ver-
tex v.

Some other remarks to conclude: first, the statement of
Theorem 3 is an adaptation to propositional framework of a
similar Theorem in (Benferhat, Lagrue, and Papini 2005) in
the framework of complex epistemic states. To our knowl-
edge, the proof given in this work of this result is the first
in the literature. Second, Theorem 4 is an adaptation to
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propositional framework of a similar Theorem by (Peppas
and Williams 2014) in the framework of theories as epis-
temic states. Third, Theorem 5 is new.

Theorems 1 and 5 show different ways of organizing the
information when we have a ranking function.
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A Proofs
We state two new postulates introduced by (Katsuno and
Mendelzon 1991) and a lemma which is a key tool in the
proof of Theorem 2.
(R6w) If (ϕ ◦ α) ` β then ϕ ◦ (α ∧ β) ` (ϕ ◦ α) ∧ β
(Rt) If ϕ◦(α∨β)≡α and ϕ◦(β∨γ)≡β then ϕ◦(α∨γ)≡α
Lemma 1 (Katsuno and Mendelzon, 91). If ◦ satisfies R1,
R4 and R5, then R7, R6w and Rt are equivalent.

Proof.
R7 ⇒ R6w. Assume ϕ ◦ α ` β. By R1 ϕ ◦ α ` α, thus
ϕ ◦ α ` α ∧ β. Again, by R1, ϕ ◦ (α ∧ β) ` α ∧ β, then
ϕ ◦ (α ∧ β) ` α. From ϕ ◦ α ` α ∧ β, ϕ ◦ (α ∧ β) ` α
and the assumption we have ϕ ◦ α ≡ ϕ ◦ (α ∧ β), thus
ϕ ◦ (α∧ β) ` ϕ ◦ α (*). Note that, ϕ ◦ (α∧ β) ` α∧ β and
α ∧ β ` β, therefore ϕ ◦ (α ∧ β) ` β (**). Then, from (*)
and (**) we have ϕ ◦ (α ∧ β) ` (ϕ ◦ α) ∧ β.
R6w⇒ Rt. Assume that ϕ◦(α∨β) ≡ α and ϕ◦(β∨γ) ≡ β.
We want to show that ϕ ◦ (α ∨ γ) ≡ α.
Claim 1: ϕ ◦ (α ∨ β ∨ γ) ` α.
By R5 [ϕ ◦ (α ∨ β ∨ γ)] ∧ [α ∨ β] ` ϕ ◦ (α ∨ β). Since, by
assumption, ϕ ◦ (α ∨ β) ` α, we have [ϕ ◦ (α ∨ β ∨ γ)] ∧
[α ∨ β] ` α. Then, by deduction rule, ϕ ◦ (α ∨ β ∨ γ) `
(α ∨ β) → α. But (α ∨ β) → α ≡ ¬β ∨ α, therefore
ϕ ◦ (α ∨ β ∨ γ) ` ¬β ∨ α (*). In an analogous way, we
get ϕ ◦ (α ∨ β ∨ γ) ` ¬γ ∨ β (**). From R1 we have
ϕ◦(α∨β∨γ) ` α∨β∨γ (***). Then, by (*), (**) and (***),
we obtain ϕ◦(α∨β∨γ) ` (¬β∨α)∧(¬γ∨β)∧(α∨β∨γ)
but (¬β ∨ α) ∧ (¬γ ∨ β) ∧ (α ∨ β ∨ γ) ` α, therefore
ϕ ◦ (α ∨ β ∨ γ) ` α.
Claim 2: ϕ ◦ (α ∨ β ∨ γ) ≡ ϕ ◦ (α ∨ γ).
By Claim 1, ϕ◦(α∨β∨γ) ` α, then ϕ◦(α∨β∨γ) ` α∨γ
(*). From R6w and (*) we have ϕ◦((α∨β∨γ)∧(α∨γ)) `
(ϕ◦(α∨β∨γ))∧(α∨γ) and from R4ϕ◦(α∨γ) ` ϕ◦(α∨β∨
γ). Note that, by R5 (ϕ◦(α∨β∨γ))∧(α∨γ)) ` ϕ◦(α∨γ)
and, since ϕ◦ (α∨β∨γ) ` α∨γ, we have ϕ◦ (α∨β∨γ) `
ϕ ◦ (α ∨ γ). Therefore ϕ ◦ (α ∨ β ∨ γ) ≡ ϕ ◦ (α ∨ γ).
Claim 3: ϕ ◦ (α ∨ β ∨ γ) ≡ ϕ ◦ (α ∨ β).
The proof of this Claim is completely analogous to the proof
of Claim 2.
Finally, by the assumption and Claims 2 and 3, we obtain
ϕ ◦ (α ∨ γ) ≡ α.
Rt ⇒ R7. Assume ϕ ◦ α ` β and ϕ ◦ β ` α. We want to
show ϕ ◦ α ≡ ϕ ◦ β.
Claim 4: ϕ ◦ [(ϕ ◦ α) ∨ (ϕ ◦ β)] ≡ (ϕ ◦ α) ∨ (ϕ ◦ β)
By R1 ϕ ◦ α ` α. By assumption we have ϕ ◦ β ` α,

therefore (ϕ ◦ α ∨ ϕ ◦ β) ` α. By R5, (ϕ ◦ α) ∧ [(ϕ ◦ α) ∨
(ϕ ◦ β)] ` ϕ ◦ (α ∧ [(ϕ ◦ α) ∨ (ϕ ◦ β)]). Thus, using R4,
ϕ ◦ α ` ϕ ◦ [(ϕ ◦ α) ∨ (ϕ ◦ β)] (*). In a similar way, we
get ϕ ◦ β ` ϕ ◦ [(ϕ ◦ α)∨ (ϕ ◦ β)] (**). Then, from (*) and
(**) we get (ϕ ◦ α) ∨ (ϕ ◦ β) ` ϕ ◦ [(ϕ ◦ α) ∨ (ϕ ◦ β)] By
R1 ϕ ◦ ((ϕ ◦ α) ∨ (ϕ ◦ β)) ` (ϕ ◦ α) ∨ (ϕ ◦ β). Therefore
ϕ ◦ (ϕ ◦ α ∨ ϕ ◦ β) ≡ (ϕ ◦ α) ∨ (ϕ ◦ β). Thus, the proof of
Claim 4 is complete.

Now we put A = (ϕ ◦ α) ∨ (ϕ ◦ β), B = ϕ ◦ α and
C = α ∧ ¬(ϕ ◦ α). Note that from R4 and Claim 4, we
get ϕ ◦ (A ∨ B) ≡ ϕ ◦ A and ϕ ◦ A ≡ A; from R4 we get
ϕ ◦ (B ∨ C) ≡ B. Then, by R4 and Rt, ϕ ◦ (A ∨ C) ≡ A.

Since ϕ◦β ` α and α∧¬(ϕ◦α) ` α, we have (α∧¬(ϕ◦
α))∨ (ϕ◦β) ` α. Therefore, A∨C ≡ α and, by R4 and the
fact that ϕ ◦ (A∨C) ≡ A, we get ϕ ◦α ≡ ϕ ◦α∨ϕ ◦β (•).
In a similar way, putting A = (ϕ ◦ α) ∨ (ϕ ◦ β), B = ϕ ◦ β
and C = β ∧ ¬(ϕ ◦ β), we obtain ϕ ◦ β ≡ ϕ ◦ α ∨ ϕ ◦ β
(••). Then, by (•) and (••), we have ϕ ◦ α ≡ ϕ ◦ β.

We continue by stating a proposition which summarizes
the properties of operators which are representable by as-
signments.

Proposition 1. Assume that ◦ is an operator and ϕ 7→≺ϕ is
an assignment such that the following representation equa-
tion holds

[[ϕ ◦ α]] = min([[α]],≺ϕ)

Then

1. If the assignment is p-faithful (i.e. ≺ϕ is a partial order)
then ◦ satisfies R1, R2’ R3, R4 and R5, R7 and R8.

2. If the assignment is so-faithful (i.e. ≺ϕ is a semiorder)
then then ◦ satisfies also R9 and R10.

3. If the assignment is p-KM-faithful (i.e.≺ϕ is a min-partial
order) then ◦ satisfies also R2.

4. If the assignment is faithful (i.e. ≺ϕ is a ranking order)
then ◦ satisfies also R6.

Proof. Point 1. In this case ≺ϕ is a partial order. R1 fol-
lows straightforwardly from the equation of representation.
To see that R2’ is true, it is enough to note that, by def-
inition of assignment, min(≺ϕ) = [[ϕ]], i.e. by the rep-
resentation equation [[ϕ ◦ >]] = [[ϕ]]. R3 follows from
the fact that if M 6= ∅ then min(M,≺ϕ) 6= ∅. R4
follows straightforwardly from the equation of representa-
tion and the fact that ϕ 7→≺ϕ is an assignment. R5 fol-
lows from the following fact which is very easy to check:
min(M,≺ϕ) ∩ N ⊆ min(M ∩ N,≺ϕ). In order to prove
R7, assume that (ϕ ◦ α) ` β and ϕ ◦ β ` α. We want to
show that ϕ ◦ α ≡ ϕ ◦ β. Put A = [[α]] and B = [[β]]. If
ω ∈ min(A,≺ϕ), then by the assumptions, ω ∈ [[B]]. To-
wards a contradiction, suppose that ω /∈ min(B,≺ϕ), then
there exists ω′ ∈ min(B,≺ϕ) such that ω′ ≺ϕ ω; but by
assumption ω′ ∈ A, thus we have a contradiction with the
fact that ω ∈ min(A,≺ϕ). Therefore ω ∈ min(B,≺ϕ)
and then [[ϕ ◦ α]] ⊆ [[ϕ ◦ β]]. In a similar way, we obtain
[[ϕ ◦ β]] ⊆ [[ϕ ◦ α]].
Now we want to prove R8, i.e. (ϕ◦α∧ϕ◦β) ` ϕ◦(α∨β). Put
A = [[α]] andB = [[β]]. If ω ∈ min(A,≺ϕ)∩min(B,≺ϕ),
then ω ∈ A ∩ B, i.e. ω ∈ A and ω ∈ B. If ω /∈
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min(A ∪ B), there exists ω′ ∈ min(A ∪ B) such that
ω′ ≺ϕ ω. Since ω′ ∈ A ∪ B, either ω′ ∈ A, contradict-
ing the fact ω ∈ min(A,≺ϕ) or ω′ ∈ B, contradicting the
fact ω ∈ min(B,≺ϕ). Therefore, ω ∈ min(A ∪B,≺ϕ).

Point 2. In this case ≺ϕ is a semiorder. In order to prove
R9, we assume (ϕ ◦ α) ∧ β 6` ϕ ◦ β and we want to see
that (ϕ ◦ β) ∧ α ` ϕ ◦ α holds. Take ω ∈ [[ϕ ◦ β]] ∩ [[α]].
By assumption, there exists ω′ ∈ [[ϕ ◦ α]] ∩ [[β]] such that
ω′ 6∈ [[ϕ ◦ β]]. Then there exists ω′′ ∈ [[ϕ ◦ β]] such
that ω′′ ≺ϕ ω′ (*). Towards a contradiction, suppose
ω 6∈ [[ϕ ◦ α]]. Then there exists ω′′′ ∈ [[ϕ ◦ α]] such that
ω′′′ ≺ϕ ω′′ (**). From (*) and (**), by SO3 we have either
ω′′′ ≺ϕ ω′ or ω′′′ ≺ϕ ω′. The first option contradicts the
fact that ω′ ∈ min([[α]],≺ϕ); the second option contradicts
the fact that ω ∈ min([[β]],≺ϕ).
In order to prove R10, we assume (ϕ ◦ α) ∧ β ` ⊥ and
(ϕ ◦ α) ∧ γ 6` ⊥. We want to show that (ϕ ◦ γ) ∧ (α ∧ β) `
ϕ ◦ (α ∧ β) holds. Take ω ∈ [[ϕ ◦ γ]] ∩ [[α]] ∩ [[β]]. Towards
a contradiction, suppose ω 6∈ [[ϕ ◦ (α ∧ β)]], then there ex-
ists ω′ ∈ [[ϕ ◦ (α ∧ β)]] such that ω′ ≺ϕ ω. By assumption,
[[ϕ ◦ α]]∩ [[β]] = ∅, then ω′ 6∈ [[ϕ ◦ α]], therefore there exists
ω′′ ∈ [[ϕ ◦ α]] such that ω′′ ≺ϕ ω′.
By the assumption [[ϕ ◦ α]] ∩ [[γ]] 6= ∅, there exists ω′′′ ∈
[[ϕ ◦ α]] ∩ [[γ]]. Since ω′′ ≺ϕ ω′ ≺ϕ ω, by S02, either
ω′′ ≺ϕ ω′′′ or ω′′′ ≺ϕ ω. In the first case we have a
contradiction with the fact that ω′′′ ∈ min([[α]],≺ϕ); in
the second case we have a contradiction with the fact that
ω ∈ min([[γ]],≺ϕ).

Point 3. In this case ≺ϕ is a min-partial order. We want
to prove R2. Thus, assume ϕ ∧ α 0 ⊥. We want to show
that ϕ ◦ α ≡ ϕ ∧ α holds. First we prove that [[ϕ ∧ α]] ⊆
[[ϕ ◦ α]]). Take ω ∈ [[ϕ ∧ α]], then ω ∈ [[ϕ]] ∩ [[α]]. Since
≺ϕ is a min-partial order and [[ϕ]] = min(≺ϕ), we have
ω ∈ min([[α]],≺ϕ), i.e. ω ∈ [[ϕ ◦ α]].
Now we prove that [[ϕ ◦ α]] ⊆ [[ϕ ∧ α]]). Take ω ∈ [[ϕ ◦ α]]
and towards a contradiction suppose ω /∈ [[ϕ ∧ α]]. By the
representation equation, ω ∈ [[α]], thus ω /∈ [[ϕ]]. From
the assumption ϕ ∧ α 0 ⊥, there exists ω′ ∈ [[ϕ ∧ α]],
that is ω′ ∈ [[ϕ]] ∩ [[α]]. Since ≺ϕ is a min-partial or-
der and [[ϕ]] = min(≺ϕ), we have ω′ ≺ϕ ω, therefore
ω /∈ min([[α]],≺ϕ), a contradiction.

Point 4. In this case ≺ϕ is a ranking order. In order to prove
R6, assume that (ϕ ◦ α) ∧ β 0 ⊥. We want to show that
ϕ ◦ (α ∧ β) ` (ϕ ◦ α) ∧ β holds. Take ω ∈ [[ϕ ◦ (α ∧ β)]].
Towards a contradiction, suppose that ω 6∈ [[ϕ ◦ α]] ∩ [[β]].
By the assumption and the representation equation ω ∈
[[β]], thus, necessarily ω 6∈ [[ϕ ◦ α]]. Therefore there ex-
ists ω′ ∈ min([[α]],≺ϕ) such that ω′ ≺ϕ ω. Note that
by assumption there exists ω′′ ∈ [[ϕ ◦ α]] ∩ [[β]]. Neces-
sarily ω′′ 6= ω′; if not, ω′′ ≺ϕ ω, contradicting the fact
that ω ∈ min([[α ∧ β]],≺ϕ). Thus, ω′′ ∼ ω′ because
ω′′, ω′ ∈ min([[α]],≺ϕ). Therefore, since ≺ϕ is a ranking
order and the fact that ω′ ≺ϕ ω, we have ω′′ ≺ϕ ω contra-
dicting again the fact that ω ∈ min([[α ∧ β]],≺ϕ).

Proposition 2. Assume that ◦ is an operator and ϕ 7→≺ϕ is
an assignment such that the following representation equa-

tion holds
[[ϕ ◦ α]] = min([[α]],≺ϕ)

Then this assigment is unique with this property.

Proof. Towards a contradiction, suppose there are two as-
signments ϕ 7→≺ϕ and ϕ 7→≺′ϕ satisfying the representa-
tion equation. Then, there exists ϕ such that ≺ϕ 6=≺′ϕ and
two interpretations ω, ω′ such that (without loss of general-
ity) ω ≺′ϕ ω′ and either ω′ ≺ϕ ω or ω′ ∼ ω. In the first
case we have [[ϕ ◦ αωω′ ]] = min([[αωω′ ]],≺ϕ) = {ω} and
[[ϕ ◦ αωω′ ]] = min([[αωω′ ]],≺′ϕ) = {ω′} a contradiction.
In the second case we have [[ϕ ◦ αωω′ ]] = min([[αωω′ ]],≺ϕ
) = {ω} and [[ϕ ◦ αωω′ ]] = min([[αωω′ ]],≺′ϕ) = {ω, ω′}
also a contradiction.

Theorem 1 (Katsuno and Mendelzon, 91). The operator ◦
is a revision operator if and only if there exists a unique
faithful assignment ϕ 7→≺ϕ such that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

Proof. (If part.) We assume that there exists a faithful as-
signment ϕ 7→≺ϕ such that the representation equation is
satisfied. Since ranking orders are a particular case of par-
tial orders by point 1 of Proposition 1, postulates R1, R3-R5
are satisfied. Moreover, ranking orders are special cases of
min-partial orders, thus again, by Proposition 1 (point 3),
postulate R2 is satisfied. Finally, by Proposition 1 (point 4),
postulate R6 is satisfied.
(Only if part.) We assume that ◦ is a revision operator. Thus,
postulates R1-R6 are satisfied. Define the map ϕ 7→≺ϕ by
putting

ω ≺ϕ ω′ ⇔ ω ∈ [[ϕ ◦ αω,ω′ ]] and ω′ 6∈ [[ϕ ◦ αω,ω′ ]]

We are going to prove that this map is a faithful assignment
for which the representation equation is satisfied. Once these
facts are established, the uniqueness of the assignment fol-
lows by Proposition 2.
By R4, it is clear that if ϕ ≡ ϕ′ then ≺ϕ=≺′ϕ.
By R2, if ω ∈ [[ϕ]] and ω′ 6∈ [[ϕ]], we have [[ϕ ◦ αωω′ ]] =
[[ϕ]] ∩ [[αωω′ ]] = {ω}, thus ω ≺ϕ ω′. If ω, ω′ ∈ [[ϕ]], by
R2 we have [[ϕ ◦ αωω′ ]] = [[ϕ]] ∩ [[αωω′ ]] = {ω, ω′}, thus
ω ∼ ω′. From these two facts we get that [[ϕ]] = min(≺ϕ).
Therefore this map is an assignment.
Now we are going to prove that ≺ϕ is a ranking order, i.e. a
partial order such that for every ω1, ω2, ω3 ∈ Ω if ω1 ∼ ω2

and ω1 ≺ ω3 then ω2 ≺ ω3. We begin by noting that the
irreflexivity of ≺ϕ follows straightforwardly from its defini-
tion. Now, we turn to prove the transitivity of ≺ϕ. First we
prove that R6w holds. Assume that ϕ ◦ α ` β. We want
to prove that ϕ ◦ (α ∧ β) ` (ϕ ◦ α) ∧ β. If ϕ ◦ α ` ⊥,
then, by R3, α ` ⊥. Therefore (α ∧ β) ` ⊥. Then, by R1,
ϕ ◦ (α ∧ β) ` ⊥. Therefore, ϕ ◦ (α ∧ β) ` (ϕ ◦ α) ∧ β.
If ϕ ◦ α 6` ⊥, then, by the assumption, (ϕ ◦ α) ∧ β 6` ⊥.
Then, by R6, we have ϕ ◦ (α ∧ β) ` (ϕ ◦ α) ∧ β. Thus,
we have proved that R6w is satisfied and by Lemma 1 we
have Rt. Now suppose that ω1 ≺ϕ ω2 ≺ϕ ω3, that is
[[ϕ ◦ αω1ω2

]] = {ω1}, [[ϕ ◦ αω2ω3
]] = {ω2}. Thus by R4

we have ϕ◦ (αω1
∨αω2

) = αω1
and ϕ◦ (αω2

∨αω3
) = αω2

.
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Then, by Rt, we have ϕ ◦ (αω1 ∨αω3) = αω1 . From this we
obtain easily, ω1 ≺ϕ ω3.
We prove now that [[ϕ ◦ α]] = min([[α]],≺ϕ). First we
prove the inclusion
([[ϕ ◦ α]] ⊆ min([[α]],≺ϕ)). Take ω ∈ [[ϕ ◦ α]] and, to-
wards a contradiction, suppose ω /∈ min([[α]],≺ϕ). By R1,
ω ∈ [[α]], thus, there exists ω′ ∈ [[α]] such that ω′ ≺ϕ ω.
Thus, {ω′} = [[ϕ ◦ αω,ω′ ]]. But α ∧ αω,ω′ ≡ αω,ω′ , then,
by R5, we have (ϕ ◦ α) ∧ αω,ω′ ` ϕ ◦ (α ∧ αω,ω′). By R4,
we get [[ϕ ◦ α]] ∩ {ω, ω′} ⊆ {ω′} therefore ω /∈ [[ϕ ◦ α]], a
contradiction.
(min([[α]],≺ϕ) ⊆ [[ϕ ◦ α]]). Take ω ∈ min([[α]],≺ϕ) and,
towards a contradiction, suppose ω /∈ [[ϕ ◦ α]]. By R3, there
exists ω′ ∈ [[ϕ ◦ α]]. Note that (ϕ ◦α)∧αω,ω′ is consistent,
thus, by R5, R6 and R4, we have (ϕ◦α)∧αω,ω′ ≡ ϕ◦αω,ω′ .
Then, [[ϕ ◦ αω,ω′ ]] = {ω′}. Therefore ω′ ≺ϕ ω, a contra-
diction.
Now we are going to prove that the property characteriz-
ing ranking orders holds. Thus, assume ω1 ∼ ω2 and
ω1 ≺ϕ ω3. We want to show that ω2 ≺ϕ ω3. Towards a
contradiction, suppose that it is not the case that ω2 ≺ϕ ω3.
Then, by R1 and R3, we have two possibilities: either
[[ϕ ◦ αω2ω3 ]] = {ω3} or [[ϕ ◦ αω2ω3 ]] = {ω2, ω3}. In the
first case, we obtain ω3 ≺ϕ ω2. From this, by the assump-
tion and transitivity, we get ω1 ≺ϕ ω2, a contradiction. In
the second case we obtain ω2 ∼ ω3. Then, by the assump-
tions min({ω1, ω2, ω3},≺ϕ) = {ω1, ω2}. By the represen-
tation equation and R4, we have [[ϕ ◦ αω1ω2ω3

]] = {ω1, ω2}.
Thus, (ϕ ◦ αω1ω2ω3

) ∧ αω2ω3
is consistent. By R5, R6 and

R4 we have (ϕ ◦ αω1ω2ω3
) ∧ αω2ω3

≡ ϕ ◦ αω2ω3
. Thus,

[[ϕ ◦ αω2ω3
]] = {ω2}, contradicting our supposition that

[[ϕ ◦ αω2ω3 ]] = {ω2, ω3}.
Theorem 2 (Katsuno and Mendelzon, 91). The operator ◦ is
a p-KM-revision operator if and only if there exists a unique
p-KM-faithful assignment ϕ 7→≺ϕ such that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

Proof. (If part). Note that a p-KM-faithful assignment is in
particular a p-faithful assignment. Then by Proposition 1,
Point 1, R1, R3-R5 and R7 and R8 hold. By Proposition 1,
Point 3, the postulate R2 holds. Then, ◦ is a p-KM-revision
operator.
(Only if part). We assume that ◦ is a p-KM-revision opera-
tor, i.e. R1-R5, R7 and R8 hold. We define the map ϕ 7→≺ϕ
by putting

ω ≺ϕ ω′ ⇔
{

ω ∈ [[ϕ]] and ω′ 6∈ [[ϕ]] or

ω ∈ [[ϕ ◦ αω,ω′ ]] and ω′ 6∈ [[ϕ ◦ αω,ω′ ]]

We are going to prove that this map is a p-KM-faithful as-
signment for which the representation equation is satisfied.
Once these facts are established, the uniqueness of the as-
signment follows from Proposition 2.
By R4, it is clear that if ϕ ≡ ϕ′ then ≺ϕ=≺′ϕ.
By R2, if ω ∈ [[ϕ]] and ω′ 6∈ [[ϕ]], we have [[ϕ ◦ αωω′ ]] =
[[ϕ]] ∩ [[αωω′ ]] = {ω}, thus ω ≺ϕ ω′. If ω, ω′ ∈ [[ϕ]], by
R2 we have [[ϕ ◦ αωω′ ]] = [[ϕ]] ∩ [[αωω′ ]] = {ω, ω′}, thus
ω ∼ ω′. From these two facts we get that [[ϕ]] = min(≺ϕ).

Therefore this map is an assignment.
We have to show that ≺ϕ is a min-partial order and the rep-
resentation equation. First we see that ≺ϕ is a partial order.
Irreflexivity: Straightforward by definition of ≺ϕ.
Transitivity: By Lemma 1, Rt holds. Then we apply exactly
the same argument to prove the transitivity in Theorem 1.
Now, we know that ≺ϕ is a partial order. By definition and
the fact that [[ϕ]] = min(≺ϕ), it is clear that ≺ϕ is a min-
partial order.
We are going to show the representation equation [[ϕ ◦ α]] =
min([[α]],≺ϕ). We begin by proving the inclusion
([[ϕ ◦ α]] ⊆ min([[α]],≺ϕ)).
Take ω ∈ [[ϕ ◦ α]] and, towards a contradiction suppose
ω /∈ min([[α]],≺ϕ). By R1, ω ∈ [[α]], thus, there exists ω′ ∈
[[α]] such that ω′ ≺ϕ ω. Thus, {ω′} = [[ϕ ◦ αω,ω′ ]]. But
α ∧ αω,ω′ ≡ αω,ω′ , then, by R5, we have (ϕ ◦ α) ∧ αω,ω′ `
ϕ ◦ (α ∧ αω,ω′). By R4, we get [[ϕ ◦ α]] ∩ {ω, ω′} ⊆ {ω′}
therefore ω /∈ [[ϕ ◦ α]], a contradiction.
(min([[α]],≺ϕ) ⊆ [[ϕ ◦ α]]).
Take ω ∈ min([[α]],≺ϕ). Let [[α]] = {ω1, · · ·ωk}.
Note that α ≡ (αω,ω1 ∨ αω,ω2 ∨ · · · ∨ αω,ωk

) (*). Take
ωj ∈ [[α]], by R1 [[ϕ ◦ αω,ωj ]] ⊆ {ω, ωj}. Since ω is mini-
mal in [[α]] we have ωj 6≺ϕ ω. Thus, [[ϕ ◦ αω,ωj ]] 6= {ωj}.
Therefore ω ∈ [[ϕ ◦ αω,ωj

]] for every ωj ∈ [[α]]. Then,
ω ∈ [[(ϕ ◦ αω,ω1

) ∧ · · · ∧ (ϕ ◦ αω,ωk
)]].

Thus, by an application of R8 k − 1 times, we get ω ∈
[[ϕ ◦ ((αω,ω1

) ∨ · · · ∨ (αω,ωk
))]] (**). Then, from (*), (**)

and R4, we obtain ω ∈ [[ϕ ◦ α]].

Theorem 3. The operator ◦ is a p-revision operator if and
only if there exists a unique p-faithful assignment ϕ 7→≺ϕ
such that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

Proof. (If part). By Proposition 1 (Point 1), R1,R2’, R3-R5,
R7 and R8 hold. Then, ◦ is a p-revision operator.

(Only if part). Assume that ◦ is a p-revision operator,
i.e. R1, R2’, R3-R5, R7 and R8 hold . We define the map
ϕ 7→≺ϕ by putting

ω ≺ϕ ω′ ⇔ ω ∈ [[ϕ ◦ αω,ω′ ]] and ω′ 6∈ [[ϕ ◦ αω,ω′ ]]

We are going to prove that this map is a p-faithful assign-
ment for which the representation equation is satisfied. Once
these facts established, the uniqueness of the assignment fol-
lows from Proposition 2.
By R4, it is clear that if ϕ ≡ ϕ′ then ≺ϕ=≺′ϕ.
Let us see that [[ϕ]] = min(≺ϕ).
([[ϕ]] ⊆ min(≺ϕ)). Take ω ∈ [[ϕ]] and towards a con-
tradiction, suppose ω /∈ min(≺ϕ). Therefore, there exists
ω′ ∈ min(≺ϕ) such that ω′ ≺ϕ ω. Thus min([[αω,ω′ ]],≺ϕ
) = [[αω′ ]]. By R5, (ϕ ◦ >) ∧ (αω,ω′) ` ϕ ◦ (> ∧ αω,ω′).
From R1 and R4, we get ϕ ◦ (> ∧ αω,ω′) ` αω′ , thus
(ϕ ◦ >) ∧ (αω,ω′) ` αω′ (*).
By R2’ (ϕ◦>)∧αω,ω′ ≡ ϕ∧αω,ω′ . Since ω ∈ [[ϕ ∧ αω,ω′ ]],
from (*), we obtain ω ∈ [[αω′ ]], a contradiction. Thus,
ω ∈ min(≺ϕ).
(min(≺ϕ) ⊆ [[ϕ]]). Suppose [[>]] = {ω1, · · · , ωk} and take
ω ∈ min(≺ϕ). Then, ω ∈ min([[>]],≺ϕ). Note that

> ≡ (αω,ω1
) ∨ (αω,ω2

) ∨ · · · ∨ (αω,ωk
)
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Note that ω ∈ [[ϕ ◦ αω,ωj ]] for every ωj ∈ [[>]] such that
ω 6= ωj , because ω is a minimal of [[>]]. Thus,

ω ∈ [[(ϕ ◦ αω,ω1
) ∧ (ϕ ◦ αω,ω2

) ∧ · · · ∧ (ϕ ◦ αω,ωk
)]]

Applying k-times R8, we have ω ∈
[[ϕ ◦ (αω,ω1

∨ αω,ω2
∨ · · · ∨ αω,ωk

)]]. That is, by R4,
ω ∈ [[ϕ ◦ >]]. But [[ϕ ◦ >]] = [[ϕ]], thus, ω ∈ ϕ.
We have proved that the map is indeed an assignment.

Now we are going to verify that the assignment is a p-
faithful assignment. Actually we have to check that ≺ϕ is a
partial order.
Irreflexivity: Straightforward by definition of ≺ϕ.
Transitivity: By Lemma 1, Rt holds. Then we apply exactly
the same argument used to prove the transitivity in Theo-
rem 1.
Let us prove the representation equation [[ϕ ◦ α]] =
min([[α]],≺ϕ). We begin by proving the inclusion
([[ϕ ◦ α]] ⊆ min([[α]],≺ϕ)).
Take ω ∈ [[ϕ ◦ α]] and, towards a contradiction suppose
ω /∈ min([[α]],≺ϕ). By R1, ω ∈ [[α]], thus, there exists ω′ ∈
[[α]] such that ω′ ≺ϕ ω. Thus, {ω′} = [[ϕ ◦ αω,ω′ ]]. But
α ∧ αω,ω′ ≡ αω,ω′ , then, by R5, we have (ϕ ◦ α) ∧ αω,ω′ `
ϕ ◦ (α ∧ αω,ω′). By R4, we get [[ϕ ◦ α]] ∩ {ω, ω′} ⊆ {ω′}
therefore ω /∈ [[ϕ ◦ α]], a contradiction.
(min([[α]],≺ϕ) ⊆ [[ϕ ◦ α]]).
Take ω ∈ min([[α]],≺ϕ). Let [[α]] = {ω1, · · ·ωk}.
Note that α ≡ (αω,ω1

∨ αω,ω2
∨ · · · ∨ αω,ωk

) (*). Take
ωj ∈ [[α]], by R1 [[ϕ ◦ αω,ωj

]] ⊆ {ω, ωj}. Since ω is mini-
mal in [[α]] we have ωj 6≺ϕ ω. Thus, [[ϕ ◦ αω,ωj ]] 6= {ωj}.
Therefore ω ∈ [[ϕ ◦ αω,ωj ]] for every ωj ∈ [[α]]. Then,
ω ∈ [[(ϕ ◦ αω,ω1) ∧ · · · ∧ (ϕ ◦ αω,ωk

)]].
Thus, by an application of R8 k − 1 times, we get ω ∈
[[ϕ ◦ ((αω,ω1

) ∨ · · · ∨ (αω,ωk
))]] (**). Then, from (*), (**)

and R4, we obtain ω ∈ [[ϕ ◦ α]].

Theorem 4. The operator ◦ is a so-PW-revision operator if
and only if there exists a unique so-PW-faithful assignment
ϕ 7→≺ϕ such that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

Proof. (If part). Note that a so-PW-faithful assignment
is in particular a p-KM-faithful assignment. Thus, by
Proposition 1, Points 1 and 3, R1-R5, and R8 hold. Since
a so-PW-faithful assignment is in particular a so-faithful
assignment, by Proposition 1, Point 2, postulate R9 and R10
hold Then, ◦ is a so-PW-revision operator.

(Only if part). As the operator ◦ is a so-PW-revision oper-
ator, the postulates R1-R5 plus R8-R10 hold. We define the
map ϕ 7→≺ϕ by putting

ω ≺ϕ ω′ ⇔
{

ω ∈ [[ϕ]] and ω′ 6∈ [[ϕ]] or

ω ∈ [[ϕ ◦ αω,ω′ ]] and ω′ 6∈ [[ϕ ◦ αω,ω′ ]]

We are going to prove that this map is a so-PW-faithful
assignment for which the representation equation is satis-
fied. Once these facts established, the uniqueness of the
assignment follows from Proposition 2.

By R4, it is clear that if ϕ ≡ ϕ′ then ≺ϕ=≺′ϕ.
Let us see that [[ϕ]] = min(≺ϕ).
By R2, if ω ∈ [[ϕ]] and ω′ 6∈ [[ϕ]], we have [[ϕ ◦ αωω′ ]] =
[[ϕ]] ∩ [[αωω′ ]] = {ω}, thus ω ≺ϕ ω′. If ω, ω′ ∈ [[ϕ]], by
R2 we have [[ϕ ◦ αωω′ ]] = [[ϕ]] ∩ [[αωω′ ]] = {ω, ω′}, thus
ω ∼ ω′. From these two facts we get that [[ϕ]] = min(≺ϕ).
Therefore this map is an assignment.
It remains to prove that ≺ϕ is a min-semiorder. Clearly, by
definition, ≺ϕ is irreflexive. Thus, SO1 is satisfied.
Let us prove the representation equation [[ϕ ◦ α]] =
min([[α]],≺ϕ).
We begin by proving the inclusion ([[ϕ ◦ α]] ⊆
min([[α]],≺ϕ)).
Take ω ∈ [[ϕ ◦ α]] and, towards a contradiction sup-
pose ω /∈ min([[α]],≺ϕ). By R1, ω ∈ [[α]], thus,
there exists ω′ ∈ [[α]] such that ω′ ≺ϕ ω. Thus,
{ω′} = [[ϕ ◦ αω,ω′ ]]. But α ∧ αω,ω′ ≡ αω,ω′ , then, by R5,
we have (ϕ ◦ α) ∧ αω,ω′ ` ϕ ◦ (α ∧ αω,ω′). By R4, we
get [[ϕ ◦ α]] ∩ {ω, ω′} ⊆ {ω′} therefore ω /∈ [[ϕ ◦ α]], a
contradiction.

Now we want to prove (min([[α]],≺ϕ) ⊆ [[ϕ ◦ α]]).
We proceed by induction over the size of [[α]]. If |[[α]]| = 1,
then [[α]] = {ω}.

By R3, ω ∈ [[ϕ ◦ α]]. Since ω is the unique model of α, it is
the unique minimal. Therefore min([[α]],≺ϕ) ⊆ [[ϕ ◦ α]].
Our induction hypothesis is that for every γ ∈ L such that
|[[γ]]| ≤ k we have min([[γ]],≺ϕ) ⊆ [[ϕ ◦ γ]]. Let α be a
formula such that |[[α]]| = k + 1. Take ω ∈ min([[α]],≺ϕ);
we want to show that ω ∈ [[ϕ ◦ α]].
Let ω′ be in [[α]] such that ω 6= ω′. Define β = α ∧ ¬αω′ .
Note that [[β]] = [[α]] \ {ω′}. Therefore |[[β]]| = k. Then by
the induction hypothesis

min([[β]],≺ϕ) ⊆ [[ϕ ◦ β]]

Since ω ∈ min([[α]],≺ϕ) necessarily ω ∈ min([[β]],≺ϕ
). Therefore, ω ∈ [[ϕ ◦ β]].
Note that ω ∈ min([[α]],≺ϕ) and ω′ ∈ [[α]], then ω′ 6≺ϕ ω.
Therefore ω ∈ [[ϕ ◦ αω,ω′ ]].
By R8 we have

(ϕ ◦ β) ∧ (ϕ ◦ αω,ω′) ` ϕ ◦ (β ∨ αω,ω′)

Note that ω ∈ [[ϕ ◦ β]] ∩ [[ϕ ◦ αω,ω′ ]] and β ∨ αω,ω′ ≡ α.
Therefore ω ∈ [[ϕ ◦ α]].

We show that ≺ϕ is transitive.
Suppose ω1 ≺ϕ ω2 and ω2 ≺ϕ ω3. We want to see that
ω1 ≺ϕ ω3.
Put α = αω1,ω2,ω3

. From the assumption

min([[αω1,ω2,ω3 ]],≺ϕ) = {ω1}

From the representation equation and R4, we have
[[ϕ ◦ α]] = {ω1}. Thus,

[[ϕ ◦ α]] ∩ [[αω2,ω3 ]] = ∅

[[ϕ ◦ α]] ∩ [[αω1,ω3
]] 6= ∅
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Put β = αω2ω3 and γ = αω1ω3 . Then ϕ ◦ α ` ¬β and
(ϕ ◦ α) ∧ γ 0 ⊥. Then, by R10,

(ϕ ◦ γ) ∧ (α ∧ β) ` ϕ ◦ (α ∧ β)

Therefore [[ϕ ◦ αω1,ω3
]] ∩ [[αω2,ω3

]] ⊆ [[ϕ ◦ αω2,ω3
]]. Since

ω2 ≺ϕ ω3 by the representation equation ≺ϕ we have
ω3 6∈ [[ϕ ◦ αω2,ω3

]]. Thus, necessarily, ω3 6∈ [[ϕ ◦ αω1,ω3
]].

Therefore, ω1 ≺ϕ ω3.
We prove SO2. Suppose ω1 ≺ϕ ω2 ≺ϕ ω3 and ω′ ∈ Ω.

We want to show that ω1 ≺ϕ ω′ or ω′ ≺ϕ ω3 Take
ω′ ∈ Ω and towards a contradiction suppose ω1 6≺ϕ ω′ and
ω′ 6≺ϕ ω3.
- If ω2 ≺ϕ ω′, since ω1 ≺ϕ ω2, by transitivity ω1 ≺ϕ ω′, a
contradiction. Then, ω2 6≺ϕ ω′.
- If ω3 ≺ϕ ω′, since ω2 ≺ϕ ω3, by transitivity ω2 ≺ϕ ω′, a
contradiction. Then, ω3 6≺ϕ ω′.
Thus, ω1 6≺ϕ ω′, ω2 6≺ϕ ω′, ω3 6≺ϕ ω′. Therefore,
ω′ ∈ min([[αω1,ω2,ω3,ω′ ]],≺ϕ) and by the representation
equation, ω′ ∈ [[ϕ ◦ αω1,ω2,ω3,ω′ ]].

Since ω1 ≺ϕ ω2, we have ω2 /∈ [[ϕ ◦ αω1,ω2,ω3,ω′ ]].
Since ω2 ≺ϕ ω3, we have ω3 /∈ [[ϕ ◦ αω1,ω2,ω3,ω′ ]].
Thus, [[ϕ ◦ αω1,ω2,ω3,ω′ ]] ∩ [[αω2,ω3 ]] = ∅ and
[[ϕ ◦ αω1,ω2,ω3,ω′ ]] ∩ [[αω3,ω′ ]] 6= ∅.
Define α ≡ αω1,ω2,ω3,ω′ , β ≡ αω2,ω3

and γ ≡ αω3,ω′ .
Since (ϕ ◦ α) ` ¬β and (ϕ ◦ α) ∧ γ 0 ⊥, by R10, we get

(ϕ ◦ γ) ∧ (α ∧ β) ` ϕ ◦ (α ∧ β)

By R4 (ϕ◦αω3,ω′)∧(αω2ω3
) ` ϕ◦αω2ω3

. Since ω2 ≺ϕ ω3,
we have ω3 /∈ [[ϕ ◦ αω2,ω3 ]]. Therefore ω3 /∈ [[ϕ ◦ αω3,ω′ ]],
i.e. ω′ ≺ϕ ω3, contradicting our assumptions. Therefore
ω1 ≺ϕ ω′ or ω′ ≺ϕ ω3.
We show S03. Suppose we have ω1 ≺ϕ ω2 and ω3 ≺ϕ ω4.
We want to prove ω1 ≺ϕ ω4 o ω3 ≺ϕ ω2

Towards a contradiction, suppose ω1 6≺ϕ ω4 and ω3 6≺ϕ
ω2.
- If ω2 ≺ϕ ω4, since ω1 ≺ϕ ω2, by transitivity ω1 ≺ϕ ω4, a
contradiction. Therefore ω2 6≺ϕ ω4.
- If ω4 ≺ϕ ω2, since ω3 ≺ϕ ω4, by transitivity ω3 ≺ϕ ω2, a
contradiction. Therefore ω4 6≺ϕ ω2.
Since, ω1 6≺ϕ ω4, ω2 6≺ϕ ω4 and ω4 6≺ϕ ω4. By the rep-
resentation equation ω4 ∈ [[ϕ ◦ αω1ω2ω4

]], since ω3 ≺ϕ ω4,
we have ω4 6∈ [[ϕ ◦ αω2ω3ω4

]].
Define α ≡ αω1,ω2,ω4

and β ≡ αω2,ω3,ω4
. Note that

(ϕ ◦ α) ∧ β 6` ϕ ◦ β because ω4 ∈ [[ϕ ◦ α]] ∩ [[β]], but
ω4 6∈ [[ϕ ◦ β]]. By R9, we get (ϕ ◦ β) ∧ α ` ϕ ◦ α. Then

(ϕ ◦ αω2,ω3,ω4
) ∧ (αω1,ω2,ω4

) ` (ϕ ◦ αω1,ω2,ω4
)

Since ω3 6≺ϕ ω2, ω4 6≺ϕ ω2 we have ω2 ∈ [[ϕ ◦ αω2,ω3,ω4
]].

Therefore ω2 ∈ [[ϕ ◦ αω1,ω2,ω4
]] but this, via the representa-

tion equation, contradicts the fact that ω1 6≺ϕ ω2.
Thus, we have proved that ≺ϕ is a semiorder. It remains
to show that it is min-semiorder. Since [[ϕ]] = min(≺ϕ),
it is enough to prove that if ω ∈ [[ϕ]] and ω′ /∈ [[ϕ]] then
ω ≺ϕ ω′.
Put ω ∈ [[ϕ]], ω′ /∈ [[ϕ]] and αω,ω′ ∈ L. Since
ϕ ∧ αω,ω′ 6` ⊥, by R2, we have ϕ ◦ αω,ω′ ≡ ϕ ∧ αω,ω′ .

Thus, ω′ /∈ [[ϕ ◦ αω,ω′ ]], therefore ω ≺ϕ ω′.

Theorem 5. The operator ◦ is a so-revision operator if and
only if there exists a unique so-faithful assignment ϕ 7→≺ϕ
such that

[[ϕ ◦ α]] = min([[α]],≺ϕ)

Proof. (If part). Note that a so-faithful assignment is in
particular a p-faithful assignment. Thus, by Proposition 1
(Point 1), R1, R2’, R3-R5, and R8 hold. By Proposition 1
(Point 2), postulate R9 and R10 hold. Then, ◦ is a so-
revision operator.

(Only if part). As the operator ◦ is a so-revision operator,
the postulates R1, R2’, R3-R5 plus R8-R10 hold. We define
the map ϕ 7→≺ϕ by putting

ω ≺ϕ ω′ ⇔ ω′ 6∈ [[ϕ ◦ αω,ω′ ]]

We are going to prove that this map is a so-faithful assign-
ment for which the representation equation is satisfied. Once
these facts established, the uniqueness of the assignment fol-
lows by Proposition 2.
By R4, it is clear that if ϕ ≡ ϕ′ then ≺ϕ=≺′ϕ.
The representation equation, [[ϕ ◦ α]] = min([[α]],≺ϕ), has
the same proof as in the previous theorem.
Also the transitivity of ≺ϕ is exactly as in the previous the-
orem.
Let us see that [[ϕ]] = min(≺ϕ).
Take ω ∈ [[ϕ]]. If ω 6∈ min(≺ϕ) there exists ω′ ∈ min(≺ϕ)
such that ω′ ≺ϕ ω.
Then,

[[ϕ ◦ αω,ω′ ]] = min([[αω,ω′ ]],≺ϕ) = {ω′}
By R5:

(ϕ ◦ >) ∧ (αω,ω′) ` ϕ ◦ (> ∧ αω,ω′)

By R2’ (ϕ ◦ >) ≡ ϕ and since (> ∧ αω,ω′) ≡ αω,ω′ and
ϕ ◦ αω,ω′ ≡ αω′ , by R4 we get

ϕ ∧ αω,ω′ ` αω′

Since ω ∈ [[ϕ]] and ω ∈ [[αω,ω′ ]], necessarily ω ∈ [[αω′ ]], a
contradiction. Therefore, ω ∈ min(≺ϕ.

Now we proceed to see that min(≺ϕ) ⊆ [[ϕ]].
Put [[>]] = {ω1, · · ·ωk} and take ω ∈ min([[>]],≺ϕ). By
R2’:

min([[>]],≺ϕ) = min([[ϕ]],≺ϕ)

Note that> ≡ (αω,ω1)∨(αω,ω2)∨· · ·∨(αω,ωk
). Moreover,

ω ∈ [[ϕ ◦ αω,ωj ]] for every ωj ∈ [[>]]. Thus an iterated use
of R8, leads us to [(ϕ ◦ αω,ω1) ∧ (ϕ ◦ αω,ω2) ∧ · · · ∧ (ϕ ◦
αω,ωk

)] ` ϕ ◦ (αω,ω1
∨ αω,ω2

∨ · · · ∨ αω,ωk
) By R4,

[(ϕ ◦ αω,ω1
) ∧ (ϕ ◦ αω,ω2

) ∧ · · · ∧ (ϕ ◦ αω,ωk
)] ` ϕ ◦ >.

By R2’ ϕ ◦ > ≡ ϕ and by R4 again [(ϕ ◦ αω,ω1
) ∧ (ϕ ◦

αω,ω2
) ∧ · · · ∧ (ϕ ◦ αω,ωk

)] ` ϕ Therefore, ω ∈ [[ϕ]].
Finally the proof that the axioms of semiorder are satisfied

by ≺ϕ is exactly the same as in the previous theorem.
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Abstract

Prominent approaches to belief revision prescribe the adop-
tion of a new belief that is as close as possible to the prior
belief, in a process that, even in the standard case, can be
described as attempting to minimize surprise. Here we ex-
tend the existing model by proposing a measure of surprise,
dubbed relative surprise, in which surprise is computed with
respect not just to the prior belief, but also to the broader
context provided by the new information, using a measure
derived from familiar distance notions between truth-value
assignments. We characterize the surprise minimization re-
vision operator thus defined using a set of intuitive rationality
postulates in the AGM mould, along the way obtaining rep-
resentation results for other existing revision operators in the
literature, such as the Dalal operator and a recently introduced
distance-based min-max operator.

1 Introduction
Belief change models rational adjustments made to an
agent’s epistemic state upon acquiring new information
(Peppas 2008; Hansson 2017; Fermé and Hansson 2018).
When the new information is assumed to be reliable, the
logic of changing one’s prior beliefs to accommodate such
new-found knowledge falls under the heading of revision.
Belief revision is typically thought of by appeal to a set
of intuitive normative principles, usually along the lines of
the AGM framework (Alchourrón, Gärdenfors, and Makin-
son 1985), alongside more concrete revision representations
and mechanisms (Grove 1988; Dalal 1988; Gärdenfors and
Makinson 1988; Katsuno and Mendelzon 1992; Rott 1992).

A perspective underlying many of these representations,
which we share here, is that belief revision is akin to a choice
procedure guided by a plausibility relation over possible
states of affairs: revising a belief, in this sense, amounts
to choosing the most plausible states of affairs consistent
with the new information. Plausibility over states of affairs,
in turn, is judged according to some notion of dissimilar-
ity, or distance between states of affairs: I judge a situation
to be less likely the further away from my own belief it is.
Among the various distance notions that can be used to make
this intuition precise, the approach using Hamming distance
to rank truth-value assignments is among the most promi-
nent, used for the well-known Dalal revision operator (Dalal
1988), and the more recently introduced Hamming distance

min-max operator (Haret and Woltran 2019).
Both the Dalal and the Hamming distance min-max op-

erator are designed to respond to new information by mini-
mizing departures from the prior belief, in what can be de-
scribed, just as well, as an attempt to prevent major surprise:
if I have a prior belief that all major carbon emitting coun-
tries will have halved their emissions by the end of 2049,
and it turns out that neither of them has, then I am likely to
be surprised—certainly more suprised than seeing my belief
confirmed. Consequently, if I acquire information to the ef-
fect that these are the only two possible outcomes (i.e., either
all countries cut emissions, or none of them does), then, on
the assumption that this information stems from some noisy
observation of the true state, I will use my prior belief and
gravitate towards the outcome that occasions less surprise.

In this revision procedure, consistent with both the Dalal
and the min-max operators, the measure of surprise is taken
to depend only on the absolute difference between my prior
belief and the states of affairs learned to be viable. How-
ever, we can readily imagine that the amount of anticipated
surprise depends in equal measure on other factors, e.g., the
context provided by the newly acquired information: if in
2049 it turns out that none of the countries has reduced emis-
sions, then I am likely to be less surprised if I had been told
in advance that at most one of them would than if I had
been told that, possibly, any number of them could achieve
the target. In other words, it is desirable to have a broader
notion of surprise complementing the absolute one, to ac-
count for situations in which change in the epistemic state
depends not just on the prior belief but also on the range of
options provided by the new information. However, despite
the fact that surprise minimization is a natural idea that has
been gaining traction in Cognitive Science (Friston 2010;
Hohwy 2016), there are not many belief revision policies
that explicitly take it into account.

In this paper we put forward a notion of relative surprise
that is richer in precisely this sense, and leverage it to de-
fine a new type of revision operator, called the Hamming
surprise min-max operator, and which is calibrated to take
into account contextual effects as described above. Though
it deviates from some of the postulates in the AGM frame-
work (notably, Vacuity, Superexpansion and Subexpansion
(Fermé and Hansson 2018)), we show that the Hamming sur-
prise min-max operator shares other desirable, though less
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obvious, features with the Dalal and the Hamming distance
min-max operator. Significantly, we use these features to
fully characterize the newly introduced surprise operator, in
the process obtaining full chacterizations for the Dalal and
Hamming distance min-max operators.

Contributions. On a conceptual level, we argue that the
notion of distance standardly used to define revision opera-
tors can be seen as quantifying a measure of surprise, with
different distance-based operators providing different ways
to minimize it. We then enrich this landscape by introducing
a notion of relative surprise, which is then put to use in defin-
ing the Hamming surprise min-max operator. We compare
this operator against the standard KM postulates for revision
(Katsuno and Mendelzon 1992) and present new postulates
that complement the KM ones, for a full characterization.
The versatility of the ideas underlying these postulates is
showcased by adapting them to the Dalal and Hamming dis-
tance min-max operators: in the case of the min-max oper-
ator our postulates complement the subset of KM postulates
the operator is known to satisfy; in the case of the Dalal op-
erator our postulates strengthen the KM postulates. In both
cases, we obtain full characterizations.

Related work. Among belief revision operators that are
insensitive to syntax, the Dalal operator has received a sig-
nificant amount of attention, either from attempts to ex-
press it by encoding the Hamming distance between truth-
value assignments at the syntactic level (del Val 1993;
Pozos-Parra, Liu, and Perrussel 2013); as an instance of
the more general class of parameterized difference operators
(Peppas and Williams 2018; Aravanis, Peppas, and Williams
2021); or in relation to Parikh’s relevance-sensitivity axiom
(Peppas et al. 2015). However, to the best of our knowledge,
the characterization we offer here is the first of its kind.

Strengthening the AGM framework to induce additional
desired behavior from revision operators has been consid-
ered in relation to issues of iterated revision (Darwiche
and Pearl 1997), or relevance sensitivity (Parikh 1999;
Peppas and Williams 2016). In terms of choice rules, the
closest analogue to the surprise minimization operator is
the decision rule that minimizes maximum regret in deci-
sions with ignorance (Milnor 1954; Lave and March 1993;
Peterson 2017), with Hamming distances playing the role of
utilities in our present setting. However, the logical setting
and the fact that the distances depend on the states them-
selves means that decision theoretic results do not translate
easily to our current framework.

Outline. Section 2 introduces the main notions related to
propositional logic and belief revision that will be used in the
rest of the paper, and argues for the surprise-based interpre-
tations of distances, Section 3 defines the relative Hamming
surprise measure and the Hamming surprise min-max oper-
ator. Sections 4 and 5 consist of a slight detour in which the
Dalal and Hamming distance min-max operators are char-
acterized, setting up the stage for the characterization of the
surprise operator in Section 6. Section 7 offers conclusions.

2 Preliminaries
Propositional Logic. We assume a finite set A of propo-
sitional atoms, large enough that we can always reach into
it and find additional, unused atoms, if any are needed. The
set L of propositional formulas is generated from the atoms
in A using the usual propositional connectives (∧, ∨, ¬,→
and↔), as well as the constants ⊥ and ⊤.

An interpretation w is a function mapping every atom in
A to either true or false. Since an interpretation w is com-
pletely determined by the set of atoms in A it makes true,
we will identify w with this set of atoms and, if there is no
danger of ambiguity, display w as a word where the letters
are the atoms assigned to true. The universe U is the set of
all interpretations for formulas in L. If w1 and w2 are inter-
pretations, the symmetric difference w1△w2 of w1 and w2 is
defined as w1△w2 = (w1 \ w2) ∪ (w2 \ w1), i.e., as the set
of atoms on which w1 and w2 differ. The Hamming distance
dH : U × U → N is defined, for any interpretations w1 and
w2, as dH(w1, w2) = |w1△w2|. Intuitively, the Hamming
distance dH(w1, w2) between w1 and w2 counts the number
of atoms that w1 and w2 differ on, and is used to quantify
the disagreement between two interpretations.

The models of a propositional formula φ are the interpre-
tations that satisfy it, and we write [φ] for the set of models
of φ. If φ1 and φ2 are propositional formulas, we say that
φ1 entails φ2, written φ1 |= φ2, if [φ1] ⊆ [φ2], and that they
are equivalent, written φ1 ≡ φ2, if [φ1] = [φ2]. A propo-
sitional formula φ is consistent if [φ] ̸= ∅. The models of
⊥ and ⊤ are [⊥] = ∅ and [⊤] = U . We will occasionally
find it useful to explicitly represent the models of a formula,
in which case we write φv1,...,vn for a propositional formula
such that [φv1,...,vn ] = {v1, . . . , vn}. A propositional for-
mula φ is complete if it has exactly one model, and we will
typically denote a complete formula as φv to draw attention
to its unique model v. The null formula ε and the full for-
mula α are defined as ε =

∧
p∈A ¬p and α =

∧
p∈A p, i.e.,

as the conjunction of the negated and non-negated atoms in
A, respectively. Note that [ε] = {∅} and [α] = A.

Distance-based belief revision. A revision operator ◦ is a
function ◦ : L × L → L, taking as input two propositional
formulas, denoted φ and µ, and standing for the agent’s
prior and newly acquired information, respectively, and re-
turning a propositional formula, denoted φ ◦ µ. Two revi-
sion operators ◦1 and ◦2 are equivalent, written ◦1 ≡ ◦2, if
φ ◦1 µ ≡ φ ◦2 µ, for any formulas φ and µ.

The primary device for generating concrete revision op-
erators we make recourse to here is the Hamming distance.
Thus, the Hamming distance min-min operator ◦dH,min, or,
as it is more commonly known, the Dalal operator (Dalal
1988), is defined, for any propositional formulas φ and µ, as
a formula φ ◦dH,min µ such that:

[φ ◦dH,min µ] = argminw∈[µ] min
v∈[φ]

dH(v, w).

Intuitively, the shortest distance from w to any model of φ,
i.e., minv∈[φ] dH(v, w), can be interpreted as a measure of
distance betweenw andφ, and we will refer to it as the Ham-
ming min-distance between φ and µ. The result φ ◦dH,min µ
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dH ∅ abcd min max

∅ 0 4 0 4
abcd 4 0 0 4
abe 3 3 3 3

Table 1: Hamming distances dH(v, w) for v ∈ [φ], w ∈ [µ], with
[φ] = {∅, abcd} and [µ] = {∅, abcd, abe}. The lower dH(v, w)
is, the more plausible w is considered to be, from the standpoint
of v. The minimal and maximal values per model of µ are tallied
on the right, with the values preferred by operators ◦dH,min and
◦dH,max, i.e., the minimal among the minimal and maximal values,
respectively, in bold font.

of revision, then, selects those models of µ that are closest
to φ according to this measure.

Recently, an alternative revision operator has been ana-
lyzed (Haret and Woltran 2019): what we will call here the
Hamming distance min-max operator ◦dH,max, defined, for
any φ and µ, as a formula φ ◦dH,max µ such that:

[φ ◦dH,max µ] = argminw∈[µ] max
v∈[φ]

dH(v, w),

i.e., a formula whose models are exactly those models of [µ]
that minimize the Hamming distance to maxv∈[φ] dH(v, w),
the Hamming max-distance between φ and µ.

Distance as surprise. Consistent with the idea that revi-
sion models the agent learning about the world around it,
we can see the new information µ as a noisy observation
of some underlying ground truth state w∗: by acquiring µ,
the agent learns of a set of outcomes (the models of µ), all
of which stand a chance of being the true state w∗. In that
sense, the distance d(v, w) between any v ∈ [φ] and w ∈ [µ]
stands for a quantity that can be aptly described as surprise:
it is the difference between what the agent expects is the
case (v) and what might turn out to actually be the case (w).
Naturally, the agent will want to minimize the divergence
between its predictions and reality, with existing revision op-
erators providing different means to do so.

Example 1. Consider a set A = {a, b, c, d, e} of atoms,
standing for countries that might meet their emission targets
before 2049, and formulas φ = (¬a∧¬b∧¬c∧¬d∧¬e)∨
(a ∧ b ∧ c ∧ d ∧ ¬e) and µ = φ ∨ (a ∧ b ∧ ¬c ∧ ¬d ∧
e), with [φ] = {∅, abcd} and [µ] = {∅, abcd, abe}. Using
the Hamming distances depicted in Table 1, we obtain that
[φ ◦dH,min µ] = {∅, abcd} and [φ ◦dH,max µ] = {abe}.

Intuitively, we read this as saying that if an agent believes
the true state to be either of the worlds in [φ] = {∅, abcd},
but finds out it is one among [µ] = {∅, abcd, abe}, then
◦dH,min selects the new belief to be {∅, abcd}, as this sup-
plies the least amount of surprise in an optimistic, best
best-case scenario: if the true state turns out to be either
of ∅ or abcd, then the agent, believing this, will be able
to say “I told you so!”; the abe case, which is surprising
in both cases, is ignored. In a complementary approach,
the ◦dH,max operator shifts the agent’s belief to {abe}, as
this provides, more cautiously, the best worst-case scenario:

from the standpoint of both ∅ or abcd, abe seems the least
risky of the other options.

Example 1 serves as a springboard for some important ob-
servations. Firstly, it illustrates that ◦dH,min and ◦dH,max

are distinct operators. Secondly, it is apparent from Ex-
ample 1 that, given prior beliefs φ, interpretations can be
ranked according to their Hamming min- or max-distance to
φ. It is straightforward to see that (i) in both cases the re-
sulting rankings depend only on the models of φ, are total
and admit ties; (ii) the min-distance places models of φ at
the bottom of this ranking, i.e., as the most plausible inter-
pretations according to φ, in a pattern that goes under the
name of a faithful ranking (Katsuno and Mendelzon 1992);
and, perhaps, less conspicuously, that (iii) the max-distance
places models of the so-called dual of φ (i.e., the formula
obtained from φ by replacing all its atoms with their nega-
tions), at the very top, i.e., as the least plausible interpreta-
tions according to φ (Haret and Woltran 2019). The differ-
ent flavors of rankings, faithful or otherwise, generated in
this distance-based approach usually play a prominent role
in representation results for revision, as they open up a level
of abstraction between that of concrete numbers and gen-
eral principles. In this work, however, we will bypass talk of
rankings and work directly at the interface between distance-
based measures and normative principles.

Finally, an observation that will prove useful is that we
can (and will) think of the individual models v of φ as gen-
erating their own plausibility rankings over interpretations:
these rankings correspond to the columns in Table 1 and are
the rankings that would be generated if the prior belief were
the complete formula [φv] = {v}, i.e., what the landscape of
plausibility looks like if the agent puts the entire weight of
its belief on φv . Revision can then be seen as employing a
function (min or max) to aggregate the individual rankings,
and then choosing something out of the aggregated result:
the Dalal operator ◦dH,min chooses, optimistically, the mod-
els that are the best of the best, while ◦dH,max chooses, pes-
simistically, the best of the worst models across the individ-
ual rankings. In keeping with this way of looking at things,
we will often speak, loosely, of formulas and interpretations
‘judging’ and ‘choosing’ among possible outcomes.

What recommends the choice behavior of operators (such
as Dalal’s operator) as reasonable is adherence to a set of
intuitive normative principles, or rationality postulates. The
most common set of such principles consists of the AGM
postulates for revision (Alchourrón, Gärdenfors, and Makin-
son 1985), which we present here in the Katsuno-Mendelzon
formulation (Katsuno and Mendelzon 1992). The postulates
apply for any propositional formulas φ, µ, µ1 and µ2:

(R1) φ ◦ µ |= µ.

(R2) If φ ∧ µ is consistent, then φ ◦ µ ≡ φ ∧ µ.

(R3) If µ is consistent, then φ ◦ µ is consistent.

(R4) If φ1 ≡ φ2 and µ1 ≡ µ2, then φ1 ◦ µ1 ≡ φ2 ◦ µ2.

(R5) (φ ◦ µ1) ∧ µ2 |= φ ◦ (µ1 ∧ µ2).

(R6) If (φ ◦ µ1) ∧ µ2 is consistent, then φ ◦ (µ1 ∧ µ2) |=
(φ ◦ µ1) ∧ µ2.
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The primary assumption of revision (postulate R1) is that
new information originates with a trustworthy source; thus,
revising φ by µ involves a commitment to accept the newly
acquired information. Postulate R2, known as the Vacuity
postulate, says that if the newly acquired information µ does
not contradict the prior information φ, the result is just the
conjunction of µ and φ. Postulate R3 says that if the newly
acquired information µ is consistent, then the revision re-
sult should also be consistent. Postulate R4 says that the
result depends only on the semantic content of the infor-
mation involved. Postulates R5 and R6, known as Subex-
pansion and Superexpansion, respectively, enforce a certain
kind of coherence when the new information is presented se-
quentially, which is for present purposes best understood as
akin to a form of independence of irrelevant alternatives fa-
miliar from rational choice (Sen 2017): the choice over two
alternatives (here, interpretations w1 and w2 in [µ]) should
not depend on the presence of other alternatives in the menu
(here represented by new information µ).

The Dalal operator ◦dH,min satisfies postulates R1-R6

(Katsuno and Mendelzon 1992), though these postulates
do not uniquely characterize it. The Hamming distance
max-operator ◦dH,max satisfies postulates R1 and R3-R6 but
not R2, though it does satisfy the following two postulates
(Haret and Woltran 2019), where φ stands for the dual of φ,
as defined above:

(R7) If φ ◦ µ |= φ, then φ ◦ µ ≡ µ.

(R8) If µ ̸|= φ, then (φ ◦ µ) ∧ φ is inconsistent.

In certain circumstances, φ can be thought of as the point of
view opposite to that of φ, such that, taken together, postu-
lates R7 and R8 inform the agent to believe states of affairs
compatible with φ only if it has no other choice in the mat-
ter: the models of φ should be part of a viewpoint one is
willing to accept only as a last resort.

3 Relative Hamming Surprise Minimization
In this section we introduce our novel surprise-based opera-
tor. We start by defining, for any interpretations v and w, the
(relative) Hamming surprise sµH(v, w) of v with respect to w
relative to µ, as:

sµH(v, w) = dH(v, w)− dH(v, µ),
i.e., the distance between v andw normalized by the distance
between v and µ. The new information µ, here, serves as the
reference point, or context, relative to which surprise is cal-
culated. The Hamming surprise min-max operator ◦s,max is
defined as a formula φ ◦sH,max µ such that:

[φ ◦sH,max µ] = argminw∈[µ] max
v∈[φ]

sµH(v, w),

i.e., as a formula whose models are exactly those models of
µ that minimize maximum Hamming surprise with respect
to φ, and relative to µ. We refer to maxv∈[φ] s

µ
H(v, w), as

the max-surprise of φ with w relative µ.

Example 2. Consider formulas φ and µ as in Example 1,
with [φ] = {∅, abcd} and [µ] = {∅, abcd, abe}. We
have that dH(∅, µ) = minw∈[µ] dH(∅, w) = 0, and thus

sµH ∅ abcd max

∅ 0− 0 4− 0 4
abcd 4− 0 0− 0 4
abe 3− 0 3− 0 3

Table 2: Relative Hamming surprise sµH(v, w) for v ∈ [φ], w ∈
[µ], for [φ] = {∅, abcd}, [µ] = {∅, abcd, abe}, and relative to
µ: dH(v, w) is normalized by the distance dH(v, µ) from v to µ.
The lower surprise is, the more plausible w is considered to be,
from the standpoint of v. The model minimizing overall surprise is
emphasized in bold font.

sνH ∅ abcd max

abcd 4− 3 0− 0 1
abe 3− 3 3− 0 3

Table 3: Relative Hamming surprise sνH(v, w), [φ] = {∅, abcd},
[µ] = {∅, abcd, abe}. The best interpretation is now abcd: the
ranking induced by relative surprise depends on µ, as well as φ.

sµH(∅, abcd) = dH(∅, abcd) − dH(∅, µ) = 4 − 0 = 4. The
surprise terms are depicted in Table 2. We obtain, thus, that
[φ ◦sH,max µ] = [φ ◦dH,max µ] = {abe}. Consider, now, a
formula ν with [ν] = {abcd, abe}, with the surprise scores
depicted in Table 3. Note that in this case we obtain that
[φ ◦sH,max ν] = {abcd}. Thus, in revision by µ, abe is
chosen over abcd, whereas in revision by ν the choice is
reversed. Intuitively, when ∅ stops being a viable option,
abcd becomes more attractive than abe, as the amount of
surprise it would inflict, from the standpoint of ∅, relative to
abe, becomes smaller: considering the options, abcd is not
as extreme as abe. In other words, for ∅ the two interpre-
tations abcd and abe are sufficiently alike to be considered
almost equally risky: the marginal surprise that abcd car-
ries over abe is not big enough to be considered significant,
so that the final decision ends up choosing abcd as carrying
the least amount of risk. By contrast, when ∅ is present as
an option (see Table 2) the situation is markedly different, as
the relative surprise of actually ending up with abcd or abe
becomes much more significant.
The type of scenario depicted in Example 2 is reminiscent
of deviations from the principle of independence from irrel-
evant alternatives signaled in the rational choice literature
(Sen 1993), and immediately points toward a salient feature
of the relative surprise operator we have introduced: it is not
guaranteed to satisfy postulates R2, R5 and R6. Indeed, for
φ and µ from Example 2 we have that [φ ◦sH,max µ] =
{abe}, despite the fact that [φ ∧ µ] = {∅, abcd}, which
speaks to postulate R2. Since φ ◦sH,max µ coincides, in this
case, with φ◦dH,maxµ, and ◦dH,max is already known not to
satisfy postulate R2, this is perhaps not surprising, but simi-
lar reasoning shows that φ ◦sH,max µ does not satisfy postu-
lates R7 and R8 either. And [φ ◦sH,max (µ ∧ ν)] = {abcd},
despite the fact that [(φ ◦sH,max µ) ∧ ν] = {abe}, which
speaks to postulates R5 and R6. More to the point, the rank-
ing on interpretations that is generated by the surprise mea-
sure s+ H varies with µ, to the extent that narrowing down
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the new information, as in Example 2, can lead to inver-
sions between the relative ranking of two interpretations. At
the same time, the ranking plainly depends on nothing more
than φ and µ, such that the result of revision is invariant to
the syntax of the prior and new information. Additionally,
◦sH,max selects the result from the models of µ, and is guar-
anteed to output something as long as µ is consistent. We
summarize these observations in the following proposition.
Proposition 1. The operator ◦sH,max satisfies postulates
R1, R3 and R4, but not R2, R5, R6, R7 and R8.
One detail worth mentioning is that when φ is complete all
operators presented so far coincide.
Proposition 2. For any complete formula φv , φ◦dH,minµ ≡
φ◦dH,max ≡ φ ◦sH,max µ, for any formula µ.

Proof. For complete φv it is only the relative ranking of in-
terpretations with respect to v that matters, and this is the
same for all three operators.

Proposition 1 shows that the ◦sH,max operator does not
fit neatly into the standard revision framework. However,
since, we have argued, ◦sH,max formalizes an appealing in-
tuition, it will be useful to unearth the general rules under-
pinning it: our goal, now, is to find a set of normative prin-
ciples strong enough to characterize ◦sH,max. A set of such
principles is offered in Section 6, but, since ◦sH,max can be
seen as a more involved min-max operator, we set the scene
by first characterizing ◦dH,max. And to set the scene for
◦dH,max, we first characterize the Dalal operator.

4 Characterizing the Dalal Operator
In this section we present a set of postulates that characterize
the Dalal operator ◦dH,min. Apart from being of indepen-
dent interest, this section presents, in the familiar setting of
a known operator, the main intuitions and techniques used
in subsequent sections. We start by introducing some addi-
tional new notions.

A renaming r of A is a bijective function r : A → A.
If φ is a propositional formula, the renaming r(φ) of φ is
a formula r(φ) whose atoms are replaced according to r.
On the semantic side, if w is an interpretation and r is a
renaming of A, the renaming r(w) of w is an interpretation
obtained by replacing every atom p in w with r(p). IfW is
a set of interpretations, the renaming r(W) ofW is defined
as r(W) = {r(w) | w ∈ W}, i.e., the set of interpretations
whose elements are the renamed interpretations inW .

A flip function f : 2A ×L → L is a function that takes as
input a set v ⊆ A of atoms (equivalently, v can be thought
of as an interpretation) and a propositional formula φ, and
returns a propositional formula fv(φ) that is just like φ ex-
cept that all the atoms from v that appear in φ are flipped,
i.e., replaced with their negations. Overloading notation, a
flip function applied to interpretations v and w returns an in-
terpretation fv(w) in which all the atoms from v that appear
in w are flipped, i.e., fv(w) = {p ∈ A | p ∈ w and p /∈
v, or p ∈ v and p /∈ w}. It is straightforward to see
that fv(w) = w△v. If W is a set of interpretations, then
fv(W) = {fv(w) | w ∈ W}, i.e., the set of interpretations
obtained by flipping every atom in v.

Example 3. For the set A = {a, b, c} of atoms, consider
a formula φ = a ∧ ¬c, with [φ] = {a, ab}, and a re-
naming r such that r(a) = b, r(b) = c and r(c) = a.
We obtain that r(φ) = r(a) ∧ ¬r(c) = b ∧ ¬a, with
[r(φ)] = {b, bc} = {r(a), r(ab)}. Flipping atoms b and c,
we have that fbc(φ) = a∧¬(¬c), with [fbc(φ)] = {abc, ac}.
Note that [fbc(φ)] = {fbc(a), fbc(ab)} = {a△bc, ab△bc}.
In Example 3 it holds that: (i) [r(φ)] = r([φ]), (ii)
[fw(φ)] = fw([φ]) and (iii) [fw(φ)] = {v△w | v ∈ [φ]},
and we note here that all these equalities hold generally (for
(ii) see, for instance, Exercise 2.28 in (Goldrei 2005)). Their
relevance will become apparent shortly.

To characterize the Dalal operator ◦dH,min we introduce
a set of new postulates, starting with Neutrality RN:

(RN) If φ is complete, then r(φ ◦ µ) ≡ r(φ) ◦ r(µ).
Postulate RN states that revision is invariant under renaming
atoms and hence neutral in that the specific labels for the
atoms do not matter towards the final result. This postulate
is inspired by similar ideas in social choice and has appeared
before in belief change contexts (Herzig and Rifi 1999;
Marquis and Schwind 2014; Haret and Woltran 2019).

The next postulate concerns the effect of flipping the same
atoms in both φ and µ, and is called, appropriately, the Flip-
ping postulate RF:

(RF) If φ is complete, then fv(φ ◦ µ) = fv(φ) ◦ fv(µ).
An additional constraint, the Addition postulate RA, is ob-
tained by considering the effect of adding new atoms that
affect the standing of one interpretation, and is meant to ap-
ply to any formulas φ and µ and set x of new atoms, i.e.,
such that none of the atoms in x appears in either φ or µ:

(RA) If φ is complete and (φ ◦ µw1,w2
) ∧ µw1

is consistent,
then φ ◦ µw1,w2∪x ≡ µw1

.

Postulate RA is best understood through a choice perspec-
tive: if w1 is chosen by φ over w2 when the choice is
[µw1,w2

] = {w1, w2}, then adding extra new atoms x to
w2, (and, thereby, increasing the distance to φ) ensures that
w2 ∪ x is not chosen when the choice is [µw1,w2∪x] =
{w1, w2 ∪ x}. In all of these postulates the prior belief φ
is assumed to be complete: this is not essential for the char-
acterization of the Dalal operator, but makes life easier in
the characterization of the surprise minimization operator,
in Section 6.

The next postulate involves a mix of flips and we ease into
it by introducing an intermediary notion. The best-of-best
formula βφ,µ with respect to φ and µ is defined as:

βφ,µ = ε ◦
( ∨

v∈[φ]

fv(µ)
)
,

i.e., as the result of revising the null formula ε (recall that
[ε] = {∅}) by a disjunction made up of multiple versions of
µ, where each such version is obtained by flipping the atoms
in a model v of φ. Intuitively, the intention is to recreate
the table of Hamming distances (e.g., Table 1) without us-
ing numbers: recall that [fv(µ)] = fv([µ]) and fv(w) =
w△v and thus, semantically, we have that [

∨
v∈[φ] fv(µ)] =
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{wi△vj | wi ∈ [µ], vj ∈ [φ]}. In other words, we are cre-
ating a scenario in which ε has to choose between interpre-
tations obtained as the symmetric difference of the elements
of [φ] and [µ]. The result we are working towards, yet to
be proven, is that an element of [

∨
v∈[φ] fv(µ)] chosen by

ε, i.e., an interpretation wi△vj ∈ [βφ,µ], corresponds to an
interpretation wi ∈ [µ] that minimizes the overall Hamming
distance to φ, and is thus among the best of the best interpre-
tations in this revision scenario. The role of the Best-of-Best
postulate RBOB, then, is to recover the models of µ from the
models of βφ,µ:

(RBOB) φ ◦ µ ≡
(∨

v∈[φ] fv(βφ,µ)

)
∧ µ.

Postulate RBOB stipulates that the result of revising φ by µ
consists of those interpretations of µ that come out of flip-
ping βφ,µ by each model of φ, in this way reversing the ini-
tial flips that delivered the revision formula posed to ε.

What is the significance of the null formula ε in βφ,µ?
We want to reduce arbitrary revision tasks to a common de-
nominator, a base case in which the result of revision can be
decided without explicit appeal to distances (i.e., numbers),
and only by appeal to desirable normative principles, such
as the postulates laid out above. The case when the prior be-
lief is ε turns out to be well suited for this task, since, as we
show next, postulates R1, R3-R6, RN and RA guarantee that
ε always selects the interpretations with minimal cardinality.
Lemma 1. If a revision operator ◦ satisfies postulates R1,
R3-R6, RN and RA, then, for any formula µ, it holds that
[ε ◦ µ] = argminw∈[µ]|w|.

Proof. (“⊆”) Suppose, first, that w1 ∈ [ε ◦ µ] and there is
w2 ∈ [µ] such that |w1| > |w2|. Using postulate R5 we
obtain thatw1 ∈ [φ◦µw1,w2 ]. We now show that this leads to
a contradiction, and we do this using the Neutrality postulate
RN: however, we would like to apply RN to interpretations
of equal size. Towards this, take a set x of new atoms (i.e.,
that do not occur in either φ or µ), with |x| = |w1| − |w2|,
and add x to w2 to form w′

2 = w2 ∪ x. We have that |w′
2| =

|w2|+(|w1| − |w2|) = |w1|, i.e., w1 and w′
2 are of the same

size, which implies that |w1 \ w′
2| = |w′

2 \ w1|. Applying
the addition postulate RA, we obtain that w′

2 /∈ [ε ◦µw1,w′2].
Consider, now, a renaming r that swaps atoms in w1 \

w′
2 with atoms in w′

2 \ w1, made possible by the fact that
w1 \ w′

2 and w′
2 \ w1 are of the same size. This implies

that r(w1) = w′
2 and r(w′

2) = w1 and thus r([µw1,w′
2
]) =

r({w1, w
′
2}) = {r(w1), r(w

′
2)} = {w′

2, w1} = [µw1,w′
2
].

Applying the Neutrality postulate RN to ε ◦ µw1,w′
2

with the
renaming r thus defined, and, keeping in mind that [r(ε)] =
[ε], and thus that r(ε) ≡ ε, we obtain that:

{w1} = [ε ◦ µw1,w′
2
] by assumption and A

= [r(ε) ◦ r(µw1,w′
2
)] by def. of r and R4

= [r(ε ◦ µw1,w′
2
))] by N

= r([ε ◦ µw1,w′
2
]) property of r

= r({w1}) by assumption

= {w′
2}.

This implies that w1 = w′
2 but, since w′

2 contains a non-
negative number of atoms that do not appear in w1, this is a
contradiction.

(“⊇”) For the opposite direction, suppose that w1 ∈
argminw∈[µ]|w| but w1 /∈ [ε ◦ µ]. Using postulates R1 and
R3 we have that there is w2 ∈ [φ◦µ] and, with postulate R6

we obtain that [ε ◦ µw1,w2 ] = {w2}. Since |w1| ≤ |w2| we
add to w1 a set x of new atoms, where |x| = |w2| − |w1|,
and denote w′

1 = w1 ∪ x. Applying RA we obtain that
[ε ◦ µw′

1,w2
] = {w2} and, using a renaming r defined,

as in the previous direction, such that r(w2) = w′
1 and

r(w′
1) = w2, and applying RN to r and ε◦µw′

1,w2
, we obtain

that [ε ◦ µw′
1,w2

] = {w′
1}, leading to a contradiction.

Lemma 1 shows that, in the very particular case in which the
prior belief is ε, we can ensure that the result of revision co-
incides with the result delivered by the Dalal operator. The
next move consists in using the Flipping postulate RF to ex-
tend this fact to complete formulas.

Lemma 2. If a revision operator ◦ satisfies postulates
R1, R3-R6, RN, RA and RF, then, for any formula µ
and complete formula φv , it holds that [φv ◦ µ] =
argminw∈[µ]dH(v, w).

Proof. By postulate RF it holds that fv(φv ◦ µ) ≡ fv(φv) ◦
fv(µ). Note, now, that [fv(φv)] = {v△v} = {∅}, and thus
fv(φv) ≡ ε, while [fv(µ)] = {w△v | w ∈ [µ]}. By Lemma
1, it holds that [ε ◦ fv(µ)] = minw△v∈[fv(µ)] |w△v| and,
since dH(v, w) = |w△v|, we derive the conclusion.

Lemma 2 shows that it is not just the formula ε that makes
choices consistent with the Dalal operator, but any complete
formula φv . The intuition driving Lemma 2 is that the sit-
uation where v chooses between w1 and w2 is equivalent,
through the Flipping postulate RF, to a scenario where ∅
chooses betweenw1△v andw2△v: and we know that in this
situation postulates RN and RA guide ∅ to choose the inter-
pretation wi△v of minimal cardinality, which corresponds
to wi being at minimal Hamming distance to v.

The next step involves pushing this intuition even further,
to the case of any propositional formula φ. As anticipated,
the Best-of-Best postulate RBOB is the postulate that facili-
tates this move, and the proof goes through the intermediary
obervation that the best-of-best formula βφ,µ selects inter-
pretations corresponding to the desired redult.

Lemma 3. If ◦ is a revision operator that satisfies postulates
R1, R3-R6 R4, RN, RA and RF then, for any formulas φ and
µ and interpretations w and v, it holds that w△v ∈ [βφ,µ]
if and only if w ∈ argminw∈[µ] minv∈[φ] dH(v, w).

Proof. By Lemma 1, [βφ,µ] chooses exactly those interpre-
tations wi△vj , for wi ∈ [µ] and vj ∈ [φ], that are of min-
imal cardinality. Since |wi△vj | = dH(wi, vj), the conclu-
sion follows immediately.

By Lemma 3, the result of the Dalal operator ◦dH,min ap-
plied to φ and µ consists of those interpretations w ∈ [µ]
such that w△v ∈ [βφ,µ], for some v ∈ [φ]. The Best-of-
Best postulate RBOB instructs us that these are exactly the
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Figure 1: By flipping the atoms of v ∈ [φ] in a model w of
µ we get an interpretation w△v whose size corresponds to the
Hamming distance between v and w, i.e., |v△w| = dH(v, w) =
dH(∅, v△w) = dH(∅, fv(w)). In this way, flipped models that
get chosen by ε corresponds to models of µ that minimize overall
Hamming distance to φ.

models of µ that should be chosen by an operator ◦, and
provides the final piece in the sought after characterization.
Theorem 1. A revision operator ◦ satisfies postulates R1,
R3-R6, RN, RA, RF and RBOB if and only if ◦ ≡ ◦dH,min.

Proof. For one direction, we take as known that the Dalal
operator ◦dH,min satisfies postulates R1, R3−6 (Katsuno and
Mendelzon 1992) and RN (Haret and Woltran 2019). For
postulate RN, given Lemma 3, satisfaction of postulates RN,
RA, RF and RBOB follows straightforwardly.

For the other direction, we have to show that if
◦ satisfies all the stated postulates, then [φ ◦ µ] =
argminw∈[µ] minv∈[φ] dH(v, w), for any formulas φ and µ.
Lemma 3 already gives us that βφ,µ selects those inter-
pretations wi△vj for which dH(wi, vj) is minimal among
the set {w△v | w ∈ [µ], v ∈ [φ]} of symmetric dif-
ferences between models of φ and of µ. This means that
if wi ∈ argminw∈[µ] minv∈[φ] dH(v, w), then wi△vj ∈
[βφ,µ], for some vj ∈ [φ], and hence (wi△vj)△vj = wi ∈
[fvj (βφ,µ)], i.e., if wi is selected by the Dalal operator then
it shows up in [(

∨
v∈[φ] fv(βφ,µ)) ∧ µ]. Conversely, sup-

pose there is an interpretation wi ∈ [(
∨
v∈[φ] fv(βφ,µ)) ∧ µ]

that is not at minimal distance to φ. This means that wi =
(wj△vk)△vl, where wj ∈ [µ] corresponds to a model of µ
that is at minimal Hamming distance to φ and vk, vl ∈ [φ].
We infer from this that wi△vl = ((wj△vk)△vl)△vl =
wj△vk, and thus |wi△vl| = |wj△vk|. But this contradicts
the assumed minimality of wj△vk.

Note that postulate R2 is not present in Theorem 1, even
though the Dalal operator satisfies it, as it follows from the
other postulates.

Theorem 1 can be read not just as a characterization of the
Dalal operator, but also as a recipe, or a step-by-step argu-
ment, for constructing φ ◦ µ from a set of simpler problems,
in a srquence of steps guided by the transformations inher-
ent in postulates RN, RA, RF and RBOB. The form such an
argument could take is illustrated in the following example.
Example 4. Consider formulas [φ] = {a, b} and [µ] =
{ac, abc} and note, first, that [φ ◦dH,min µ] = {ac}, as ac
minimizes overall distance to φ via dH(a, ac) = 1. Assume,
however, that we are given a revision operator ◦ that is not

defined using distances, but is presented only as satisfying
postulates R1, R3−6, RN, RA, RF and RBOB. An agent re-
vising according to ◦ can use the postulates to work its way
toward [φ ◦dH,min µ] without knowing anything about dis-
tances. This can be done by, first, splitting the problem into
two revision problems, one for each model of φ: φa ◦ µ and
φb ◦ µ, where [φa] = {a} and [φb] = {b}. The next step
consists in reducing both problems to the common denomi-
nator of revising with prior belief ε, where [ε] = {∅}. This is
done by flipping a and b, respectively, in the two problems,
to obtain the revision scenarios ε◦fa(µ) and ε◦fb(µ), with
[fa(µ)] = {fa(ac), fa(abc)} = {ac△a, abc△a} = {c, bc}
and, likewise, [fb(µ)] = {abc, ac} (see Figure 1). This move
preserves Hamming distances in a crucial way: to take one
instance, dH(a, ac) = 1, where a ∈ [φ] and ac ∈ [µ], coin-
cides with the Hamming distance between ∅ and fa(ac) = c,
and this distance coincides with the number of atoms in
fa(ac) = c. The operator ◦, of course, knows nothing of
this: it performs these transformations solely because pos-
tulate RBOB warrants them. Thus, in the next step ε chooses
among the models obtained from the successive flips of µ,
i.e., it solves the revision problem ε ◦ (fa(µ) ∨ fb(µ)). Pos-
tulates R1, R3-R6, RN and RA, via the argument in Lemma
1, dictate that ε chooses the interpretation of minimal cardi-
nality, such that [βφ,µ] = [ε ◦ (fa(µ) ∨ fb(µ))] = {c}. The
result obtained, i.e., interpretation c, is the result of flipping
the atom a in the interpretation ac ∈ [µ]: to recover ac from
c, we ‘reverse’ the original flips: one flip by a and one by b,
to get [fa(βφ,µ) ∨ fb(βφ,µ)] = {ac, bc}. By postulate RBOB,
we have that [φ◦µ] = [fa(βφ,µ)∨fb(βφ,µ)∧µ] = {ac}, i.e.,
exactly the result produced by the Dalal operator ◦dH,min.

5 Characterizing the Hamming Distance
Min-Max Operator

The postulates put forward in Section 4 for characteriz-
ing the Dalal operator prove their worth in an additional
sense, as they can be put to use, with minimal modifications,
in characterizing the Hamming distance min-max operator
◦dH,max. This is the topic of the current section.

Of the newly proposed postulates, the Neutrality, Addi-
tion and Flipping postulates (RN, RA and RF, respectively)
can be used as stated in Section 4, while the Best-of-Best
postulate RBOB has to be modified. Intuitively, this makes
sense: postulates RN, RA and RF are used in regulating what
happens when the prior information is a complete formula
φv (alternatively, for what happens in the ranking that corre-
sponds to the v-column in the table of distances, e.g., Table
1), in which case, as per Proposition 2, all operators pre-
sented here coincide, whereas postulate RBOB instructs us
how to choose when the prior information consists of more
than one model (alternatively, across different columns of
the table of distances). Correspondingly, postulate RBOB en-
codes the constraint that revision should pick the best of the
best models across all of the φv’s, for v ∈ [φ], but this is
not the rule that defines operator ◦dH,max. For ◦dH,max we
need a principle that mandates picking the best of the worst
models across the φv’s. The key fact allowing us to do this
relies on a certain duality specific to the Hamming distance

27



that will guide us in designing an appropriate postulate for
◦dH,max, and which is summarized in the following result.
Recall that A is the set of all atoms.
Lemma 4. If v and w are interpretations and |A| = n, then
dH(v, w) = n− dH(A \ v, w).
Intuitively, Lemma 4 implies that the further away w is from
v (in terms of Hamming distance), the closer w is to A \ v.
In particular, we can infer that:

dH(v, w) = dH(∅, |v△w|)
= dH(∅, fv(w))
= n− dH(A, fv(w)). (1)

Hence, w ∈ [µ] is among the models of µ at maximal Ham-
ming distance to v if and only if fv(w) is, among the mod-
els of fv(µ), the closest to A, or, more intuitively, the worst
model of µ according to v is the best model of fv(µ) ac-
cording to α, where [α] = A. We can thus define the best-
of-worst formula γφ,µ with respect to φ and µ as:

γφ,µ = ε ◦
( ∨

v∈[φ]

(
α ◦ fv(µ)

))
,

i.e., as the result of revising the null formula ε by a dis-
junction made up of the results obtained from a sequence of
revisions of the full formula α. In this sequence α is revised,
in turn, by fv(µ), for every model v ∈ [φ].

Thus, similarly as for βφ,µ from Section 4, γφ,µ simulates
the process of going through the table of Hamming distances
(e.g., Table 1), except that in this case we are interested in (i)
selecting the worst elements according to each φv , for v ∈
[φ], an operation reflected by the revision α◦fv(µ), and (ii)
selecting the best among these worst elements, an operation
reflected by submitting the results obtained previously to ε
for an additional round of revision. A bespoke postulate,
called the Best-of-Worst postulate RBOW, recovers the models
of µ from the models of γφ,µ:

(RBOW) φ ◦ µ ≡
(∨

v∈[φ] fv(γφ,µ)

)
∧ µ.

Postulate RBOW stipulates that the result of revising φ by µ
consists of those models of µ that come out of flipping γφ,µ
by each model of φ, in this way reversing the initial flips that
delivered the revision formula posed to ε.

The proof that the postulates put forward actually char-
acterize the ◦dH,max operator hinges on γφ,µ selecting in-
terpretations corresponding to models w of µ that minimize
maximal Hamming distance to φ.
Lemma 5. If ◦ is a revision operator that satisfies postulates
R1, R3-R6, RN, RA, RF and RBOW, then, for any formulas φ
and µ and interpretations w and v, it holds that w△v ∈
[γφ,µ] if and only if w ∈ argminw∈[µ] maxv∈[φ] dH(v, w).

Proof. Using postulates RN, RA and RF we can prove that α
selects the models of µ that minimize Hamming distance to
A, in a way completely analogous to Lemmas 1 and Lemma
2. Thus, using Equality 1, α ◦ fv(µ) selects interpretations
w△v such that dH(v, w) = maxw′∈[µ] dH(v, w

′). Then,
using Lemma 1, we obtain that γφ,µ selects interpretations
w△v where w minimizes max-distance to φ.
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Figure 2: To get the best of the worst models of µ according to
a and b we got through two rounds of revision: first, flip µ by a
and by b. The results of α ◦ fa(µ) and β◦fb(µ) correspond to the
models of µ at maximal distance to a and b, respectively. This
result is further refined by passing it to ε for revision.

With Lemma 5 the characterization of ◦dH,max follows im-
mediately.

Theorem 2. If ◦ is a revision operator, then ◦ satisfies pos-
tulates R1, R3-R6, RN, RA, RF and RBOW iff ◦ ≡ ◦dH,max.

The proof is similar, in its essentials, to the proof of The-
orem 1 and is therefore omitted. The following example,
however, illustrates how the mechanism works on a concrete
case.

Example 5. Consider formulas [φ] = {a, b} and [µ] =
{ac, abc}, as in Example 4, over the set A = {a, b, c}
of atoms. Using the ◦dH,max operator we obtain that
[φ ◦dH,max µ] = {abc}, but we can show that a (puta-
tively different) revision operator ◦ known only to satisfy the
stated postulates arrives at the same conclusion. It does so
by first figuring out, using postulates R1, R3-R6, RN, RA,
RF that [α ◦ fa(µ)] = {bc} and [α ◦ fb(µ)] = {abc},
with α, in this case, such that [α] = {abc} (see Figure
2 for an illustration). At this point, we have obtained the
(flipped versions of) the models of µ at maximal Hamming
distance to a and b, respectively. FOllowing this, we get that
[γφ,µ = [ε ◦

(
(α ◦ fa(µ)) ∨ (α ◦ fb(µ))

)
] = {bc}, where bc

was obtained from abc by flipping a. Postulate BOW then be
recovers abc through an extra flip of a.

6 Characterizing the Hamming Surprise
Min-Max Operator

Finally, we return to the operator ◦sH,max and, using the
wisdom gained in Section 4 and 5, provide it with an ax-
iomatic foundation. In doing so we pursue that same strat-
egy as in the previous sections: (i) establish, axiomatically,
what the revision result should be in the ‘base’ case in which
the prior belief is of a simple type, which can be decided by
appeal to an argument using appealing notions of symmetry;
(ii) reduce, axiomatically, an arbitrary instance φ ◦ µ of re-
vision to the base case, in a manner that preserves the result
of ◦sH,max on the given instance.

The base case for this section consists, as for the ◦dH,max

operator, of revision when prior information is either ε or
α, and we want to make sure we employ a set of postulates
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that deliver the expected result: since ◦sH,max behaves ex-
actly like the Dalal and ◦dH,max operators when prior infor-
mation is complete, postulates RN, RA and RF can be used
without modification (the assumption of completeness made
in Section 4 pays off here). We can also use the standard
postulates R1 and R3-R4, which we already know ◦sH,max

satisfies (see Proposition 1). Postulates R5-R6 are, however,
problematic, since ◦sH,max does not satisfy them in their
unrestricted form (also Proposition 1). However, the equiva-
lence of ◦sH,max with the Dalal and ◦dH,max operators when
prior information is complete means that we can use postu-
lates R5 and R6, restricted to the case when φ is complete.
The restrictions are denoted Rc5 and Rc6, respectively.

The next step involves engineering a choice situation fo-
cused on α and ε that is equivalent, in terms of what gets
chosen, to the mechanics of ◦sH,max. This is done us-
ing a few intermediary notions, as follows. If φ and µ
are formulas such that [φ] = {v1, . . . , vn}, the adjunc-
tion interpretations x1, . . . , xn are interpretations consist-
ing of completely new atoms such that |xi| = dH(vi, µ).
For vi ∈ [φ], the corrected interpretation v∗i is defined as
v∗i = vi∪ (x1∪ . . . xi−1∪xi+1∪· · ·∪xn), i.e., as the result
of adding to vi all the adjunction interpretations, except xi.
Then, the best-surprise formula σφ,µ with respect to φ and
µ is defined as:

σφ,µ = ε ◦
( ∨

vi∈[φ]

(
α ◦ fv∗i (µ)

))
.

In words, inside the main parenthesis we repeatedly revise
α by a flipped version of µ: one revision for every model vi
of φ, flipping µ by the atoms in the corrected interpretation
v∗i . The disjunction of all these revisions is then passed on
to α for another round of revision.

The reasoning behind this definition is that it recasts the
surprise min-max revision scenario for [φ] = {v1, . . . , vn}
and µ into a min-max distance revision scenario for [φ∗] =
{v∗, . . . , v∗n} and µ (which we know how to axiomatize from
Section 5), while keeping the relative ranking of the models
of µ intact. The following result makes this precise.

Lemma 6. If φ and µ are propositional formulas, vi, vk ∈
[φ] and wj , wℓ ∈ [µ], then sµH(vi, wj) ≤ sµH(vk, wℓ) iff
dH(v

∗
i , wj) ≤ dH(v∗j , wℓ).

Proof. Take [φ] = {v1, . . . , vn}, and mi = dH(vi, µ), for
vi ∈ [µ]. We have that:

sµH(vi, wj) ≤ sµH(vk, wℓ) iff
dH(vi, wj)−mi ≤ dH(vk, wℓ)−mk.

We now add
∑

1≤r≤nmr on both sides, to get an equiva-
lence with dH(vi, wj) +

∑
1≤r≤n,r ̸=imr ≤ dH(vk, wℓ) +∑

1≤r≤n,r ̸=kmr. This, in turn, is equivalent to dH(vi ∪
(
⋃

1≤r≤n,r ̸=i xr), wj) ≤ dH(vk ∪ (
⋃

1≤r≤n,r ̸=k xr), wℓ),
which can be rewritten as dH(v∗i , wj) ≤ dH(v∗i , wℓ)
Intuitively, the table of Hamming distances for [φ∗] =
{v∗, . . . , v∗n} and µ can be thought of as obtained from the
surprise table for φ and µ (see, e.g., Table 2) by adding a

constant term (i.e.,
∑

1≤r≤nmr) to every entry, a transfor-
mation that does not modify the relationships between the
values: the v∗i are the interpretations that induce the appro-
priate distances. This ensures that the models of σφ,µ, ob-
tained through a min-max distance type of postulate, corre-
spond to models of µ that minimize maximum surprise with
respect to φ and relative to µ, and warrants the following
postulate, called Best-of-Worst-Surpise:

(RBOWS) φ ◦ µ ≡
(∨

v∈[φ] fv∗(σφ,µ)

)
∧ µ.

As expected, the RBOWS postulate delivers exactly those mod-
els of µ that minimize maximum surprise, and underpins the
final characterization result.
Theorem 3. A revision operator ◦ satisfies postulates R1,
R3-R4, Rc5-Rc6, RN, RA, RF and RBOWS iff ◦ ≡ ◦sH,max.
The following example illustrates the way in which postulate
RBOWS obtains the revision result.
Example 6. Consider, again, formulas [φ] = {a, b} and
[µ] = {ac, abc}. We have that [φ ◦sH,max µ] = {ac, abc}.
Assuming we are working with an operator ◦ of which the
only thing we know is that it satisfies the postulates in The-
orem 3, we notice that dH(a, µ) = 1 and dH(b, µ) = 2. The
postulates then direct us to compute the Hamming distance
min-max result for [φ∗] = {ayz, bx} and µ, with x and yz
as the adjunction interpretations. The result obtained in this
way is exactly {ac, abc}.

7 Conclusion
We have introduced the Hamming surprise min-max opera-
tor ◦sH,max, a revision operator that minimizes surprise rel-
ative to the prior belief as well as the newly acquired in-
formation. We have shown that, even though ◦sH,max does
not satisfy all standard KM revision postulates, it is under-
pinned, in its choice behavior, by principles similar to those
guiding established revision operators, among them appeal-
ing symmetry notions such as invariance under renamings
and flips. When unearthed and formulated as logical pos-
tulates, these principles (or slight variations thereof) turned
out to be powerful enough to fully characterize not just the
surprise operator, but also the existing Dalal and Hamming
distance min-max operator.

One obvious direction for future work lies in taking the
idea of context dependence further: what other aspects
of the environment influence an agent’s plausibility rank-
ings? Things that come to mind are issues of trust, the
‘strangeness’ of the new information, or peer effects. An al-
ternative is to exploit the bottom-up, DIY nature of some of
the postulates presented here in order to construct a frame-
work, similar to that employed in collective decision-making
(Cailloux and Endriss 2016), for offering justifications for
revision results, i.e., human-readable and at the same time
rigorous step-by-step arguments for how to obtain a partic-
ular result, starting from a specific set of postulates. Finally,
the assumptions embedded in the present treatment call for
taking the epistemic stance seriously, and investigating the
relative worth of the various revision operators with respect
to recovering the ground truth.
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Abstract

We present an approach for incorporating qualitative condi-
tional independence into belief revision. Our stance is that,
as with probability, conditional independence arises far more
frequently than the unconditional independence studied in
previous work. Our approach uses multivalued dependencies
to represent domain-dependent conditional independence as-
sertions. In particular, the multivalued dependency X � Y
expresses that assertions over the subvocabularies Y and Y
are independent whenever complete information is known
about the subvocabulary X . We introduce the class of par-
tially compliant revision operators, wherein revising a KB
satisfying X � Y by a formula expressed over Y results
in the part of the KB expressed over Y remaining unchanged.
This helps ensure that partially compliant revision operators
result in minimal changes to existing beliefs, as irrelevant ex-
isting beliefs are left unchanged. Furthermore, we identify
a subclass of partially compliant operators, called fully com-
pliant operators, for which the same is true when revising by
a formula expressed over XY rather than just Y . For both
classes, we provide representation results which characterise
compliance semantically in terms of faithful rankings. Fi-
nally, we compare our use of multivalued dependencies to
existing work on independence in belief revision.

1 Introduction
Belief revision is concerned with the situation in which an
agent is confronted with a new fact to incorporate into its be-
lief set. If the new fact is inconsistent with the current belief
set, the challenge is to revise these beliefs so that as many of
the current beliefs as possible are retained while incorporat-
ing the new fact and maintaining consistency. This process
is formalised as a belief revision operator ∗ which takes a
current knowledge base K and a formula for revision φ and
produces a revised knowledge base K ∗ φ.

In order to formalise the requirement that revision should
result in a minimal change to existing beliefs, a number of
authors have turned to irrelevance, suggesting that those be-
liefs irrelevant to the formula for revision should remain un-
changed (Gardenfors 1990). This also has the potential ad-
vantage of opening a pathway to more efficient belief revi-
sion operators, by being able to exclude irrelevant beliefs
from the revision process. However, so far, these notions of
irrelevance have been extremely strict, considering beliefs

as irrelevant only when there is no connection, however in-
direct, between them.

To see the issue, consider the following situation: an agent
is informed that refrigerators require power, power is gener-
ated in the local area by wind turbines, and wind turbines kill
birds. It would seem that information about birds would be
independent of information concerning refrigerators; how-
ever, this is not the case, given the link between refriger-
ators and birds mediated by wind turbines. Consequently,
existing approaches would consider refrigerators relevant to
birds. However, when revising our beliefs about birds there
would seem to be no reason for our beliefs about refrigera-
tors to change. Hence it seems we need a more nuanced and
general notion of irrelevance.

This situation has a parallel in probability theory. In prac-
tice, random variables are rarely independent. However,
they are frequently conditionally independent. As a result,
Bayesian networks have been developed to exploit condi-
tional independence properties, thereby overcoming the oth-
erwise seemingly-intractable complexity of probabilistic in-
ference (Pearl 2014).

In this paper we take a suitable analogue of conditional
independence for determining which beliefs may be consid-
ered irrelevant to others in a given context. We then ap-
ply this notion to belief revision, and we study those revi-
sion operators which comply with this formulation of condi-
tional independence. Our approach is given in terms of the
Katsuno-Mendelzon approach for belief revision. In our ap-
proach, we assume that conditional independence is a prop-
erty of the underlying domain, and we consequently assume
that a knowledge engineer has provided a collection of such
conditional independence assertions. These assertions can
then be taken into account in the belief revision process. To
this end, we study two related notions of what it means for
a belief revision operator to take into account conditional
independencies. We provide postulates that characterise
conditional independence in revision, and which generalise
previous approaches to (non-conditional, absolute) indepen-
dence. Furthermore, we provide representation results, giv-
ing conditions on faithful rankings which correspond to the
sets of postulates characterising conditional independence in
revision.

The next section covers background material: we first
present useful definitions and notation, after which we give

31



background material on belief revision, including existing
approaches to independence in belief revision, along with
conceptions of conditional independence in logic. Section 3
introduces the class of belief revision operators which par-
tially comply with a multivalued dependency, and charac-
terises partial compliance in terms of faithful rankings. Sec-
tion 4 studies the stronger property of full compliance with
a multivalued dependency, again with a characterisation in
terms of faithful rankings. In Section 5 we examine and
clarify the relationship between logical conditional indepen-
dence, multivalued dependencies, and syntax splitting. Fi-
nally, Section 6 discusses our approach, related work, and
future work, after which we have a brief conclusion.

2 Background Material
2.1 Preliminaries and Notation
Let V = {p, q, r, . . . } be a finite set of propositional vari-
ables, arbitrary subsets of which are denoted by X , Y ,
and Z. We sometimes juxtapose these subsets to represent
unions, e.g. XY = X∪Y . The relative complement V −X
will be denoted byX . Every subsetX of V induces a propo-
sitional language L(X) consisting of formulae constructed
from the elements of X by applying the propositional con-
nectives ¬, ∧, ∨, and→. We write L for the entire proposi-
tional language L(V ).

Lower case Greek letters φ, ψ, γ, . . . will be used to range
over formulae in a propositional language, with K playing
a special role of a formula thought of as representing the
knowledge base of an agent.

Also associated to every subset X of V is the set ΩX of
functions v : X → {T, F} referred to as models or possible
worlds overX . We will freely think of these possible worlds
as either these functions, or as conjunctions of the literals
satisfied by them. Hence, for us, {x 7→ T, y 7→ F} is the
same thing as x ∧ ¬y. Given a possible word u over V
alongside a subset X of V , we write uX for the reduct of u
to a possible world over X , that is the function uX : X →
{T, F} agreeing with u.

When φ is a formula we write [φ] for the set of models
over V satisfying φ, so that [φ] ⊆ ΩV . We write φ ` ψ to
indicate [φ] ⊆ [ψ], and φ ≡ ψ to indicate [φ] = [ψ].

We write V (φ) for the minimal set of propositional vari-
ables for which there exists a formula ψ logically equivalent
to φ containing only occurrences of variables in V (φ), for
instance V (q ∧ (p ∨ ¬p)) = {q}.

2.2 Projections of a Propositional Formula
In order to speak about components of a knowledge base
K expressed in various subvocabularies we will introduce
the following analogue of the projection operator from the
relational algebra (Abiteboul, Hull, and Vianu 1995).
Definition 2.1. If φ is a propositional formula, and X ⊆ V ,
then the projection φX of φ onto X is defined up to logical
equivalence as the formula φX such that

[φX ] = {u ∈ ΩV | ∃v ∈ [φ], vX = uX}.
Example 2.1. The projection of (p → q) ∧ (q → r) onto
{p, q} is (p→ q), whereas the projection of (p→ q)∧(q →
r) onto {q, r} is (q → r).

Regarding a set of possible worlds as tuples in a relation, it
follows that φX defines the set of worlds resulting from pro-
jecting this “relation” onto the “attributes” in X , then taking
the Cartesian product of this with all possible interpretations
of the remaining variables. This operator also appears as
the notion of a uniform interpolant, a model-theoretic reduct
(Hodges 1993), or as the dual of a forgetting operator1 (Del-
grande 2017). For our purposes, we will rely on the follow-
ing property of projections:
Theorem 2.1. If φ ` ψ and V (ψ) ⊆ X then φ ` φX and
φX ` ψ.

2.3 Revision Operators and Faithful Rankings
A belief revision operator, as formalised by Alchourron,
Gärdenfors, and Makinson (1985), is a binary function ∗
which maps a belief set K and a formula φ and produces
a revised belief set K ∗ φ in a manner satisfying the AGM
postulates. These postulates attempt to capture the require-
ment that K ∗ φ must include φ alongside as many beliefs
from K as possible, while maintaining consistency. In other
words, K ∗ φ results from a minimal change to the existing
belief set K which results in φ being believed. Note that be-
lief revision captures an agent revising its beliefs about the
present state of affairs, whereas updating its beliefs when
the state of the world changes is the subject of belief update
operators, cf. (Peppas 2008).

In our setting of a finite vocabulary, we can simplify mat-
ters by working instead with the Katsuno-Mendelzon ap-
proach wherein the belief sets K and K ∗ φ are represented
as single formulas, and the AGM postulates are rephrased in
the following manner (Katsuno and Mendelzon 1991).
Definition 2.2. A binary function ∗ : L × L → L is a be-
lief revision operator if it satisfies the following basic pos-
tulates:
R1. K ∗ ψ ` ψ;
R2. If K ∧ φ is satisfiable then K ∗ φ ≡ K ∧ φ;
R3. If φ is satisfiable then K ∗ φ is satisfiable;
R4. If K1 ≡ K2 and φ1 ≡ φ2 then K1 ∗ φ1 ≡ K2 ∗ φ2.
We will say that a belief revision operator ∗ satisfies the sup-
plementary postulates when it satisfies the following:
R5. (K ∗ φ) ∧ ψ ` K ∗ (φ ∧ ψ);
R6. If (K∗φ)∧ψ is satisfiable thenK∗(φ∧ψ) ` (K∗φ)∧ψ.

Unless we explicitly specify that a belief revision operator
satisfies the supplementary postulates, we will assume only
that the basic postulates are satisfied. Note that this parti-
tioning of the Katzuno-Mendelzon postulates into basic and
supplementary postulates exactly mirrors the organisation of
the original AGM postulates into basic and supplementary
postulates.

When working with belief revision operators satisfying
the basic and supplementary KM postulates, Katsuno and
Mendelzon (1991) show that we may semantically charac-
terise the belief revision operator as determining K ∗ φ by
selecting those worlds in [φ] which are minimally implau-
sible with respect to a ranking on worlds. To this end, they

1In the sense that φY ≡ forget(φ, V − Y ).
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introduce binary relations≤K on worlds referred to as faith-
ful rankings wherein u ≤K v means that v is at least as im-
plausible as u from the perspective of an agent knowing only
K.

Definition 2.3. A faithful ranking forK is a binary relation
≤K on possible worlds which satisfies the following proper-
ties:

1. w ≤K w′ and w′ ≤K w′′ implies w ≤K w′′.
2. Either w ≤K w′ or w′ ≤K w.
3. w ≤K w′ for all w′ if and only if w |= K.

IfW is a set of possible worlds and≤ is a faithful ranking,
we write min(W,≤) for the set of worlds in W which are
minimal under≤. That is to say, x ∈ min(W,≤) if and only
if x ∈W and x ≤ y for all y ∈W .

Theorem 2.2 ((Katsuno and Mendelzon 1991)). A binary
function ∗ : L × L → L is a belief revision operator sat-
isfying the supplementary postulates if and only if for ev-
ery K there exists a faithful ranking ≤K for K such that
[K ∗ φ] = min([φ],≤K).

2.4 Relevance in Belief Revision
Although the general consensus is that a belief revision op-
erator must satisfy the KM postulates, these postulates place
few constraints on the behaviour of belief revision operators.
For instance, they fail to rule out the belief revision operator
defined by setting K ∗φ = K ∧φ if K ∧φ is consistent and
K ∗ φ = φ otherwise2. This is in tension with the objective
of belief revision to preserve as many of the original beliefs
as possible.

In (Parikh 1999) the notion of minimal change is ad-
dressed via considering an additional postulate asserting that
whenever the knowledge base is divisible into two unrelated
components, then revision by a formula pertaining to only
one of those components should leave the other component
unchanged. For a KM belief revision operator ∗, Parikh’s
postulate can be expressed as follows:

P If K ≡ K1 ∧ K2 where V (K1) ⊆ X1, V (K2) ⊆ X2,
X1 ∩X2 = ∅, and φ is such that V (φ) ⊆ X1 then

K ∗ φ ≡ (K1 ~ φ) ∧K2

where~ is a belief revision operator for the language X1.

The statement of Parikh’s postulate admits a weak reading
wherein ~ varies as a function of K, as well as a strong
reading wherein ~ is fixed. In order to clarify this situation,
Peppas et al.(2015) introduced the following variations (P1)
and (P2) of (P) which we state here in the KM setting:

P1. If V (K1) ∩ V (K2) = ∅ and V (φ) ⊆ V (K1) then
((K1 ∧K2) ∗ φ)V (K2) ≡ K2.

P2. If V (K1) ∩ V (K2) = ∅ and V (φ) ⊆ V (K1) then
((K1 ∧K2) ∗ φ)V (K1) ≡ (K1 ∗ φ)V (K1).

Intuitively, (P1) states that when revising K by φ, only
the part of K relevant to φ is revised. The role of (P2) is to

2Consider the rankings ≤K where u ≤K v for all u, v 6∈ [K].

ensure that whenever K1 and K2 agree on the beliefs rele-
vant to φ, then the revisions Ki ∗ φ change this part in the
same way.

Using these clarified postulates, Peppas et al. (2015) de-
velop a characterisation of those belief operators satisfying
(P1) and (P2), and show that Dalal’s belief revision operator
satisfies the basic and supplementary KM postulates as well
as (P1) and (P2). Subsequent work has extended these re-
sults to epistemic states (Kern-Isberner and Brewka 2017),
to belief contraction operators (Haldimann, Kern-Isberner,
and Beierle 2020), to epistemic entrenchments and selec-
tion functions (Aravanis, Peppas, and Williams 2019), and
to preferential entailment relations (Kern-Isberner, Beierle,
and Brewka 2020).

Rather than considering belief revision operators that sat-
isfy (P1), Delgrande and Pappas (2018) consider belief revi-
sion operators which satisfy an analogue of Parikh’s postu-
late for only certain theories and a subset of possible syntax
splittings. The idea is that the knowledge engineer will spec-
ify a number of irrelevance assertions σ � Y 3, and belief
revision operators will be required to comply with these as-
sertions in the following sense:
Definition 2.4. A belief revision operator ∗ complies with
σ � Y at K when either K 0 σ or for every consistent φ
with V (φ) ⊆ Y the following postulate is satisfied:
R If K ` ¬φ then K ∗ φ ≡ (K ∗ φ)Y ∧KY .

For a belief revision operator ∗ induced from a family
of faithful rankings {≤K}K , Delgrande and Pappas (2018)
show that complying with σ � Y is equivalent to stating
that, for every K entailing σ, the following postulates are
satisfied:
S1. If uY = vY , K ` ¬uY , and KY 0 ¬u then u ≤K v;
S2. If uY = vY , K ` ¬uY , KY 0 ¬u, and KY ` ¬v then
u <K v;

2.5 Conditional Independence
Parikh’s postulate, and the majority of approaches descend-
ing from it, suffers from the limitation that the knowledge
base must be able to be split into disjoint components in
order for the postulate to apply. This limitation is already
noted in (Chopra and Parikh 2000) which attempts to over-
come this limitation by introducing the notion of a belief
structure, which splits a knowledge base into a number of
compartments which may overlap in vocabulary. However
this compartmentalisation is fixed which can lead to infor-
mation being lost.

This situation has an analogue in probability theory,
where unconditional independence is a powerful but rarely
applicable assumption. Rather, it is conditional indepen-
dence which arises most frequently, and in fact has become
a central component of modern probabilistic modelling and
inference.

Inspired by probability theory, Darwiche (1997) intro-
duces a notion of conditional logical independence together

3For the reader familiar with multivalued dependencies, the
similarity of this notation was a deliberate choice in (Delgrande
and Peppas 2018).
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with a number of equivalent characterisations tailored for
different reasoning problems. We will adopt the following
notion, adapted from (Lang and Marquis 1998) and (Lang,
Liberatore, and Marquis 2002).

Definition 2.5. If X , Y1, and Y2 are pairwise disjoint sub-
sets of V and K is a propositional formula over V then
Y1 and Y2 are conditionally independent given X mod-
ulo K when for any world u and formulae φ1 and φ2 with
V (φ1) ⊆ Y1 and V (φ2) ⊆ Y2 such that K ∧ uX ` φ1 ∨ φ2
either K ∧ uX ` φ1 or K ∧ uX ` φ2.

Example 2.2. The sets {p} and {r} are conditionally inde-
pendent given {q} modulo K := (p → q) ∧ (q → r). This
follows from Theorem 5.2 below. To verify this for a spe-
cific case, let u be an arbitrary possible world and consider
that K ∧ u{q} ` ¬p ∨ r. Either u(q) = F in which case
K ∧ u{q} ` ¬p, or u(q) = T in which case K ∧ u{q} ` r,
as required.

Taking inspiration instead from database theory, we can
regard the worlds satisfying a propositional formula K as
constituting a database table wherein the attributes are the
propositional variables in V . Then, we may consider the
notion of a multivalued dependency:

Definition 2.6. A propositional formulaK satisfies the mul-
tivalued dependency X � Y when for any models v and u
of K such that vX = uX there exists a model w of K such
that wY = vY and wY = uY .

Example 2.3. The formula K = (p→ q) ∧ (q → r) ∧ (q ∧
r → s) satisfies the multivalued dependencies {q} � {p}
and {q}� {r, s}.

In Section 5 we show that multivalued dependencies are
equivalent to a restricted case of conditional independence,
and that both are equivalent to a generalisation of Parikh’s
syntax-splittings.

3 Compliance with Multivalued
Dependencies

Parikh’s original postulate considers only unconditional in-
dependence. However unconditional independence is a
strong condition which is unrealistic to expect to hold often.
Consider even a seemingly clear situation, such as a knowl-
edge base containing knowledge about birds and knowledge
about refrigerators. These topics would seem to be indepen-
dent. However, suppose we have that refrigerators require
power, power is generated in the local area by wind turbines,
and wind turbines often kill birds. Now, the ability to split
the knowledge base is gone. However, we can observe that if
the only link between birds and refrigerators passes through
the language of wind turbines, then when revising knowl-
edge about birds, our knowledge concerning refrigerators is
not impacted, provided that our knowledge of wind turbines
is unaffected.

In our approach, the knowledge engineer will represent
their understanding of conditional independencies between
components of the knowledge base as a collection of mul-
tivalued dependencies. The intuitive interpretation being
that a multivalued dependency X � Y captures that the

only connections between knowledge over Y and knowl-
edge over Y arise from knowledge over X . In our exam-
ple scenario, knowledge about turbines comprises the only
connection between birds and refrigerators, so the knowl-
edge engineer would represent this via the multivalued de-
pendencies TurbineV ocabulary � BirdV ocabulary and
TurbineV ocabulary � RefrigeratorV ocabulary.

Once the knowledge engineer has selected a collection of
multivalued dependencies which capture the conditional in-
dependence relations between different areas of knowledge
being worked with, these multivalued dependencies are in-
corporated into the belief revision process by requiring com-
pliance in the following sense:

Definition 3.1. If X and Y are disjoint subsets of V then a
belief revision operator ∗ partially complies with X � Y if
the following postulate holds:

PCR. If K is consistent and satisfies X � Y , V (φ) ⊆ Y ,
and φ is consistent then

K ∗ φ ≡ (K ∗ φ)XY ∧KY .

Any belief revision operator partially complying with
X � Y must, when revising a knowledge base satisfying
X � Y by a consistent formula over Y , preserve the Y
component of the knowledge base unchanged. Returning
to our example, supposing our knowledge base K satisfies
TurbineV ocabulary � BirdV ocabulary and we revise
by some formula φ in the bird vocabulary, we would have
that knowledge over BirdV ocabulary is preserved. In par-
ticular, our beliefs concerning the relationship between tur-
bines and refrigerators could not be changed by any formula
φ only referring to birds.

We refer to this as only partial compliance, for in the
next section we will introduce a postulate which applies to
suitable φ with V (φ) ⊆ XY rather than just for φ with
V (φ) ⊆ Y .

3.1 Representation via Faithful Rankings
Those belief revision operators which partially comply with
a multivalued dependency can be characterised semantically
by conditions on their corresponding faithful rankings.

Definition 3.2. If ≤K is a faithful ranking for K then ≤K
partially respects X � Y if either K does not satisfy X �
Y or the following conditions are satisfied:

PCS1. If uXY = vXY , K ` ¬uY , u ∈ [KY ], and v <K u
then there exists w such that wY = uY and w <K v.

PCS2. If KY ` ¬v then there exists a world u ∈ [KY ] such
that uY = vY and u <K v.

Condition (PCS1) states that when worlds u and v with
uXY = vXY are ruled out by K on the basis of uY , yet u
is consistent with KY , then either u is at least as plausible
as v or there is some world w with wY = uY strictly more
plausible than both u and v. Condition (PCS2) further states
that a possible world v inconsistent with KY is always less
plausible than some possible world u satisfying KY , and
furthermore such a u may be obtained from v by modifying
only the variables in Y .
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Theorem 3.1. If ∗ is a belief revision operator satisfying
the supplementary postulates which partially complies with
X � Y , then there exist faithful rankings {≤K}K which
partially respect X � Y such that [K ∗φ] = min([φ],≤K)
for all K and φ.

Proof. By Theorem 2.2 there exist faithful rankings {≤K}K
such that [K ∗ φ] = min([φ],≤K) for all K and φ. Suppose
∗ partially complies with X � Y and consider a consistent
formula K. In the case K does not satisfy X � Y then ≤K
partially respects X � Y in the trivial sense. Otherwise, K
satisfies X � Y and we must demonstrate that≤K satisfies
(PCS1) and (PCS2).

Part 1. Suppose that (PCR) holds. In order to verify
(PCS1), suppose that u and v are worlds such that uXY =
vXY , K ` ¬uY , and u ∈ [KY ], and v <K u. Applying
(PCR) it follows that

[(K ∗ uY )XY ] ∩ [KY ] = [K ∗ uY ].

Assume for the sake of contradiction that u ∈ [K ∗ uY ].
As u ∈ [uY ] and uXY = vXY it follows that v ∈ [uY ],
which means that u ≤K v. However, this contradicts our
assumption that v <K u, so it must be the case that u 6∈
[K ∗ uY ]. Therefore, as u ∈ [KY ], it follows that u 6∈
[(K ∗uY )XY ], and thus v 6∈ [(K ∗uY )XY ] as uXY = vXY .
Theorem 2.1 implies thatK ∗uY ` (K ∗uY )XY , hence v 6∈
[K∗uY ]. However, as [uY ] 6= ∅ there must exist some world
w ∈ [K ∗ uY ]. It follows that wY = uY , and furthermore
as v ∈ [uY ] yet v 6∈ [K ∗ uY ] it follows that w <K v as
required. Therefore, (PCS1) is satisfied.

Part 2. In order to verify (PCS2) suppose that v is a world
such that KY ` ¬v. Applying (PCR) it follows that

[K ∗ vY ] = [(K ∗ vY )XY ] ∩ [KY ].

By our supposition that KY ` ¬v it follows that v 6∈ [KY ],
and therefore v 6∈ [K ∗ vY ]. However, as [vY ] 6= ∅ it follows
that [K ∗ vY ] 6= ∅. Let u ∈ [K ∗ vY ] be arbitrary, and
observe that u ∈ [vY ] meaning uY = vY . As v ∈ [vY ]
but v 6∈ [K ∗ vY ] it follows then that u <K v as required.
Therefore, (PCS2) holds.

Theorem 3.2. If {≤K}K are faithful rankings which par-
tially respect X � Y , then the binary function defined by
[K ∗ φ] = min([φ],≤K) is a belief revision operator satis-
fying the supplementary postulates which partially complies
with X � Y .

Proof. By Theorem 2.2 it follows that ∗ is a belief revision
operator. Suppose K is a consistent formula such that ≤K
partially respects X � Y . In the case K does not sat-
isfy X � Y there is nothing to check, so assume K sat-
isfies X � Y . This means that ≤K satisfies (PCS1) and
(PCS2). Using this, we must demonstrate that [K ∗ φ] =
[(K∗φ)XY ]∩[KY ] whenever V (φ) ⊆ Y and φ is consistent.
In the case K ∧ φ is consistent then K ∗ φ ≡ K ∧ φ, and K
satisfyingX � Y meansK ≡ KXY ∧KY (cf. Theorem 5.3
below), henceK ∗φ ≡ KXY ∧KY ∧φ ≡ (K ∗φ)XY ∧KY .
Therefore, we will assume K ` ¬φ, in which case our proof
has two parts:

Part 1. In order to show [(K ∗ φ)XY ] ∩ [KY ] ⊆ [K ∗ φ]
suppose that u ∈ [(K ∗ φ)XY ] ∩ [KY ]. Being that u ∈
[(K ∗ φ)XY ] it follows that there exists v ∈ [K ∗ φ] such
that uXY = vXY . By our assumption that K ` ¬φ and
the observation that vY ` φ, it follows that K ` ¬vY . Be-
ing that uXY = vXY it follows that K ` ¬uY . Assume
for the sake of contradiction that v <K u. It then follows
from (PCS1) that there exists w with wY = uY = vY and
w <K v. However, v ∈ [φ] and wY = vY implies w ∈ [φ],
and therefore v ∈ [K ∗ φ] implies v ≤K w which contra-
dicts our assumption that w <K v. Therefore, our assump-
tion was wrong, so it must be the case that u ≤K v. This
means that u ∈ [φ] and v ∈ min([φ],≤K) which implies
u ∈ min([φ],≤K) = [K ∗ φ]. Thus, as u was arbitrary, it
follows that [(K ∗ φ)XY ] ∩ [KY ] ⊆ [K ∗ φ].

Part 2. In order to show [K ∗ φ] ⊆ [(K ∗ φ)XY ] ∩ [KY ]
start by observing that K ∗φ ` (K ∗φ)XY by Theorem 2.1.
Therefore, it suffices to verify that [K ∗φ] ⊆ [KY ]. Suppose
that v ∈ [K ∗ φ] but assume for the sake of contradiction
that v 6∈ [KY ]. It follows that KY ` ¬v, and therefore by
(PCS2) there exists a world u ∈ [KY ] such that uY = vY
and u <K v. Observing that v ∈ [φ], V (φ) ⊆ Y , and uY =
vY it follows that u ∈ [φ]. However, by our assumption that
v ∈ [K ∗ φ] this implies v ≤K u which is a contradiction
as u <K v. Therefore, it must be that v ∈ [KY ]. As v was
arbitrary, it follows that [K ∗ φ] ⊆ [(K ∗ φ)XY ] ∩ [KY ] as
required.

It follows that K ∗ φ ≡ (K ∗ φ)XY ∧KY , showing that
(PCR) holds.

3.2 Existence of Partially Compliant Operators
Parikh (1999) demonstrates the existence of a belief revision
operator satisfying postulate P as follows: Given a knowl-
edge base K and a formula φ to revise by which is incon-
sistent with K, first K is split as KY ∧KY where Y is the
smallest subset of V with V (φ) ⊆ Y andK satisfies ∅� Y .
K is then replaced by φ ∧ KY . In order to mirror this, we
need to show that we can construct such an analogous Y ,
which we refer to here as a section:
Definition 3.3. An X-section of φ is a subset Y ⊆ V (φ)
disjoint from X such that φ satisfies X � Y .

In order to construct a smallest section, we will make use
of the following properties of multivalued dependencies:
Lemma 3.1 (Abiteboul, Hull, and Vianu (1995)). 1. If
X � Y then X � V − Y ;

2. If Y ⊆ X then X � Y ;
3. If X � Y and Y � X then X � Z;
4. If X � Y then XZ � Y Z;

For any set of variablesX we can consider the set dK(X)
of Y such that K satisfies X � Y , that is

dK(X) := {Y | K satisfies X � Y }.
An important consequence of Lemma 3.1 is that dK(X)
forms a Boolean algebra:
Corollary 3.1 (Abiteboul, Hull, and Vianu (1995)). For any
K and X ⊆ V it follows that dK(X) is a Boolean algebra,
i.e. dK(X) is closed under unions, intersections, comple-
mentation, and it contains X .
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Theorem 3.3 (Conditional Sectioning Theorem). If there is
an X-section of K containing V (φ) then there is a unique
smallest X-section of K containing V (ψ).

Proof. Simply take the intersection of all Y ∈ dK(X) such
that V (φ) ⊆ Y .

Theorem 3.4. For every X ⊆ V there exists a belief revi-
sion operator ∗ which satisfies the basic postulates and par-
tially complies with every X � Y where Y ⊆ V is disjoint
from X .

Proof. Construct a belief revision operator ∗ as follows. For
every K and φ define K ∗ φ as K ∧ φ in the case K ∧ φ is
consistent. Otherwise, if there is anX-section ofK contain-
ing V (φ) choose the smallest X-section Y of K containing
V (φ) and defineK ∗φ as (K)Y ∧φ. Otherwise, defineK ∗φ
as φ.

4 Full Compliance with Multivalued
Dependencies

Consider again an agent aware of wind turbines killing birds,
and powering refrigerators, but with no knowledge directly
linking birds and refrigerators. Suppose that this agent is
given a new fact that modern wind turbines stop momen-
tarily when an approaching bird is detected, in order to al-
low its safe passage, and consider how the agent may revise
its knowledge base. A revision operator that partially com-
plies with TurbineV ocabulary � BirdV ocabulary is not
useful here, since we are revising by a formula in the lan-
guage of both turbines and birds. However, since the new
knowledge is consistent with the fact that turbines power
refrigerators, it seems that there is no reason why knowl-
edge about refrigerators should be changed. Thus, we can
consider a stronger notion of compliance wherein we can
revise by knowledge containing the shared variables about
turbines.
Definition 4.1. If X and Y are disjoint subsets of V then a
belief revision operator ∗ fully complies with X � Y if the
following postulate holds:
CR. If K is consistent and satisfies X � Y , V (φ) ⊆ XY ,

and φ ∧KY is consistent then
K ∗ φ ≡ (K ∗ φ)XY ∧KY .

Requiring that a belief revision operator fully comply with
X � Y is stronger than requiring that it partially comply
with X � Y , for the reason that (CR) applies to a broader
class of formulae. Consequently, we obtain the following
relationship between full and partial compliance:
Theorem 4.1. If X and Y are disjoint subsets of V and ∗ is
a belief revision operator which fully complies withX � Y ,
then ∗ partially complies with X � Y .

Proof. Suppose K is a consistent formula satisfying X �
Y , and φ is a consistent formula with V (φ) ⊆ Y . As K
and φ are consistent and V (KY ) ∩ V (φ) = ∅ it follows
that KY ∧ φ is consistent, and hence we may apply (CR) to
write K ∗ φ ≡ (K ∗ φ)XY ∧ KY . Which is exactly what
was required to show (PCR) is satisfied. Hence, ∗ partially
complies with X � Y .

4.1 Representation via Faithful Rankings
As with (PCR), the postulate (CR) can be characterised in
terms of conditions (CS1), (CS2), and (CS3) on faithful
rankings. The stronger nature of (CR) will result in (CS1)
and (CS2) appearing much closer to the original conditions
(S1) and (S2) introduced in (Delgrande and Peppas 2018).
Definition 4.2. If ≤K is a faithful ranking for K then ≤K
fully respects X � Y if either K does not satisfy X � Y
or the following conditions are satisfied:

CS1. If uXY = vXY , K ` ¬uXY , and KY 0 ¬u then
u ≤K v.

CS2. If uXY = vXY , K ` ¬uXY , KY 0 ¬u, and KY `
¬v then u <K v.

CS3. If K ` ¬uXY , K ` ¬vXY , and KY 0 ¬uXY and
KY ` ¬vXY then there exists w with wXY = uXY and
w <K v.

Condition (CS1) states that whenever worlds u and v in-
compatible with K are such that uXY = vXY , and u is
consistent with KY , then v cannot be more plausible than
u. In the case v is itself inconsistent with KY , then (CS2)
strengthens this to say that u is strictly more plausible than
v. Finally, (CS3) ensures that whenever u is compatible with
KY and v is not, then u can be modified to be strictly more
plausible than v by modifying variables not in XY .

Demonstrating that a belief revision operator fully com-
plying with X � Y results in the conditions (CS1), (CS2),
and (CS3) being satisfied for the corresponding faithful
rankings proceeds along lines strongly reminiscent to Theo-
rem 2 of (Delgrande and Peppas 2018).
Theorem 4.2. If ∗ is a belief revision operator satisfy-
ing the supplementary postulates which fully complies with
X � Y , then there exist faithful rankings {≤K}K which
fully respects X � Y such that [K ∗φ] = min([φ],≤K) for
all K and φ.

Proof. By Theorem 2.2 there exist faithful rankings {≤K}K
such that [K ∗ φ] = min([φ],≤K) for all K and φ. Suppose
that ∗ fully complies with X � Y , and consider K satisfy-
ing X � Y . We must show that ≤K satisfies the conditions
(CS1), (CS2), and (CS3).

Part 1. Suppose u and v are worlds such that uXY =
vXY , K ` ¬uXY , and KY 0 ¬u. This last assumption im-
plies that uXY is consistent with KY , hence we may apply
the postulate (CR) to write

[K ∗ uXY ] = [(K ∗ uXY )XY ] ∩ [KY ]

= [uXY ] ∩ [KY ].

As KY 0 ¬u it follows that u ∈ [KY ], and tautologically
u ∈ [uXY ], so it follows that u ∈ [K ∗ uXY ]. Hence, as
v ∈ [uXY ] it follows that u ≤ v verifying (CS1).

Part 2. In order to see (CS2) suppose further that KY `
¬v. In this case, v 6∈ [K ∗ uXY ] hence u < v verifying
(CS2).

Part 3. In order to verify (CS3) suppose u and v are
worlds such that K ` ¬uXY , K ` ¬vXY , KY 0 uXY
and KY ` ¬vXY . Construct the formula φ = uXY ∨ vXY
and observe that vXY is consistent with KY and hence φ
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is consistent with KY . However, φ is inconsistent with
K by our hypothesis. Therefore, we may apply (CR) to
write K ∗ φ ≡ (K ∗ φ)XY ∧ KY . By the success postu-
late, K ∗ φ ` φ ≡ uXY ∨ vXY . By (CR) we also know
K ∗ φ ` KY . However, we also know KY ` ¬vXY , and
therefore it follows that K ∗φ ` uXY . Hence, choosing any
w ∈ [K ∗ φ] it follows that wXY = uXY and w ≤ v. Being
that v 6∈ [K ∗ φ] yet v ∈ [φ] it follows that w < v.

Theorem 4.3. If {≤K}K are faithful rankings which fully
respects X � Y , then the binary function defined by
[K ∗φ] = min([φ],≤K) is a belief revision operator satisfy-
ing the supplementary postulates which fully complies with
X � Y .

Proof. By Theorem 2.2 it follows that ∗ is a belief revision
operator. Suppose ≤K fully respects X � Y . In the case
K does not satisfy X � Y then there is nothing to verify.
Assume K satisfies X � Y , so that ≤K satisfies (CS1),
(CS2), and (CS3). We must demonstrate that [K ∗ φ] =
[(K ∗ φ)XY ] ∩ [KY ] whenever V (φ) ⊆ XY and φ ∧ KY
is consistent. In the case K ∧ φ is consistent then K ∗ φ ≡
K ∧ φ, and K satisfying X � Y means K ≡ KXY ∧KY
(cf. Theorem 5.3 below), hence K ∗φ ≡ KXY ∧KY ∧φ ≡
(K ∗ φ)XY ∧KY . Therefore, we will assume K ` ¬φ, in
which case our proof has two parts:

Part 1. In order to show [(K ∗ φ)XY ] ∩ [KY ] ⊆ [K ∗ φ]
suppose that u ∈ [(K ∗ φ)XY ] ∩ [KY ]. Being that u ∈
[(K ∗ φ)XY ] it follows that there exists v ∈ [K ∗ φ] such
that uXY = vXY . Observe that K ` ¬φ, and furthermore
¬φ ` ¬uXY as uXY = vXY and v ∈ [φ]. Hence, K `
¬uXY . However, u ∈ [KY ] so KY 0 ¬u. Therefore, by
(CS1) it follows that u ≤K v. However, u ∈ [φ] and v ∈
min([φ],≤K) so it follows that u ∈ min([φ],≤K) = [K ∗
φ]. With u being arbitrary, it follows that [(K ∗ φ)XY ] ∩
[KY ] ⊆ [K ∗ φ] as required.

Part 2. In order to show [K ∗ φ] ⊆ [(K ∗ φ)XY ] ∩ [KY ]
consider a world v ∈ [K ∗φ] = min([φ],≤K ]), and observe
that v ∈ [(K ∗ φ)XY ] hence it suffices to show v ∈ [KY ].
Assume for the sake of contradiction that v 6∈ [KY ], which
is to say that KY ` ¬v. We have two cases:

1. In the case there exists a world u with uXY = vXY , and
KY 0 ¬u, argue as follows. As uXY = vXY and v ∈ [φ]
it follows that u ∈ [φ], and hence¬φ ` ¬uXY . Observing
that K ` ¬φ it follows that KY ` ¬uXY . As v 6∈ [KY ]
by our assumption, it follows that KY ` ¬v. Hence, by
(CS2), it follows that u <K v. However, u ∈ [φ] and
v ∈ min([φ],≤K) so this is a contradiction.

2. In the other case, KY ` ¬vXY . Recalling that KY is
consistent with φ, it follows that there exists a world u ∈
[KY ∧φ], for which we know thatK ` ¬uXY andKY X 0
¬uXY . However, by (CS3) we may conclude that there
exists w with wXY = uXY such that w < v. As φ is
expressed over the vocabulary XY and u ∈ [φ] it follows
that w ∈ [φ] and w <K v. However, this contradicts
v ∈ min([φ],≤K).

In both cases, a contradiction is achieved, so our assumption
that v 6∈ [KY ] must have been false. Hence, v ∈ [KY ] as

well. With v being arbitrary, we have shown [K ∗ φ] ⊆
[(K ∗ φ)XY ] ∩ [KY ].

4.2 Existence of Fully Compliant Operators
With this representation result in hand, the next question is
whether there exists a belief revision operator which fully
complies with an arbitrary multivalued dependency X �
Y where X need not be empty. Fortunately, the answer is
affirmative:

Theorem 4.4. If X and Y are disjoint then there exists a
belief revision operator ∗ satisfying the supplementary pos-
tulates which fully complies with X � Y .

Proof. It suffices to construct a family of faithful rankings
{≤K}K where each ≤K fully respects X � Y , in which
case the corresponding belief revision operator ∗ with [K ∗
φ] = min([φ],≤K) will fully comply with X � Y . Given
K define the function ρK : Ω→ N given by

ρK(u) :=

{
0 if u ∈ [K]
1 if u 6∈ [K] and KY 0 ¬u
2 otherwise

The ranking ≤K is defined by setting u ≤K v if and only
if ρK(u) ≤ ρK(v). As ρK(u) = 0 if and only if u ∈ [K],
it follows that the minimal worlds under ≤K are exactly the
worlds satisfying K. Hence, ≤K is a faithful ranking for K.

In order to argue ≤K fully respects X � Y assume that
K satisfies X � Y , and verify (CS1), (CS2), and (CS3) as
follows:

1. (CS1) Suppose that uXY = vXY , K ` ¬uXY , and KY 0
¬u. It follows that rK(u) = 1 and rK(v) ≥ 1, hence
u ≤K v as required.

2. (CS2) Suppose that uXY = vXY ,K ` ¬uXY ,KY 0 ¬u,
and KY ` ¬v. It follows that rK(u) = 1 and rK(v) = 2,
hence u <K v as required.

3. (CS3) Suppose that K ` ¬uXY , K ` ¬vXY , KY 0
¬uXY , and KY ` ¬vXY . As a consequence of KY `
¬vXY it follows that ρK(v) = 2. As KY 0 ¬uXY there
exists a world w with wXY = uXY and w ∈ [KY ], so
that ρK(w) = 1 and hence w <K u.

This leaves the open question of whether any set of mul-
tivalued dependencies can be simultaneously fully complied
with by some belief revision operator.

5 Syntax Splitting and MVDs
5.1 Syntax Splitting and Conditional

Independence
In this section we demonstrate that Parikh’s syntax split-
ting generalises naturally into the framework of multivalued
dependencies and conditional independence. We start by
showing that syntax splitting gives rise to conditional logical
independence via leveraging Craig’s Interpolation Theorem
(Craig 1957), which is stated as follows:

37



Theorem 5.1 (Craig’s Interpolation Theorem). If K ` ψ
then there exists φ with V (φ) ⊆ V (K) ∩ V (ψ) such that
K ` φ and φ ` ψ.

Theorem 5.2 (The Splitting Criterion). If Y1, Y2, andX are
pairwise disjoint sets of propositional variables then for any
propositional formulaeK1 andK2 such that V (K1) ⊆ Y1X
and V (K2) ⊆ Y2X it follows that Y1 and Y2 are indepen-
dent given X modulo K1 ∧K2.

Proof. Suppose u is a world, and φ1 and φ2 are proposi-
tional formulae with V (φ1) ⊆ Y1 and V (φ2) ⊆ Y2 such
that K1 ∧ K2 ∧ uX |− φ1 ∨ φ2. We must demonstrate that
either K1 ∧K2 ∧ uX |− φ1 or K1 ∧K2 ∧ uX |− φ2 holds.

It follows from our hypotheses thatK1∧uX∧¬φ1 |−φ2∨
¬K2 ∨¬uX . Applying Craig’s Interpolation Theorem there
exists an interpolant δ such that V (δ) ⊆ V (K1∧uX∧¬φ1)∩
V (φ2 ∨ ¬K2 ∨ ¬uX) and furthermore K1 ∧ uX ∧ ¬φ1 |− δ
and δ |− φ2 ∨ ¬K2 ∨ ¬uX .

Observing that V (K1 ∧ uX ∧ ¬φ1) ∩ V (φ2 ∨ ¬K2 ∨
¬uX) ⊆ (Y1X) ∩ (Y2X) = X it follows that V (δ) ⊆ X .
As every variable in X appears as a literal in uX , it follows
that either uX ` δ or uX ` ¬δ. This gives two cases:

1. In the case uX ` δ recall that δ |−φ2∨¬K2∨¬uX which
means K2 ∧ uX ∧ δ |− φ2 and hence K2 ∧ uX |− φ2.

2. In the case uX ` ¬δ recall that K1∧uX ∧¬φ1 |− δ hence
K1 ∧ uX ∧ ¬φ1 |− ⊥ and thus K1 ∧ uX |− φ1.

In either case, we can conclude eitherK1∧K2∧uX |−φ1
or K1 ∧ K2 ∧ uX |− φ2. With φ1 and φ2 being arbitrary,
it follows that Y1 and Y2 are independent given X modulo
K1 ∧K2.

The previous Theorem can be regarded as a special case
of Darwiche’s results on structured databases, which are
graphs similar to Bayesian networks whose vertices are la-
belled by components of a knowledge base in such a way
that conditional independencies may be read directly off the
graph itself (Darwiche 1997; Darwiche and Pearl 1994).

5.2 Relationship to Multivalued Dependencies
Our attention now turns to showing that multivalued depen-
dencies for propositional formulae arise as a special case of
Darwiche’s logical conditional independence.

Theorem 5.3 (Projection Criterion). Given a propositional
formula K and disjoint sets Y1, Y2, and X of propositional
variables, it follows that Y1 and Y2 are independent given
X modulo K if and only if KY1X ∧KY2X ` KY1Y2X holds.

Proof. Suppose that Y1 and Y2 are independent given X
moduloK, and consider a world u satisfying bothKY1X and
KY2X . We must demonstrate that u satisfies KY1Y2X . As-
sume for the sake of contradiction that u satisfies ¬KY1Y2X

as well. Construct the formulae φ1 and φ2 by choosing φ1
as the conjunction of literals over Y1 satisfied by u, and φ2
as the conjunction of literals over Y2 satisfied by u. Also
choose uX to be the conjunction of literals over X satisfied
by u. It follows thatK∧uX ` KY1Y2X ∧uX andKY1Y2X ∧
uX ` ¬φ1 ∨ ¬φ2 hence KY1Y2X ∧ uX ` ¬φ1 ∨ ¬φ2, for

otherwise there would exist a model ofKY1Y2X ∧uX equiv-
alent to u on Y1Y2X . Being that Y1 and Y2 are independent
given X modulo K, and uX is X-complete, it follows that
K ∧ uX ` ¬φ1 or K ∧ uX ` ¬φ2. However, this means
that either KY1X ∧ uX ` ¬φ1 or KY2X ∧ uX ` ¬φ2 which
is a contradiction as u satisfies φ1, φ2, uX , and both projec-
tions of K. Therefore, u is a model of KY1Y2X showing that
KY1X ∧KY2X ` KY1Y2X holds.

Conversely, suppose thatKY1X∧KY2X ` KY1Y2X holds.
Consider formulae φ1 and φ2 such that V (φ1) ⊆ Y1 and
V (φ2) ⊆ Y2 along with a world u such that K ∧ uX ` φ1 ∨
φ2. We must show that eitherK∧uX ` φ1 orK∧uX ` φ2.
Observe that KY1X ∧KY2X ∧ uX ` uX ` φ1 ∨ φ2 by the
Projection Theorem, and by the Splitting Criterion Y1 and Y2
are independent givenX moduloKY1X∧KY2X∧uX . Thus,
eitherKY1X∧KY2X∧uX ` φ1 orKY1X∧KY2X∧uX ` φ2,
hence either K ∧uX ` φ1 or K ∧uX ` φ2 as required.

It is worthwhile making two observations: as KY1Y2X `
KY1X ∧ KY2X always holds, so this projection criterion
can be rephrased as asserting independence if and only if
KY1Y2X ≡ KY1X ∧KY2X . Furthermore, KY1X ∧KY2X is
effectively a splitting of KY1Y2X which implies a converse
to the Splitting Criterion.

Theorem 5.4. If X and Y are disjoint subsets of V then a
propositional theory K satisfies X � Y if and only if Y
and V − (XY ) are independent given X modulo K.

Proof. By the Projection Criterion and our observation it
follows that Y and V − (XY ) are independent given X
if and only if K ≡ KXY ∧ KY . Observe that a world
w ∈ [KXY ∧ KY ] if and only if there exists u ∈ [KXY ]
and v ∈ [KY ] such that wXY = uXY and wY = vY . This
is in turn equivalent to having K satisfy X � Y .

It is now clear that multivalued dependencies, logical con-
ditional independence, and syntax splitting are different as-
pects of the same underlying phenomenon. As corollaries
of the Splitting Criterion, we see that (PCR) and (CR) en-
sure that belief revision operators preserve the satisfaction of
multivalued dependencies which are partially or fully com-
plied with.

Theorem 5.5. If ∗ is a belief revision operator which par-
tially complies with X � Y , K satisfies X � Y , and
V (φ) ⊆ Y then K ∗ φ satisfies X � Y .

Proof. Observe that when writingK ∗φ ≡ (K ∗φ)XY ∧KY

we have V ((K ∗ φ)XY ) ⊆ XY and V (KY ) ⊆ Y hence the
resulting theory satisfies X � Y via the Splitting Criterion.

Theorem 5.6. If ∗ is a belief revision operator which fully
complies with X � Y , K satisfies X � Y , and V (φ) ⊆
XY then K ∗ φ satisfies X � Y .

Proof. Observe that when writingK ∗φ ≡ (K ∗φ)XY ∧KY

we have V ((K ∗ φ)XY ) ⊆ XY and V (KY ) ⊆ Y hence the
resulting theory satisfies X � Y via the Splitting Criterion.
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6 Discussion
6.1 Sources of Multivalued Dependencies
In our approach we consider multivalued dependencies to
be specified by the knowledge engineer as part of the do-
main knowledge, rather than extracted automatically from
the knowledge base. This avoids using possibly-spurious
conditional independencies that just happen to hold. As
well, we also avoid the cost of determining all potential
conditional independencies prior to a revision, given that
checking whether a single conditional independence holds
is known to be in Πp

2 (Lang, Liberatore, and Marquis 2002).
This raises the question of how a knowledge engineer

might determine appropriate multivalued dependencies This
question (in the analogous case of conditional irrelevance
assertions) is discussed in (Delgrande and Peppas 2018),
where a number of sources are suggested: knowledge about
the domain (e.g. birds and refrigerators are unrelated), a
causal theory, a Bayesian network, or some structural fea-
tures of a knowledge base which the knowledge engineer
deems essential.

In our setting, we can make this a bit more precise. Us-
ing the notion of a symbolic causal network introduced by
Darwiche and Pearl (1994), it follows from (Darwiche 1997)
that conditional independence properties can be read off di-
rectly from these networks just as they are for Bayesian net-
works in probability theory (Pearl 2014). Any multivalued
dependency obtained by this method will be non-spurious
since it would arise from the causal structure of the domain,
as given in the causal network. We believe further inves-
tigation of revision operators which comply with the entire
structure of a symbolic causal network is worthwhile.

6.2 Related Work
The approach of (Delgrande and Peppas 2018) is closest to
our work, which raises the question of whether the indepen-
dence assertions studied there are related to the conditional
independence assertions considered here. Clearly our mul-
tivalued dependencies have no mechanism for encoding the
selective behaviour of the condition σ in an assertion σ � Z
unless σ is tautologous, in which case it becomes equivalent
to the multivalued dependency ∅� Z.

In the reverse direction, suppose a multivalued depen-
dency X � Y were encoded via an independence asser-
tion σ � Z. There are two natural-appearing approaches to
consider:

1. If Z = Y then when revising K with K ` σ by φ with
V (φ) ⊆ Z = Y it would follows thatK ∗φ ≡ (K ∗φ)Y ∧
KY . Hence, we would have K ∗ φ satisfies ∅� Y . This
is far too strong, for this means that all beliefs relating X
and Y have been lost in the revision process, whereas we
know that (PCR) and (CR) would result in them having
been preserved.

2. If Z = XY then when revising K with K ` σ by φ
with V (φ) ⊆ Z = XY it would follow that K ∗ φ ≡
(K ∗φ)XY ∧KXY . Hence, we would haveK ∗φ satisfies
∅� XY . This is again far too strong, for this means that
all beliefs relating X and Y have been lost in the revision

process, whereas we know that (PCR) and (CR) would
result in them having been preserved.

Neither of these are tenable, which suggests that conditional
independence assertions cannot in general simulate the mul-
tivalued dependencies we consider in this work.

Our results on the relationship between multivalued de-
pendencies and syntax splitting apply as well in the uncon-
ditional setting. As an application, the postulates (P1) and
(P2) from (Peppas et al. 2015) can be restated as follows:

Theorem 6.1. Let ∗ be a belief revision operator.

• (P1) is equivalent to the following: if K satisfies ∅ � Y
and V (φ) ⊆ Y then (K ∗ φ)Y ≡ KY .

• (P2) is equivalent to the following: if K satisfies ∅ � Y
and V (φ) ⊆ Y then (K ∗ φ)Y ≡ (KY ∗ φ)Y .

6.3 Future Work
There are a number of opportunities for future work deriving
from the above. One immediate observation is that although
we demonstrate the classes of operators partially comply-
ing, or fully complying, with an arbitrary multivalued de-
pendency are non-empty, we have not demonstrated that any
reasonable-looking, “natural” belief revision operator reside
within these classes. Hence, the question remains of finding
interesting belief revision operators which satisfy our postu-
lates.

Another line of inquiry would be to ask how we can take
advantage of partial or full compliance to reduce the compu-
tational cost of belief revision. One possibility is to develop
efficient representations for rankings analogous to Bayesian
networks for probability distributions, which use the ranking
conditions (CS1), (CS2), and (CS3) to factor a ranking into
smaller components.

There are also a number of natural variations on our pos-
tulates which seem to merit consideration:

1. Study a “parallelised” variant of our postulates, wherein
we consider revising by φ ∧ ψ with V (φ) ⊆ XY and
V (ψ) ⊆ Y , with our postulate saying something like K ∗
(φ ∧ ψ) = (K ∗ φ)XY ∧ (K ∗ ψ)Y .

2. Study a “prioritised” variant of our postulates, wherein
we consider revising by φ with φ ∧KY is not necessarily
consistent, with our postulate saying something like K ∗
φ = KY ~ (K ∗ φ)XY for some operator ~.

3. Study belief revision operators which fully comply with
all multivalued dependencies simultaneously, and con-
sider the analogues of (P1) and (P2) in this case which
would amount to the following:

CP1. IfK satisfiesX � Y with Y ∩X = ∅ and V (φ) ⊆
Y then (K ∗ φ)Y ≡ KY .

CP2. IfK satisfiesX � Y with Y ∩X = ∅ and V (φ) ⊆
Y then (K ∗ φ)Y ≡ (KY ∗ φ)Y .

4. Study postulates which make use of conditional indepen-
dencies in the sense of Darwiche, which unlike multival-
ued dependencies need not partition the entire vocabulary.

Finally, it would be interesting to investigate whether
these postulates can be extended to nonmonotonic logics in
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a manner analogous to the extension of Parikh’s syntax split-
ting paradigm in (Kern-Isberner, Beierle, and Brewka 2020).

7 Conclusion
The central challenge of belief revision is to efficiently and
plausibly restore consistency to a knowledge base after in-
corporating a contradictory proposition, and in a manner
which causes only minimal changes to existing beliefs. With
the standard postulates for belief revision failing to rule out
rather pathologically-destructive or bizarre operators, the
problem of formalising this requirement of minimality re-
mains an ongoing challenge. We believe that enforcing the
requirement that irrelevant beliefs are unchanged is an im-
portant aspect of minimal change.

In this work we have extended the previous study of un-
conditional independence in belief revision to accommo-
date conditional independence in the form of multivalued
dependencies. We have introduced two notions by which
a belief revision operator may comply with a multivalued
dependency, and characterised these postulates in terms of
conditions on faithful rankings. Further, we have endorsed
the perspective of (Delgrande and Peppas 2018) that condi-
tional independencies should be provided by the knowledge
engineer, rather than read off of the knowledge base. This
both avoids enforcing spurious conditional independencies,
and means that our operators are not required to carry out
the expensive task of checking for conditional independence
themselves.

Our hope is that these postulates will assist in identify-
ing those belief revision operators which can be truly said to
result in minimal changes to existing beliefs, and that these
operators will admit computationally efficient implementa-
tions by merit of being able to limit the amount of work
required to perform revisions.
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Abstract

We look at preference change arising out of an interaction
between two elements: the first is an initial preference rank-
ing encoding a pre-existing attitude; the second element is
new preference information signaling input from an author-
itative source, which may come into conflict with the initial
preference. The aim is to adjust the initial preference and
bring it in line with the new preference, without having to
give up more information than necessary. We model this pro-
cess using the formal machinery of belief change, along the
lines of the well-known AGM approach. We propose a set
of fundamental rationality postulates, and derive the main re-
sults of the paper: a set of representation theorems showing
that preference change according to these postulates can be
rationalized as a choice function guided by a ranking on the
comparisons in the initial preference order. We conclude by
presenting operators satisfying our proposed postulates. Our
approach thus allows us to situate preference revision within
the larger family of belief change operators.

1 Introduction
Preferences play a central role in theories of decision mak-
ing, as part of the mechanism underlying intentional behav-
ior and rational choice, both in economic models of rational
agency as well as in formal models of artificial agents sup-
posed to interact with the world and each other (Boutilier et
al. 2004; Domshlak et al. 2011; Rossi, Venable, and Walsh
2011; Pigozzi, Tsoukiàs, and Viappiani 2016). Since such
interactions take place in dynamic environments, it can be
expected that preferences change in response to new devel-
opments.

In this paper we are interested in preference change oc-
curring when new preference information, denoted by o, be-
comes available and has to be taken at face value, thereby
prompting a change in prior preference information, denoted
by π. The change, we require, should preserve as much use-
ful information from π as can be afforded.

Preference change thus described is a pervasive phe-
nomenon, arising in many contexts spanning the realms of
both human and artificial agency. Thus, there is a distin-
guished tradition in Economics and Philosophy that looks
at examples of conflict between an agent’s subjective prefer-
ence (what we call here the initial, or prior preference π) and
a second-order preference, often standing for a commitment

or moral rule (what we call here the new preference infor-
mation o): subjective versus ‘ethical’ preferences (Harsanyi
1955), lack of will, or akrasia (Jeffrey 1974), moral commit-
ments (Sen 1977), second-order volitions (Frankfurt 1988)
and second-order preferences (Nozick 1994) all fall under
this heading.

The same challenge can occur in technological appli-
cations, from updating CP-nets (Cadilhac et al. 2015) to
changing the order in which search results are displayed on a
page in response to user provided specifications. At the same
time, similar topics are emerging in the discussion on ethi-
cal decision making for artificial agents (Rossi and Mattei
2019) and in issues related to the alignment problem (Rus-
sell 2019): an artificial agent dealing with humans will have
to learn their preferences, but as it cannot do so instanta-
neously, it must presumably acquire the relevant information
in intermediate steps, revising along the way.

Thus, whether it is the internal conflict between an agent’s
private leanings and the better angels of its nature, or a con-
tent provider wanting to tailor its products for a better user
experience, many cases of preference change involve a con-
flict between two types of preferences, one of which is per-
ceived as having priority over the other. However, even
though the need to reconcile conflicting preferences in favor
of one of them is widely acknowledged, a concrete mecha-
nism for resolving preference conflicts, that works for gen-
eral preference orders, is often overlooked.

In keeping with prominent approaches to belief change,
which model rational change using a plausibility relation
over the states of affairs undergoing revision, and echo-
ing a suggestion of Amartya Sen to the effect that conflicts
among preferences can be understood using rankings over
the preferences themselves (Sen 1977), we propose formal-
izing preference change using preferences over the basic el-
ements of a preference order, as illustrated in the following
example.

Example 1. The initial preference π is such that, as a result
of explicit assertion, item 1 is ranked better than 2 and 2 is
ranked better than 3; by virtue of transitivity, it is also in-
ferred that 1 is considered better than 3. We want to revise π
by a preference o, according to which 3 is better than 1 (see
Figure 1). The simplest solution is to add o to π (i.e., include
the comparisons contained in both), but the transitivity re-
quirement leads to a cycle between 1, 2 and 3, which we
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Figure 1: Revising preference order π by o: simply adding o to π
leads to a cycle, so if o is accepted then a choice needs to be made
regarding which of the initial comparisons of π to keep; potential
candidates for the revised order are π1, π2 or π3. A direct com-
parison ranking i better than j is depicted by a solid arrow from i
to j, with comparisons inferred by transitivity depicted by dotted
arrows.

would like to avoid. We are thus in a situation where π and
o cannot be jointly accepted, but since o, we stipulate, must
be accepted, something must be given up from π (though,
we ask, no more than strictly necessary). How is the deci-
sion to be made? We suggest that an implicit preference over
the comparisons of π that were explicitly provided can pro-
vide an answer: if the comparison of 1-vs-2 (the edge from
1 to 2 in Figure 1) is preferred to the one of 2-vs-3 then the
result is π1, which holds on to 1-vs-2 from π and together
with o infers, by transitivity, that 3 is better than 2; alter-
natively, a preference for 2-vs-3 over 1-vs-2 leads to π2 as
the result, while indifference between the two comparisons
means that both are given up, resulting in π3. Thus, prefer-
ence over comparisons in π translates as choice over how
to go about revising π. Interestingly, we may also reason
in the opposite direction: observing choice behavior across
different instances of revision allows us to infer preferences
over comparisons in π, e.g., revising to π1, rather than to π2
or π3, can be rationalized as saying that the comparison of
1-vs-2 is considered better than 2-vs-3.

Our purpose here is to formalize the type of reasoning il-
lustrated in Example 1 by rationalizing preference change
as a type of choice function on what we will call the direct
comparisons of π, i.e., the explicit preferences assumed to
be given in π. Since a conflict between π and o forces some
of the direct comparisons of π to be renounced, additional
information in the form of a preference order over the direct
comparisons of π will serve as guide to the choice function.
The aim, in this, is not legislate on what is the right choice
to make; rather, it is to make sure that whatever the choice
is, it is made in a coherent way.

Contributions. We present a mechanism for revising a
preference order π that is based on an underlying preference
relation over the basic, atomic comparisons of π. This mech-
anism proceeds sequentially, by working its way through the
underlying preference relation and adding as many of the
direct comparisons of π as possible, while avoiding a con-
flict with o. We present a set of conditions under which the
preference order on direct comparisons of π exists and has
desired properties, and characterize the revision mechanism
using a set of intuitive normative principles, i.e., rationality

postulates in the AGM mould (Alchourrón, Gärdenfors, and
Makinson 1985). The significance of our approach lies in
laying bare the theoretical requirements and basic assump-
tions for mechanisms intended to revise preferences.

Related work. Our work complements existing research,
but manages to occupy a distinct niche in a broader land-
scape. Some previous work labeled as preference revision
(Bradley 2007; Lang and van der Torre 2008; Liu 2011),
looks at changes in preferences prompted by a change in be-
liefs. Here we abstract away from the source of the new
information, choosing to focus exclusively on a mechanism
that can be used for resolving conflicts: the rational thing to
do when knowing that, for some reason or other, one’s pref-
erence has to change. Other work (Cadilhac et al. 2015) de-
scribes preference change when preferences are represented
using CP-nets (Boutilier et al. 2004), or dynamic epistemic
logic (Benthem and Liu 2014), in the context of declara-
tive debugging (Dell’Acqua and Pereira 2005), or databases
(Chomicki 2003), and therefore comes with additional struc-
tural constraints. In contrast, we have opted to represent
preferences as strict partial orders over a set of items: we
believe this straightforward formulation allows the basic is-
sue signaled by Amartya Sen (Sen 1977), to be visible and
tackled head on.

Apart from the issues raised in the Economics literature
about second-order desires (Harsanyi 1955; Jeffrey 1974;
Sen 1977; Frankfurt 1988; Nozick 1994), the basic phe-
nomenon of preference change has also been raised in ex-
plicit connection to belief change (Hansson 1995; Grüne-
Yanoff and Hansson 2009b; Grüne-Yanoff 2013), but a
representation in terms of preferences on the comparisons
present in the preference orders, along the lines suggested
here, has, to the best of our knowledge, not yet been given.
Much existing work proceeds by putting forward some con-
crete preference revision mechanism, possibly by shifting
some elements of the original preference around, and oc-
casionally with a remark on the similarity between this
operation and a belief revision operation (Freund 2004;
Chomicki and Song 2005; Liu 2011; Ma, Benferhat, and Liu
2012). What our work adds to these models is an analysis in
terms of postulates and representation results.

The postulates we put forward for preference revision
bear a distinct resemblance to the AGM postulates employed
for belief revision (Alchourrón, Gärdenfors, and Makinson
1985; Katsuno and Mendelzon 1992; Fermé and Hansson
2018): given that changing one’s mind involves choosing
some parts of a belief to keep and some to remove, this is no
coincidence. Indeed, the two problems are similar, though
the structural particularities of preferences (in particular, the
requirement that they are transitive) mean that transfer of in-
sights from belief revision to preference revision is by no
means straightforward.

Outline. The rest of the paper is structured as follows. In
Section 2 we introduce notation and the basic elements of
our model. In Section 3 we provide a constructive way of
revising a preference order, based on rankings of the di-
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rect comparisons. In Section 4 we provide a set of intuitive
postulates together with their motivations, and discuss their
appropriateness for the purpose of modelling preference re-
vision. In Section 5 we identify a set of conditions under
which these postulates can be applied. In Section 6 we show
that the postulates presented in Section 4 characterize the
procedure described in Section 3. Section 7 discusses con-
crete preference revision operators, and Section 8 offers con-
cluding remarks.

2 Preliminaries
We assume a finite set V of items, standing for the objects
an agent can have preferences over. If π is a binary relation
on a set V of items, then π is a strict partial order (spo)
on V if π is transitive and irreflexive, and we write OV for
the set of strict partial orders on V . If π is an spo on a set
V of items, then π is a strict linear order on V if π is also
total, in addition to being transitive and irreflexive. A chain
on V is a strict linear order on a subset of V . We write CV
for the set of chains on V . FInally, π is a total preorder on
V if π is transitive and total, with TV being the set of total
preorders on V . Note that in the following we will typically
be interested in total preorders on V ×V , i.e., total preorders
on the set of comparisons of items in V .

If π is an spo on a set of items V , then a comparison (i, j)
of π is an element (i, j) ∈ π, for some items i, j ∈ V , in-
terpreted as saying that, in the context of π, i is considered
strictly better than j. To simplify notation, we sometimes
also refer to comparisons with the letter c. We often have to
consider the union π1 ∪ π2 of two spos, which is not guar-
anteed to be an spo, since transitivity is not preserved under
unions. If this is the case, we typically have to substitute
π1 ∪ π2 for its transitive closure, denoted by (π1 ∪ π2)+.
Since preferences are required to be transitive, we write a
sequence of comparisons {(1, 2), (2, 3) . . . , (m−1,m)}+ as
(1, . . . ,m).

If π = (i1, . . . , im) is a chain on V , a direct comparison
of π is a comparison (ik, ik+1) ∈ π, i.e., a comparison be-
tween ik and its direct successor in π, with δπ being the set
of direct comparisons of π. The assumption is that direct
comparisons are the result of explicit information, and are
basic in the sense that they cannot be inferred by transitiv-
ity using other comparisons in π. Given preference orders
π ∈ CV and o ∈ OV , we want to carve out the possible op-
tions for the revision of π by o. For this we use the set ⌊o⌋π
of π-completions of o, defined as:

⌊o⌋π = {(o ∪ δ)+ ∈ OV | δ ⊆ δπ}.
The intuition is that a π-completion of o is a preference order
constructed from o using some, and only, direct comparisons
in π, i.e., information originating exclusively from the two
sources given as input. We will expect that a preference re-
vision operator selects one element of this set as the revision
result.

Though taking (π ∪ o)+ as the result of revising π by o
is not, in general, feasible, we still want to identify parts of
(π∪ o)+ that are uncontroversial. To that end, the cycle-free
part αoπ of (π ∪ o)+ is defined as:

αoπ = {(i, i+1) ∈ (π ∪ o)+ | (i+1, i) /∈ (π ∪ o)+},

i.e., the set of comparisons of (π ∪ o)+ not involved in a
cycle with the comparisons of o. The cyclic part κoπ of π
with respect to o is defined as:

κoπ = {(i, i+1) ∈ δπ | (i+1, i) ∈ (π ∪ o)+},
i.e., the set of direct comparisons of π involved in a cycle
with o.
Example 2. For π and o as in Example 1, we have that δπ =
{(1, 2), (2, 3)}, while the π-completions of o are ⌊o⌋π =
{(3, 1, 2), (2, 3, 1), (3, 1)}, i.e., the spos obtained by adding
to o either of the elements of δπ , or none (corresponding to
π1, π2 and π3). The cyclic part of π with respect to o is
κoπ = δπ = {(1, 2), (2, 3)} and the cycle-free part of π with
respect to o is αoπ = ∅.

3 A General Method for Revising
Preferences

A preference revision operator ▷ is a function ▷ : CV ×
OV → OV taking a chain π and an spo o as input, and
returning an spo π ▷ o as output.

The choice of input and output can be motivated by imag-
ining that π stands for an existing priority ranking, e.g., the
ordering of items on a webpage, whereas the new informa-
tion o is provided by a user and is more likely to be incom-
plete.

In addition, we may look at this in light of the material that
is to come: since we will be rationalizing preference revision
operators using preferences (i.e., preorders) on comparisons,
an spo as output reflects the fact that certain comparisons are
considered equally good, and must be given up together. The
unfortunate effect of this is that the input and output formats
do not match, which makes it unclear, at this point, whether
we can iterate the revision operation. That being said, the
output can (and will) be tightened to a chain: provided that
the preferences guiding revision are a linear order (i.e., there
are no ties). We touch on this aspect at the end of Section 6.

We start, then, by presenting a general procedure for re-
vising preferences that, as advertised, utilizes total preorders
on the set δπ of direct comparisons of π: thus, a preference
assignment a is a function a : CV → TV×V mapping every
preference π ∈ CV to a total preorder ≤π on elements of
V × V , i.e., on pairwise comparisons on the items of V , of
which we are interested only in the preorder on δπ . In typi-
cal AGM manner, a comparison ci ≤π cj in the context of a
preorder ≤π on δπ means that ci is better than cj .

If π ∈ CV , o ∈ OV and≤π is a total preorder on δπ , then,
for i ≥ 1, the ≤π-level i of δπ , denoted lvl i≤(δπ), contains
the ith best elements of δπ according to≤π , i.e., lvl1≤π

(δπ) =

min≤π
(δπ), lvl i+1

≤π
(δπ) = min≤π

(δπ \
⋃

1≤j≤i lvl
j
≤π

(δπ)),
etc. Note that the ≤π-levels of δπ partition δπ and, since δπ
is finite, there exists a j > 0 such that lvl i≤π

(δπ) = ∅, for all
i ≥ j. The addition operator addi≤π

(o) is defined, for any
o ∈ OV and i ≥ 0, as follows:

add0≤π
(o) = (o ∪ αoπ)+,

addi≤π
(o) =

{
(addi−1

≤π
(o) ∪ (lvl i≤π

(δπ) ∩ κoπ))+, if in OV ,
addi−1

≤π
(o), otherwise.
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Figure 2: Preference revision by adding direct comparisons from π
to o, using the preorder ≤π . In ≤π lower means better; the com-
parison (3, 4) is ignored by the addition operator because it is not
involved in a cycle with o (and is added at the beginning anyway).

Intuitively, the addition operator starts by adding to o all the
direct comparisons of π that are not involved in a cycle with
it, i.e., which are not under contention by the accrual of new
preference information. Then, at every further step i > 0,
the addition operator tries to add all comparisons on level
i of δπ that are involved in a cycle with o: if the resulting
set of comparisons can be construed as a spo (by taking its
transitive closure) the operation is successful, and the new
comparisons are added; if not, the addition operator does
nothing. Since the addition of new comparison follows the
order ≤π , this ensures that better quality comparisons are
considered before lower quality ones.

Note that this procedure guarantees that there are always
some comparisons in π ▷ o, i.e., we have that o ⊆ π ▷ o,
regardless of anything else. Note, also, that the number of
non-empty levels in δπ is finite and the addition operation
eventually reaches a fixed point, i.e., there exists j ≥ 0 such
that addi≤π

(o) = addj≤π
(o), for any i ≥ j. We denote

by add∗≤π
(o) the fixed point of this operator and take it as

the defining expression of a preference revision operator: if
a is a preference assignment, then the a-induced preference
revision operator ▷a is defined, for any π ∈ CV and o ∈ OV ,
as:

π ▷a o = add∗≤π
(o).

Note that, by design, add∗≤π
(o) ∈ OV , i.e., the operator ▷ is

well defined.

Example 3. Consider initial preference order π =
(1, 2, 3, 4) and new information o = (3, 1). We obtain that
the direct comparisons of π are δπ = {(1, 2), (2, 3), (3, 4)}.
Suppose, now, that there is a total preorder ≤π on δπ ac-
cording to which (1, 2) <π (2, 3) ≈π (3, 4), as depicted in
Figure 2. To construct π ▷ o, the addition operator starts
from add0≤π

(o) = ({(3, 1)} ∪ {(1, 4), (2, 4), (3, 4)})+, i.e.,
o itself together with αoπ , the cycle-free part of π with respect
to o. At the next step the addition operator tries to add (1, 2),
which it can do successfully; at the next step it attempts to
add (2, 3), which creates a conflict with (3, 1) and (1, 2),
added previously. After this there are no more comparisons
to add.

4 Postulates for Preference Revision
We show now that the procedure described in Section 3
can be characterized with a set of AGM-like postulates that
do not reference any concrete revision procedure and are,
by themselves, intuitive enough to provide reasonable con-
straints on any preference revision operator.

The first two postulates we consider apply to any chain
π ∈ CV , spo o ∈ OV and preference revision operator
▷ : CV ×OV → OV , and are as follows:

(P1) π ▷ o ∈ ⌊o⌋π .

(P2) αoπ ⊆ π ▷ o.

Postulates P1−2 require the result to be formed by adding
elements from π to the new information o, and to be of a
certain admissible type, i.e., an spo. They are meant to cap-
ture preference revision in its most uncontroversial aspects,
yet they still require some careful unpacking.

Postulate P1 states that π ▷o is a π-completion of o, i.e., a
preference order constructed only by adding direct compar-
isons from π to o. Unfolding its consequences, postulate P1

ensures that:

(i) π ▷ o ∈ OV , i.e., π ▷ o is a chain on V ,

(ii) o ⊆ π ▷o, i.e., π ▷o contains all the information present
in o, and

(iii) π ▷ o ⊆ (π ∪ o)+, i.e., π ▷ o is contained in the binary
relation obtained by simply adding o to π, and adding all
the comparisons inferred by transitivity.

In terms of AGM propositional belief revision, postulate P1

does the same duty as the Closure, Success, Inclusion and
Consistency postulates (Hansson 2017; Fermé and Hans-
son 2018). These postulate mandate that the revision result
should be a propositional theory (i.e., have a required for-
mat), that the new information should be accepted, and that,
unless the new information is inconsistent, the revision re-
sult should be consistent.

Given this observation, a question emerges as to why not
use conditions (i)-(iii) as postulates instead of the proposed
P1. The reason is that P1 contains an element that lacks
from conditions (i)-(iii): what P1 adds is the requirement
that π ▷ o is to be constructed using only direct comparisons
of π (in addition to o), and the reason why such a condition
is desirable is to prevent π▷o from having opinions on items
over which no opinion had been expressed before revision.
The issue is illustrated in Example 4.

Example 4. Consider preferences π and o as in Example 1,
and an additional spo π4 = {(3, 1), (3, 2)}. Note that π4 is
such that o ⊆ π4 ⊆ (π ∪ o)+ and therefore satisfies condi-
tions (i)-(iii) expressed above, so that according to condi-
tions (i)-(iii) preference π4 is a viable revision result.

At the same time, we do not want to consider π4 as a
potential candidate for the revision result: the comparison
(3, 2) occurs neither in π nor in o as a direct comparison,
and there is reason to think that adding it would be unjus-
tified: a rational preference revision operator should not be
allowed to return π4 when revising π by o. By contrast, when
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the comparison (3, 2) does occur, e.g., in the desirable pref-
erence order π1 = (3, 1, 2), it occurs as the result of infer-
ence from (3, 1), which is added from o, and (1, 2), which is
preserved from π.

Postulate P2 says that the cycle-free part of π with respect
to o is to be preserved in π ▷ o, and is meant to preserve
the parts of (π ∪ o)+ that are not up for dispute. Note
that in the case when (π ∪ o)+ does not contain a cy-
cle then αoπ = (π ∪ o)+, and P2 together with P1 im-
ply that π ▷ o = (π ∪ o)+: this is the case when revision
is easy, and nothing special needs to be done. Through-
out all this, postulate P2 serves the same function as the
Vacuity postulate in propositional revision (Hansson 2017;
Fermé and Hansson 2018): in the ideal case, when o can
simply be added to π, applying postulate P2 results in the
union of the two structures.

So far we have established that, if there is no conflict be-
tween π and o, i.e., no cycle arises by adding o to π, then we
can simply add o to π; and if there is a conflict, then ▷ must
choose between the direct comparisons of π involved in the
cycle. This choice, however, must be coherent in a precise
sense: we expect the choices to be indicative of an underly-
ing preference over direct comparisons, which remains sta-
ble across different instances of revision. This sense of co-
herence is illustrated by Example 5.

Example 5. Consider revising π = (1, 2, 3, 4), depicted
in Figure 2, by o1 = (4, 1). SInce adding (π ∪ o)+ con-
tains a cycle, revision requires a choice between compar-
isons (1, 2), (2, 3) and (3, 4): assume (1, 2) is chosen, sug-
gesting (1, 2) is better than (2, 3) and (3, 4). Suppose, now,
that we add o2 = {(3, 4)} and revise by (o1 ∪ o2)+ =
{(3, 4), (4, 1), (3, 1)}: another cycle is formed, and a choice
is necessary, this time only between (1, 2) and (2, 3). In ac-
cordance with the previous decision, (1, 2) should be chosen
here as well.

The choice behavior of a revision operator has to reflect an
implicit preference order over the direct comparisons of π,
and this is handled by the following postulates, meant to
apply to any chain π ∈ CV , spos o1, o2 ∈ OV such that
(o1 ∪ o2)+ ∈ OV , and a preference revision operator ▷:

(P3) π ▷ (o1 ∪ o2)+ ⊆ ((π ▷ o1) ∪ o2)+.

(P4) If ((π ▷ o1) ∪ o2)+ ∈ OV , then ((π ▷ o1) ∪ o2)+ ⊆
π ▷ (o1 ∪ o2)+.

There is a similarity between postulates P3 and P4 and
the Superexpansion and Subexpansion postulates, respec-
tively, from propositional belief revision (Hansson 2017;
Fermé and Hansson 2018), which ensure that the choice be-
tween two options is stable and independent of alternatives
not directly involved. Postulates P3−4 are meant to ensure
the same here. However, it turns out that in the context of
preference revision this happens only under a specific set of
conditions, which we elaborate on in the following section.

5 Coordination
In this section we identify the precise conditions under
which it makes sense to apply postulates P3−4, presented
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Figure 3: Postulates P3−4 are satisfied only if o1 and o2 are coor-
dinated with respect to π.

in Section 4. Before doing so, we introduce some additional
notation.

If o1 and o2 are spos, we say that o1 and o2 are coordi-
nated with respect to π if for any set δ ⊆ κo1π such that for
every direct comparison (i, i+1) ∈ δ, neither (i, i+1) nor
(i+1, i) is in (o1∪o2)+, it holds that if (o1∪δ)+ ∈ OV , then
((o1 ∪ o2)+ ∪ δ)+ ∈ OV . In other words, if π and o1 form a
cycle and we want to add o2 as well, then we direct our atten-
tion to the direct comparisons in π that are not directly ruled
out by (o1 ∪ o2)+, i.e., such that neither these comparisons
nor their inverses are contained in (o1 ∪ o2)+. The property
of coordination says that if we can consistently add some of
these comparisons to o1, then it must be the case that we can
also add them to (o1∪o2)+. Intuitively, coordination means
that adding extra information o2 does not step on o1’s toes,
by rendering unviable any comparisons that were previously
viable. The following example makes this clearer.

Example 6. Take π = (1, 2, 3, 4) and o1 = (4, 1), o2 =
(3, 1). The direct comparisons of π that are involved in a
cycle with o1 are κo1π = {(1, 2), (2, 3), (3, 4)}, so that revi-
sion by o1 requires making a choice between these compar-
isons. This choice, we expect, is done on the basis of some
implicit preference over the comparisons, which guides re-
vision even when we add additional information in the form
of o2. Notice, now, that neither of (1, 2), (2, 3) and (3, 4) is
individually ruled out by (o1 ∪ o2)+: we have, for instance,
that (1, 2) /∈ (o1 ∪ o2)+ and (2, 1) /∈ (o1 ∪ o2)+; the same
holds for (2, 3) and (3, 4). The significance of this is that
adding o2 to o1 does not alter the menu: the choice is still
one over comparisons (1, 2), (2, 3) and (3, 4).

The problem, however, is that whereas with o1 the choice
is relatively unconstrained, meaning we can choose any
proper subset of {(1, 2), (2, 3), (3, 4)} to add to (4, 1),
adding the additional comparison (3, 1) complicates things.
To see how, consider the set of comparisons δ =
{(1, 2), (2, 3)}. These comparisons can be consistently
added to o1, i.e., (o1∪ δ)+ ∈ OV , but not to (o1∪o2)+, i.e.,
((o1 ∪ o2)+ ∪ δ)+ /∈ OV . According to our definition, this
implies that o1 and o2 are not coordinated with respect to
π. Thus, whereas with o1 can be augmented with both (1, 2)
and (2, 3), o1 and o2 do not allow adding both comparisons
together. This, then, has a knock-down effect in that it makes
it possible to add comparison (3, 4), irrespective of where it
is in the preorder on comparisons.
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In such a situation, then, the specific details of how the
choice problem is constructed makes the position of (3, 4)
in the overall preference order over comparisons irrelevant.
Consequently, expecting our axioms to take the preference
order into account will land us into trouble. To see this,
onsider preorder ≤π in Figure 3, where (3, 4) is the least
preferred comparison, and the revision operator ▷ induced
by it. We have that (3, 4) ∈ π ▷ (o1 ∪ o2)+, but (3, 4) /∈
((π ▷ o1) ∪ o2)+, i.e., postulate P3 is not satisfied.

This fact is related with the lack of coordination between
o1 and o2, as the addition of o2 tampers with the choice
problem: though we can still add either one of the three
comparisons, as mentioned above, we cannot add (1, 2) and
(2, 3) together anymore, which in turn means that (3, 4) can
be added regardless of its position in ≤π the preorder.

Example 6 is a case in which lack of coordination creates
a situation where postulate P3 is not satisfied. We do not
mean to imply, however, that there is anything wrong with
postulate P3, or with uncoordinated preference information.
Rather, we take the moral to be that we need postulates tai-
lored to cases that do not look like the one in Example 6, in
which preference information over the direct comparisons is
rendered unusable by the overriding structural constraints of
working with preference orders.

In other words, we want the behavior of a revision op-
erator to reflect the preference information over the direct
comparisons: however, the requirement of transitivity means
that, in the interest of consistency, we sometimes have to add
comparisons that were not explicitly chosen, and this can in-
terfere with the preference information over the comparisons
of π. Thus, the significance of coordination, as the follow-
ing theorem shows, is that it is needed in order for postulates
P3−4 to be effective at ensuring that choice across different
types of incoming preferences is coherent.

Theorem 1. If a : CV → TV×V is a preference assignment
and ▷a is the a-induced revision operator, then, ▷a satisfies
postulates P3−4 if and only if, for any chain π ∈ CV and
spos o1, o2 ∈ OV , it holds that o1 and o2 are coordinated
with respect to π.

Proof. (“⇐”) Take o1, o2 ∈ OV that are coordinated with
respect to π. We will show that, for any preorder ≤π on δπ ,
the a-induced revision operator ▷a satisfies postulates P3−4.
Since ▷a satisfies postulates P3−4 trivially if (π ∪ o1)+ ∈
OV , we look at the case when κo1π ̸= ∅, i.e., when (π∪ o1)+
contains a cycle.

For postulate P3, assume there is a comparison c⋆ ∈
add∗≤π

(o1 ∪ o2)+ such that c⋆ /∈ (add∗≤π
(o1) ∪ o2)+. If

c⋆ ∈ (o1 ∪ o2)+ then a contradiction follows immediately.
We thus have to look at the case when c⋆ /∈ (o1 ∪ o2)+,
which contains two subcases of its own.

Case 1. If c⋆ ∈ δπ , then by our assumption we have
that c⋆ ∈ κo1π , i.e., c⋆ is involved in some cycle with o1.
From c⋆ /∈ add∗≤π

(o1) we infer that there must be a set δ ⊆
δπ of direct comparisons of π that precede c⋆ in ≤π , are
added to o1 before it, and prevent c⋆ itself from being added.
In particular, this means that (o1 ∪ δ)+ ∈ OV , but ((o1 ∪
δ)+ ∪ {c⋆})+ /∈ OV . At the same time, we know that c⋆ ∈

add∗≤π
(o1 ∪ o2)+, i.e., c⋆ can be consistently added to (o1 ∪

o2)
+. Note that this happens after all the comparisons in δ,

which precede it in ≤π , have been considered as well. This
implies that not all of the comparisons in δ can be added to
(o1 ∪ o2)+, since if they could, then the cycle formed with
o1, δ and c⋆ would be reproduced here as well. If not all
of the comparisons in δ can be added to (o1 ∪ o2)+, this
must be because ((o1 ∪ o2)+ ∪ δ)+ contains a cycle, i.e.,
((o1 ∪ o2)+ ∪ δ)+ /∈ OV . This now contradicts the fact that
o1 and o2 are coordinated with respect to π.

Case 2. If c⋆ is not a direct comparison of π, then it
is inferred by transitivity using at least one direct compar-
ison of π added previously. We apply the reasoning in
Case 1 to these direct comparisons to show that they are in
(add∗≤π

(o1) ∪ o2)+, which implies that c⋆ ∈ (add∗≤π
(o1) ∪

o2)
+ as well.

For postulate P4, take c⋆ ∈ (add∗≤π
(o1) ∪ o2)+ and as-

sume c⋆ /∈ add∗≤π
(o1 ∪ o2)+. As before, the non-obvious

case is when c⋆ /∈ (o1 ∪ o2)+. If c⋆ ∈ δπ , then from the as-
sumption that c⋆ /∈ add∗≤π

(o1∪o2)+ we conclude that there
is a set δ ⊆ κo1π of comparisons that precede c⋆ in ≤π , are
added to (o1∪o2)+ before it and, in concert with (o1∪o2)+,
block c⋆ from being added, i.e., such that:

((o1 ∪ o2)+ ∪ δ)+ ∈ OV ,
but ((o1∪o2)+∪δ′)+ /∈ OV , where δ′ = δ∪{c⋆}. From the
second to last result we infer that δ can be added consistently
to (o1 ∪ o2)+ and, since we have that c⋆ ∈ (add∗≤π

(o1) ∪
o2)

+ as well, we obtain that and c⋆ can be added consistently
to o1. In other words, it holds that (o1 ∪ δ′)+ ∈ OV . To-
gether with the previous result this contradicts the fact that
o1 and o2 are coordinated with respect to π.

The case when c⋆ /∈ (o1 ∪ o2)+ is treated analogously as
for postulate P3.

(“⇒”) Assume that there are o1, o2 ∈ OV not coordinated
with respect to π, i.e., there exists a set δ ⊆ κo1π of direct
comparisons of π that are involved in a cycle with o1 and
are such that (o1 ∪ δ)+ ∈ OV and ((o1 ∪ o2)+ ∪ δ)+ /∈ OV .
Additionally, we have that neither of the comparisons in δ,
or their inverses, are in (o1 ∪ o2)+. We infer that there must
exist a comparison c⋆ ∈ (κo1π \ δ) that completes the cycle.
We will show that there exists a preorder ≤π such that the
revision operator induced by it does not satisfy P3. Take a
preorder≤π on δπ that arranges the elements of δ in a linear
order at the bottom of ≤π , i.e., such that cj <π cl, for any
cj ∈ δ and cl /∈ δ, and c⋆ the maximal element in ≤π , i.e.,
cj <π c⋆, for any cj ∈ δ. This implies, in particular, that
cj <π c

⋆, for any cj ∈ δ.
Note, now, that c⋆ ∈ add∗≤π

(o1 ∪ o2)+: this is because,
by assumption, not all of the comparisons in δ can be added
to (o1 ∪ o2)+, and this makes it possible for c⋆ to be added.
On the other hand, c⋆ /∈ (add∗≤π

(o1)∪ o2)+: this is because
here we can, again by assumption, consistently add δ to o1
and, since c⋆ is the last in line to be added, the inevitability
of creating a cycle with δ and the rest of the comparisons of
o1 makes it impossible to do so consistently. We obtain that
c⋆ ∈ add∗≤π

(o1 ∪ o2)+ but c⋆ /∈ (add∗≤π
(o1) ∪ o2)+, i.e.,

postulate P3 is not satisfied. Concurrently, there will be a
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Figure 4: Revision of π by o1,3 forces a choice between direct
comparisons (1, 2) and (3, 4): since keeping both (1, 2) and (3, 4)
is not possible, at least one of them, potentially both, must be dis-
carded. Depending on the choice made, possible results are π1, π2

and π3.

comparison in δ that occurs in (add∗≤π
(o1)∪ o2)+ that does

not make it into add∗≤π
(o1 ∪ o2)+, showing that P4 is not

satisfied either.

Theorem 1 shows that coordination is needed in order to
make sure that postulates P3−4 work, and we will hence-
forth assume that o1 and o2 are coordinated with respect to
π whenever we apply these postulates.

6 Characterizing Preference Revision as
Choice Over Comparisons

We show now that the procedure described in Section 3 is
characterized by the postulates introduced in Section 4, un-
der the restrictions established through Theorem 1. Theorem
2 shows that the procedure in Section 3 yields preference re-
vision operators that satisfy postulates P1−4.

Theorem 2. If a : CV → TV×V is a preference assignment,
then the revision operator ▷a induced by it satisfies postu-
lates P1−4, for any π ∈ CV and o, o1, o2 ∈ OV such that
o1, o2 are coordinated with respect to π.

Proof. Satisfaction of postulates P1−2 is straightforward.
For P1, since at every step addi≤π

selects some direct com-
parisons in π to add to o, the end result satisfies the condition
for being in ⌊o⌋π . For P2, note that (π∪o)+ ⊆ add0≤π

(o) ⊆
add∗≤π

(o). Since o1 and o2 are assumed to be coordinated
with respect to π, satisfaction of postulates P3−4 is guaran-
teed by Theorem 1.

For the converse, we want to show that any preference re-
vision operator satisfying P1−4 can be rationalized using a
preference assignment.

To that end, we will construct the preorder ≤π from bi-
nary comparisons, but we must first figure out how to com-
pare two direct comparisons (k, k+1) and (l, l+1). This is
done by creating a situation where we cannot add both and
hence one has to be given up. We will use a special type of
preference order to induce a choice between these compar-
isons. If π ∈ CV is a chain and (k, k+1), (l, l+1) ∈ δπ
are direct comparisons of π, the choice inducing prefer-
ence ok,l for (k, k+1) and (l, l+1) is defined as ok,l =
{(k+1, l), (l+1, k)}. The following example illustrates this
notion.

Example 7. To induce a choice between direct compar-
isons (1, 2) and (3, 4) in Figure 4, revise by o1,3 =
{(2, 3), (4, 1)}. Note that effectiveness of this maneuver
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Figure 5: To show that ≤▷
π is transitive, we show first that

(k, k+1) /∈ π ▷ o. Bullets indicate other potential items in π;
faded arrows indicate comparisons that may not be in π▷o, but can
be consistently added to it.

hinges on the choice being confined to the direct compar-
isons of π: if inferred comparisons were allowed to be part
of the choice, o1,3 loses its power to discriminate between
(1, 2) and (3, 4): if, for instance, (1, 3) and (2, 4) are cho-
sen, then (2, 1) and (4, 3) have to be inferred, leaving no
space for a choice between (1, 2) and (3, 4), i.e., o1,3 would
tell us nothing about the implicit preference between (1, 2)
and (3, 4). We can also see that comparison of (1, 2) and
(2, 3) is done by revising by (3, 1).

Conversely, if (k, k+1), (l, l+1) ∈ δπ and ▷ is a prefer-
ence revision operator, then the revealed order ≤▷π between
(k, k+1) and (l, l+1) is defined as:

(k, k+1) ≤▷π (l, l+1) if (l, l+1) /∈ π ▷ ok,l.

Intuitively, (l, l+1) being discarded from π▷ok,l signals that
it is considered less important than (k, k+1).

The primary question at this point is whether the revealed
preference relation ≤▷π , as defined above, is transitive. We
show next that the answer is yes.

Lemma 1. If ▷ satisfies postulates P1−4, then the revealed
preference relation ≤▷π is transitive.

Proof. Take π ∈ CV and (i, i+1), (j, j+1), (k, k+1) ∈ δπ
such that (i, i+1) ≤▷π (j, j+1) ≤▷π (k, k+1) (we can as-
sume that i < j < k). To show that (i, i+1) ≤▷π (j, j+1),
take o ∈ OV that contains all direct comparisons in π up
to k, except (i, i+1), (j, j+1) and (k, k+1), plus the com-
parison (k+1, i). In other words, o is such that if (i, i+1),
(j, j+1) and (k, k+1) were added to it, a cycle would form.
The first step involves showing that (k, k+1) /∈ π ▷ o. To
see why this is the case, note first that, by design, not all of
(i, i+1), (j, j+1) and (k, k+1) can be in π ▷ o, i.e., at least
one of them must be left out. We now do a case analysis to
show that, either way, (k, k+1) ends up being left out.

Case 1. If (k, k+1) /∈ π ▷ o, the conclusion is immediate.
Case 2. If (j, j+1) /∈ π ▷ o, then we can safely add

(i, i+1) to π ▷ o: this is because the inference of the oppo-
site comparison, i.e., (i+1, i), can be done only by adding
all comparisons on the path from i+1 to i, and the ab-
sence of (j, j+1) means this inference is blocked. Using
P3−4 we can now conclude that ((π ▷ o) ∪ {(i, i+1)})+ =
π ▷ (o ∪ {(i, i+1)})+ (see Figure 5). Note, we can separate
o ∪ {(i, i+1)} into oj,k = {(k+1, j), (j+1, k)} and all the
comparisons on the path from k+1 to j, plus the compar-
isons on the path from j+1 to k. Call this latter preference
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o′. We thus have that (o ∪ {(i, i+1)})+ = (oj,k ∪ o′)+ and,
applying P3, we obtain that:

π▷(o∪{(i, i+1)})+ = π▷(oj,k∪o′)+ ⊆ ((π▷oj,k)∪o′)+.
Since, by definition, (k, k+1) /∈ π ▷ oj,k and (k, k+1) /∈ o′,
It follows that:

(k, k+1) /∈ π ▷ (o ∪ {(i, i+1)})+,
then:

(k, k+1) /∈ ((π ▷ o) ∪ {(i, i+1)})+,
and, finally, that:

(k, k+1) /∈ π ▷ o.
Case 3. If (i, i+1) /∈ π ▷ o, then we can safely add

(k, k+1) to π ▷ o and, by reasoning similar to above, show
that (j, j+1) /∈ π ▷ o. Here we invoke Case 2.

With the fact that (k, k+1) /∈ π ▷ o in hand, we can add
(j, j+1) to π ▷ o (by reasoning similar to above), because
the path from j+1 to j in π ▷ o is blocked by the absence of
(k, k+1). Using postulates P3−4, we conclude that:

((π ▷ o) ∪ {(j, j+1)})+ = π ▷ (o ∪ {(j, j+1)})+

= π ▷ ({(i+1, . . . , k), (k+1, i)})+

= ((π ▷ oi,k) ∪ {(i+1, . . . , k)})+.
Since (k, k+1) /∈ ((π ▷ o) ∪ {(j, j+1)})+, we conclude
that (k, k+1) /∈ π ▷ oi,k, which implies that (i, i+1) ≤▷π
(k, k+1).

Lemma 1 is crucial for the following representation result,
as it indicates that we can identify the revealed preference
relation with the underlying preference over direct compar-
isons of π driving revision.
Theorem 3. If ▷ is a revision operator satisfying postulates
P1−4, for any π ∈ CV and o, o1, o2 ∈ OV such that o1, o2
are coordinated with respect to π, then there exists a pref-
erence assignment a such that ▷ is the a-induced revision
operator.

Proof. For any π ∈ CV , take ≤π to be the revealed pref-
erence relation ≤▷π . By Lemma 1, we know that ≤π is
transitive, so the only thing left to is show is that π ▷ o =
add∗≤π

(o). We do this in two steps.
(“⊆”) For one direction, Take (j, k) ∈ π ▷ o and sup-

pose (j, k) /∈ add∗≤π
(o). Clearly, it cannot be the case that

(j, k) ∈ o, so we conclude that (j, k) is either a direct com-
parison of π, or is inferred by transitivity using direct com-
parisons in π and o.

Case 1. If (j, k) ∈ δπ , then we can write (j, k) as
(j, j+1), Suppose that (j, j+1) is on level i of δπ: this
means that if (j, j+1) does not get added to add∗≤π

(o) at
step i, then, since it cannot be inferred by transitivity, it does
not get added at all. The fact that (j, j+1) /∈ add∗≤π

(o) thus
means that (j, j+1) forms a cycle with some comparisons
in o and comparisons in π on levels l ≤ i. First, note that
(j, j+1) cannot form a cycle with elements of o only, since
that would imply that (j+1, j) ∈ o and that would exclude
the possibility that (j, j+1) ∈ π ▷ o. Thus, at least one other

comparison in the cycle must come from π. We can state,
now, that, since (j+1, j) ∈ π ▷ o, then at least one of these
comparisons must be absent in π▷o, i.e., there exists a direct
comparison (k, k+1) ∈ δπ such that (k, k+1) ∈ lvl j≤π

(π),
for some j ≤ i, (k, k+1) /∈ π ▷ o and (j, j+1), (k, k+1),
plus some other comparisons in o and π form a cycle. This
means that it is safe to add o′ to π ▷ o, where o′ contains all
comparisons on the path from k+1 to j, plus the comparison
on the path from j+1 to k. We can rewrite o′ by separating
out (k+1, j) and (j+1, k), i.e., o′ = (oj,k ∪ o′)+. Applying
postulates P3−4, we now get that

((π ▷ o) ∪ o′)+ = π ▷ (o ∪ o′)+

= π ▷ (oj,k ∪ o′)+

⊆ ((π ▷ oj,k) ∪ o′)+.

Using the assumption that (j, j+1) ∈ π ▷ o and the fact that
(j, j+1) /∈ o′, we can thus infer that (j, j+1) ∈ π ▷ oj,k.
This, in turn, implies that (j, j+1) <π (k, k+1) and hence
(j, j+1) belongs to a lower level of δπ than (k, k+1): but
this contradicts the conclusion drawn earlier that (k, k+1)
belongs to a level l ≤ i, where i is the level of (j, j+1).

Case 2. If (j, k) is not a direct comparison of π, then it
is inferred from some direct comparisons of π that end up in
π ▷o, together with comparisons in o. We can now apply the
reasoning from Case 1 to the direct comparisons of π that go
into inferring (j, k), to show that they must be in add∗≤π

(o).
This, in turn, implies that (j, k) will be in add∗≤π

(o) as well.
The reasoning for the other direction is similar.

Theorems 2 and 3 describe preference revision operators that
rely on total preorders ≤π on δπ , where a tie between two
direct comparisons means that if they cannot both be added,
then they are both passed over. We can eliminate this indeci-
seveness by using linear orders on δπ instead of preorders:
this ensures that any two direct comparisons of π can be
clearly ranked with respect to each other, and that a revision
operator is always in a position to choose among them. On
the postulate site, linear orders can be characterized by tight-
ening the notion of a π-completion and, with it, postulate P1.
Thus, a decisive π-completion of o is defined as:

⌊o⌋Dπ = {(o ∪ δ)+ ∈ OV | ∅ ⊂ δ ⊆ δπ}.

Changing the format of the revision output requires chang-
ing the postulate that speaks about this format as well. The
decisive version of P1 is then written, for any π ∈ CV and
o ∈ OV , as:

(PD) π ▷ o ∈ ⌊o⌋Dπ .

A decisive preference assignment a is a function a : CV →
CV×V mapping every π ∈ CV to a linear preorder <π on δπ .
We can now show the following result.

Theorem 4. A revision operator ▷ satisfies postulates PD

and P2−4 if and only if there exists a decisive preference
assignment a such that, for any π ∈ CV and o, o1, o2 ∈ OV
such that o1, o2 are coordinated with respect to π, ▷ is the
a-induced preference revision operator.
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Proof. The proofs for Theorems 2 and 3 work here with
minimal adjustments. Note that when choosing between two
direct comparisons, postulate PD does not allow ▷ to be in-
different anymore. This means that the revealed preference
relation on δπ ends up being linear.

We can see, thus, that what seems like a weakness in the
original formulation of the problem, i.e., the mismatch in
type between the input (a chain) and the output (an spo) of
a revision operator, can be resolved by requiring the ranking
on comparisons to be strict. However, in the present setup
this amounts to a less general result, which is why we pre-
sented our work in this manner.

7 Concrete Preference Revision Operators
Theorems 2, 3 and 4 articulate an important lesson: prefer-
ence revision performed in a principled manner, i.e., in ac-
cordance with P1−4 or PD and P2−4, involves having prefer-
ences over comparisons. Thus, to obtain concrete operators
one must look at ways of ranking the comparisons in a pref-
erence π. We sketch here two simple solutions, as proof of
concept.

The trivial assignment at is defined by taking:

(i, i+1) ≈t
π (j, j+1),

while the lexicographic assignment alex is defined by taking:

(i, i+1) <lex
π (j, j+1),

if i < j, for any π ∈ CV and (i, i+1), (j, j+1) ∈ π. Intu-
itively, the trivial assignment makes all direct comparisons
of π equally desirable, while the lexicographic assignment
orders them in lexicographic order.

These assignments induce the trivial and lexicographic
operators ▷t and ▷lex, respectively. It is straightforward to
see that ≤t

π is a preorder and <lex
π is a linear order, prompt-

ing the following result.

Proposition 1. The operator ▷t satisfies postulates P1−4.
The operator ▷lex satisfies postulates PD and P2−4.

The following example illustrates that the two operators
can give different results on the same input.

Example 8. For π and o as in Example 1, the trivial opera-
tor ranks all direct comparisons of π, i.e., (1, 2) and (2, 3),
equally, and hence either adds all or none of them to o. Since
adding both leads to a cycle, it ends up adding none and
hence π ▷t o = (3, 1).

The lexicographic assignment ranks (1, 2) as better than
(2, 3), and hence adds (1, 2) after which it runs out of op-
tions, i.e., π ▷lex o = (3, 1, 2).

8 Conclusion
We have presented a model of preference change accord-
ing to which revising a preference π goes hand in hand with
having preferences over the comparisons of π, thereby pro-
viding a rigorous formal treatment to intuitions found else-
where in the literature (Sen 1977; Grüne-Yanoff and Hans-
son 2009a). Interestingly, the postulates describing prefer-
ence revision are analogous to existing postulates offered

for propositional enforcement (Haret, Wallner, and Woltran
2018), an operation used to model changes in Abstract Ar-
gumentation Frameworks (AFs) (Dung 1995).

Our treatment unearthed interesting aspects of preference
revision, such as the issue of coordination between suc-
cessive instances of new preference information (Section
4) and the non-obvious solution to the question of how
to rank two comparisons relative to each other (Section
6). These aspects are taken for granted in regular propo-
sitional revision, but prove key to successful application of
revision to the more specialized context of transitive rela-
tions on a set of items, i.e., preference orders. In this re-
spect, preference revision is akin to revision for fragments of
propositional logic (Delgrande, Peppas, and Woltran 2018;
Creignou et al. 2018), and raises the possibility of exporting
this approach to other formalisms in this family. The ad-
dition procedure in particular, lends itself to application in
other formalisms by slight tweaking of the acceptance con-
dition, and could thus supply some interesting lessons for
revision in general, in particular to revision-like operators
for specialized formalisms, such as that of AFs, mentioned
above.

There is also ample space for future work with respect
to the present framework itself. To facilitate exposition of
the main ideas we imposed certain restrictions on the pri-
mary notions. Lifting these restrictions would yield broader
results that would potentially cover more ground and apply
to a more diverse set of inputs. We can consider, for in-
stance, revising strict partial orders in general (not just linear
orders), and using rankings that involve all comparisons of
the initial preference order (not just the direct ones). As the
space of possibilities becomes larger, the choice problems
on this space become increasingly more complex as well.
Finding the right conditions under which the choice mech-
anism corresponds to a set of appealing postulates requires
a delicate balance of many elements, and holds the promise
for interesting results.
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Abstract

Abstract argumentation frameworks (AFs) as proposed by
Dung in his seminal 1995 paper are by now a well-established
and flourishing research area in knowledge representation and
reasoning. Various aspects of AFs have been extensively
studied over the last 25 years. Many of these are concerned
with computational properties of reasoning problems in an
AF, for example deciding whether a certain set of arguments
is a so-called extension w.r.t. a given semantics. Recently,
properties of semantics have been investigated in order to ex-
amine the potential of several divide & conquer techniques.
For example, the notion of SCC decomposability formalizes
how to calculate an extension by evaluating the strongly con-
nected components individually. We extend this line of re-
search and compare several notions with a special focus on
the recently introduced modularization property.

1 Introduction
In his seminal 1995 paper (Dung 1995), Dung initiated the
investigation of abstract argumentation frameworks (AFs).
A Dung-style AF is a directed graph where nodes are inter-
preted as arguments and edges as attacks between them. In
the literature, various semantics have been proposed, that is,
mappings which assign to an AF a set of so-called exten-
sions, i.e. sets of commonly acceptable arguments.

An important feature of knowledge representation for-
malisms is their expressive power, i. e. the questions which
kind of knowledge can be expressed and which not. This is
by no means limited to knowledge representation and rea-
soning, but an important question for various formalisms in-
vestigated in theoretical computer science in general. Much
research is driven by the expressive power of the studied
framework as it hints at the need to propose extensions in
order to augment its ability to model certain application sce-
narios. There is however a natural trade-off since the search
for “good” formalisms has to take both expressive power and
computational complexity of natural decision problems into
consideration.

Both expressive power and computational complexity are
quite well understood for various extensions and semantics
of AFs. We refer the reader to (Baroni, Caminada, and Gia-
comin 2011; 2018) for an overview of AF semantics and to
(Dvořák and Dunne 2018) regarding the computational com-
plexity. A common technique for finding algorithmic solu-

tions to problems arising in computer science are so-called
divide & conquer approaches. In a nutshell, the underly-
ing idea is to partition the given problem into smaller sub-
problems and solving them individually. In order to formal-
ize such approaches for reasoning with AFs, several modu-
larity notions have been introduced in the literature (Baroni
et al. 2014; Baroni, Giacomin, and Liao 2018); and similar
work has also been done for e.g. logic programs (Lifschitz
and Turner 1994) or default logic (Turner 1996). Since AFs
are a non-monotonic logic, this is an inherently sophisticated
endeavor. More specifically, given a partial solution to some
problem (in our case a σ-extension E of a subframework of
an AF F ), non-monotonicity usually undermines attempts
to calculate an additional partial solution in order to com-
bine both of them to a single one of the whole problem.
Driven by this observation, researchers have studied situa-
tions in which such approaches work due to the theoretical
properties of the semantics. Most notably, notions like SCC-
recursiveness, directionality, splitting (Baumann 2011), or
full decomposability have been proposed and investigated.

More recently, a property called modularization has been
introduced (Baumann, Brewka, and Ulbricht 2020a). The
overall idea is as follows: Starting from an extension E,
consider the subframework consisting of these arguments
whose acceptance status is not yet decided. If in this situa-
tion E′ is an extension of the aforementioned auxiliary sub-
framework, then E ∪ E′ shall be an extension of the whole
AF. Although this is a rather simple property – both intu-
itively as well as technically – the results reported in (Bau-
mann, Brewka, and Ulbricht 2020a) suggest it to be quite
powerful: Among others, the accepted arguments w.r.t. the
grounded extension can be characterized as well as the so-
called strongly admissible sets (Caminada and Dunne 2019;
Baumann, Linsbichler, and Woltran 2016) of an AF. More-
over semantics satisfying modularization can be computed
step-wise in a way that at first glance seems unexpected for
a non-monotonic logic like AFs.

In this paper we are going to compare modularization
to well-established modularity notions (Baroni, Giacomin,
and Liao 2018) on an abstract level. More specifically, we
i) extend the list of semantics satisfying modularization in
Section 3, ii) show that modularization is incomparable to
the other notions in general by developing suitable coun-
terexamples in Section 4, iii) establish that under mild as-
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sumptions full decomposability implies modularization for
semantics refining co in Section 5, and iv) give a criterion
under which modularization and directionality imply SCC-
decomposability in Section 6. Due to space restrictions, we
will introduce the modularity notions quite briefly. We refer
the reader to (Baroni, Giacomin, and Liao 2018) for a gentle
introduction of the concepts.

2 Background
2.1 Standard Concepts and Classical Semantics
We fix a non-finite background set U . An AF (Dung 1995)
is a directed graph F = (A,R) where A ⊆ U represents a
set of arguments and R ⊆ A × A models attacks between
them. F denotes the set of all finite AFs over U ; we shall
consider finite AFs only.

For S ⊆ A we let F ↓S= (A ∩ S,R ∩ (S × S)). For
a, b ∈ A, if (a, b) ∈ R we say that a attacks b as well as a
attacks (the set) E given that b ∈ E ⊆ A. Moreover, we use
E+
F = {a ∈ A | E attacks a in F} and E⊕F = E ∪E+

F . The
latter set is known as the range of E in F . When clear from
the context, we omit the subscript F . A setE is conflict-free
in F (for short, E ∈ cf (F )) iff for no a, b ∈ E, (a, b) ∈ R.
We say a set E defends an argument a (in F ) if any attacker
of a is attacked by some argument of E, i. e. for each b with
(b, a) ∈ R, there is c ∈ E such that (c, b) ∈ R.

A semantics σ is a mapping σ : F → 22
U

where
F 7→ σ(F ) ⊆ 2A, i. e. given an AF F = (A,R) a semantics
returns a subset of 2A. Besides conflict-free and admissible
sets (abbr. cf and ad ) we consider stable, semi-stable, com-
plete, preferred, grounded, ideal and eager semantics (abbr.
co, gr , pr , stb, ss, il and eg , respectively).
Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (A).
1. E ∈ad(F ) iff E defends all its elements,
2. E ∈co(F ) iff E ∈ ad(F ) and, for any x defended by E,

we have x ∈ E,
3. E ∈gr(F ) iff E is ⊆-minimal in co(F ),
4. E ∈pr(F ) iff E is ⊆-maximal in ad(F ),
5. E ∈ stb(F ) iff E ∈ cf (A) and any a ∈ A \ E is at-

tacked by E,
6. E ∈ss(F ) iff E ∈ co(F ) with ⊆-maximal range E⊕,
7. E ∈ il(F ) iff E ∈ co(F ) and E ⊆ ⋂

pr(F ) and ⊆-
maximal wrt. the conjunction of both properties,

8. E ∈ eg(F ) iff E ∈ co(F ) and E ⊆ ⋂
ss(F ) and ⊆-

maximal wrt. the conjunction of both properties.
Some of our definitions and proofs make use of the

labelling-approach to semantics. For brevity, we state that
labellings and extensions are somewhat interchangeable for
conflict-free semantics (Baroni, Caminada, and Giacomin
2011, Defintion 7, 8, 14, 15). We use the set of la-
bellings {in, out, undec}. For an AF F = (A,R) and some
extension-based semantics σ, s.t. E ∈ σ(F ), we will say
Lab(e) = in iff e ∈ E, Lab(e) = out iff e ∈ E+ and
Lab(e) = undec iff e ∈A\E⊕. Lab = {(e, Lab(e))} de-
notes the set of tuples of arguments and their labels for all
e ∈ A. Essentially, this set corresponds to some extension
E. Given some X ⊆A, we define the restriction of Lab to

X , denoted Lab ↓X , as Lab ∩ (X × {in, out, undec}). For
ease of notation, we will sometimes also refer to Lab as the
tuple ({e∈A | Lab(e) = in}, {e∈A | Lab(e) = out}, {e∈
A | Lab(e) = undec}).

2.2 Weak Admissible-Based Semantics
The reduct is the central notion in the definition of weak
admissible semantics (Baumann, Brewka, and Ulbricht
2020b).
Definition 2.2. Let F = (A,R) be an AF and let E ⊆ A.
The E-reduct of F is the AF FE = (E∗, R ∩ (E∗ × E∗))
where E∗ = A \ E⊕F .

By definition, FE is the subframework of F obtained by
removing the range of E as well as corresponding attacks,
i. e. FE = F↓A\E⊕ . Intuitively, theE-reduct contains those
arguments whose status still needs to be decided, assuming
the arguments in E are accepted. This intuition is captured
in the forthcoming central definition.
Definition 2.3. For an AF F = (A,R), E ⊆ A is called
weakly admissible (or w-admissible) in F (E ∈ adw(F )) iff

1. E ∈ cf (F ) and
2. for any attacker y of E we have y /∈ ⋃ adw

(
FE
)
.

The major difference between the standard definition of
admissibility and the “weak” one is that extensions do not
have to defend themselves against all attackers: attackers
which do not appear in any w-admissible set of the reduct
can be neglected.
Example 2.4. Consider the following simple example:

a bc

F :

a bc

F {a} = F {b} :

While we observe {a} /∈ ad(F ), we can verify weak ad-
missibility of {a} in F . Obviously, {a} is conflict-free in
F (condition 1). Since c is the only attacker of {a} in F {a}

we have to check c /∈ ⋃ adw
(
F {a}

)
(condition 2). Since

{c} is not conflict-free in the reduct F {a} = ({c}, {(c, c)})
we find {c} /∈ adw

(
F {a}

)
yielding

⋃
adw

(
F {a}

)
= ∅.

Hence, c /∈ ⋃ adw
(
F {a}

)
, and thus {a} ∈ adw(F ). �

Following the classical Dung-style semantics, weakly pre-
ferred extensions are defined as ⊆-maximal w-admissible
extensions.
Definition 2.5. For an AF F = (A,R), E ⊆ A is called
weakly preferred (or w-preferred) in F (E ∈ prw(F )) iff E
is ⊆-maximal in adw(F ).

For more details regarding the definition and basic proper-
ties of weak admissibility we refer the reader to (Baumann,
Brewka, and Ulbricht 2020b).

2.3 Modularity Notions
Directionality. We call U ⊆ A unattacked if there are no
two arguments a ∈ A \ U and u ∈ U with (a, u) ∈ R. A
semantics satisfies directionality if for any unattacked set U
we have σ(F↓U ) = {E ∩ U | E ∈ σ(F )}.
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Full Decomposability. Let us now define the notion of full
decomposability (Baroni et al. 2014). Let F = (A,R) be an
AF. Let E ⊆ A. The input of E, which we will denote as
Einp, is defined as

Einp := {a ∈ A \ E | ∃e ∈ E : (a, e) ∈ R}.
The conditioning relation of E, is ER := R ∩ (Einp × E).
An AF with input is a tuple (F,X,LX , RX) where X is
some set of arguments s. t. X ∩ A = ∅, LX is some label-
ing for X , i. e. LX = {(x, Lab(x)) | x ∈ X}, and RX
is a relation s. t. RX ⊆ X × A. Given an AF with input
(F,X,LX , RX), the standard AF w.r.t. (F,X,LX , RX) is
F ′ = (A ∪X ′, R ∪R′X) where

X ′ = X ∪ {a′ | (a, out)∈LX}
R′X = RX ∪ {(a′, a) | (a, out)∈LX}

∪ {(a, a) | (a, undec)∈LX}.
A local function LF assigns to any argumentation frame-
work with input a (possibly empty) set of labelings. Given
some semantics σ ⊆ cf , we denote the labellings corre-
sponding to σ(F ) as Lσ(F ). The canonical local function
of σ (also called the local function of σ) is defined as the
following set of labellings: Fσ(F,X,LX , RX) = {Lab↓A|
Lab ∈ Lσ(F ′)} where F ′ is the standard argumentation
framework w.r.t. (F,X,LX , RX). A partition of A is a set
{P1, ..., Pn}, s. t. ∀i∈{1, ..., n} we have i) ∅ 6= Pi ⊆ A, ii)⋃
i=1...n Pi = A and iii) Pi ∩ Pj = ∅ for i 6= j.
We say that σ is fully decomposable if there is a local

function Fσ s. t. for every AF F and every partition P =
{P1, ..., Pn} of A, we have Lσ(F ) = U(P, F, Fσ) where

U(P, F, Fσ) =
{⋃

LPi
| LPi

∈ Fσ(F↓Pi
, P inpi , L, PRi )

}

with L =
(⋃

j 6=i LPj

)
↓P inp

i
.

SCC-recursiveness. Given an AF F = (A,R), an SCC
S is a maximal set of arguments s. t. in F ↓S the follow-
ing condition holds: For any two a1, an ∈ A (F↓S) there
is a sequence a1, . . . , an of arguments with ai ∈ S and
(ai, aj) ∈ R. We denote by SCCSF the set of all SCCs
of F . If there is a ∈ P and b ∈ S s. t. (a, b) ∈ R for SCCs
S, P , we call P a parent of S. By S≺ we denote all an-
cestors of S which are induced by this parent relation. We
consider the following sets:
• DF (S,E) = {a ∈ S | ∃P ∈ S≺, b ∈ E ∩ P : b→ a},
• PF (S,E) = {a ∈ S | ∃b ∈ P ∈ S≺ : (b, a) ∈ R, E 6→
b} \DF (S,E),

• UF (S,E) = S \ (DF (S,E) ∪ PF (S,E)).
We let UPF (S,E) = UF (S,E) ∪ PF (S,E). We say a se-
mantics σ is SCC-recursive if for any AF F = (A,R), we
have σ(F ) = σ̄(F,A), where for any AF F = (A,R) and
any C ⊆ A, σ̄(F,C) ⊆ 2A is given as follows: E ⊆ A
satisfies E ∈ σ̄(F,C) iff
• if |SCCS(F )| = 1, then E ∈ σ̄b(F,C) for a “base func-

tion” σ̄b(F,C),
• otherwise, for all S ∈ SCCS(F ) it holds that E ∩ S ∈
σ̄(F↓UPF (S,E), UF (S,E) ∩ C).

Modularization. Finally, we introduce the more recent
modularization property from (Baumann, Brewka, and Ul-
bricht 2020a). Modularization does not restrict the structure
of the given AF, but rather focuses on compatibility of ex-
tensions E and their reduct FE in the following sense:
Definition 2.6. A semantics σ satisfies modularization if for
any AF F we have: E ∈ σ(F ) and E′ ∈ σ

(
FE
)

implies
E ∪ E′ ∈ σ(F ).

We refer the reader to (Baumann, Brewka, and Ulbricht
2020a) for an in-depth discussion of modularization, includ-
ing results demonstrating that Dung’s semantics satisfy this
property.
Proposition 2.7 (see (Baumann, Brewka, and Ulbricht
2020a)). The semantics σ ∈ {ad , co, gr , pr , stb} satisfy
modularization.

3 Warm Up
In this section we briefly show modularization for the se-
mantics not mentioned in Proposition 2.7 in order to aug-
ment previous results. That is, we consider ss , eg , and il in
this section. In all three cases we will show that the empty
set is the only extension in the reduct FE , i. e. σ(FE) = {∅}
for σ ∈ {ss, eg , il} and E ∈ σ(F ). Then, modularization
is clear since there is nothing to show whenever E′ = ∅ in
Definition 2.6.

We start with semi-stable semantics ss . Here, we can im-
mediately show that the empty set is the only extension of
the reduct, without any preparatory considerations.
Proposition 3.1. If E ∈ ss(F ), then ss

(
FE
)

= {∅}.
Proof. Let F = (A,R) be an AF. Let E ∈ ss(F ). As-
sume ∅ 6= E′ ∈ ss

(
FE
)
. Both E and E′ are admissible

by definition and we therefore infer E ∪ E′ ∈ ad(F ) from
the modularization property of ad . Since E′ ⊆ A \ E⊕ it
is clear that E⊕ ( (E ∪ E′)⊕ implying E was not a semi-
stable extension of F .

Corollary 3.2. ss satisfies modularization.
The proof for eg is more involved. We start by inferring

some auxiliary results. We will state them explicitly as they
will be of interest later on.
Proposition 3.3. Let F be an AF and let E ∈ ad(F ) with
E = E′ ∪̇E′′ for some E′ ∈ ad(F ). Then E′′ ∈ ad(FE

′
).

Proof. Clearly, E′′ ∈ cf (F ). Now assume a attacks E′′

in FE
′
. Due to E ∈ ad(F ), some e ∈ E counterattacks

a. Since a occurs in FE
′

we infer a /∈ (E′)+ and hence,
a ∈ (E′′)+. Hence, E′′ counterattacks a.

Next we show that complete semantics satisfy this prop-
erty as well.
Proposition 3.4. Let F be an AF and let E ∈ co(F ) with
E = E′ ∪̇E′′ for some E′ ∈ co(F ). Then E′′ ∈ co(FE

′
).

Proof. We already know E′′ ∈ ad(FE
′
). By E ∈ co(F ),

there are no unattacked arguments in FE
′∪E′′ = (FE

′
)E
′′

and therefore E′′ is complete in FE
′

as well.
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As a last step before finally turning to eg itself, we infer
an analogous result for ss . This is required since eg builds
upon semi-stable extensions.

Proposition 3.5. Let F be an AF and let E ∈ ss(F ) with
E = E′ ∪̇E′′ for some E′ ∈ ad(F ). Then E′′ ∈ ss(FE

′
).

Proof. We already know E′′ ∈ ad(FE
′
) since ss ⊆ ad .

Now assume E′′ is not semi-stable in FE
′
. Then there is

some admissible S ∈ ad
(
FE

′
)

with (E′′)⊕ ( S⊕. Since

E′′ and S occur in FE
′
, E⊕ = (E′ ∪ E′′)⊕ ( (E′ ∪ S)⊕.

Since by modularization we have E′ ∪S ∈ ad(F ), we infer
E /∈ ss(F ), contradiction.

Now we are ready to infer the desired result for eg .

Proposition 3.6. If E ∈ eg(F ), then eg
(
FE
)

= {∅}.

Proof. Let F = (A,R) be an AF and let E ∈ eg(F ). Con-
sider the reduct FE and assume E′ ∈ eg(FE) is not empty.
Let S be a semi-stable extension of F . By definition of eg ,
E ⊆ S. Our goal is to show E′ ⊆ S as well, yielding a
contradiction since E ∪ E′ ∈ ad(F ) by modularization of
ad ; hence the eager extension of F must at least contain
E ∪ E′. To this end note that S = E ∪ S′ for E ∈ ad(F )
and some S′. By the above proposition, S′ ∈ ss

(
FE
)

and
hence E′ ⊆ S′ ⊆ S and we are done.

Corollary 3.7. eg satisfies modularization.

In order to lift the above proof technique to il as well it
suffices to note the following adjustment to Proposition 3.5.

Proposition 3.8. Let F be an AF and let E ∈ pr(F ) with
E = E′ ∪ E′′ for some E′ ∈ ad(F ). Then E′′ ∈ pr(FE

′
).

Proof. According to (Baumann, Brewka, and Ulbricht
2020a, Proposition 3.2)E ∈ pr iffE ∈ ad(F ) and FE does
not possess any admissible argument. We already know ad-
missibility of E′′ in FE

′
. Moreover, FE = (FE

′
)E
′′

does
not contain admissible arguments; thus we are done.

This yields the same behavior for il as well. First, we
again infer that the reduct does not tolerate any non-empty
extension.

Proposition 3.9. If E ∈ il(F ), then il
(
FE
)

= {∅}.
And as before, this yields modularization.

Corollary 3.10. il satisfies modularization.

4 Incomparability Results
The goal of this section is to investigate whether there is a
general relationship between modularization and the other
modularity notions we introduced. For example, under
mild assumptions the splitting property implies direction-
ality (Baroni, Giacomin, and Liao 2018, Proposition 3.3),
i.e. each semantics σ satisfying the splitting property (and
σ(F ) 6= ∅ for each AF F ) also satisfies directionality. We
call two properties incomparable if there is no such relation
in general. For example, directionality and full decompos-
ability are incomparable since

• gr satisfies directionality, but not full decomposability
whereas

• stb satisfies full decomposability, but not directionality
as summarized in (Baroni, Giacomin, and Liao 2018, Ta-
ble 1). Our first main result is that modularization is incom-
parable to each notion considered in this paper.
Theorem 4.1. The following properties are incomparable
in general:

• Modularization and directionality,
• Modularization and full deomposability,
• Modularization and SCC recursiveness,

In the following subsections, we will prove this theorem
by giving suitable results and counterexamples.

4.1 Modularization vs. Directionality
We define the following auxiliary semantics returning all
sects of arguments with no in-going attacks.
Definition 4.2. Let F = (A,R) be an AF. We call an argu-
ment a ∈ A unquestioned if there is no b ∈ A with b → a.
We let UF be the set of all unquestioned arguments of F .
An extension E ⊆ A is called an unquestioned extension
(E ∈ un(F )) if E ⊆ UF .

We want to emphasize that while un is admittedly not
a very meaningful semantics in most application scenarios,
it follows a natural (yet very cautious) motivation. In this
sense, we believe un is simple, but by no means a sophisti-
cated artificial semantics. As the following result shows, it
witnesses that directionality does not imply modularization.
Proposition 4.3. The semantics un satisfies directionality,
but not modularization.

Proof. Let F = (A,R) be an AF.
Our first step is to observe the following: Given a ∈ U ,

a is unquestioned in F iff it is unquestioned in F↓U . Here,
the “⇒”-direction is immediate since F↓U possesses fewer
arguments. For “⇐”, we use the fact that U is unattacked in
F .

Now let us show that un satisfies directionality, i. e. {E ∩
U | E ∈ un(F )} = un(F↓U ).

(⊆) For E ∈ un(F ) we have E ∩ U ⊆ U and E ∩ U ⊆
CF , i. e. E∩U is a set of unquestioned arguments occurring
in U . By definition, E ∩ U ∈ un(F↓U ).

(⊇) Given E ∈ un(F ↓U ), from the above statement we
infer that each argument in E is unquestioned in F as well,
i. e. E ∈ un(F ). Clearly, E ∩ U = E and we are done.

We have left to show that un does not satisfy modular-
ization. As a counterexample, consider the following simple
AF F :

aF : b c

It is easy to see that un(F ) = {∅, {a}} and un
(
F {a}

)
=

{∅, {c}}. In order to satisfy the modularization property, the
set {a, c} would now also have to be an extension of un(F ),
but this is not the case. Therefore, the semantics un does not
satisfy modularization.
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Thus, for a semantics σ it is not sufficient to satisfy the
directionality property in order to also enforce the modular-
ization property. In particular:
Corollary 4.4. Directionality does not imply modulariza-
tion.

Since modularization is a rather general property, it is no
surprise that the other implication does not hold, either. To
see this, it suffices to consider an arbitrary semantics sat-
isfying modularization, but not directionality. For exam-
ple, (Dauphin, Rienstra, and van der Torre 2020b, Proposi-
tion 10) showed that cow —the weak counterpart to Dung’s
classical complete semantics— is not directional. However,
modularization is satisfied (Baumann, Brewka, and Ulbricht
2020a, Theorem 4.13).
Corollary 4.5. Modularization does not imply directional-
ity.

Hence we established the first item in Theorem 4.1.

4.2 Modularization vs. Full Decomposability
To see that full decomposability alone does not imply mod-
ularization, consider again the semantics un , which satisfies
full decomposability as formalized in the following proposi-
tion.
Proposition 4.6. The semantics un satisfies full decompos-
ability, but not modularization.

Sketch of Proof. For F = (A,R) let us consider

Fun(F,X,LX , RX) =

{
(
E, E+ ∪ I1, (A\E+)\I2

)
| E = A ∩ E′∈un(F ′)}

where

I1 = {x∈A\E+ | ∃x′∈X, (x′, x)∈RX , (x′, in)∈LX},
I2 = {x∈A | ∃x′∈X, (x′, x)∈RX , (x′, in)∈LX}

and F ′ being the standard AF w. r. t. (F,X,LX , RX).
In words, we are doing the following: Let F ′ be the stan-

dard AF w. r. t. (F,X,LX , RX). We take some set of un-
questioned arguments of F ′ s. t. all the chosen arguments
are also present in F and denote this set by E. All e ∈ E
receive the label in. Every a∈E+, as well as every a which
is attacked by some x ∈ X where x is labeled in via LX ,
receives the label out. Lastly, all remaining arguments of A
receive the label undec.

Now suppose we have some partition P = {P1, ..., Pn}
of F , some E ∈ un(F ) and LabE its corresponding la-
belling. If e∈UF , then e∈UF↓Pi

also holds. We can choose
Ei ∈UF↓Pi

⊆ Pi for every Pi s. t.
⋃
i=1,...,nEi = E. With

Fun(F ↓Pi , P
inp
i , (

⋃
j=1..n,i6=j LPj )↓P inp

i
, PRi ), we can la-

bel each e∈Ei as in for the subframework F↓Pi
. With the

sets I1 and I2 defined above, we make sure that every a∈Pi
which is not attacked by some accepted e ∈E ∩ Pi but at-
tacked by some accepted e∈E∩Pj (Pj 6= Pi) is labelled out
(instead of undec, which would be the case if we only con-
sidered attacks from within Pi). Thus we can recreate LabE
via Fun(F ↓Pi

, P inpi , (
⋃
j=1..n,j 6=i LPj

)↓P inp
i
, PRi ) and the

partition P .

On the other hand, if we combine some elements of
Fun(F ↓Pi , P

inp
i , (

⋃
j=1..n,j 6=iLPj

) ↓P inp
i
, PRi ) for P , we

know that only arguments are labelled in, which were un-
questioned in the corresponding standard AFs, i. e. those
which did not receive any input from any partition. Thus we
can infer that all arguments which received the label in in the
union of all the subframeworks F↓Pi

, are also unquestioned
in F . Therefore these arguments form someE∈un(F ).

Recall from the previous section that un does not satisfy
modularization. We hence infer the following result.
Corollary 4.7. Full decomposability does not imply modu-
larization.

For the other direction consider pr , Dung’s classical pre-
ferred extensions. Here modularization is satisfied (Bau-
mann, Brewka, and Ulbricht 2020a, Proposition 3.4), but full
decomposability is not (Baroni et al. 2014, Example 5).
Corollary 4.8. Modularization does not imply full decom-
posability.

This yields the second item in Theorem 4.1.

4.3 Modularization vs. SCC Recursiveness
As before, we start with an example showing that modular-
ization is not implied. Consider the fact that cf 2 is SCC-
recursive (Baroni, Giacomin, and Guida 2005). However, a
simple odd cycle shows that cf 2 does not satisfy modular-
ization.
Example 4.9. Let F be the following AF:

aF : b c

F forms a single SCC, implying that cf 2 coincides with
the base function na , i. e. cf 2(F ) = {{a}, {b}, {c}}.
The reduct F {a} is the single unattacked argument c with
cf 2

(
F {a}

)
= {{c}}, so modularization would imply

{a, c} ∈ cf 2(F ) which is not the case.
Corollary 4.10. SCC recursiveness does not imply modu-
larization.

In Proposition 11, (Dauphin, Rienstra, and van der Torre
2020b) showed that cow is not SCC-recursive. Recall that
modularization is satisfied (Baumann, Brewka, and Ulbricht
2020a, Theorem 4.13) and hence:
Corollary 4.11. Modularization does not imply SCC-
recursiveness.

Thus we are done with the third item in Theorem 4.1.

5 Inferring Modularization
Let us now have a closer look at the relation between full
decomposability and modularization. As we saw in the pre-
vious section there is in general no implication between the
two notions. However, both are somewhat similar in their
spirit: Intuitively, full decomposability requires that the AF
can be partitioned into sub-frameworks and evaluated al-
most independently, while taking possible inputs into ac-
count. Modularization, on the other hand, requires that the
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reduct FE can be considered independently ofE, so one can
think of partitioning F into E⊕ and A \ E⊕. In this sense,
one could expect full decomposability to be a stronger no-
tion than modularization. As we will see in this section, this
is indeed true under mild assumptions for complete-based
semantics.

The first assumption we are going to make is based on the
notion of a splitting (Baumann 2011) of an AF:
Definition 5.1. Let F1 = (A1, R1) and F2 = (A2, R2) be
two AFs with A1 ∩ A2 = ∅. For R3 ⊆ A1 × A2 we call
(F1,F2, R3) a splitting of F = (A1 ∪A2, R1 ∪R2 ∪R3).
Example 5.2. Consider the following AF F :

aF :

b

c

d

e f

g

We have the splitting (F1, F2, R3) where F1 is the subframe-
work induced by the arguments {a, b}, F2 the subframework
consisting of the remaining arguments and R3 = {(b, d)}.
The property we require can be illustrated as follows: Con-
sider the admissible extension E1 = {a}. Now, b is labeled
out:

aF1 :

b

c

F2 :

d

e f

g

The subframework F2 possesses the admissible extension
E2 = {d, e}. Let us examine the interaction between E1

and E2:
1. We do not expect the attack (b, d) to be problematic for
E2 since b is labeled out;

2. we do not expect any attack towards c to be problematic
for E2 since c is already labeled out due to E2 itself.

Indeed, E1 ∪ E2 is an admissible extension of F .
In the following we formalize this compatibility require-

ment whenever either the first or the second case holds for
each attack in R3.
Definition 5.3. Let σ be a labeling-based semantics. We
say that σ satisfies the weak splitting property if for every
splitting F = (F1, F2, R3) as well as LabF1

∈ Lσ(F1)
and LabF2

∈ Lσ(F2), both of the following two statements
hold:

1. If ∀(a1, a2) ∈ R3 we have LabF1
(a1) = out, then we

also have LabF1
∪ LabF2

∈ Lσ(F ).
2. If ∀(a1, a2) ∈ R3 we have LabF2

(a2) = out, then we
also have LabF1

∪ LabF2
∈ Lσ(F ).

Since we require the weak splitting property for the main
result of this section, we want to emphasize that this premise
is rather mild. More specifically, almost all considered se-
mantics adhere to it.

Proposition 5.4. Consider any semantics σ with σ ∈
{ad , co, pr , gr , stb, adw, prw, il}. Then σ satisfies the
weak splitting property.

Second, we introduce a property we call range compati-
bility formalizing that an extensionE should be an extension
of the subframework F↓E⊕ as well.

Definition 5.5. Let σ be a semantics. We say that σ satisfies
range compatibility if for every AF F and every extension
E ∈ σ(F ) we have E ∈ σ(F↓E⊕).

Again this is requirement is not very restrictive. In fact,
again almost all considered semantics in this paper are range
compatible. The only exceptions are il and eg .

Proposition 5.6. Consider any semantics σ with σ ∈
{ad , co, pr , gr , stb, ss, adw, prw}. Then σ satisfies range
compatibility.

Now we are ready to perform the preparatory consider-
ations for this sections main theorem. First, we give two
auxiliary lemmata showing how arguments of an extension
E ∈ co(F ) interact with arguments outside the range E⊕.
Note that both of them seem quite technical at first glance,
but it is worth noting that both of them formalize a quite
intuitive behavior.

From a technical point of view the following two Lem-
mata help us to apply the weak splitting property as they
show under which conditions certain arguments are labeled
out.

Lemma 5.7. Let F = (A,R) be an AF and let E ∈ co(F ).
Furthermore, let Lab be the associated labeling. Then for
all arguments x ∈ A \ E⊕ we have: If (x, e) ∈ R and
e ∈ E⊕, then Lab(e) = out.

Lemma 5.8. Let F = (A,R) be an AF and let E ∈ co(F ).
LetE′ ∈ co

(
FE
)

andLab = (E,E+, A\E⊕). Then for all
e ∈ E⊕ and e′ ∈ E′ s. t. (e, e′) ∈ R, we haveLab(e) = out.

Now let us turn to the desired relation between modular-
ization and full decomposability. Before giving the formal
result and its proof, let us head back to our running example.

Example 5.9. Again consider E1 = {a} ∈ σ(F ) for some
arbitrary semantics σ.

aF1 :

b

c

F2 :

d

e f

g

We observe that FE1 is the subframework induced by the
arguments {c, d, e, f, g}. Now if E2 = {d, e} ∈ σ

(
FE1

)
,

then full decomposability applied toE⊕ andA\E⊕ would -
assuming σ adheres to our mild assumptions- implyE1∪E2

to be an extension of F . Since this is precisely the require-
ment of the modularization property, this does the job.

Now, carefully putting together the pieces we collected
yields the following result.
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Theorem 5.10. Let σ ⊆ co be an extension-based seman-
tics. Let σl be the associated labeling-based semantics. If σl
is fully decomposable and satisfies the weak splitting prop-
erty as well as range compatibility, then σ satisfies modular-
ization as well.

Sketch of Proof. Let F = (A,R) be an AF and let E ∈
σ(F ) as well as E′ ∈ σ

(
FE
)
. Let LabE , LabE′ be the

labellings corresponding to E and E′. Set P = {P1, P2}
with P1 = E⊕ and P2 = A

(
FE
)

as a partition of A.
Note that LabE ↓P1

∈ σl(F ↓P1
), since σ satisfies range

compatibility. As σ ⊆ co, we can use the canonical local
function LF as the local function for the defintion of de-
composability.

Furthermore, since σ ⊆ co, we can use Lemma 5.7 and
Lemma 5.8 to analyze the influence that P1 and P2 receive
from each other: In P1, only arguments labelled out are at-
tacked by P2, while in P2 any attacker from P1 is an ar-
gument labelled out. Because σ satisfies the weak splitting
property, we can therefore infer:

• LabE↓P1∈ LF

(
F↓P1 , P

inp
1 , LabE′↓P inp

1
, PR1

)
and

• LabE′ ∈ LF

(
F↓P2

, P inp2 , LabE↓P inp
2
, PR2

)
.

Now we can use the full decomposability of σl to infer
(LabE↓P1 ∪ LabE′) ∈ U(P, F,LF ) = Lσ(F ), i.e. we have
E ∪ E′ ∈ σ(F ).

6 SCC-recursiveness
This section is devoted to the notion of SCC-recursiveness.
We stick with the pattern of the previous section and de-
velop abstract principles which ensure a relation to mod-
ularization. This time, however, the implication will be
the other way round, i. e. we give a sufficient criterion for
SCC-recursiveness rather than modularization. This is a
more challenging (and admittedly more technical) endeav-
our since modularization is a quite common feature while
SCC-recursiveness is rather demanding.

However, before developing this result, we close an open
gap from (Dauphin, Rienstra, and van der Torre 2020b) re-
garding weakly preferred semantics: The paper investigates,
among others, abstract property of weak admissibility-based
semantics, but leaves open whether or not weakly preferred
semantics satisfy SCC-recursiveness. We will answer this
question in the affirmative.

6.1 Weakly Preferred Semantics
Let us first consider an example illustrating why adw is not
SCC-recursive (as already mentioned in (Dauphin, Rienstra,
and van der Torre 2020b)) and to gain some intuition why
this problematic mechanism does not apply to prw.

First, let us recall the recursive definition: E ∈ adw(F )
iff

1. E ∈ cf (F ) and

2. for any attacker y of E we have y /∈ ⋃ adw
(
FE
)
.

The problem with SCC-recursiveness is now that it is some-
times impossible to tell which attacks are meaningful (that
is, coming from a weakly admissible extension of the reduct
FE) and which not. To illustrate this, let us quickly compare
an even and an odd cycle and then move to a simple example
consisting of just two SCCs. For F forming an odd cycle

a1F : a2 a3

there is no non-empty weakly admissible extension: For ex-
ample, set E = {a1}. Then the reduct FE consists of the
unattacked argument a3 attacking a1; thus E /∈ adw(F ). In
contrast, the even cycle

a1F ′ : a2

has two non-empty extensions {a1} and {a2}; both are even
stable and hence clearly weakly admissible as well.

The problem with SCC-recursiveness can now be seen as
in the following example.
Example 6.1. Consider the following AF F , consisting of
two SCCs:

a3

a1F :

a2 b

The only weakly admissible extension of the initial SCC is
∅, as we just saw. Regarding the second SCC, {b} is an
extension; however, b receives an attack from an undefeated
argument a2. In this case, b is acceptable since a3 does not
occur in any weakly admissible extension ofF {b}. However,
if we turn the odd cycle into an even one

a1F ′ : a2 b

then suddenly {b} /∈ adw(F ′). However from the perspec-
tive of the second SCC the situation did not change: There
is one argument with an input attack from an undecided ar-
gument a2.

This is why adw is not SCC-recursive; but what is the
catch for prw? To see the difference we characterize prw

with (Baumann, Brewka, and Ulbricht 2020a, Theorem 4.5):
E ∈ prw(F ) iff E ∈ cf (F ) and

⋃
adw

(
FE
)

= ∅; that is,
if E is weakly preferred, then no argument in the reduct FE
is weakly admissible. This means, the unpredictable behav-
ior as illustrated in the previous example does not occur for
prw. To see this, let us recall the example from the point of
view of weakly preferred semantics.
Example 6.2. Given F as in the previous example, we start
by considering the initial SCC: The only weakly preferred
extension is ∅. So, moving to the second SCC we know that
no argument in the first one is acceptable and hence we can
be sure that {b} is; thus prw(F ) = {{b}} can be inferred.
In case of an even cycle
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a1F ′ : a2 b

the two weakly preferred extensions of the initial SCC
are {a1} and {a2}; hence it is rightfully inferred that
prw(F ′) = {{a1, b}, {a2}}.

Therefore, weakly preferred semantics are SCC-recursive
for the same reason as stable semantics are: Arguments
which are not in our extension are defeated (stb) resp. no
threat (prw). The goal of the following considerations is to
formalize this intuition.

We start by giving two auxiliary lemmata, the first is
to establish the required connection between consideration
of the reduct of an SCC and the set F ↓UPF (S,E). Recall
UPF (S,E) = {a ∈ S | @b ∈ E \ S : (b, a) ∈ R}.
Lemma 6.3. Let F = (A,R) be an AF, E ⊆ A with E ∈
cf (F ) and S ∈ SCCSF . Then

(
F↓UPF (S,E)

)E∩S
=
(
FE
)
↓UPF (S,E)

Moreover, we need to be able to turn non-empty exten-
sions of SCCs into non-empty extensions of the whole AF
and vice versa. To illustrate this, recall the AF from Ex-
ample 6.1: Here we see that F possesses some non-empty
weakly admissible extension since the second SCC does
({b}). In this case, the initial SCC does not possess one,
so {b} ∈ adw(F ). If there was an SCC possessing some
weakly admissible argument attacking b, then we would
move to this SCC and continue the argument inductively.
For technical reasons, we need to formalize this for the
reduct FE for some extension E instead of F itself. This
yields the following:

Lemma 6.4. Let F = (A,R) and let E ⊆ A. There is an
SCC S ∈ SCCSF with adw

((
FE
)
↓UPF (S,E)

)
6= {∅} if

and only if adw
(
FE
)
6= {∅}.

Now we follow Baroni et al, Section 5.2, where σ = stb
is considered, with adjustments to make it work for prw:

Proposition 6.5. Let F = (A,R) be an AF. Then E ∈
prw(F ) iff for any SCC S ∈ SCCSF , E ∩ S ∈
prw(F↓UPF (S,E)).

Proof. (⇒) Let E ∈ prw(F ). Let S ∈ SCCSF .
(well-defined) It is clear that E ∩ S ⊆ UPF (S,E) since

otherwise, E /∈ cf (F ). Thus E ∩ S in an extension in
F↓UPF (S,E).

(cf) We haveE∩S ∈ cf (F↓UPF (S,E)) due toE ∈ cf (F ).
(w-pref) Since E is w-preferred, FE does not contain

any w-admissible argument. Now assume E ∩ S is not w-
preferred in F↓UPF (S,E). Since E ∩ S is conflict-free, this
means there must be a non-empty w-admissible extension
in
(
F↓UPF (S,E)

)E∩S
. Hence by Lemma 6.3 there is a non-

empty w-admissible extension in
(
F↓UPF (S,E)

)E∩S
=
(
FE
)
↓UPF (S,E) .

Thus by Lemma 6.4 there is a non-empty w-admissible ex-
tension in FE , i. e. E /∈ prw(F ); a contradiction.

(⇐) We have to show that E ∈ cf (F ) and adw
(
FE
)

=
{∅}. The former is clear since each argument is chosen
among UPF (S,E). Furthermore, in each SCC F we have

{∅} = adw
(
(F↓UPF (S,E))

E∩S) = adw
((
FE
)
↓UPF (S,E)

)

yielding adw
(
FE
)

= {∅} by Lemma 6.4.

6.2 Inferring SCC-recursiveness
Let us now continue with the aforementioned relation be-
tween modularization and SCC-recursiveness. The overall
idea is that modularization allows to calculate extensions
step-by-step. Starting with an initial SCC, say S1, we con-
sider an extension E1 of F ↓S1

, consider the reduct FE1

and proceed analogously with the remaining parts of the AF.
While this works from a quite high level point of view, we
still have some work to do in order to get the details in place.

The first observation is that modularization as considered
so far needs to be adjusted a bit, as the following example
shall illustrate.

Example 6.6. Recall our AF

a1F ′ : a2 b

from above. Proceeding as described means we start with
the initial SCC consisting of arguments a1 and a2. Take
the complete extension E = {a1}. Now one can already
observe the following problem: While E is a complete ex-
tension of the initial SCC (which is fine for SCC recursive-
ness), it is not a complete extension of the whole AF since b
is defended. However, modularization is only applicable if
E ∈ σ(F ) is given.

This example is however no counterexample for admissi-
ble semantics; of course, E = {a1} is admissible in F since
it does not matter that b is defended. Interestingly, in Sec-
tion 3 we already utilized a property that could benefit from
this behavior of admissibility, namely: Many semantics sat-
isfy E ∪ E′ ∈ σ(F ) if E ∈ ad(F ) and E′ ∈ σ

(
FE
)
. This

motivates the following notion of τ -modularization which
will be mainly applied to τ = ad .

Definition 6.7. A semantics σ satisfies τ -modularization if
for any AF F we have: If E ∩ E′ = ∅ and E ∈ τ(F ), then
E′ ∈ σ

(
FE
)

iff E ∪ E′ ∈ σ(F ).

As already mentioned, many semantics possess this prop-
erty for τ = ad .

Proposition 6.8. Each σ ∈ {ad , co, pr , stb, ss, il , eg} sat-
isfies ad -modularization.

The case τ = ad suffices for our purpose since we will
consider admissibility-based semantics only.

Next, we need to ensure that ad -modularization gives us
extensions which are in a certain sense compatible with the
structure at hand. To illustrate this, let us once again head to
our running example.

Example 6.9. The initial SCC of the AF

a1F ′ : a2 b
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possesses three admissible extensions ∅, {a1}, and {a2}.
Starting with ∅, the reduct F ∅ is F itself. Assuming that
we are done with the initial SCC, in this situation b cannot
be accepted due to the undecided attacker a2.

It is clear that in the above situation, our semantics needs
to take the input from the initial SCC into consideration and
thus restricting the choices for the second one. The follow-
ing notion formalizes this in a quite general fashion.
Definition 6.10. For some splitting (F1, F2, R3) consider
the set D = {a2 ∈ A2 | A1 6→ a2} of defendable argu-
ments in F2. We call σ f -splitting-compatible if there is
some mapping fσ : F × 2A → 22

A

satisfying

{E ∈ σ(F ) | E ⊆ A2} = fσ(F2, D).

Informally speaking, the extensions in F which are in-
cluded in A2 can be written as some function in the AF
F2 and the defendable arguments D. The underlying idea
was already used in (Baroni, Giacomin, and Guida 2005) to
prove SCC-recursiveness of Dung’s classical AF semantics.
Thus, the following examples of f -splitting-compatibility
can already be inferred from (Baroni, Giacomin, and Guida
2005).
Example 6.11.
• For σ = ad let fad(F,D) = {E ∈ σ(F ) | E ⊆ D}.
• For σ = co consider ΓF (E,D) with ΓF (E,D) = {a ∈
A ∩D | E defends a}. Then let

fco(F,D) = {E ∈ σ(F ) | E = ΓF (E,D)}.
Analogous mappings can be found for pr and gr .

In the following, we will always assume that the set of all
strongly connected components of any AF F , SCCSF =
{S1, ..., Sm}, is ordered in such a way that each Si is cov-
ered only after all its predecessors are covered, i. e. for all
Si ∈ SCCSF , we have that for all Sj ∈ S≺i , j < i holds.
With this, we make sure that the subframework F↓S1,...,Si

is
always unattacked in F . The outline for our proof will be as
follows: We will move along the SCCs of F using the order
above. Whenever we encounter some Si which is not initial,
we will consider (FE)↓S1,...,Si−1 and (FE∩{S1,...,Si−1})↓Si .
If the latter subframework consists of only a single SCC, we
will apply the base-function σb immediately. On the other
hand, if we have more than one SCC in this subframework,
we will order these in such a way, that we begin with an ini-
tial SCC of the subframework UPF (Si, E), for which we
can again use the base-function σb.
Theorem 6.12. Let F = (A,R) be an AF. Let σ ⊆ ad be
f -splitting compatible with mapping fσ . If σ satisfies direc-
tionality and ad -modularization then σ is SCC-recursive.

Proof. We set σb(F,C) = fσ(F,C). We first show that
E ∈ σ(F ) implies E ∈ σ̄

(
F↓UPF (S,E), UF (S,E)

)
for all

S∈SCCSF .
If |SCCSF | = 1, use the splitting ((∅, ∅), F, ∅). Thus we

assume |SCCSF | > 1. Let Si ∈ SCCSF s. t. S≺i = ∅.
W. l. o. g. we consider Si = S1. Similar to before, we can
now take the splitting ((∅, ∅), F↓S1 , ∅). By directionality we
get E ∩ S1∈σ(F↓S1), so we are done.

Now we assume that we are looking at some Si∈SCCSF
s. t. S≺i 6= ∅. By the order of SCCs defined above, we have
already considered all Sj ∈ S≺i . Let P =

⋃
Sj∈S≺i Sj be

the set consisting of all ancestors of Si. By directionality of
σ, we can again infer E′ = E∩ (P ∪ Si) ∈ σ(F ↓P∪Si).
Since E ∩ P ∈σ(F↓P ) ⊆ ad(F↓P ) and as P is unattacked
in F ↓P∪Si

, we also have E ∩ P ∈ ad(F ↓P∪Si
). Now by

ad -modularization, E′′ = (E′ ∩ Si) ∈ σ
(
(FE∩P )↓P∪Si

)
holds.

Let F ′ = F ↓UPF (Si,E). For |SCCSF ′ | = k, we now
distinguish between the cases k = 1 and k > 1. For k = 1,
we have to show that E′′ ∈ σb (F ′, UF (Si, E) ∩A). Take
the splitting F ′′ = (F1, F2, R3) with F1 = (FE∩P ) ↓P ,
F2 = F ′ and R3 = (A(F1)×A(F2))∩R. Observe that we
have F ′′ = (FE∩P )↓P∪Si

. The set of defendable arguments
in F ′, D = {a2 ∈A(F ′) | A(F1) 6→ a2}, is exactly the set
UF (Si, E). Now

σb(F
′, UF (Si, E) ∩A) = σb(F

′, UF (Si, E) ∩A)

= fσ(F ′, D)

= {Ē∈σ(F ′′) | Ē ⊆ A(F ′)},
therefore we have E′′∈σb (F ′, UF (Si, E)).

Now suppose k > 1. In this case, we have left to
show E′′ ∩ Sij ∈ σ̄

(
F ′↓UPF ′ (Sij

,E′′), UF ′(Sij , E
′′)
)

for
all Sij ∈ SCCSF ′ . For this, we can simply continue along
the strongly connected components in SCCSF ′ using the
order defined at the beginning. One can think of this as re-
placing Si in the set {S1, ..., Si} by {Si1 , ..., Sim}, i. e. we
are proving that E ∈ σ̄

(
F↓UPF (S,E), UF (S,E)

)
for every

S∈{S1, ..., Si−1, Si1 , ..., Sim}. This can be achieved by the
techniques we utilized above.

Next, we will show E ∈ σ̄(F,A) ⇒ E ∈ σ(F ). For this,
we again move along the strongly connected components of
F to show that for each Si and all its parent components,
E is an extension of this particular subframework: The case
where |SCCSF | = 1 is trivial. Suppose |SCCSF | > 1
and Si ∈ SCCSF s. t. S≺i = ∅. W. l. o. g. we assume that
Si = S1. With the splitting ((∅, ∅) , F ↓S1 , ∅), we see that
E ∩ S1∈σ(F↓S1).

Now suppose that Si ∈ SCCSF s. t. S≺i 6= ∅ and let
|SCCSF↓UPF (Si,E)

| = 1. For P =
⋃
Sj∈S≺i Sj , we have

E ∩ P ∈ σ(F ↓P ) ⊆ ad(F ↓P ). Since P is unattacked
in F (by the order of elements in {S1, ..., Si}), we know
that E ∩ P ∈ ad(F ↓P∪Si

). Let F1 = (FE∩P ) ↓P and
let F2 = (FE∩P ) ↓Si

= F ↓UPF (Si,E). For the split-
ting F ′ = (F1, F2, (A(F1)×A(F2)) ∩R), we can see
that the set D = {a2 ∈ A(F2) | A(F1) 6→ a2} of de-
fendable arguments in F2 is exactly UF (Si, E). Thus, by
E ∩ Si ∈ σb(UPF (Si, E), UF (Si, E)), we can infer that
E ∩ Si ∈ σ(F ′). Now we can use ad-modularization of
σ to find (E ∩P )∪ (E ∩Si) = E ∩ (P ∪Si)∈σ(F↓P∪Si).

For |SCCSFUPF (Si,E)
| > 1 let F ′ = F ↓UPF (Si,E)

and Ei = E ∩ Si. Suppose SCCSF ′ = {Si1 , ..., Sim}
We know that for each SCC Sij ∈ {Si1 , ..., Sim}, it holds

that Ei ∩Sij ∈ σ̄
(
F ′↓UPF ′ (Sij

,Ei), UF ′(Sij , Ei)
)

, Now we

again choose some initial Sij in F ′, i. e. we assume S≺ij = ∅.
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Since P is unattacked in F and Sij is unattacked in F ′, we
infer that P ∪Sij is unattacked in F↓P∪{Si1

∪...∪Sim}. From
this we get E ∩ P ∈ ad(F ↓P∪Sij

). For F1 = (FE∩P )↓P
and F2 = (FE∩P ) ↓Sij

= F ′ ↓UPF ′ (Sij
,Ei) consider the

splitting F ′′ = (F1, F2, (A(F1)×A(F2)) ∩R). Again, we
have that the set D = {a2 ∈A(F2) | A(F1) 6→ a2} of de-
fendable arguments in F2 is exactly UF ′(Sij , Ei). Thus we
can infer that (E ∩ P ) ∪ (Ei ∩ Sij ) = E ∩ (P ∪ Sij ) ∈
σ(F ↓P∪Sij

) by ad-modularization of σ. As before, this
part of the proof amounts to replacing Si in {S1, ..., Si}
by the set {Si1 , ..., Sim}, i. e. we have now shown that
E ∩ {S1 ∪ ... ∪ Si−1 ∪ Si1 ∪ ... ∪ Sim} is a σ-extension
of F ↓S1,...,Si−1,Si1

,...,Sim
. Note that this subframework of

F is missing DF (Si, E). However, since
⋃i−1
j=1 Sj = P ,

we now know that E ∩ {Si1 ∪ ... ∪ Sim} is an extension of(
FE∩P

)
↓P∪Si1

∪...∪Sim
=
(
FE∩P

)
↓P∪Si

, i. e. we can infer
E ∩ {P ∪ Si1 ∪ ... ∪ Sim} = E ∩ {P ∪ Si}∈σ(F↓P∪Si

)
by ad-modularization of σ.

7 Conclusion and Future Work
In this paper, we compared the recently introduced modu-
larization property to established modularity notions from
the literature. Thereby, we showed that the notions are in-
comparable in general. Continuing existing research on the
relationships, we developed abstract criteria to infer impli-
cations between i) full decomposability and modularization
as well as ii) SCC recursiveness and modularization.

Due to space restrictions, our investigation only cov-
ered two semantics based on weak admissibility, whereas
also covering weakly grounded and weakly complete as
well as the more recently introduced qualitative and semi-
qualitative semantics from (Dauphin, Rienstra, and van der
Torre 2020a) is a natural future work direction. In addition,
including more principles from the literature, e.g. (van der
Torre and Vesic 2017) would broaden our investigation.

We would also like to find further relations and milder or
more intuitive assumptions for the ones reported so far.

Acknowledgements
This work was supported by the German Federal Ministry of
Education and Research (BMBF, 01/S18026A-F) by fund-
ing the competence center for Big Data and AI “ScaDS.AI”
Dresden/Leipzig and by the Austrian Science Fund (FWF)
through project Y698.

References
Baroni, P.; Boella, G.; Cerutti, F.; Giacomin, M.; Van
Der Torre, L.; and Villata, S. 2014. On the input/output be-
havior of argumentation frameworks. Artificial Intelligence
217:144–197.
Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An in-
troduction to argumentation semantics. The knowledge en-
gineering review 26(4):365–410.
Baroni, P.; Caminada, M.; and Giacomin, M. 2018. Abstract
argumentation frameworks and their semantics. In Baroni,
P.; Gabbay, D.; Giacomin, M.; and van der Torre, L., eds.,

Handbook of Formal Argumentation. College Publications.
chapter 4.
Baroni, P.; Giacomin, M.; and Guida, G. 2005. Scc-
recursiveness: a general schema for argumentation seman-
tics. Artif. Intell. 168(1-2):162–210.
Baroni, P.; Giacomin, M.; and Liao, B. 2018. Locality and
modularity in abstract argumentation. In Baroni, P.; Gabbay,
D.; Giacomin, M.; and van der Torre, L., eds., Handbook of
Formal Argumentation. College Publications. chapter 19.
Baumann, R.; Brewka, G.; and Ulbricht, M. 2020a. Compar-
ing weak admissibility semantics to their dung-style coun-
terparts - reduct, modularization, and strong equivalence in
abstract argumentation. In Proc. KR, 79–88.
Baumann, R.; Brewka, G.; and Ulbricht, M. 2020b. Revis-
iting the foundations of abstract argumentation: Semantics
based on weak admissibility and weak defense. In Proc.
AAAI, 2742–2749. AAAI Press.
Baumann, R.; Linsbichler, T.; and Woltran, S. 2016. Verifi-
ability of argumentation semantics. CoRR abs/1603.09502.
Baumann, R. 2011. Splitting an argumentation framework.
In Proc. LPNMR, 40–53. Springer.
Caminada, M., and Dunne, P. 2019. Strong admissibility
revisited: Theory and applications. Argument and Compu-
tation 1–24.
Dauphin, J.; Rienstra, T.; and van der Torre, L. 2020a.
A principle-based analysis of weakly admissible semantics.
In Prakken, H.; Bistarelli, S.; Santini, F.; and Taticchi, C.,
eds., Computational Models of Argument - Proceedings of
COMMA 2020, volume 326 of Frontiers in Artificial Intelli-
gence and Applications, 167–178. IOS Press.
Dauphin, J.; Rienstra, T.; and van der Torre, L. 2020b.
A principle-based analysis of weakly admissible seman-
tics. Computational Models of Argument-Proceedings of
COMMA 2020, Perugia Italy, September 4-11, 2020 167–
178.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321–357.
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Abstract

The topic of forgetting has been extensively studied in the field
of knowledge representation and reasoning for many major
formalisms. Quite recently it has been introduced to abstract ar-
gumentation. However, many already known as well as essen-
tial aspects about forgetting like strong persistence or strong
invariance have been left unconsidered. Moreover, we show
that forgetting in abstract argumentation cannot be reduced to
forgetting in logic programming. In addition, we deal with the
more general problem of forgetting whole sets of arguments
and show that iterative application of existing operators for
single arguments does not necessarily yield a desirable result
as it may not produce an informationally economic argumen-
tation framework. As a consequence we provide a systematic
and exhaustive study of forgetting desiderata and associated
operations adapted to the intrinsics of abstract argumentation.
We show the limits and shed light on the possibilities.

1 Introduction
The notion of forgetting has been extensively studied in the
field of knowledge representation and reasoning for many
major formalisms like classical logic (Lin and Reiter 1994),
logic programming (Gonçalves, Knorr, and Leite 2016a;
Eiter and Kern-Isberner 2018) and more recently for abstract
argumentation (Baumann, Gabbay, and Rodrigues 2020).
Roughly speaking, forgetting is about getting rid of some vari-
ables, atoms or arguments while keeping as much as possible
of the reasoning not concerned with the forgotten. The ability
of forgetting is often exploited to make reasoning more effi-
cient. In this paper we want to further elaborate the limits and
possibilities of forgetting in abstract argumentation. The lat-
ter is a vibrant research area in AI (Simari and Rahwan 2009;
Baroni et al. 2018) with Dung-style argumentation frame-
works (AFs) and their associated semantics at the heart of
this field (Dung 1995) .

In order to obtain reasonable forgetting operators for ab-
stract reasoning we may try to convey ideas from other for-
malisms. The area of logic programming with its plenty of
approaches to forgetting is a good candidate (cf. (Gonçalves,
Knorr, and Leite 2016b) for an excellent overview). However,
the following two examples show that forgetting in abstract
argumentation cannot be reduced to forgetting in logic pro-
gramming in a straightforward manner.

Example 1 (Limits of the Standard Translation). Consider
the following AF F . We observe stb(F) = {{b, d}}. Assume
now that we want to forget the argument b. Note that simply
deleting b would yield an AF Fb, s.t. stb(Fb) = {{a, d}}.
This means, such a syntactical removal would render the
previously unaccepted argument a acceptable.

aF ∶ b c d

Let us consider instead the standard translation from AFs to
LPs (Strass 2013). This yields the following equivalent logic
program P .

P ∶ a← not b b← not c

c← not d d

Now we may apply the already defined forgetting operator
fSP (Berthold et al. 2019b). More precisely, forgetting b from
P results in fSP (P, b) as given below.

fSP (P, b) ∶ a← notnot c c← not d d

Unfortunalety, fSP (P, b) is a non-AF-like program. There-
fore, it is generally not possible to simply reverse the standard
translation. However, in case of fSP (P, b) we may find an
equivalent LP P ′ which is indeed AF-like.

P ′ ∶ a← not d c← not d d

Retranslating P ′ to the realm of AFs results in F ′. Note that
stb(F) = {{d}} as desired.

aF ′ ∶ c d

Example 2 (Representational Limits). Consider now the
slightly more involved AF F . We observe stb(F) ={{a, e, f},{b, f, d},{c, d, e}}.

a d

c f

b

eF ∶
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Let us assume again that we want to forget the argument b.
The favored forgetting result is thus the extension set D ={{a, e, f},{f, d},{c, d, e}}. Since D forms a ⊆-antichain
there is an LP P realizing it (Eiter et al. 2013). However, we
will never find an equivalent AF-like LP P ′ since D does not
satisfies so-called tightness (Dunne et al. 2015). In particular,{f, d}∪{e} ∉D but {e, f} ⊆ {a, e, f} and {d, e} ⊆ {c, d, e}.

The final example deals with already existing forgetting
operators in abstract argumentation. It shows that forgetting
multiple arguments cannot be simply reduced to forgetting
single arguments as this does not necessarily yield desirable
results.
Example 3 (Forgetting Sets vs. Arguments). Con-
sider the following AF F . We have stb(F) ={{x, b, e},{a, c, d},{a, c, e}}. Assume that we want
to forget a set of arguments, say {x, b}. One rea-
sonable forgetting result is thus an AF F ′, s.t.
stb(F ′) = {{a, c, d},{a, c, e}} =D.

cF ∶
b

x

a

d e

One natural approach for forgetting multiple arguments
is to iteratively apply an existing forgetting operator for
single arguments. The following frameworks illustrate this
procedure for the operator f firstly presented in (Baumann,
Gabbay, and Rodrigues 2020, Algorithm 1, Example 4).

c

f(F,x)∶

b a

d e

n1 n2

c

f(f(F,x), b)∶

a

d e

n1 n2

If forgetting b first and subsequently x reveals that this
approach is sensitive to the order of forgetting and might not
yield an informationally economic result.

c

f(F, b)∶
x

a

d e c

f(f(F, b), x)∶

a

d e

The three examples above show that we need further in-
vestigation on how sets of arguments can be forgotten in case
of AFs. As a consequence we provide a systematic and com-
prehensive analysis of forgetting desiderata and associated
operations adapted to the intrinsics of abstract argumentation.
We hereby draw a lot of inspiration from logic programming.
We show the limits and shed light on the possibilities. In
particular, we study the relations between desiderata, their
individual as well as combined satisfiability and look for
promising combinations. Moreover, we consider forgetting
under stable semantics as it shows a quite different behaviour
regarding the fulfillment of combined desiderata. Finally, we
conclude and discuss related work.

2 Background
Logic Programming
Syntax and Semantics We assume a propositional signa-
ture U . A logic program P over U (Lifschitz, Tang, and
Turner 1999) is a finite set of rules of the form a1 ∨ . . . ∨ ak← b1, ..., bl, not c1, ..., not cm, notnot d1, ..., notnot dn.
For such a rule r let H (r) = {a1, . . . ak}, B+(r) ={b1, . . . , bl}, B−(r) = {c1, . . . , cm} and B−−(r) ={d1, . . . , dn}. We define U(P ) = ⋃r∈P H (r) ∪ B+(r) ∪
B−(r) ∪B−−(r).

Given a program P over U and a set of atoms I ⊆ U , a
so-called interpretation, the reduct of P w.r.t. I , is defined as
P I = {H (r)← B+(r) ∣ r ∈ P,B−(r) ∩ I = ∅,B−−(r) ⊆ I}.
An interpretation I is an answer set of P if I ⊧ P , and for
each interpretation I ′ we have: If I ′ ⊧ P I , then I ′ /⊂ I . The
set of all answer sets of P is denoted byAS(P ). We say that
two programs P1, P2 are equivalent if AS(P1) = AS(P2)
and strongly equivalent, denoted by P1 ≡ P2, if AS(P1 ∪
R) = AS(P2 ∪R) for any program R (Lifschitz, Pearce, and
Valverde 2001). Given a set V ⊆ U , the V -exclusion of a set
of answer setsM, denotedM∥V , is {X\V ∣X ∈M}.
Forgetting: Desiderata and Operators Let P be the set
of all logic programs. A forgetting operator is a (partial) func-
tion f ∶ P × 2U → P with (P,V ) ↦ f(P,V ). The program
f(P,V ) is interpreted as the result of forgetting about V from
P . Moreover, U(f(P,V )) ⊆ U(P ) ∖ V is usually required.
In the following we introduce some well-known properties
for forgetting operators (Gonçalves, Knorr, and Leite 2016a).

Strong persistence is presumbly the best known one (Knorr
and Alferes 2014). It requires that the result of forgetting
f(P,V ) is strongly equivalent to the original program P ,
modulo the forgotten atoms.
(SP) f satisfies strong persistence if, for each program P

and each set of atoms V , we have: AS(f(P,V ) ∪ R) =AS(P ∪R)∥V for all programs R with U(R) ⊆ U\V .
Strong invariance requires that rules not mentioning atoms
to be forgotten can be added before or after forgetting.

(SI) f satisfies strong invariance if, for each program P and
each set of atoms V , we have: f(P,V )∪R ≡ f(P ∪R,V )
for all programs R with U(R) ⊆ U\V .

Consequence persistence and its two variations are weaker
forms of strong persistence dealing with ordinary equivalence
only.

(CP) f satisfies consequence persistence if, for each P and
each set of atoms V : AS(f(P,V )) = AS(P )∥V .

(wC) f satisfies strengthened consequence if, for each P and
each set of atoms V : AS(f(P,V )) ⊆ AS(P )∥V .

(sC) f satisfies weakened consequence if, for each P and
each set of atoms V : AS(f(P,V )) ⊇ AS(P )∥V .

Note that the presented desiderata are often considered for
certain subclasses like disjunctive, normal or Horn pro-
grams. Sometimes forgetting properties are also considered
relativized to concrete forgetting instances (Berthold et al.
2019b).
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Argumentation Theory
Syntax and Semantics Let U be an infinite background
set. An abstract argumentation framework (AF) (Dung 1995)
is a directed graph F = (A,R) with A ⊆ U representing
arguments and R ⊆ A×A interpreted as attacks. If (a, b) ∈ R
we say that a attacks b or a is an attacker of b. Moreover,
a set E defends an argument a if any attacker of a is at-
tacked by some argument of E. In this paper we consider
finite AFs only and use the symbol F to denote the set of
all finite AFs. Moreover, for a set E ⊆ A we use E+ for{b ∣ (a, b) ∈ R,a ∈ E} and define E⊕ = E ∪ E+. Given an
AF F = (B,S), we useA(F ) to refer to the setB andR(F )
to refer to the relation S. For two AFs F and G , we define
the expansion of F by G, in symbols F ⊔ G , as expected:
F ⊔G = (A(F)∪A(G),R(F)∪R(G)). Finally, the restric-
tion of an AF F to a set of arguments C ⊆ U is defined as
F ∣C = (A(F) ∩C,R(F) ∩ (C ×C)).

An extension-based semantics σ ∶ F → 22
U

is a func-
tion which assigns to any AF F a set of sets of arguments
σ(F) ⊆ 2A(F). Each set of arguments E ∈ σ(F) is con-
sidered to be acceptable with respect to F and is called a
σ-extension. The most basic requirements of an extension
are called conflict-freeness (cf ) and admissibility (ad ). Other
well-studied semantics include stage (stg), stable (stb), semi-
stable (ss), complete (co), preferred (pr ), grounded (gr ),
ideal (il ) and eager (eg). The requirements of each semantics
are summarised below. A recent overview of argumentation
semantics can be found in (Baroni, Caminada, and Giacomin
2018).
Definition 1. Let F = (A,R) be an AF and E ⊆ A.
1. E ∈ cf (F) iff for no a, b ∈ E, (a, b) ∈ R,
2. E ∈ad(F) iff E ∈cf (F) and E defends all its elements,
3. E ∈co(F) iff E ∈ad(F) and for any a ∈ A defended by E ,
a ∈ E ,

4. E ∈ stg(F) iff E ∈cf (F) and for no I ∈cf (F),E⊕⊂I⊕,
5. E ∈stb(F) iff E ∈cf (F) and E⊕ = A,
6. E ∈ss(F) iff E ∈ad(F) and for no I ∈ad(F),E⊕⊂I⊕,
7. E ∈pr(F) iff E ∈co(F) and for no I ∈co(F), E ⊂I,
8. E ∈gr(F) iff E ∈co(F) and for any I ∈co(F), E ⊆I,
9. E ∈ il(F) iff E ∈ co(F), E ⊆ ⋂pr(F) and there is noI ∈co(F) satisfying I ⊆⋂pr(F) s.t. E ⊂ I,

10. E ∈ eg(F) iff E ∈ co(F), E ⊆ ⋂ss(F) and there is noI ∈co(F) satisfying I ⊆⋂ ss(F) s.t. E ⊂I.

Existence, Reasoning and Expressibility A semantics σ
is universally defined, if σ(F) ≠ ∅ for any F ∈ F . If even∣σ(F)∣ = 1 we say that σ is uniquely defined. Apart from
stable semantics all considered semantics are universally de-
fined. The grounded, ideal and eager semantics are uniquely
defined (cf. (Baumann and Spanring 2015) for an overview).

With respect to the acceptability of arguments, we consider
the two main reasoning modes. Given a semantics σ, an AF F ,
and an argument a ∈ A(F ), we say that a is credulously
accepted w.r.t. σ if a ∈ ⋃σ(F) and that a is skeptically
accepted w.r.t. σ if σ(F) ≠ ∅ and a ∈ ⋂σ(F). In case of
stable semantics a collapse is possible, i.e. stb(F ) = ∅ for

some F . From basic set theory we know that in this case all
arguments x ∈ A(F ) are skeptically accepted. To get around
this cornercase we redefine the intersection over the empty
extension set as ⋂ stb(F ) = ∅.

We say that a set of sets E ⊆ 2U is realizable w.r.t. a
semantics σ if there is an AF F s.t. σ(F) = E . Realizability
under stable semantics is given if and only if i) E forms a⊆-antichain1 and ii) E is tight (Dunne et al. 2015). Tightness
if fulfilled if for allE ∈ E and a ∈ ⋃E we have: ifE∪{a} ∉ E
then there exists an e ∈ E, s.t. (a, e) ∉ {(b, c) ∣ ∃E′ ∈ E ∶{b, c} ⊆ E′}. See Example 2 for an illustration. Moreover, we
will frequently use that stage, semi-stable as well as preferred
semantics satisfy I-maximality too (cf. (Baumann 2018) for
an overview).

3 Desiderata for Forgetting
Given an AF F and a set of arguments X ⊆ U , we use
fσ(F ,X) to denote the result of forgetting the arguments X
in F under semantics σ. This means, we consider a function
fσ ∶ F × 2U → F mapping a pair (F ,X) to an AF fσ(F ,X).
If clear from context or irrelevant we will omit σ.

In the following we collect and define a large number of
desiderata for forgetting in abstract argumentation. Some of
them have been already considered in (Baumann, Gabbay,
and Rodrigues 2020) for the case of single arguments. We
generalize them to sets of arguments as done in the LP case.
Moreover we introduce further important conditions firstly
considered in the realm of LPs (Gonçalves, Knorr, and Leite
2016a). We will see that there are many dependencies that
are not clear at first glance. Note that desiderata e1 as well
as e2 could be alternatively renamed as eCP and eSP (see
Section 2 for more details.) However, we decided to keep
in line with the notation chosen in (Baumann, Gabbay, and
Rodrigues 2020).

Desiderata 1. Given an AF F and a set of arguments
X ⊆ U . For a forgetting operator f we define:

e1. σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}
(X-adjusted extension)

ewC. σ(f(F,X)) ⊇ {E ∖X ∣ E ∈ σ(F )}
(no such extension is lost)

esC. σ(f(F,X)) ⊆ {E ∖X ∣ E ∈ σ(F )}
(no further extensions are added)

e2. σ(f(F,X) ⊔H) = {E ∖X ∣ E ∈ σ(F ⊔H)} for any H
with A(H) ⊆ U ∖X

(delete X even from any future extension)
e3⊆ . σ(f(F,X)) = {T (E) ∣ E ∈ σ(F )} with T ∶ σ(F ) → 2U

and E ↦ T (E) ⊆ E ∖X
(subsets of X-adjusted extension)

e3⊇ . σ(f(F,X)) = {T (E) ∣ E ∈ σ(F )} with T ∶ σ(F ) → 2U
and E ↦ T (E) ⊇ E ∖X

(supersets of X-adjusted extension)
e4. σ(f(F,X)) = σ(F ) ∖ {E ∣ E ∈ σ(F ),E ∩X ≠ ∅}

(remove X-overlapping extensions)

1Within the argumentation community this property is usually
referred to as I-maximality (Baroni and Giacomin 2007).
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The next four desiderata are concerned with skeptical and
credulous reasoning.

Desiderata 2. Given an AF F and a set of arguments
X ⊆ U . For a forgetting operator f we define:

r1. ⋂σ(f(F,X)) ∩X = ∅ (X is not skept. accepted)
r2. ⋃σ(f(F,X)) ∩X = ∅ (X is not cred. accepted)
r3. ⋂σ(f(F,X)) = (⋂σ(F )) ∖X (rigid skept. acceptance)
r4. ⋃σ(f(F,X)) = (⋃σ(F )) ∖X (rigid cred. acceptance)

Arguably the presented reasoning desiderata either de-
scribe to strictly or too loosely what is skeptically or credu-
lously accepted. For r1 and r2 to be satisfied, it suffices to
syntactically remove X. In contrast, to satisfy r3 or r4 the
resulting AF must entail a precise set of arguments. As a com-
promise between them, we suggest the following desiderata,
that bridge semantic and syntatic requirements.

Desiderata 3. Given two AFs F and H as well as a set of
arguments X ⊆ U . For a forgetting operator f we define:

m1. ⋂σ(f(F,X)) ⊆ A(F ) ∖X
(skept. acceptance is among unforgotten old arguments)

m2. ⋃σ(f(F,X)) ⊆ A(F ) ∖X
(cred. acceptance is among unforgotten old arguments)

m3. ⋂σ(f(F,X) ⊔H) ⊆ (A(H) ∪A(F )) ∖X for all AFs H
with A(H) ⊆ U ∖X

(forgotten arguments are never skept. accepted)
m4. ⋃σ(f(F,X) ⊔H) ⊆ (A(H) ∪A(F )) ∖X

for all AFs H with A(H) ⊆ U ∖X
(forgotten arguments are never cred. accepted)

Condition m1 (resp. m2) requires that, if there are new
arguments added while forgetting, they be irrelevant to skep-
tical (resp. credulous) reasoning. In other words, that these
arguments are purely administrative. Then m3 (resp. m4) re-
quire new arguments to be irrelevant, even under the addition
of new information.

The following three conditions are purely syntactical ones.
Desideratum s1 makes explicit what is often implicitly as-
sumed for forgetting operators in other formalisms. Condi-
tion s3 presents the most straightforward way of forgetting
a set of arguments. Such an syntactical approach was firstly
considered in (Bisquert et al. 2011).

Desiderata 4. Given an AF F and a set of arguments
X ⊆ U . For a forgetting operator f we define:

s1. A(f(F,X)) ∩X = ∅ (no arguments from X)
s2. A(f(F,X)) = A(F ) ∖X (precise set of arguments)
s3. f(F,X) = F ∣A(F )∖X (rigid AF)

The following vacuity desiderata provide conditions under
which a given framework does not require any changes.

Desiderata 5. Given an AF F and a set of arguments
X ⊆ U . For a forgetting operator f we define:

v1. If ⋂σ(F ) ∩X = ∅, then F = f(F,X). (skept. vacuity)
v2. If ⋃σ(F ) ∩X = ∅, then F = f(F,X). (cred. vacuity)
v3. If A(F ) ∩X = ∅, then F = f(F,X). (argument vacuity)

When deriving a forgetting result it would be advantageous
to be able to confine the construction in some way. For com-
parison, some forgetting operators in LP have been shown
to be able to disregard rules that do not mention the atoms
to be forgotten, i.e. they satisfy the discussed property (SI).
Similarly, when forgetting arguments from an AF we could
require that arguments that do not stand in (close) contact to
the arguments to be forgotten can be left unchanged.
Desiderata 6. Given an AF F and a set of arguments
X ⊆ U . For a forgetting operator f we define:
l0. f(F,X) ⊔ H ≡ f(F ⊔ H,X) for all AFs H with

A(H) ⊆ U ∖X (f and ⊔ are compatible)
l1. f(F,X) ⊔H ≡ f(F ⊔H,X) for all AFs H with A(H) ⊆U ∖ (X ∪ {a ∣ ∃x ∈X, s.t. (a, x) ∈ R or (x, a) ∈ R})

(less tolerant refinement of compatibility)
We proceed with an analysis of their dependencies.

Proposition 1. For σ ∈ {stg , stb, ss,pr , gr , il , eg} and con-
ditions c and c′ in the diagram below, a path from c to c′
indicates that any function fσ satisfying c under σ also satis-
fies c′ under σ. Moreover, only these relations hold.

v1v2v3

s1

s2

s3

m1

m2

m3

m4

l0

l1 e1

e2

esC

ewC

e3⊆

e3⊇

e4

r1r2

r3

r4

Figure 1: Dependencies

Proof: In the following we show all valid relations.
• e1 ⇒ r3: ⋂σ(f(F,X)) = ⋂{E ∖ X ∣ E ∈ σ(F )} =(⋂{E ∣ E ∈ σ(F )}) ∖X = (⋂σ(F )) ∖X
• e1 ⇒ r4: ⋃σ(f(F,X)) = ⋃{E ∖ X ∣ E ∈ σ(F )} =(⋃{E ∣ E ∈ σ(F )}) ∖X = (⋃σ(F )) ∖X
• e1 ⇒ esC, ewC: Obviously, σ(f(F,X)) = {E ∖X ∣ E ∈
σ(F )} implies σ(f(F,X)) ○ {E ∖ X ∣ E ∈ σ(F )} for
each ○ ∈ {⊆,⊇}.
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• e1 ⇒ e3⊇ , e3⊆ : σ(f(F,X)) = {E∖X ∣ E ∈ σ(F )} implies
T (E) = E∖X and thus, T (E)○E∖X for each ○ ∈ {⊆,⊇}.

• e4 ⇒ esC: We have σ(F )∖{E ∣ E ∈ σ(F ),E∩X ≠ ∅} ⊆{E ∖X ∣ E ∈ σ(F )}.
• esC ⇒ m2: ⋃σ(f(F,X)) ⊆ ⋃{E ∖ X ∣ E ∈ σ(F )} ⊆
A(F )∖X since for each extension E ∈ σ(F ), E ⊆ A(F )
is implied.

• e2 ⇒ e1: Consider H∅ = (∅,∅).
• e2 ⇒ m4: Let H be an AF with A(H) ⊆ U ∖ X . We

have: ⋃σ(f(F,X) ⊔H) = ⋃{E ∖X ∣ E ∈ σ(F ⊔H)} ⊆(A(H) ∪A(F )) ∖X .

• e2 ⇒ l0: σ(f(F,X) ⊔H) = {E ∖X ∣ E ∈ σ(F ⊔H)} ={E ∖X ∣ E ∈ σ(F ⊔H ⊔ ∅)} = σ(f(F ⊔H,X) ⊔ ∅) =
σ(f(F ⊔H,X))

• l0 ⇒ l1: Obviously, U ∖ (X ∪ {a ∣ ∃x ∈ X, s.t. (a, x) ∈
R or (x, a) ∈ R}) ⊆ U ∖X

• r3 ⇒m1: ⋂σ(f(F,X)) = (⋂σ(F )) ∖X ⊆ A(F ) ∖X
• r4 ⇒m2: ⋃σ(f(F,X)) = (⋃σ(F )) ∖X ⊆ A(F ) ∖X
• m3 ⇒m1 and m4 ⇒m2: Consider H∅.

• m4 ⇒ m3: ⋂σ(f(F,X) ⊔ H) ⊆ ⋃σ(f(F,X) ⊔ H) ⊆(A(H) ∪A(F )) ∖X
• m2 ⇒m1: ⋂σ(f(F,X)) ⊆ ⋃σ(f(F,X)) ⊆ A(F ) ∖X
• m1 ⇒ r1 and m2 ⇒ r2: Obvious since (A(F ) ∖X) ∩
X = ∅.

• s3 ⇒ s2: A(f(F,X)) = A(F ∣A(F )∖X) = A(F ) ∖X .

• s3 ⇒ v3: Let A(F ) ∩X = ∅. Consequently, f(F,X) =
F ∣A(F )∖X = F .

• s3 ⇒ l0: We have f(F,X) ⊔ H = F ∣A(F )∖X ⊔ H =
F ∣A(F )∖X ⊔ H ∣A(H)∖X since A(H) ⊆ U ∖ X is as-
sumed. Consequently, f(F,X)⊔H = F ⊔H ∣A(F ⊔H)∖X =
f(F ⊔H,X) implying f(F,X) ⊔H ≡ f(F ⊔H,X).

• s2 ⇒ s1: A(f(F,X)) ∩X = (A(F ) ∖X) ∩X = ∅.

• s2 ⇒ m4: ⋃σ(f(F,X) ⊔ H) ⊆ A(f(F,X) ⊔H) =
A(f(F,X))∪A(H) = (A(F )∖X)∪A(H) = (A(H)∪
A(F )) ∖X since for the AF H we have A(H) ⊆ U ∖X .

• r2 ⇒ r1: Obviously, ⋃σ(f(F,X)) ∩ X = ∅ ⇒⋃σ(f(F,X)) ∩X = ∅.

• s1 ⇒ r2: ⋃σ(f(F,X)) ∩X ⊆ A(f(F,X)) ∩X = ∅.

• v1 ⇒ v2: ⋃σ(F ) ∩ X = ∅ ⇒ ⋂σ(F ) ∩ X = ∅ ⇒
F = f(F,X).

• v2 ⇒ v3: A(F ) ∩ X = ∅ ⇒ ⋃σ(F ) ∩ X = ∅ ⇒
F = f(F,X).
In order to argue that the remaining relations do not hold

we have to provide counter examples. Due to the limited
space we provide two illustrating examples only. The remain-
ing non-relations can be shown in a similar fashion.

• e4 /⇒ e1: Towards a contradiction suppose e4 ⇒ e1. Con-
sider the AF F = ({a, b},∅) and X = {b}. For any con-
sidered semantics σ we have, σ(F) = {{a, b}}. Let f be
a forgetting operator satisfying e4. Thus, σ(f(F,X)) =

σ(F ) ∖ {E ∣ E ∈ σ(F ),E ∩X ≠ ∅} = ∅. On the other
hand, since f satisfies e1 too we derive, σ(f(F,X)) ={E ∖X ∣ E ∈ σ(F )} = {{a}}. Contradiction.

• e4 /⇒ s1: Consider a forgetting operator f satisfying e4,
i.e. σ(f(F,X)) = σ(F ) ∖ {E ∣ E ∈ σ(F ),E ∩X ≠ ∅}.
Assume that s1 is satisfied, i.e. A(f(F,X)) ∩ X = ∅.
Pick an argument x ∈ X and define a new operator g,
s.t. A(g(F,X)) = A(f(F,X)) ∪ {x} and R(g(F,X)) =
R(f(F,X)) ∪ {(z, x) ∣ z ∈ A(g(F,X))}. Obviously, e4
is still satisfied by g since σ(f(F,X)) = σ(g(F,X)) by
construction, but s1 is not.

Apart from the relationships concerning single conditions
there are more complex implications. In the realm logic pro-
gramming it was already shown that (SP) is necessary and
sufficient for (SI) and (CP) (Gonçalves, Knorr, and Leite
2016a). Beside other interesting relations we state the analo-
gous result for abstract argumentation in Item 5 of the follow-
ing proposition. Please note that the proof is astonishingly
simple.

Proposition 2. For any semantics σ ∈ {stg , stb}:
1. s2, l0 and e3⊆ imply e2,
2. s2, l0 and e3⊇ imply e2.

Moreover, for any τ ∈ {stg , stb, ss,pr , gr , il , eg} we have:

3. e3⊆ and e3⊇ if and only if e1,
4. esC and ewC if and only if e1,
5. e1 and l0 if and only if e2.

Proof:
1. Let f satisfies s2, l0 and e3⊆ . In order to show desideratum
e2 we will first prove that condition e1 is implied. Then,
applying Statement 5 of this Proposition yields e2. Given
an AF F and a set of arguments X ⊆ U . Desideratum e1
requires σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}.
Due to s2 we have A(f(F,X)) = A(F ) ∖X ∶= A. De-
fine a copy of A, i.e. a set of fresh arguments A′ ={a′ ∣ a ∈ A}, s.t. A′ ∩ (A(F ) ∪ X) = ∅. Let us de-
fine the AF H = (A ∪ A′,{(a, a′) ∣ a ∈ A}). By con-
struction any argument a ∈ A attacks its copy a′ ∈ A′.
Consequently, for any extension E ∈ σ(F) we have,
E ∪ {a′ ∈ A′ ∣ a ∈ A ∖ E} ∈ σ(F ⊔ H ). Vice versa,
any E′ ∈ σ(F ⊔H ) can be uniquely associated with some
E ∈ σ(F), s.t. E′ = E ∪ {a′ ∈ A′ ∣ a ∈ A ∖E}. Therefore,
for both semantics, stable and stage, we deduce for any
a ∈ A: either a ∈ E′ or (its copy) a′ ∈ E′.
The same relation between extensions applies to f(F,X)
and f(F,X) ⊔ H . Furthermore, since f(F,X) ⊔ H ≡
f(F ⊔H,X) due to l0 we may even conclude the same
behaviour regarding arguments a ∈ A for f(F ⊔ H,X).
More precisely, for any extension E′ ∈ σ(f(F ⊔H,X)),
either a ∈ E′ or a′ ∈ E′.
• (⊇) If E ∈ σ(F ), then E ∖X ∈ σ(f(F,X)).

Since E ∈ σ(F ) we deduce E ∪ {a′ ∈ A′ ∣ a ∈ A∖E} ∈
σ(F⊔H ). Due to e3⊆ we obtain T (E∪{a′ ∈ A′ ∣ a ∈ A∖
E}) ⊆ (E ∪ {a′ ∈ A′ ∣ a ∈ A ∖E})∖X = E∖X∪{a′ ∈
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A′ ∣ a ∈ A ∖E} for some function T ∶ σ(F ⊔H )→ 2U
and T (E ∪ {a′ ∈ A′ ∣ a ∈ A ∖E}) ∈ σ(f(F ⊔H,X)).
Assuming T (E∪{a′ ∈ A′ ∣ a ∈ A∖E}) ⊊ E∖X∪{a′ ∈
A′ ∣ a ∈ A ∖ E} yields the existence of an a ∈ A,
s.t. neither a ∈ T (E ∪ {a′ ∈ A′ ∣ a ∈ A ∖ E}), nor
a′ ∈ T (E ∪ {a′ ∈ A′ ∣ a ∈ A ∖ E}). Contradiction.
Hence, T (E ∪ {a′ ∈ A′ ∣ a ∈ A ∖ E}) = E ∖ X ∪{a′ ∈ A′ ∣ a ∈ A ∖E}. Moreover, applying l0 justifies
E ∖ X ∪ {a′ ∈ A′ ∣ a ∈ A ∖ E} ∈ σ(f(F,X) ⊔ H).
In consideration of the one-to-one correspondence we
deduce E ∖X ∈ σ(f(F,X)) as claimed.

• (⊆) If E′ ∈ σ(f(F,X)), then E′ = E ∖ X for some
E ∈ σ(F).
Due to condition e3⊆ we know σ(f(F,X)) = {T (E) ∣
E ∈ σ(F )} with T ∶ σ(F ) → 2U and E ↦ T (E) ⊆
E ∖X . This means, there is some E ∈ σ(F), s.t. E′ ⊆
E ∖X . Applying the former case (⊇) yields E ∖X ∈
σ(f(F,X)). Since stable as well as stage semantics
satisfies I-maximality, i.e. σ(f(F,X)) has to form a ⊆-
antichain we deduce E′ = E ∖X concluding the proof.

2. This proof is analogous to the previous one.

3. (⇐) Confer Proposition 1.
(⇒) Let f satisfies e3⊃ and e3⊂ . Furthermore, let F be
an AF and X ⊆ U a set of arguments. Consider now a
certain extension E ∈ τ(F). Due to e3⊃ and e3⊂ we de-
duce that there are two functions T1, T2 ∶ τ(F ) → 2U s.t.
T1(E) ⊇ E ∖X and T2(E) ⊆ E ∖X . Since any consid-
ered semantics satifies I-maximality, i.e. τ(f(F,X)) has
to form a ⊆-antichain we deduce T1(E) = E∖X = T2(E).
Hence, τ(f(F,X)) = {E ∖X ∣ E ∈ τ(F)} as required.

4. Obvious.

5. (⇐) Confer Proposition 1.
(⇒) τ(f(F,X)⊔H) =(l0) τ(f(F ⊔H,X)) =(e1) {E∖X ∣
E ∈ τ(F ⊔H)}

4 Satisfiability and Unsatisfiability
In this section we consider the satisfiability of single condi-
tions as well as whole sets of desiderata. Most of the results
underline the intrinsic limits of forgetting in abstract argu-
mentation as they prove unsatisfiability.

Individual Desiderata
We start with a positive result regarding individual satisfi-
ablity. In fact, 19 conditions are satisfiable under any consid-
ered semantics if considered in isolation.

Proposition 3. Desideratum d ∈ {e3⊇ , e3⊆ , esC, r1, r2, r3,
r4, s1, s2, s3,m1,m2,m3,m4, v1, v2, v3, l0, l1} is satisfiable
under any semantics σ ∈ {stg , stb, ss,pr , gr , il , eg}.

Proof: In the following we will only show that each
desideratum d ∈ {e3⊇ , e3⊆ , esC, r3, r4, v1} is satisfiable. The
satisfiability of the remaining desiderata is implied by Propo-
sition 1.
Given an AF F and a set of arguments X .

• e3⊇ : If σ(F) = ∅, then set f(F,X) = F . If not,
define f(F,X) = (⋃E∈σ(F)E ∖ X,∅). Consequently,
σ(f(F,X)) = {⋃E∈σ(F)E ∖X}. Thus, the constant func-
tion T ∶ σ(F ) → 2U with E ↦ T (E) = ⋃E∈σ(F)E ∖X
satisfies T (E) ⊇ E ∖X for any E ∈ σ(F) as desired.

• e3⊆ : If σ(F) = ∅, then set f(F,X) = F . If not, de-
fine f(F,X) = (∅,∅). Thus, the constant function T ∶
σ(F )→ 2U with E ↦ T (E) = ∅ satisfies T (E) ⊆ E ∖X
for any E ∈ σ(F) as required.

• esC: If σ(F) = ∅, then set f(F,X) = F . If not, just pick an
arbitrary E ∈ σ(F) and define f(F,X) = (E ∖X,∅). Ob-
viously, σ(f(F,X)) = {E ∖X} justifying σ(f(F,X)) ⊆{E ∖X ∣ E ∈ σ(F )}.

• r3: Consider f(F,X) = ((⋂σ(F )) ∖X,∅).
• r4: Define f(F,X) = ((⋃σ(F )) ∖X,∅).
• v1: Set f(F,X) = F .

The following proposition shows a dividing line between
uniquely and universally defined semantics. The subset an-
tichain property of the latter family prevent the satisfiability
of e1 and ewC.

Proposition 4. Desiderata e1 and ewC are satisfiable under
any τ ∈ {gr , il , eg}, but not under σ ∈ {stb, stg , ss,pr}.

Proof: Consider the uniquely defined semantics τ .
For any AF F we obtain a singleton as extension-set,
i.e. τ(F ) = {E}. Define f(F,X) = (E ∖ X,∅). Thus,
τ(f(F,X)) = {E ∖X} proving e1 and therefore ewC.
Consider now the universally defined semantics σ and
let F = ({a, x},{(a, x), (x, a)}) be an specific AF. We
obtain σ(F) = {{a},{x}}. According to ewC it must hold
σ(f(F,{x})) ⊇ {∅,{a}}. This means that σ(f(F,{x}))
does not form a ⊆-antichain. Hence, no such f(F,{x}) can
exist.

The following two propositions are mainly due to already
shown results in (Baumann, Gabbay, and Rodrigues 2020).

Proposition 5. Desiderata e4 is satisfiable under stable se-
mantics, but not under any τ ∈ {stg , ss,pr , gr , il , eg}.

Proof: Consider stable semantics. In (Baumann, Gabbay,
and Rodrigues 2020, Algorithm 1, Example 4) an operator f
was introduced able to precisely remove a stable extension,
whenever it contains a certain argument x. Since we consider
finite AFs and thus, finite forgetting sets X we obtain a new
operator satisfying e4 by simply applying f iteratively. Note
that forgetting result is sensitive to the order of forgetting (cf.
Example 3 for an illustration). Therefore, a predefined order
is essential.
The impossibility of satisfying e4 under τ was already shown
for singletons (Baumann, Gabbay, and Rodrigues 2020,
Proposition 5). Thus, it does not work for arbitrary sets either.

Proposition 6. Desiderata e2 is unsatisfiable under any se-
mantics σ ∈ {stg , stb, ss,pr , gr , il , eg}.
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Proof: The desideratum e2 was shown to be unsatisfiable
when forgetting single arguments only (Baumann, Gabbay,
and Rodrigues 2020, Proposition 6). Hence, unsatisfiability
for arbitrary sets is implied.

Combined Desiderata
In the following we consider the satisfiability of whole sets of
conditions. Most of the results underline the intrinsic limits
of forgetting in abstract argumentation.
Proposition 7. We have the following satisfiability results:

1. {s2, l0, e3⊆} as well as {s2, l0, e3⊇} are unsatisfiable for
any semantics µ ∈ {stg , stb}.

2. Moreover, {e3⊆ , e3⊇} and {esC, ewC} are unsatisfiable for
any semantics σ ∈ {stg , stb, ss,pr}, but satisfiable for
each τ ∈ {gr , il , eg}.
Proof:

1. Let µ ∈ {stg , stb}. According to Items 1 and 2 of Propo-
sition 2 we have that {s2, l0, e3⊆} as well as{s2, l0, e3⊇}
imply e2. The latter is unsatisfiable due to Proposition 6.
Hence, both sets are unsatisfiable under µ.

2. Given σ ∈ {stb, stg , ss,pr} and τ ∈ {gr , il , eg}. The sets
of desiderata {e3⊆ , e3⊇} respective {esC, ewC} imply e1
(Items 3 and 4 of Proposition 2). Hence, both are unsatisfi-
able under σ, but satisfiable under τ (cf. Proposition 4).

The next two results show that stable semantics is some-
how exceptional regarding its potential for forgetting.
Proposition 8. The set {l0, esC} is satisfiable under stable
semantics but not under σ ∈ {gr , stg , ss,pr}.

Proof:
• The set of desiderata {l0, esC} is satisfied under stable

semantics by setting f(F,X) = (A(F ),R(F ) ∖ {(a, x) ∣
x ∈X} ∪ {(x,x) ∣ x ∈X ∩A(F )}).
Please note that f(F,X)⊔H = f(F ⊔H,X) if considering
AFs H , s.t. A(H) ∩X = ∅. Consequently, l0 is fulfilled
since σ(f(F,X) ⊔H) = σ(f(F ⊔H,X)) is implied for
any semantics σ.
Moreover, if A(F ) ∩ X = ∅, then f(F,X) = F and
hence, σ(f(F,X)) = σ(F ) for any semantics σ. If not,
i.e. A(F ) ∩ X ≠ ∅ we observe that f(F,X) collapses
for stable semantics, i.e. stb(f(F,X)) = ∅. In both cases,
stb(f(F,X)) ⊆ {E ∖X ∣ E ∈ stb(F )} yielding esC.

• Towards a contradiction suppose that there is a forgetting
operator f satisfying l0 and esC. Consider the following
AFs F and H .

xF : a aH: b

For any semantics σ ∈ {gr , ss,pr}we have σ(F ) = {{x}}
as well as σ(F ⊔ H) = {{x, b}}. Since all considered
semantics are universally defined we deduce σ(f(F,X)) ≠∅ for any set of arguments X . Let X = {x}. Applying
condition esC, i.e. σ(f(F,X)) ⊆ {E ∖X ∣ E ∈ σ(F )}
yields σ(f(F,X)) = {∅} and σ(f(F ⊔H,x)) = {{b}},

respectively. Due to l0 we further infer σ(f(F,X)⊔H)) ={{b}}.
This already yields a contradiction in case of grounded
semantics since gr(f(F,X) ⊔H)) = {{b}} implies b is
unattacked in f(F,X) ⊔H which is obviously not true.
For preferred and semi-stable semantics we deduce that{b} is admissible in f(F,X) ⊔H . Hence, the AF H ′ =({a, b},{(b, a)}) must be a subframework of f(F,X).
Moreover, whenever b is attacked by some c ≠ a in
f(F,X), it has to be counterattacked by b in f(F,X) be-
cause admissibility of {b} in f(F,X) ⊔H has to be guar-
enteed. Consequently, {b} ∈ ad(f(F,X)) is implied too.
In case of preferred semantics we infer the existence of
a set E, s.t. {b} ⊆ E ∈ pr(f(F,X)). For semi-stable we
deduce that either {b} is already semi-stable in f(F,X),
or there is an admissible set E, s.t. {b}⊕ ⊂ E⊕ with
E ∈ ss(f(F,X)). Note that E ≠ ∅ is implied. For both
semantics, σ(f(F,X)) ≠ {∅}. Contradiction!
Let us turn now to stage semantics. Consider therefore the
following two AFs

bF : x c aH: b

where a /∈ A(f(F,X)), i.e. a is an argument that does
not appear in the forgetting result f(F,X). We have
stg(F ) = {{b, c}} and stg(F ⊔ H) = {{a, x}}. Since
stg(F ) is non-empty for any AF, through use of esC we
can deduce that stg(f(F,x)) = {{b, c}}, and respectively
stg(f(F ⊔H,x)) = {{a}}. Since c appears in an extension
of f(F,x), we have (c, c) ∉ R(f(F,x)), hence (c, c) ∉
R(f(F,x) ⊔H). Also (a, c), (c, a) ∉ R(f(F,x) ⊔H).
Then {a, c} is conflict-free and hence, {a}⊕ ⊂ {a, c}⊕,
resulting in {a} ∉ stg(f(F,x) ⊔H). Then stg(f(F,x) ⊔
H) ≠ stg(f(F ⊔H,x)) = {{a}} contradicting l0.

Proposition 9. The set {l1, esC} is satisfiable under stable
semantics but not under σ ∈ {gr , stg , ss,pr}.

Proof:

• The set of desiderata {l1, esC} is satisfiable under stable
semantics as it is implied by the satisfiable set of conditions{l0, esC} (cf. Figure 1 and Proposition 8).

• Let σ ∈ {gr , stg , ss,pr}. Towards a contradiction sup-
pose that there is a forgetting operator f satisfying l1
and esC under σ. Consider the following AF F and let
X = {x1, x2, x3}.

b1F : c1

b2 c2

b3 c3

b4 c4

x1

x2

x3 d
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Obviously, σ(F ) = {{b1, b2, b3, b4, x1, x2, d}}. Let
f(F,X) be the forgetting result. Let further a1, a2, a3 and
a4 be arguments not contained in A(f(F,X)). For each
1 ≤ i ≤ 4 we define Hi = ({ai, bi},{(ai, bi)}). Hence,
σ(F ⊔H1 ⊔H3) = {{a1, b2, a3, b4, c1, c3, x3}},
σ(F ⊔H2 ⊔H4) = {{b1, a2, b3, a4, c2, c4, x3}},
σ(F ⊔H1 ⊔H2) = {{a1, a2, b3, b4, c1, c2, x2, d}}, and
σ(F ⊔H3 ⊔H4) = {{b1, b2, a3, a4, c3, c4, x1, d}}.
Using the universal definedness of any considered seman-
tics σ together with condition esC yields:

σ(f(F ⊔H1 ⊔H3,X)) = {{a1, b2, a3, b4, c1, c3}},
σ(f(F ⊔H2 ⊔H4,X)) = {{b1, a2, b3, a4, c2, c4}},
σ(f(F ⊔H1 ⊔H2,X)) = {{a1, a2, b3, b4, c1, c2, d}},
σ(f(F ⊔H3 ⊔H4,X)) = {{b1, b2, a3, a4, c3, c4, d}}.
Applying l1 justifies:

σ(f(F,X) ⊔H1 ⊔H3) = {{a1, b2, a3, b4, c1, c3}},
σ(f(F,X) ⊔H2 ⊔H4) = {{b1, a2, b3, a4, c2, c4}},
σ(f(F,X) ⊔H1 ⊔H2) = {{a1, a2, b3, b4, c1, c2, d}},
σ(f(F,X) ⊔H3 ⊔H4) = {{b1, b2, a3, a4, c3, c4, d}}.
The last two lines show that any ai, bi as well as ci appears
together with d in at least one extension. Consequently, the
forgetting result f(F,X) neither contains attacks between
ai and d, nor bi and d, nor ci and d.
Hence, {a1, b2, a3, b4, c1, c3} ∈ cf (f(F,X) ⊔H1 ⊔H3),
implies {a1, b2, a3, b4, c1, c3, d} ∈ cf (f(F,X) ⊔
H1 ⊔ H3). Moreover, {a1, b2, a3, b4, c1, c3}⊕ ⊂{a1, b2, a3, b4, c1, c3, d}⊕ which contradicts{a1, b2, a3, b4, c1, c3} ∈ stg(f(F,X) ⊔H1 ⊔H3).
Let us consider the remaining semantics, i.e.
σ ∈ {gr ,pr , ss}. Since d ∉ {a1, b2, a3, b4, c1, c3} ∈
σ(f(F,X) ⊔ H1 ⊔ H2) as well as d ∉{b1, a2, b3, a4, c2, c4} ∈ σ(f(F,X) ⊔ H3 ⊔ H4) we
conclude that d must be attacked by an argument
e ∉ {a1, . . . , a4, b1, . . . b4, c1, . . . , c4} = A not being
counterattacked by any a ∈ A. If so, we deduce{a1, a2, b3, b4, c1, c2, d} ∉ ad(f(F,X)⊔H1⊔H2) as well
as {b1, b2, a3, a4, c2, c4, d} ∉ ad(f(F,X) ⊔ H3 ⊔ H4).
Thus, {a1, a2, b3, b4, c1, c2, d} ∉ σ(f(F,X) ⊔ H1 ⊔ H2)
and {b1, b2, a3, a4, c2, c4, d} ∉ σ(f(F,X) ⊔ H3 ⊔ H4).
Contradiction!

Testing the Limits: Promising Combinations
Proposition 10 shows the compatibility of promising com-
binations of a semantical and syntactical condition. The
strongest syntactical desideratum s3 is incompatible with
all considered semantical conditions and can only be trivially
combined with r1 and r2. In this context, trivial means, that
already one condition implies the other as shown in Propo-
sition 1. Stable semantics is the only considered semantics
able to collapse for certain AFs. This unique property is re-
flected in its different behaviour regarding the fulfillment of
combined desiderata (see Figure 2).

Proposition 10. Figure 2 summarizes the compatibility un-
der semantics σ ∈ {stg , stb, ss,pr , gr , il , eg}. A “✓”/“×” in

s1 s2 s3 m1 m2 m3 m4

r1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
r2 ✓ ✓ ✓ ✓ ✓ ✓ ✓
r3 ✓ ✓ × ✓ ✓ ✓ ✓
r4 ✓ ✓ × ✓ ✓ ✓ ✓
e1 τ τ × τ τ τ τ

e2 × × × × × × ×
e3⊆ ✓ ¬stb × ✓ ✓ ✓ ✓
e3⊇ ✓ ¬stb × ✓ ✓ ✓ ✓
e4 stb × × stb stb stb stb

esC ✓ ¬stb × ✓ ✓ ✓ ✓
ewC τ τ × τ τ τ τ

Figure 2: Compatibility of syntactical/semantical conditions

cell (l,c) indicates whether or not the conditions in line l and
column c are simultaneously satisfiable under σ. The symbol

“τ” restricts the satisfiability to the semantics gr , il and eg ,
the symbol “stb” to stable semantics and the symbol “¬stb”
to all semantics but stable respectively. The combinations in
a dark background are trivial .

Proof: The proof involves 77 combinations of desiderata
which has to be checked with respect to 7 semantics. It takes
more than 3 pages and is omitted here due to the limited
space.

5 Forgetting under Stable Semantics
Let us reflect on the proposed extension-based conditions as
listed in Desidirata 1. At first we observe that e1 and e4 rep-
resent two opposing philosophies about the concept of forget-
ting. Desideratum e1 requires that any former extension has
to survive in an adjusted fashion, namely new extensions are
obtained from initial ones via deleting the arguments which
has to be forgotten (σ(f(F,X)) = {E ∖X ∣ E ∈ σ(F )}).
In contrast, Condition e4 requires to delete any extension
carrying arguments which has to be forgotten (σ(f(F,X)) =
σ(F ) ∖ {E ∣ E ∈ σ(F ),E ∩X ≠ ∅}). Both interpretations
of forgetting are independent as shown in Proposition 1. Any
other considered extension-based condition is either a relax-
ation of e1, or a lifting of this interpretation to the level of
strong equivalence. In the following we will consider these
two main desiderata in more detail. We restrict ourselves to
stable semantics and left the consideration of other semantics
for future work.

Forgetting via e4 Quite recently, an e4-operator f for for-
getting single arguments was presented (Baumann, Gabbay,
and Rodrigues 2020, Algorithm 1). In Example 3 of the in-
troductory part we have seen that applying this operator f
iteratively does not necessarily produce a desirable outcome.
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Moreover, this procedure is sensitive to the order of forgetting.
How to adapt the existing procedures for multiple arguments?

The former construction consists of two steps. Given an
AF F and an argument x. First, remove x and its related
attacks, i.e. consider Fx ∶= F∣A(F )∖{x}. Any stable extension
E of F not containing x remains stable in Fx. However, new
extensions may arise. Now, in a second step, each new (un-
desired) extension E′ is removed via adding a self-defeating
argument not attacked by E′.

This procedure can be more or less directly applied to for-
get a whole set of arguments X . In the first step we simply
restrict the initial framework to A(F ) ∖X , i.e. we consider
F∣A(F )∖X . Thus, any former extension containing arguments
from X is not stable anymore but any other survives. And
secondly, we eliminate any unwanted extensions via the ad-
dition of self-attacking arguments. This yields the following
algorithm.

Algorithm 1: Construct G = f∗(F ,X)
Input :AF F ; arguments X ⊆ U
Output :AF G satisfying {s1,e4,v3}

1 Function compute G(F ,X)
2 if X ∩A(F ) = ∅ then G ← F ;
3 else
4 G0 ← F ∣A(F)∖X ;
5 A = A(G0); R ← R(G0);
6 foreach Ei ∈ stb(G0) ∖ stb(F ) do
7 Let ai be a fresh argument s.t.

ai /∈ A(F )∪A;
8 A← A ∪ {ai}; R ← R ∪ {(ai, ai)}
9 foreach y ∈ ⋃ stb(G0) ∖Ei do

10 R ← R ∪ {(y, ai)};
11 G ← (A,R);
12 return G ;

Example 4 (Example 3 cont.). Consider again AF F .
We have stb(F) = {{x, b, e},{a, c, d},{a, c, e}}. Let X ={x, b}. Applying Algorithm 1 immediately yields f∗(F ,X) =
F ∣A(F)∖X as stb(F ∣A(F)∖X) = {{a, c, d},{a, c, e}}.

c

F ∶

b

x

a

d e c

f∗(F ,{x, b})∶

a

d e

The attentive reader may have already noticed that
f∗(F ,{x, b}) = f(f(F, b), x). This means, forgetting x and b
simultaneously yields the more compact outcome if ap-
plying the former operator f iteratively (f(f(F, b), x) vs.
f(f(F,x), b)). In fact, it can be shown that forgetting through
f∗ necessarily yields a smaller AF, than iterating f no matter
which order is chosen.

Forgetting via e1 The main reason for the impossibility to
find an operator satisfying e1 under stable semantics is an
intrinsic one, namely realizability. More precisely, certain in-
stances, i.e. an initial framework F and a set X of arguments
would enforce a framework F ′ with a set of stable extensions
violating the ⊆-antichain property or tightness. Consequently,
one reasonable strategy is to look for forgetting operators sat-
isfying e1 whenever possible, and trying to satisfy a certain
relaxation if not. Natural candidates would be e3⊆ , e3⊇ or esC.
A similar procedure was suggested and also implemented
for strong persistence in the realm of logic programming
(Gonçalves et al. 2017).

The question which relaxation to choose has no clear an-
swer. First of all, according to Figure 1 each proposed desider-
atum is independent of the other. Moreover, each relaxation
has its particular advantages and drawbacks. It does not make
sense to express general preferences among the desiderata as
the specific application will determine which criterion is most
suitable. Furthermore, even for a particular chosen relaxation,
the precise result of forgetting might not be clear. This is
demonstrated by the following example.

Example 5. Consider again AF F presented
in Example 2. Let X = {a, b, c}. As stb(F) ={{a, e, f},{b, f, d},{c, d, e}} we obtain {E ∖ X ∣ E ∈
stb(F )} = {{d, e},{d, f},{e, f}}. This set is not tight
implying that e1 is impossible. The relaxation esC is satisfied
by any AF F ′ with stb(F ′) ⊆ {{d, e},{d, f},{e, f}}.
Giving up one of these three extensions would result in a
realizable set. However, without further information there is
no reason to prefer one set over the other.

In summary, that means both the choice of how to relax
e1 as well as its particular implementation depends on the
application in mind. A more thorough study on this issue is
left for future work.

6 Discussion and Conclusion
The paper shed more light on forgetting in abstract ar-
gumentation. One central motivation was to convey ideas
and desiderata from recent studies of forgetting in the
realm of logic programming (Knorr and Alferes 2014;
Gonçalves, Knorr, and Leite 2016a; Berthold et al. 2019a;
2019b). We redefined several principles and provided a com-
prehensive study regarding satisfiability and relations. More-
over, we demonstrated that already existing forgetting op-
erators from logic programming cannot be unconditionally
applied to abstract argumentation. The two main reasons are:
First, the use of such an operator does not guarantee to stay
within the AF-fragment and secondly (as well as more im-
portantly), there are essential differences in the expressibility
between both formalisms. Finally, we presented a specific
forgetting operator for a particular combination of conditions
inspired by an algorithm introduced in (Baumann, Gabbay,
and Rodrigues 2020).

One future line of research is the study of forgetting re-
garding labelling-based semantics (Baroni, Caminada, and
Giacomin 2018). These kind of semantics provide some more
information than their extension-based counterparts. In con-
trast to the latter they allow to distinguish explicitly two dif-

69



ferent kinds of not being accepted, namely out (attacked by an
accepted argument) and undec (not attacked by an accepted
argument). Consequently, more differentiated desiderata can
be formalized regarding the acceptance status of the argu-
ments to be forgotten. A further related work in this context
is (Rienstra et al. 2020) dealing with so-called robustness
principles. The paper studies the question to which extent old
labellings persist/new labellings arise if a certain change of
the initial AF is performed. Such results are highly relevant
for the theory of forgetting as they can be used to show the
satisfiability/unsatisfiability of desidered properties.

Finally, the paper can be seen as one central part of a
much broader investigation on how properties of forgetting
on the abstract and structured level are related. One interest-
ing agenda might be to consider rationality postulates for
forgetting (Caminada 2017).
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Berthold, M.; Gonçalves, R.; Knorr, M.; and Leite, J. 2019a.
Forgetting in answer set programming with anonymous cy-
cles. In Moura Oliveira, P.; Novais, P.; and Reis, L. P., eds.,
Progress in Artif. Intell., 552–565. Cham: Springer Interna-
tional Publishing.
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Abstract

A common feature of non-monotonic logics is that the clas-
sical notion of equivalence does not preserve the intended
meaning in light of additional information. Consequently,
the term strong equivalence was coined in the literature and
thoroughly investigated. In the present paper, the knowl-
edge representation formalism under consideration are claim-
augmented argumentation frameworks (CAFs) which provide
a formal basis to analyze conclusion-oriented problems in ar-
gumentation by adapting a claim-focused perspective. CAFs
extend Dung AFs by associating a claim to each argument
representing its conclusion. In this paper, we investigate both
ordinary and strong equivalence in CAFs. Thereby, we take
the fact into account that one might either be interested in the
actual arguments or their claims only. The former point of
view naturally yields an extension of strong equivalence for
AFs to the claim-based setting while the latter gives rise to
a novel equivalence notion which is genuine for CAFs. We
tailor, examine and compare these notions and obtain a com-
prehensive study of this matter for CAFs. We conclude by
investigating the computational complexity of naturally aris-
ing decision problems.

1 Introduction
Equivalence is an important subject of research in knowl-
edge representation and reasoning. Given a knowledge base
K, finding an equivalent one, say K′, helps to obtain a better
understanding or more concise representation of K. From
a computational point of view, equivalence is particularly
interesting whenever a certain subset of a collection of in-
formation can be replaced without changing the intended
meaning. In propositional logics, for example, replacing a
subformula φ of Φ with an equivalent one, say φ′, yields a
formula Φ[φ/φ′] equivalent to Φ. That is, we may view φ as
an independent module of Φ. Within the KR community it
is folklore that this is usually not the case for non-monotonic
logics (apart from folklore, we refer the reader to (Baumann
and Strass 2016) for a rigorous study of this matter).

Motivated by this observation, the notion of strong equiv-
alence was introduced in the literature. In a nutshell, strong
equivalence requires the aforementioned property by design:
K and K′ are strongly equivalent if for any H, the knowl-
edge bases K ∪ H and K′ ∪ H are equivalent. Although
a naive implementation would require to iterate over an in-
finite number of possible H, researchers discovered tech-

niques to decide strong equivalence of two knowledge bases
efficiently, most notably for logic programming (Lifschitz,
Pearce, and Valverde 2001) and argumentation frameworks
(AFs) (Oikarinen and Woltran 2011). In this paper, we ex-
tend this line of research to a recent extension of AFs, called
Claim-augmented argumentation frameworks (CAFs).

Abstract argumentation frameworks as proposed by Dung
(Dung 1995) in his seminal 1995 paper are by now a ma-
jor research area in knowledge representation and reason-
ing. They have been thoroughly investigated since then and
various extensions have been proposed in order to extend
their expressive power. For example, researchers consid-
ered the addition of supports (Cayrol and Lagasquie-Schiex
2005), recursive (Baroni et al. 2011) and collective (Nielsen
and Parsons 2006) attacks, or probabilities (Thimm 2012)
to mention a few. CAFs as introduced by (Dvorák and
Woltran 2020) provide means for conclusion-oriented rea-
soning in argumentation. While traditional argumentation
formalisms focus on the identification of acceptable argu-
ments, the emphasis in claim-augmented argumentation lies
instead on the argument’s conclusions (claims). Building
on the basic observation that a claim can be supported by
different arguments, it becomes evident that the traditional
argument-focused perspective is often insufficient to cap-
ture claim-based reasoning. CAFs address this issue by
extending AFs with a function which assigns a claim to
each argument. They are in particular well-suited to analyze
instantiation-based approaches, e.g., instantiations of logic
programs (Caminada et al. 2015b), rule-based formalisms
like ABA+ (Bondarenko, Toni, and Kowalski 1993; Cam-
inada et al. 2015a), or logic-based instantiations (Besnard
and Hunter 2001; Gorogiannis and Hunter 2011), where the
focus lies on the claims of the arguments which have been
constructed during the process.

The goal of this paper is to investigate equivalence no-
tions for reasoning with a claim-centered point of view. Due
to their generality, CAFs form an ideal basis to obtain a com-
prehensive study of this matter. Our main contributions are:

• We provide characterization results of strong equivalence
between CAFs via semantics-dependent kernels for each
CAF semantics which has been considered in the litera-
ture so far. Moreover, we discuss ordinary equivalence
for CAFs and present dependencies between semantics
for this weaker equivalence notion.
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• We introduce novel equivalence concepts based on argu-
ment renaming which are genuine for CAFs. We show
that ordinary equivalence up to renaming coincides with
ordinary equivalence while strong equivalence up to re-
naming can be characterized via kernel isomorphism.

• We present a rigorous complexity analysis of deciding
equivalence between two CAFs for all of the aforemen-
tioned equivalence notions. We show that deciding or-
dinary equivalence can be computationally hard, up to
the third level of the polynomial hierarchy while strong
equivalence is computationally tractable. Moreover, we
show that strong equivalence up to renaming has the same
complexity as the graph isomorphism problem.

Full proofs are available under https://www.dbai.tuwien.ac.
at/ research/report/dbai-tr-2021-122.pdf .

2 Background
Abstract Argumentation. We fix a non-finite background
set U . An argumentation framework (AF) (Dung 1995) is a
directed graph F = (A,R) where A ⊆ U represents a set of
arguments and R ⊆ A × A models attacks between them.
In this paper we consider finite AFs only.

For two arguments a, b ∈ A, if (a, b) ∈ R we say that a
attacks b as well as a attacks (the set) E given that b ∈ E ⊆
A. We frequently use the so-called range of a set E defined
as E⊕F = E ∪ E+

F where E+
F = {a ∈ A | E attacks a}.

A set E ⊆ A is conflict-free in F (for short, E ∈ cf (F ))
iff for no a, b ∈ E, (a, b) ∈ R. A set E defends an argument
a if any attacker of a is attacked by some argument of E. A
semantics is a function σ : F → 22U

with F 7→ σ(F ) ⊆ 2A.
This means, given an AF F = (A,R) a semantics returns a
set of subsets of A. These subsets are called σ-extensions.

In this paper we consider so-called naive, admissible,
complete, grounded, preferred, stable, semi-stable and stage
semantics (abbr. na , ad , co, gr , pr , stb, ss , stg). Apart
from naive, semi-stable and stage semantics (Verheij 1996;
Caminada 2006), all mentioned semantics were already in-
troduced in (Dung 1995).

Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (F ).

1. E ∈ na(F ) iff E is ⊆-maximal in cf (F ),
2. E ∈ ad(F ) iff E defends all its elements,
3. E ∈ co(F ) iff E ∈ ad(F ) and for any a defended by E

we have, a ∈ E,
4. E ∈ gr(F ) iff E is ⊆-minimal in co(F ), and
5. E ∈ pr(F ) iff E is ⊆-maximal in ad(F ),
6. E ∈ stb(F ) iff E attacks any a ∈ A \ E,
7. E ∈ ss(F ) iff E ∈ ad(F ) and there is no D ∈ ad(F )

with E⊕F ( D⊕F ,

8. E ∈ stg(F ) iff there is no D ∈ cf (F ) with E⊕F ( D⊕F .

Claim-based Argumentation. A claim-augmented argu-
mentation framework (CAF) (Dvorák and Woltran 2020) is
a triple F = (A,R, cl) where F = (A,R) is an AF and
cl : A→ C is a function which assigns a claim to each argu-
ment in A; C is a set of (countable infinite) possible claims.

The claim-function is extended to sets in the natural way, i.e.
for a set E ⊆ A, we let cl(E) = {cl(a) | a ∈ E}.

There are several ways in which semantics for AFs extend
to CAFs. The most basic one is to choose an appropriate AF
semantics and consider the claims of the induced extensions.
Definition 2.2. For a CAF F = (A,R, cl), F = (A,R),
and a semantics σ, we define the inherited variant of σ (i-σ)
as σc(F) = {cl(E) | E ∈ σ(F )}. We call E ∈ σ(F ) with
cl(E) = S a σc-realization of S in F .
Example 2.3. Consider the following CAF F :

d1d

c1c

a1

a b1 b

a2 a

Let us focus on stable semantics. For the underlying AF F
we have the unique stable extension E = {c1, b1}. It is thus
easy to see that stbc(F) = {{c, b}}. Moreover, {c1, b1} is a
stbc-realization of E.

Let us now turn to the semantics which actually operate on
the level of the claims instead of focusing on the underlying
arguments. For this, we need to generalize the notion of
defeat to claims. A set of arguments E ⊆ A defeats a claim
c ∈ cl(A) in F if E attacks every a ∈ A with cl(a) = c
(in F ); we write EB

F = {c ∈ cl(A) | E defeats c in F} to
denote the set of all claims which are defeated by E in F .
The claim-range of a set of claims S = cl(E) is denoted by
EB
F = cl(E) ∪ EB

F .
Example 2.4. Consider again the CAF F from the previous
example. Although c1 defeats a1, it does not defeat the claim
a. However, E = {c1, b1} defeats a, i.e. a ∈ EB

F . The
claim-range of E is thus EB

F = {a, b, c, d}.
Observe that the range of a set of claims is not a well-

defined concept: In our example CAF F , the claim-range of
{a} could either be {a, b} induced by the realization {a1}
or it could be {a}, which is induced by the realization {a2}.
Nonetheless, we can define semantics based on the claim-
range by focusing on the underlying setE of arguments. We
consider cl-preferred, cl-naive, cl-cf -stable, cl-ad -stable,
cl-semi-stable and cl-stage semantics (abbr. cl -pr , cl -na ,
cl -stbcf , cl -stbad , cl -ss , cl -stg) as introduced in (Rap-
berger 2020; Dvorák, Rapberger, and Woltran 2020a).
Definition 2.5. Let F = (A,R, cl) be a CAF with underly-
ing AF F = (A,R). For a set of claims S ⊆ cl(A),
• S ∈ cl -pr(F) if S is ⊆-maximal in adc(F);
• S ∈ cl -na(F) if S is ⊆-maximal in cfc(F);
• S ∈ cl -stbτ (F), τ ∈ {cf , ad}, if there is a τc-realization
E of S which defeats any c ∈ cl(A)\S (i.e.,EB

F =cl(A));
• S ∈ cl -ss(F) if there is an adc-realization E of S in F

such that there is no D ∈ ad(F ) with EB
F ( DB

F ;
• S ∈ cl -stg(F) if there is an cfc-realization E of S in F

such that there is no D ∈ cf (F ) with EB
F ( DB

F .
A set E ⊆ A cl -σ-realizes the claim-set S in F if cl(E) =
S and E satisfies the respective requirements; e.g., E ∈
cf (F ) and EB

F = cl(A) for cl-cf -stable semantics. We call
E a cl -σ-realization of S in F .
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Example 2.6. Consider the semantics cl -stbcf . We have
that S = {c, b} ∈ cl -stbcf (F) since the realization E =
{c1, b1} for S has full claim-range as we already observed
before. Moreover, S′ = {d, a} ∈ cl -stbcf (F) as well: We
consider the realization E′ = {d1, a1}. The claims c and b
are defeated by E′ and hence, EB

F = {a, b, c, d}. Note that
E′ is not a stable extension of the underlying AF.

Basic relations between i-semantics carry over from
AF semantics, e.g., stbc(F) ⊆ ssc(F) ⊆ prc(CF ) ⊆
coc(CF ) ⊆ adc(F) ⊆ cfc(F) and stbc(F) ⊆ stgc(F) ⊆
nac(F) ⊆ cfc(F). As shown in (Dvorák, Rapberger,
and Woltran 2020a), we have stbc(F) ⊆ cl -stbad(F) ⊆
cl -stbcf (F) ⊆ cl -stg(F) ⊆ nac(F) and cl -stbad(F) ⊆
cl -ss(F) ⊆ prc(F). Moreover, each cl -σ-claim-set of F is
⊆-maximal in σc(F) for σ ∈ {pr ,na}.

Notation. We write F = (F, cl) as an abbreviation for
F = (A,R, cl) with AF F = (A,R) (similar for CAFs G or
H for which we denote the corresponding AFs by G and H ,
respectively). Also, we use the subscript-notation AF , RF ,
clF , and FF to indicate the affiliations.

3 Equivalence in CAFs
In this section, we discuss ordinary and strong equivalence
for CAFs. We introduce a novel kernel which character-
izes strong equivalence for cl-cf -stable and cl-stage seman-
tics; moreover, we show that the remaining semantics can be
characterized via known kernels for AFs.

Let us start with ordinary equivalence of CAFs.

Definition 3.1. Two CAFs F and G are ordinary equivalent
to each other w.r.t. a semantics ρ, in symbols F ≡ρo G, if
ρ(F) = ρ(G).

Example 3.2. Consider the following CAFs F and G:

F :

a1

a

b1

b

c1

c

a2

a

c2

c

G:

a1

a

b1

b

c1

c

a2

a

c2

c

Although F and G disagree only on the direction of the at-
tack between the arguments a1 and a2, we observe that F
and G are not ordinary equivalent under i-stable semantics:
stbc(F) = ∅ while G has the unique i-stable claim-set {a, c}
witnessed by the stable extension {a2, c1} of G.

If we consider instead cl-stable semantics, we observe
that the two CAFs agree on their outcome: First notice that
{a, c} is also cl-ad -stable (cl-cf -stable) in G (every stbc-
realization is admissible and has full claim-range). More-
over, we have that {a, c} is also cl-ad -stable (cl-cf -stable)
in F since the set {a1, c1} is admissible and defeats every
remaining claim. As a side remark, we mention that the
claim-set {a, c} has two realizations in F and G since both
of the sets {a1, c1}, {a2, c1} are conflict-free and have full
claim-range. We obtain that the CAFs F and G are ordinary
equivalent with respect to cl -stbad and cl -stbcf semantics.

There are only few relations between the semantics for
ordinary equivalence. We summarize them as follows:

Proposition 3.3. For any two CAFs F and G,

• F ≡ρo G ⇒ F ≡cl-pr
o G, ρ ∈ {adc, prc};

• F ≡coc
o G ⇒ F ≡ρo G, ρ ∈ {grc, cl -pr};

• F ≡cfc
o G ⇔ F ≡cl-na

o G;
• F ≡nac

o G ⇒ F ≡ρo G, ρ ∈ {cfc, cl -na}.
Interestingly, we observe that the relations for AF seman-

tics presented in (Oikarinen and Woltran 2011) do not carry
over to inherited semantics. This is due to the fact that i-
preferred (i-naive) semantics are not necessarily⊆-maximal
i-admissible (i-conflict-free) claim-sets; for CAFs, this role
is instead taken over by cl-preferred (cl-naive) semantics.

Example 3.4. Assume we are given two CAFs as follows:

a1

a

b1

b

F : a1

a

b1

b

a2

a

G :

Clearly, adc(F) = adc(G) = {∅, {a}, {b}, {a, b}}. On the
other hand, {a, b} is the unique i-preferred claim-set of F
while prc(G) = {{a}, {a, b}} witnessed by the extensions
{a1, a2} and {a1, b1}. Thus F ≡adc

o G 6⇒ F ≡prc
o G. The

example furthermore shows F ≡cfc
o G 6⇒ F ≡nac

o G since
cfc and adc as well as the respective variants of naive and
preferred semantics coincide in F and G.

The relations presented in Proposition 3.3 follow since cl-
preferred claim-sets are ⊆-maximal in adc(F), coc(F) and
prc(F) for any CAF F ; moreover, the i-grounded claim-set
is the⊆-minimal i-complete extension. Similar observations
hold for conflict-free and naive semantics; additionally, we
observe that F ≡ρo G, ρ ∈ {cl -na,nac}, implies F ≡cfc

o G
since cfc semantics satisfies downward closure (every sub-
set of a conflict-free set is conflict-free). We can construct
counter-examples for the remaining cases.

A crucial observation is that ordinary equivalence is not
robust when it comes to expansion of the frameworks, e.g.,
if an update in the knowledge base induces new arguments
or attacks. Let us illustrate this at the following example:

Example 3.5. Assume we are given an updated version of
F and G from Example 3.2 where an additional argument
has been introduced. Let F ′ and G′ be given as follows:

F ′:

a1

a

b1

b

c1

c

a2

a

c2

c

d1d

G′:

a1

a

b1

b

c1

c

a2

a

c2

c

d1d

F ′ and G′ no longer agree on their cl-ad -stable claim-
sets: In G′, the set {a2, c1} does not defeat claim d, thus
cl -stbad(G′) = ∅ while {a, c} remains cl-ad -stable in F ′.

Let us introduce a stronger notion of equivalence which
addresses such situations. We say that two CAFs are
strongly equivalent to each other if they possess the same
extensions independently of any such (simultaneous) expan-
sions of the frameworks. Before we can define this notion
formally, we require an additional concept which ensures
that the expansion of the frameworks is well-defined.
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Definition 3.6. Two CAFs F and G are compatible to each
other if clF (a) = clG(a) for all a ∈ AF ∩ AG . The union
F ∪ G of two compatible CAFs F and G is defined compo-
nentwise, i.e., F ∪ G = (AF ∪AG , RF ∪RG , clF ∪ clG).

We are ready to introduce strong equivalence for CAFs.
Definition 3.7. Two compatible CAFs F and G are strongly
equivalent to each other w.r.t. a semantics ρ, in symbols
F ≡ρs G, iff ρ(F ∪H) = ρ(G ∪ H) for each CAF H which
is compatible with F and G.

The definition extends strong equivalence for AFs. We
write F ≡σs G to denote strong equivalence of two AFs F
and G w.r.t. the semantics σ.

Strong equivalence for AFs has been characterized via
syntactic equivalence of so-called (semantics-dependent)
kernels. Let us recall the definitions of the stable and the
naive kernel (Oikarinen and Woltran 2011; Baumann, Lins-
bichler, and Woltran 2016) as they exhibit interesting over-
laps with our novel kernel for cl-cf -stable semantics.
Definition 3.8. For an AF F = (A,R), we define the stable
kernel F sk = (A,Rsk) with

Rsk = R \ {(a, b) | a 6= b, (a, a) ∈ R};
and the naive kernel Fnk = (A,Rnk) with

Rnk = R∪{(a, b) | a 6= b, {(a, a), (b, b), (b, a)}∩R 6= ∅}.
For a CAF F = (F, cl), we write Fsk (Fnk) to denote
(F sk, cl) ((Fnk, cl), respectively).

The stable kernel characterizes strong equivalence for sta-
ble and stage semantics, i.e., F ≡σs G iff F sk = Gsk for
σ ∈ {stb, stg} (Oikarinen and Woltran 2011); similarly,
F ≡σs G iff Fnk = Gnk for σ ∈ {cf ,na} (Baumann, Lins-
bichler, and Woltran 2016).
Example 3.9. For the CAF F from Example 3.2, the stable
kernel Fsk and the naive kernel Fnk are given as follows:

Fsk:

a1

a

b1

b

c1

c

a2

a

c2

c
Fnk:

a1

a

b1

b

c1

c

a2a c2

c

In the remaining part of this section, we characterize
strong equivalence for all semantics under consideration by
identifying appropriate kernels. Let us start with cl-cf -stable
semantics. An interesting observation is that the CAFs F ′
and G′ from Example 3.5 yield the same cl-cf -stable claim-
sets even after the argument d1 has been added. In fact, it can
be shown thatF and G yield the same cl-cf -stable claim-sets
under any possible expansion. The reason is that the direc-
tion of the attack between a1 and a2 is irrelevant since both
arguments possess the same claim a. Thus it suffices to in-
clude one of them in a cl-cf -stable claim-set in case not both
of them are attacked.

Let us now introduce the cf -stable kernel for CAFs.
Definition 3.10. For a CAF F = (A,R, cl), we define the
cf -stable kernel as Fcsk = (A,Rcsk, cl) with

Rcsk = R ∪ {(a, b) | a 6= b,

(a, a) ∈ R ∨ (cl(a) = cl(b) ∧ {(b, a), (b, b)} ∩R 6= ∅)}.
We denote the underlying AF (A,Rcsk) by F csk.

Example 3.11. Consider again our previous CAF F . We
construct the cf -stable kernel Fcsk of F as follows:

Fcsk:

a1

a
b1

b

c1
c

a2a c2
c

Remark 3.12. The cf -stable kernel consists of a combina-
tion of the stable and the naive kernel for AFs, where the
claim-independent part stems from the stable kernel while
the case where two arguments have the same claim relates to
the naive kernel. In a nutshell, it is safe to introduce attacks
(a, b), a 6= b where a is self-attacking without changing sta-
ble semantics because attacks of this form neither interfere
with the conflict-free extensions of an AF nor change the
range of a conflict-free set. In case two arguments have the
same claim, it is irrelevant which of these arguments is in-
cluded in an extension. It is thus safe to introduce attacks
between two arguments in case their union is conflicting.

In what follows, we will prove that the cf -kernel charac-
terizes strong equivalence for claim-level cf -stable and stage
semantics. To this end we will first discuss some general
observations. The following lemma states that two CAFs
having different arguments are not strongly equivalent.

Lemma 3.13. For any two compatible CAFs F and G,
AF 6= AG implies F 6≡ρs G for any considered semantics ρ.

Proof. W.l.o.g., we may assume that there is a ∈ AF with
a /∈ AG . To prove the statement, we distinguish the follow-
ing cases: (a) (a, a) /∈ RF and (b) (a, a) ∈ RF . We present
the construction for case (a): For a fresh argument x and a
fresh claim c, letH = (AH, RH, clH) with

AH = (AF ∪AG ∪ {x}) \ {a};
RH = {(x, b) | b ∈ (AF ∪AG) \ {a}};

and clH(b) = clF (b) for b ∈ AF ∪ AG and clH(x) = c;
that is, we introduce a new argument having a fresh claim c
which attacks every argument except a. It can be checked
that {clH(a), c} ∈ ρ(F ∪ H) for every semantics under
consideration. Observe that {clH(a), c} is not a claim-
extension under any semantics in G∪H since a is not present
in G ∪ H and x does attack every remaining argument.

The following lemma implies that two strongly equivalent
CAFs F and G possess the same self-attacking arguments.

Lemma 3.14. For any two compatible CAFs F and G,
(a, a) ∈ RF∆RG implies F 6≡ρs G for any semantics ρ un-
der consideration.

The following lemma states that a CAF admits the same
cl-cf -stable (cl-stage) claim-sets as its cf -stable kernel.

Lemma 3.15. For any CAF F , ρ(F) = ρ(Fcsk) for the
semantics ρ ∈ {cl -stbcf , cl -stg}.

Moreover, it can be shown that syntactic equivalence of
cf -stable kernels of two CAFs F and G implies that the ker-
nels coincide under any possible expansion.
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Lemma 3.16. For any two compatible CAFs F and G,
Fcsk = Gcsk implies (F ∪ H)csk = (G ∪ H)csk for any
CAFH compatible with F and G.

We are now ready to prove our first main result stating
that two CAFs F and G are strongly equivalent to each other
w.r.t. cl-cf -stable and cl-stage semantics if and only if their
cl-stable kernels coincide.
Theorem 3.17. For any two compatible CAFs F and G,
Fcsk = Gcsk iff F ≡ρs G for ρ ∈ {cl -stbcf , cl -stg}.
Proof. First suppose we have Fcsk = Gcsk. In this case,
(F ∪ H)csk = (G ∪ H)csk for any compatible CAF H by
Lemma 3.16. We infer ρ(F ∪H) = ρ((F ∪H)csk) as well
as ρ((G ∪ H)csk) = ρ(G ∪ H) from Lemma 3.15. Hence
F ≡ρs G follows.

Now suppose Fcsk 6= Gcsk. Due to Lemma 3.15 we may
assume ρ(Fcsk) = ρ(Gcsk); moreover, AF = AG(= A) by
Lemma 3.13. We thus have that RFcsk 6= RGcsk . W.l.o.g.,
let (a, b) ∈ RFcsk \RGcsk ; we apply Lemma 3.14 to assume
a 6= b. Moreover, observe that (a, a) /∈ RcskG (and thus,
(a, a) /∈ RcskF ) since otherwise (a, b) ∈ RGcsk by definition
of the cf -stable kernel. We distinguish the following cases:
(a) cl(a) 6= cl(b), and (b) cl(a) = cl(b).

(a) In case cl(a) 6= cl(b), consider two newly introduced ar-
guments x, y and fresh claims c, d. We consider the AF
H1 = (A ∪ {x, y}, R1, cl1) where

R1 = {(x, y)} ∪ {(y, h) | h ∈ A ∪ {x}}∪
{(x, h) | h ∈ A \ {a, b}},

and the function cl1 is given as follows: cl1(x) = c,
cl1(y) = d, and the other claims coincide with the given
ones, i.e. cl1(h) = clF (h) if h ∈ A. First observe that
{d} is i-stable in both Fcsk ∪ H1 and Gcsk ∪ H1 and
thus guarantees that ρ(Fcsk ∪H1) and ρ(Gcsk ∪H1) are
non-empty. It can be checked that S = {cl(a), c} is cl-
cf -stable and cl-stage in Fcsk ∪ H1 (since {a, x} is sta-
ble); on the other hand, S /∈ ρ(Gcsk ∪ H1) since b is not
defeated by {a, x}. However, this is our only candidate
since S has no other cf -realization in Gcsk ∪H1.

(b) Now consider the case cl(a) = cl(b) and observe that
(a, a), (b, b), (b, a) /∈ RcskG (otherwise (a, b) ∈ RGcsk ).
Since F and G contain the same self-attacks, we further-
more have (a, a), (b, b) /∈ RFcsk . Having established
this situation let us construct H2 as follows: For fresh
arguments x, y, z and fresh claims c, d, e, we consider
H2 = (A ∪ {x, y, z}, R2, cl2) where
R2 = {(a, h) | h ∈ (A ∪ {x}) \ {a, b}}∪

{(a, x), (x, x), (b, y), (y, y), (z, b), (b, z), (z, y)}
and as before we let cl2(h) = clF (h) for h ∈ A; for
the fresh arguments let cl2(x) = c, cl2(y) = d, as well
as cl2(z) = e. It can be checked that each CAF ad-
mits a stable extension; thus it suffices to show that the
cl-cf -stable claim-sets disagree. First observe that we
now have {cl2(a)} ∈ ρ(Gcsk ∪ H2) since {a, b} is
a stable extension in Gcsk ∪ H2. On the other hand,
we have that {cl2(a)} is neither cl -stbcf -realizable nor
cl -stg-realizable in Fcsk ∪H2.

In every case, we have found some H enforcing inequality,
i.e. ρ(Fcsk ∪ H) 6= ρ(Gcsk ∪ H). By Lemma 3.15, we get
ρ(F∪H) = ρ((F∪H)csk) = ρ(Fcsk∪H) 6= ρ(Gcsk∪H) =
ρ((G ∪ H)csk) = ρ(G ∪ H). It follows that F 6≡sρ G.

The remaining semantics under consideration can be char-
acterized via known AF kernels. We recall the AF kernels
from the literature (Oikarinen and Woltran 2011).

Definition 3.18. For an AF F = (A,R), we define the ad-
missible kernel F ak = (A,Rak) with

Rak = R\{(a, b) | a 6=b, (a, a)∈R, {(b, a),(b, b)}∩R 6=∅};
the complete kernel F gk = (A,Rgk) with

Rck = R \ {(a, b) | a 6= b, (a, a), (b, b) ∈ R};
and the grounded kernel F gk = (A,Rgk) with

Rgk = R\{(a, b) | a 6=b, (b, b)∈R, {(b, a),(a, a)}∩R 6=∅}.
It has been shown that the grounded (complete) kernel

characterizes strong equivalence for grounded (complete)
semantics; moreover, for any two AFs F and G we have
F ≡σs G iff F ak = Gak for σ ∈ {ad , pr , ss} (Oikarinen
and Woltran 2011). We write F k(ρ) to denote the kernel
which characterizes strong equivalence for the semantics ρ.

To prove that strong equivalence for the remaining seman-
tics can be characterized using known AF kernels, we make
use of the following lemma which states that each CAF F
has the same σc-claim-sets as its kernel Fk(σ) for any AF
semantics σ under consideration; moreover, the cl-ad -stable
and cl-semi-stable claim-sets of F and Fak coincide.

Lemma 3.19. For any CAF F , (a) σc(Fk(σ)) = σc(F) for
any considered AF semantics σ; and (b) ρ(F) = ρ(Fak) for
ρ ∈ {cl -stbad , cl -ss}.

For inherited semantics, the result is immediate by known
results for AFs; for cl-ad -stable and cl-semi-stable seman-
tics, the statement follows by the additional observation that
the range of every admissible set of F remains unchanged.

It can be shown that two CAFs are strongly equivalent
under cl-ad -stable and cl-semi-stable semantics iff their ad-
missible kernels coincide.

Theorem 3.20. For any two compatible CAFs F and G,
F ≡ρs G iff F ak = Gak for ρ ∈ {cl -stbad , cl -ss}.

Moreover, each inherited semantics σc can be character-
ized by the respective kernel for σ.

Theorem 3.21. For any two compatible CAFs F and G,
F ≡σcs G iff F ≡σs G for any considered AF semantics σ.

Due to space limits, we shall omit the proofs of the above
theorems. The proofs proceed in the same way as the
proof of Theorem 3.17; first, we use Lemma 3.19 to show
F k(ρ) = Gk(ρ) implies strong equivalence of two CAFs F
and G w.r.t. ρ for the respective kernels F k(ρ) andGk(ρ). For
the other direction, we assume that the kernels of F and G
differ. Depending on the semantics, we consider different
cases for which we construct a CAF H which serves as a
witness to show F 6≡ρs G.
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For cl-naive and cl-preferred semantics, it can be shown
that strong equivalence w.r.t. cl-naive and cl-preferred se-
mantics coincides with strong equivalence w.r.t. their inher-
ited counterparts. This implies that two CAFs are strongly
equivalent w.r.t. cl-preferred semantics iff their admissible
kernels coincide; likewise, two CAFs are strongly equiva-
lent w.r.t. cl-naive semantics iff their naive kernels coincide.

Theorem 3.22. For any two compatible CAFs F and G,
F ≡cl-σ

s G iff F ≡σcs G for σ ∈ {na, pr}.
The proof proceeds in a slightly different way: To show

F 6≡σcs G implies F 6≡cl-σ
s G, it can be assumed that F

and G disagree on their σc claim-sets. We construct counter-
examplesH satisfying cl -σ(F∪H) 6= cl -σ(G∪H) in such a
way that the claim-set which does not appear in either one of
the frameworks becomes a ⊆-maximal σc-claim-extension.

4 Renaming and Equivalence
In the previous section we were assuming that we are in-
terested in the actual arguments and not just the claims and
their interactions. In this section, we will also provide an-
other point of view which entirely abstracts from the under-
lying arguments and thus viewing a CAF as a collection of
claims and their relationships. To illustrate this, let us con-
sider the following example.
Example 4.1. Assume we are given again our CAF F from
Example 3.2 together with a CAF G as follows:

F :

a1

a

b1

b

c1

c

a2

a

c2

c

G:

x1

a

b1

b

c1

c

x2

a

c2

c

We observe that both CAFs are equivalent w.r.t. cl-cf -stable
semantics although the arguments a1 and a2 are not even
present in G while the same is true for x1 and x2 inF . More-
over, recalling the kernel for cl -stbcf from Theorem 3.17 we
observe that F and G would be even strongly equivalent if
this mismatch in argument names were not present. This
suggests that the usual notion of strong equivalence does not
handle situations where we are interested in claims only very
well. To illustrate this with a hands-on situation let us sup-
pose we are givenH in a way that a novel argument e1 with
claim e is given which attacks x1:

F ∪H:

a1

a

b1

b

c1

c

a2

a

c2

c

e1d x1 a

G ∪ H:

x1

a

b1

b

c1

c

x2

a

c2

c

e1d

This is fine when insisting on the arguments, but on a claim-
level one could of course argue thatH did not yield the same
modification on both sides and thus disrupts the similarity
between F and G in an unintended way.

Our goal is hence to develop notions of equivalence which
handle situations like the aforementioned one in a more in-
tuitive way. The first step to formalize the underlying idea is
the following notion of a renaming.

Definition 4.2. For a CAFF and an arbitrary setA′ of argu-
ments we call a bijection f : AF → A′ s.t. for each a ∈ AF
we have clF (a) = clF (f(a)) a renaming for F .

We abuse notation and write f(F) for the CAF ob-
tained from renaming the arguments, i.e. f(F) is the CAF
(f(F ), clf ) := (f(A), Rf , clf ) where (a, b) ∈ Rf iff
(f−1(a), f−1(b)) ∈ RF and clf (f(a)) = clF (a).
Example 4.3. Consider again our previous CAF F . Let us
assume we are given A′ = {x1, x2, y1, z1, z2}. The renam-
ing f with ai 7→ xi, b1 7→ y1 and ci 7→ zi induces the
following CAF f(F):

F :

a1

a

b1

b

c1

c

a2

a

c2

c

f(F):

x1

a

y1

b

z1

c

x2

a

z2

c

We observe that f does not change the structure of F on
claim-level. In particular, cl -stbcf (F) = cl -stbcf (f(F)).

The last observation we made was no coincidence in the
specific situation. More precisely, for the semantics consid-
ered in this paper, renaming does not change the meaning of
our CAF.
Proposition 4.4. For a CAF F , an arbitrary set A′ of argu-
ments and a renaming f we have ρ(F) = ρ(f(F)) for any
semantics ρ considered in this paper.

Proof. We have E ∈ σ(F ) iff f(E) ∈ σ(f(F )) for the un-
derlying AF and since all semantics are defined by selecting
(subsets of) {cl(E) | E ∈ σ(F )}, the claim follows since
clF (a) = clF (f(a)) for each argument a.

Having formally established that names of arguments do
not change the given semantics, let us proceed with defining
notions of equivalence that build upon this insight.
Definition 4.5. Two CAFs F and G are ordinary equivalent
up to renaming to each other w.r.t. a semantics ρ, in symbols
F ≡ρor G, if there is some set A of arguments and some
renaming f : AF → A for F s.t. ρ(f(F)) = ρ(G).

So, informally speaking, Definition 4.5 requires that F
and G are equivalent, at least after the underlying arguments
are relabeled in a suitable way. However, in Proposition 4.4
we have actually already established that this adjustment is
superfluous for our semantics. More formally, we infer the
following result.
Proposition 4.6. For any two CAFs F and G, F ≡ρor G iff
F ≡ρo G for any semantics ρ under consideration.

Considering this result, it becomes apparent that we could
also require that ρ(f(F)) = ρ(G) holds for any renaming,
not just for one in particular.
Proposition 4.7. For two CAFs F and G we have that for
all semantics considered in this paper F ≡ρor G implies
ρ(f(F)) = ρ(G) for any renaming f for F .

Now we utilize the notion of a renaming in order to de-
fine a strong equivalence-like relation which is more suitable
than strong equivalence for situations like the one described
in Example 4.1.
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Definition 4.8. Two compatible CAFs F and G are strongly
equivalent up to renaming to each other w.r.t. a semantics ρ,
in symbols F ≡ρsr G, if there is a renaming f : AF → AF
for F s.t. ρ(f(F)∪H) = ρ(G ∪H) for each CAFH which
is compatible with F and G.

Let us reconsider our motivating Example 4.1.

Example 4.9. Recall the CAFs F and G from before and
consider a renaming f which maps ai to xi and leaves the
remaining arguments unchanged. Augmenting both f(F)
and G withH, we obtain the following desired situation:

f(F)∪H:

x1

a

b1

b

c1

c

x2

a

c2

c

e1d

G ∪ H:

x1

a

b1

b

c1

c

x2

a

c2

c

e1d

Notice that Proposition 4.4 ensures that our renaming for F
only prevents H from introducing a novel argument, while
preserving the semantics of F .

Strong equivalence up to renaming implies the usual
strong equivalence. This can be obtained by setting f = id.

Proposition 4.10. For any two CAFs F and G, if F ≡ρs G,
then F ≡ρsr G.

Even without using Proposition 4.4 explicitly we can in-
fer that strong equivalence survives moving to a renamed
version of f as well.

Proposition 4.11. For any two compatible CAFs F and G,
if F ≡ρsr G, then f(F) ≡ρsr G for any renaming f for F .

Proof. We have ρ(g(F) ∪ H) = ρ(G ∪ H) for each H for
some renaming g because we assume F ≡ρsr G. Since f is a
bijection we find ρ(g(f−1(f(F))) ∪ H) = ρ(G ∪ H), thus
g ◦ f−1 is our witnessing renaming for f(F) ≡ρsr G.

Let us now come to the kernels. Since our notion of strong
equivalence up to renaming allows for changing the names
of the arguments, we expect our kernels to behave similarly.
More specifically, we also need to consider renamed ver-
sions of the CAFs before evaluating the kernels. However,
checking strong equivalence up to renaming will surely re-
quire to take the structure of the CAFs into consideration.
We thus define what we mean by a CAF isomorphism.

Definition 4.12. Two CAFs F and G are isomorphic to each
other iff there is a mapping f : AF → AG s.t. (1) f is a
renaming for F and (2) for all a, b ∈ AF , (a, b) ∈ RF iff
(f(a), f(b))∈RG . f is called isomorphism between F , G.

CAFsF and f(F) from Example 4.3 are isomorphic. The
given renaming f naturally is a CAF-isomorphism between
F and f(F). The following proposition collects basic prop-
erties of CAF isomorphisms.

Proposition 4.13. For any two CAFs F and G, (a) if F and
G are isomorphic, then ρ(F) = ρ(G) for any considered
semantics ρ; and (b) if f is a renaming for F , then F and
f(F) are isomorphic.

As it turns out, we obtain exactly the result we desire to:
We check strong equivalence up to renaming by choosing
the appropriate kernel for ρ, computing the kernels of F and
G and then checking whether those are isomorphic to each
other. Informally speaking, our tailored notion of equiva-
lence which does not take the names of arguments into ac-
count yields the exact same kernels after relabeling the ar-
guments in a suitable way.
Theorem 4.14. For any two CAFs F and G, F ≡ρsr G iff
Fk(ρ) and Gk(ρ) are isomorphic.

Proof. (⇐) Let Fk(ρ) and Gk(ρ) be isomorphic, witnessed
by the isomorphism f . We have f(Fk(ρ)) = Gk(ρ); more-
over, Fk(ρ) = Gk(ρ) implies (F ∪ H)k(ρ) = (G ∪ H)k(ρ)

for any compatible CAF H; extending f to H in a straight-
forward way yields f((F ∪ H)k(ρ)) = (G ∪ H)k(ρ). Since
(F ∪H)k(ρ) = (G ∪H)k(ρ) implies ρ(F ∪H) = ρ(G ∪H)
our isomorphism ensures ρ(F ∪H) = ρ(G ∪ H).

(⇒) Now assume the kernels Fk(ρ) and Gk(ρ) are not
isomorphic, i.e. for any renaming f , f(Fk(ρ)) 6= Gk(ρ).
Due to the properties of our kernel, there is some H s.t.
ρ(f(F) ∪H) 6= ρ(G ∪ H).

Example 4.15. For our CAFs F and G from Example 4.1
we see that —given ρ = cl -stbcf — the kernels are isomor-
phic. HenceF and G are strongly equivalent up to renaming.

5 Computational Complexity
In this section we examine the computational complexity of
deciding equivalence between two CAFs F and G for ev-
ery equivalence notion which has been established in this
paper. We assume the reader to be familiar with the poly-
nomial hierarchy. Moreover, by QSAT∃n (QSAT∀n) we de-
note the generic ΣP

n-complete (ΠP
n-complete) problem, i.e.

checking validity of a corresponding QBF. Our results re-
veal that ordinary equivalence can be computationally hard,
up to the third level of the polynomial hierarchy for both
variants of semi-stable and stage semantics as well as for i-
preferred semantics. For the remaining semantics under con-
sideration, the problem is ΠP

2 -complete; the only exception
is i-grounded semantics for which deciding ordinary equiv-
alence is P-complete. Moreover, we show that deciding
strong equivalence up to renaming extends the list of prob-
lems which lie in NP but are not known to be NP-complete.

First we present our complexity results for ordinary equiv-
alence. We formulate the following decision problem:

VER-OEρ
Input: Two CAFs F , G.
Output: TRUE iff F , G are ordinary equivalent w.r.t. ρ.

We obtain the following computational complexity results
for deciding ordinary equivalence:
Theorem 5.1. VER-OEρ is
• P-complete for ρ=grc;
• ΠP

2 -complete for ρ ∈ {cfc, adc, coc,nac, cl -pr , cl -na,
stbc, cl -stbcf , cl -stbad , }; and

• ΠP
3 -complete for ρ∈{prc, ssc, stgc, cl -stg , cl -ss}.
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In the following we will provide proofs for the results
from Theorem 5.1. To begin with, we show that verifying or-
dinary equivalence for i-grounded semantics is P-complete.
Proposition 5.2. Deciding VER-OEgrc is P-complete.

Proof. VER-OEgrc is in P since computing the grounded
extensions of F and G and comparing the claims can be
done in polynomial time. Hardness is by a reduction from
the verification problem VerCAF

grc for i-grounded semantics
(which is P-complete by (Dvorák and Woltran 2020)) by set-
ting F = F and G = (S, ∅, id) for an instance (F , S) of
VerCAF

grc . We obtain grc(F) = grc(G) iff S = grc(F).

Membership proofs for VER-OEρ, ρ 6= grc are by stan-
dard guess-and-check procedures for the complementary
problems: Guess a set of claims S and check whether it
holds that S ∈ F as well as S /∈ G. For the seman-
tics ρ ∈ {cfc, adc, coc,nac, stbc, cl -stbcf , cl -stbad}, the lat-
ter requires two NP-oracle calls; for ρ ∈ {cl -pr , cl -na}
we require four NP-oracle calls (recall that verification for
cl-preferred and cl-naive semantics is in DP

1 (Dvořák et al.
2021)), which shows that VER-OEρ is in ΠP

2 . For the se-
mantics ρ ∈ {prc, ssc, stgc, cl -ss, cl -stg}, we require two
ΣP

2 -oracle calls to check S ∈ F and S /∈ G; yielding ΠP
3 -

procedures for the decision problem VER-OEρ.
To show hardness of VER-OEρ for ρ 6= grc, we present

reductions from QSAT∀2 or QSAT∃2 , respectively. The over-
all idea is to construct two CAFs F , G where ρ(F) de-
pends on the particular instance of the source problem while
G serves as controlling entity. For a given instance Ψ =
Q1X1 . . . QnXnϕ of QSAT∀2 or QSAT∃2 , respectively, we
design the CAF F in a way such that ρ(F) depends on the
models of ϕ while G possesses every possible ρ-claim-set
which can be obtained in F by varying ϕ, i.e., ρ(G) is in-
dependent of the validity of Ψ. F is then constructed such
that Ψ is valid iff ρ(F) = ρ(G) (if we reduce QSAT∀2 ) or
ρ(F) 6= ρ(G) (in case we reduce QSAT∃2 ).

We will first discuss the hardness proofs for those seman-
tics for which VER-OEρ is ΠP

2 -complete. We outline the
underlying aforementioned idea for i-stable semantics.
Proposition 5.3. Deciding VER-OEρ is ΠP

2 -hard for ρ ∈
{stbc, cl -stbcf , cl -stbad}.

Proof. Let Ψ = ∀Y ∃Zϕ(Y, Z) be an instance of QSAT∀2
where ϕ is identified with a set of clauses C over atoms in
V = Y ∪ Z. We construct two CAFs F = (AF , RF , clF )
and G = (AG , RG , id). The CAF F is given by

AF = V ∪ V̄ ∪ C with V̄ = {v̄ | v ∈ V };
RF = {(v, cl) | cl ∈ C, v ∈ cl} ∪ {(cl, cl) | cl ∈ C}∪

{(v̄, cl) | cl ∈ C,¬v ∈ cl} ∪ {(v, v̄), (v̄, v) | v ∈ V }
and clF (z) = clF (z̄) = z for z ∈ Z and clF (a) = a else;
that is, we introduce arguments for every clause and every
literal; a literal argument attacks a clause argument if the
corresponding literal is contained in the respective clause;
moreover, the clauses are self-attacking and every literal and
its negation attack each other. We assign every atom z ∈ Z
the same claim as its negation z̄; the remaining arguments

cl1c1 cl2 c2

y1

y1

ȳ1

ȳ1

z1

z1

z̄1

z1

(a) CAF F

y1

y1

ȳ1

ȳ1

z1

z1

(b) CAF G

Figure 1: Reduction from the proof of Proposition 5.3 for a formula
∀Y ∃Zϕ(Y,Z) where ϕ is given by the clauses {{y1, z1}, {ȳ2}}.

have their unique argument name as claim. The CAF G is
given by AG = V ∪ Ȳ ; RG = {(y, ȳ), (ȳ, y) | y ∈ Y }. An
example of the reduction is given in Figure 1. Observe that
the i-stable (cl-stable) claim-sets of G are given by sets of
the form Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z for Y ′ ⊆ Y .

It can be shown that Y ′ ∪{ȳ | y /∈ Y ′}∪Z is i-stable (cl-
stable) in F for every Y ′ ⊆ Y iff Ψ is valid. By design of
G, the latter is satisfied iff the i-stable (cl-stable) extensions
of F and G coincide. That is, Ψ is valid iff ρ(F) = ρ(G) for
ρ ∈ {stbc, cl -stbcf , cl -stbad}.

By modifying the constructions from the proof of Propo-
sition 5.3 we obtain ΠP

2 -hardness of VER-OEnac . For the
construction of F in the ΠP

2 -hardness proof of VER-OEρ,
ρ = {cfc, adc, cl -na, cl -pr}, we choose a slightly different
approach: For an instance Ψ = ∀Y ∃Zϕ(Y,Z) of QSAT∀2 ,
we construct F such that each literal in a clause cl is rep-
resented by an argument having claim cl; we furthermore
introduce arguments for each atom y ∈ Y and its negation;
finally, every two arguments representing negated literals at-
tack each other. We construct G in a way such that ρ(G) con-
tains precisely the claim-sets Y ′∪{ȳ | y /∈ Y ′}∪C. Similar
as above, it can be shown that Ψ is valid iff ρ(F) = ρ(G).
An appropriate adaptation and claim-assignment of the stan-
dard construction as presented in (Dvorák and Dunne 2018,
Reduction 3.6) yields ΠP

2 -hardness for i-complete semantics.
Turning now to the ΠP

3 -hardness results, we adjust our
general reduction scheme by targeting inequality of ρ(F)

and ρ(G) in case the given instance Ψ of QSAT∃3 is valid.
As an example, we present the construction from the ΠP

3 -
hardness proof for cl-semi-stable and cl-stage semantics.
Proposition 5.4. Deciding VER-OEρ is ΠP

3 -hard for ρ ∈
{cl -ss, cl -stg}.
Proof. Consider an instance Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) of
QSAT∃3 , where ϕ is given by a set of clauses C over atoms
in V = X ∪ Y ∪ Z. We can assume that there is y0 ∈ Y
with y0 ∈ cl for all cl ∈ C (otherwise we can add such a y0

without changing the validity of Ψ). We write v̄ to denote
¬v for an atom v ∈ V , moreover, let V ′ = X ∪ Y . We
construct CAFs F = (AF , RF , clF ) and G = (AG , RG , id)
as follows: The CAF F is given by

AF= V ∪ V̄ ∪ C ∪ {ϕ1, ϕ2} ∪ {dv, dv̄ | v∈V ′ ∪ V̄ ′};
RF={(a, cl) |cl∈C, a∈cl, a∈V ∪V̄ }∪{(cl, ϕ) |cl∈C}∪

{(a, da), (da, da) |a∈V ′∪V̄ ′}∪{(ϕ1, ϕ2), (ϕ2, ϕ2)}
∪{(v, v̄), (v̄, v) | v∈V };
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ϕ1

ϕ

ϕ2

ϕ

cl1 ϕ̄ cl2 ϕ̄ cl3 ϕ̄

x
x

x̄
x̄

y
y

ȳ
y

z1

z1

z̄1

z1

z2

z2

z̄2

z2

dx
dx

dx̄
dx̄

dy
dy

dȳ
dȳ

Figure 2: Construction of the CAF F from the proof from
Proposition 5.4 for the formula ∃X∀Y ∃Zϕ(X,Y, Z) with clauses
{{z1, x, y}, {¬x,¬y,¬z2, y}, {¬z1, z2, y}}.

clF (v) = clF (v̄) = v for v ∈ Y ∪ Z; clF (cl) = ϕ̄ for cl ∈
C; clF (ϕ1) = clF (ϕ2) = ϕ; and clF (a) = a otherwise.
An example of this construction is given in Figure 2. We
observe that each set X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ} is
cl-semi-stable (cl-stage) in F for every X ′ ⊆ X (remember
that there is y0 ∈ Y which attacks every clause cl ∈ C).

We define G = (AG , RG , id) such that it has the cl-semi-
stable (cl-stage) claim-setsX ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{e}
for every X ′ ⊆ X , e ∈ {ϕ, ϕ̄} with AG = V ∪ X̄ ∪ {ϕ, ϕ̄},
and RG = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)}. It
is easy to see that G possesses exactly the desired cl-semi-
stable (cl-stage) claim-sets.

It can be checked that X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪Z ∪ {ϕ̄}
is cl-semi-stable (cl-stage) in F for every X ′ ⊆ X iff Ψ
is not valid. The former is satisfied iff F and G possess
the cl-semi-stable (cl-stage) claim-sets. Thus Ψ is valid iff
ρ(F) 6= ρ(G) for ρ ∈ {cl -ss, cl -stg}.

ΠP
3 -hardness of ordinary equivalence for i-semi-stable and

i-stage semantics is by adapting the ΠP
3 -hardness proof of the

concurrence problem for semi-stable semantics, i.e., decid-
ing whether ssc(F) = cl -ss(F) for a CAF F (Dvořák et al.
2021, Proposition 6). For i-preferred semantics, we modify
the standard reduction for preferred semantics (cf. (Dvorák
and Dunne 2018, Reduction 3.7)) via an appropriate claim-
assignment. This concludes the proof of Theorem 5.1.
Remark 5.5. The computational complexity results from
Theorem 5.1 extend to ordinary equivalence up to renaming
by Proposition 4.6 for any semantics under consideration.

Having established complexity results for ordinary equiv-
alence it remains to discuss the computational complexity of
strong equivalence and strong equivalence up to renaming.

VER-SEρ
Input: Two CAFs F , G.
Output: TRUE iff F , G are strongly equivalent w.r.t. ρ.

Recall that in Section 3, we have shown that strong equiva-
lence of two CAFs F and G can be characterized via syntac-
tic equivalence of their kernels. Since the computation and
comparison of the kernels of F and G can be done in poly-
nomial time, we obtain tractability of strong equivalence for
every semantics under consideration.

Theorem 5.6. The problem VER-SEρ can be solved in poly-
nomial time for any semantics ρ considered in this paper.

Finally, we consider strong equivalence up to renaming.
An analogous decision problem be formulated as follows:

VER-SERρ
Input: Two CAFs F , G.
Output: TRUE iff F , G are strongly equivalent up to re-

naming w.r.t. ρ.

As outlined above, the computation of the kernels lies in
P and is therefore negligible; the complexity of verifying
strong equivalence up to renaming thus stems entirely from
deciding whether two labelled graphs (i.e., the kernels of the
given CAFs) are isomorphic. As a consequence we obtain
that the complexity of VER-SERρ coincides with the com-
plexity of the famous graph isomorphism problem.
Theorem 5.7. The problem VER-SERρ is exactly as hard
as the graph isomorphism problem for any semantics ρ con-
sidered in this paper.

It is well-known that the graph isomorphism problem lies
in NP but is not known to be NP-complete (although the
latter is considered unlikely (Schöning 1988)).

6 Conclusion and Future Work
In this paper, we considered ordinary and strong equivalence
as well as novel equivalence notions based on argument re-
naming for CAFs w.r.t. all semantics for CAFs which have
been considered in the literature so far and provided a com-
plexity analysis of all considered equivalence notions.

Our characterization results for strong equivalence are
in line with existing studies for related argumentation for-
malisms (Oikarinen and Woltran 2011; Dvorák, Rapberger,
and Woltran 2020b); in addition, we adapt an argument-
independent view by considering equivalence under renam-
ing. Equivalence of logic-based argumentation has been
studied in (Amgoud, Besnard, and Vesic 2014); they show
that under certain conditions on the underlying logic, unnec-
essary arguments can be removed while retaining (strong)
equivalence. In contrast to their work, our studies are in-
dependent of the underlying formalism of the instantiated
argumentation system as we do not impose any further con-
straints on the arguments or their claims; in this way, it
is even possible to test equivalence between argumentation
systems stemming from entirely different base formalisms.

For future work, we want to extend our strong equivalence
studies by considering certain constraints of the framework
modifications. What has been commonly investigated in the
literature are normal expansions where attacks can only be
introduced if they involve newly added arguments (observe
that in the proof of Theorem 3.17, the expansion in case (a)
satisfy this criteria while H in case (b) introduces also new
attacks between existing arguments). We moreover want to
adapt our strong equivalence notion to arbitrary CAFs, not
only compatible ones, by relaxing the notion of framework
expansions. Another point on our agenda is to consider cer-
tain sub-classes of CAFs, which have been introduced in the
literature, e.g., well-formed CAFs which impose restrictions
on the attack relation.
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Abstract

With the advent of artificial agents in everyday life, it is
important that these agents are guided by social norms and
moral guidelines. Notions of obligation, permission, and the
like have traditionally been studied in the field of Deontic
Logic, where deontic assertions generally refer to what an
agent should or should not do; that is they refer to actions.
In Artificial Intelligence, the Situation Calculus is (arguably)
the best known and most studied formalism for reasoning
about action and change. In this paper, we further investigate
the integration of these two areas, particularly addressing so-
called contrary-to-duty (CTD) scenarios. For this purpose,
we present a new logic based on Lakemeyer and Levesque’s
modal Situation Calculus variant ES that we modify to ex-
press properties about programs from the action language
GOLOG, extended by new constructs for negated programs
and their joint execution. We use this formalism to discuss
three different approaches to CTD scenarios. First, we show
it to be expressive enough to fully capture Meyer’s dynamic
deontic logic PDeL, and hence corresponding solutions for
CTDs. Second, we demonstrate how our previous approach
to tackle CTDs in terms of defeasible conditionals over a re-
stricted set of GOLOG programs can be represented as well,
along with a method to compile them directly into the Situa-
tion Calculus action theory. Finally, we extend the language
of these conditionals to include a simple notion of intention,
which allows to describe CTDs not only in terms of actions
that will follow immediately, but that the agent has commit-
ted to execute at some time in the foreseeable future. All in
all, the contribution of the paper is thus an approach that is
substantially more general than previous approaches, and is
able to handle CTDs in a flexible manner.

1 Introduction
With artificial agents playing an ever-greater role in our daily
lives, there has been increasing interest in researching ways
to ensure that such agents act ethically and subject their ac-
tions to social norms, in particular where they interact with
humans or operate in shared environments. One possible
approach is to formalize relevant notions such as obligation,
permission and prohibition in a logical language, which tra-
ditionally has been the subject of study in the field of Deon-
tic Logic (von Wright 1951; Gabbay et al. 2013).

Probably the best researched system of deontic logic is
Standard Deontic Logic (SDL), a variant of the modal logic
KD (Chellas 1980), where a modal operator Oφ expresses

that “φ is obligatory” or “it ought to be that φ”, permission
is defined as its dual (Pφ = ¬O¬φ), and prohibition as the
negation of permission (Fφ = ¬Pφ). Semantically, acces-
sible worlds correspond to worlds that are in a certain sense
ideal, and obligatory/permitted/forbidden is whatever is true
in all/some/no accessible worlds.

While simple and elegant, SDL is also somewhat weak,
and yields some unintuitive consequences, which have been
traditionally referred to as “paradoxes” in the literature. One
particular class of such paradoxes is concerned with so-
called contrary-to-duty (CTD) obligations, usually given in
the form of conditional exhortations that state what ought to
be (done) if a certain other obligation is neglected. A well-
known example scenario is due to Chisholm (1963), and can
be phrased as follows:

1. You ought to help your neighbour.

2. If you help your neighbour you should tell them.

3. If you don’t help your neighbour, you shouldn’t tell them.

4. You don’t help your neighbour.

Intuitively, these statements are consistent, independent
from another, and lead to the conclusion that one shouldn’t
tell the neighbour one will come to help. However, differ-
ent possible encodings in SDL all either lead to an inconsis-
tency, or that one of the statements can be derived from the
others. It was later recognized (Hansson 1969) that the prob-
lem lies in representing these statements through monadic
deontic modalities and material implications, and that it
rather requires dyadic obligations such as O(tell/help) to
express systems of defeasible conditionals. Semantically,
the latter do not merely distinguish ideal from non-ideal
worlds, but rank possible worlds according to some pref-
erence relation, allowing for differing “degrees of ideality”.
For example, worlds in which we don’t go to help the neigh-
bour but tell them we are coming are ranked worse than
those where we don’t go, but at least don’t tell them we in-
tend to come, even though both cases are not ideal.

Another observation about the Chisholm scenario is that
there is a temporal aspect to it: If we are going to help, then
we ought to tell them beforehand. Furthermore, here deon-
tic modalities apply to actions (“ought-to-do”) rather than
propositions (“ought-to-be”). While some authors simply
used propositions to represent actions, in his seminal article,
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von Wright (1951) originally introduced deontic modalities
as applying to action types. He argued that a suitable deon-
tic logic needs to be built upon the foundation of a more
general theory of action (von Wright 1963). Essentially,
when reasoning about obligations and permissions applying
to actions, we have to take into consideration that actions
have preconditions and effects that result in various forms
of interaction and interdependency between them, and so it
makes sense to formalize these notions. For example, help-
ing the neighbour may require having the necessary supplies
to do so, which may necessitate other actions, such as buy-
ing supplies at the hardware store.

Deontic action logic is an active area of research, and no-
table approaches to use such formalisms for tackling CTDs
include (Bartha 1999), which uses stit (“see to it that”) se-
mantics (Horty 2001), and (Meyer, Dignum, and Wieringa
1994), which is based on Meyer’s (1988) deontic dynamic
logic PDeL. While (Bartha 1999) extends the aforemen-
tioned idea to assign degrees of ideality to possible histories
(rather than worlds), a problem with stit is that actions do
not have proper names or types, but are described purely
through their effects, making it difficult to deal with deontic
constraints over complex actions. This is not an issue in dy-
namic logic, but the approach to CTDs suggested in (Meyer,
Dignum, and Wieringa 1994) is somewhat rudimentary in
that rankings among alternatives are not inferred “automat-
ically” by means of some non-monotonic mechanism, but
need to be encoded “manually” by the domain designer.

In a recent paper (Claßen and Delgrande 2020), we pro-
posed to tackle CTDs over actions by integrating deontic
notions into what is (arguably) the best known and most
studied formalism for reasoning about action and change,
namely the Situation Calculus (McCarthy and Hayes 1969;
Reiter 2001), together with the agent programming language
GOLOG (Levesque et al. 1997) that is defined on top of it.
Among other things, we proposed to express dyadic obliga-
tions as defeasible conditionals over complex actions (i.e.,
programs of GOLOG), and understand them as deontic con-
straints that the agent has to consider when planning its ac-
tions. These conditionals would then again induce a ranking
of differing “degrees of ideality”, but over situations (i.e.,
action sequences) instead of possible worlds. Moreover, we
showed that these constraints can then be “compiled away”
into the action theory, so that after a preprocessing step, no
additional reasoning machinery is required for planning un-
der such deontic constraints. A limitation was that for condi-
tionals we considered a very restricted fragment of GOLOG
programs that only admit single actions, one of the reasons
being that the approach requires a notion of negated actions
and programs, e.g. to express “not helping the neighbour”,
which is not trivial in the general case. Another limiting as-
sumption we made is that the action the agent is “going to
do” (e.g., helping) will follow immediately after the one it is
currently deliberating about (e.g., telling).

In this paper, we address some of these issues and explore
a more unified view on contrary-to-duty constraints over ac-
tions. For this purpose, in Section 2, we propose a new logic
called ESGL that is based on an extension (Claßen and Lake-
meyer 2008) of Lakemeyer and Levesque’s (2010) modal

Situation Calculus variant ES, which we modify to express
properties about a fragment of GOLOG programs, now in-
cluding a more sophisticated notion of action negation as
proposed by Meyer (1988). While the classical Situation
Calculus is defined axiomatically over Tarskian structures,
the modal variant we employ here uses a special semantics
that renders many formal definitions and proofs easier, while
retaining all benefits such as Reiter’s (1991) solution to the
frame problem. In particular, this is helpful for defining the
new negation operator, where we shift from a macro-based
definition of GOLOG (Levesque et al. 1997) to a transition-
based semantics (De Giacomo, Lespérance, and Levesque
2000). Moreover, different from previous definitions, our
semantics uses linear-time traces rather than branching-time
tree models, which further simplifies the treatment. We use
the new formalism to discuss three different approaches to
CTDs. First, in Section 3 we show it to be expressive enough
to fully capture Meyer’s dynamic deontic logic PDeL, and
hence corresponding solutions for CTDs. Second, in Sec-
tion 4 we demonstrate how our previous approach to tackle
CTDs in terms of defeasible conditionals over a restricted set
of GOLOG programs can equally be represented. Finally, in
Section 5 we extend the language of conditionals to include
a simple notion of intention, which allows to describe CTDs
not only in terms of actions that will follow immediately,
but that the agent has committed to execute at some time in
the foreseeable future. The overall contribution of this paper
is hence an approach that is substantially more general than
previous works, allowing for a flexible modelling of, among
other things, CTDs in the style of Chisholm’s paradox.

2 The Logic ESGL
In this section we present the formal definition of the logic
ESGL. It is based on Lakemeyer and Levesque’s (2010) logic
ES, a modal variant of the (epistemic) situation calculus,
where instead of situation terms, modal operators [t]φ (“φ is
true after action t”) and �φ (“φ holds after any sequence of
actions”) are used to talk about future states of affairs. Our
new logic is a variant of Claßen and Lakemeyer’s (2008;
2013) extension ESG, which, among other things, extends
the [·] operator to take a program (or complex action) δ as
argument, where δ is from a subset of the agent program-
ming language GOLOG (Levesque et al. 1997). The latter
includes both deterministic programming constructs such as
while loops and if conditionals, and non-deterministic ones
such as non-deterministic branching and iteration.

While the main purpose of ESG was the verification of
GOLOG programs, our focus of interest in this paper is rep-
resenting and reasoning about deontic properties. The new
logic ESGL we propose differs from ESG in two aspects: For
one, we extend the set of GOLOG programming constructs
by negation (δ) and joint execution (δ1 × δ2) of programs,
which will allow to express deontic constraints as condition-
als over GOLOG programs. For another, instead of interpret-
ing formulas over branching-time, tree-shaped models as is
done in the situation calculus and ES, we will use linear-
time models called traces. The latter not only is somewhat
simpler, but, as we will see, helps in interpreting the new
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constructs in a similar fashion as in Meyer’s (1988) dynamic
deontic logic, thus inheriting many of its desirable features.
Note though that this section solely deals with interpretating
programs and their properties, and that deontic notions will
only be introduced and discussed in the subsequent sections.

2.1 Syntax
The language is a first-order modal dialect with equality and
sorts of type object, action and number. It includes count-
ably infinitely many standard names for each of the sorts, de-
noted byNO,NA, andNN respectively, allowing for a sub-
stitutional interpretation of quantification. Also included are
both fluent and rigid predicate and function symbols. Flu-
ents vary as the result of actions, but rigids do not. The logi-
cal connectives are ∧, ¬, ∀, together with the modal operator
〈δ〉, where δ may be any program expression, as defined be-
low. Other connectives like∨,⊃,⊂,≡, and ∃ are used as the
usual abbreviations, and terms and formulas are built from
these primitives in the usual way, including basic arithmetic
operations and relations for numbers.

We read 〈δ〉φ as “φ holds after some execution of program
δ” and define its dual [δ]φ as abbreviation for¬〈δ〉¬φ, where
�φ (read: “φ holds after any sequence of actions”) in turn
stands for [>]φ. The set of programs ∆ is given by:

δ ::= t | φ? | δ1; δ2 | δ | δ1 + δ2 | πx.δ | δ∗ (1)

in which t can be any action term (including a variable),
φ a formula, and x a variable. We thus consider a set of
programs given by primitive actions t, test conditions φ?,
sequence δ1; δ2, action negation δ, nondeterministic branch-
ing δ1 + δ2, nondeterministic choice of argument (“pick”)
πx.δ, and nondeterministic iteration δ∗. In addition, we
define joint execution δ1 × δ2 as abbreviation for δ1 + δ2,
the empty program nil as TRUE?, the universal action > as
πa. a∗, and failure ⊥ as FALSE?. For any expression (for-
mula, term, program,. . . ) β, we use βxt to denote the result
of simultaneously replacing all free occurrences of variable
x by term t. We call a formula without � and [·] a fluent
formula, and one without free variables a sentence.

2.2 Semantics
Intuitively, a trace τ will be used to determine, at any point
in time k ∈ N, (a) what values the (fluent and rigid) predi-
cates and functions take and (b) what action will be executed
next. For the latter, we simply assume that there is a distin-
guished functional fluent ℵ of sort action with this special
meaning, but that we otherwise treat like any other function
symbol. More precisely, let
• N denote the set of all standard names,
• PF the set of all primitive sentences R(n1, . . . , nm),

where R is a (fluent or rigid) predicate symbol and all
the ni are standard names, and

• PT the set of all primitive terms g(n1, . . . , nm), where g
is a (fluent or rigid) function symbol and all the ni are
standard names.

Then a trace τ ∈ T is any mapping

τ : N× PF → {0, 1} τ : N× PT → N

that preserves sorts, interprets arithmetic operations and re-
lations in the usual way, and satisfies the rigidity constraint:
if g is a rigid function or predicate symbol, then for all k and
k′, τ [k, g(n1, . . . , nk)] = τ [k′, g(n1, . . . , nk)]. The pro-
gression of a trace τ by k time points is the trace τ (k) where
for all l ∈ N and all β ∈ PF ∪ PT ,

τ (k)[l, β] = τ [k + l, β].

We extend the idea of co-referring standard names to ar-
bitrary ground terms as follows. Given a variable-free term t
and a trace τ , we define |t|τ (read: the co-referring standard
name for t given τ ) by:

1. If t ∈ N , then |t|τ = t;
2. |h(t1, . . . , tk)|τ = τ [0, h(n1, . . . , nk)], if ni = |ti|τ .
Truth of a sentence φ wrt. a trace τ is then given by:

1. τ |= F (t1, . . . , tk) iff τ [0, F (|t1|τ , . . . , |tk|τ )] = 1;
2. τ |= (t1 = t2) iff |t1|τ and |t2|τ are identical;
3. τ |= φ ∧ ψ iff τ |= φ and τ |= ψ;
4. τ |= ¬φ iff τ 6|= φ;
5. τ |= ∀x.φ iff τ |= φxn for all n ∈ Nx;
6. τ |= 〈δ〉φ iff τ ∈ ||δ;φ?||.
Above, Nx refers to the set of standard names of the same
sort as x. A sentence is satisfiable if some τ exists with
τ |= φ. When Σ is a set of sentences and φ a sentence, we
write Σ |= φ (read: “Σ logically entails φ”) to mean that for
every τ , if τ |= β for every β ∈ Σ, then also τ |= φ. Finally,
we write |= φ (read: “φ is valid”) to mean {} |= φ.

The interpretation of programs as required in rule 6 is de-
fined by mutual induction. Let a configuration c = 〈τ, δ〉
consist of a trace τ ∈ T (intuitively describing the current
and future states of the world) and a program δ ∈ ∆ (in-
tuitively what remains to be executed). Then the final con-
figurations F are the least set given by the rules shown in
Fig. 2, and for every action name n, the transition relation
n→ among configurations is the least set satisfying the rules

shown in Fig. 1. For arbitrary action sequences z, we define
the reflexive and transitive closure of n→ inductively as:

• c
〈〉→ c′ iff c = c′;

• c
nz→ c′ iff there is some c′′ such that c n→ c′′ and c′′

z→ c′.
The traces admitted by program δ are then given by

||δ|| .= {τ | 〈τ, δ〉 z→ 〈τ ′, δ′〉, 〈τ ′, δ′〉 ∈ F} (2)

The interpretation of formulas is standard in the sense that
atomic formulas that are not in the scope of some [·] or 〈·〉
operator are evaluated at the first time point of the trace (rule
1), and the Boolean connectives are defined as usual. For
quantification (rule 5), we follow the substitutional interpre-
tation of (Lakemeyer and Levesque 2010) in which a for-
mula ∀xP (x) holds just in case P (x) is true for every in-
stantiation of x by a standard name of the same sort.

Probably the most noteworthy difference to previous log-
ics is in rule 6: A trace satisfies 〈δ〉φ just in case it is one
of the traces admitted by the program that executes δ and
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(T1) 〈τ, n〉 n→ 〈τ ′,nil〉, if τ ′ = τ (1) and τ [0,ℵ] = n;

(T2) 〈τ, δ1; δ2〉 n→ 〈τ ′, γ; δ2〉, if 〈τ, δ1〉 n→ 〈τ ′, γ〉;
(T3) 〈τ, δ1; δ2〉 n→ 〈τ ′, δ′〉,

if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉 n→ 〈τ ′, δ′〉;
(T4) 〈τ, δ1 + δ2〉 n→ 〈τ ′, δ′〉,

if 〈τ, δ1〉 n→ 〈τ ′, δ′〉 or 〈τ, δ2〉 n→ 〈τ ′, δ′〉;
(T5) 〈τ, πx.δ〉 n→ 〈τ ′, δ′〉,

if 〈τ, δxm〉
n→ 〈τ ′, δ′〉 for some m ∈ Nx;

(T6) 〈τ, δ∗〉 n→ 〈τ ′, γ; δ∗〉, if 〈τ, δ〉 n→ 〈τ ′, γ〉;
(T7) 〈τ,m〉 n→ 〈τ ′,nil〉,

if 〈τ, n〉 n→ 〈τ ′,nil〉 and n 6= m ∈ NA;

(T8) 〈τ, δ1; δ2〉 n→ 〈τ ′, δ′〉, if 〈τ, δ1〉 n→ 〈τ ′, δ′〉;
(T9) 〈τ, δ1; δ2〉 n→ 〈τ ′, γ; δ2〉, if 〈τ, δ1〉 n→ 〈τ ′, γ〉;

(T10) 〈τ, δ1; δ2〉 n→ 〈τ ′, δ′〉,
if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉 n→ 〈τ ′, δ′〉;

(T11) 〈τ, δ1 + δ2〉 n→ 〈τ ′, δ′1 × δ′2〉,
if 〈τ, δ1〉 n→ 〈τ ′, δ′1〉 and 〈τ, δ2〉 n→ 〈τ ′, δ′2〉;

(T12) 〈τ, δ1 + δ2〉 n→ 〈τ ′, δ′〉,
if 〈τ, δ1〉 n→ 〈τ ′, δ′〉 and 〈τ, δ2〉 ∈ F ;

(T13) 〈τ, δ1 + δ2〉 n→ 〈τ ′, δ′〉,
if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉 n→ 〈τ ′, δ′〉;

(T14) 〈τ, δ〉 n→ 〈τ ′, δ′〉, if 〈τ, δ〉 n→ 〈τ ′, δ′〉;
(T15) 〈τ, πx. δ〉 n→ 〈τ ′, δ′〉,

if for all n ∈ Nx, 〈τ, δxn〉 ∈ F or 〈τ, δxn〉
n→ 〈τ ′, δ′〉.

Figure 1: Transition rules for programs

(F1) 〈τ, φ?〉 ∈ F if τ |= φ;
(F2) 〈τ, δ1; δ2〉 ∈ F if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉 ∈ F ;
(F3) 〈τ, δ1 + δ2〉 ∈ F if 〈τ, δ1〉 ∈ F or 〈τ, δ2〉 ∈ F ;
(F4) 〈τ, πx.δ〉 ∈ F if 〈τ, δxn〉 ∈ F for some n ∈ Nx;
(F5) 〈τ, δ∗〉 ∈ F ;

(F6) 〈τ, φ?〉 ∈ F if τ 6|= φ;

(F7) 〈τ, δ1; δ2〉 ∈ F if 〈τ, δ1〉 ∈ F or 〈τ, δ1; δ2〉 ∈ F ;

(F8) 〈τ, δ1 + δ2〉 ∈ F if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉 ∈ F ;

(F9) 〈τ, δ〉 ∈ F if 〈τ, δ〉 ∈ F ;

(F10) 〈τ, πx.δ〉 ∈ F if for all n ∈ Nx, 〈τ, δxn〉 ∈ F .

Figure 2: Finality rules for programs

afterwards tests for φ. Note that while a trace is infinite,
we require that a successful execution of a program con-
sists of finitely many transition steps leading to a final con-
figuration (2). Our semantics hence follows a similar intu-
ition as the one presented by Meyer (1988), where a termi-
nating program δ corresponds to all traces that start with a
sequence of actions compatible with δ, and that afterwards
continue indefinitely with the execution of arbitrary actions.
A program such as knock ; open(door) can be viewed as
a constraint on traces τ to satisfy τ [0,ℵ] = knock and
τ [1,ℵ] = open(door), without saying anything about how
to proceed afterwards (e.g., entering the door or not).

The transition semantics shown above is very similar to
the one presented in (Claßen and Lakemeyer 2008; Claßen
2013), which in turn is based on the one for CONGOLOG
(De Giacomo, Lespérance, and Levesque 2000), but with
the modification that tests are interpreted as conditions (rule
(F1)) rather than transitions. Due to the use of linear-time
traces instead of branching-time worlds, transition rule (T1)
for primitive actions differs in that it is required that the ex-
ecuted action n is actually the one scheduled to be executed
next according to trace τ ; in a tree-shaped world w this ad-
ditional requirement would not be necessary since there is a
successor situation for every possible action.

The most obvious change is that Figures 1 and 2 contain
additional rules for negated programs, and hence provide a
semantics for both negation and joint action. In the next
section, we explore some properties and show in what sense
defining the new constructs in this fashion is reasonable.

2.3 Basic Action Theories
We can formulate action theories in a similar fashion as in
the classical Situation Calculus for encoding dynamic do-
mains. Formally:
Definition 1 (Basic Action Theory). A basic action theory
(BAT) Σ = Σ0 ∪ Σpost is a set of formulas consisting of:

1. Σ0, the initial theory, a finite set of fluent sentences de-
scribing the initial state of the world;

2. Σpost , a finite set of successor state axioms (SSAs) incor-
porating Reiter’s (1991) solution to the frame problem for
encoding action effects:1

�[a]F (~x) ≡ γF (3)
�[a]f(~x) = y ≡ γf (4)

Here it is assumed that one axiom of the form (3) is in-
cluded for each relational fluent F relevant to the appli-
cation domain, and one of the form (4) for each functional
fluent f relevant to the application domain, and where γF
is a fluent formula with free variables a and ~x, and γf a
fluent formula with free variables among a, ~x, and y.

For simplicity, we don’t include a precondition axiom into
the BAT. Note that this is without loss of generality when
dealing with programs due to the fact that a formula φ being

1Free variables are understood as universally quantified from
the outside, [t] has higher precedence than the logical connectives,
and � has lower precedence. So �[a]F (~x) ≡ γF abbreviates
∀a, ~x.�(([a]F (~x)) ≡ γF ).
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a precondition of action t can be represented by using the
program expression φ?; t in its place.

2.4 Properties
We first note some properties related to joint action and se-
quence. In what follows, for any two programs δ1 and δ2, let
δ1 ≡ δ2 stand for ||δ1|| = ||δ2||.
Proposition 1.
(P1) δ1 × (δ1; δ2) ≡ δ1; δ2
(P2) ⊥; δ ≡ ⊥

Property (P1) exemplifies the aforementioned understand-
ing of programs as constraints on the possible future courses
of action, where after completing a program δ, infinitely
many arbitrary actions will follow. The program δ1; δ2 hence
constitutes an additional constraint on the set of traces ad-
mitted by δ1 only. (Meyer 1988) gives the example that
“opening the door” together with “opening the door and then
leaving” is the same as “opening the door and then leaving”.
Property (P2) is due to the fact that the set of traces admitted
by program ⊥ is already empty.

It should also be noted that the shift from tree-shaped
worlds to linear-time traces comes at a loss of expressive-
ness, and has the effect that ESGL is not (directly) compara-
ble to ES or ESG. A deeper analysis is beyond the scope of
this paper, but to illustrate the point, consider the question
whether a BAT Σ entails the formula ¬�φ. Here, it means
that along every trace consistent with Σ, there will sooner or
later come a point where φ does not hold. In ES and ESG,
it means that in every world consistent with Σ there is some
path where φ will be false at some point, which is a much
weaker condition. However, it can be argued that for the
purpose of planning, it is sufficient to look at the projection
problem, which is to decide whether Σ |= [δ]ψ for some flu-
ent formula ψ and some program δ that only mentions fluent
formulas as tests, and it can be shown that for this class of
reasoning tasks, the logics coincide.

Moreover, it is true that branching-time structures have
traditionally been favoured in the deontic logic literature, the
main reason being that there must be the possibility to vio-
late a norm, as otherwise, if the future were not open, there
would be nothing to reason about in terms of deontic prop-
erties. However, as we will see, our linear-time semantics
equally allows for this possibility due to the fact that when
reasoning about deontic constraints, we will consider sets of
linear traces, some of which may violate certain deontic con-
straints, and others don’t. Intuitively, this is therefore no real
restriction as any tree-shaped branching-time model can be
understood as a representation of a set of paths (i.e., traces).

3 Relation to PDeL
In this section we argue that the definitions and extensions
presented in the previous section are reasonable in the sense
that among other things, they capture Meyer’s (1988) dy-
namic deontic logic PDeL. It is based on Anderson’s (1958)
proposal of reducing deontic logic to alethic modal logic
by using a distinguished propositional variable V that in-
tuitively represents a “bad state” or the violation of a norm.

For dynamic logic, one defines
Fδ

.
= [δ]V (5)

saying that an action δ is forbidden if its execution leads to a
violation. Permission and obligation can then be defined in
terms of prohibition as usual:

Pδ
.
= ¬Fδ and Oδ

.
= Fδ (6)

Obviously, this requires the action algebra to include an op-
erator for negating actions in order to represent “ought-to-
do” obligations Oδ. As it turns out, the question of how
to define the negation of a complex action is far from triv-
ial2. For PDeL, Meyer presents the following five axioms as
desiderata that he argues must “reasonably hold” for δ:

(N1) δ1 ≡ δ1

(N2) δ1; δ2 ≡ δ1 + δ1; δ2

(N3) δ1 + δ2 ≡ δ1 × δ2
(N4) δ1 × δ2 ≡ δ1 + δ2

(N5) φ→ δ1/δ2 ≡ φ→ δ1/δ2
The most interesting of these properties is probably (N2). It
says that there are exactly two possible ways of executing
the negation of a sequential program δ1; δ2: Either do some-
thing next that is “not δ1”, or if doing δ1, then do some-
thing afterwards that is “not δ2”. The last property defines
the negation of a conditional action (“if φ then δ1 else δ2”),
which we can define in GOLOG by means of
φ→ δ1/δ2

.
= [φ?; δ1] + [¬φ?; δ2] (7)

With the definition presented in the previous section, we get:
Proposition 2. (N1)–(N5) are valid in ESGL.

Meyer’s action algebra does not include tests, the Kleene
star, or pick operators (PDeL is propositional). While for the
pick operator, which essentially behaves like an existential
quantifier, there is no obvious dual, we note that our tran-
sition semantics is compatible for tests and iteration in the
following sense:
(N6) φ? ≡ ¬φ?

(N7) δ∗ ≡ ⊥
(N6) follows from (N5) and the fact that φ? ≡ φ → nil/⊥,
using ⊥ ≡ nil and nil ≡ ⊥. (N7) makes sense when con-
sidering the expansion law for the Kleene star
δ∗ ≡ nil + δ; δ∗

as then
δ∗ ≡ nil + δ; δ∗ ≡ nil × δ; δ∗ ≡ ⊥× δ; δ∗ ≡ ⊥.

Based on (N1)–(N5), Meyer proposes the system PDeL as
given by the axioms and inference rules shown in Figure
3. He argues that this is sufficient to entail many important
theorems of deontic logic (the paper lists 36 of them) when
the deontic modalities are understood according to (5) and
(6). We note that ESGL subsumes PDeL as follows, assum-
ing that duration(δ) denotes the maximal length of action
sequences admitted by δ:

2See (Claßen and Delgrande 2020, Section 3.2) for a brief dis-
cussion. Alternatives to Meyer’s definition were proposed e.g. by
van der Meyden (1996) and Broersen (2004a).
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Axioms
(PC) all tautologies of propositional logic

(�⊃) [δ](φ1 ⊃ φ2) ⊃ [δ]φ1 ⊃ [δ]φ2

(;) [δ1 ; δ2]φ ≡ [δ1][δ2]φ

(+) [δ1 + δ2]φ ≡ [δ1]φ ∧ [δ2]φ

(×) [δ1 × δ2]φ ⊂ [δ1]φ ∨ [δ2]φ

(provided duration(δ1) = duration(δ2))
(→) [φ→ δ1/δ2]ψ ≡ (φ ⊃ [δ1]ψ) ∧ (¬φ ⊃ [δ2]ψ)

(♦) 〈δ〉φ ≡ ¬[δ]¬φ
(;) [δ1 ; δ2]φ ≡ [δ1]φ ∧ [δ1][δ2]φ

(+) [δ1 + δ2]φ ⊂ [δ1]φ ∨ [δ2]φ

(provided duration(δ1) = duration(δ2))

(×) [δ1 × δ2]φ ≡ [δ1]φ ∧ [δ2]φ

(→) [φ→ δ1/δ2]ψ ≡ (φ ⊃ [δ1]ψ) ∧ (¬φ ⊃ [δ2]ψ)

( ) [δ]φ ≡ [δ]φ

(⊥) [⊥]φ

Rules
(MP) From φ and φ ⊃ ψ infer ψ.

(N) From φ infer [δ]φ.

Figure 3: The system PDeL

Proposition 3. In ESGL, axioms (PC)–(⊥) are valid, and
inference rules (MP) and (N) are sound.

We remark that under our transition semantics, programs
in general do not constitute a Boolean algebra (Figure 4):
Proposition 4. Axioms (B1) – (B10) of Boolean algebras
are valid in ESGL, but axioms (B11) and (B12) are not.

This means that while the usual laws of associativity,
commutativity, neutral elements, distributivity, and idem-
potency apply, the complement does not always behave as
expected. A simple counterexample for (B12) is the pro-
gram δ = (a + a; b); c, where a, b and c are primitive ac-
tions. A trace τ that executes 〈a, b, c〉 as its first three actions
(i.e. τ [0,ℵ] = a, τ [1,ℵ] = b, τ [2,ℵ] = c) is an execution of
both δ and its negation:

〈τ, (a+ a; b); c〉 a→ 〈τ (1), b; c〉 b→ 〈τ (2), c〉 c→ 〈τ (3),nil〉
〈τ, (a+ a; b); c〉 a→ 〈τ (1), c〉 b→ 〈τ (2),nil〉

Intuitively, this is due to property (N2): One way of exe-
cuting the negation of a sequence δ1; δ2 is to execute δ1, fol-
lowed by the negation of δ2. Here, doing action a is one way
of executing (a+ a; b), and doing action b is one way of ex-
ecuting the negation of action c. While this behaviour may
(or may not) be undesirable, note that this is already possible
in Meyer’s original system PDeL (and does not conflict with
any results concerning deontic properties). To avoid it, one
would have to include counterparts of (B11) and (B12) as
additional axioms for PDeL. The appendix in (Meyer 1988)

(B1) (δ1 + δ2) + δ3 ≡ δ1 + (δ2 + δ3) (+ is associative)
(B2) δ1 + δ2 ≡ δ2 + δ1 (+ is commutative)
(B3) δ1 +⊥ ≡ δ1 (⊥ is the neutral element wrt +)
(B4) δ1 + (δ2 × δ3) ≡ (δ1 + δ2)× (δ1 + δ3) (+ distrib.)
(B5) δ1 + δ1 ≡ δ1 (+ is idempotent)
(B6) (δ1 × δ2)× δ3 ≡ δ1 × (δ2 × δ3) (× is associative)
(B7) δ1 × δ2 ≡ δ2 × δ1 (× is commutative)
(B8) δ1 ×> ≡ δ1 (> is the neutral element wrt ×)
(B9) δ1 × (δ2 + δ3) ≡ (δ1 × δ2) + (δ1 × δ3) (× distrib.)

(B10) δ1 × δ1 ≡ δ1 (× is idempotent)

(B11) δ1 + δ1 ≡ > (complement wrt +)

(B12) δ1 × δ1 ≡ ⊥ (complement wrt ×)

Figure 4: Axioms of a Boolean algebra

provides the definition for a semantics satisfying these addi-
tional properties, but is (arguably) more involved than what
we present here. In particular, it requires to consider sets of
traces, rather than traces, as the semantical domain.

3.1 Representing the Chisholm Scenario
In (Meyer, Dignum, and Wieringa 1994) and (Meyer,
Wieringa, and Dignum 1998), the authors suggest to address
contrary-to-duty obligations by extending the formalism to
include multiple violation atoms V1, V2, V3, . . . and use ac-
cordingly indexed deontic modalities. The Chisholm sce-
nario, for example, could then be expressed as follows:

O1h (8)

F2(t;h) (9)

F3(t;h) (10)

saying that one ought help the neighbour, that it is forbidden
to not tell and then help, and that is also prohibited to tell fol-
lowed by not helping. The fact that one actually does not go
to help cannot be represented explicitly because of dynamic
logic being about hypothetical reasoning in the form of “if a
certain action is taken, then a certain result is obtained.”

With the additional assumption that violations persist (by
including Vi ⊃ [δ]Vi as an additional axiom schema), it is
now possible to reason about sub-ideal states in terms of
which norms have been violated. For example, telling fol-
lowed by helping will result in V1 (the first norm is still vi-
olated because we didn’t help immediately as next action),
but telling and not helping in V1 ∧ V2 ∧ V3, so the former
should be preferred over the latter.

There are multiple drawbacks to this approach. First, a
preference relation among states with different violations
has to be defined explicitly. While this arguably allows for a
certain flexibility, e.g. to say that some violations are more
severe than others, the number of combinations to be con-
sidered grows exponentially with the number of violation
atoms, i.e., constraints. Second, the authors “admit that it
would be far nicer to have a representation closer to the
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natural language representation, but this would call for a
non-trivial extension of PDeL, in which one can also rea-
son ’backward’ directly.” Third, notice that even in the in-
tuitively ideal case where the agent tells and actually helps,
constraint 8 will cause a violation due to the fact that helping
was not the immediate next action. What is missing is a no-
tion of an agent intending to help in the foreseeable future.
We will address these issues in the following sections.

4 Simple Temporal Conditionals
In this section we show that ESGL is also capable of captur-
ing the approach presented in (Claßen and Delgrande 2020),
where deontic constraints are expressed as conditionals over
(a restricted set of) GOLOG programs. Specifically, here we
are interested in conditionals of the temporal kind that allow
to represent scenarios such as the Chisholm set. The set of
GOLOG programs in question is as follows:
Definition 2 (Guarded-Action Fragment). The set of
guarded actions is given by the following grammar:

γ ::= t | πx.γ | φ?; γ

The guarded-action fragment is then given by

δ ::= γ | δ | δ + δ | δ × δ
where γ is a guarded action.
Guarded actions hence are primitive actions, possibly pre-
ceded by a sequence of picks and test conditions, and the
guarded-action fragment is all their Boolean combinations.
An important special case is the “wildcard” action ? .

= πa.a.
We note that
Proposition 5. The guarded-action fragment is a Boolean
algebra with ? as neutral element wrt ×.
This means the laws shown in Figure 4 are valid for this
restricted set if we substitute ? for >. Moreover, note that
for such programs, joint execution distributes over sequence:
Proposition 6. Let δ1, . . . , δ4 be of the guarded-action frag-
ment. Then (δ1; δ2)× (δ3; δ4) ≡ (δ1 × δ3); (δ2 × δ4).

We then use programs from the guarded-action fragment to
express deontic constraints as described below.
Definition 3 (Temporal Conditionals). A temporal deontic
conditional is an expression that is of the form

δ ⇒a γ or δ ⇒b γ

where δ and γ are from the guarded-action fragment. We
read δ ⇒a γ as “if committed to doing δ, the agent ought
to do γ afterwards”, and δ ⇒b γ as “. . . before.” This defi-
nition includes the special case of unconditional constraints
where δ = ?. The materialization of a rule is given by

M(δ ⇒a γ)
.
= δ; ?+ ?; γ

M(δ ⇒b γ)
.
= ? ; δ + γ; ?

For a finite set of rules ρ = {r1, . . . , rk} we understand
M(ρ) as M(r1)× · · · ×M(rk), where M(∅) = ?; ?.
A set of such defeasible conditionals now induces a rank-
ing over traces using a construction similar to the one for
rational closure (Kraus, Lehmann, and Magidor 1990):

Definition 4 (Ranking). Given a finite set ρ of temporal con-
ditionals over programs and a set of traces e, a ranking of
the rules in ρ wrt e is given by

ρe0 = ρ

ρei+1 = {(δ ⇒a γ) ∈ ρei | e ∩ ||M(ρei )× (δ; ?)|| = ∅} ∪
{(δ ⇒b γ) ∈ ρei | e ∩ ||M(ρei )× (?; δ)|| = ∅}

Rules r ∈ ρei+1 are called exceptional wrt ρei . For every
τ ∈ e, the rank assigned by ρ wrt e then is
Rank(τ, e, ρ) = min{i | τ ∈ ||M(ρei )||}.

The cumulative rank assigned by e to any time point k ∈ N
is given by the sum of all ranks from times 0 up to k:

CRank(τ, e, ρ, k) =

k∑

i=0

Rank(τ (i), e(i), ρ)

where e(i) = {τ (i) | τ ∈ e}.
Here we follow (Claßen and Delgrande 2020) for aggregat-
ing ranks over time points by simply summing them up. In-
tuitively, this means that a trace will be ranked as less ideal
the more “bad” actions are performed in it. In particular,
there is no way of undoing a bad act, and any further bad
deed makes the course of action less and less ideal.

4.1 Representing the Chisholm Scenario
Using simple temporal constraints, the first three statements
of the Chisholm scenario can be expressed as:

? ⇒a help (11)
help ⇒b tell (12)

help ⇒b tell (13)
The first rule states that generally, the agent ought to go help
the neighbours. The second one means that when the agent
intends to go and help, it should tell the neighbours imme-
diately before. If on the other hand, says the third rule, the
agent does not intend to go and help, it ought not tell them.
Again, the fourth statement of the Chisholm set cannot be
represented explicitly due to reasoning in this formalism be-
ing purely hypothetical.

Assume that e = T is the set of all traces. In the fol-
lowing, let h stand for the action term help, and t for tell .
Materializing ρ0 = {(11), (12), (13)} then yields:
M((11)) = (?; ?) + (?;h) ≡ (?;h)

M((12)) = (?;h) + (t; ?)

M((13)) = (?;h) + (t; ?) ≡ (?;h) + (t; ?)

Recall that M(ρ0) is given by the conjunction of these three
expressions. Since according to Proposition 5, the usual
distributive laws apply, we can “multiply” them out. Ob-
serve that (?;h) is incompatible with (?;h), and that (t; ?)
contradicts with (t; ?). The result is hence equivalent to
(?;h)× (t; ?), which in turn can be simplified to (t;h) using
Propositions 5 and 6. We thus get
||(t;h)× (?; ?)|| = ||t;h|| 6= ∅
||(t;h)× (?;h)|| = ||t;h|| 6= ∅
||(t;h)× (?;h)|| = ||⊥|| = ∅
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Because rule (13) is the only exceptional one, we obtain
ρ1 = {(13)} and M(ρ1) ≡ ?;h+ t; ?. The rule is obviously
not exceptional with itself, so ρ2 = ∅, hence M(ρ2) = ?; ?.
We thus end up with
M(ρ0) ≡ t;h, M(ρ1) ≡ ?;h+ t; ?, M(ρ2) ≡ ?; ?

which induces the following ranking:

Rank(τ, e, ρ) =





0, τ [0,ℵ] = tell and τ [1,ℵ] = help

1, τ [0,ℵ] 6= tell

2, τ [0,ℵ] = tell and τ [1,ℵ] 6= help

4.2 Compiling Conditionals into BATs
In (Claßen and Delgrande 2020), we also showed how de-
ontic constraints can be compiled into the action theory, so
that after a preprocessing step, no special (non-monotonic)
reasoning machinery is needed for planning under deontic
constraints. The basic idea is to use a new function fluent
ideal that represents the degree of ideality of the current sit-
uation. For this purpose, we include
ideal = 0, (14)

into the initial theory Σ0 of our BAT. The value of this fluent
may increase due to actions, as per the SSA
�[a]ideal = ideal + bad(a) (15)

that we include into Σpost . The potential increase is deter-
mined by another fluent bad(a) that expresses how “bad” an
action a is, and that we define further below. First, to keep
track of which programs mentioned in deontic constraints
have been executed previously, we introduce finitely many
additional fluent predicates Did(γ), where for each one Σ0

contains the axiom
¬Did(γ) (16)

and Σpost contains the SSA
�[a]Did(γ) ≡ C[γ, a]. (17)

The right-hand side of the SSA uses the compilation opera-
tor C whose definition is given below:
Definition 5.

1. C[α, a] = (a = α)

2. C[φ?; δ, a] = φ ∧ C[δ, a]

3. C[πv.δ, a] = ∃v. C[δ, a]

4. C[δ, a] = ¬C[δ, a], if δ is a guarded action
5. C[δ1 + δ2, a] = C[δ1, a] ∨ C[δ2, a]

6. C[δ1 × δ2, a] = C[δ1, a] ∧ C[δ2, a]

7. C[γ; δ, a] = Did(γ) ∧ C[δ, a]

With this operator, we can now define an axiom for bad .
Suppose that we determined a ranking as shown previously,
then for a finite number of rule sets ρ0, . . . , ρk, we obtained
their materialized counterparts
M(ρ0) ≡ δ0, M(ρ1) ≡ δ1, . . . M(ρk) ≡ δk

where each δi is a program from the guarded-action frag-
ment. We then define the badness of action a as the minimal
index i whose δi admits a:

bad(a) = b ≡
k∨

i=0

(b = i) ∧ C[δi, a] ∧
i−1∧

j=0

¬C[δj , a] (18)

Proposition 7. Let Σ be a BAT, ρ a set of simple temporal
constraints, Σρ be the result of extending Σ with axioms (14)
– (18), and e = {τ | τ |= Σρ}. For any τ ∈ e and k ∈ N,

CRank(τ, e, ρ, k) = d iff τ (k) |= (ideal = d).

In the Chisholm example we obtain, after simplifications,
bad(a) = b ≡ b = 0 ∧Did(tell) ∧ a = help ∨ (19)

b = 1 ∧Did(tell) ∨
b = 2 ∧Did(tell) ∧ a 6= help

where the SSAs for Did(tell) and Did(tell) are given by
�[a]Did(tell) ≡ a = tell (20)

�[a]Did(tell) ≡ a 6= tell (21)

5 Intentional Conditionals
One shortcoming of the approaches discussed in the previ-
ous sections is that it is assumed that one action under con-
sideration will follow immediately after the other. This is
obviously not a realistic assumption for many practical sce-
narios. For example, helping the neighbour might necessi-
tate other actions, such as buying supplies at the hardware
store. In this section, we hence explore the idea of includ-
ing a notion of intention, represented by temporal modalities
over programs with a finite horizon. Specifically, for any δ
from the guarded-action fragment and k ≥ 1, we will use
�kδ to say “during k steps, always δ”, defined through
�kδ .

= δk
.
= δ; · · · ; δ︸ ︷︷ ︸

k times

, (22)

and ♦kδ to express “within k steps, eventually δ”, given by
♦kδ .

= δ + ?; δ + ?; ?; δ + · · · + ?; · · · ; ?︸ ︷︷ ︸
k−1 times

; δ. (23)

We note that the two operators are indeed duals:
Proposition 8.
(N8) �kδ ≡ ♦kδ
(N9) ♦kδ ≡ �kδ
Definition 6 (Intentional Guarded-Action Fragment). The
intentional guarded-action fragment is given by
δ ::= γ | �kγ | ♦kγ | δ

where γ is from the guarded-action fragment.

Definition 7 (Intentional Conditionals). An intentional de-
ontic conditional is an expression of the form
δ ⇒ γ

where δ and γ are programs of the intentional guarded-
action fragment. The materialization of a rule is given by
M(δ ⇒ γ)

.
= δ + γ

For a finite set ρ = {r1, . . . , rk} we understand M(ρ) as
M(r1)× · · · ×M(rk) as before, but using M(∅) = >.
Definition 8 (Intentional Situation Ranking). Given a finite
set ρ of intentional conditionals and a set of traces e, an
intentional ranking of the rules in ρ wrt e is given by

ρe0 = ρ

ρei+1 = {(δ ⇒ γ) ∈ ρei | e ∩ ||M(ρei )× δ|| = ∅}
Rank(τ, e, ρ) and CRank(τ, e, ρ, k) are exactly as in Def. 4.
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5.1 Representing the Chisholm Scenario
Suppose we want to apply a finite horizon of k ≥ 2. The
first three statements of the Chisholm scenario could be ex-
pressed as:

? ⇒ ♦khelp (24)
♦khelp ⇒ tell (25)

♦khelp ⇒ tell (26)
Assume again that e = T is the set of all traces, and let h
and t abbreviate help and tell , respectively. Materializing
ρ0 = {(24), (25), (26)} then yields:
M((24)) = ?+ ♦kh ≡ ♦kh
M((25)) = ♦kh+ t ≡ �kh+ t

M((26)) = ♦kh+ t ≡ ♦kh+ t

Again, we determine the product of these expressions and
apply the distributive law. Observe that ♦kh is incompatible
with �kh, and that t contradicts with t. The result is hence
equivalent to ♦kh× t. We thus get
||(♦kh× t)× ?|| = ||♦kh× t|| 6= ∅
||(♦kh× t)× ♦kh|| = ||♦kh× t|| 6= ∅
||(♦kh× t)×�kh|| = ||⊥|| = ∅

Similar to before, we obtain ρ1 = {(26)} and ρ2 = ∅, hence
M(ρ0) ≡ ♦kh× t, M(ρ1) ≡ ♦kh+ t, M(ρ2) ≡ >

which induces the following ranking:

Rank(τ, e, ρ) =





0, τ [0,ℵ] = tell and
τ [i,ℵ] = help for some 1 ≤ i ≤ k

1, τ [0,ℵ] 6= tell

2, τ [0,ℵ] = tell and
τ [i,ℵ] 6= help for all 1 ≤ i ≤ k

Note that for k = 2, we get exactly the same behaviour as
with simple temporal conditionals in the previous section.

5.2 Compiling Conditionals into BATs
The compilation method works on intentional conditionals
as well. The only thing we have to ensure is that negation
is only applied to program expressions from the guarded-
action fragment. For this purpose, we introduce the two fol-
lowing rules in addition to ones stated in Definition 5:

8. C[�kδ, a] = C[♦kδ, a]

9. C[♦kδ, a] = C[�kδ, a]

In the non-negated case, the existing rules can be applied
using (22) and (23). For the Chisholm example, we get for
horizon k = 3, again after simplifications:
bad(a) = b ≡ (27)

b = 0 ∧ (Did(tell + tell ; ?)) ∧ a = help ∨
b = 1 ∧ (Did(tell + tell ; ?) ∨
b = 2 ∧ (Did(tell + tell ; ?)) ∧ a 6= help

with the additional SSAs
�[a]Did(tell + tell ; ?) ≡ a = tell ∨Did(tell) (28)

�[a]Did(tell + tell ; ?) ≡ a 6= tell ∨Did(tell) (29)

6 Discussion
The Chisholm paradox has received a great deal of atten-
tion in the literature. To name but a few, works in the early
1980s (van Eck 1982; Loewer and Belzer 1983) presented
solution proposals based on temporal extensions of deontic
logic, identifying the scenario’s temporal nature as a vital as-
pect that SDL is unable to appropriately represent. Van der
Torre and Tan (1998) argued that these were still insufficient
for Chisholm’s original set, as this requires conditionaliza-
tion where the antecedent (going to help) refers to a later
point in time than the consequent (telling). They go on to
present a formalization based on stit (“see to it that”) seman-
tics (Horty 2001), modified to include a preference relation
over histories. While these kinds of analyses yielded valu-
able theoretical insights into the nature of the problem, the
proposed formalisms do not lend themselves well to practi-
cal implementations, e.g. due to the fact that actions in stit –
other than planning languages or action formalisms such as
the Situation Calculus – do not have proper names or types,
but are described purely through their effects.

In this paper, we proposed a new formalism for reasoning
about contrary-to-duty scenarios based on a modal variant
of the Situation Calculus that allows to express postcondi-
tions for complex actions in the form of programs from the
GOLOG agent language. By employing a special seman-
tics based on linear-time traces rather than branching-time
tree models, we could integrate non-trivial notions of action
negation and joint execution of programs. We showed that
the approach is more general than two existing ones due to
Meyer (1988) and Claßen and Delgrande (2020), and pre-
sented a third, more expressive alternative involving a sim-
ple notion of intention.

This line of research is work in progress, and there are
many avenues for future work. On the technical side, it
could be argued that having a program semantics where the
entire set of programs constitutes a Boolean algebra is de-
sirable, so as to be able to apply all the “usual” laws to such
expressions. It is conceivable to do this by adopting a def-
inition more similar to the one of (Meyer 1988), albeit at
the cost of being less simple, and less close to the original
transition semantics of GOLOG.

Regarding expressivity, besides supporting a larger frag-
ment of GOLOG programs in deontic conditionals, it would
be interesting to explore more sophisticated notions of inten-
tions to formulate constraints. While it is certainly possible
to come up with infinitary versions of the temporal opera-
tors �k and ♦k, in most cases it seems reasonable to apply
a certain form of deadline. The latter may be of a temporal
nature (e.g., the neighbour needs our help on the same day),
and so for a more realistic representation we could incorpo-
rate an explicit, quantitative notion of time, instead of just
crudely counting the number of actions. However, a more
general approach could be to allow for arbitrary conditions
as deadlines, for instance by adopting an approach due to
Broersen (2004b) that uses operators M(ρ ≤ δ) to express
the motivation to achieve ρ before δ becomes true (e.g., have
the neighbour’s roof fixed before it starts raining).

Finally, it will be interesting to combine the notions of
actions and obligations we considered here not only with
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intentions, but also beliefs, and study their interplay. This
is similar to how BOID architectures (Broersen et al. 2001)
have been proposed to generalize beliefs, desires, intention
(Bratman 1987) by including obligations and norms.
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Abstract

We present a modification of dynamic causal calculus from
(Bochman 2014), which is based on a semantic representa-
tion of the inertia principle and thereby naturally corresponds
to the action description language B in the classification of
Gelfond and Lifschitz (1998). This will allow us to provide
a systematic comparison between action languages B and C
and their extensions in a single formal framework. It will
be shown, in particular, that this causal representation consti-
tutes a strengthening of the original transition semantics for
the language B that makes the resulting system fully equiva-
lent to the language C coupled with syntactic inertia rules.

1 Introduction
Numerous formalisms of reasoning about action and change
have been suggested in the AI literature. It is sometimes
difficult to adjudicate the relative advantages and shortcom-
ings of these formalisms, not only because they are of-
ten formulated in entirely different languages, but also be-
cause there seems to be no general agreement about what
they should describe. Much is left here to intuitions of
the authors, or to difficulties in describing some intuitively
desirable notions. Worse still, a large part of these intu-
itions, even in high-level action description languages, is
implicitly or explicitly biased toward the main existing low-
level representations of actions in logic programming or
situation calculus (see, e.g., (Lifschitz and Turner 1999;
Turner 1997)). Though such a bias is advantageous from the
implementation point of view, it is not helpful in determin-
ing the required scope and expressive capabilities of such
action theories from the representational perspective.

Our aim in this paper consists in determining and clar-
ifying the main ingredients of reasoning about action and
change in AI. We will pursue a top-down approach to this
subject, namely we will make use of the dynamic causal
calculus, introduced in (Bochman 2014), as a general log-
ical formalism for such a reasoning, but will attempt to gen-
eralize it further in order to encompass action description
languages that are based on a semantic representation of the
inertia principle. This will give us an opportunity to com-
pare in a single formal framework different representations
of inertia and thereby to provide further insight into the gen-
eral scope of dynamic modeling in AI.

Guided mainly by the practical goal of providing an effi-
cient representation for reasoning about actions and change,
the majority of theories for such a reasoning in AI have
followed the lead of the situation calculus (McCarthy and
Hayes 1969) in adopting the inertia assumption as a ba-
sis for an alternative representation of temporal dynamics.
A salient advantage of the use of inertia in action descrip-
tions is that it provides both a more succinct and more nat-
ural representation of such a dynamics. However, the iner-
tia assumption almost inevitably leads to a triple of its own
notorious difficulties known as the frame, ramification and
qualification problems (see, e.g., (Shanahan 1997)). It has
been realized quite early that classical logic and its tempo-
ral/dynamic extensions, taken by themselves, encounter dif-
ficulties in resolving these problems. More precisely, it has
become clear that these problems have an essentially non-
monotonic character, so their proper solution requires aug-
menting purely logical, monotonic deductive reasoning with
an appropriate mechanism for making nonmonotonic con-
clusions.

A dominant approach to resolving these problems in AI
has been based, in one form or another, on causal reason-
ing. The corresponding causal closure assumption (see, e.g.,
(Reiter 2001)) is a particular form of the Law of Causation,
according to which all facts that hold in any given situation
should either be caused by previous actions, or else preserve
their truth-values in time due to the accompanying inertia
assumption. A direct incorporation of such causal assertions
into the language of the situation calculus has been proposed
in (Lin 1995; Lin 1996) and has been shown to provide a nat-
ural account of both the frame and ramification problems.

The causal calculus has been suggested in (McCain and
Turner 1997) as a general logical framework for this kind
of dynamic causal reasoning. A ‘temporalized’ version of
the causal calculus has been used as a logical basis of the
action description language C and of its descendant C+
(Giunchiglia et al. 2004). In this version, the inertia prin-
ciple has been encoded syntactically using a special kind of
dynamic causal rules of inertia. On the other hand, a direct
semantic description of the inertia assumption has also been
suggested in (McCain and Turner 1995) (see also (Przy-
musinski and Turner 1997)), and it has been employed, in
effect, as a semantic basis of action languages A and B
and their descendants. The relations and differences be-
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tween these two ways of encoding the inertia assumption, as
well the corresponding differences between the languages
B and C have occupied a significant place in subsequent
action literature — see, e.g., (Gelfond and Lifschitz 2012;
Zhang and Lin 2017). A number of formal systems that
combine the features of these two languages has also been
suggested — see, e.g., (Lee, Lifschitz, and Yang 2013).

Our background language in this paper will be an ordi-
nary propositional language with the classical connectives
and constants {∧,∨,¬,→, t, f}. � will stand for the classi-
cal entailment, while Th will denote the classical provability
operator. At the end of the paper, however, we will briefly
discuss a possibility, and even desirability, of generalizing
this underlying logical formalism to a logical system that
could incorporate, for instance, meaning postulates and def-
initions, including recursive ones. Note in this respect that
most of the constructions and results, described below, will
remain to hold if we would replace the classical entailment
in its role as a background logic with an arbitrary supraclas-
sical consequence relation, that is, a consequence relation in
a classical language that subsumes classical entailment.

2 Dynamic Causal Calculus
Dynamic causal calculus has been introduced in (Bochman
2014) as a nonmonotonic theory purported to serve as a gen-
eral formalism for dynamic causal reasoning. The formal-
ism has been based on dynamic causal rules of the form

B .C⇒E,

where B,C and E are classical propositions. These dy-
namic causal rules have an informal meaning “After B, C
causes E”. By the intended interpretation, such a rule de-
scribes a dynamic transition from a state that satisfies propo-
sition B to a subsequent state in which E is caused by C.
Such rules naturally correspond, for instance, to action rules,
or dynamic action laws, of the form

caused E if C after B

that constitute a common syntactic core of many action de-
scription languages today (see, e.g., (Lang, Lin, and Marquis
2003)).

In addition to the above action rules, however, an impor-
tant feature of the majority of action description languages,
as well as corresponding theories of action and change, con-
sists in the explicit use of static causal rules, or state con-
straints. In particular, it is these rules that allow us to pro-
vide a succinct and efficient description of both ramifications
and qualifications in action descriptions. As we will see in
what follows, beside the different treatments of the inertia
assumption, the difference between action languages B and
C stems in a large part from a different understanding (and
even different underlying logics) of such static rules.

In the framework of the dynamic causal calculus, static
causal rules have been identified with a special kind of dy-
namic rules of the form t . A⇒B, where t is the truth con-
stant. In other words, the following definition has been
adopted:

A⇒B ≡df t . A⇒B.

According to this definition, static causal rules are rules
that are valid after any legitimate transition. It has been
shown that the resulting formalism is sufficiently expressive
to capture the action description language C in the classifica-
tion of (Gelfond and Lifschitz 1998) and its generalizations
such as the language C+ from (Giunchiglia et al. 2004).

The reduction of static causal rules to dynamic rules has
made dynamic causal rules the only kind of rules of the dy-
namic causal calculus. In accordance with this, by a dynamic
causal theory we will mean in what follows an arbitrary set
of dynamic causal rules.

2.1 Nonmonotonic Transition Semantics
The nonmonotonic transition semantics, described below,
can be viewed as a central component of the dynamic causal
calculus. It determines, in a sense, even the corresponding
logical formalism of dynamic causal inference that will be
described in the next section.

The guiding principle behind the nonmonotonic transition
semantics is a thorough enforcement of the dynamic Law
of Causality, according to which every state of a dynamic
model should be explained (i.e., caused) by a preceding state
and the active causal rules.

By a world we will mean a maximal consistent set of clas-
sical propositions of the language. Such worlds will also
be called states in this paper. Also, given the current ob-
jectives of this study, nonmonotonic transitions as defined
in (Bochman 2014) will be called C-transitions in what fol-
lows.

Given a dynamic causal theory ∆ and two states α, β,
we will denote by ∆(α . β) the set of propositions that are
caused due to a transition from α to β.

{C | A.B⇒C ∈ ∆ for some A ∈ α,B ∈ β.}

Definition 1.(i) A pair of states (α, β) will be called a C-
transition with respect to a dynamic causal theory ∆ if β
is the unique model of ∆(α.β), that is

β = Th(∆(α . β)).

(ii) A C-transition model of a dynamic causal theory ∆ is a
set of states S such that, for any β ∈ S there is α ∈ S
such that (α, β) is a C-transition wrt ∆.

A C-transition is a transition between two states in which
the resulting state is fully explained (caused), given the pre-
ceding state and the causal laws of the domain. In this re-
spect, the above definition of a transition model extends the
Law of Causality to the states themselves by requiring, in
effect, that every state should have sufficient reasons for its
occurrence. A discussion about the role and ramifications
of this global constraint on the set of possible states can be
found in (Bochman 2014).

If (α, β) is a C-transition, then ∆(α.β) is included in β.
As a consequence, the output world of any transition is al-
ways closed with respect to the static causal rules (for the
definition of the latter, given above), namely if A⇒B be-
longs to ∆ and A ∈ β, then B ∈ β. Moreover, any state of
a C-transition model is also an output of some C-transition.
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Accordingly, we immediately obtain that any state of a C-
transition model of a dynamic causal theory ∆ is closed with
respect to the static causal rules of ∆.

The above definition of a C-transition almost coincides
with the definition of a causally explained transition, given
in (Giunchiglia and Lifschitz 1998) for the action descrip-
tion language C, a predecessor of C+. In fact, the only dif-
ference between the two definitions is that (Giunchiglia and
Lifschitz 1998) required further that both the initial and re-
sulting states of such a transition should be closed with re-
spect to the static causal laws. On the above construction,
this additional requirement is accounted for, respectively, as
a by-product of the definition of static causal rules on the
one hand (for the resulting states), and a C-transition model
on the other hand (for the initial states).

It can be easily verified that the union of two C-transition
models of a causal theory is also a C-transition model. Con-
sequently, if a dynamic causal theory has at least one C-
transition model, it has a unique maximal such model. The
latter has been called a canonical C-transition model of a
dynamic causal theory.

It is difficult to guarantee, in general, that there exists a
C-transition from a given state to some other state. This
will change, however, if we will take into account the iner-
tia principle. In the framework of C-transition models, this
principle can be represented syntactically using the follow-
ing special dynamic causal rules for literal fluents:

(Inertia) l . l⇒ l

The above rule implies that if a literal l holds in some
state, it becomes a default for every state that can be reached
from this state by a direct C-transition. In other words, l will
continue to hold in such a subsequent state, unless an oppo-
site literal will be caused to hold in it. Consequently, unless
there is an inherent inconsistency in the description of causal
rules, any state of a canonical C-transition model will have at
least one possible subsequent state (including possible per-
sistence in the same state). This syntactic encoding of the
inertia principle has been adopted in the action description
language C as an important part of its representation frame-
work.

2.2 Transition Inference Relation
As with other formalisms for nonmonotonic reasoning, dy-
namic causal rules presuppose a certain underlying logic
that agrees with the above nonmonotonic semantics. Such
a logic provides a formal description of the associated dy-
namic causal inference.

A transition inference relation is a set of dynamic causal
rulesA .B⇒C that satisfies the postulates described below.

The first group of postulates states that a set of dynamic
causal rules with a fixed first premise (B) should satisfy the
postulates of ‘ordinary’ causal inference described first in
(Bochman 2003):

(T-Strengthening) A � C and B .C⇒E imply
B .A⇒E;

(T-Weakening) E � D and B .C⇒E imply B .C⇒D;

(T-And) B .C⇒E and B .C⇒D imply B .C⇒E ∧
D;

(T-Or) If B .C⇒E and B .D⇒E, then B .C ∨
D⇒E;

(T-Cut) If B .A⇒C and B .A∧C⇒D, then B .A⇒D;
(T-Truth) t . t⇒ t;
(T-Falsity) t . f⇒ f .

In view of the above postulates, dynamic causal rules
B .C⇒E can be seen as ordinary causal rules C⇒E that
are conditioned by the preceding (background) context B.

In addition, the next two postulates describe the logical
properties of this preceding context in dynamic causal rules:

(B-Strengthening) A � B and B .C⇒E imply
A .C⇒E;

(B-Or) If A .C⇒E and B .C⇒E, then A ∨B .C⇒E.

The combined effect of the above postulates is that the
associated semantic interpretation of dynamic causal infer-
ence could be a possible world semantics in which both the
two premises and conclusion of a dynamic causal rule are
evaluated with respect to worlds (complete states). Such a
semantics has been described in (Bochman 2014) in terms
of Kripke frames with ternary accessibility relations.

Correspondences. Dynamic causal rules can be extended
to rules having arbitrary sets of propositions as premises us-
ing compactness: for any sets u, v of propositions, we can
define u . v⇒A as follows:

u . v⇒A ≡
∧
a .

∧
b⇒A, for some finite a ⊆ u, b ⊆ v.

For a pair (u, v) of sets of propositions, C(u . v) denotes
the set of propositions caused by the pair, that is

C(u . v) = {A | u . v⇒A}.
The causal operator C can be viewed as a derivability op-

erator corresponding to a transition inference relation. Note
that it is a monotonic operator. Also, due to T-Weakening
and T-And, C(u . v) will always be a deductively closed set:

C(u . v) = Th(C(u . v)).

For any dynamic causal theory ∆ there exists a least tran-
sition inference relation⇒∆ that includes ∆. Clearly, ⇒∆

is the set of all dynamic causal rules that can be derived from
∆ using the postulates for transition inference relations. The
derivability operator corresponding to⇒∆ has been denoted
by C∆.

Since a transition inference relation can also be viewed as
a (rather large) dynamic causal theory, the definition of tran-
sitions for the latter can be immediately extended to transi-
tion inference relations. Moreover, due to the logical prop-
erties of transition inference, the definition of a C-transition
can now be simplified, namely a pair of worlds (α, β) will be
a C-transition with respect to a transition inference relation
if and only if it satisfies the following equality:

β = C(α . β).
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It has been shown in (Bochman 2014) that the logic of
transition inference is adequate for reasoning with respect
to the nonmonotonic transition semantics of dynamic causal
theories, since it preserves the latter. Namely, it has been
shown that C-transitions of a dynamic causal theory ∆ coin-
cide with C-transitions of⇒∆.

2.3 Determinate and literal causal theories
A common simplifying assumption in theories of action and
change amounts to a syntactic restriction of the underlying
logical language to classical literals.

A dynamic causal rule will be called determinate if its
head is a literal or a logical constant t or f . A dynamic
causal theory will be called determinate if it consists of only
determinate causal rules.

A stronger simplifying assumption amounts to restriction
of dynamic causal rules to literal causal rules of the form

L .L′⇒ l,

where l is a literal, while L and L′ are finite sets of literals.
Note, however, that due to the postulates T-Or and B-Or, any
determinate causal rule is reducible to a set of such literal
rules, and therefore any determinate dynamic causal theory
is logically reducible to a literal one.

Under this restriction, it turns out to be convenient to rep-
resent states (worlds) as maximal consistent sets of literals.

In what follows, Lit(α) will denote the set of literals that
belong to a state α. We will use s, t, . . . for denoting ‘literal’
states in this sense. Then it turns out that a C-transition can
be characterized as a pair (s, t) of such states that satisfies
the following simple fixpoint condition:

t = ∆(s . t).

The following result confirms that this simplified descrip-
tion provides an equivalent characterization of C-transitions
for this restricted case:

Lemma 1. If ∆ is literal dynamic causal theory, then a pair
of states (α, β) is a C-transition if and only if

Lit(β) = ∆(Lit(α) . Lit(β)).

3 Inertial Transition Semantics
Now we are going to modify the formalism of the dynamic
causal calculus by introducing an alternative notion of a
transition. More precisely, in contrast to the syntactic en-
coding of the inertia principle that has been used with the
notion of a C-transition above, the notion of a B-transition,
described below, will provide a direct semantic representa-
tion of inertia.

Definition 2.(i) A pair (α, β) of states will be called a B-
transition with respect to a dynamic causal theory ∆ if

β = Th((Lit(α) ∩ β) ∪∆(α . β)).

(ii) A B-transition model of a dynamic causal theory ∆ is a
set of states S such that, for any β ∈ S there is α ∈ S
such that (α, β) is a B-transition wrt ∆.

In contrast to C-transitions, B-transitions are determined
not only by active causal rules, but also by literals that persist
in the transition; such literals remain to hold due to inertia,
and therefore they do not require causal explanation.
Remark. The restriction of the inertia principle to literals
only is based on the idea that compound logical formu-
las are completely determined logically by their constitut-
ing literals, so their temporal behavior is also fully depen-
dent on the temporal behavior of the latter; they cannot have
life (i.e., temporal evolution) of their own. It is important
to note, however, that general definitions of transitions are
formulated for complete worlds, so they impose the Law
of Causality on all propositional formulas. Consequently,
since the reasons why a compound logical formula holds in
a given state cannot be based directly on the inertia princi-
ple, they should be obtained either in terms of active static
or dynamic causal rules, or else as a logical consequence of
the corresponding reasons for their (literal) constituents.

For determinate dynamic causal theories, the description
of B-transitions can be simplified as follows.
Lemma 2. A pair of states (α, β) is a B-transition with re-
spect to a determinate dynamic causal theory ∆ iff

Lit(β) \ α ⊆ ∆(α . β) ⊆ β.
Proof. The direction from left to right is trivial. For the
other direction, since β is deductively closed, the inclusion
Th((Lit(α)∩β)∪∆(α . β)) ⊆ β amounts to ∆(α . β) ⊆ β.
Note now that if ∆ is a determinate causal theory, then
(Lit(α) ∩ β) ∪ ∆(α . β) is just a set of literals, and con-
sequently the reverse inclusion holds if and only if

Lit(β) ⊆ (Lit(α) ∩ β) ∪∆(α . β).

The latter inclusion amounts to Lit(β) ⊆ α ∪ ∆(α . β),
which is equivalent to Lit(β) \ α ⊆ ∆(α . β).

As before with C-transitions, we still have that if (α, β) is
a B-transition, then ∆(α.β) is included in β. Therefore, the
output state β is also closed with respect to the static causal
rules of the causal theory. Moreover, since any state of a B-
transition model is also an output of some B-transition, we
obtain again
Corollary 3. Any state of a B-transition model of a dynamic
causal theory ∆ is closed with respect to the static causal
rules of ∆.

As before, the union of two B-transition models of a
causal theory is also a B-transition model. Consequently, if
a dynamic causal theory has at least one B-transition model,
it has a unique maximal such model; the latter can be called
the canonical B-transition model of a dynamic causal the-
ory.

As a key result for this study, the next theorem will es-
tablish that, modulo the inertia principle, the nonmono-
tonic semantics based, respectively, on C-transitions and B-
transitions are essentially equivalent.

For a dynamic causal theory ∆, we will denote by ∆I a
theory obtained from ∆ by adding inertia rules of the form
l . l⇒ l for all literals of the language. Then we can obtain
the following theorem.
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Theorem 4. A pair of states (α, β) is a B-transition of a
dynamic causal theory ∆ if and only if it is a C-transition of
∆I .

The proof is actually straightforward; it follows immedi-
ately from the fact that, for any states α, β, the set ∆I(α . β)
coincides with (Lit(α) ∩ β) ∪∆(α . β).

The above result shows that, taken by itself, the difference
between syntactic and semantic representations of the iner-
tia principle is not essential for describing causal dynamics;
both systems of dynamic causal reasoning can be used much
for the same purposes and situations. This implies, in par-
ticular, that sources of the actual differences between action
languages B and C lie elsewhere. As we will see below, they
arise solely from a different interpretation of static causal
rules.

3.1 Correspondences
A transition inference relation can also be viewed as a dy-
namic causal theory, so the definition of B-transitions can be
immediately extended to transition inference relations. Still,
the resulting definition of a B-transition for transition infer-
ence will remain much the same:

β = Th((Lit(α) ∩ β) ∪ C(α . β)).

The following result will show that the logic of transition
inference is adequate also for reasoning with respect to the
inertial transition semantics, since it preserves the latter.

Theorem 5. If ∆ is a dynamic causal theory, then B-
transitions of ∆ coincide with B-transitions of⇒∆.

Proof sketch. If C∆ is the provability operator correspond-
ing to ⇒∆, then it can be shown that, for any ‘causally
consistent’ pair of worlds α, β, C∆(α.β) coincides with
Th(∆(α.β)). Moreover, since Th((Lit(α)∩β)∪∆(α . β))
is classically equivalent to Th((Lit(α)∩β)∪Th(∆(α . β))),
it becomes easy to verify that B-transitions of ∆ will coin-
cide with B-transitions of⇒∆.

Finally, for literal dynamic causal theories, the description
of B-transitions can be reduced to the following equality for
the corresponding sets of literals:

t = (s ∩ t) ∪∆(s . t).

The following result shows, in effect, that this simpli-
fied description provides an equivalent characterization of
B-transitions for the restricted case of literal dynamic causal
theories:

Lemma 6. If ∆ is literal dynamic causal theory, then a pair
of states (α, β) is a B-transition wrt ∆ if and only if

Lit(β) = ∆(Lit(α) . Lit(β)) ∪ (Lit(α) ∩ Lit(β)).

4 Comparisons with Action Description
Languages A and B

In this last section we will describe relations between the
inertial transition semantics of dynamic causal theories and
the action languages A and B.

Action language A. A closest counterpart of dynamic
causal rules has been introduced by Pednault in (Pednault
1989) as conditional action rules of action description lan-
guage ADL; these rules had the form:

A causes l if L
where A is an action name, l is a literal, and L is a set (or
conjunction) of literals. This language has been called lan-
guage A in (Gelfond and Lifschitz 1998).

The semantics of the language A, given in (Gelfond and
Lifschitz 1998), can be described as a set of transitions
(s,A, t), whereA is an action name and s, t are states (max-
imal consistent sets of fluent literals) that satisfy the follow-
ing condition:

E(A, s) ⊆ t ⊆ E(A, s) ∪ s, (*)

where E(A, s) is the set of heads of all action rules of the
form A causes l if L in the action description such that L ⊆
s.

Now we will identify the action rules of A with literal
dynamic causal rules of the form

L .A⇒ l.

As can be seen, action names are incorporated simply as
new propositional atoms in this translation. However, just as
in (Bochman 2014), they will be exempted from the inertia
principle and treated as exogenous literals. On this transla-
tion, a transition (s,A, t) will be represented as a transition
(s, t), where t is an ‘extended’ state that already includes
action atom A.

In addition, we should restrict possible transitions to tran-
sitions produced by single actions; in other words, we should
prevent concurrent actions. This can be achieved by accept-
ing the following static causal rules:

A,B⇒ f

for any two different actions A and B.
Let ∆D denote the dynamic causal theory that corre-

sponds in this sense to an action description D in the lan-
guage A. Then we have
Theorem 7. Transitions of an action description D in the
language A coincide with B-transitions of ∆D.

Proof sketch. Due to the fact that only actions appear as
second premises in the causal rules of ∆D, and that there
is no concurrency of actions, it is easy to verify that, for
any legitimate transition (s, t), ∆(s . t) will coincide with
∆(s .A), for some action name A. Consequently, the iner-
tial B-semantics for ∆D can be described as a set of transi-
tions (s, t) that satisfy the equality

t = (s ∩ t) ∪∆(s .A),

for some action nameA (see Lemma 6). Note, however, that
∆(s .A) for this causal theory is just the set of direct effects
of action A in a state s (plus, of course, A itself); in other
words, it coincides with E(A, s) on fluent literals. More-
over, it is easy to show that the above equality is equivalent
to the condition (*) above (cf. (Gelfond and Lifschitz 1998,
fn.13)). Accordingly, the semantics of B-transitions corre-
sponds precisely to the semantic interpretation of A.
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Action language B. The action description language B is
obtained by augmenting the language A with static laws of
the form

l if L,

where l is a literal and L a set of literals. These static laws
are viewed as plain inference rules that allow, in particular,
to derive indirect effects of actions.

For a set Z of static laws, let CnZ(s) denote the least set
of literals that contains s and is closed with respect to the
rules from Z. Then the semantics of B is defined as a set of
transitions (s,A, t), where s and t are literal states that are
closed with respect to the static laws and satisfy the equation

t = CnZ((s ∩ t) ∪ E(A, s)). (**)

As before, E(A, s) above is the set of heads of all action
rules of the form A causes l if L from the dynamic descrip-
tion such that L ⊆ s.

The language B has been generalized to language AL
(see, e.g., (Baral and Gelfond 2005)) which has lifted the
restriction to single actions and thereby has allowed con-
currency, and has added explicit impossibility conditions for
executability of actions; such executability conditions are
covered in the dynamic causal calculus by constraints of the
form

A .B⇒ f ,

where A is a fluent proposition, and B is an action formula.

Now let us attempt to represent static laws of the language
B as static causal rules L⇒ l, in accordance with the defi-
nition of such causal rules in the dynamic causal calculus.
Then it is easy to verify that any transition (s, t) that sat-
isfies the above equation (**) will be a B-transition in our
sense:

Lemma 8. Any admissible transition (s,A, t) of an action
description in the langage B corresponds to a B-transition
of the corresponding dynamic causal theory.

Still, the two semantics do not coincide, because there are
B-transitions that are not transitions by the original defini-
tion for the language B. The following example, adapted
from (Zhang and Lin 2017), illustrates this.
Example 1. Let us consider a dynamic causal theory that
consists of a single dynamic rule t . A⇒ f2 and the follow-
ing set of static causal rules:

f2, f3⇒ f1 f2,¬f3⇒ f1 f1, f2⇒ f3.

It can be verified that the pair of states
({¬f1,¬f2,¬f3}, {f1, f2, f3}) is not an admissible
transition for the original semantics of B. However, it will
be a B-transition with respect to this causal theory1, because
∆(s . t) in this case will include f2 as a direct effect of A
and will be closed with respect to the above static rules (see
below).

1When restricted to fluent literals.

In assessing this discrepancy, we should take into account
that the underlying logic of static causal rules in the dy-
namic causal calculus is different from, and even incompa-
rable with, the implicit logic of static laws in the language
B.

To begin with, static causal rules of the causal calculus
admit the classical logical rule of Disjunction in the An-
tecedent:

(Or) If C⇒E and D⇒E, then C ∨D⇒E.

In the dynamic causal calculus, the above rule follows
from the postulate T-Or of transition inference (see Section
1.2). In contrast, static laws of the language B do not admit
this rule. For instance, the first two static rules in the above
example imply f2⇒ f1 by the rule Or, but if we would add
this static rule to the theory, the above transition would be-
come admissible for the language B. Actually, the rule Or
has played a key role in the characterization of the differ-
ence between the languages B and C that has been made in
(Zhang and Lin 2017) (see their Postulate 5).

The discrepancy between the inertial semantics of B-
transitions and the ‘official’ semantics of the language B
does not arise in cases when the set of static rules is acyclic.
Indeed, (Gelfond and Lifschitz 2012) have shown that the
semantics of B and C coincide, in effect, for action theories
in which the dependence graph of their static rules is acyclic.
This result can be immediately adapted for showing that, for
such causal theories, the original semantics of the language
B will coincide with the semantics of B-transitions.

This naturally brings us to the second crucial aspect of the
difference between the languages B and C. In the language
B, static laws are viewed as plain inference rules, and there-
fore they freely admit the logical postulate of Reflexivity,
namely A⇒A. In contrast, in the causal calculus and lan-
guage C such rules have non-trivial content, and they are ac-
tually used in a formal representation of defaults, exogenous
propositions and actions. On the other hand, the non-causal,
inferential understanding of static laws in the framework of
B has allowed to employ them, for instance, for describing
defined propositions and predicates, including recursive def-
initions that play an important role in the general represen-
tation methodology behind the use of the languages B and
especially AL. Thus, the ability to use such recursive con-
structs has been crucial for modeling systems and for the de-
velopment of industrial size planning and diagnostic appli-
cations (see, e.g., (Balduccini, Gelfond, and Nogueira 2006;
Son et al. 2006; Tu et al. 2011)).

A comprehensive treatment of the latter discrepancy falls
beyond the scope of this study, already because it would re-
quire a generalization of our formalism to a first-order logi-
cal language. Nevertheless, we suggest that a proper resolu-
tion of this problem could be provided only if we will aban-
don an unjustified ‘purist’ presumption that a causal theory
of reasoning about actions and change should be based ex-
clusively on causal reasoning. Causal reasoning is not a re-
placement of logic, but its extension, or complement, for
situations where we do not have logically sufficient knowl-
edge. It is the logical background of a causal formalism and
its underlying logic that should be a proper place for defining
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new predicates and connectives, including recursive defini-
tions and meaning postulates. All this could be done while
still retaining a separate category of causal static rules when
they are appropriate. Of course, this could create obvious
problems for implementing such combined descriptions, for
instance in logic programming. Still, such implementation
problems should not detract us from a no less important task
of providing an adequate representation of reasoning in dy-
namic domains.

A more detailed and systematic discussion of the rela-
tions between causal reasoning and logic can be found in
(Bochman 2021).

5 Conclusions
The primary objective of this paper was to show that a suit-
ably generalized dynamic causal calculus could provide a
unified logical basis for reasoning about actions and change
in AI. Being combined with the wealth of representation ca-
pabilities of such a reasoning, demonstrated in correspond-
ing studies based on the languages C, C+, B and AL, the
results described in the paper indicate that a theory of dy-
namic causal inference can be viewed as a self-subsistent
logical theory for reasoning in dynamic domains.

Of course, much work still has to be done in order to ex-
tend this causal framework to description of more complex
processes that involve, for instance, temporally extended ac-
tions and events, concurrency and triggered (natural) events.
We see these issues as important topics for future work.
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Abstract

This paper presents a formalization of the well-known “Three
Player Card Game,” a simple domain with static causal laws
and nondeterministic actions, in the high level action lan-
guage mA∗. The formalization shows how mA∗ allows us
to make the same conclusions as approaches using Dynamic
Epistemic Logic (DEL) when observabilities of agents are de-
terministic. It explains how the initial pointed Kripke struc-
ture used in the DEL representation is obtained and discusses
some extensions of mA∗ that are inspired by work rooted in
DEL approaches.

1 Introduction
The action language mA and its subsequent developments
(e.g.,mA∗) has been introduced for representing and rea-
soning about actions in dynamic multi-agent systems (e.g.,
(Baral et al. 2012; Baral et al. 2013; Baral et al. 2020)) in the
spirit of action languages that were developed for represent-
ing and reasoning about actions in single-agent environment
(Gelfond and Lifschitz 1998).

In mA∗, a multi-agent domain is specified by a set of
action descriptions and observability statements. The ac-
tion descriptions capture the actions’ preconditions and ef-
fects, while the observability statements encode who can
(or cannot) fully or partially observe an action occurrence.
The semantics of mA∗ is defined by a transition func-
tion which specifies the possible pointed Kripke structures
reached by the execution of an action by an agent or a group
of agents. It has been utilized successfully in the develop-
ment of epistemic planning systems (Fabiano et al. 2020;
Le et al. 2018). Some basic properties of the transition func-
tion of mA∗ have been discussed in (Baral et al. 2020). Thus
far, uses of mA∗ have been mostly demonstrated in domains
without static causal laws (a.k.a. state constraints) and de-
terministic actions.

In this paper, we illustrate the use of mA∗ with static
causal laws and nondeterministic actions in formalizing a
version of the well-known “Three Player Card Game” that
has been often used to illustrate the application of Dynamic
Epistemic Logic (DEL) in formalizing announcements or
sensing actions. The game is interesting from the knowl-
edge representation perspective in that it is rather simple but
including nondeterministic actions and sensing with multi-
ple outcomes. We show how conclusions derivable using

DEL could be derived in an mA∗ representation. We will
also use this example to illustrate different features of mA∗
that have not been the focus of research in reasoning about
actions in multi-agent systems. In addition, we discuss the
effects of static causal laws and nondeterministic actions on
the transition function of mA∗ and identify features that are
useful for the development of the language.

2 Background: mA∗

We briefly review the necessary definitions, most are pre-
sented in (Baral et al. 2020). A multi-agent domain 〈AG,F〉
includes a finite and non-empty set of agentsAG and a set of
fluents F encoding properties of the world. Belief formulae
over 〈AG,F〉 are defined by the BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Biϕ

where p ∈ F is a fluent and i ∈ AG. We refer to a be-
lief formula which does not contain any occurrence of Bi

as a fluent formula. In addition, for a formula ψ and a non-
empty set α ⊆ AG, Bαψ and Cαψ denote

∧
i∈α Biψ and∧∞

k=1 Bk
αψ, where B1

αψ=Bαψ and Bk+1
α ψ=Bk

αBαψ for
k > 1, respectively. LAG denotes the set of belief formulae
over 〈AG,F〉.

Satisfaction of belief formulae is defined over pointed
Kripke structures (Fagin et al. 1995). A Kripke structure
M is a tuple 〈S, π, {Bi}i∈AG〉, where S is a set of worlds
(denoted by M [S]), π : S 7→ 2F is a function that asso-
ciates an interpretation of F to each element of S (denoted
by M [π]), and for i ∈ AG, Bi ⊆ S × S is a binary re-
lation over S (denoted by M [i]). For convenience, we will
often draw a Kripke structureM as a directed labeled graph,
whose set of labeled nodes represent S and whose set of la-
beled edges contains s i−→ t iff (s, t) ∈ Bi. The label of each
node has two parts: the name of the world followed by its
interpretation. For u ∈ S and a fluent formula ϕ, M [π](u)
and M [π](u)(ϕ) denote the interpretation associated to u
via π and the truth value of ϕ with respect to M [π](u). For
a world s ∈M [S], (M, s) is a pointed Kripke structure.

The satisfaction relation |= between belief formulae and a
pointed Kripke structure (M, s) is defined as follows:

1. (M, s) |= p if p is a fluent and M [π](s)(p) is true;

2. (M, s) |= Biϕ if ∀t.[(s, t) ∈ Bi⇒ (M, t) |= ϕ];
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3. (M, s)|=¬ϕ if (M, s) 6|=ϕ;

4. (M, s)|=ϕ1∨ϕ2 if (M, s) |= ϕ1 or (M, s) |= ϕ2;

5. (M, s) |= ϕ1 ∧ ϕ2 if (M, s) |= ϕ1 and (M, s) |= ϕ2.

We are now ready to review the basics of mA∗. In this
language, an action theory over 〈AG,F〉 consists of a set of
action instances AI of the form a〈α〉 representing that α, a
set of agents, performs a, and a collection of statements of
the following forms:

executable if a if ψ (1)
a causes ` if ψ (2)
a determines ϕ (3)
a announces ϕ (4)

z observes a if ϕ (5)
z aware of a if θ (6)

e1, . . . , em if p1, . . . , pn (7)

where `, ei, pj are fluent literals, ψ is a belief formula, ϕ
and θ are fluent formulae, a ∈ AI, and z ∈ AG. (1) en-
codes the executability condition of a. ψ is referred as the
precondition of a. (2) describes the effect of the ontic-action
a, i.e., if ψ is true then ` will be true after the execution of a.
(3) enables the agents, who execute a, to learn the value of
the formula ϕ. (4) encodes an announcement action, whose
owner announces that ϕ is true. Statements of the forms (5)–
(6) encode the observability of agents given an occurrence of
a. (5) indicates that agent z is a full observer of a if ϕ holds.
(6) states that agent z is a partial observer of a if ψ holds.
z, a, and ϕ (resp. ψ) are referred to as the observed agent,
the action instance, and the condition of (5) (resp. (6)). It is
assumed that the sets of ontic-actions, sensing actions, and
announcement actions are pairwise disjoint. Furthermore,
for every pair of a and z, if z and a occur in a statement of
the form (5) then they do not occur in any statement of the
form (6) and vice versa. (7) represents a static causal law; it
conveys that whenever the fluent literals p1, . . . , pn hold in
a state, then e1, . . . , em will also hold in that state.

The semantics of mA∗ is defined using the notion of up-
date models (see, e.g., (Baltag and Moss 2004; van Ben-
them, van Eijck, and Kooi 2006)). This notion makes use
of the notion of a LAG-replacement, which1 maps interpre-
tations of F into sets of interpretations of F . REPLAG
denotes the set of all LAG-replacements. We denote with
> the identity replacement, i.e., >(s) = {s} for every
interpretation s. An update model Σ over AG is a tuple
〈Σ, {Ri}i∈AG , pre, sub〉 where:

1. Σ is a set of events;

2. each Ri is a binary relation on Σ;

3. pre : Σ → LAG is a function mapping each event e ∈ Σ
to a formula in LAG ; and

4. sub : Σ → REPLAG is a function mapping each event
e ∈ Σ to a replacement in REPLAG .

1We modified the definition of a substitution to accommodate
the nondeterminism of ontic actions and call it a replacement to
avoid confusion.

An update instance ω is a pair (Σ, e) where Σ is an update
model 〈Σ, {Ri}i∈AG , pre, sub〉 and e, referred to as a desig-
nated event, is a member of Σ. Again, for simplicity of the
presentation, we often draw an update instance as a graph
whose events are rectangles and whose links represent the
accessibility relations between events with double lines rep-
resenting designated events.

Given a Kripke structure M and an update model Σ =
〈Σ, {Ri}i∈AG , pre, sub〉, the update of M induced by Σ,
M ′=M⊗Σ, is a Kripke structure defined by:

1. M ′[S] = {(s, x, τ) | s ∈M [S], τ ∈ Σ, x ∈ sub(τ)(s)};
2. ((s, x, τ), (s′, u, τ ′)) ∈ M ′[i] iff (s, x, τ), (s′, u, τ ′) ∈
M ′[S] such that (s, s′) ∈M [i] and (τ, τ ′) ∈ Ri;

3. ∀((s, x, τ) ∈M ′[S]).[M ′[π]((s, x, τ)) = x].
An update template is a pair (Σ,Γ), where Σ is an up-

date model with the set of events Σ and Γ ⊆ Σ. The
update of pointed Kripke structure (M, s) given an update
template (Σ,Γ) is a set of pointed Kripke structures, de-
noted by (M, s)⊗ (Σ,Γ), where (M, s)⊗ (Σ,Γ) = {(M ⊗
Σ, (s, τ)) | τ ∈ Γ, (M, s) |= pre(τ)}.

The semantics of mA∗ is defined by a transition func-
tion which maps pairs of action instances and states (pointed
Kripke structures) into sets of states. It starts with the defini-
tions of the frame of reference for the execution of an action
instance a in a state (M, s), followed by the definition of the
update template for the execution of a.

Given an action theory D, a state (M, s), and an action
instance a, the frame of reference for the execution of a in
(M, s) is a tuple (FD(a,M, s),PD(a,M, s),OD(a,M, s))
where
FD(a,M, s) = {x ∈ AG | [x observes a if ϕ] ∈ D

such that (M, s) |= ϕ}
PD(a,M, s) = {x ∈ AG | [x aware of a if ϕ] ∈ D

such that (M, s) |= ϕ}
OD(a,M, s) = AG \ (FD(a,M, s) ∪ PD(a,M, s))

Intuitively, FD(a,M, s) (resp. PD(a,M, s) and
OD(a,M, s)) are the agents that are fully observant (resp.
partially observant and oblivious) of the execution of a in
the state (M, s). mA∗ assumes that the sets FD(a,M, s),
FD(a,M, s), and PD(a,M, s) are pairwise disjoint.

To consider static causal laws, we need the following no-
tion. Given a set of fluent literals X , let Cn(X) be the min-
imal set of literals satisfying X ⊆ Cn(X) and for every
static causal law of the form (7), if {p1, . . . , pn} ⊆ Cn(X)
then {e1, . . . , em} ⊆ Cn(X). We say that an interpretation
s of F is consistent if Cn(s) is consistent. From now on,
whenever we refer to an interpretation of F , we assume that
it is consistent. Furthermore, for an ontic action instance a
and an interpretation s, let e(a, s) = {` | [acauses ` if ψ] ∈
D,ψ is true in s}. We define r(a, s) = {s′ | s′ is an inter-
pretation of F and s′ = Cn(e(a, s) ∪ (s ∩ s′)}. Intuitively,
r(a, s) is the set of possible worlds resulting from the exe-
cution of a in s (see, e.g., (Gelfond and Lifschitz 1998) for
a treatment of static causal laws in single agent domains).

Consider an instance of an ontic action a with a frame
of reference ρ = (F, ∅, O); the update model for a and ρ,
denoted by ω(a, ρ), is defined by 〈Σ, {Ri}i∈AG , pre, sub〉
where
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• Σ = {σ, ε};
• Ri = {(σ, σ), (ε, ε)} for i ∈ F and Ri = {(σ, ε), (ε, ε)}

for i ∈ O;
• pre(σ) = ψ and pre(ε) = >; and
• sub(ε) = > and sub(σ)(s) = r(a, s).

Figure 1: Update Template for an Ontic Action in mA∗

The update template for the ontic-action occurrence a and
the frame of reference ρ is (ω(a, ρ), {σ}). Figure 1 shows
the update model of an ontic action a.

Consider an instance of a truthful announcement (or sens-
ing action) a that announces (senses) ϕ in a state (M, s)
whose frame of reference is ρ = (F, P,O). Assume that
executable if a if ψ belongs to D. The update model for
the occurrence of a in (M, s), denoted by ω(a, ρ), is defined
by 〈Σ, {Ri}i∈AG , pre, sub〉 where:
• Σ = {σ, τ, ε};
• Ri is given by

Ri =

{ {(σ, σ), (τ, τ), (ε, ε)} if i ∈ F
{(σ, σ), (τ, τ), (ε, ε), (σ, τ), (τ, σ)} if i ∈ P
{(σ, ε), (τ, ε), (ε, ε)} if i ∈ O

• The preconditions pre are defined by

pre(x) =

{
ϕ ∧ ψ if x = σ
¬ϕ ∧ ψ if x = τ
> if x = ε

• sub(x) = > for each x ∈ Σ.
The update template for the announcement or sensing action
occurrence a and the frame of reference ρ is (ω(a, ρ), {σ})
or (ω(a, ρ), {σ, τ}), respectively. Figure 2 illustrates details
of the update model for an announcement a that truthfully
announces ϕ (or a sensing action a that determines ϕ).

Figure 2: Update Model for Truthful Announcement and Sensing
in mA∗

Observe that the update model for a sensing action that
senses ϕ is almost identical to that of an announcement ac-
tion that announces ϕ. The only difference between them is
the additional designated event in the update model of the
sensing action.

Given a state (M, s) and an action a, the state reached
after the occurrence of a in (M, s) is specified by (M, s) ⊗
(ω(a, ρ), x) (x being the “real” event).

3 Three Player Card Game
We consider the “Three Player Card Game” as discussed in
(Ditmarsch, van der Hoek, and Kooi 2007). The description
of the game is as follows:

There are three agents in a room: Anne, Bill and Cath.
There is a stack of three cards 0, 1 and 2 on the table.
Each agent has to draw a card from the stack and this
is all commonly known. First, Anne picks up her card
and it is 0. Then Bill picks up his card and it is 1.
Finally, Cath picks up her card and it is 2. Each agent
just knows the value of their card but not others. After
this, Anne can execute one of the two possible actions:
• Table: Anne puts her card on the table to reveal its

value to everyone.
• Show: Anne shows Bill her card. Cath cannot see

the value of Anne’s card, but she notices that the card
is being showed to Bill.

The formalization of the above story in Dynamic Epis-
temic Logic from (Ditmarsch, van der Hoek, and Kooi 2007)
is as follows. The action pickupX for player X would be
represented as follows:

• pickupA def
= LABC(!LA?0A ∪ LA?1A ∪ LA?2A)

• pickupB def
= LABC(LB?0B ∪ !LB?1B ∪ LB?2B)

• pickupC def
= LABC(LC?0C ∪ LC?1C ∪ !LC?2C)

where ?ϕ is a test, ! is a choice, Lx?ϕ stands for ‘the group

of agents x learns ϕ’. Thus, the sentence pickupA
def
=

LABC(!LA?0A ∪ LA?1A ∪ LA?2A) is understood as all 3
players A,B,C (representing Anne, Bill and Cath, respec-
tively) would learn that after A picked up her card, A would
be able to tell which is the value of that card - and in fact
A’s card is 0. The other two sentences for pickupB and
pickupC can be understood in the similar way. The tran-
sitions between states after the players drawn their card are
illustrated in Figure 3 (from (Ditmarsch, van der Hoek, and
Kooi 2007)). Each time a player picks up a card, that player
would refine their belief into those worlds that satisfied the
deal they got. The last epistemic state (last state in Figure 3)
indicates that the players know their own card, and that other
players also hold one card that differ from their own.

The execution of table and show by Anne can be repre-
sented as follows:

• table
def
= LABC?0A

• show
def
= LABC(!LAB?0A ∪ LAB?1A ∪ LAB?2A)

where table
def
= LABC?0A means that after action the ex-

ecution of table (Anne puts her card on table for every-
one to see it), all players A,B and C would learn that

the value of Anne’s card is 0. Furthermore, show
def
=

LABC(!LAB?0A ∪ LAB?1A ∪ LAB?2A) indicates the fact
after Anne shows her card to Bill, all players A,B and
C would learn that both A and B now know the value of
Anne’s card (and it is 0). Figure 4 describes the states after
Anne executed table or show. If Anne decided to perform
table, then Bill and Cath not only know about Anne’s card
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Figure 3: The epistemic states after each player picks up their
cards.

but also can figure out what is the actual deal of the game at
that point; leaving Anne is the only player left that does not
know about the actual state of the world right now. If Anne
show only Bill her card, then only Bill knows the actual
state right now.

Figure 4: Execution of table and show by Anne

4 A mA∗ Representation of the Card Game
Let us denote the multi-agent domain in Three Player Card
Game by Dcard. For this domain, we have that AG =
{A,B,C} where A, B, and C represent Anne, Bill and
Cath, respectively. The set of fluents F for this domain con-
sists of:
• 0x: agent x has card 0;
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• 1x: agent x has card 1; and

• 2x: agent x has card 2.

where x ∈ {A,B,C}.
To describe the ontic action of drawing a card, we write

draw〈x〉 causes 0x ∨ 1x ∨ 2x (8)

where x ∈ {A,B,C}. Observe that this action is nondeter-
ministic. Since everyone can observe the action of drawing
a card by anyone, the observability statement for this action
is

y observes draw〈x〉 (9)

for y, x ∈ {A,B,C}.
The action of a player checking the card and determining

the card that she holds is described by

check〈x〉 determines {0x, 1x, 2x} (10)

where x ∈ {A,B,C}. Observe that this is an extension
of the statement of the form (3) as it allows multiple out-
comes (more than 2, which is the default number of out-
comes in mA∗). This says that checking the card allows the
player knows exactly which card she is holding. The pres-
ence of multiple outcomes of a sensing action requires some
changes in the update model of sensing action occurrences
as elaborated in the next section. The observability state-
ments for this action are

x observes check〈x〉 (11)
y aware of check〈x〉 (12)

where x, y ∈ {A,B,C} and x 6= y. Observe that if x checks
their card, only x is the full observer of the action and other
agents are partial observers.

The action of someone tabling a card and its observability
statements are described as follows

table(k)〈x〉 announces kx (13)
executable if table(k)〈x〉 if kx (14)

y observes table(k)〈x〉 (15)

where k ∈ {0, 1, 2}, x, y ∈ {A,B,C}, and x 6= y. Observe
that the fact that a player can only show the card that they
hold leads to the executability condition for this action.

Similarly, the action of someone showing their card to an-
other player while not allowing the other player to see the
card and its observability statements are described as fol-
lows

show(k, y)〈x〉 announces kx (16)
executable if show(k, y)〈x〉 if kx (17)

y observes show(k, y)〈x〉 (18)
z aware of show(k, y)〈x〉 (19)

where k ∈ {0, 1, 2}, x, y ∈ {A,B,C}, x 6= y, and z ∈
{A,B,C} \ {x, y}.

The fact that one can hold no card or exactly one card
leads to the following static causal laws for this domain:

¬px,¬qx if rx (20)

where x ∈ {A,B,C} and {p, q, r} = {0, 1, 2}. For exam-
ple, for x = A and (p, q, r) = (1, 2, 0), it means that if 0A is
true then 1A and 2A must be false. Furthermore, if one holds
a card then other cannot. This is represented as follows:

¬ry,¬rz if rx (21)

where {x, y, z} = {A,B,C} and r ∈ {0, 1, 2}. For exam-
ple, for r = 0 and (x, y, z) = (A,B,C), this says that if A
holds the card 0 then neither B nor C holds it.

To complete the description of Dcard we note that ini-
tially, none of the player holds any card. Therefore, the ini-
tial state is described by the following statements in mA∗ :

initially C{A,B,C}(¬kx) (22)

where k ∈ {0, 1, 2} and x ∈ {A,B,C}.
Observe that the sentence pickupA in the DEL represen-

tation of (van Ditmarsch, van der Hoek, and Kooi 2007)
could be considered as the sequence draw〈A〉; check〈A〉.
The sequence pickupA; pickupA; pickupC can be summa-
rized by the following sequence:

αcard =

{
draw〈A〉; check〈A〉;
draw〈B〉; check〈B〉;
draw〈C〉; check〈C〉

(23)

5 Extending mA∗ to Accommodate Static
Causal Laws and Nondeterministic Actions

As we have mentioned earlier, the nondeterministic action
draw〈A〉, whose execution in an actual world can result in
different worlds, or the presence of a sensing action such
as check〈A〉 that allows A to determine which card she is
holding, are slightly different from the standard sensing ac-
tions considered in mA∗. Similarly, suppose that A holds
the card 0 and tables it; this means that A has made a truth-
ful announcement that 0A is true. The presence of the static
causal laws will allow B and C to derive the cards of the
others.

Consider the action draw〈A〉. The execution of this ac-
tion from the world s = ∅ representing the interpretation2

that assigns false to every fluent will result in one of the
three worlds s1 = {0A}, s2 = {1A}, or s3 = {2A}. This
is the result of the application of static causal laws (20) and
(21) of the domain, i.e., r(draw〈A〉, s) = {s1, s2, s3}. The
modification of the notions of replacement and of the update
template of an ontic action, as described earlier, is therefore
necessary to accommodate nondeterministic actions.

Assume that A draws the card 0 and then checks which
card she is holding. Intuitively, this means that check〈A〉
occurs in the real state of the world that A is holding 0. This
will allow her to know that she is holding the card 0 and not
the card 1 or 2. This means that the set of designated events
for this action should consist of three elements, each rep-
resents a possible outcome and has the precondition of 0A,
1A, and 2A, respectively. The update template for this ac-
tion is adapted from the update template for sensing actions
in mA∗ as in Figure 5.

2We follow the convention of representing an interpretation as
the set of fluents which are true in the interpretation.
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Figure 5: Update Template for check〈A〉

In general, the update template of a sensing action that
determines the value of a fluent belonging to a mutual ex-
clusive set S of fluents will require |S| designated events for
the full observers and one event representing the oblivious
agents. Every pair of designated events has a bidirectional
edge labeled with the set of partially observant agents. Ev-
ery designated event is connected to the event representing
the oblivious agents. Furthermore, each event has a self-loop
labeled with the set of all agents.

Similar extension needs to be done to accommodate the
static causal laws for reasoning with announcement actions.
We omit this discussion for brevity.

6 Reasoning in Dcard

Let us now illustrate the execution of the sequence of actions
αcard from (23). The initial state of the problem, given the
initial state specification in (22), is a Kripke structure with a
single world s0, whose interpretation is ∅, and the self-loop
with labels A,B,C (Figure 6).

Figure 6: The initial state (M0, s0)

6.1 Anne Draws a Card and Checks
Suppose that A draws a card. Because of all agents are full
observer of the actions, the update model of draw〈A〉 will
consist of a single event σ. The presence of the static causal
laws (20) and (21) indicates that the replacement of σ is one
that maps s0 to r(draw〈A〉, s0) = {s1, s2, s3} with s1 =
{0A}, s2 = {1A}, and s3 = {2A}. The update template of
draw〈A〉 is depicted in Figure 7. The execution of draw〈A〉

Figure 7: (ω(draw〈A〉, ({A,B,C}, ∅, ∅)), {σ}): Update Tem-
plate of draw〈A〉 in (M0, s0)

in (M0, s0) results in multiple states (M1, s1), (M1, s2), and
(M1, s3) and they are depicted together in Figure 8.

Figure 8: Execution of draw〈A〉 in (M0, s0) results in (M1, u)
for u ∈ {s1, s2, s3}

The execution of check〈A〉, whose update template is
given in Figure 5, in (M1, s1) results in (M2, s1) shown in
Figure 9. It is easy to see that the execution of check〈A〉
in (M1, s2) and (M1, s3) results in (M2, s2) and (M2, s3),
respectively. M2 differs fromM1 only in the links labeledA
between si and sj for i 6= j. We also reuse the world names
whenever their interpretations in the new Kripke structure do
not change. So s1 in Figure 9 corresponds to (s1, s1, σ) in
the definition of the cross product of Kripke structures and
update model.

Figure 9: Execution of check〈A〉 in (M1, s1) results in (M2, s1)

Assume that Anne draws card 0, the final state we get after
A draws a card and checks her card is (M2, s1) (Figure 9).
At this time, Anne knows exactly which card is in her hand
(the card 0), she also knows that both Bill and Cath have
empty hand. For Bill and Cath, they know that Anne has a
card but do not know the value of that card.

6.2 Bill Draws a Card and Checks
After Anne draws her card (0), Bill draws his card from
the desk. As with the case of Anne, all agents are full ob-
server of this action, so the update model of draw〈B〉 will
have only one event σ. Because of the static causal laws
(20) and (21), the replacement of σ is one that maps u0
to r(draw〈B〉, u0) = {o0, o1} with o0 = {0A, 1B} and
o1 = {0A, 2B} (because A already has card 0). The update
template of draw〈B〉 is similar to Figure 7 that we omit to
save space. The execution of draw〈B〉 in (M2, u0) result in
multiple state as represented in Figure 10.
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Figure 10: Execution of draw〈B〉 in (M2, u0) results in (M3, o)
for o ∈ {o0, o1}

Then Bill checks his card. The update model of check〈B〉
is showed in Figure 11 below:

Figure 11: Update template for check〈B〉

The execution of check〈B〉 in (M3, o0) result in (M4, o0)
(Figure 12). It is easy to see that the execution of check〈B〉
in (M3, o1) results in (M4, o1). As in Anne’s case, M4 dif-
fers from M3 only in the links labeled B between oi and oj
for i 6= j.

Figure 12: Execution of check〈B〉 in (M3, o0) results in (M4, o0)

Because we assume that Bill draws card 1, the final state

we get after B draws a card and checks his card is (M4, t0)
(Figure 12). After these actions, all agents know that both
Anne and Bill have a card in their hand; each of them knows
the value of her/his card, but not other’s. Cath’s hand is still
empty.

6.3 Cath Draws a Card and Checks
Finally, Cath takes the last card from the table. Similarly to
previous cases, all agents are full observer of draw〈C〉. The
update template of draw〈C〉 is showed in Figure 15.

Figure 13: Update Template of draw〈C〉 in (M4, t0)

The execution of draw〈C〉 in (M4, t0) is depicted in Fig-
ure 14.

Figure 14: Execution of draw〈C〉 in (M4, t0) results in (M5, wo)

Then Cath checks her card. The update model of
check〈C〉 is showed in Figure 15 below:

Figure 15: Update template for check〈C〉

Figure 16 illustrates the execution of check〈C〉 in
(M5, w0).

For our discussion in the next part of this section, follow-
ing (van Ditmarsch, van der Hoek, and Kooi 2007), let us
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Figure 16: Execution of check〈C〉 in (M5, w0) results in (M6, z0)

assume that A indeed holds the card 0, B holds the card 1,
and C holds the card 2. Then, the state resulting from the
sequence αcard on (M0, s0) is (M6, z0) in Figure 16. Ob-
serve that this is the state after pickupA; pickupB ; pickupC
used in Figure 3.

6.4 Anne Puts her Card on the Table
Let us consider the action of A putting her card on the ta-
ble, i.e., table(0)〈A〉. This is a truthful announcement ac-
tion that announces to all players the value of Anne’s card.
Since everyone is a fully observer of this actions, the update
template (ω(table(0)〈A〉, ({A,B,C}, ∅, ∅)), {σ}) consists
of only one event σ. The update template and the result of
its occurrence in (M6, z0) are given in Figure 17.

Figure 17: Update template for table(0)〈A〉 and the result of exe-
cution of table(0)〈A〉 in (M6, z0)

Afterwards, all three players know Anne holds the card 0.
Moreover, Bill and Cath also discover the actual world (who
has what card), while Anne does not realize what is Bill’s
card and what is Cath’s card. This is also the result obtained
in (van Ditmarsch, van der Hoek, and Kooi 2007) (Figure 4).

6.5 Anne Privately Shows Bill her Card
Suppose that A privately shows B her card, i.e., the action
show(0, B)〈A〉 occurs. Because of (18) and (19), A and B
are full observer while C is a partial observer of the occur-
rence of the action. This allows that the update template for
show(0, B)〈A〉 is as in Figure 18.

The execution of show(0, B)〈A〉 in (M6, z0) results in
Figure 19.

The above state shows that only Bill recognizes the true
world; Anne and Cath still do not know that but they are

Figure 18: Update template of action show(0, B)〈A〉

Figure 19: The result (M8, l0) of action show(0, B)〈A〉 in
(M6, z0)

aware that Bill is the only one know about the actual world.
Again, this is also the result obtained in (van Ditmarsch,
van der Hoek, and Kooi 2007) (Figure 4).

7 Discussion
The above section illustrates the use of mA∗ in representing
a domain with static causal laws and nondeterministic ac-
tions. In this section, we discuss other aspects of reasoning
about actions and change in multi-agent domains that have
been considered in the literature but not in mA∗. First, we
discuss the whisper action that is also discussed in (van Dit-
marsch, van der Hoek, and Kooi 2007). B asks A what card
does she have and A responds that it is not 2. C knows that
B askingA but cannot see and hear. This action differs from
table or show in C’s observability. While C anticipates an
answer fromA toB, different options are possible. Suppose
thatAwhisper toB that she does not have card 2. To be con-
sistent with the notation used in previous sections, we write
whisper(2, B)〈A〉 to denote this action. Following the ap-
proach used in mA∗, A and B are full observer while the
observability of C is not as clear as her observability with
respect to the table or show action occurrences. C could
imagine that whisper(2, B)〈A〉 occurs and is considered as
a partial observer of the action occurrence. In addition, the
anticipation of C also indicates that different actions could
have occurred, e.g., A tellsB that she does not have the card
1, or A tells B that she has the card 0. We take the liberty
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Figure 20: Update template and the result (M9,m0) of action whisper(2, B)〈A〉 in (M6, z0)

of assuming that C imagines that either whisper(2, B)〈A〉
or whisper(1, B)〈A〉 occurs and create the update template
for this view (Figure 20, left). The state resulting from ap-
plying this update template on (M6, z0) is given in Figure 20
(right). We note that this result is different from the outcome
presented in (van Ditmarsch, van der Hoek, and Kooi 2007)
(the dashed links). It shows that only B recognizes the true
world. A does not know that but realizes that B is the only
one who knows the actual world.

We will now focus on false announcements as discuss in
(van Ditmarsch 2014; van Ditmarsch et al. 2012). In this
work, false announcements are treated as public announce-
ment, i.e., all agents are fully observant of the action occur-
rence. Let us consider the action “A tells to B and C that
she has card 1”. We note that this announcement satisfies
both assumptions in (van Ditmarsch et al. 2012). There are
two different scenarios here:

• BothB and C could believe inA’s announcement regard-
less of their belief before the announcement; or

• One of them would detect thatAwas lying because she/he
has the card that A announces (in this case this is B).

In the first scenario, the update model and the result
state of this announcement, following (van Ditmarsch et al.
2012), are described in Figure 21 (top and bottom, respec-
tively). After A’s announcement, C now believes that the
actual deal is {1A, 0B , 2C} (which is not the true state), and
B does not know what to believe in anymore. This is cer-
tainly not a realistic scenario.

For the second scenario, the update model and the result
state of this announcement are described in Figure 22 (top
and bottom, respectively). Because B is holding card 1, so
he must know that A is lying to everyone and should not
believe in the lie. In the result,A also knows thatB discover
that she was lying. Both A and B also know that C believes
in the announcement and think the real state is {1A, 0B , 2C}
(which is wrong).

Figure 21: A lies that she has the card 1 and everyone believes her

Figure 22: A lies that she has the card 1 and only C believes her
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In our view, the construction of the update template in
the second scenario, as proposed in (van Ditmarsch et al.
2012), could have an alternative that we present in Figure 23.
The update model has a third event, ζ, encoding the fact that
there are agents who do not believe in the lie because they
know the truth, which are A and B. They know the actual
event (σ) but believe in ζ, and hence, the accessibility re-
lation from σ and τ to ζ. They also know that those who
believes in the lie will not believe in this event and hence the
link from ζ to τ . The resulting state of applying this update
template on (M6, z0) (Figure 23) is significantly more com-
plicated than that in Figure 22. Observe that in both states,A
and B do not know the actual world while C has the wrong
belief; A realizes that B knows that she is lying; etc. On
the other hand, the state in Figure 22 allows us to conclude
BCBB1A but this is not the case in the state in Figure 23.
This reflects the difference between the two views: in Fig-
ure 22, C believes that B also believes in the lie while in
Figure 23, C does not. In our view, both are reasonable and
worth considering.

Figure 23: Alternative to “A lies that she has the card 1 and only
C believes her”

8 Conclusions
In this paper, we present a formalization of a popular exam-
ple “Three Player Card Game” in the action language mA∗.
We discuss an extension of the current definitions in mA∗
that accommodates static causal laws and nondeterministic
actions and allows us to reach the same conclusions as in
DEL-based approaches when observabilities of agents are

deterministic (e.g., in the table and show actions). The dis-
cussion also illustrates how the initial pointed Kripke struc-
ture of the problem is obtained. We also explore various
features that have been discussed in the literature and iden-
tify possible extensions of mA∗ such as how to incorporate
actions with nondeterministic observabilities (e.g., the whis-
per action) or lying announcements. We leave this for future
work on mA∗.
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Abstract
This paper investigates whether empirical findings on how
humans evaluate arguments in reinstatement cases support the
‘fewer attackers is better’ principle, incorporated in many cur-
rent gradual notions of argument acceptability. Through three
variations of an experiment, we find that (1) earlier findings
that reinstated arguments are rated lower than when presented
alone are replicated, (2) ratings at the reinstated stage are sim-
ilar if all arguments are presented at once, compared to se-
quentially, and (3) ratings are overall higher if participants are
provided with the relevant theory, while still instantiating im-
perfect reinstatement. We conclude that these findings could
at best support a more specific principle ‘being unattacked
is better than attacked’, but alternative explanations cannot
yet be ruled out. More generally, we highlight the danger
that experimenters in reasoning experiments interpret exam-
ples differently from humans. Finally, we argue that more
justification is needed on why, and how, empirical findings
on how humans argue can be relevant for normative models
of argumentation.

1 Introduction
Rahwan et al. (2010) presented an empirical study of how
people evaluate arguments in the context of counterargu-
ments. Their aim was to assess how the abstract argumenta-
tion semantics of Dung (1995) treat so-called reinstatement
patterns, in which an argument that is attacked by another ar-
gument is defended or ‘reinstated’ by an argument attacking
the attacker, so that if there are no further arguments, the first
and third argument are acceptable but the second argument
must be rejected. They found that people by-and-large as-
sess arguments according to Dung’s semantics but not fully:
on a 7-point scale, the first argument was rated significantly
more acceptable when presented on its own than when pre-
sented together with its attacker and defender.

There are several reasons to reconsider these experiments.
A general reason is that it has been claimed that the psycho-
logical sciences face a ‘replicability crisis’ since the results
of many well-known experiments appear not to be repli-
cable (Pashler and Wagenmakers, 2012). In light of this,
one aim of this paper is to test whether the results of Rah-
wan et al. (2010) can be replicated. A more specific rea-
son is that since the study of Rahwan et al. appeared, the
study of gradual notions of argument acceptability has be-
come popular. These studies include probabilistic (Hunter

and Thimm, 2017), graded (Grossi and Modgil, 2019), and
ranking-based (Amgoud and Ben-Naim, 2013) approaches.
Some of this work refers to Rahwan et al.’s study for support
of their approaches, either for gradual notions of acceptabil-
ity in general (Polberg and Hunter, 2018; Hunter, Polberg,
and Thimm, 2020) or for specific features of the new se-
mantics (Grossi and Modgil, 2015, 2019; Amgoud, 2019).

In particular, Grossi and Modgil (2015) cite Rahwan et al.
in support for a principle that everything else being equal,
having fewer attackers is better. This principle is also a key
element in several of the new semantics. For instance, all
six ranking-based semantics studied by Bonzon et al. (2016)
satisfy the principle of ‘void precedence’ (Amgoud and Ben-
Naim, 2013), according to which an argument that has no
attackers is more acceptable than an argument that has at-
tackers, even if these attackers are counterattacked.

Accordingly, another aim of this paper is to investigate
whether Rahwan et al.’s study indeed provides support for
these recent developments, in particular for the ‘fewer at-
tackers is better’ or ‘void precedence’ principle. In doing so,
we will regard these formalisms not as descriptive but as pre-
scriptive, or normative models of argumentation, that is, as
modeling how people should argue. Our investigations are
in part motivated by discussions of Cramer and Guillaume
(2018a,b) and Prakken and de Winter (2018) of Rahwan et
al.’s study, which give reasons to be cautious when refer-
ring to Rahwan et al. in support of the new semantics, sug-
gesting alternative explanations for Rahwan et al.’s findings.
In doing so, we do not aim to question the importance of
graduality in argumentation as such. We take it for granted
that graduality plays important roles in argument evaluation;
the question that concerns us is how these roles can best be
modelled. Moreover, we would also like to note that not all
graduality semantics regard the void precedence principle as
generally acceptable; for example, Bonzon et al. (2021) and
Thimm and Kern-Isberner (2014) independently challenge
the principle for separate reasons.

In this paper we report on three experiments in which hu-
mans evaluate arguments. The first experiment succeeded
in replicating Rahwan et al.’s results on imperfect recovery
from attack. The other two were aimed to test two versions
of an alternative explanation for Rahwan et al.’s results sug-
gested by Rahwan et al. and Prakken and de Winter (2018),
namely, that the imperfect recovery of arguments from at-

109



tack is not because the participants in the experiments ap-
plied the ‘having fewer attackers is better’ principle when
rating the arguments, but it is due to the specific way in
which the arguments were presented to them. These ex-
periments yielded mixed results. We evaluate the results of
our experiments in light of the above-mentioned literature
but also in light of the question whether empirical studies
have anything to say at all about the assessment of norma-
tive theories of argumentation. Our main conclusion will be
that Rahwan et al. (2010)’s results cannot (yet) be consid-
ered supporting evidence for the idea that all other things
being equal, having fewer attackers is better, as embodied
in the ’void precedence’ principle, since alternative explana-
tions for the effect they found cannot be ruled out and since
a more convincing explanation is needed for why empirical
findings are relevant for normative theories of argumenta-
tion.

2 Preliminaries
In this section the basics of Dung’s theory of abstract ar-
gumentation frameworks are summarised and applied to the
reinstatement pattern that was the subject of the studies of
Rahwan et al. (2010). We present Dung’s semantics in a
labelling version, which is equivalent to Dung’s original se-
mantics (Jakobovits, 2000; Caminada, 2006).

An abstract argumentation framework (AF ) is a pair
〈A, C〉, where A is a set of arguments and C ⊆ A × A is
a binary relation of attack. The labelling approach charac-
terises the various semantics in terms of labellings of A.

A labelling of an abstract argumentation framework
〈A, C〉 is any assignment of either the label in or out (but
not both) to zero or more arguments from A such that:

1. an argument is in iff all arguments attacking it are out.

2. an argument is out iff it is attacked by an argument that is
in.

Then stable semantics labels all arguments, while grounded
semantics minimises and preferred semantics maximises the
set of arguments that are labelled in. Relative to a semantics,
an argument is sceptically acceptable if it is labelled in in all
labellings, it is rejected if it is labelled out in all labellings,
and it is credulously acceptable if it is labelled in in some
but not all labellings.

The reinstatement pattern studied by Rahwan et al. is dis-
played in Figure 1. In both AF s argument A is sceptically

Figure 1: The reinstatement pattern

acceptable in all three semantics. With only A this is trivial
since A has no attackers. When also B and C are present, C

has to be made in by constraint (1), since it has no attackers,
and B has to be made out by constraint (2), thus A has to be
made in by constraint (1). Thus C reinstatesA by defending
A against B.

This outcome for AF2 is the same if the attack from B
on A is made symmetric but it changes if the attack from
C on B is made symmetric (regardless whether the same is
done for B’s attack on A). If C and B attack each other
then the just-given labelling is still possible but it is not the
only one: a labelling in which B is in and both A and C
are out also satisfies the constraints. Both of these labellings
are preferred and stable but not grounded, since the empty
labelling also satisfies the constraints. Thus all three argu-
ments are credulously acceptable in preferred and stable se-
mantics while they are not acceptable in grounded seman-
tics.

Rahwan et al. presented six examples to the participants
in their experiments, all having the same pattern and all as-
sumed to instantiate AF2 from Figure 1. The participants
were first confronted with a single argument, for instance:
A: The battery of Alex’s car is not working. Therefore, Alex’s

car will halt.

They were then asked to rate their confidence in its conclu-
sion. Only then were they subsequently confronted with an
attacker and defender, for instance:
B: The battery of Alex’s car has just been changed today.

Therefore, the battery of Alex’s car is working.

C: The garage was closed today. Therefore, the battery of
Alex’s car has not been changed today.

After both arguments, the participants were again asked to
rate their confidence in the conclusion of the initial argu-
ment. After argument B their average rating of A’s con-
clusion went down while after argument C was presented
to them, their average rating went up again, but to a signif-
icantly lower level than after being presented with A only.
Rahwan et al. concluded that their results support the notion
of reinstatement but not fully, since a reinstatement argu-
ment does not fully recover from an attack.

One explanation Rahwan et al. consider for their result is
in terms of an effect of ‘suspension of disbelief’, accord-
ing to which participants are capable of thinking of different
kinds of objections to the presented arguments but they sus-
pend these objections for the sake of the experiment. How-
ever, when one objection is presented by the experimenter,
this suspension is disrupted and some participants start to let
their private beliefs ‘leak’ into their assessments of the ar-
guments. Prakken and de Winter (2018) suggest a variation
of this explanation, advocating that after being introduced to
an attacker, a participant’s degree of belief in other possible
attackers increases as well since the very introduction of an
attacker leads them to consider other possible objections.

3 The Experiments
We conducted three experiments to further test these ideas.
The methods of the experiments overlap and are presented
together for brevity. Experiment 1 is an online replication
of the study by Rahwan et al. (2010). Specifically, we test
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whether rating is lower at the reinstated stage compared to
the base case when arguments are presented one-by-one (cf.
Rahwan et al.). Based on this replication, we then test ideas
proposed by Rahwan et al. (2010) and Prakken and de Win-
ter (2018). Specifically, experiment 2 tests whether the rat-
ing is different if all arguments (including the attack and the
defense) are presented at once. Finally, experiment 3 tests
what happens if first all possible scenarios are presented —
i.e., generalised forms of the arguments the participants en-
counter during evaluation — and then the arguments are pre-
sented one-by-one. As an example of (3), the generalised
form of the car battery example was

• A car will halt if its battery is not working.

• A car’s battery is working if it has been changed the same
day.

• When the garage is closed, a car’s battery cannot be
changed.

3.1 Hypotheses
We tested the following four hypotheses.

Hypothesis 1: When arguments are presented sequen-
tially (experiment 1), participants’ ratings for the con-
clusion of argument A in the reinstated stage are lower
than in the base stage but higher than after argument B
is presented.

The first hypothesis merely predicts a successful replication
of Rahwan et al.’s results. Note that our participant number
(130 aimed) is significantly higher than that used by Rahwan
(20), to gain further confidence in the result.

Hypothesis 2: When all arguments are presented at
once (experiment 2), participants’ ratings for the con-
clusion of argument A are higher than the (corre-
sponding) ratings in the reinstated stage of the first
case/manner-of-presentation (where all arguments are
also available but have been introduced sequentially).

The second hypothesis suggests that when all the informa-
tion is presented at the same time to the participants, the
confidence in the conclusion of argument A is higher than
the corresponding confidence in the reinstated stage when
arguments have been presented one-by-one. Since the intro-
duction of an attacker may change the participant’s belief in
the initially presented argument even after it has been rein-
stated, it is possible that it is the very gradual process of pre-
sentation that influences the participant’s degree of belief.
To quote Rahwan et al., “[p]articipants can easily generate
all sorts of objections to the arguments presented to them by
the experimenter, but they suspend their disbelief in these ar-
guments for the sake of the experiment. When one objection
is presented by the experimenter herself, though, suspension
of disbelief is disrupted”. Thus, if we eliminate the grad-
ual factor of presentation, the initial suspension of disbelief
may remain, since there is no stage where a new objection is
presented that can disrupt it.

Possibly, when an attacker is introduced after one has
placed their confidence in an argument, a kind of ‘breach of
confidence’ is generated, one that cannot be later eradicated

(by introducing another attacker) and that has caused the dis-
ruption of the initial experiment’s ‘convention/contract’ (i.e.,
the suspension of disbelief). Hence, if all arguments were
presented at once, they could all be considered as the afore-
mentioned ‘arguments presented by the experimenter’ and
participants would suspend their disbeliefs for all of them
(as suggested). Provided with all the information (i.e., all the
arguments in play) at the beginning, participants can make a
deliberation without the element of surprise, resulting in giv-
ing the conclusion of argument A a higher confidence rating
than in the reinstated stage of a gradual presentation.

Hypotheses 3a+3b: When participants are first pre-
sented with all possible scenarios (experiment 3) —
i.e., when they are presented with generalised forms of
the arguments they will encounter during evaluation,
before evaluating them — and are then asked to evalu-
ate the arguments one-by-one (the same way as in ex-
periment 1):

a their ratings for the conclusion of argument A in
the reinstated stage are higher than the correspond-
ing ratings in the reinstated stage of the first experi-
ment (where participants have not seen all the possi-
ble scenarios beforehand);

b their ratings for the conclusion of argument A in the
base stage are lower than the corresponding ratings
in the base stage of the first experiment.

In our statistical test, we ran an Analysis Of Variance
(ANOVA) with experiment (experiment 1 or 3) as between-
subjects factor, and moment (base stage versus reinstated
stage) as within subjects factor. Based on the hypotheses
above, we would expect a significant interaction effect: rat-
ing is lower in the reinstated stage for participants in exper-
iment 1 (compared to its base stage), whereas this is not the
case for experiment 3 (i.e., no imperfect reinstatement is ex-
pected in experiment 3).

To further comment on hypotheses 3a and 3b, and extend-
ing on our thinking concerning the second hypothesis, we
ought to consider another possible explanation and, thus,
another manner of presentation. When a participant ini-
tially evaluates an argument, no evidence for or against its
premises, inference, or conclusion has been offered, whereas
after being presented with the attacker and defender, further
evidence is overall provided, allowing the subject to form a
more complete image of a precise situation.

Hypotheses 3a and 3b are based on Prakken and de Win-
ter (2018), who argue that the introduction of an attacker
increases the participants’ degree of belief in other possible
attackers, which are not explicitly ruled out in the presented
arguments. They suggest that the introduction of a relevant
theory prior to participants’ evaluations will cause the con-
fidence degree in the conclusion of argument A in the base
stage to decrease (compared to ratings from the first manner
of presentation) and to increase in the reinstated stage. Their
suggestion is based on the assumption that if a participant
was aware from the beginning of (all) the reasons argument
A can be vulnerable, their belief in the possibility of the at-
tacker that is presented (here, argument B) would increase
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from the base stage, resulting in a lower rating for the con-
clusion A at that stage. By the same logic, their degree of
belief in all other attackers, which are not ruled out (but nei-
ther presented) in the experiment, would have no reason to
increase after the actual introduction of the attacker in the
defeated stage (contrarily to when one is not initially intro-
duced to the whole theory) and, thus, confidence in argument
A’s conclusion would increase in the reinstated stage.

A confirmation of hypotheses 2, 3a and 3b would under-
line the importance of the way in which subjects are pre-
sented with arguments, proving it affects participants’ con-
fidence. Such confirmations would support the observations
of Rahwan et al. and Prakken and de Winter (2018) on the
possible effects of suspension of disbelief, as, then, said
findings could be interpreted as a result of the two aforemen-
tioned suggested explanations and not as support for graded
notions of argument acceptability.

3.2 Method
We conducted three experiments. In all three experiments,
participants had to evaluate the acceptability status of natural
language arguments, in which we followed Rahwan et al.
(2010)’s method as closely as possible in terms of materials,
procedure and measurement, discussed in more detail below.

Participants In each experiment, 130 participants took
part (390 total). All were 18-65 years old. The average age
was comparable between experiments (mean age for exper-
iment 1, 2, and 3 respectively: 30, 33, and 28 years of age).
All participants were volunteers, recruited through personal
contact, and had no pre-knowledge on the topic of study.
Participants were required to be over 18 years of age, and
able to read and speak English, for which we probed partici-
pants at the start of the survey. All participants were deemed
suitable according to their responses.

Materials The materials followed original stimuli of Rah-
wan et al. as close as possible. In each experiment, partici-
pants had to rate eight sets of arguments, consisting of three
arguments each, where the conclusion of each next argu-
ment contradicts a premise of the preceding argument. The
first six sets were taken from Rahwan et al. while the two
remaining sets were added by us in a similar style. Specifi-
cally, these were:

A: The power is out, so Claire cannot charge her phone.

B: The TV is playing, so the power is not out.

C: The TV is broken, so the TV is not playing.

and

A: Animals have the right to be left unharmed, so we should
ban animal testing.

B: Animals are very dissimilar to humans, so animals do not
have such a right.

C: Animals resemble us anatomically, physiologically, and
behaviourally (e.g., recoiling from pain, fearing tormen-
tors), therefore they are not very dissimilar to humans.

At various points (see design), participants had to rate the
acceptability of the conclusion of argument A. The ratings

were given on a 7-point scale ranging from Certainly false
to Certainly true as in Rahwan et al. (2010).

Design In experiment 1, we replicate Rahwan et al.
(2010). Arguments A, B, and C were added in sequence.
After each added statement, participants had to rate the ac-
ceptability of the conclusion of argumentA. Consistent with
hypothesis 1 and Rahwan et al. (2010), we expect ratings to
be higher after presentation of argument A (base stage) com-
pared to after presentation of argument C (reinstated stage).
This is tested with a paired t-test.

In experiment 2, all arguments are presented at once, and
participants only provide one rating. We test whether this
rating is different from the ratings at reinstated stage of ex-
periment 1. Cf. hypothesis 2 we expect ratings to be higher
for participants from experiment 2.

In experiment 3, for each set of arguments, participants
first received a text that included generalisations of all three
arguments (an example of which can be found at the begin-
ning of section 3). They then had to rate the conclusion of
argument A in a similar fashion as in experiment 1. As we
now have a measurement at base and at reinstated stage for
experiments 1 and 3, we analyze the results using an analy-
sis of variance with experiment as between-subjects factor,
and moment (base versus reinstated stage) as within-subjects
factor. Conform hypothesis 3, we expect a significant inter-
action effect: in experiment 1 rating is lower in reinstated
stage; in experiment 3 we expect there to be no or little dif-
ference between reinstated and base stage.

Procedure Participants did the experiment online using a
Qualtrics (https://www.qualtrics.com/) survey. Participants
were first asked a brief set of questions about their age and
language capability. They then received a brief explanation
of the study. Participants were then asked to rate four sets
of arguments. The nature of questioning depended on which
experiment they took part in (1, 2, or 3, see design). Al-
though we had 8 sets of arguments, each participant only
rated 4 sets (randomised across participants).

Analysis We removed data from participants whose re-
sponse set was not complete (27, 34, and 20 participants in
experiments 1, 2, and 3 respectively). We then calculated
the average score for each rating type (reinstated stage, and
base stage for experiments 1 and 3). In statistical analysis,
we use alpha at .05 for significance.

3.3 Results
Experiment 1 and hypothesis 1 First we test if our repli-
cation finds the same pattern of effect as Rahwan et al.
(2010). A paired t-test on the data of our experiment 1
found that ratings at the base stage (M = 5.61, SD =
0.99, 95% CI = [5.42, 5.81]) were significantly higher
compared to the reinstated stage (M = 5.21, SD =
0.96, 95% CI = [5.02, 5.40]), t(102) = 4.636, p < .001.
Thus ratings of argument A’s conclusion are found to de-
crease after attacker B and increase again after counterat-
tackerC, but not to the initial level, like in the original exper-
iment of Rahwan et al. (2010). Figure 2 shows this result and
also presents the values observed in Rahwan et al. (2010).
It can be seen that apart from the significant difference be-
tween conditions/stages, the observed values are also com-
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Figure 2: Rating at Base and Reinstated for 2 experiments and Rah-
wan et al (2010). Error bars show 95% Confidence Intervals; points
are horizontally plotted slightly to the side of each other for better
readability.

parable between our study and Rahwan et al. (2010) (specif-
ically: there is a strong overlap between the error bars; the
means of the two studies fall inside the region defined by the
error bars). This confirms the first hypothesis, and replicates
the result of Rahwan et al. (2010), this time with a consider-
ably larger set of participants.

Experiment 2 and hypothesis 2 Next, we test if partic-
ipants give higher ratings if information is presented all at
once (experiment 2) compared to sequentially (experiment
1). As the groups had unequal numbers of participants,
we ran an independent Welch t-test. There was no signif-
icant effect of presentation manner on rating, t(196.56) =
−0.683, p = .496. Thus, presenting all arguments at once
before asking a rating of argument A’s conclusion does not
lead to higher ratings and, so, the second hypothesis cannot
be confirmed. Indeed, Figure 2 shows that the ratings in ex-
periment 2 (M = 5.12, SD = 0.93) are similar (i.e., means
are close, error bars overlap largely).

Experiment 3 and hypothesis 3a and 3b Next, we test if
it makes a difference if participants are provided with gen-
eralisations of all three arguments first. To this end, after
checking the equality of variances of each group/experiment
with Levene’s test, we ran a 2 (experiment: 1 or 3) x 2 (stage:
base versus reinstated) mixed ANOVA. We found a signif-
icant effect of experiment, F (1, 211) = 12.906, p < .001.
There was also a significant effect of stage, F (1, 211) =
53.66, p < .001. There was no interaction between study
and stage, F (1, 211) = 1.227, p = .269. Figure 3 illustrates
this effect. The parallel lines suggest that in both experi-
ment 1 and experiment 3 ratings are higher in the base stage
compared to the reinstated stage, and the reduction in rating
between the two is comparable (i.e.: main effect of stage).

In addition, ratings in experiment 3 were higher in general
(i.e., main effect of experiment). In other words, when par-
ticipants first see the possible scenarios and then rate the ar-
guments one-by-one, they rateA’s conclusion higher in both
the reinstated and base stage (compared to the corresponding
stages of experiment 1). Thus hypothesis 3a is confirmed but
hypothesis 3b is rejected. This is contrary to our expectation
of an interaction effect (i.e., crossing lines in Figure 3, with
the line for experiment 3 being relatively flat). The expec-
tation was that for experiment 3 the ratings in the reinstated
stage are higher than those of experiment 1 (hypothesis 3a),
but that in the base stage participants from experiment 3 pro-
vided a lower rating than those in experiment 1(hypothesis
3b). We did not observe this interaction, as hypothesis 3a
was confirmed but hypothesis 3b was rejected.

4 Discussion
This study purported to (1) replicate the findings of Rah-
wan et al. (2010) and (2) investigate whether these findings
support the void precedence/‘fewer attackers is better’ prin-
ciple incorporated in many current graded notions of argu-
ment acceptability or whether alternative explanations sug-
gested by Rahwan et al. (2010) and Prakken and de Winter
(2018) undercut such support. To summarise our results,
our experiment found that participants’ ratings of argument
A’s conclusion decrease after seeing attackerB and increase
again after seeing counterattacker C, but not to the initial
level. This confirms our hypothesis 1 and replicates Rahwan
et al. (2010)’s findings. This is an important result, since
replicability is one of the cornerstones of scientific method
and since, as we noted in the introduction, social psychology
is currently facing a replication crisis. In experiment 2 we
found that presenting all arguments at once before asking a
rating of argument A’s conclusion did not lead to higher rat-
ings compared to those observed in the sequential study of
experiment 1 (rejecting hypothesis 2). In experiment 3, we
found the opposite when the participants first see the pos-
sible scenarios and then rate the arguments after seeing the
arguments one-by-one (confirming hypothesis 3a). Finally,
in experiment 3 we found that the participants rate A’s con-
clusion higher in the base stage as well, compared to the
base stage of experiment 1 (rejecting hypothesis 3b). Thus,
we did not find the interaction effect that the confirmation of
both hypotheses would entail.

We now discuss various issues relevant to the question
whether our results strengthen the arguments for the ‘fewer
attackers is better’ principle.

4.1 Generalisation to Other Patterns
We first recall an observation of Prakken and de Winter
(2018) that even if the results support a principle that ‘an
argument is better if it is unattacked than if it is attacked’
in examples following the pattern of Figure 1, the find-
ings cannot be used as support for the more general intu-
ition formalised in Grossi and Modgil (2015, 2019)’s ‘fewer
attackers is better’ principle and Amgoud and Ben-Naim
(2013)’s void precedence principle, which, as noted above,
is at the heart of many current gradual and ranking-based
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Figure 3: Rating at Base and Reinstated for experiment 1 and 3.
Error bars show 95% Confidence Intervals; points are horizontally
plotted slightly to the side of each other for better readability.

approaches. The point is that the more general intuition also
applies to structures where, unlike in Figure 1, arguments A
in AF1 and AF2 refer to different arguments. Neither in
Rahwan et al. (2010)’s nor in our experiments examples of
this kind were shown to the participants. So at best Rahwan
et al. (2010)’s and our experiments confirm the special case
of the void precedence/‘fewer attackers is better’ principle
in which the arguments A in both AF s in Figure 1 are the
same argument.

4.2 Suspension of Disbelief
We next note that our results cast some doubts on Rahwan et
al. (2010)’s suggested explanation in terms of suspension of
disbelief and its variant suggested by Prakken and de Winter
(2018). Rahwan et al. do not claim that the introduction of
an attacker makes the subjects think/come up with objection,
but rather that it causes them to disrupt their suppressing of
their already existent objections. In this study, we hypothe-
sised that if confronted with all three arguments at the same
time, participants would apply their suspension of disbelief
to all the (initially) presented arguments. As our hypothesis
2 is rejected — i.e., introducing all three arguments at the
same time does not have a significant effect on the subjects’
confidence in A’s conclusion — Rahwan et al.’s explanation
regarding the disruption of suspension of disbelief cannot be
validated.

The same holds for Prakken and de Winter (2018)’s vari-
ant of the explanation in terms of suspension of disbelief,
according to which the initial introduction of the relevant
theory would have made the participants in group 3 aware
of possible counterarguments from the start, unlike the par-
ticipants in group 1. This should have led to the ratings for
the conclusion of argument A in the base stage of group 3
being significantly lower than those of group 1, which was

our hypothesis 3b. However, this hypothesis was rejected
and, surprisingly, not only are the ratings of the third group
not lower in the base stage, but they are actually signifi-
cantly higher. Thus, this is a case where the possibility of
an attacker was present from the beginning without it influ-
encing negatively the ratings of the argument that could be
attacked. The absence of the expected interaction effect sug-
gests that — despite the introduction of the relevant theory
beforehand — the recovery was not complete in the third
group either and, thus, Prakken and de Winter’s suggestion
cannot explain imperfect reinstatement.

What is puzzling is the confirmation of hypothesis 3a in
contrast to the rejection of hypothesis 3b, as what we ex-
pected was that the introduction of the theory would have
opposite results on the base and reinstated stage. One rea-
son why the introduction of the corresponding theory results
in an increase of the ratings’ level in both stages could be
that when introduced with a theory beforehand, the partic-
ipant gains reassurance. Even though aware of the possi-
bility of an attacker, when an argument is unattacked, the
participant has no reason/evidence not to believe it. Thus
the introduction of a possible attacker might in this case
strengthen the attacker’s absence in the base stage, thus in-
creasing confidence in the conclusion of argument A. This
could even be extended to the reinstated stage: participants
might feel more reassured after being presented with the
instantiation of the possibilities they were originally intro-
duced with. This could also explain why a similar effect did
not appear in the second group; in the third group, a partici-
pant is originally introduced to possibilities, which are later
realised, whereas in the second group a participant misses
this intermediate step of reassurance. However, the results
of the second group could also be explained by the task of
group 2, as we will further discuss in Section 4.4.

4.3 Natural Language versus Formalisation
At this point, it might be thought that our findings strengthen
the support for the ‘fewer attackers is better’ principle. The
underlying idea here would be that the participants rated the
arguments’ conclusions with this principle in mind. We first
discuss whether this explanation can be accepted on the ba-
sis of Rahwan et al. (2010)’s and our experiments. Later
we will discuss to which extent such empirical claims and
explanations are relevant for assessing normative models of
argumentation.

There is yet another alternative explanation of the results,
independently suggested by Prakken and de Winter (2018)
and Cramer and Guillaume (2018a,b), namely, that when
rating the arguments, the participants may not have had the
reinstatement pattern of Figure 1 in mind but a different pat-
tern. All argument sets in the studies of Rahwan et al. (2010)
and ourselves were such that the conclusion of argument B
attacks a premise of argument A and, likewise, the conclu-
sion of argument C attacks a premise of argument B. Con-
sider again the car battery example from Section 2. It is
not obvious that the attacks of B on A and of C on B are
asymmetric: since the conclusions and premises involved
in these attacks are contradictory, the attacks might also be
regarded as symmetric. This is, for instance, possible in AS-
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PIC+ (Modgil and Prakken, 2014) in which a so-called ‘or-
dinary’ premise can rebut an argument with a ‘defeasible top
rule’. Moreover,AFs generated in ASPIC+ include the sub-
arguments of all arguments as separate arguments, including
arguments corresponding to a premise.

Thus another plausible AF modelling of the car battery
example is AF ′

2 as shown in Figure 4, where Ap, Bp, and
Cp are the subarguments of, respectively, A, B, and C, con-
sisting of their premise. Note that B and Ap attack each
other since B undermines Ap (and A) while Ap rebuts B.
Likewise for the other attacks. Note also that unlike inAF2,

Figure 4: An alternative interpretation of Rahwan et al. (2010)’s
examples

in AF2′ argument A is not skeptically acceptable. Now it
is important to note that a number of participants may have
interpreted the examples as in AF2′ instead of AF2. In
an experiment conducted by Cramer and Guillaume (2018a)
this was indeed found to be the case. The participants who
did so may have rated the conclusion of A lower in the re-
instatement stage since A is only credulously acceptable in
that stage.

This is an instance of a more general problem with this
kind of empirical research. In experiments like these, a
natural-language reasoning example is formalised, then hu-
mans are asked to express an opinion of the natural-language
version of the example, and then the humans’ responses are
compared to the outcome yielded by the semantics of the
formalised version of the example. If there is a mismatch be-
tween the two, then it is tempting to conclude that humans
do not reason according to the formal semantics but such
a conclusion is premature, since the mismatch may also be
caused by the fact that the formalisation does not correspond
to what the humans had in mind (this point is also made by
Polberg and Hunter (2018)). Formalising informal reason-
ing examples is far from trivial since natural language is am-
biguous and the same informal way of reasoning may be for-
malised in the same formalism in different ways. The danger
of such mismatches between a formalised example and how
humans interpret its natural-language version increases the
more abstract the formalism is. As noted by Prakken and
de Winter (2018), directly formalising natural-language ex-
amples in abstract argumentation formalisms without being
guided by a theory of the nature of arguments and their rela-
tions may result in ad-hoc modellings (or in the present case
in a modelling that is not the only possible one).

This danger may also have materialised in a study
of Rosenfeld and Kraus (2015), who modelled natural-
language examples in a bipolar argumentation framework
(an AF with also support relations) and then observed that

the participants did not assess arguments according to its se-
mantics, including the reinstatement pattern. This result was
cited by Amgoud (2019) as support for the ‘having fewer
attackers is better’ principle. However, in Rosenfeld and
Kraus’s examples several attack relations modelled as asym-
metric can also be regarded as symmetric. For example, the
arguments “We should buy an SUV; it’s the right choice for
us” and “But we can’t afford an SUV, it’s too expensive”
(where according to Rosenfeld and Kraus the second asym-
metrically attacks the first) could by some participants be
regarded as two arguments with contradictory conclusions
‘we should buy an SUV’ and ‘we should not buy an SUV’.

A related problem with such empirical reasoning experi-
ments is that it is often hard to make the participants stick to
the information that was explicitly given; often they will,
either implicitly or explicitly, also take other beliefs and
background information into account. Van Benthem (2008)
(cited by Rahwan et al. (2010) in support of the relevance
of empirical research for normative theories) notes that peo-
ple in such experiments first go through a “representation”
or “modelling” phase in which they construe the relevant
scenario of facts and events, and only then make infer-
ences from the construed scenario. He points at the possi-
bility that experimenters overlook that the participants may
have added information to the example in the representa-
tion phase. Other recent empirical studies in computational
argumentation have also pointed at the possibly confound-
ing effect of background information (Cerutti, Tintarev, and
Oren, 2014; Polberg and Hunter, 2018; Cramer and Guil-
laume, 2018b, 2019).

In the present study we tried to avoid the unwanted influ-
ence of background information as follows. Overall, the ar-
guments that were used were simple sentences and of a neu-
tral subject matter, to avoid unwanted influence of subjective
views. Moreover, the levels of confidence in the eighth set
(i.e., the one regarding animal rights, which is not a neutral
subject matter), do not deviate from the rest in any way. This
suggests a good level of impartiality from the participants.
Nevertheless, we cannot exclude the possibility that the re-
sults are partly influenced by the content of the arguments
rather than their relations. In order to render such exper-
iments less precarious, future empirical research could try
to control for such issues by including manipulation checks,
where separate groups of participants evaluate the arguments
independently, indicate how they perceive the type and the
directionality of the attacks, and so on.

4.4 Order and Cognitive Load
There are further possible explanations of some of the find-
ings. First, the results of the second group could also be ex-
plained by the task of group 2, (i.e., the version of manner of
presentation that corresponded to group 2) being more chal-
lenging. As mentioned by Cramer and Guillaume (2019),
a cognitively challenging task might lead to participants
choosing a simplifying strategy, in this case, more likely
to choose a ‘neutral’ rating (in this experiment, that would
translate to a rating being closer to 4, hence being the lowest
rated). The low overall ratings of argument A in group 2,
along with the fact that group 2 had the highest dropout rate
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(26% of the participants of the second group left the survey
unfinished, compared to the 21% of the first and then 15%
of the third) might be an indication that the manner of pre-
sentation in the second group was more challenging to the
subjects.

Second, the imperfect recovery from attack could be a re-
sult of order. For example, the order of presentation may
have had an effect on how the participants perceived the di-
rectionality of the attacks; it may be that attacks are more
often regarded as originating from the last-presented argu-
ment. Moreover, it is possible to assume that participants’
confidence in A’s conclusion does not go back to its original
level because the sooner we are introduced to something,
the more likely we are to believe it. As observed by Polberg
and Hunter (2018): “presenting a new and correct piece of
information that a given person was not aware of does not
necessarily lead to changing that person’s beliefs”. Both in
our study and in Rahwan et al. (2010), the arguments were
always presented in the same order. Even in group 2, where
all the arguments were presented together, argument A is
always first. We cannot, therefore, rule out the possibility
that the order of arguments also plays a role in participants’
confidence.

4.5 The Jump from Is to Ought
Nevertheless, suppose that future experiments are able to re-
produce Rahwan et al. (2010)’s findings in examples that
unambiguously correspond to Figure 1 and in which back-
ground information has been controlled for. Then there is
another hurdle to take before it can be concluded that these
results support the ‘having fewer attackers is better’ princi-
ple as a normative principle of rational argumentation. This
hurdle is that it is not immediately obvious how empirical
findings on how people actually argue can be relevant for
a normative theory on how they should argue. Given the
growing number of empirical studies in computational argu-
mentation (Cerutti, Tintarev, and Oren, 2014; Rosenfeld and
Kraus, 2015; Cramer and Guillaume, 2018a,b, 2019; Pol-
berg and Hunter, 2018) this question is important, but it has
no simple answers.

Rahwan et al. (2010) argue that insights from psycho-
logical experiments can be relevant to the design of soft-
ware agents that can argue persuasively with humans. We
could think here of IBM’s Debater project (Slonim, Bilu,
and Alzate, 2021). They may very well be right in this: per-
suasiveness is a psychological phenomenon, so psychologi-
cal experiments can obviously yield relevant insights on the
persuasiveness of argumentation patterns. However, in our
opinion formal models like Dung (1995)’s abstract argumen-
tation theory or more concrete structured accounts like AS-
PIC+, Defeasible Logic Programming (Garcia and Simari,
2004) or assumption-based argumentation (Toni, 2014) do
not aim to model persuasiveness of arguments. Instead they
model the (nonmonotonic) logical status of arguments as
part of a set of arguments and their logical relations of at-
tack and support.

Rahwan et al. also argue that empirical findings on how
humans actually argue are relevant for validating formal se-
mantics of argumentation. However, they are not explicit

on when a formal semantics should be changed because of
empirical findings on how humans argue and when humans
should change their way of arguing to make it fit the for-
mal semantics. One reason to change the formal semantics
might be an assumption that humans by-and-large reason
correctly. For example, Pollock (1986) argued that the rea-
soning of humans is guided by internalised rules, while Jack-
son (1989) argued that any descriptive attempt constitutes a
“reconstruction of people’s own normative ideas”. However,
a compelling counterexample is formed by abundant evi-
dence that people are generally very poor at reasoning cor-
rectly with and about probabilities (Kahneman, 2011). This
is generally not regarded as invalidating probability theory
as a normative theory of reasoning with probabilities (here
too the relevance of background information has been noted;
cf. van Benthem (2008)).

One of us has argued in Prakken (2020) that there is a
weaker sense in which empirical findings on how humans
reason can be relevant for normative theories of reasoning.
Such normative theories should not only be rationally well-
founded but also ‘cognitively plausible’ in that it is not too
difficult for people to adhere to their standards. For this rea-
son theories of reasoning should be stated in terms that are
natural to people, such as argumentation-related concepts.
Such cognitively plausible normative theories may still de-
viate from how people actually reason, as long as they are
stated in terms that are natural to people.

Applying this to the present discussion, this means that
empirical research can tell us that people tend to assess ar-
guments in gradual terms, so that it is important to develop
normative theories of gradual argument evaluation. How-
ever, the specific designs of such theories cannot be based on
empirical research alone but should also apply philosophical
insights. In the case of gradual and ranking-based semantics,
these insights must, to the best of our knowledge, still largely
be developed. For instance, the only defence of the ‘having
fewer attackers is better’ principle besides references to em-
pirical findings that we could find is Amgoud and Ben-Naim
(2013)’s claim that this principle is “natural”. We suggest
that a philosophical analysis should aim to clarify what is
meant by argument acceptability or argument strength and
should take the nature of arguments and their relations into
account.

5 Conclusion
In this paper we returned to the experiments of Rahwan et
al. (2010) on ‘simple reinstatement’ patterns in formal argu-
mentation for two reasons. First, we wanted to see whether
their results can be replicated. We were able to do so with a
considerably larger number of participants, which is a signif-
icant result given the current concerns about replicability of
results in the social sciences, specifically in social psychol-
ogy. Second, we wanted to investigate with two variants of
Rahwan et al.’s experiments whether empirical findings on
how humans evaluate arguments in reinstatement cases can
support the ‘fewer attackers is better’ principle incorporated
in many current graded notions of argument acceptability.
We can draw the following main conclusions from our in-
vestigations.
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To start with, our results casted doubt on explanations
suggested by Rahwan et al. (2010) and Prakken and de Win-
ter (2018) in terms of suspension of disbelief. According
to these explanations, the imperfect recovery of arguments
from attack in reinstatement patterns would be due to the
triggering at various moments of awareness or consideration
of other counterarguments than those presented in the exper-
iment. In our new experiments we did not find evidence for
these explanations.

However, we concluded that this does not imply that the
experimental results of Rahwan et al. and the present pa-
per support the ‘fewer attackers is better’ principle. We
first noted that the experiments at best support a special
case of this principle, namely, ‘an argument is better if it is
unattacked than if it is attacked’ (void precedence). Next
we concluded that even the special case is not supported
since several alternative explanations cannot yet be ruled
out, such as that a number of participants may have had dif-
ferent attack relations in mind. More generally, we high-
lighted the danger that humans involved in reasoning exper-
iments model and/or interpret examples differently than the
experimenters. Finally, we argued that even if future exper-
iments extend to the general case and can rule alternative
explanations out, still convincing arguments are needed why
and how empirical findings on how humans argue can be
relevant for normative models of argumentation. We sug-
gested that the importance of such empirical findings does
not lie in what they say about the validity of specific reason-
ing patterns but in what they say about the general concepts
that a normative theory should have in order to be applica-
ble by humans. The issue concerning the jump from ‘is’ to
‘ought’ is important since the ‘having fewer attackers is bet-
ter’ principle implies that it is rational for arguers to utter as
many counterarguments to an argument as possible, even if
these arguments are silly and can be easily refuted. Should
our normative models of argumentation really encourage ar-
guers to build their arguments on fake news and alternative
facts as much as possible?
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Abstract

Abstract dialectical frameworks (in short, ADFs) are a uni-
fying model of formal argumentation, where argumentative
relations between arguments are represented by assigning ac-
ceptance conditions to atomic arguments. This idea is gen-
eralized by letting acceptance conditions being assigned to
complex formulas, resulting in conditional abstract dialec-
tical frameworks (in short, cADFs). We define the seman-
tics of cADFs in terms of a non-truth-functional four-valued
logic, and study the semantics in-depth, by showing existence
results and proving that all semantics are generalizations of
the corresponding semantics for ADFs.

1 Introduction
Formal argumentation is one of the major approaches to
knowledge representation. In the seminal paper (Dung
1995), abstract argumentation frameworks were conceived
of as directed graphs where nodes represent arguments and
edges between these nodes represent attacks. So-called ar-
gumentation semantics determine which sets of arguments
can be reasonably upheld together given such an argumen-
tation graph. Various authors have remarked that other rela-
tions between arguments are worth consideration. For exam-
ple, in (Cayrol and Lagasquie-Schiex 2005), bipolar argu-
mentation frameworks are developed, where arguments can
support as well as attack each other.

The last decades saw a proliferation of such extensions
of the original formalism of (Dung 1995), and it has of-
ten proven hard to compare the resulting different dialects
of the argumentation formalisms. To cope with the result-
ing multiplicity, (Brewka et al. 2013) introduced abstract
dialectical argumentation that aims to unify these differ-
ent dialects (Polberg 2016). Just like in (Dung 1995), ab-
stract dialectical frameworks (in short, ADFs) are directed
graphs. In difference to abstract argumentation frameworks,
however, in ADFs, edges between nodes do not necessar-
ily represent attacks but can encode any relationship be-
tween arguments. Such a generality is achieved by asso-
ciating an acceptance condition with each argument, which
is a Boolean formula in terms of the parents of the argument
that expresses the conditions under which an argument can
be accepted. This results in an ADF being defined as a triple
(At, L, C) where At represents a set of atoms or arguments,

L ⊆ At× At represents a set of argumentative relations be-
tween the atoms and C is a set of acceptance conditions Cs
for every s. As such, ADFs are able to capture all of the
major semantics of abstract argumentation and offer a gen-
eral framework for argumentation-based inference. Further-
more, ADFs were shown to be able to capture a number of
non-argumentative formalisms such as logic programming
(Brewka et al. 2013). Recently, first attempts were made to
translate non-monotonic conditional logics in ADFs (Heyn-
inck et al. 2019).

However, there are limits to the representative capabilities
of ADFs, both on a conceptual as well as a more technical
level. On the conceptual level, acceptance conditions are as-
signed to atoms, which means that, e. g., an attack on a set
of arguments cannot be captured by ADFs. For example, to
state that the set {p, q} is attacked by r we would have to be
able to set the acceptance condition of p ∧ q to ¬r, which is
not possible in ADFs. Likewise, it is not immediately obvi-
ous how to represent more complicated logic programming
languages in ADFs, such as disjunctive logic programming.
Such limitations are, not unsurprisingly, also reflected on a
more technical level. For example, a (polynomial) trans-
lation of disjunctive logic programming into ADFs is im-
possible in view of complexity results on disjunctive logic
programming and ADFs. Finally, in (Heyninck et al. 2019)
shows that only a fragment of the full language of condi-
tional logics can be translated in ADFs in view of their lim-
ited syntax.

In this paper, we generalize ADFs as to allow for the
assignment of acceptance conditions to complex formulas.
This results in conditional abstract dialectical frameworks
(in short, cADFs) which are sets of acceptance pairs of the
form φCψ with arbitrary formulas φ and ψ, interpreted as
a defeasible version of “φ is the case if and only if ψ is the
case”. The semantics of cADFs are formulated as a gener-
alization of the semantics of ADFs, with the Γ-function, on
its turn based on a non-truth-functional four-valued logic,
as a central component. Some of the main results include
existence results for all the major semantics, as well as the
definition of the so-called grounded state, a single-state se-
mantics which can be iteratively constructed and represents
the minimal information entailed by a given cADF.
Outline of this Paper: We first state all the necessary
preliminaries in Section 2 on propositional logic (Section
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2.1), and abstract dialectical argumentation (Section 2.2).
The syntax of conditional abstract dialectical frameworks
cADFs is introduced in Section 3. In Section 4, a four-
valued logic, which will form the basis of the semantics of
cADFs, is defined and studied. In Section 5, we then define
and study the admissible, complete, preferred and grounded
semantics for cADFs. A unique, iteratively constructible
analogue to the grounded extension, called the grounded
state, is introduced in Section 6. Related work is discussed
in Section 7 and a conclusion is drawn in Section 8.

2 Preliminaries
In the following, we briefly recall some general preliminar-
ies on propositional logic, as well as technical details on con-
ditional logic and ADFs (Brewka et al. 2013).

2.1 Propositional Logic
For a set At of atoms let L(At) be the corresponding propo-
sitional language constructed using the usual connectives ∧
(and), ∨ (or), ¬ (negation) and→ (material implication). A
(classical) interpretation (also called possible world) ω for a
propositional languageL(At) is a function ω : At→ {T,F}.
Let V2(At) denote the set of all interpretations for At. We
simply write V2 if the set of atoms is implicitly given. An
interpretation ω satisfies (or is a model of) an atom a ∈ At,
denoted by ω |= a, if and only if ω(a) = T. The satisfaction
relation |= is extended to formulas as usual. For Φ ⊆ L(At)
we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
Define the set of models Mod2(X) = {ω ∈ V2(At) | ω |=
X} for every formula or set of formulas X . A formula or
set of formulas X1 entails another formula or set of formu-
las X2, denoted by X1 ` X2, if Mod2(X1) ⊆ Mod2(X2).
A formula φ is a tautology if Mod2(φ) = V2(At) and a fal-
sity if Mod2(φ) = ∅.

2.2 Abstract Dialectical Frameworks
We briefly recall some technical details on ADFs following
loosely the notation from (Brewka et al. 2013). An ADF D
is a tuple D = (At, L, C) where At is a finite set of atoms,
L ⊆ At × At is a set of links, and C = {Cs}s∈At is a
set of total functions Cs : 2parD(At) → {>,⊥} for each
s ∈ At with parD(s) = {s′ ∈ At | (s′, s) ∈ L} (also called
acceptance functions). An acceptance function Cs defines
the cases when the statement s can be accepted (truth value
>), depending on the acceptance status of its parents in D.
By abuse of notation, we will often identify an acceptance
function Cs by its equivalent acceptance condition which
models the acceptable cases as a propositional formula.

Example 1. We consider the following ADF D1 =
({a, b, c, d}, L, C) with L = {(a, b), (b, a), (a, c), (b, c)}
and Ca = ¬b, Cb = ¬a, and Cc = ¬a ∨ ¬b.
Informally, the acceptance conditions can be read as “a is
accepted if b is not accepted”, “b is accepted if a is not ac-
cepted” and “c is accepted if a is not accepted or b is not
accepted”.

An ADF D = (At, L, C) is interpreted through 3-valued
interpretations ν : At → {T,F,U}. We denote the set of

all 3-valued interpretations over At by V3(At). We define
the information order <i over {T,F,U} by making U the
minimal element: U <i T and U <i F, and † ≤i ‡ iff
† <i ‡ or † = ‡ for any †, ‡ ∈ {T,F,U}. This order is lifted
point-wise as follows (given ν, ν′ ∈ V3(At)): ν ≤i ν′ iff
ν(s) ≤i ν′(s) for every s ∈ At. The set of two-valued in-
terpretations extending a 3-valued interpretation v is defined
as [ν]2 = {ω ∈ V2(At) | ν ≤i ω}. Given a set of 3-valued
interpretations V ⊆ V3(At), uiV is the 3-valued interpreta-
tion defined via uiV (s) = † if for every ν ∈ V , ν(s) = †,
for any † ∈ {T,F,U}, and uiV (s) = U otherwise. Truth
values based on a three-valued interpretations can now be
assigned to complex formulas φ by taking ui[ν]2(φ). All
major semantics of ADFs single out three-valued interpre-
tations in which the truth value of every atom s ∈ At is, in
some sense, in alignment or agreement with the truth value
of the corresponding condition Cs. The Γ-function enforces
this intuition by mapping an interpretation ν to a new inter-
pretation ΓD(ν), which assigns to every atom s exactly the
truth value assigned by ν to Cs, i.e.:

ΓD(ν) : At→ {T,F,U} where s→ ui{ω(Cs) | ω ∈ [ν]2}.

Definition 1. Let D = (At, L, C) be an ADF with ν ∈
V(At) a 3-valued interpretation:

• ν is admissible for D iff ν ≤i ΓD(ν).
• ν is complete for D iff ν = ΓD(ν).
• ν is preferred forD iff ν is≤i-maximal among all admis-

sible interpretations.
• ν is grounded for D iff ν is ≤i-minimal among all com-

plete interpretations.

We denote by admissible, complete(D), prf(D), and
grounded(D) the sets of complete, preferred, and grounded
interpretations of D, respectively.

Notice that ν is admissible iff ν(s) ≤i ui[ν]2(Cs) for ev-
ery s ∈ S and likewise, ν is complete iff ν(s) = ui[ν]2(Cs)
for every s ∈ S. It can thus be observed that the logic de-
fined by ui[ν]2 is, essentially, the logic underlying ADFs,
in the sense that the evaluation of acceptance conditions un-
der ui[ν]2 is the fundamental operation underlying every se-
mantical notion of ADFs. It should be furthermore noted
that ui[ν]2 does not give rise to a truth-functional logic.
Recall that a truth-functional logic is a logic in which the
truth value assigned to a complex formula is a function of
the truth values of its component formulas. E.g. for a truth-
functional logic, the truth value of a∨¬b is determined com-
pletely by the truth value of a and ¬b. For example, given
ν(a) = U and ν(b) = U, ui[ν]2(a ∨ ¬a) = T whereas
ui[ν]2(a ∨ ¬b) = U.

Example 2 (Example 1 continued). The ADF of Example 1
has three complete models ν1, ν2, ν3 with:

ν1(a) = T ν1(b) = F ν1(c) = T
ν2(a) = F ν2(b) = T ν2(c) = T
ν3(a) = U ν3(b) = U ν3(c) = U

ν3 is the grounded interpretation whereas ν1 and ν2 are
both preferred.
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3 Syntax of cADFs
The syntactical representation D = (S,L,C) of an ADF
contains some superfluous information. In particular, as
there is a link between a statement s and s′ iff s is men-
tioned in the acceptance condition of s′, the set of links does
not contain any information not already derivable from the
set of acceptance conditionsC. As such, given a set of atoms
S, we can simply write an ADF as a set of statements sCCs
if Cs is the acceptance condition of s. So the ADF D1 from
Example 1 can be simply written as:

D1 = {aC¬b, bC¬a, cC¬a ∨ ¬b}
An ADF is determined by a set of propositional formulæ
that, when evaluated to true, make a certain statement, which
is a simple atom, true as well, and when evaluated to false,
make the simple atom false as well. In other words, C can
be read as a approximate if and only if : sCCs means that
the truth-values s and Cs should be aligned. C can truly be
read as a approximate iff, since it might not always be pos-
sible to align the truth values of s and Cs in such a way that
they take on exactly the same (determinate) truth value. To
see this, consider, e. g., aC¬a. We generalise this frame-
work by allowing these statements to be arbitrary proposi-
tional formulæ:
Definition 2. Given a set of atoms At, a conditional abstract
dialectical framework cADF Π w.r.t. At is a finite set of ac-
ceptance pairs over At, where an acceptance pair is of the
form:

φCψ
with φ and ψ being propositional formulæ over At.

In order to stick to ADF terminology we call φ the state-
ment and ψ the condition of the acceptance pair φCψ. We
omit the reference to the signature At when it is clear from
context.
Example 3. Consider a cADF Π1 = {c1, c2, c3} with

c1 : p ∨ s ∨ qC>
c2 : p ∧ sC¬q
c3 : (p ∧ q) ∨ (p ∧ s)C t

This cADF can be used to model an argument of a group
of friends about making plans on a Sunday. They are dis-
cussing whether to go to a party (p), to the swimming pool
(s) or go to a pub quiz (q). They want to do at least one
of these three things (c1). However, if they go to the quiz,
they won’t be able to still go to the pool and go to the party
(represented by the attack of q on p ∧ s in c2). If everyone
arrives on time (t), they would like to go to both the quiz
and the party, or to both the pool and the party (c3). We no-
tice that without adding further atoms, an attack from q on
the set {p, s}, as formalized by c2, cannot be represented in
ADFs.

We observe that this simple generalization w.r.t. ADFs
results in the following additional points of expressiveness
in comparison to ADFs:
• cADFs allow for complex formulas as statements, as

demonstrated by (p ∧ q) ∨ (p ∧ s)C t in Example 3.

• cADFs allow for “incomplete” specifications, i.e. they do
not force the user to formulate an acceptance condition
for every atom, as demonstrated in Example 3, where t
has no acceptance condition.

• cADFs allow for “overspecifications” or conflicting spec-
ifications, as demonstrated by the cADF {aC b,¬aC b}
where both a and ¬a have the acceptance condition b.

• cADFs allow for indeterminism, as demonstrated by the
cADF {a ∨ bC>}, where a ∨ b is required to be true,
but no further information on which of the disjuncts is
required to be true is given.

To cope with this higher expressiveness semantically, it will
prove useful to move from three-valued interpretations to
four-valued interpretations. To assign truth values to com-
plex formulas on the basis of four-valued interpretations, we
generalize the logic defined by ui[v]2 to a four-valued set-
ting in Section 4. We then generalize the semantics of ADFs
to cADFs on the basis of this four-valued logic in Section 5.

4 A Four-Valued Logic Based on
Completions

We first define a four-valued logic 4CL which generalizes
the idea of completions known from the logic underlying
ADFs defined by [ν]2, which preserves classical tautologies
and falsities. We first recall four-valued interpretations. A
four-valued interpretation v : At → {T,F, I,U} assigns
to every atom a truth value T (true), F (false), U (unde-
cided) or I (inconsistent). We will also write an interpre-
tation v ∈ V4({a1, . . . , an}) as v(a1) . . . v(an), e. g., v over
{p, q} with v(p) = T and v(q) = U will be written as TU.
We denote the set of four-valued interpretations over At by
V4(At). Notice that V2(At) ⊆ V3(At) ⊆ V4(At). If it is
clear that an interpretation is two- respectively three-valued,
we will denote it by (a possibly indexed) ω respectively ν.

Two useful orders over these truth values are the infor-
mation order ≤i and the truth order ≤t, which form the
following bilattice-structure (Fitting 2006):

≤i

≤t
U

F T

I

Notice that V4(At) also forms a bounded lattice under
≤i with vU and vI as least and greatest element respec-
tively (where vU is defined as the interpretation that sets
vU(a) = U for every a ∈ At and vI is defined as vI(a) = I
for every a ∈ At).

We shall interpret the four truth values, at least for atoms,
in the same way as (Belnap 2019): U (undecided) means that
we have no explicit information for either the truth nor the
falsity of an atom. T (true) respectively F (false) means that
we have explicit information only for the truth respectively
the falsity of the atom in question. Finally, I (inconsistent)
means that we have explicit information for both the truth
and the falsity of the atom in question. When it comes to
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complex formulas, we shall see that we take a somewhat
hybrid position between the truth values expressing merely
explicit information and the truth values standing for objec-
tive truth. In particular, the logic we will define here will al-
low for logically contingent formulas, i. e., formulas which
are neither classical tautologies nor classical falsities, to be
assigned any of the four truth values, whereas classical tau-
tologies and classical falsities will always be assigned T re-
spectively F by any interpretation. Intuitively, this means
that even though the truth value of s ∈ At might be unde-
termined (U) or inconsistent (I), the logic will still evaluate
s ∨ ¬s as true. This is in complete agreement with ADFs,
where tautologies and logical falsities are always evaluated
in agreement with classical logic by ui[v]2.

Semantically, we proceed as follows: we construct a set
of sets of (two-valued) worlds on the basis of a four-valued
interpretation v that represents the beliefs expressed by v.
Just like in the logic underlying ADFs ui[ν]2, a set of (two-
valued) worlds will be used to represent a three-valued in-
terpretation ν. The worlds in [ν]2 represent equally plausi-
ble candidates of the actual world in view of the beliefs ex-
pressed by the three-valued interpretation ν. Likewise, a set
of three-valued interpretations [v]3 will be used to represent
the information expressed by a four-valued interpretation v.
[v]3 consists of the three-valued interpretations that jointly
represent the information expressed by v. Notice the differ-
ence with [ν]2: [ν]2 consists of equally plausible candidates
of the actual world in view of the information expressed by
v, whereas [v]3 contains interpretations that taken together
represent the information expressed by v. We now develop
this idea in more formal details.

Given a four-valued interpretation, we define the set of
two-valued completions of v, [v]2, in two steps. First, we
construct [v]3, which converts v ∈ V4(At) to a set of three-
valued interpretations [v]3 ⊆ V3(At). Then, we obtain
[v]2 ⊆ ℘(V2(At)) by converting every three-valued inter-
pretation ν ∈ [v]3 to a set of two-valued interpretations [ν]2.
Definition 3. Given a four-valued interpretation v ∈ V(At),
[v]3 = {ν ∈ V3(At) | for every s ∈ At : if v(s) =
I then ν(s) ∈ {T,F}, ν(s) = v(s) otherwise}

In other words, [v]3 is obtained by replacing every assign-
ment of an atom s to I to an assignment of s to T or to F.

Notice that [v]3 consists of the ≤i-maximal three-valued
interpretations that v extends:
Fact 1. For any v ∈ V4(At), [v]3 = max≤i({ν ∈ V3(At) |
ν ≤i v}).1

Example 4. Consider v = TUI over Σ = abc. Then [v]3 =
{TUT,TUF}.

We are now ready to define the four-valued completions
[v]4 of v:
Definition 4. Given some v ∈ V4(At), the four-valued com-
pletions of v are defined as: [v]4 = {[v′]2 | v′ ∈ [v]3}.

Thus, [v]4 is obtained by first constructing [v]3, and then
taking for every ν ∈ [v]3 the set of two-valued completions
of ν. The intuition behind this is as follows: v(s) = I means

1Some proofs have been left out in view of spatial limitations.

that we have information for both s being true and s being
false. Thus, the interpretations where we set ν1(s) = T and
ν2(s) = F are both (partial yet consistent) representations
of the state of the world represented by v. Hence [v]3 can
be viewed as the set of three-valued interpretations that to-
gether form the representation of the state of the world repre-
sented by v. We then construct for every such representation
a set of two-valued interpretations, which represent equally
plausible candidates of the state of the world represented by
ν ∈ [v]3. Altogether, [v]4 contains a set of set of possible
worlds, which together represent our knowledge about the
actual state of the world.

It is useful to notice that for a three-valued interpretation
v ∈ V3(At), [v]4 = {[v]2}.
Example 5. Consider v = TUI over Σ = {abc}.
Since [v]3 = {TUT,TUF}, [TUT]2 = {TTT,TFT}
and [TUF]2 = {TTF,TFF}, we see that [v]4 =
{{TTT,TFT}, {TTF,TFF}}.

Notice that, in order to retain the four-valued structure
of an interpretation v in its four-valued completion [v]4, the
two-step nature of the construction of [v]4 and the resulting
nested structure of [v]4 is essential. Indeed, if [v]4 would
merely consist of possible worlds, we would somehow have
to choose between letting the members ω ∈ [v]4 stand as
equally plausible candidates of the actual world or partial
descriptions of the information given by v, i. e., we would
have to choose between U and I. Conceiving of [v]4 as a
set of sets of worlds avoids this choice: sets of worlds V ′ ∈
[v]4 represent partial descriptions of the information given
by v, and members of these sets of worlds ω ∈ V ′ represent
equally plausible candidates of the information in V ′.

We can now define the assignment of truth values of com-
plex formulas given an interpretation v based on our set of
four-valued completions [v]4:
Definition 5. Given a formula φ and an interpretation v,
then:

v(φ) =





T if for every Ω′ ∈ [v]4,uiΩ′(φ) = T

F if for every Ω′ ∈ [v]4,uiΩ′(φ) = F

I if for some Ω1 ∈ [v]4,uiΩ1(φ) = T

and for some Ω2 ∈ [v]4,uiΩ2(φ) = F

U otherwise

Thus, a complex formula φ is assigned T (respectively
F) relative to an interpretation v if every four-valued com-
pletion Ω′ ∈ [v]4 of v, assigns T (respectively F) to φ. If
there is disagreement among the four-valued completions of
v on which determinate truth value φ should be assigned,
v(φ) = I. Finally, if some of the four-valued completions of
v do not assign any determinate truth value to φ, v(φ) = U.

This way of deriving a truth value for complex formulas
on the basis of a four-valued interpretation is, to the best
of our knowledge, completely new. It is perfectly in line
with ui[v]2, the logic underlying ADFs, in the sense that for
any three-valued interpretation ν ∈ V3(At) and any formula
φ ∈ L, ν(φ) = ui[ν]2(φ).
Fact 2. For any ν ∈ V3(At) and any φ ∈ L(At), ν(φ) =
ui[ν]2(φ).
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Example 6. Consider v = TUI over Σ = abc. Observe
that [v]4 = {{TTT,TFT}, {TTF,TFF}}. Thus, we have
the following assignments to complex formulas:

• v(a ∧ c) = I, since ui{TTT,TFT}(a ∧ c) = T and
ui{TTF,TFF}(a ∧ c) = F;

• v(b ∧ c) = U, since ui{TTT,TFT}(b ∧ c) = U and
ui{TTF,TFF}(b ∧ c) = F;

• v(a ∧ ¬a) = F, since ui{TTT,TFT}(a ∧ ¬a) = F and
ui{TTF,TFF}(a ∧ ¬a) = F;

We first observe that 4CL preserves classical tautologies
and falsities:

Proposition 1. If ` φ then for any v ∈ V4, v(φ) = T.
Likewise, if ` ¬φ then for any v ∈ V4, v(φ) = F.

Proof. This is so because for any v ∈ V4, [v]2(φ) = T[F]
for any tautology[falsity].

We can also define entailment in 4CL in the usual way.
We set T and I as designated truth values in compliance with
(Belnap 2019):

Definition 6. Given a set of formulas Ψ ∪ {φ} ⊆ L(At),
Mod4(Ψ) = {v ∈ V4(At) | v(ψ) ∈ {T, I} for every ψ ∈
Ψ} and Ψ |=4CL φ iff Mod4(Ψ) ⊆ Mod4(φ).

We now show that |=4CL is paraconsistent:

Proposition 2. There exists a set of formulas Φ ⊆ L(At)
s.t. Mod(Φ) = ∅ yet Mod4(Φ) 6= ∅.

Proof. Consider the signature At = {p, q}, Φ = {p,¬p}
and v ∈ V4(At) with v(p) = I and v(q) = U. [v]24 =
{{TT,TF}, {FT,FF}} and thus v(¬p) = v(p) = I and
v(q) = U.

We notice, though, that there might still be sets of for-
mulas Φ ∈ L(At) for which no v ∈ V4(At) exists s.t.
v(φ) ∈ {T, I} for every φ ∈ Φ. To see this, it suf-
fices to observe that for any falsity φ and any interpretation
v ∈ V4(At), v(φ) = F. In other words, the logic defined
above is still explosive for contradictions. But for inconsis-
tent sets of formulas containing no contradictions, the logic
is non-explosive.

Proposition 3. For every set of formulas Φ ⊆ L(At) s.t. for
every φ ∈ Φ, Mod(φ) 6= ∅, there is some v ∈ V4(At), s.t.
v(φ) ∈ {I,T} for every φ ∈ Φ.

Remark 1. Observe that the logic 4CL, like the logic de-
fined by ui[v]2, is not truth-functional. To see this con-
sider the interpretation v with v(a) = U and v(b) = U.
Then v(a ∨ ¬a) = T yet v(b ∨ ¬a) = U. Thus, we see
that 4CL is not truth-functional, as v(a) = v(b) = U yet
v(a ∨ ¬a) 6= v(b ∨ ¬a).

We finally notice the following useful property:

Proposition 4. Let v1, v2 ∈ V4(At) and φ ∈ L(At) be
given. Then v1 ≤i v2 implies v1(φ) ≤i v2(φ).

5 Semantics of cADFs
In this section, we define, motivate and study the seman-
tics of cADFs. In more detail, in Section 5.1 we define the
central ΓΠ-function and use it to define the main semantics
for cADFs. In Section 5.2 we motivate the design choices
made in generalizing the Γ-function from ADFs to cADFs.
In Section 5.3 we show some central semantical properties
of the semantics of cADFs.

5.1 The ΓΠ-Function and Resulting
cADF-Semantics

A cADF Π over At is interpreted through 4-valued interpre-
tations. Just like for ADFs, it is of crucial importance to
construct a Γ-function that allows to characterize all seman-
tics in terms of (post-)fixpoints of this function.

The Γ-function, conceptually, performs the following op-
eration for ADFs: given an interpretation ν and an ADF D,
ΓD(ν) assigns to every atom s the truth value determined
by ν and Cs. In other words, ΓD(ν)(s) is the value s should
take in view of the information expressed by sCCs and ν.
If (for every s ∈ S), this value is compatible (in terms of
≤i) with the actual value v(s), then v will be admissible
or even complete. We generalize this idea to the case of
cADFs, and take, intuitively, ΓΠ(v) as the set of interpre-
tations that evaluate φ in accordance with the information
given by φCψ ∈ Π and v. More formally, we define the
Γ-function ΓΠ : V4(At) → ℘(V4(At)) for a cADF Π and
an interpretation v ∈ V4(At) as follows:

ΓΠ(v) = min
≤i

{v′ ∈ V4 | ∀φCψ ∈ Π : v′(φ) ≥i v(ψ)}

Example 7. Let Π = {p ∨ sC>;¬sC p} formulated over
the signature Σ = {p, s}. We have the following interpreta-
tions and corresponding outcomes of the ΓΠ-function:

v ΓΠ(v)
UU {UT,TU}
UT {UT,TU}
UF {UT,TU}
UI {UT,TU}
TU {TF,FI}
TT {TF,FI}
TF {TF,FI}
TI {TF,FI}

v ΓΠ(v)
FU {UT}
FT {UT}
FF {UT}
FI {UT}
IU {TI,FI}
IT {TI,FI}
IF {TI,FI}
II {TI,FI}

We explain ΓΠ(UU) as follows: in view of p ∨ sC> and
UU(>) = T, every interpretation v′ ∈ ΓΠ(UU) has to as-
sign a truth value at least as informative as T to p ∨ s, i.e.
v′(p∨s) ≥i T. Likewise, since UU(p) = U and¬sC p ∈ Π,
v′ ∈ ΓΠ(UU) has to set v′(¬s) ≥i U, which is trivially the
case. The two ≤i-minimal interpretations that satisfy this
constraint are: UT and TU.

As a second example, consider FF. Like with UU, every
interpretation v′ ∈ ΓΠ(FF) has to assign v′(p ∨ s) ≥i T.
However, since FF(p) = F and ¬sC p ∈ Π, any v′ ∈
ΓΠ(FF) has to set v′(¬s) ≥i F. UT is the unique ≤i-
minimal interpretation satisfying these constraints.
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We first notice that ΓΠ is indeed a generalization of the
ΓD-function for ADFs. To show this in a more formally pre-
cise manner, we first define the cADF ΠD associated with
an ADF D.
Definition 7. Given an ADF D = (S,L,C), we define the
cADF ΠD associated with D as ΠD = {sCCs | s ∈ S}.

We can now show that for any three-valued interpreta-
tion ν, ΓΠD

(ν) coincides with ΓD(ν), i.e. the Γ-function
for ADFs coincides with the Γ-function for the associated
cADFs for three-valued interpretations.
Proposition 5. For any ADF D = (S,L,C) and any ν ∈
V3(S), ΓΠD

(ν) = {ΓD(ν)}.
Proof. Consider an ADF D = (S,L,C) and some ν ∈
V3(S). v ∈ ΓΠD

iff v is among the ≤i-minimal interpre-
tations s.t. v(s) ≥i ν(Cs) for every s ∈ S. With Fact 2,
ν(Cs) = ui[ν]2(Cs) for every s ∈ S. This means that
ΓD(s) = ν(Cs) and thus ΓD is the unique ≤i-minimal in-
terpretation s.t. v(s) ≥i ν(Cs).

The above result shows that the ΓΠ-function is a direct
generalization of the well-studied ΓD-function known from
ADFs. This allows us to define the main semantics of
cADFs in terms of (post-)fixpoints of the ΓΠ-functions, just
like in the case of ADFs.

With our generalized ΓΠ-function at hand, we can now
define the main semantics for cADFs as straightforward
generalizations of the ADF-semantics:
Definition 8. Let a cADF Π over At and an interpretation
v ∈ V4(At) be given, then:
• v is admissible for Π iff there is some v′ ∈ ΓΠ(v) s.t.
v ≤i v′.

• v is complete for Π iff v ∈ ΓΠ(v).
• v is preferred for Π if it is a ≤i-maximal among all ad-

missible interpretation for Π;
• v is grounded for Π if it is a ≤i-minimal among all com-

plete interpretation for Π;
• v is a two-valued model for Π iff v ∈ V2(At) and v is

complete.
Example 8 (Example 7 ctd.). We see that for Π from Ex-
ample 7, there are two complete interpretations: TF and
UT. This can be seen by observing that TF ∈ ΓΠ(TF)
and UT ∈ ΓΠ(UT). Since these interpretations are ≤i-
incomparable, both interpretations are also grounded. The
admissible interpretations are: UU, UT, TU and TF. Thus,
UT and TF are also preferred.
Example 9. Let Π = {bC p, f C b,¬f C p} formulated
over Σ = {b, f, p} be given. vU = UUU is the unique
complete interpretation and thus also grounded. It is also
the unique admissible interpretation.

Notice that e.g. TIT is not complete, since ΓΠ(TIT) =
{TIU}. The reason for ΓΠ(TIT)(p) = U is since there is no
acceptance pair pCφ ∈ Π. The intuition is that p is only
accepted if we have good information to do so, but no such
information is given by any φCψ ∈ Π.

It is interesting to note that for Π′ = Π ∪ {pC p}, TIT ∈
ΓΠ′(TIT) = {TIU,TIT,TIF}.

As can be seen in the example above, if an atom a occurs
in no statement of φ of any acceptance pair φCψ ∈ Π, then
v(a) = U for any admissible or complete interpretation v.
However, should this be undesired, one can simply add the
acceptance pair aC a for such an atom.

5.2 Design Choices in ΓΠ and Comparison with
ΓD

We now discuss the design choices that had to be made when
generalizing the Γ-function from ADFs to cADFs. In par-
ticular, given the increase in syntactical expressiveness, we
had to generalize ΓΠ as to adequately handle this increased
expressiveness semantically.

A first generalization is caused by the fact that statements
φ of acceptance pairs φCψ are possibly non-atomic formu-
las. Since ΓΠ contains all interpretations v′ that align, for
any φCψ ∈ Π, the truth value of φ with v(ψ), there might
now be more than one interpretation v′ which achieves this.
As a case in point, consider the cADF Π = {p ∨ qC>},
where acceptance of p∨q (which is required by any v ∈ V4,
since v(>) = T for any v ∈ V4) can be guaranteed by
any interpretation that satisfies p or q. Therefore, the Γ-
function might contain multiple interpretations which all do
an equally good job of aligning the truth values of statements
φ with their respective conditions ψ. Thus, ΓΠ is defined as
a non-deterministic operator (Pelov and Truszczynski 2004;
Heyninck and Arieli 2021), in the sense that a single inter-
pretation v might give rise to a non-singleton set of interpre-
tations {v1, . . . , vn} = ΓΠ(v). In the example above, we
have e.g. ΓΠ(v) = {TU,UT} for any v ∈ V4({p, q}).

A second generalization w.r.t. the Γ-function for ADFs
is the fact that alignment of statements φ with their cor-
responding condition ψ cannot always be done in an ex-
act way. In more detail, for ADFs D, alignment by ΓD
of s is always exact, in the sense that ΓD(v)(s) coincides
with the truth value assigned by ui[v]2(Cs). This is not
always possible for cADFs, since we might have conflict-
ing specifications in a cADF. Take for example the cADF
Π = {pC>;¬pC>}. Clearly, for any v ∈ V4(At), there
exists no v′ ∈ V4(At) s.t. v′(φ) = v(ψ) for every φCψ.
Indeed, this is one of the reasons we had to move to a four-
valued logic, since now we can at least specify an interpre-
tation v′ which brings v′(p) and v′(¬p) in alignment with
v(>), in the sense that v′(p) and v′(¬p) are at least as infor-
mative as v(>), i.e. v′(p) ≥i v(>) and v′(¬p) ≥i v(>) (for
any v ∈ V4(At)).

5.3 Semantical Properties of cADF-semantics
In this section, we show central semantical results on the
semantics of cADFs. In particular, we show some relation-
ships between the semantics, and we show under which con-
ditions admissible, complete, grounded and preferred inter-
pretations are guaranteed to exist.

We start by observing that, just like for ADFs, complete
interpretations are admissible:

Proposition 6. Let a cADF Π and a complete interpretation
v for Π be given. Then v is admissible.
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Proof. Suppose v is complete for Π. Then v ∈ ΓΠ(v) and
thus v ≤i v′ for some v′ ∈ ΓΠ(v).

For showing the existence of admissible and preferred in-
terpretations, it will be useful to limit attention to what we
will call well-formed cADFs. The main idea is that we
want to avoid cADFs Π for which ΓΠ(v) = ∅ for some
v ∈ V4(At), as occurs in e.g. the following example:

Example 10. Π = {pC>,¬pC>, p ∨ ¬pC p}.

v ΓΠ(v) v ΓΠ(v)
T {I} F {I}
U {I} I ∅

Notice that Γ(I) = ∅.
Definition 9. A well-formed cADF is a cADF Π s.t.
ΓΠ(v) 6= ∅ for any v ∈ V4(At).

We observe that a syntactic sufficient condition for well-
formedness of a cADF Π is to simply require that for every
acceptance pair φCψ ∈ Π, the statement φ is a logically
contingent formula. We call such cADFs unconstrained:

Definition 10. A cADF Π is unconstrained iff for every
φCψ ∈ Π, φ is logically contingent.

We explain the term of unconstrained cADF as follows.
Notice that an acceptance pair φCψ, where φ is a tautol-
ogy or a falsity, can be seen as a constraint, in the sense
that it forces ψ to be set to the value of φ (i.e. v(ψ) = T
if φ is a tautology and v(ψ) = F if ψ is a falsity) for any
complete extension. To see this, observe that v(φ) = T[F]
for any v ∈ V4 if φ is a tautology[falsity]. In particular,
for any v′ ∈ ΓΠ(v), it will hold that v(φ) = T[F]. It
is quite interesting that the framework naturally allows for
the formulation of constraints, but for the development of
the meta-theory, it will prove useful to restrict attention to
well-formed cADFs. It is an interesting question for future
work to see whether constrained argumentation frameworks
(Coste-Marquis, Devred, and Marquis 2006) can be captured
using such constraints.

Proposition 7. Any unconstrained cADF Π is well-formed.

Proof sketch. Suppose that Π is an unconstrained cADF. It
can be shown that for every φCψ ∈ Π, vI(φ) = I . Thus,
for every v′ ∈ V4(At) there is some v ∈ V4(At) (namely
v = vI) s.t. v(φ) ≥i v′(ψ) for every φCψ ∈ Π. Since ≤i
is well-founded and Π is finite, ΓΠ(v′) 6= ∅ for any v′ ∈
V4(At).

However, there are well-formed cADFs that are not un-
constrained:

Example 11. Consider Π = {a ∨ ¬aC a ∨ ¬a}. Then
clearly, for any v ∈ V4(At), ΓΠ(v) = {T} (since U(a ∨
¬a) = T with Lemma 1).

We now show the first existence result, which states that
any well-formed cADF admits admissible interpretations:

Proposition 8. For any well-formed cADF, there exists an
admissible interpretation.

Proof. For any well-formed cADF Π, ΓΠ(vU) 6= ∅. Since
vU ≤i v for any v ∈ V4(At), vU is admissible.

We immediately obtain an existence result for preferred
interpretations:

Corollary 1. For any well-formed cADF, there exists a pre-
ferred interpretation.

We now show an existence result for the complete and
grounded interpretations. This is done by first showing that
ΓΠ satisfies monotonicity under the Smyth-order (Smyth
1976). The Smyth-order �Si ⊆ ℘(V4) × ℘(V4) is defined
as follows: V1 �Si V2 iff for every v2 ∈ V2 there is some
v1 ∈ V1 s.t. v1 ≤i v2.

Remark 2. Notice that �Si is a transitive and reflexive re-
lation over ℘(V4(At)). Furthermore, �Si is a partial order
over the set of ≤i-minimal subsets V4 (i.e. �Si is transitive,
reflexive and anti-symmetric over ℘≤i

(V4(At)) = {V ′ ⊆
V4(At) | V ′ = min≤i

(V ′)}).
Proposition 9. For any well-formed cADF Π, ΓΠ is �Si -
monotonic.

Proof. First observe that for any v1 ≤i v2 and any φCψ ∈
Π, v1(ψ) ≤i v2(ψ). Suppose now that v′ ∈ V4 s.t. v′(φ) ≥i
v2(ψ) for every φCψ ∈ Π. Then v′(φ) ≥i v1(ψ) for every
φCψ ∈ Π. Thus, there is some v ∈ ΓΠ(v1) s.t. v ≤i v′.
In particular, this means that for every v′ ∈ ΓΠ(v2), there is
some v ∈ ΓΠ(v1) s.t. v ≤i v′.

Proposition 10. For any well-formed cADF Π, there exists
a complete interpretation.

Proof. Notice that since vI ≥i v for every v ∈ V4(At),
vI ≥i v1 for any v1 ∈ ΓΠ(vI) (notice that since Π is well-
formed, ΓΠ(vI) 6= ∅). Since ΓΠ is �Si -monotonic with
Proposition 9, ΓΠ(v1) �Si ΓΠ(vI) for any v1 ∈ ΓΠ(vI).
Thus, for any v1 ∈ ΓΠ(vI), there is some v2 ∈ ΓΠ(v1) s.t.
v2 ≤i v1. We can use the above line of argument to con-
struct a chain of interpretations . . . ≤i vn ≤i vn−1 ≤i
. . . v2 ≤i v1 ≤i v0 = vI s.t. for every 1 ≤ i < n,
vi ∈ ΓΠ(vi−1) and ΓΠ(vi) �Si ΓΠ(vi−1). Since V4(At)
is finite, this chain ends, i.e. there some i ∈ N s.t. vi = vi+1.
Since vi+1 ∈ ΓΠ(vi) = ΓΠ(vi+1), vi is a complete inter-
pretation (notice that ΓΠ(vi) = ΓΠ(vi+1) follows from the
anti-symmetry of�Si over ℘≤i

(V4(At)) (Remark 2) and the
fact that ΓΠ(v) ∈ ℘≤i

(V4(At)) for any v ∈ V4(At)).

We immediately obtain an existence result for the
grounded interpretation as well:

Corollary 2. For every well-formed cADF Π, there exists a
grounded interpretation.

Another useful order on ℘(V4) × ℘(V4) is the Hoare-
order �Hi defined as: V1 �Si V2 iff for every v1 ∈ V1 there
is some v2 ∈ V2 s.t. v1 ≤i v2.

Proposition 11. For every well-formed cADF Π s.t. ΓΠ is
�Hi -monotonic, if v is preferred then it is complete.
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Property Condition on Π Result
∃ of admissible int. well-formed Prop. 8
∃ of preferred int. well-formed Cor. 1
∃ of complete int. well-formed Prop. 10
∃ of grounded int. well-formed Cor. 2

preferred ⊆ complete
well-formed &
�Hi -monotonic Prop. 11

Table 1: Summary of results from Section 5.3

Proof. Let a well-formed cADF Π s.t. ΓΠ is�Hi -monotonic
be given and consider a preferred interpretation v ∈ V4(At).
Suppose towards a contradiction that v 6∈ ΓΠ(v). Since v is
preferred, it is admissible and thus there is some v′ ∈ ΓΠ(v)
s.t. v ≤i v′. Since v 6∈ ΓΠ(v), v <i v′. With �Hi -
monotonicity of ΓΠ, we obtain that Γ(v) �Hi Γ(v′) and
thus there is some v′′ ∈ Γ(v′) s.t. v′ ≤i v′′. But then v′
is admissible, contradicting v being preferred.

We observe, however, that not every cADF has a �Hi -
monotonic ΓΠ function:

Example 12. Let Π = {p ∨ (q ∧ s)C s, p ∧ qC s} over the
signature {p, q, s}. Then ΓΠ(UUT) = {UTT,TUU} and
ΓΠ(TUT) = {TTU}. Since UUT ≤i TUT, yet there is no
v ∈ ΓΠ(TUT) s.t. UTT ≤i v, we see that ΓΠ is not �Hi -
monotonic.

We summarize our results in Table 1.

6 Grounded Interpretations and the
Grounded State

One of the crucial properties of ADFs is that a unique
grounded interpretation is guaranteed to exist. This property
does not generalize to the grounded semantics of cADFs, in
view of the indeterminism that cADFs allow to express. As
a case in point consider Π = {p ∨ qC>}, which has two
≤i-minimal complete interpretations: v1 and v2 with:

v1(p) = T v1(q) = U and v2(p) = U v2(q) = T

Thus, there might be cADFs that do not have a unique
grounded interpretation. This might be seen as problematic,
since the grounded interpretation for ADFs can be calcu-
lated efficiently and straightforwardly by iterating ΓD start-
ing from vU. Since the grounded interpretation vg is ≤i-
minimally complete and unique for ADFs, it approximates
any other complete interpretation of the ADF in question (in
the sense that vg ≤i v for any complete interpretation v). We
are now interested in defining a similar concept for cADFs,
that is, a unique representation of the ≤i-minimal informa-
tion expressed by a cADF that can be unambigously ob-
tained by application of ΓΠ and approximates any complete
interpretation. This can be done by looking at a set of inter-
pretations instead of a single interpretation. We note that this
idea is not new. For example, many well-founded semantics
for disjunctive logic programming take up this idea, result-
ing in a well-founded state (Baral, Lobo, and Minker 1992;

Alcântara, Damásio, and Pereira 2005).2 Accordingly, we
will be interested in a grounded state V ′ ⊆ V4(At) that rep-
resents the minimal knowledge entailed by a cADF. This
grounded state can be defined as the�Si -minimal fixpoint of
Γ′Π, a generalization of ΓΠ to sets of interpretations. Γ′Π is
obtained as follows:
Definition 11. Given a cADF Π and V ′ ⊆ V4(At):

Γ′Π(V ′) = min
≤i

⋃

v∈V′

ΓΠ(v)

The following fact gives an equivalent characterization
of Γ′Π, which avoids the superfluous ≤i-minimization in
ΓΠ(v):
Fact 3. Given a cADF Π and V ′ ⊆ V4(At), Γ′Π(V ′) =

min
≤i

{v′ ∈ V4 | ∃v ∈ V ′ : ∀φCψ ∈ Π : v′(φ) ≤ v(ψ)}

Proof. Let some cADF Π and V ′ ⊆ V4(At) be given. Then
Γ′Π(V ′) = min≤i

⋃
v∈V′ ΓΠ(v) by definition. By definition

of ΓΠ, this means that Γ′Π(V ′) = min≤i

⋃
v∈V′ min≤i

{v′ ∈
V4 | v′(φ) ≥i v(ψ) for every φCψ ∈ Π}. But then
Γ′Π(V ′) = min≤i{v′ ∈ V4 | ∃v ∈ V ′ : ∀φCψ ∈ Π :
v′(φ) ≤ v(ψ)}.
Definition 12. Let a cADF Π be given. Then we say V ′ ⊆
V4(At) is:
• a complete state (for Π) iff V ′ = Γ′Π(V ′).
• a grounded state (for Π) iff V ′ is a �Si -minimally com-

plete state (for Π).
Proposition 12. Let a cADF Π be given. Then there exists
a unique grounded state which can be obtained by iterating
Γ′Π, starting with vU.

Proof. We now show that Γ′Π is a �Si -monotonic opera-
tor over ℘≤i

(V4(At)). For this, define GΠ(v) = {v′ ∈
V4(At) | v′(φ) ≥i v(ψ) for every ψCφ}. We first show
that V1 �Si V2 implies

⋃
v∈V1 GΠ(v) �Si

⋃
v∈V2 GΠ(v).

Indeed, consider some v2 ∈
⋃
v∈V2 GΠ(v). This means that

v2(ψ) ≥i v(φ) for some v ∈ V2 and every φCψ ∈ Π.
Since V1 �Si V2, there is some v′ ∈ V1 s.t. v′ ≤i v.
Thus, v′(ψ) ≤i v(ψ) for every φCψ ∈ Π (Proposition
4). Thus, v2(ψ) ≥i v′(φ) for every φCψ ∈ Π and
v2 ∈

⋃
v∈V2 GΠ(v). Since Γ′Π(V2) ⊆ ⋃

v∈V2 GΠ(v), we
derive that

⋃
v∈V1 GΠ(v) �Si Γ′Π(V2). In other words, for

every v2 ∈ Γ′Π(V2) there is some v1 ∈
⋃
v∈V1 GΠ(v) s.t.

v1 ≤i v2. Since Γ′Π(V1) = min≤i

⋃
v∈V1 GΠ(v), it follows

that Γ′Π(V1) �Si Γ′Π(V2).
We now show Γ′Π admits a �Si -minimal fixpoint. This

fixpoint is constructed by applying Γ′Π iteratively, starting
with vU (recall vU(a) = U for every a ∈ At). Since
vU ≤i v for any v ∈ V4(At), vU �Si ΓΠ(vU). By the

2Some semantics explicitly use the idea of a set of interpreta-
tions (Alcântara, Damásio, and Pereira 2005), whereas other se-
mantics are phrased syntactically, resulting in a set of disjunctions
(Baral, Lobo, and Minker 1992), which is clearly equivalent to a
set of interpretations (see also (Seipel, Minker, and Ruiz 1997).
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�Si -monotonicity of ΓΠ, ΓαΠ(vU) �Si ΓβΠ(vU) for any or-
dinals α, β with α ≤ β. Since At(Π) is finite, this chain
reaches an endpoint, i.e. for some ordinal γ, ΓγΠ(vU) =
Γγ+1Π(vU). Thus, we have shown that ΓΠ(vU) admits a
fixpoint. To show that this fixpoint is the �Si -minimal fix-
point, consider some V ′ ⊆ V4(At) s.t. ΓΠ(V ′) = V ′. Since
V ′ = ΓΠ(V ′) = min≤i

(
⋃
v∈V′ GΠ(v)), V ′ ∈ ℘≤i

(V(At)).
Notice that vU �Si V ′. Since ΓΠ is �Si -monotonic, for any
ordinal α, ΓαΠ(vU) �Si Γα(V ′). Since V4 is a fixpoint of ΓΠ,
this means ΓαΠ(vU) �Si V ′ for any ordinal α. In particular
this holds for the ordinal γ for which ΓγΠ(vU) = Γγ+1Π(vU).
With the anti-symmetry of�Si , V ′ = ΓγΠ(vU) or ΓγΠ(vU) ≺Si
V ′.

The grounded state is a generalization of the grounded
interpretation for ADFs:
Proposition 13. For any ADF D, the grounded state coin-
cides with {v}, where v is the grounded model of D.

Furthermore, the grounded state approximates any com-
plete interpretation:
Proposition 14. For any cADF Π, where V ′ is the grounded
state for Π and v is a complete interpretation of Π, we have
that: V ′ �Si {v}.

We illustrate the construction of the grounded state with
an example:
Example 13. Let Π = {p ∨ qC>, sC p, sC q} over the
signature {p, q, s}. Then we can obtain the grounded state
for Π by the following calculation:
• The first iteration is obtained as follows:

Γ′Π({vU}) = {TUU,UTU}.
• As a second step we calculate

Γ′Π(Γ′Π(vU)) = min
≤i

(ΓΠ(TUU) ∪ ΓΠ(UTU))

= min
≤i

({TUT,UTT})

= {TUT,UTT}.
• As a third step, we calculate

Γ′Π(Γ′Π(Γ′Π(vU))) = min
≤i

(ΓΠ(TUT) ∪ ΓΠ(UTT))

= {TUT,UTT}
Since in the third step a fixed point was reached, we see that
the grounded state of Π is {TUT,UTT}. We see that the
grounded state consists of two interpretations, which both
make s true, and either make p or q true.
Remark 3. All semantics defined in this paper have been
implemented in Java using the Tweety-library. The imple-
mentation can be found online.

7 Related Work
To the best of our knowledge, no generalizations of ADFs
as we have suggested here have been proposed before. How-
ever, epistemic graphs (Hunter, Polberg, and Thimm 2020)
can be regarded as an orthogonal approach to extend the

expressivity of ADFs. There, general propositional formu-
las are interpreted through a probabilistic semantics (that is
not related to ADF semantics), thus yielding an expressive
probabilistic and argumentative formalism. Instead, we have
a purely qualitative formalism that generalises the original
ADF semantics directly.

ADFs have been generalized in other works, in particular
as to allow for the handling of weights (Brewka et al. 2018;
Bogaerts 2019). As our semantics, they allow for an exten-
sion of the set of truth-values {T,F,U} with other values.
In fact, in (Brewka et al. 2018) an instantiation of weighted
ADFs using Belnap’s four-valued logic is discussed. How-
ever, in (Brewka et al. 2018) this results in five truth-values,
since in weighted ADFs, the truth-values are always sup-
plemented with an information-theoretic minimum U that
is not part of the original set of truth-values. Furthermore,
this instantiation uses Belnap’s four-valued logic to evalu-
ate complex formulas, which means that tautologies can be
both assigned Belnap’s inconsistent and incomplete truth-
values (but never the external U-value). Finally, weighted
ADFs have the same syntax as ADFs, and thus, the syntax
of cADFs also generalize the syntax of weighted ADFs.

As a side effect of the semantics of cADFs, we obtain
also a four-valued semantics of ADFs and argumentation
frameworks. Four-valued semantics for abstract argumenta-
tion frameworks have been suggested in (Baroni, Giacomin,
and Liao 2015) and studied in (Arieli 2012). In (Arieli 2012)
argumentation labellings that map arguments to four truth
values, in, out, none and both, are defined. Adjusting no-
tation to our setting by letting T stand for in, F for out, U
for none and I for both, we see that such argumentation la-
bellings are nothing less and nothing more than four-valued
interpretations over the set of arguments. However, using
the translation of argumentation frameworks in ADFs from
(Brewka et al. 2013), we do not get an equivalence between
p-admissible labellings and admissible interpretations of the
translated argumentation frameworks.
Example 14. Consider the argumentation framework AF =
({A,B,C}, (A,B), (C,B), (C,C), (B,B)}. Then the
corresponding cADF is given by Π = {AC¬B ∧
¬C;C C¬C;BC¬B}. It can be checked that FIU is p-
admissible3 for AF, but FIU is not admissible for Π, as
ΓΠ(FIU) = {UUI}.

It remains a question for future work whether the transla-
tion of argumentation frameworks in cADFs can be adjusted
to avoid this discrepancy.

The logic 4CL we designed as a generalization of the logic
ui[v]2 underlying ADFs has not been suggested in the liter-
ature on many-valued logics, to the best of our knowledge.
The semantics of 4CL bears some similarities to that of gen-
eralized possibilistic logic (Dubois 2012), where a pair of
sets of possible worlds is used to represent the information
given by a four-valued interpretation. However, the crucial
difference is that [v]4 might consist of more than two sets of
possible worlds, and thus the logics behave quite differently.
For example, in generalized possibilistic logic, there exists

3We refer to (Arieli 2012) for definitions of p-admissible la-
bellings.
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no model that assigns to p, q and ¬p∨¬q a designated truth
value, whereas, in 4CL, vI(p) = vI(q) = vI(¬p ∨ ¬q) = I.

8 Conclusion
In this paper, we have defined and studied cADFs, which
generalize ADFs and allow for indeterminism, over- and
underspecfications. Semantics for cADFs are defined in
terms of a Γ-function mapping four-valued interpretations
to sets of four-valued interpretations. There remains still
a lot of work to be done on cADFs. As a first next
step, there are still some semantics that need to be gener-
alized form ADFs to cADFs, in particular the stable se-
mantics. Thereafter, we plan to study the computational
complexity and realizability (in the style of (Pührer 2020))
of cADFs. On the basis of these steps, we will then
have a clear view of which formalisms can be captured by
cADFs. Among the most interesting candidates for such
representational results, we have our eyes on disjunctive and
propositional logic programming (Minker and Seipel 2002;
Ferraris 2005) and logics for nonmonotonic conditionals
(Kraus, Lehmann, and Magidor 1990).
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Abstract

Abstract dialectical frameworks (in short, ADFs) are one of
the most general and unifying approaches to formal argumen-
tation. As the semantics of ADFs are based on three-valued
interpretations, the question poses itself as to whether some
and which monotonic three-valued logic underlies ADFs, in
the sense that it allows to capture the main semantic con-
cepts underlying ADFs. As an entry-point for such an in-
vestigation, we take the concept of model of an ADF, which
was originally formulated on the basis of Kleene’s three-
valued logic. We show that an optimal concept of a model
arises when instead of Kleene’s three-valued logic, possibilis-
tic logic is used. We then show that in fact, possibilistic logic
is the most conservative three-valued logic that fulfils this
property, and that possibilistic logic can faithfully encode all
other semantical concepts for ADFs. Based on this result,
we also make some observations on strong equivalence and
introduce possibilistic ADFs.

1 Introduction
Formal argumentation is one of the major approaches to
knowledge representation. In the seminal paper (Dung
1995), abstract argumentation frameworks were conceived
of as directed graphs where nodes represent arguments and
edges between these nodes represent attacks. So-called ar-
gumentation semantics determine which sets of arguments
can be reasonably upheld together given such an argumen-
tation graph. Various authors have remarked that other rela-
tions between arguments are worth consideration. For exam-
ple, in (Cayrol and Lagasquie-Schiex 2005), bipolar argu-
mentation frameworks are developed, where arguments can
support as well as attack each other. The last decades saw
a proliferation of such extensions of the original formalism
of (Dung 1995), and it has often proven hard to compare the
resulting different dialects of the argumentation formalisms.
To cope with the resulting multiplicity, (Brewka and Woltran
2010; Brewka et al. 2013) introduced abstract dialectical
argumentation that aims to unify these different dialects.
Just like in (Dung 1995), abstract dialectical frameworks (in
short, ADFs) are directed graphs. In contradistinction to ab-
stract argumentation frameworks, however, in ADFs, edges
between nodes do not necessarily represent attacks but can
encode any relationship between arguments. Such a gen-
erality is achieved by associating an acceptance condition

with each argument, which is a Boolean formula in terms
of the parents of the argument that expresses the conditions
under which an argument can be accepted. As such, ADFs
are able to capture all the major extensions of abstract argu-
mentation and offer a general framework for argumentation
based inference.

The semantics of ADFs are based on three-valued inter-
pretations assigning one of three truth values true (T), false
(F), and undecided (U) to arguments. Even though in var-
ious papers on ADFs, Kleene’s three-valued logic is men-
tioned (Brewka et al. 2013; Polberg, Wallner, and Woltran
2013; Linsbichler 2014), it is not so clear what the exact role
of this logic is, or for that matter any other monotonic three-
valued logic, in ADFs. In this paper, we make an in-depth
investigation of which three-valued logics underlie abstract
dialectical frameworks, i.e. which three-valued logics allow
to straightforwardly encode all semantical concepts used in
ADFs. The entry point of this investigation is the notion of
a model of an ADF, which was mentioned in (Brewka et al.
2013) but barely considered afterwards. We show that, in
contradistinction to a claim made by (Brewka et al. 2013),
the notion of a model of an ADF as based on Kleene’s three-
valued logic is ill-conceived, in the sense that it does not
form a generalization of the set of admissible interpretations.
We then investigate on which logics a sound notion of model
can be based, and show that no truth-functional three-valued
logic using an involutive negation allows to formulate an ad-
equate concept of model for an ADF. Furthermore, we show
that possibilistic logic (Dubois and Prade 1998) is able to
provide an adequate notion of model. In fact, this is the
least informative logic to provide such a notion. Possibilistic
logic can therefore be viewed as a monotonic base logic un-
derlying ADFs. Based on this observation, we characterize
strong equivalence of ADFs and we generalize the seman-
tics of ADFs to allow for possibility distributions as general-
ized three-valued interpretations as a basic semantic unit for
ADFs. We illustrate the fruitfulness of this generalization
by allowing for possibilistic constraints on arguments.
Outline of this paper: We first state all the necessary pre-
liminaries in Section 2 on propositional logic (Sec. 2.1),
three-valued logics (Sec. 2.2), possibility theory (Sec.2.3)
and ADFs (Sec. 2.4). In Section 3 we answer the question
which logics underlie ADFs, by first recalling and general-
izing the notion of model for an ADF (Sec. 3.1), then show-
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ing that possibilistic logic underlies ADFs in Section 3.2
and thereafter making a study of the relation between truth-
functional three-valued logics and ADFs, starting with some
general observations (Sec. 3.3) before moving to more spe-
cific results on three-valued logics using an involutive, para-
consistent and intuitionistic negation. Thereafter, we use the
fact that possibilistic logic underlies ADFs to draw some
consequences on strong equivalence for ADFs (Sec. 4) and
generalize the semantics of ADFs to allow for possibility
distributions instead of three-valued interpretations as a ba-
sic semantic unit, allowing for a generalization of ADFs we
call possibilistic ADFs in Sec. 5. Related work is discussed
in Sec. 6 and in Sec. 7 the paper is concluded.

2 Preliminaries
In this section the necessary preliminaries on propositional
logic (Section 2.1), three-valued logics (Section 2.2), possi-
bility theory (Section 2.3), and abstract dialectical argumen-
tation (Section 2.4) are introduced.

2.1 Propositional logic
For a set At of atoms let L(At) be the corresponding propo-
sitional language constructed using the usual connectives ∧
(and), ∨ (or), and ¬ (negation). A (classical) interpretation
(also called possible world) ω for a propositional language
L(At) is a function ω : At → {T,F}. Let Ω(At) denote the
set of all interpretations for At. At(φ) is the set of all atoms
used in a formula φ ∈ L(At). We simply write Ω if the set
of atoms is implicitly given. An interpretation ω satisfies (or
is a model of) an atom a ∈ At, denoted by ω |= a, if and
only if ω(a) = T. The satisfaction relation |= is extended to
formulas as usual.

As an abbreviation we sometimes identify an interpreta-
tion ω with its complete conjunction, i. e., if a1, . . . , an ∈
At are those atoms that are assigned T by ω and
an+1, . . . , am ∈ At are those propositions that are assigned
F by ω we identify ω by a1 . . . anan+1 . . . am (or any per-
mutation of this).

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |=
φ for every φ ∈ Φ. Define the set of models [X] = {ω ∈
Ω(At) | ω |= X} for every formula or set of formulas X . A
formula or set of formulas X1 entails another formula or set
of formulas X2, denoted by X1 `PL X2, if [X1] ⊆ [X2].

2.2 Three-valued logics
A 3-valued interpretation for a set of atoms At is a function
v : At→ {T,F,U}, which assigns to each atom in At either
the value T (true, accepted), F (false, rejected), or U (un-
known). The set of all three-valued interpretations for a set
of atoms At is denoted by V(At). A 3-valued interpretation
v can be extended to arbitrary propositional formulas over
At using various logic systems L. Therefore, we will, given
an interpretation v ∈ V(At), denote the truth-value assigned
by a logic system L to a formula φ as vL(φ).1 Thus, a logic
system L is defined as a function assigning a truth value to

1Notice that vL(α) = vL
′
(α) for any α ∈ At and any two

three-valued logics L and L′.

every formula-interpretation-pair. The (three-valued) mod-
els of a formula φ ∈ L(At) for a logic system L are defined
as VL(φ) = {v ∈ V(At) | vL(φ) = T}.2 A consequence re-
lation `L⊆ ℘(L(At)) × L(At)) can then be defined as usual
by setting Γ `L φ iff VL(φ) ⊇ ⋂γ∈Γ VL(γ). Thus, a logic
system L : V(At) × L(At) → {T,F,U} gives rise to a con-
sequence relation which is most commonly associated with
a logic, and we shall therefore often refer to logic systems
as simply logics.

A particular useful class of logics are truth-functional log-
ics:
Definition 1. We say a three-valued logic L is truth-
functional for an n-ary connective ∗, if for every
φ1, . . . , φn, φ

′
1, . . . , φ

′
n ∈ L(At), vL(φi) = vL(φ′i) for every

1 ≤ i ≤ n implies vL(∗(φ1, . . . , φn)) = vL(∗(φ′1, . . . , φ′n)).
We also introduce a rather weak notion of relevance,

which expresses that the truth-value of atoms not occurring
in a formula φ should not have any impact on the truth-value
assigned by L to that formula φ.
Definition 2. A logic L satisfies relevance iff for any φ ∈
L(At) and s ∈ At, if s 6∈ At(φ) then for any v1, v2 ∈ V(At),
v1(s′) = v2(s′) for any s′ ∈ At \ {s} implies vL1(φ) =
vL2(φ).

This notion of relevance is very similar to the property of
independence (Kern-Isberner, Beierle, and Brewka 2020).
Notice that any truth-functional logic satisfies relevance.

We assume two commonly-used orders ≤i and ≤T over
{T,F,U}. ≤i is obtained by making U the minimal element:
U <i T and U <i F and this order is lifted pointwise as
follows (given two valuations v, w over At): v ≤i w iff
v(s) ≤i w(s) for every s ∈ At. ≤T is defined by F ≤T

U ≤T T and can be lifted pointwise in a similar fashion.
It will sometimes prove useful to compare logics w.r.t.

their conservativeness:
Definition 3. Given two logics L and L′, L is at least as
conservative than L′ iff for every φ ∈ L(At) and every v ∈
V(At), vL(φ) ≤i vL

′
(φ).

As an example, we consider Kleene’s logic K.

Kleene’s Logic K A 3-valued interpretation v can be
extended to arbitrary propositional formulas over At via
Kleene semantics (Kleene et al. 1952):

1. vK(¬φ) = F iff vK(φ) = T, vK(¬φ) = T iff vK(φ) = F,
and vK(¬φ) = U iff vK(φ) = U;

2. vK(φ∧ψ) = T iff vK(φ) = vK(ψ) = T, vK(φ∧ψ) = F iff
vK(φ) = F or vK(ψ) = F, and vK(φ∧ψ) = U otherwise;

3. vK(φ∨ψ) = T iff vK(φ) = T or vK(ψ) = T, vK(φ∨ψ) =
F iff vK(φ) = vK(ψ) = F, and vK(φ∨ψ) = U otherwise.

Proposition 1. Kleene’s Logic K is truth-functional and sat-
isfies semantic relevance.3

2Notice that we assume that T is the only designated value. In
e.g. paraconsistent logics, also U is taking as a second designated
value. However, we stick to the orthodoxy for ADFs and interpret
the third truth-value U as “unknown” and therefore not designated.

3This follows immediately from the fact that Kleene’s logic is
truth-compositional as defined in e.g. (Chemla and Égré 2019).
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2.3 Possibility theory and possibilistic logic
In this subsection, we introduce all necessary preliminaries
from possibility theory and possibilistic logic. For more
elaborate introductions to possibility theory, we refer the
reader to (Dubois and Prade 1993).

Preliminaries from possibility theory Given a set of
atoms At, a possibility distribution is a mapping π :
Ω(At) → [0, 1]. We denote the set of possibility distri-
butions over At by P(At). π is normal if there is some
ω ∈ Ω(At) s.t. π(ω) = 1. A possibility distribution
can be compared using the principle of minimum specificity
(Dubois and Prade 1986):
Definition 4. Given two possibility distributions π and π′,
π ≤s π′ iff π(ω) ≤ π′(ω) for every ω ∈ Ω(At).

A possibility distribution induces two measures or de-
grees that say something about formulas, the possibility de-
gree Ππ : L(At) → [0, 1] and the necessity degree Nπ :
L(At)→ [0, 1]. They are defined as follows:
Definition 5. Given a possibility distribution π and a for-
mula φ ∈ L(At):
• Ππ(φ) = sup{π(ω) | ω |= φ}.
• Nπ(φ) = 1−Ππ(¬φ) = inf{1− π(ω) | ω |= ¬φ}.
Possibilistic logic In (Dubois and Prade 1998), a three-
valued logic inspired by possibility theory is presented
which is based on defining lower and upper bounds of the
evaluation of a formula using a possibility and a necessity
measure. In more detail, given a three-valued interpretation
v over At, the set of two-valued interpretations extending a
valuation v is defined as [v]2 = {w ∈ Ω(At) | v ≤i w}.4
Definition 6. Given v ∈ V(At), the necessity measure Nv
and the possibility measure Πv based on v are functions :
Nv : L(At)→ {T,F} and Πv : L(At)→ {T,F}

Πv(φ) =

{
T iff ω |= φ for some ω ∈ [v]2

F otherwise

Nv(φ) =

{
T iff ω |= φ for every ω ∈ [v]2

F otherwise

We can now derive a three-valued evaluation vposs :
L(At)→ {T,F,U} by stating that:5

vposs(φ) =





T iff Nv(φ) = T

U iff Nv(φ) = F and Πv(φ) = T

F iff Nv(φ) = Πv(φ) = F

Example 1. Consider the interpretation v over {a, b} with
v(a) = v(b) = U. Notice that Nv(a ∨ ¬a) = T and thus
vposs(a ∨ ¬a) = T. However, Nv(a ∨ b) = Nv(¬a) = F
and Πv(a ∨ b) = Πv(¬a) = T. Thus, even though v(a) =
vposs(¬a) = v(b) = U, vposs(a ∨ b) 6= vposs(a ∨ ¬a).

4In (Ciucci, Dubois, and Lawry 2014), instead of two-valued
interpretations extending a valuation, the notion of epistemic set
Ev is used, which defined as: Ev = {v′ ∈ Ω | v ≤i v

′}. It is clear
that Ev = [v]2 for any v ∈ V .

5Notice that this enumeration of cases is exhaustive, as for any
v ∈ V(At) and any φ ∈ L(At),Nv(φ) ≤T Πv(φ).

Proposition 2. poss is not truth-functional but satisfies rel-
evance.

Remark 1. It can be seen that the possibility and neces-
sity measures given a three-valued interpretation v defined
in Definition 6 are particular cases of possibility and neces-
sity measures given a possibility distribution π. In more de-
tail, given an interpretation v, set πv(ω) = 1 if ω ∈ [v]2 and
πv(ω) = 0 otherwise. Then Πv(φ) = T[F] iff Ππ(v) = 1[0]
and Nv(φ) = T[F] iff Nπ(v) = 1[0]. We call the set of pos-
sibility distributions π : Ω(At) → {0, 1} the set of binary
possibility distributions. Clearly, the set of normal binary
possibility distributions coincides with {πv | v ∈ V(At)}.

2.4 Abstract dialectical frameworks
We briefly recall some technical details on ADFs following
loosely the notation from (Brewka et al. 2013). An ADF D
is a tuple D = (At, L, C) where At is a set of statements,
L ⊆ At × At is a set of links, and C = {Cs}s∈At is a set
of total functions Cs : 2parD(s) → {T,F} for each s ∈ At
with parD(s) = {s′ ∈ At | (s′, s) ∈ L} (also called ac-
ceptance functions). An acceptance function Cs defines the
cases when the statement s can be accepted (truth value T),
depending on the acceptance status of its parents in D. By
abuse of notation, we will often identify an acceptance func-
tionCs by its equivalent acceptance condition which models
the acceptable cases as a propositional formula. We denote
by D(At) the set of all ADFs which can be formulated on
the basis of At.

Example 2. We consider the following ADF D1 =
({a, b, c}, L, C) with L = {(a, b), (b, a), (a, c), (b, c)} and:

Ca = ¬b Cb = ¬a Cc = ¬a ∨ ¬b
Informally, the acceptance conditions can be read as “a is
accepted if b is not accepted”, “b is accepted if a is not ac-
cepted” and “c is accepted if a is not accepted or b is not
accepted”.

An ADF D = (At, L, C) is interpreted through 3-valued
interpretations v ∈ V(At). The topic of this paper is which
logics can be used to extend v to complex formulas in way
that is suited for ADFs. Given a set of valuations V ⊆ V ,
uiV (s) := v(s) if for every v′ ∈ V , v(s) = v′(s) and
uiV (s) = U otherwise. The characteristic operator is de-
fined by ΓD(v) : At → {T,F,U} where s 7→ ui{w(Cs) |
w ∈ [v]2}. Thus, ΓD(v) assigns to s the truth-value that all
two-valued extensions of v assign to the condition Cs of s,
if they agree on Cs, and U otherwise.

Definition 7. LetD = (At, L, C) be an ADF with v : At→
{T,F,U} an interpretation:

• v is a 2-valued model iff v ∈ Ω(At) and v(s) = v(Cs) for
every s ∈ At.

• v is admissible for D iff v ≤i ΓD(v).
• v is complete for D iff v = ΓD(v).
• v is preferred for D iff v is ≤i-maximal among the ad-

missible interpretations for D.
• v is grounded for D iff v is ≤i-minimal among the com-

plete interpretations for D.
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We denote by 2mod(D), admissible(D), complete(D),
preferred(D), respectively grounded(D) the sets of 2-
valued models and admissible, complete, preferred, respec-
tively grounded interpretations of D.

Example 3 (Example 2 continued). The ADF of Ex-
ample 2 has three complete models v1, v2, v3 with:
v1(a) = T v1(b) = F v1(c) = T
v2(a) = F v2(b) = T v2(c) = T
v3(a) = U v3(b) = U v3(c) = U

v3 is the grounded interpretation whereas v1 and v2 are pre-
ferred interpretations as well as 2-valued models.

3 Logics for ADFs
In this section, we ask the question of which three-valued
logics qualify as a logic for ADFs. In particular, given a
set of statements At, we will be interested in which logic
V(At) × L(At) → {T,F,U} can be reasonably said to un-
derlie ADFs. We first recall the notion of a model for ADFs
as introduced by (Brewka et al. 2013) and show it is flawed,
after which we define models parametrized to a logic. In
section 3.2, we show that models parametrized to the logic
based on possibility-necessity pairs gives rise to a plausi-
ble notion of model. Finally, in section 3.3, we show that
there are truth-functional logics that give rise to plausible
notions of models, but they commit one to assign determi-
nate truth-values to formulas to which poss assigns the un-
decided truth-value.

3.1 ADF-models
In (Brewka et al. 2013), models are defined as follows:

Definition 8. An interpretation v is a model of an ADFD =
(At, L, C) iff v(s) 6= U implies v(s) = vK(Cs) for every
s ∈ At.

In (Brewka et al. 2013) we find the following claim:
“Note that admissible interpretations (as well as the special
cases complete and preferred interpretations to be defined
now) are actually three-valued models.” The following ex-
ample shows that this claim does not hold:

Example 4. D = ({a, b}, L, C) with Ca = b ∨ ¬b and
Cb = b. Consider the interpretation v with v(a) = T and
v(b) = U. Since ui[v]2(b ∨ ¬b) = T and ui[v]2(b) = U,
v is complete. However, vK(b ∨ ¬b) = U and thus v(a) 6=
vK(Ca), i.e. v is not a model.

One can notice that in (Brewka et al. 2013), Kleene’s logic
is only used in the definition of models. For all of the other
semantics, no reference to Kleene’s logic is made. Instead,
the ΓD-operator is used, which makes use of the comple-
tions [v]2 of an interpretation v. Thus, models are the only
concepts based on Kleene’s logic in (Brewka et al. 2013).

We can now generalize the concept of a model by param-
eterizing it with the underlying logic L as follows:

Definition 9. Given a logic L s.t. L : V(At) × L(At) →
{T,F,U} and an ADF D, the set of L-models of D is the
set ML(D) = {v ∈ V | for every s ∈ At if v(s) 6=
U then v(s) = vL(Cs)}.

A minimal condition on the set of models is that it in-
cludes all the admissible models:
Definition 10. A logic L is admissible-preserving if
ML(D) ⊇ Admissible(D).

Notice that any admissible-preserving logic L also
guarantees that ML(D) ⊇ Sem(D) for any Sem ∈
{Preferred,Grounded,Complete} since for any Sem-
interpretation v, v is admissible.

The following result is a central first insight in the class
of admissible-preserving logics:
Lemma 1. A logic L satisfying relevance is admissible-
preserving iff vL(φ) ≥i ui[v]2(φ) for every v ∈ V(At) and
every φ ∈ L(At).6

3.2 Possibilistic logic preserves admissibility
In this section, we show that possibilistic logic poss un-
derlies ADFs. We first show the following crucial lemma,
which show that for any interpretation, vposs is identical to
ui[v]2, the latter being a central technical notion in the se-
mantics of ADFs.
Lemma 2. For any v ∈ V(At) and any φ ∈ L(At),
ui[v]2(φ) = vposs(φ).

From this Lemma it follows that poss is admissible-
preserving:
Proposition 3. Possibilistic logic poss is admissible-
preserving.

Furthermore, interestingly enough, the set of models of an
ADF under the logic poss collapses to the set of admissible
interpretations:
Proposition 4. For any ADF D, Mposs(D) =
Admissible(D).

Finally, we notice that the ΓD-function, which is of cen-
tral importance to the semantics of ADFs, can be easily
captured in possibilistic logic. Indeed, for any ADF D =
(At, L, C), v ∈ V(At) and s ∈ At, ΓD(v)(s) = vposs(Cs)
(this is immediate from Lemma 2). From this, it follows that
the set of complete models of an ADFD = (At, L, C) coin-
cides with the following set of interpretations: {v ∈ V(s) |
v(s) = vposs(Cs) for every s ∈ At}.
Remark 2. We draw some consequences from the results
above for the case of abstract argumentation frameworks
(Dung 1995). An abstract argumentation framework is a
tuple (Args, ) where Args represents a set of arguments
and  ⊆ Args × Args is an attack relation between argu-
ments. We denote by A+ = {B ∈ Args : B  A} the
set of attackers of A. It it shown in (Brewka et al. 2013)
that argumentation frameworks can be translated in ADFs
as follows: given (Args, ), D(Args, ) = (Args, , C)
where CA =

∧
B∈Args:B∈A+ ¬B. Notice that for any

A ∈ Args, CA is a conjunction of negated literals. For
such formulas, Kleene’s logic K and Poss coincide, i.e.
vK(φ) = vPoss(φ) for any φ built up solely from negated
atoms using ∨ and ∧ (Ciucci, Dubois, and Lawry 2014,

6In view of spatial restrictions, proofs have been left out, but
can be found in an online appendix.
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Prop. 4.5). It thus follows that for any argumentation frame-
work (Args, ), v is complete iff v(A) = vK(CA) for ev-
ery A ∈ Args. Likewise, other classes of formulas for
which (the non-truth-functional) poss is equivalent to (the
truth-functional) K or to other logics, is useful for classes of
ADFs, such as bipolar ADFs (Brewka and Woltran 2010;
Diller et al. 2020) and ADFs corresponding to logic pro-
grams.

3.3 Truth-functional logics
We have shown in the previous section that possibilistic
logic underlies ADFs. However, according to Proposition 2,
possibilistic logic is not truth-functional. We might therefore
ask whether there are some truth-functional three-valued
logics that can be seen as a logic for ADFs. A first obser-
vation we make is that for any admissible-preserving three-
valued logic (truth-functional or otherwise), either the logic
coincides with poss or the logic assigns a determinate truth-
value T or F to at least one formula φ (relative to at least one
interpretation v) for which poss evaluates φ to U. In other
words, poss is the most conservative logic that is admissible-
preserving.
Proposition 5. For any admissible preserving logic L, if
there is a φ ∈ L(At) and a v ∈ V(At) s.t. vL(φ) 6= vposs(φ),
then L is strictly less conservative than poss.

In the rest of this section, we make some observations
on what this means for truth-functional logics. To limit our
study to a sensible class of three-valued truth-functional
logics, we start by making some assumptions on the
evaluation of connectives. Firstly, we will assume that
any connective conforms with classical logic to deter-
minate truth values, i.e. for any n-ary connective ∗, if
v ∈ Ω(At), then vL(∗(φ1, . . . , φn)) = vPL(∗(φ1, . . . , φn)).
Notice that for a truth-functional logic, this means that
for every v ∈ V , vL(φi) ∈ {T,F} for every 1 ≤ i ≤ n,
implies vL(∗(φ1, . . . , φn)) = v′PL(∗(φ1, . . . , φn)) where
v′ ∈ Ω(At) s.t. v′(φi) = v(φi) for every 1 ≤ i ≤ n. For
conjunction, negation and disjunction this means that every
logic has to conform to the following partial truth-tables:
∧ F U T

F F F
U
T F T

∨ F U T

F F T
U
T T T

¬
F T
U
T F

The full range of possibilities for filling out the ¬U-cell
of the truth-table for negation results in three negations,
known as the involutive ¬i, the paraconsistent ¬p and the
intuitionistic ¬c (c stands for constructive). These negations
have the following truth-tables:

v(φ) v(¬iφ) v(¬pφ) v(¬cφ)

T F F F
U U T F
F T T T

We can show that for any truth-functional logic if the logic
is admissible-preserving, it is strictly less conservative than
poss. We notice that this can be shown without making any
assumptions on the connectives other than conformity with
classical logic.

Proposition 6. No truth-functional logic L at least as con-
servative as poss is admissible-preserving.

In passing, we notice that poss also uses an involutive
negation, which also implies that ¬, in contradistinction to
∨ and ∧, is a truth-functional connective in poss.

Fact 1. ¬ is a truth-functional, involutive negation under
poss.

In the rest of this section, we will further look at which
truth-functional logics are exactly admissible-preserving
(even though they are strictly less conservative than poss).
We shall follow (Ciucci and Dubois 2013) and assume
some very basic properties of conjunction, namely (1) ≤T-
monotonicity (i.e. if X ≤T Y then X ∧ Z ≤T X ∧ Z and
Z ∧ X ≤T Z ∧ Y for any X,Y,Z ∈ {T,F,U}) and (2) Sym-
metry (i.e. U ? T = T ? U). This results in the following
partial truth-table:

∧ F U T

F F F F
U F
T F T

In the rest of this section, we determine which truth-
functional logics with a conjunction as defined above are ad-
missible preserving, by systematically studying all options
for the cells U ∧ U, U ∧ T and T ∧ U.

Involutive negation We show that no truth-functional
logic based on an involutive negation is admissible-
preserving. Intuitively, the reason is that any such logic is
strictly more conservative than poss. A particularly relevant
example of this is a tautology like a ∨ ¬a, which is evalu-
ated to U by any truth-functional logic based on an involutive
negation if v(a) = U.

Proposition 7. There exists no truth-functional logic L with
an involutive negation that is admissible-preserving.

Paraconsistent negation When we look at truth-
functional logics using a paraconsistent negation (and
a ≤T-monotonic conjunction conformant with classical
logic), a logic can only be admissible-preserving if it
makes use of the conjunction known as Bochvar’s external
conjunction (Bochvar and Bergmann 1981) and which we
denote by ∧B. As disjunction, we use ∨1 (defined below).
These connectives have the following truth-tables:

∧B F U T

F F F F
U F F F
T F F T

∨1 F U T

F F U T
U U U T
T T T T

The main theorem of this section expresses that there ex-
ists a truth-functional three-valued logic using a paraconsis-
tent negation that is admissible-preserving, but it is strictly
less conservative than poss. Notice that the fact that this
logic is strictly less conservative than poss follows imme-
diately from Proposition 6: the main positive result here
is that there exists a truth-functional three-valued logic us-
ing a paraconsistent negation that is admissible-preserving.
Since the goal of Proposition 8 is to show merely that an
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admissible-preserving logic based on paraconsistent nega-
tion exists, no particular motivation for the choice of con-
junction and disjunction is needed, besides the fact that it
fulfils some basic properties like≥T-monotonicity and sym-
metry (and similarly for Proposition 9).

Proposition 8. L¬
p,∧B,∨1

is admissible-preserving and
strictly less conservative than poss.

Intuitionistic negation For an intuitionistic negation, we
can show similarly to the previous section that there is a
logic which is admissible-preserving (but again less conser-
vative than poss). With regards to disjunction, note that con-
formity with vposs requires that v(U∨F) = v(F∨U) = T to
ensure that e.g. vL(a ∨ ¬a) = T even when v(a) = U. The
other cells of the truth-table for disjunction can then be filled
in using conformity to classical logic and left- and right-
monotonicity. We shall use here the conjunction known as
Sette’s conjunction (Sette 1973). This is, in fact, not the only
conjunction that can be used (even though ∧B would not re-
sult in an admissible-preserving logic).7 The truth-tables for
∧S is written out below. We shall use for a disjunction ∨2 as
defined below:

∧S F U T

F F F F
U F T T
T F T T

∨2 F U T

F F T T
U T T T
T T T T

We can now show the main result of this section:

Proposition 9. L¬
c,∧S,∨2

is admissible preserving and
strictly less conservative than poss.

4 Strong equivalence
Strong equivalence (Lifschitz, Pearce, and Valverde 2001)
is a notion of equivalence for non-monotonic formalisms
which states that two knowledge bases (in this case, ADFs)
are strongly equivalent if after the addition of any new infor-
mation, the knowledge bases are equivalent (i.e. the seman-
tics coincide). On the basis of our characterisation results
in Section 3.2, one might expect to derive characterisations
of strong equivalence for ADFs. After all, in Section 3.2
we have shown that possibilistic logic is a logic underlying
abstract dialectical argumentation. Indeed, our results can
be used to derive a characterisation of strong equivalence
for ADFs. In more detail, we show that strong equivalence
for ADFs coincides with pairwise equivalence of acceptance
conditions under classical logic. Given our results from Sec-
tion 3.2, this is not surprising, as equivalence under classical
logic coincides with possibilistic logic:

Proposition 10. For any φ, ψ ∈ L(At), Vposs(φ) =
Vposs(ψ) iff φ and ψ are PL-equivalent (i.e. [φ] = [ψ]).

We first elucidate the concept of strong equivalence for
ADFs in more detail. Recall that a central concept in the

7To see this, observe that then e.g. v(a) = v(b) = U would set
vL((a ∧ b) ∨ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (¬a ∧ ¬b)) = F even though
vposs((a∧b)∨(¬a∧b)∨(a∧¬b)∨(¬a∧¬b)) = T, contradicting
Lemma 1 and the assumption that L is admissible-preserving.

definition of strong equivalence is the addition of knowl-
edge. For many formalisms, addition of knowledge can be
modelled using set-theoretic union. For ADFs, this is not
feasible for several reasons. Firstly, simply combining two
ADFs under set-theoretic union does, rather evidently, not
result in a new ADF but rather in a set of ADFs. Secondly,
one has to ensure that one models appropriately the combi-
nation of two ADFs with shared atoms. Consider e.g. two
ADFs D1 = ({a}, L1, C

1
a) and D2 = ({a}, L2, C

2
a) with

C1
a = a and C2

a = ¬a. Clearly, the combination of ADFs
has to be modelled on the basis of some logical operator
combining C1

a and C2
a in a single new condition Ca. We

specify a general model of addition of ADFs which allows
for the combination of conditions using either disjunction or
conjunction. Given a set of atoms At, an and-or-assignment
for At is a mapping � : At → {∧,∨}. Intuitively, an and-
or-assignment specifies for every atom s ∈ At whether con-
ditions for s will be combined using ∧ or using ∨. Based on
an and-or-assignment�, we can now define the combination
of two ADFs using �:
Definition 11. 8 Let D1 = (At1, L1, C1) and D2 =
(At2, L2, C2) be two ADFs and� an and-or-assignment for
At. Define D1 d�D2 = (At1 ∪At2, L1 ∪L2, C

�) with and
C� = {C�s }s∈At, where:

C�s =





C1
s�(s)C2

s if s ∈ At1 ∩ At2
C1
s if s ∈ At1 \ At2

C2
s if s ∈ At2 \ At1

Example 5. Consider D as in Example 2, D′ =
({a, b, d}, L′, C) with Ca = b, Cb = d ∧ ¬a and Cd =
¬a, and �(a) = �(b) = ∧ and �(c) = �(d) = ∨. Then
D1 d� D2 = ({a, b, c, d}, L1 ∪ L2, C

�) where:

C�a = ¬b ∧ b C�b = ¬a ∧ d ∧ ¬a
C�c = ¬a ∨ ¬b C�d = ¬a

We now define strong equivalence for ADFs as follows:
Definition 12. Two ADFs D1 = (At, L1, C1) and D2 =
(At, L2, C2) are strongly equivalent under semantics Sem
iff for any D ∈ D(At) and any and-or-assignment � for At,
Sem(D1 d� D) = Sem(D2 d� D).

For any of the admissible, complete, preferred and
grounded semantics, pairwise equivalence of conditions un-
der classical logic is a sufficient and necessary condition for
strong equivalence:
Proposition 11. Let some Sem ∈
{Admissible,Complete,Preferred,Grounded} and two
ADFs D1 = (At, L1, C1) and D2 = (At, L2, C2) be given.
Then: for every s ∈ At, Cs1 ≡PL Cs2 iff D1 and D2 are
strongly equivalent under semantics Sem.

Interestingly enough, if we restrict the and-or-
assignments allowed in combinations of ADFs, our
result above does not hold anymore. In particular, for
⊕ ∈ {∨,∧}, we say that D1 and D2 are ⊕-strongly

8Our notion of composition of ADFs is clearly a generalization
of that of (Gaggl and Strass 2014).
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equivalent if for any D ∈ D(At) and any and-or-
assignment � for At for which �(s) = ⊕ for any s ∈ At,
Sem(D1 d� D) = Sem(D2 d� D).

Proposition 12. Let some Sem ∈
{Admissible,Complete,Preferred,Grounded} and some
⊕ ∈ {∨,∧} be given. Then there exist ⊕-strongly
equivalent (under Sem) ADFs D1 = (At, L1, C1) and
D2 = (At, L2, C2) for which for some s ∈ At, Cs1 6≡PL C

s
2 .

Proof. We show the claim for � = ∧. Consider the ADFs
D1 = ({a, b, c}, L, C1) and D2 = ({a, b, c}, L, C2) with:

C1
a = ⊥ C2

a = ⊥
C1
b = ⊥ C2

b = ⊥
C1
c = ¬a ∧ b ∧ c C2

c = a ∧ ¬b ∧ c

Notice that C1
c 6≡PL C2

c . We show that for any
D3 = ({a, b, c}, L, C3), Admissible(D1 ⊗ D3) =
Admissible(D2 ⊗ D3). Indeed, notice first that for any
φ ∈ L({a, b, c}), any 1 ≤ i ≤ 2 and any x ∈ {a, b},
u[v]2(Cix ∧ φ) = F. Thus, if v ∈ Admissible(D1 ⊗ D3),
v(x) ≤i F for any x ∈ {a, b}. For any such v, u[v]2(¬a ∧
b ∧ c ∧ φ) ∈ {U,F} and u[v]2(a ∧ ¬b ∧ c ∧ φ) ∈ {U,F}.
Thus, for 1 ≤ i ≤ 2, if v ∈ Admissible(Di⊗D3), v(c) ≤i F.
Suppose now first that v(c) = U. Then v(c) ≤i v(C2

c ∧ φ)
and thus v ∈ Admissible(D1 ⊗ D3). If v(c) = F, then
clearly u[v]2(¬a∧ b∧ c∧ φ) = u[v]2(a∧¬b∧ c∧ φ) = F.
Otherwise, u[v]2(¬a ∧ b ∧ c ∧ φ) ≥i v(c) and u[v]2(a ∧
¬b ∧ c ∧ φ) ≥i v(c). Thus, v ∈ Admissible(D1 ⊗D3) im-
plies v ∈ Admissible(D2 ⊗ D3). By symmetry we obtain
Admissible(D1 ⊗D3) = Admissible(D2 ⊗D3). The proof
for other semantics is similar.

To show the claim for � = ⊕, a similar counter-example
can be constructed.

We leave the further investigation of such weaker notions
of strong equivalence for future work.

5 ADFs from the perspective of possibility
Theory

We now look further into the perspective offered by possibil-
ity theory on ADFs. In more detail, based on the strong con-
nection established between ADFs and possibilistic logic
(Sec. 3.2), we unpack the semantics of ADFs using con-
cepts known from possibility theory. This will allow us to
straightforwardly formulate generalizations of ADFs. We
first show how all semantic concepts from abstract dialec-
tical argumentation correspond to notions from possibility
theory. Thereafter, we use these correspondences to define
possibilistic ADFs.

5.1 ADFs interpreted in possibility theory
In this section we interpret the semantics of ADFs in terms
of possibility theory, and generalize the semantics of ADFs
to possibility distributions.

We start by looking closer at the information ordering.
Recall that one interpretation v is less or equally informa-
tive than v′ iff v′ assigns the same determinate truth-value to

every atom s for which v assigns a determinate truth-value.
It turns out that this is equivalent to requiring that:

Nv(s) ≤ Nv′(s) and Πv(s) ≥ Πv′(s) for every s ∈ At

or, equivalently:

Πv(s) ≥ Πv′(s) and Πv(s) ≥ Πv′(s) for every s ∈ At

Fact 2. For any v, v′ ∈ V , v ≤i v′ iff Πv(s) ≥ Πv′(s) and
Πv(s) ≥ Πv′(s) for every s ∈ At.9

From this relation, we can derive that ≤s and ≤i are
each-others converses when we look at three-valued inter-
pretations (or equivalently, normal binary possibility distri-
butions):

Proposition 13. For any interpretations v, v′ ∈ V(At), v ≤i
v′ iff πv′ ≤s πv .

Based on Fact 2, we can define the information-ordering
≤i over the set of possibility distributions P(At) as follows:
π ≤i π′ iff Ππ(s) ≥ Ππ′(s) and Ππ(s) ≥ Ππ′(s) for
every s ∈ At. In other words, more informative possibil-
ity distributions assign lower possibility measures to literals.
This might seem at first counter-intuitive, when rephrased in
terms of the dual necessity measures, the intuition becomes
clearer:

π ≤i π′ iff Nπ(s) ≤ Nπ′(s) and Nπ(s) ≤ Nπ′(s) ∀s ∈ At

Proposition 13 only generalizes to the setting of possi-
bility distributions in one direction: indeed ≤i as defined
over possibility distributions is a generalization of the re-
verse specificity-ordering:

Fact 3. For some possibility distributions π, π′ ∈ P(At),
π ≤s π′ implies π′ ≤i π.

The following examples shows that the reverse direction
of Proposition 13 does not generalize to the case of arbitrary
normal possibility distributions:

Example 6. Consider the following possibility distributions
π, π′ ∈ P({a, b}):

ω π(ω) π′(ω) ω π(ω) π′(ω)

ab 1 1 ab 0.1 1
ab 1 0.1 a b 1 1

Notice that Ππ(s) = Ππ′(s) for any literal s and thus
π ≤i π′ and π′ ≤i π. However, π and π′ are ≤s incompara-
ble, as π(ab) ≤ π′(ab) and π(ab) ≤ π′(ab). This shows that
Proposition 13 does not generalize from V(At) to P(At).

We now characterize admissible and complete interpreta-
tions in terms of possibility and necessity measures. Admis-
sible interpretations correspond to possibility distributions
for which every node s has:

• a degree of necessity equal or less than the degree of ne-
cessity of the corresponding condition Cs; and

• a degree of possibility equal or higher than the degree of
possibility of the corresponding condition Cs.

9Recall that ≤s is defined in Definition 4.
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In other words, the interval formed by the degree of possibil-
ity and necessity of Cs is a sub-interval of the correspondent
interval for s.

Completeness strengthens this by requiring the necessity
degree, respectively the possibility degree, of a node to be
equal to the corresponding degree of its condition.

Proposition 14. Given an ADF D = (At, L, C) and an in-
terpretation v ∈ V(At):

1. v is admissible iff for every s ∈ At,Nv(s) ≤ Nv(Cs) and
Πv(s) ≥ Πv(Cs) (or, equivalently Πv(¬s) ≥ Πv(¬Cs)
and Πv(s) ≥ Πv(Cs)).

2. v is complete iff for every s ∈ At, Nv(s) = Nv(Cs) and
Πv(s) = Πv(Cs) (or, equivalently Πv(¬s) = Πv(¬Cs)
and Πv(s) = Πv(Cs)).

We can now straightforwardly generalize the ADF seman-
tics to possibility distributions:

Definition 13. Given an ADFD = (At, L, C) and a normal
possibility distribution π ∈ P(At):

• π is admissible (for D) iff Ππ(¬s) ≥ Ππ(¬Cs) and
Ππ(s) ≥ Ππ(Cs) for every s ∈ At.

• π is complete (for D) iff Ππ(¬s) = Ππ(¬Cs) and
Ππ(s) = Ππ(Cs) for every s ∈ At.

• π is grounded (forD) iff π is a≤i-minimal complete pos-
sibility distribution.

• π is preferred (for D) iff π is a ≤i-maximal admissible
possibility distribution.

We can show that these semantics satisfy the following
basic argumentative properties for ADFs:

Proposition 15. Given an ADF D = (At, L, C): (1) there
exists a unique grounded possibility distribution for π; (2)
any preferred possibility distribution for π is complete.

The above proposition is shown by defining a function
GD : P(At) → P(At) that returns, for a possibility distri-
bution π, a new possibility distribution GD(π) s.t. for any
s ∈ At, ΠGD

(π)(s) = Ππ(Cs) and ΠGD
(π)(s) = Ππ(Cs).

To define such a GD-function constructively, we need some
preliminaries first. Given a set of formulas {φ1, . . . , φn} and
a possibility measure π ∈ P(At), we call the possibility-
vector of {φ1, . . . , φn} given π the vector 〈 ˙φi1 , . . . ,

˙φi1〉 s.t.
for every 1 ≤ i ≤ n, φi and φi both occur exactly once in the
vector and the vector is arranged w.r.t. ascending degree of
possibility, i.e. for j ≤ k it holds that Ππ( ˙φij ) ≤ Ππ( ˙φik).
We can now define the GD-function as follows:

Definition 14. Let a possibility distribution π ∈ P(At),
an ADF D = (At, L, C), and the possibility-vector
〈Ċsi1 , . . . , Ċsik 〉 of {Cs1 , . . . , Csn} given π be given.
Then we define GD(π) as the possibility distribution s.t.
GD(π)(ω) = supπ([Ċsij ]) for every ω ∈ [ ˙sij ] \ ⋃j−1

l=1 [ ˙sil ]

for every 1 ≤ j ≤ k.10

10This construction has been implemented in Java using the
Tweety-library. The implementation can be found online.

Thus, GD(π) is constructed iteratively, starting with the
literal ṡ for which Ππ(Ċs) is the lowest among all literals.
For all worlds satisfying ṡ, we set GD(π)(ω) = Ππ(Ċs).
Then, we take the second element ṡ′ of the possibility-
vector, and proceed similarly for all worlds satisfying ṡ′ but
not satisfying ṡ. This process is repeated for all elements of
the possibility-vector.

Example 7. Let D2 = ({a, b, c}, L, C) with:

Ca = ¬b ∧ ¬c Cb = ¬a Cc = c

and consider π1 defined by:

ω π1(ω) ω π1(ω) ω π1(ω) ω π1(ω)

abc 0.1 abc 0.2 abc 0.3 abc 1.0
abc 0.3 abc 0.2 abc 0.1 abc 0.1

π gives rise to the following possibility measures for accep-
tance conditions and their negation:

φ Ca ¬Ca Cb ¬Cb Cc ¬Cc
Ππ(φ) 1.0 0.3 0.3 1.0 0.3 1.0

This results in the following possibility-vector for D
given π: 〈Ca, Cb, Cc, Cb, Ca, Cc〉.

Since Ca occurs first in the possibility-vector, we
set GD(π)(abc) = GD(π)(abc) = GD(π)(abc) =
GD(π)(abc) = 0.3. Since Ππ(Cb) = Ππ(Cc), we
proceed similarly with all worlds that satisfy c or b, i.e.
GD(π)(abc) = GD(π)(abc) = GD(π)(abc) = 0.3.

Then, we proceed to the next element of the possibility-
vector, Cb, and, since Ππ(Cb) = 1.0, we set GD(π) for
every world that satisfies b but does not satisfy a, c or b
(i.e. every element of [b] \ ([a] ∪ [c] ∪ [b])) to 1.0. Thus,
GD(π)(abc) = 1.0. Since every world in Ω(At) has been
assigned a value, the construction of GD(π) is finished.

The GD-function is a faithful generalization of the ΓD-
operator (in view of Remark 1):

Proposition 16. For any ADFD and any three-valued inter-
pretation v ∈ V(At), ΠΓD(v)(s) = T[F] iff ΠGD(πv)(s) =
1[0] and NΓD(v)(s) = T[F] iff NGD(πv)(s) = 1[0].

Thus, the information order, as well as the semantics of
ADFs can all be straightforwardly rephrased using possibil-
ity measures Π and necessity measures N . On the basis of
this interpretation, the semantics for ADFs were generalized
from three-valued interpretations – which can be viewed as
binary possibility distributions) – to arbitrary possibility dis-
tributions. In the next section, we use this generalization to
define possibilistic ADFs.

5.2 Possibilistic ADFs
We now introduce possibilistic ADFs as a a quantitative ex-
tension of ADFs, which can assign a degree of plausibility
to the acceptance of nodes. This allows, among others, the
incorporation of possibilistic constraints on nodes and their
acceptance condition.

Definition 15. An ADF with possibilistic constraints
(pADF) is a tuple D = (At, L, C, ρ) where (At, L, C) is
an ADF and ρ : At→ [0, 1].
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The intuitive interpretation of ρS is that they form an up-
per limit on the possibility of the nodes of an pADF.

Example 8. Consider the following pADF:

D = ({a, b, c}, L, {Ca = ¬b ∧ ¬c, Cb = ¬a,Cc = c},
{ρ(a) = 1, ρ(b) = 0.8, ρ(c) = 0.4})

Definition 16. Given a pADF D = ((At, L, C, ρ), a normal
possibility distribution π : S → [0, 1] is:

• p-permissible (for D) iff Ππ(s) ≤ ρ(s) for every s ∈ At.
• p-admissible (for D) iff it is admissible and p-permissible

for D.
• p-complete (for D) iff it is complete and p-permissible for
D.

• p-grounded (for D) if it is ≤i-least specific p-complete
interpretation for D.

• p-preferred (for D) if it is a ≤i-maximal p-admissible in-
terpretation for D.

Example 9. The following possibility distributions is p-
grounded for the pADF D from Example 8:

ω π1(ω) ω π1(ω) ω π1(ω) ω π1(ω)

abc 0.4 abc 0.8 abc 0.4 abc 1
abc 0.4 abc 0.8 abc 0.4 abc 0.8

The following distributions is p-preferred for D:

ω π2(ω) ω π2(ω) ω π2(ω) ω π2(ω)

abc 0 abc 0 abc 0 abc 1
abc 0 abc 0 abc 0 abc 0

Notice that the grounded possibility distribution for D =
({s, c}, L, {Cs = ¬c, Cc = ¬s}) is not p-complete for D.
Indeed, the grounded extension forD is given by π3(ω) = 1
for every ω ∈ [{a, b, c}]. To see that π3 is not p-complete
for D, it suffices to observe that Ππ3(b) = 1 > ρ(b) = 0.8.

We remark here that there might not exist a unique p-
grounded extension for a given pADF. Furthermore, there
might be pADFs for which there do not exist even p-
admissible extensions. For example, if we change ρ(a) =
0.9 in the pADF from Example 8 there does exist a normal
p-admissible possibility distribution. A pADF for which no
p-admissible extensions exist can be seen as faultily speci-
fied model. This is not unlike epistemic approaches to prob-
ablistic argumentation (Hunter and Thimm 2017), where
certain requirements such as coherence w.r.t. an argumen-
tation framework are required in order to ensure a good fit
between a probability function and an argumentation frame-
work (Hunter and Thimm 2017). We leave the investigation
of such requirements for pADFs for future work.

6 Related work
In this paper, we have investigated three-valued monotonic
logics underlying ADFs. To the best of our knowledge, this
work is the first systematic such study, but there are some
works which contain some similar results or questions. In
(Baumann and Heinrich 2020), it is shown that there is no
truth-functional three-valued logic L s.t. for every v ∈ V(At)

and every φ ∈ L(At), vL(φ) = ui[v]2(φ). Lemma 1 is
a generalization of this result. Our paper continues where
(Baumann and Heinrich 2020) stopped, since we show
which truth-functional logics are admissible-preserving, and
that there is a non-truth-functional monotonic three-valued
logic, poss for which vposs(φ) = ui[v]2(φ) for every v ∈
V(At) and every φ ∈ L(At). In (Heyninck and Kern-
Isberner 2020) ADFs are translated in autoepistemic logic
via epistemic models, which are related to possibilistic logic
(Ciucci and Dubois 2012).

With respect to the possibilistic ADFs introduced in this
paper, we make a comparison with weighted ADFs (Brewka
et al. 2018). Weighted ADFs generalize ADFs by allowing
interpretations which map nodes to elements of VU, which is
a complete partial order constructed on the basis of a chosen
set V of values combined with the U-value, which forms the
≤i-least element under the information order over VU. This
is a very general model of weighted argumentation, which
possibilistic ADFs cannot lay claim to. On the other hand,
in possibilistic ADFs, there is no need to postulate an addi-
tional value U, since it arises naturally from the possiblistic
semantics as a discrepancy between the necessity measure
N and the possibility measure Π. (Wu et al. 2016) defines
fuzzy argumentation frameworks, where arguments and at-
tacks are assigned a degree of belief. The central concept
in this work is the concept of a tolerable attack which is an
attack such that the belief in the attacked argument is not
greater than the composition (according to an appropriate
composition operator such as the Gödel t-norm) of the be-
lief in the attacking argument and the belief in the attack.
Argumentation semantics can then be defined using this con-
cept of weakening attack. (Janssen, De Cock, and Vermeir
2008) uses a similar semantics. It can be seen that these se-
mantics are dependent on the syntactical structure of argu-
mentation frameworks consisting of arguments and attacks.
Furthermore, it should be noticed that even though possib-
listic logic is related to fuzzy logic, they are far from equiv-
alent. Among the most poignant differences between these
two formalisms in our setting is probably truth-functionality.
For example, given the fuzzy degree of belief in two for-
mulas φ1 and φ2, one can exactly determine the fuzzy de-
gree of belief in φ1 ∧ φ2, whereas based on the possibil-
ity measure assigned to φ1 and φ2 according to π, one can
merely determine an upper bound min{Ππ(φ1),Ππ(φ2)}
on Ππ(φ1 ∧ φ2).

7 Conclusion
In this paper, we have investigated monotonic three-valued
logics that underlie abstract dialectical argumentation. The
central result is that possibilistic logic is closely related to
abstract dialectical argumentation, as it is the most conser-
vative admissible-preserving logic, and allows to straight-
forwardly codify all central semantical notions from abstract
dialectial argumentation. We have also exhaustively investi-
gated the ADF-related properties of truth-functional three-
valued logics, showing that truth-functional logics using
involutive negation are not admissible-preserving, whereas
there exist admissible-preserving truth-functional logics us-
ing an intuitionistic or paraconsistent negation, but these are
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strictly less conservative than possibilistic logic. Further-
more, we have illustrated the fruitfulness of our results by
(1) characterising strong equivalence and (2) proposing pos-
sibilistic ADFs, which allow for quantitative reasoning in
ADFs in a way that faithfully generalizes (qualitative) rea-
soning in ADFs. We believe that the connection between
possibilistic logic and possibility theory on the one hand,
and (abstract) argumentation and ADFs on the other hand,
will provide a useful tool for work argumentation, by provid-
ing opportunities for the application of results and insights
from possibility theory in argumentation.
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Abstract

Abstract Dialectical Frameworks (ADF) and Argumenta-
tion Frameworks with collective attacks, called SETAF, are
two prominent extensions of Dung’s Abstract Argumenta-
tion Frameworks that have attracted increasing interest in the
last years. Previous studies have provided a translation from
SETAF to ADF . In this work, we propose a new transla-
tion from a fragment of ADF s called Attacking Abstract Di-
alectical Frameworks (ADF+s) to SETAF and prove various
equivalences between their semantics, including the equiv-
alence between their complete semantics, grounded seman-
tics, preferred semantics, stable semantics and semi-stable/
L-stable semantics. In addition, we show that ADF+s with-
out redundant links correspond precisely to SETAF. Indeed,
we prove that the back and forth translations from ADF+s
to SETAFs correspond to bijective functions and each other’s
inverse provided ADF+s have no redundant links.

1 Introduction
In recent years, formal argumentation has attracted an in-
creasing attention among the Artificial Intelligence Commu-
nity (Rahwan and Simari 2009). In formal argumentation,
the reasoning process is characterized by constructing and
evaluating arguments, which (roughly speaking) can be un-
derstood as sets of reasons for the validity of a claim. In per-
spective, while in Logic the reasoning process is focused on
the inference within an argument (a proof), in argumentation
the reasoning process contemplates the interactions between
arguments. One particular interest of that approach is, given
a possibly inconsistent logical theory, to pinpoint some of its
consistent sub-theories.

Amongst the most influential works in this area, Dung’s
theory of Abstract Argumentation Frameworks (AAFs)
(Dung 1995) presents arguments as abstract entities and
computes semantics based on the conflicts between them.
An argumentation semantics specifies criteria according
to which sets of mutually acceptable arguments (frame-
work extensions) are returned. Naturally, different criteria
of acceptability will lead to different semantics, including
Dung’s original concepts of complete, stable, preferred and
grounded extension-based semantics (Dung 1995) and semi-
stable semantics (Verheij 1996; Caminada 2006b). It should
be noticed that the semantics for AAFs can be equivalently
expressed as argument labellings: in (Caminada 2006a;

Caminada and Gabbay 2009) each argument is assigned a
label, which can be either in, out or undec. Intuitively,
an argument labeled in is explicitly accepted, while an ar-
gument labeled out is rejected, and one labeled undec is
undecided, i.e., neither accepted not rejected. In this work,
we will adhere to the labelling-based approach.

Despite their generality, not rarely AAFs have been crit-
icised for being overly limiting as the only interaction be-
tween arguments is given by the attack relation. Indeed,
one could argue that AAFs lack certain features which are
common in almost every form of argumentation to be found
in practice (Brewka and Woltran 2010). As overviewed
in (Brewka, Polberg, and Woltran 2014), many propos-
als generalising AAFs can be found in the literature; it in-
cludes among others AAFs with support relations (Cayrol
and Lagasquie-Schiex 2005; Cayrol and Lagasquie-Schiex
2013; Oren and Norman 2008; Polberg and Oren 2014),
attacks on attacks (Modgil 2009) and AAFs with weights
(Martınez, Garcıa, and Simari 2008; Dunne et al. 2011;
Coste-Marquis et al. 2012). In the current work, we will
focus on two generalisations of AAFs: Abstract Dialectical
Frameworks (ADF s) (Brewka and Woltran 2010; Brewka et
al. 2013) and frameworks with sets of attacking arguments
(SETAFs) (Nielsen and Parsons 2006).

Abstract Dialectical Frameworks (ADF s) (Brewka and
Woltran 2010; Brewka et al. 2013) are among the most
comprehensive generalisations of AAFs by allowing the ex-
pression of arbitrary relationships among arguments. In an
ADF , besides the attack relation, arguments may support
each other, or a group of arguments may jointly attack an-
other while each single member of the group is not strong
enough to do so (Brewka et al. 2017). This additional ex-
pressiveness is obtained by associating to each node (argu-
ment) a two-valued acceptance condition which can be ex-
pressed as an arbitrary propositional formula. The intuition
is that an argument is accepted if its associated acceptance
condition is verified. In short, we can characterize ADF s as
dependency graphs + acceptance conditions.

In (Nielsen and Parsons 2006) it was proposed an exten-
sion of Dung’s Abstract Argumentation Frameworks(Dung
1995) (AAFs) to allow joint attacks on arguments. The
resulting framework is called SETAF. Whereas in AAFs
only (individual) arguments can attack another argument,
in SETAFs sets of arguments can also attack arguments. A

139



translation from SETAF to ADF (see (Polberg 2016)) can
be obtained by representing each attack from a (finite) set
B of arguments to an argument a as the propositional for-
mula ¬(⋀b∈B b) to express the acceptance conditions of a.
It has been proved in (Linsbichler, Pührer, and Strass 2016)
SETAF is strictly less expressive than ADF . A question nat-
urally arises: which fragment of ADF corresponds exactly
to SETAF?

It is clear ADF s are basic argumentation frameworks
with links to many argumentative approaches; they are gen-
eral enough to express the notions of support, collective at-
tacks, and even more sophisticated relations. However, this
comprehensive expressivity comes with a price to pay: a
higher computational complexity. Thus, it is natural to in-
vestigate subclasses of ADF s to look for a balance between
expressivity and complexity as well as for connections with
other generalisations of AAFs (see (Diller et al. 2020)). Ac-
cording to (Alcântara, Sá, and Acosta-Guadarrama 2019),
one of these subclasses, dubbed Attacking Abstract Dialec-
tical Frameworks (ADF+s), is of particular interest, for
the complexity of many reasoning tasks on ADF+s may
likely have the same complexity as standard Dung’s AAFs
(Alcântara, Sá, and Acosta-Guadarrama 2019). With that
in mind, we will provide a translation from ADF+s to
SETAFs and will prove various equivalences between their
semantics, including the equivalence between their com-
plete semantics, grounded semantics, preferred semantics,
stable semantics and semi-stable/L-stable semantics. Fur-
ther, we will show our translation and the translation from
SETAF to ADF in (Polberg 2016) are bijective functions
and each other’s inverse provided ADF+ has no redundant
links. Therefore, it is licit to say that SETAF corresponds
exactly to ADF+ without redundant links (and vice versa).

The significance of our work is twofold. First, looking
inwardly into the formal argumentation field, we conduct a
precise characterisation of SETAF in ADF+ without redun-
dant links (and vice versa); our results establish an equiv-
alence between them and contribute to improve our under-
standing on the connections between the many approaches
based on formal argumentation. Second, looking outwardly
and more broadly, this paper contributes to an active line
of research at the frontier of formal argumentation, which
studies the correspondence of argumentation semantics and
other semantics for non-monotonic reasoning formalisms;
amongst other implications, this potentially allows us to im-
port proof procedures and implementations from formal ar-
gumentation to these formalisms (and vice versa).

In short, we will show that SETAF and ADF+ are es-
sentially the same. This conclusion leads to the follow-
ing practical implications: applications of ADF+ and ADF
(as in (Al-Abdulkarim, Atkinson, and Bench-Capon 2016;
Cabrio and Villata 2016; Neugebauer 2017; Pührer 2017))
can be remodelled in the context of SETAF. Further, results
proven about either formalism carry over to the other. For
instance, in (Alcântara, Sá, and Acosta-Guadarrama 2019),
Normal Logic Programs have been translated into ADF+s
and some equivalence results have been proved. Due to our
findings, the same translation and results can be straightfor-
wardly adapted to SETAFs. On the other hand, results ob-

tained for SETAF in works such as (Dvořák, Fandinno, and
Woltran 2019; Flouris and Bikakis 2019) can be taken for
granted in ADF+.

The paper proceeds as follows. First, we recall the nec-
essary background on ADF s and SETAF, including the se-
mantics we will investigate as argument labellings. Next,
we consider the Attacking Abstract Dialectical Frameworks
(ADF+s), a fragment of ADF s in which the unique re-
lation involving arguments is the attack relation. In the
subsequent section, we show a translation from ADF+s to
SETAF and prove the equivalence between their complete
models, grounded models, preferred models, stable models
and semi-stable/L-stable models (Subsection 4.1), and in
Subsection 4.2 we recall a translation from SETAF to ADF+
and show both translations are bijective functions and each
other’s inverse concerning ADF+ with no redundant links.
Finally, we round off with a discussion of the obtained re-
sults and pointers for future works.

2 Background
2.1 Abstract Dialectical Frameworks
Abstract Dialectical Frameworks (ADF s) have been de-
signed in (Brewka and Woltran 2010; Brewka et al. 2013)
to treat arguments (called statements there) as abstract and
atomic entities. One can see it as a directed graph whose
nodes represent statements susceptible to evaluation. The
links between nodes represent dependencies: the status (ac-
cepted or not accepted) of a node s only depends on the sta-
tus of its parents (par(s)), i.e., the nodes with a direct link
to s. We will restrict ourselves to finite ADF s:

Definition 1 (Abstract Dialectical Frameworks). (Brewka
and Woltran 2010) An abstract dialectical framework is a
tuple D = (S,L,C) where

• S is a finite set of statements (positions, nodes);
• L ⊆ S × S is a set of links, and for each s ∈ S, par(s) ={t ∈ S ∣ (t, s) ∈ L};

• C = {Cs ∣ s ∈ S} is a set of total functions Cs ∶ 2par(s) →{t, f}, one for each statement s. Cs is called the accep-
tance condition of s.

The function Cs is intended to determine the acceptance
status of a statement s, which only depends on the status of
its parent nodes par(s). Intuitively, s will be accepted if
there exists R ⊆ par(s) such that Cs(R) = t, which means
every statement in R is accepted while each statement in
par(s) −R is not. Besides the above, the acceptance condi-
tions in C for an ADF D = (S,L,C) can as well be repre-
sented in the following two ways:

• Any function Cs ∈ C can be represented by the set
of subsets of par(s) leading to acceptance, i.e., Ct ={Ct

s ∣ s ∈ S}, where Ct
s = {R ⊆ par(s) ∣ Cs(R) = t}.

We will indicate this alternative by denoting an ADF as(S,L,Ct).

• Any functionCs ∈ C can also be represented as a classical
two-valued propositional formula ϕs over the vocabulary
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par(s) as follows:

ϕs ≡ ⋁
R∈Ct

s

⎛⎝⋀a∈Ra ∧ ⋀
b∈par(s)−R¬b

⎞⎠ . (1)

IfCs(∅) = t and par(s) = ∅, we obtain ϕs ≡ t. If there is
no R ⊂ par(s) such that Cs(R) = t, then ϕs ≡ f . By Cϕ
we mean the set {ϕs ∣ s ∈ S}. We will indicate this alter-
native by denoting an ADF as (S,L,Cϕ). We also em-
phasize any propositional formula ϕs equivalent (in the
classical two-valued sense) to the formula in Equation (1)
can be employed to represent Cs.

When referring to an ADF as (S,L,Cϕ), we will as-
sume the acceptance formulas implicitly specify the parents
a node depends on. Then, the set L of links between state-
ments can be ignored, and the ADF can be represented as(S,Cϕ), where L gets recovered by (t, s) ∈ L iff t appears
in ϕs. In order to define the different semantics for ADF s
over the set of statements S, we will resort to the notion of
(3-valued) interpretations:

Definition 2 (Interpretations and Models). (Brewka and
Woltran 2010) Let D = (S,Cϕ) be an ADF . A 3-valued in-
terpretation (or simply interpretation) over S is a mapping
v ∶ S → {t, f ,u} that assigns to each statement a truth value
amongst true (t), false (f ) and unknown (u). Interpretations
will be extended to assign values to formulas over statements
according to Kleene’s strong 3-valued logic (Kleene et al.
1952): negation switches t and f , and leaves u unchanged;
a conjunction is t if both conjuncts are t, it is f if some
conjunct is f and it is u otherwise; disjunction is dual. A
3-valued interpretation v is a model of D if for all s ∈ S we
have v(s) ≠ u implies v(s) = v(ϕs).

Sometimes we will refer to an interpretation v over S as a
set V = {s ∣ s ∈ S and v(s) = t}∪{¬s ∣ s ∈ S and v(s) = f}.
Obviously, if neither s ∈ V nor ¬s ∈ V , then v(s) = u.

Furthermore, the three truth values are partially ordered
by ≤i according to their information content: u <i t, u <i f ,
no other pair is in <i, and ≤i is the reflexive transitive clo-
sure of <i. The pair ({t, f ,u} ,≤i) forms a complete meet-
semilattice1 with the meet operation ⊓. This meet can be
read as consensus and assigns t⊓t = t, f ⊓ f = f , and returns
u otherwise.

The information ordering ≤i extends as usual to interpre-
tations v1, v2 over S such that v1 ≤i v2 iff v1(s) ≤i v2(s)
for all s ∈ S. The set of all 3-valued interpretations over S
forms a complete meet-semilattice with respect to ≤i. The
consensus meet operation ⊓ of this semilattice is given by(v1 ⊓v2)(s) = v1(s)⊓v2(s) for all s ∈ S. The least element
of this semilattice is the interpretation v such that v(s) = u
for each s ∈ S.

In (Brewka et al. 2013), the semantics for ADF s were
defined via an operator ΓD:

1A complete meet-semilattice is such that every non-empty
finite subset has a greatest lower bound, the meet; and every
nonempty directed subset has a least upper bound. A subset is
directed if any two of its elements have an upper bound in the set.

Definition 3 (ΓD Operator). (Brewka et al. 2013) Let D =(S,L,Cϕ) be an ADF and v be a 3-valued interpretation
over S. We have

ΓD(v)(s) =⊓{w(ϕs) ∣ w ∈ [v]2} ,
in which [v]2 = {w ∣ v ≤i w and for each s ∈ S, it holds
w(s) ∈ {t, f}}.

Each element in [v]2 is a 2-valued interpretation extend-
ing v. The elements of [v]2 form an ≤i-antichain with great-
est lower bound v = ⊓[v]2. For each s ∈ S, ΓD returns
the consensus truth value for ϕs, where the consensus takes
into account all possible 2-valued interpretations w extend-
ing v. If v is 2-valued, we get [v]2 = {v}. In this case,
ΓD(v)(s) = v(ϕs) and v is a 2-valued model for D iff
ΓD(v) = v. As [v]2 has only 2-valued interpretations, if
ϕ1
s is equivalent to ϕ2

s in the classical two-valued sense, it is
clear

⊓{w(ϕ1
s) ∣ w ∈ [v]2} =⊓{w(ϕ2

s) ∣ w ∈ [v]2} .
That means when defining ΓD operator, it does not matter

the acceptance formula we choose as far as it is equivalent in
the classical 2-valued sense. In addition, ΓD operator can as
well be employed to characterize complete interpretations:
Definition 4 (Complete Interpretations). (Brewka et al.
2013) Let D = (S,L,Cϕ) be an ADF and v be a 3-valued
interpretation over S. We state v is a complete interpreta-
tion of D iff v = ΓD(v).

As shown in (Brewka and Woltran 2010), ΓD operator
is ≤i-monotonic. Then a ≤-least fixpoint of ΓD is always
guaranteed to exists for every ADF D. Note complete in-
terpretations of D are also models of D. For this reason,
they are also called complete models. The notion of reduct
borrowed from logic programming (Gelfond and Lifschitz
1988) is reformulated to deal with ADF s:
Definition 5 (Reduct). (Brewka et al. 2013) Let D =(S,L,Cϕ) be an ADF and v be a 2-valued model ofD. The
reduct ofD with v is given by the ADF ,Dv = (Ev, Lv,Cv),
in which Ev = {s ∈ S ∣ v(s) = t}, Lv = L ∩ (Ev × Ev),
and Cv = {ϕvs ∣ s ∈ Ev and ϕvs = ϕs[b/f ∶ v(b) = f]}; i.e., in
each acceptance formula, ϕvs , we replace in ϕs every state-
ment b ∈ S by f if v(b) = f .

We can now define some of the main semantics for an
ADF as follows:
Definition 6 (Semantics). (Brewka et al. 2013) Let D =(S,L,Cϕ) be an ADF , and v a model of D. We state that
• v is a grounded model of D iff v is the ≤i-least complete

model of D.
• v is a preferred model ofD iff v is a ≤i-maximal complete

model of D.
• v is a stable model of D iff v is a 2-valued model of D

such that v is the grounded model of Dv = (Ev, Lv,Cv).
We proceed by displaying an example to illustrate these

semantics:
Example 1. Consider the ADF , D = (S,Cϕ), given by

a[¬b] b[¬a] c[a ∧ ¬b ∧ ¬c],
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where S = {a, b, c}, and the acceptance formula of each
s ∈ S is written in square brackets on the right of s. For the
semantics of D, we have

• Complete models: ∅,{a,¬b} and {b,¬a,¬c}
• Grounded models: ∅
• Preferred models: {a,¬b} and {b,¬a,¬c}
• Stable models: {b,¬a,¬c}

Notice some ADF s have no stable models. For instance,
in an ADF whose unique statement is a[¬a], there is no
stable model. Furthermore, an ADF can have more than
one stable model as in the ADF represented by a[¬b] and
b[¬a], which has {a,¬b} and {b,¬a} for its stable models.
In contrast, the grounded model is unique for each ADF
(see (Brewka and Woltran 2010; Brewka et al. 2013)).

2.2 SETAF
In (Nielsen and Parsons 2006) it was proposed an exten-
sion of Dung’s Abstract Argumentation Frameworks (Dung
1995) (AAFs) to allow joint attacks on arguments. The re-
sulting framework, called SETAF, is displayed below:

Definition 7 (SETAF). (Nielsen and Parsons 2006) A frame-
work with sets of attacking arguments (SETAF) is a pair
S = (A,R), in which A is a finite set of arguments and
R ⊆ 2A × A is an attack relation such that if (B,a) ∈ R,
there is no B′ ⊂ B such (B′, a) ∈ R, i.e., B is a minimal set
(w.r.t. ⊆) attacking a.

In an AAF, only individual arguments can attack argu-
ments. In a SETAF the novelty is that sets of two or more
arguments can also attack arguments. This means a SETAFs(A,R), in which for each (B,a) ∈ R it holds ∣B∣ = 1,
amount to (standard Dung) AAFs. Besides, unlike the orig-
inal definition of SETAF, and in order to satisfy our current
purpose in this paper, Definition 7 allows the empty set to at-
tack an argument a ∈ A, i.e., it is possible to have (∅, a) ∈ R.

As in (Linsbichler, Pührer, and Strass 2016), we define the
3-valued counterparts based on labellings of the semantics
introduced in (Nielsen and Parsons 2006) by following the
conventions introduced in (Caminada and Gabbay 2009).

Definition 8 (Labellings). Let S = (A,R) be a SETAF.
A SETAF labelling is a function Lab ∶ A → {t, f ,u}2. A
SETAF labelling is called admissible iff for each a ∈ A
• If Lab(a) = t, then for each B ⊆ A such that (B,a) ∈ R,

it holds ∃b ∈ B such that Lab(b) = f .
• If Lab(a) = f , then there exists B ⊆ A such that (B,a) ∈
R and ∀b ∈ B it holds Lab(b) = t.

A SETAF labelling is called complete iff it is admissible
and for each a ∈ A,

• If Lab(a) = u there exists B ⊆ A such that (B,a) ∈ R
and ∀b ∈ B it holds Lab(b) ≠ f and for each B ⊆ A such
that (B,a) ∈ R, it holds ∃b ∈ B such that Lab(b) ≠ t.

2In (Caminada and Gabbay 2009), in, out and undec were
used instead of t, f and u respectively.

We write in(Lab) for {a ∈ A ∣ Lab(a) = t}, out(Lab)
for {a ∈ A ∣ Lab(a) = f} and undec(Lab) for{a ∈ A ∣ Lab(a) = u}. As a SETAF labelling essentially de-
fines a partition among the arguments, we sometimes write
Lab as a triple (in(Lab),out(Lab),undec(Lab)). We can
now describe the SETAF semantics studied in this paper:

Definition 9 (Semantics). Let S = (A,R) be a SETAF. A
complete SETAF labelling Lab is called

• grounded iff in(Lab) is minimal (w.r.t. ⊆) among all com-
plete SETAF labellings of S.

• preferred iff in(Lab) is maximal (w.r.t. ⊆) among all com-
plete SETAF labellings of S.

• stable iff undec(Lab) = ∅.
• semi-stable iff undec(Lab) is minimal (w.r.t. ⊆) among

all complete SETAF labellings of S.

Let us consider the following example:

Example 2. Consider the SETAF S = (A,R) below:

c

a b

e

d

Figure 1: A SETAF S

Concerning the semantics of S, we have

• Complete labellings: Lab1 = (∅,∅,{a, b, c, d, e,}),
Lab2 = ({a} , {b} , {c, d, e}) and Lab3 = ({b} , {a, e} ,{c, d});

• Grounded labellings: Lab1 = (∅,∅,{a, b, c, d, e});
• Preferred labellings: Lab2 = ({a} ,{b} ,{c, d, e}) and
Lab3 = ({b} , {a, e} ,{c, d})};

• Stable labellings: none;
• Semi-stable labellings:Lab3 = ({b} ,{a, e} ,{c, d}).

In the next section, we will focus on a fragment of
ADF s, dubbed Attacking Abstract Dialectical Frameworks
(ADF+s), and in the sequel we will show that ADF+s are
enough to capture any of the SETAF semantics based on
complete models we mentioned above.

3 Attacking Abstract Dialectical Frameworks
Now we consider the Attacking Abstract Dialectical Frame-
works (ADF+s), a fragment of ADF s in which the unique
relation involving statements is the attack relation. First we
should recall the notions of supporting and attacking links:

Definition 10 (Supporting and Attacking Links (Brewka and
Woltran 2010)). Let D = (S,L,C) be an ADF . A link(r, s) ∈ L is

supporting in D iff for no R ⊆ par(s) we have Cs(R) = t
and Cs(R ∪ {r}) = f .
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attacking in D iff for no R ⊆ par(s) we have Cs(R) = f
and Cs(R ∪ {r}) = t.
A link (r, s) is redundant if it is both attacking and sup-

porting. Redundant links can be deleted from an ADF as
they mean no real dependencies (Brewka and Woltran 2010).
Again in (Brewka and Woltran 2010), the authors introduced
the Bipolar Abstract Dialectical Frameworks (BADF ), a
subclass of ADF s in which every link is either supporting
or attacking. Now we even regard a subclass of BADFs in
which only attacking links are admitted:
Definition 11 (ADF+). An Attacking Abstract Dialectical
Framework, denoted by ADF+, is an ADF (S,L,C) such
that every (r, s) ∈ L is an attacking link, i.e., for every s ∈ S,
ifCs(M) = t, then for everyM ′ ⊆M , we haveCs(M ′) = t.

In an ADF+ (S,L,C), for each s ∈ S, its acceptance
formula ϕs can be simplified:
Theorem 1. (Alcântara, Sá, and Acosta-Guadarrama 2019)
Let D = (S,L,Ct) be an ADF+ and, for each s ∈ S, let
Cmax
s = {R ∈ Ct

s ∣ there is no R′ ∈ Ct
s such that R ⊂ R′}.

Then, for every s ∈ S,
ϕs ≡ ⋁

R∈Cmax
s

⋀
b∈par(s)−R¬b.

Hence, in ADF+s, every acceptance formula corresponds
to a propositional formula in the disjunctive normal form,
where each disjunct is a conjunction of negative atoms. No-
tice replacing an acceptance formula by a two-valued equiv-
alent one does not change complete semantics, and we are
not interested in the three-valued models of the ADF+. The
importance of these formulas will be evident below. Before,
however, note ADF+ does not prohibit redundant links.
For instance, consider the ADF D = (S,L,C), in which
S = {a, b, c}, L = {(b, a), (c, a)} and Ct

a = {{b} ,∅} and
Ct
b = Ct

c = {∅}. We know D is an ADF+ as both (b, a) and(c, a) are attacking links. In addition, (b, a) is a redundant
link as it is also supporting. Redundant links can be easily
identified in ADF+s:
Theorem 2. Let D = (S,L,Ct) be an ADF+. Then D has
no redundant links in L iff

L = {(r, s) ∣ ∃R ∈ Cmax
s such that r /∈ R} .

Proof.(⇒) Suppose D = (S,L,Ct) has no redundant link. By
absurd, assume there exists (r, s) ∈ L such that for any R ∈
Cmax
s , we have r ∈ R. As (r, s) ∈ L is not redundant, it

cannot be a supporting link. Then there exists R′ ⊆ par(s)
such that Cs(R′) = t and Cs(R′ ∪ {r}) = f .

Given that r ∈ R for any R ∈ Cmax
s , there exists R′′ ∈

Cmax
s such that R′ ∪ {r} ⊆ R′′ and Cs(R′′) = t. But then,

as any link in L is attacking, we obtain Cs(R′ ∪ {r}) = t.
An absurd.(⇐) Let L = {(r, s) ∣ ∃R ∈ Cmax

s such that r /∈ R}. By ab-
surd, assume (r, s) ∈ L is a redundant link. Then, in partic-
ular, it is a supporting link, i.e., for every R ⊆ par(s), we
have if R ∈ Ct

s , then (R ∪ {r}) ∈ Ct
s .

Given that (r, s) ∈ L, we know there exists R ∈ Cmax
s

such that r /∈ R. This means R ∈ Ct
s . But then we obtain(R ∪ {r}) ∈ Ct

s . It is an absurd as R ∈ Cmax
s .

This means in order to eliminate redundant links in an
ADF+ D = (S,L,C), it suffices to ignore links (r, s) ∈ L
such that for eachR ∈ Cmax

s it holds r ∈ R, i.e., the resulting
ADF+ is D = (S,L′,C ′), in which

• L′ = {(r, s) ∈ L ∣ ∃R ∈ Cmax
s such that r /∈ R}

• C ′ = {C ′
s ∣ s ∈ S} is a set of total functions C ′

s ∶
2par

′(s) → {t, f} s.t. C ′
s(R) = Cs(R) and par ′(s) ={r ∈ S ∣ (r, s) ∈ L′}.

Example 3. Let us recall the ADF+ D = (S,L,C) above in
which S = {a, b, c}, L = {(b, a), (c, a)} and Ct

a = {{b} ,∅}
and Ct

b = Ct
c = {∅}. From Theorem 2 we know there exists

a redundant link in L as the unique R = {b} ∈ Cmax
a is

not empty. By following the procedure above, we obtain the
ADF+ D = (S,L′,C ′), in which L′ = {(c, a)} and Ct

a =
Ct
b = Ct

c = {∅}. As expected, the redundant link (b, a) was
excluded from Ct

a.

Theorem 2 is an important result for our work. We will
later employ it to show SETAF corresponds to ADF+ with-
out redundant links.

In Subsection 2.1, we explained how the ΓD operator is
employed to define the semantics for ADF . However, ac-
cording to (Alcântara, Sá, and Acosta-Guadarrama 2019),
when restricted to ADF+s, it assumes a simpler version:

Theorem 3. (Alcântara, Sá, and Acosta-Guadarrama 2019)
Let D = (S,L,Cϕ) be an ADF+, v be a 3-valued interpre-
tation over S, and for each s ∈ S, let ϕs be the formula

⋁
R∈Cmax

s

⋀
b∈par(s)−R¬b

depicted in Theorem 1. It holds that:

For every s ∈ S, ΓD(v)(s) = v(ϕs).

Still in (Alcântara, Sá, and Acosta-Guadarrama 2019), the
authors showed that besides being noticeably simpler when
restricted to ADF+, this new characterisation of ΓD leads to
lower complexity of reasoning: while in an ADF , the prob-
lem of verifying whether a given interpretation is complete is
proved to be DP-complete (Brewka et al. 2013); in ADF+,
owing to this characterisation of ΓD, this problem can get
solved in polynomial time. Hence, the complexity of many
reasoning tasks on ADF+s may likely have the same com-
plexity as standard Dung’s AAFs (Dung 1995). Another con-
sequence from Theorem 3 is the stable models of an ADF+
D may be characterised as the two-valued complete models
of D:

Theorem 4. (Alcântara, Sá, and Acosta-Guadarrama 2019)
Let D = (S,L,Cϕ) be an ADF+. Then v is a stable model
of D iff v is a 2-valued complete model of D.

They also defined a new semantics for ADF+: L-stable.

Definition 12 (L-stable). (Alcântara, Sá, and Acosta-
Guadarrama 2019) Let D = (S,L,Cϕ) be an ADF+, and
v be a 3-valued interpretation of D. We say that v is an
L-stable model of D iff v is a complete model with minimal
undec(v) = {s ∈ S ∣ v(s) = u} (w.r.t. set inclusion) among
all complete models of D.
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We highlight that the L-stable Models semantics is de-
fined for every ADF+. Further, the L-stable models of an
ADF+ D will coincide with its stable models whenever D
has at least one stable model. In fact, we can understand a
stable model v as anL-stable model in which undec(v) = ∅.
Therefore, the existence of a single stable model in D suf-
fices for every L-stable model of D to be also stable.
Example 4. Consider the ADF+ D = (S,Cϕ) given by

a[¬b] b[¬a] c[(¬c ∧ ¬a) ∨ (¬c ∧ ¬d)]
d[¬d] e[¬e ∧ ¬b],

where S = {a, b, c, d, e}, and the acceptance formula for
each statement s ∈ S is written in square brackets on the
right of s. As for the semantics of D, we have

• Complete models: {a,¬b}, {b,¬a,¬e} and ∅
• Grounded model: ∅
• Preferred models: {a,¬b} and {b,¬a,¬e};
• Stable models: none;
• L-stable models: {b,¬a,¬e}.

Thus none of these semantics for ADF+ are equivalent
to each other. However, in the sequel, we will show some
equivalences between SETAFs semantics and ADF+ seman-
tics. In fact, the main objective of this work is to show each
semantics for SETAFs presented in Subsection 2.2 has an
equivalent one for ADF+.

4 Equivalence Between ADF + and SETAF
We will present a translation from ADF+ to SETAF that
is able to account for a whole range of equivalences be-
tween their semantics. This includes to prove the equiv-
alence between their complete models, grounded models,
preferred models, stable models and semi-stable/L-stable
models. Next we will recall a translation from SETAF to
ADF+ showed in (Polberg 2016) and will prove both trans-
lations correspond to bijections and are each other’s inverse
on appropriate domains.

4.1 From ADF+ to SETAF
Now we will show how to translate ADF+ to SETAF:
Definition 13. Let D = (A,L,Ct) be an ADF+. The
SETAF associated with D is S(D) = (A,R), in which
R = {(B,a) ∣ a ∈ A and B is a minimal subset of par(a)
such that B /∈ Ct

a}.
The following example illustrates the above concepts.

Example 5. Consider the ADF+ D = (A,L,Ct) where
A = {a, b, c, d, e, f}, L = {(b, a), (a, b), (a, c), (c, c), (d, c),(e, d), (d, e), (b, f), (f, f)}, and

• Ct
a = Ct

b = Ct
d = Ct

e = Ct
f = {∅}

• Ct
c = {{a},{d},∅}

As formulae, the acceptance conditions for the statements
in D are given by

a[¬b] b[¬a] c[(¬c ∧ ¬d) ∨ (¬c ∧ ¬a)]
d[¬e] e[¬d] f[¬f ∧ ¬b]

From Definition 13, we obtain the SETAF S(D) = (A,R)
in which R = {({b} , a), ({a} , b), ({c, d} , c), ({c, a} , c),({e} , d), ({d} , e), ({b} , f), ({f} , f)}. We depict S(D)
below:

c

a b

f

de

Figure 2: SETAF framework S(D) corresponding to ADF+ D.

Now we can prove one of the main results of this paper:
that the Complete Models of an ADF+ correspond to the
Complete Labellings of its associated SETAF.

Theorem 5. Let D = (A,L,Ct) be an ADF+ and S(D) =(A,R) be the corresponding SETAF. Then v is a complete
model of D iff v is a complete labelling of S(D).

Proof. Let D = (A,L,Ct) be an ADF+ and S(D) =(A,R) be the corresponding SETAF. Let v be a 3-valued
interpretation. We will prove v is a complete model of D iff
v is a complete labelling of S(D):

(⇒) Assume v is a complete model of D, i.e., v = ΓD(v)
according to Definition 4. Then from Theorems 1 and 3,
it holds for every a ∈ A,

ΓD(v)(a) = v(ϕa) = v( ⋁
M∈Cmax

a

⋀
b∈par(a)−M ¬b) = v(a).

Hence,
• If v(a) = t, then there exists M ∈ Cmax

a such that for
each b ∈ par(a) −M , we have v(b) = f . Thus for each
B ⊆ par(a), either B ∈ Ct

a or there exists b ∈ B such
that v(b) = f . This means for each (B,a) ∈ R, there
exists b ∈ B such that v(b) = f .

• If v(a) = f , then for every M ∈ Cmax
a there exists b ∈

par(a) −M such that v(b) = t. Let B ⊆ par(a) be a
minimal set (w.r.t. inclusion order) such that B = {b ∈
par(a) ∣ M ∈ Cmax

a , b ∈ par(a) −M and v(b) = t}.
Clearly B is a minimal subset (w.r.t. inclusion order)
of par(a) such that B /∈ Ct

a. This means there exists(B,a) ∈ R such that for each b ∈ B, we have v(b) = t.
• If v(a) = u, then for each M ∈ Cmax

a there exists
b ∈ par(a) −M such that v(b) ≠ f and there exists
M ∈ Cmax

a such that for each b ∈ par(a) −M , we
have v(b) ≠ t. Now let B′ ⊆ par(a) be a minimal set
(w.r.t. inclusion order) such that B′ = {b ∈ par(a) ∣
M ∈ Cmax

a , b ∈ par(a) −M and v(b) ≠ f}. Then,
for each B′′ ⊆ par(a), either B′′ ∈ Ct

a or there exists
b ∈ B′′ such that v(b) ≠ t. This means there exists a
minimal set (w.r.t. inclusion order) B ⊆ par(a) such
that B /∈ Ct

a and for each b ∈ B v(b) ≠ f and for each
B ⊆ par(a) such that B /∈ Ct

a, there exists b ∈ B such
that v(b) ≠ t, i.e., there exists (B,a) ∈ R such that for
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each b ∈ B v(b) ≠ f and for each (B,a) ∈ R, there
exists b ∈ B such that v(b) ≠ t

Consequently, v is a complete labelling of S(D).
(⇐) Assume v is a complete labelling of S(D), i.e.,

• If v(a) = t, then for every (B,a) ∈ R, there exists
b ∈ B such that v(b) = f . Let N = {b ∣ (B,a) ∈ R, b ∈
B and v(b) = f}, and M = par(a) − N . By absurd,
suppose M /∈ Ct

a. Then, there exists (B,a) ∈ R such
that B ⊆ M . In this case, there exists b ∈ par(a) such
that b ∈ N and b ∈M = par(a) −N , an absurd! Thus,
M ∈ Ct

a. This means there exists M ′ ∈ Cmax
a such

that M ⊆ M ′ and for every b ∈ par(a) −M ′, it holds
v(b) = f , i.e.,

ΓD(v)(a) = v(ϕa) = v( ⋁
M∈Cmax

a

⋀
b∈par(a)−M ¬b) = t

• If v(a) = f , then there exists (B,a) ∈ R such that for
each b ∈ B, we have v(b) = t. By absurd, suppose there
exists M ∈ Cmax

a such that B ∩ (par(a) −M) = ∅. In
this case, B ⊆M . It is an absurd as B /∈ Ct

a. Hence, for
every M ∈ Cmax

a , B ∩ (par(a) −M) ≠ ∅. This means
for every M ∈ Cmax

a , there exists b ∈ pr(a) −M such
that v(b) = t i.e.,

ΓD(v)(a) = v(ϕa) = v( ⋁
M∈Cmax

a

⋀
b∈par(a)−M ¬b) = f

• If v(a) = u, then there exists (B,a) ∈ R such that for
each b ∈ B, we have v(b) ≠ f and for each (B,a) ∈ R,
there exists b ∈ B such that v(b) ≠ t. Then

– We already know thatB∩(par(a)−M) ≠ ∅ for every
M ∈ Cmax

a . This means that for every M ∈ Cmax
a ,

there exists b ∈ pr(a) −M such that v(b) ≠ f .
– Let N = {b ∣ (B,a) ∈ R, b ∈ B and v(b) ≠ t}, and
M = par(a)−N . By absurd, suppose M /∈ Ct

a. Then,
there exists (B,a) ∈ R such that B ⊆M . In this case,
there exists b ∈ par(a) such that b ∈ N and b ∈ M =
par(a) − N , an absurd! Thus, M ∈ Ct

a. Therefore,
there exists M ′ ∈ Cmax

a such that M ⊆ M ′ and for
every b ∈ par(a) −M ′, it holds v(b) ≠ t.

This means

ΓD(v)(a) = v(ϕa) = v( ⋁
M∈Cmax

a

⋀
b∈par(a)−M ¬b) = u

From the equivalence shown in Theorem 5, the following
results are obtained immediately:

Theorem 6. Let D = (A,L,Ct) be an ADF+ and S(D) =(A,R) be the corresponding SETAF. We have

• v is a grounded model of D iff v is a grounded model of
S(D).

• v is a preferred model of P iff v is a preferred model of
S(D).

• v is a stable model of P iff v is a stable model of S(D).
• v is an L-stable model of P iff v is a semi-stable model of
S(D).

Recalling Example 5, we obtain that, as expected, the
ADF+ D and its corresponding SETAF S(D) share the
same semantics:

• Complete models:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(∅,∅,{a, b, c, d, e, f}), ({a} ,{b} ,{c, d, e, f}),({b} ,{a, f} ,{c, d, e}), ({d} ,{e} ,{a, b, d, f}),({e} ,{d} ,{a, b, d, f}), ({a, d} ,{b, c, e} ,{f}),({a, e} ,{b, d} ,{c, f}), ({b, d} ,{a, e, f} ,{c}),({b, e} ,{a, d, g} ,{c})

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
• Grounded model: {(∅,∅,{a, b, c, d, e, f})};
• Preferred models:

{ ({a, d} ,{b, c, e} ,{f}) ({a, e} ,{b, d} ,{c, f}),({b, d} ,{a, e, f} ,{c}), ({b, e} ,{a, d, g} ,{c}) }
• Stable model: ∅;
• Semi-stable/L-stable models:

{ ({a, d} ,{b, c, e} ,{f}) ({b, d} ,{a, e, f} ,{c}),({b, e} ,{a, d, g} ,{c}) }
From Theorems 5 and 6, we see the ADF+ D and the

corresponding SETAF S(D) produce the same semantics.
This result sheds light on the connections between ADF+s
and SETAFs. Theorem 6 ensures the translation from ADF+
to SETAF in Definition 13 is robust enough to guarantee at
least the equivalence between any semantics based on com-
plete models. Indeed, we will show that the relation between
ADF+ without redundant links and SETAFs is deeper than
what we observe at the level of semantics. We will do so
by recalling a translation from SETAF to ADF+ originally
presented in (Polberg 2016) and showing that both transla-
tions discussed in our work are bijective functions and each
other’s inverse.

4.2 From SETAF to ADF+
Now we will show a translation from SETAF to ADF+:
Definition 14. (Polberg 2016) Let S = (A,R) be a SETAF.
The ADF corresponding to S is D(S) = (A,L,C), in
which L = {(b, a) ∣ b ∈ B for some (B,a) ∈ R} and
C = {Ca ∣ a ∈ A}, s.t. each Ca ∶ 2par(a) → {t, f} is cre-
ated in the following way:

Ca(B) = { f if ∃(X,a) ∈ R such that X ⊆ B
t otherwise

We can prove the resulting D(S) = (A,L,C) is indeed
an ADF+ for which L has no redundant links:
Theorem 7. Let S = (A,R) be a SETAF and D(S) =(A,L,C) be its corresponding ADF . Then D(S) is an
ADF+ with no redundant links.

Proof. By absurd, suppose D(S) is not an ADF+. This
means there exists a link (b, a) ∈ L for which exists some
B ⊆ par(a) where Ca(B) = f and Ca(B ∪ {b}) = t (Def-
inition 10). As Ca(B) = f , from Definition 14, we obtain∃(X,a) ∈ R such thatX ⊆ B. Then we can say ∃(X,a) ∈ R
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such that X ⊆ B ∪ {b}. But then Ca(B ∪ {b}) = f . An ab-
surd!

Again, by absurd, assume there exists a redundant link(b, a) ∈ L. According to Theorem 2, b ∈ B for every
B ∈ Cmax

a . As (b, a) ∈ L, we know from Definition 14
there exists (B′, a) ∈ R such that b ∈ B′. This also means
there exists no B′′ ⊂ B′ such that (B′′, a) ∈ R (Definition
7). Then, from Definition 14, we obtain Ct(B′) = f and
Ct(B′ − {b}) = t. But then, there exists B ∈ Cmax

a , in
which b /∈ B. It is an absurd! Thus, there is no redundant
link (b, a) ∈ L.

Example 6. Consider the SETAF S(D) = (A,R) de-
picted in Figure 2. According to Definition 14, we will
obtain the ADF D(S(D)) = (A,L,C), in which A ={a, b, c, d, e, f}, L = {(b, a), (a, b), (a, c), (c, c), (d, c),(e, d), (d, e), (b, f), (f, f)}, and

• Ct
a = Ct

b = Ct
d = Ct

e = Ct
f = {{}}

• Ct
c = {{a},{d},{}}

As one can check from Examples 5 and 6, D(S(D)) =
D. This is not a mere coincidence! As we will prove next,
the functions S and D are bijective and each other’s inverse,
provided D is an ADF+ with no redundant links.

Theorem 8. Let D = (A,L,Ct) be an ADF+ without re-
dundant links and S(D) = (A,R) be the corresponding
SETAF, then D(S(D)) =D.

Proof. According to Definition 14, D(S(D)) =(A,L′,C ′), has L′ = {(b, a) ∣ b ∈ B for some (B,a) ∈ R},
C ′ = {C ′

a ∣ a ∈ A}, and every C ′
a ∶ 2par(a) → {t, f} is

created in such a way that:

C ′
a(B) = { f if ∃(X,a) ∈ R such that X ⊆ B

t otherwise

We will show L = L′: given that L has no redun-
dant links, from Theorem 2, we can ensure that L ={(b, a) ∣ ∃M ∈ Cmax

a such that b /∈M}. Hence

• (b, a) ∈ L⇒ ∃M ∈ Cmax
a such that b /∈M ⇒ there exists

a minimal (w.r.t. ⊆) B ⊆ M ∪ {b} such that Ca(B) = f
and b ∈ B ⇒ ∃B ⊆ A such that (B,a) ∈ R and b ∈ B ⇒(b, a) ∈ L′.

• (b, a) ∈ L′ ⇒ ∃B ⊆ A such that (B,a) ∈ R and b ∈ B ⇒
there exists a minimal set (w.r.t. ⊆) B ⊆ par(a) such that
Ca(B) = f and b ∈ B ⇒ there exists a maximal set (w.r.t.⊆) M ⊇ (B − {b}) such that Ca(M) = t and b /∈ M ⇒∃M ∈ Cmax

a such that b /∈M ⇒ (b, a) ∈ L.

We will show C = C ′; then for each a ∈ A, for each
B ∈ par(a),

• Ca(B) = t ⇒ for each B′ ⊆ B, we have Ca(B′) = t ⇒
for each B′ ⊆ B, we have (B′, a) /∈ R⇒ C ′

a(B) = t;
• Ca(B) = f ⇒ there exists a minimal B′ ⊆ B such that
Ca(B′) = f ⇒ (B′, a) ∈ R and B′ ⊆ B ⇒ C ′

a(B) = f .

Theorem 9. Let S = (A,R) be a SETAF and D(S) =(A,L,C) be it’s corresponding ADF+, then S(D(S)) = S.

Proof. From Definition 13, we have that S(D(S)) =(A,R′), where R′ = {(B,a) ∣ a ∈ A and B is a minimal
subset of par(a) such that B /∈ Ct

a}. We will show that
R = R′:
• (R ⊆ R′) Suppose (B,a) ∈ R⇒ B ⊆ par(a), Ca(B) = f

and ∀B′ ⊂ B, we have Ca(B′) = t, ⇒ B is a minimal
subset of par(a) such that B /∈ Ct

a ⇒ (B,a) ∈ R′
• (R′ ⊆ R) Suppose (B,a) ∈ R′ ⇒ B is a minimal subset

of par(a) such that B /∈ Ct
a ⇒ B ⊆ par(a), Ca(B) = f

and ∀B′ ⊂ B, we have Ca(B′) = t. By absurd, suppose(B,a) /∈ R. In this case, as Ca(B) = f , there exists B′ ⊂
B such that (B′, a) ∈ R. But then Ca(B′) = f . This is an
absurd as Ca(B′) = t for each B′ ⊂ B. Thus, (B,a) ∈ R.

The above results guarantee the back and forth transla-
tions between ADF+ and SETAF are one to one related pro-
vided ADF+ has no redundant links. Clarifying this rela-
tionship is important as these formalisms are quite promi-
nent. It also allow us to conceive any attack to any argument
a in a SETAF as part of the acceptance condition of a in an
ADF+ (and vice versa). For instance, considering our trans-
lations, one can check the attack (∅, a) in a SETAF corre-
sponds to a[f] in an ADF+, whose meaning indicates it is
not possible to accept a. Hence, if one wants to restore the
usual definition of SETAF (A,R) with its attack relation R
defined as R ⊆ (2A−∅)×A while preserving the one to one
correspondence with ADF+, one will have to prohibit state-
ments with f as their acceptance formula. What is more, if
we allow (B,a) ∈ R and (B′, a) ∈ R in a SETAF S = (A,R)
such thatB ⊂ B′, according to Definition 14 and Theorem 7,
there will be redundant links in the resulting ADF+ D(S).
By establishing this connection, we can say redundant links
are worthless to ADF+s in the same extent as attacks (B,a)
in a SETAF in which B is not a minimal set (w.r.t. ⊆).

5 Conclusions and Future Works
This work has exploited the connections between a frag-
ment of Abstract Dialectical Frameworks (ADF s), called
Attacking Abstract Dialectical Frameworks (ADF+s), and
an extension of Dung’s Abstract Argumentation Frame-
works(Dung 1995), called SETAF, that allows joint attacks
on arguments. We have provided a translation from ADF+s
to SETAFs and proved various equivalences between their
semantics, including the equivalence between their com-
plete semantics, grounded semantics, preferred semantics,
stable semantics and semi-stable/L-stable semantics. Fur-
thermore, we defined a translation from ADF+ to SETAF
and showed that our translation and the translation from
SETAF to ADF in (Polberg 2016) are bijective functions and
each other’s inverse provided ADF+ has no redundant link.
Consequently, we proved that a fragment of ADF s, namely
Attacking Abstract Dialectical Frameworks (ADF+s) with-
out redundant links, correspond exactly to SETAF. Not only
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their semantic models correspond to one another, they actu-
ally coincide precisely.

The results showed in this paper not only guarantee
the equivalence between the aforementioned semantics for
ADF+ and SETAF, but also ADF+ and SETAF are one
to one related assuming ADF+ has no redundant links.
In particular, these results allow us to make connections
between attacks in SETAF with acceptance conditions in
ADF+ (and vice versa), and to identify easily redundant
links in a ADF+. Besides improving our understanding on
the connections between SETAF and ADF+, this paper con-
tributes to an active line of research at the frontier of formal
argumentation, which studies the correspondence of argu-
mentation semantics and other semantics for non-monotonic
reasoning formalisms; amongst other implications, this po-
tentially allows us to import proof procedures and imple-
mentations from formal argumentation to these formalisms
and vice-versa.

Some connections between Abstract Dialectical Frame-
works and Normal Logic Programs have already been estab-
lished (Brewka and Woltran 2010; Strass 2013; Alcântara,
Sá, and Acosta-Guadarrama 2019). Given the results un-
veiled in the current paper, we also intend to exploit the
connections between Logic Programming semantics and
SETAFs semantics. Clarifying this relationship is impor-
tant as these formalisms are quite prominent in related, but
somewhat different areas, namely declarative problem solv-
ing and argumentation.
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Abstract

This paper proposes a new way of handling the incon-
sistency of a knowledge base when answering to a query
about the validity of a formula. The idea is inspired by
human behavior in front of inconsistency, namely, try
to never encounter it. For this purpose, we encode a
kind of compartmentalization of the working memory.
More precisely, given a query and a potentially incon-
sistent knowledge base, called long term memory, our
system only loads in working memory the consistent
knowledge which is the most related to the query. We
position this system with regard to a major reference
in the field, Brewka’s preferred subtheories, and study
its efficiency by providing complexity and experimental
results.

keywords: Inconsistency handling, SAT, Bounded ra-
tionality, Preferred subtheories

1 Introduction
How do humans reason in the presence of contra-
dictory information? Some psychologists (De Neys
and Everaerts 2008) answer that they inhibit counter-
examples to come to their mind. Translating this phe-
nomena inside a framework that uses the distinction
done by (Baddeley and Hitch 1974) between long-term
(LTM) and working memory (WM) where WM is con-
ceived as the “activated” part of the long-term mem-
ory (LTM), (Barrouillet and Camos 2007) studies how
memory activation is produced or inhibited. Findings
of (De Neys, Schaeken, and d’Ydewalle 2005) corrobo-
rate that WM -resources are used for retrieval and inhi-
bition of stored counter-examples and for avoiding con-
flicts with the logical validity of a reasoning problem
(De Neys, Schaeken, and d’Ydewalle 2005). Inspired
by the way inconsistency seems to be handled by hu-
man beings we propose a model that tries to reason
with two datasets: a first potentially inconsistent one
representing the LTM and a second consistent one for
representing the WM .

Handling of inconsistent knowledge bases is a thor-
oughly studied subject in computer science, and in
particular in the domains of Databases (with Re-
pairs (Greco et al. 2003), Consistent Query Answer-
ing (Chomicki 2006)) and Knowledge Representation

and Reasoning (SAT, repairs, revision, argumentation),
see chapters (Amgoud et al. 2020; Dubois et al. 2020).
In general, such an inconsistency is addressed by ei-
ther repairing directly the knowledge base, which typi-
cally lead to loss of information (Doder and Vesic 2015;
Bertossi 2006)), or by considering that the query is
entailed if it is in the intersection of all the min-
imal repairs (or maximal maxi-consistent subbases).
This last approach, while avoiding the loss of infor-
mation, is hampered by the computational price re-
quired to compute all the repairs or subbases. An-
other family of approaches for inconsistency handling,
called paraconsistent logic, is outside the scope of
this paper since these approaches either rely on extra-
information (e.g. possibilistic logic (Dubois and Prade
2014)) or are based on non-classical logical axioms
(see the surveys (Avron, Arieli, and Zamansky 2018;
Carnielli and Coniglio 2016)).

In this paper, we use ideas from psychology as an
inspiration to provide a system able to handle incon-
sistent knowledge base without needing to compute all
the maximally consistent subbases. Indeed, the notion
of WM allows for the computation of one “repair” in
the sense that only relevant and consistent pieces of in-
formation from the knowledge base are activated, effec-
tively compartmentalizing the inconsistency. The paper
will present a way of recursively selecting which pieces
should be activated based on some heuristic, and how
it will affect the reasoning, in complexity and in execu-
tion time, notably when the WM is restricted in size to
account for bounded rationality (Simon 1955).

We are in particular interested in the impact of suc-
cessive querying in this kind of context where results
might differ due to the way the size-limited subbase is
built. In order to experiment our approach, we will
place ourselves in the context of SAT. Indeed, SAT is
a deeply studied domain with powerful solvers (see the
competition (Järvisalo et al. 2012)). On that topic,
it should be noted that within the SAT domain, han-
dling inconsistency can be done thanks to (weighted)
MAXSAT (Li and Manya 2009). While this is a rele-
vant approach, it needs either the removal cost of each
clause, which needs to be elicited, or to consider that
every clause is as relevant to the query as any other.
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In this work, we would like to study another, somehow
close, way where the selection of clauses is based on
their closeness to a given query.

The paper is organized as follows: we start by recall-
ing inconsistency handling classical approaches, then
we describe the Working Memory approach. In the last
section we demonstrate theoretical results about this
approach and study its complexity, then we describe
the experiments that were conducted on several bench-
marks. We conclude by a discussion about MAXSAT
and about the non-monotonic properties of the infer-
ence relation based on the Working Memory approach.

2 Background on selection-based
inconsistency handling

Notations: we consider a propositional logical language
L containing formulas denoted by lower case Greek
letters, based on a vocabulary V of variables denoted
by Latin lower case letters. Negation, conjunction, dis-
junction, material implication, contradiction and clas-
sical inference are denoted respectively by ¬, ∧, ∨, →,
⊥ and `. A CNF formula is a conjunction of clauses, a
clause is a disjunction of literals, a literal is a variable or
its negation. Abusing notation, clauses are assimilated
to sets of variables when using the two set operators
∈ and ∩ (for membership and intersection). Lists of
elements are represented with square brackets, and ::
is the operator s.t. e::L is the new list formed by the
element e followed by the elements of L.

In this paper we are going to use finite knowledge
bases defined as follows:

Definition 1 (Knowledge base). A knowledge base is a
finite set of formulas of L , considered as the conjunc-
tion of its elements.

One of the best known approach to cope with incon-
sistency is the one of Rescher and Manor (Rescher and
Manor 1970): it is based on the computation of the set
of maximal consistent subsets of the belief base, then
a formula is accepted as a consequence of the base if it
can be classically inferred from every maximal consis-
tent subset (or MSS for maximum satisfiable subset).
This idea has been refined in the preferred subtheory
approach of (Brewka 1989) where the knowledge base is
divided into several subsets according to a given relia-
bility level. We will see in Section 3.2 that our approach
actually allows to dynamically compute this reliability
levels with respect to a given query.

Definition 2 (Preferred subtheory (Brewka 1989)).
Given a tuple T = (T1, . . . , TN ) of sets of formulas1

of L , S = S1 ∪ · · · ∪ SN is a preferred subtheory of T
iff for all k, (1 < k < N) S1 ∪ · · · ∪ Sk is a maximal
consistent subset of T1 ∪ · · · ∪ Tk.

In the words of Brewka: “in order to obtain a pre-
ferred subtheory of T we have to start with any maximal

1Preferred subtheories are originally defined of a first-
order language; in this paper, we will restrict this defining
by using a propositional language.

consistent subset of T1, add as many formulas from T2

as consistently can be added (in any possible way), and
continue this process for T3, . . . , TN”.

Computing preferred subtheories requires some kind
of inconsistency checking; in this paper, we will make
use of the notion of minimal unsatisfiable subsets2.

Definition 3 (MUS and MSS (Liffiton and Sakallah
2008)). A subset S of clauses of a base B is a minimal
unsatisfiable subset (MUS) if S is inconsistent and for
all c ∈ S, S \ {c} is consistent.

A subset S ⊆ B is a maximal satisfiable subset MSS if
S is consistent and for all c ∈ B\S, S∪c is inconsistent.

Example 1. Let us consider the following knowledge
base LTM (in CNF form):

LTM =

c1︷ ︸︸ ︷
(a ∨ ¬d)∧

c2︷︸︸︷¬a ∧
c3︷ ︸︸ ︷

(¬a ∨ b ∨ d)∧
c4︷︸︸︷
¬b ∧

c5︷ ︸︸ ︷
(¬a ∨ c)∧

c6︷︸︸︷¬c ∧
c7︷︸︸︷
d

There are two MUSes of LTM : {c1, c2, c7} and {c1,
c5, c6, c7}. There are four MSSes of LTM : {c1, c2, c3,
c4, c5, c6}, {c1, c3, c4, c5, c7}, {c1, c3, c4, c6, c7} and
{c2, c3, c4, c5, c6, c7}.

When the user has information about the formulas
that are more important/sure (called “preferred” in
(Brewka 1989)) then the selection can be done among
the preferred subtheories (which according to (Brewka
1989) are maximal consistent subbases of the knowl-
edge base in which the most important formulas are
primarily chosen). Nebel in (Nebel 1991) also proposes
to use a syntax based approach that he calls “epis-
temic relevance”, which is a complete preorder on all
the formulas that are consequences of the beliefs. This
relevance/preference information may come from the
confidence given into the different sources of the belief
base, it is then considered as exogeneous extra informa-
tion about the beliefs. Another kind of approach takes
profit from the syntax of the belief base to discover the
strength of each belief, this meta information is then en-
dogeneous with respect to the belief base: for instance
System Z is able to rank automatically the beliefs based
on their specificity (Pearl 1990).

When a user wants to conserve the belief base with-
out forcing consistency, two ways can be adopted:
either reason on ALL the most interesting subbases
(for instance, reason on Brewska’s preferred subthe-
ories (Brewka 1989), providing that rankings on be-
liefs are available, or simply maximal consistent sub-
bases when no extra-information is available) or se-
lect only ONE preferred consistent subbase and reason

2Please note that our approach is agnostic on that point
and might use different inconsistency checking mechanisms.
That being said, while computing MUS is computationally
expensive, they need to be computed just once, which would
not potentially be the case with other inconsistency checking
methods where the computation would be needed with each
newly considered clauses.
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with it (Benferhat, Dubois, and Prade 1995; Benfer-
hat et al. 1993). In both cases, the whole initial base
is preserved, but the reasoning process is made on one
(or several) of its consistent part(s) (called “repair(s)”
in Query Answering community (Greco et al. 2003;
Chomicki 2006)).

Other, somewhat different, approaches for reasoning
under inconsistency exist; for instance, modifying the
beliefs by adding premises in order to specify better
the context in which some rules should not be fired
(Doder and Vesic 2015; Dupin De Saint Cyr, Duval,
and Loiseau 2001), somehow coming back to the old
idea of circumscription (McCarthy 1986).

3 Working Memory
In this section we are going to present a way to assess a
CNF formula called the query, denoted ϕ, w.r.t. a po-
tentially inconsistent finite CNF knowledge base called
LTM (for long term memory). This is done by check-
ing the consistency of the formula w.r.t. a subset of the
LTM called WM (for working memory).

More precisely, we propose a process that: 1) links
the LTM clauses together based on the number of com-
mon literals (Section 3.1), 2) uses these links to build
a WM that is relevant for the query ϕ to assess, where
relevance is understood in terms of common variables
(Section 3.2) and 3) actually checks the status of the
query (or queries, Section 3.3).

3.1 Preprocessing on LTM

This first step of preprocessing on LTM extracts the
information required to build a consistent and relevant
WM . More precisely, it consists in creating a dictio-
nary AssocCl that associates to each clause c the list
of clauses that contains at least one common variable
with c together with the number of common variables:

AssocCl(c) = [(c′, nbV ) | c′ ∈ LTM \ {c},
nbV = |c ∩ c′| s.t.

nbV > 0]

This is done by Algorithm 1 which also computes
the maximum number of common variables maxCom
between any pair of clauses and the dictionary V ar2Cl
which maps each variable v to the set V ar2Cl(v) of
clauses in which it appears:

V ar2Cl(v) = {c | c ∈ LTM s.t. v ∈ c}
Please note that these association tables do not need

to be recomputed for each query (but they can be up-
dated).

Example 2. In Example 1, V ar2Cl(a) = {c1,
c2, c3, c5} and table AssocCl is: AssocCl(c1) =
[(c2, 1), (c3, 2), (c5, 1), (c7, 1)], AssocCl(c2) = [c1, 1),
(c3, 1), (c5, 1)], AssocCl(c3) = [(c1, 2), (c2, 1), (c4, 1),
(c5, 1), (c7, 1)], AssocCl(c4) = [(c3, 1)], AssocCl(c5) =
[(c1, 1), (c2, 1), (c3, 1), (c6, 1)], AssocCl(c6) = [(c5, 1)],
AssocCl(c7) = [(c1, 1), (c3, 1)] and maxCom = 2.

Algorithm 1: LTM preprocessing(LTM)

Input: LTM in Dimacs CNF format
Output: Var2Cl: dict. of clauses associated with

var; maxCom: max nb of common vars in
2 clauses; AssocCl: dictionary of
associated clauses

Var2Cl ← empty dictionary
for each clause c in LTM do for each v in c do
Var2Cl(v)←Var2Cl(v) ∪ {c}
maxCom ← 0; AssocCL ← empty dictionary

for each (c1,c2) in LTM2 s.t. c1 ∩ c2 ≥ 1 do
AssocCl(c1) ← (c2,c1 ∩ c2) :: AssocCl(c1)
if maxCom < c1 ∩ c2 then

maxCom ← c1 ∩ c2
return (Var2Cl, maxCom, AssocCl)

Algorithm 2: Query preprocessing(ϕ,LTM)

Input: ϕ: a query in CNF format; LTM: set of
formulas in CNF format

Output: QAssocV: dict. of common var of each
LTM clause w.r.t. ϕ

QAssocV ← empty dictionary of clauses
for each clause c in LTM do

for each clause i in ϕ do
comV ← i ∩ c // common vars between i and c

if comV 6= ∅ then
QAssocV(c) ← QAssocV(c) ∪ comV

return (QAssocV)

3.2 Building a consistent WM for
assessing ϕ

Given a query ϕ and a LTM, Algorithm 2 builds the
dictionary QAssocV that associates to each clause c of
the LTM the set QAssocV (c) of variables that c has in
common with ϕ:

QAssocV (c) = c ∩ ϕ
This dictionary will be used (in Algorithm 3) to start
feeding the WM with clauses directly linked to the
query, since as detailed below, the score of a clause
is the sum of the number of common variables, this
number is normalized by dividing it by the maximum
number obtained for an entry of the dictionary.

Example 3. Let us consider the following for-
mula containing two clauses: ϕ = (b ∨ ¬c) ∧ d.
QAssocV (c1) = QAssocV (c7) = {d} meaning that
c1 (and also c7) has the variable d in common with
ϕ. QAssocV (c3) = {b, d}, QAssocV (c4) = {b},
QAssocV (c5) = QAssocV (c6) = {c}.

We propose a best-first-search algorithm (Algorithm
3) for filling the Working Memory with the clauses re-
lated to a query ϕ. Technically, the idea is to select the
“closest” clauses w.r.t. to ϕ, with the closeness notion
defined inductively as follows: first the clauses that have
a maximum number of common variables with ϕ are in-
serted in a maximal binary heap3 with a percentage of

3A maximal binary heap is represented by a tabular
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Algorithm 3: WM download

Input: QAssocV: dict. of vars assoc. with LTM
clauses; AssocCl: dict. of associated
clauses in LTM; MUS: set of MUS of
LTM; m: capacity size of WM ; maxCom:
max common vars between 2 clauses

Output: new WM
/* Create a max binary heap with clauses associated

with their score w.r.t. ϕ */
Queue ← empty maximal binary heap
maxScore ← 0
for each key c in QAssocV do

score(c) ← |QAssocV(c)|
if maxScore < score(c) then maxScore ←
score(c)

for each key c in QAssocV do
Add(Queue,(c,score(c)/maxScore))
WM ← empty set; InconsSeen ← empty set
/* Best first search algorithm */
while Queue not empty and |WM | < m do

(key,rel) ← Remove(Queue) // Removing the
max element of the heap

if key /∈ WM then
if ∃mus ∈ MUS, mus ⊆ WM ∪{key} then

// key is inconsistent with WM
InconsSeen← InconsSeen ∪ {key}

else // key is consistent with WM
WM ← WM ∪{key}
keyAdjacents ← AssocCl(key)
for each pair (c, s) in keyAdjacents do

if c /∈ WM and c /∈ InconsSeen then
Add(Queue,
(c,rel × s/maxCom))

return (WM)

relevance to the query (the number of common vari-
ables normalized with the maximal score maxScore,
the biggest number of associated clauses). A clause c
with highest relevance is then taken out of the heap
and added to the WM (if not inconsistent); its closest
clauses (according to AssocCl) c′ are added to the heap
with a percentage of relevance to the query equal to
the relevance of c multiplied by its degree of relevance
with c′ (number of common variables with c′ divided by
maxCom the maximum of common variables between
two clauses in LTM). Using percentage and normalized
score ensures that the “farther” from the query a clause
is, the lower its relevance to the query will be.

More fundamentally, Algorithm 3 presents a way to
compute a relevance score which plays a similar role as
Brewka’s reliability level, with the significant difference
of being dynamically computed. Indeed, first, the set
of clauses with the highest relevance to the query, i.e.
with the highest number of common variables, is se-
lected to form the first stratum of the knowledge base
LTM1; from this stratum is extracted a set of maxi-
mally consistent clauses WM1. A new relevance score is
then computed for the remaining clauses of the LTM

where the root is at index 1, the left child of any node i
is at index 2i and the right child is at index 2i+ 1.

based on their relevance with the clauses in WM1, es-
sentially computing a transitive relevance to the query,
and forming LTM2. This process continues recursively
until no new stratum can be formed, either because the
maximal size of the WM has been reached or because
there is no relevant clause anymore.

More formally, the selection of the relevant clauses
requires the notion of consistent sets of clauses that are
maximal for inclusion with the condition that they have
a size under a given bound s, defined as follows:

Definition 4 (Max-consistent for inclusion under s).
S is a max-consistent subset of K for inclusion under
s ∈ N (S mcis K) iff S ⊆ K and S is consistent and
|S| ≤ s and there is no S′ consistent s.t. S′ ⊆ K and
|S′| ≤ s, S′ ⊃ S.

Algorithm 3 recursively collects clauses that are less
and less (transitively) relevant to the query, yielding a
consistent set WM , more formally defined as follows:

Definition 5 (Working memory w.r.t. a query). Given
a knowledge base LTM and a formula ϕ (called the
query), a working memory WM(LTM,ϕ,m) associated
with LTM and ϕ given a maximum size m of the work-
ing memory is recursively defined as follows:

score1(c) = | ⋃c′∈ϕ(c′ ∩ c) |, c ∈ LTM

LTM1 = argmax c ∈ LTM
and score1(c) 6= 0

score1(c)

WM1 mcim LTM1

Given WM1, . . . ,WMk, and LTM1, . . . , LTMk and

m(k) = m−∑k
i=1 |Wi|:

• If m(k) > 0 and WMk 6= ∅ then

scorek+1(c) = max
c′∈WMk

(|c′∩c|×scorek(c′)/maxCom)

where maxCom = maxc,c′∈LTM |c ∩ c′|.

LTMk+1 = argmaxc ∈ LTM \ (LTM1 · · ·LTMk)
and scorek+1(c) 6= 0

scorek+1(c)

WMk+1 mcim(k) LTMk+1

• Else WM(LTM,ϕ,m) =
⋃k
j=1WMj

As it can be seen in Definitions 4 and 5 with the
notion of max-consistent subset for inclusion under s
(mcis), consistency must be maintained when building
the WM . In Algorithm 3, we use MUS to ensure consis-
tency, more precisely, each time a new clause is added
to the WM we check whether a MUS is not a subset of
the WM . The MUS of the LTM are precomputed offline
thanks to a standard algorithm (we have chosen to use
the system CAMUS (Liffiton and Sakallah 2008)). Note
that another technique would be to use an incremental
SAT solver like GlucoseInc (Audemard, Lagniez, and
Simon 2013), or even just check for consistency each
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time a new clause is added to the WM . The compari-
son, in terms of complexity and computation time, of
these different consistency handling techniques is left
for future work.

Example 4. Let us consider that we want to build a
WM of size m = 5 extracted from the LTM of Ex-
ample 1 for the query ϕ = (b ∨ ¬c) ∧ d. The scores
of the clauses indexed in QAssocV are: score(c1) =
score(c4) = score(c5) = score(c6) = score(c7) = 1
and score(c3) = 2 (maxScore), yielding to an initial
Queue consisting in the maximal binary heap [(c3, 1);
(c1, 0.5); (c4, 0.5); (c5, 0.5); (c6, 0.5); (c7, 0.5)]. Algo-
rithm 3 starts building a WM by removing the maxi-
mal element (the clause that is the most related to the
query) of the heap, namely c3, and adding it to WM .
After this step, WM = {c3} and Queue = [(c7, 0.5);
(c1, 0.5); (c4, 0.5); (c5, 0.5); (c6, 0.5)]4.

The clauses associated to c3 are already stored in
AssocCl(c3) = {(c1, 2), (c2, 1), (c4, 1), (c5, 1), (c7, 1)},
each of them is added to the Queue with a weight equal
to the value of c3 (which equals 1) times their weight
divided by maxCom (which equals 2), yielding the new
Queue: [(c1, 1); (c1, 0.5); (c7, 0.5); (c5, 0.5); (c6, 0.5);
(c4, 0.5); (c2, 0.5); (c4, 0.5); (c5, 0.5); (c7, 0.5)]. Note
that the queue may contain several occurrences of the
same element. Then c1 is removed from Queue and
added to the WM , afterwards c4 then c7 and c5. Fi-
nally when c2 is at the top of the heap, it cannot be
added since inconsistent with WM idem for c6. At the
end WM = {c1, c3, c4, c5, c7} (which is actually a
max consistent subset of B, it is not necessarily the
case that a whole MSS is obtained). Note that due to
equalities other WM are obtainable (more precisely, ev-
ery subset of size 5 of any MSS except the subsets of
{c2, c3, c4, c5, c6, c7} (since c1 should be present due to
its high number of common variables with the query).

3.3 WM loading with overflow for new
queries

Once a WM has been built, it is possible to evaluate
the query. In particular, we will say that a query ϕ is
accepted whenWM∪{ϕ} 6|= ⊥. Note that we used Sat4J
(Le Berre and Parrain 2010) to check satisfiability, but
any other SAT solver could be used.

Example 5. Given WM={c1, c3, c4, c5, c7} with
ϕ = (b ∨ ¬c) ∧ d, we get WM ∪ {ϕ} |= ⊥.

When a new query ϕ′ arrives, the previously loaded
clauses might be irrelevant, i.e. there might be no as-
sociation between the query and clauses in the WM
(AssocCl∩QAssocV = ∅), which prompts for the load-
ing of other clauses. Then two cases might arise accord-
ing to the room left in the current WM (where room =
m − |WM |, i.e. capacity size of the WM minus cur-
rent occupation) and to the number of clauses needed
to answer query ϕ′ (needed = |WM(LTM,ϕ′,m)|):

4Removing the max element of a heap replaces it with
the last leave of the tree and percolate it down to its right
place, here c7 go to the top and stays there.

• either the WM still has room to store the newly
needed clauses: needed ≤ room, in that case the
process is the same as before,

• or the WM lacks room: needed > room then a set of
old clauses (of size needed− room) is discarded from
the WM .

4 Characterization about efficiency in
time and accuracy

In this section, we will study some properties of the
inference relation induced by our framework and assess
it experimentally.

4.1 Theoretical results

Before getting into the details of the inference relation,
we need to define the notion of cluster.

Definition 6 (Clusters). Given a set of clauses LTM ,
a cluster of the LTM is a set of clauses composing a
connected component of the graph whose vertices are
the clauses and the edges are relating two clauses with
at least one common variable; clusters(LTM) is the set
of clusters of LTM .

Now, we are in the position to define the inference
relation with regards to the WM .

Definition 7 (LTM inference). Given a LTM and a
capacity size m of the WM ,

α |∼m
LTMβ is defined by WM(LTM,α,m) ` α→ β

where WM(LTM,α,m) is a working memory in the
sense of Definition 5 and ` is classical logic inference.

The following proposition establishes that detecting
inconsistency of the LTM with the query ϕ by selecting
a consistent subbase with no limit of size is the same
as doing it with a size equal to the size of the maxi-
mal cluster of the LTM . The proposition holds when
the query ϕ is related to only one cluster of the LTM ,
in other words when ϕ concerns only one domain of
knowledge (i.e., associated to only one vocabulary).

Proposition 1. Let mc = maxC∈clusters(LTM) |C|, if
mc ≤ m (where m is the capacity of the WM), and α ∈
L s.t. there is only one cluster C ∈ clusters(LTM)
where for all clause i in α, for all cluster C ′ in
clusters(LTM) \C and for all clause c ∈ C ′, i∩ c = ∅:

α |∼∞LTMβ if and only if α |∼mc
LTMβ

Proof. Due to Definition 7, the proof is based on the
definition of WM(LTM,α,m) which returns a consis-
tent sub-base WM such that by construction all its
clauses belong to the same cluster of the LTM (since
in WM1 the clauses have at least one common variables
with α, then WM2 is a set of clauses that have at least
one common variables with WM1 and so on). Moreover
m being big enough to contain any cluster of the LTM ,
downloading is limited to at most mc formulas, hence
WM(LTM,α,∞) = WM(LTM,α,mc). �
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The following propositions guarantees that the rejec-
tion of a query by using Working Memory is in accor-
dance with the result that could be obtained by select-
ing a maximal consistent subbase of the LTM .

Proposition 2. For all m > 0, if α |∼m
LTMβ then there

is a maximal consistent subbase B of the LTM s.t. B `
α→ β

Proof. By construction, for any m, WM(LTM,ϕ,m) is
a consistent subbase, thus there is maxi-consistent sub-
base of the LTM that contains it. Hence the result due
to the monotonicity of `. �

In the following, we compute the worst case time
complexity denoted Tmax associated to the processing of
k consecutive queries, where processing a query means
to check its consistency w.r.t. the current WM . The
complexity of this processing is expressed w.r.t. the
number of variables n and the number of clauses in the
LTM denoted mL, the capacity of WM in clauses is de-
noted m and the number of queries k of mq clauses.
When the process is done on the LTM only, the com-
plexity is denoted Tmax(LTM(n,mL, k,mq)) while the
one of the process done with a WM given the LTM is
denoted Tmax(WM(n,mL,m, k,mq)).

As recalled in (Pătraşcu and Williams 2010) there
is a sequence of papers that have provided algorithms
for CNF SAT with 2n−o(n).poly(m) runtime, where n is
the number of variables and m is the number of clauses
and poly(m) is a polynomial function of m. The current
best (Calabro, Impagliazzo, and Paturi 2006) is a deter-

ministic algorithm that runs in 2n(1− 1
O(log(m/n))

)poly(m)
time, as shown by (Dantsin and Hirsch 2009). Applying
these results in our context, the following remark shows
the worst case computational complexity of checking k
queries of mq clauses in the LTM (please note that the
expression is simpler when we assume that the number
of queries and their size is negligible in front of the size
of the LTM).

Remark 1. If k.mq � m then
Tmax(LTM(n,mL, k,mq)) ∈ Θ(k × poly(mL) ×
2nα(n,mL)) where α(n,mL) = 1− 1

O(log(mL/n)) .

This is due to the fact that Tmax(LTM(n,mL, k,mq))

=
∑k
i=1(Tmax(SAT (n,mL + i.mq))).

Due to Algorithms 1, 2 and 3, assessing k queries of
mq clauses via the WM has the following worst case
computational complexity.

Proposition 3. If mq � m then
Tmax(WM(n,mL,m, k,mq)) ∈ Θ(n.m2

L + k.mL.m
2 +

k.poly(m)× 2n.α(n,m))

Proof. Tmax(WM(n,mL,m, k,mq)) =
Tmax(LTMprep(n,mL)) +

k ×




Tmax(Qprep(n,mL,mq))+
Tmax(WMdl(n,mL,m,mq))+
m× (Tmax(pop+ push))
+Tmax(SAT (n,m+mq))




Function QRandGener(LTM,maxV ,maxCl)

Require: RandNum(M): returns number in interval
[1,M ] and Sample(S,n): returns n random
elements from S and Vars(S): returns the
variables of clauses set S

Input: LTM: set of formulas in CNF format;
maxV : maximum size of a query clause;
maxCl: maximum number of clauses in
query

Output: ϕ: query in CNF
counterCl ← 0; ϕ ← empty list of clauses
for counterCl in [1,RandNum(maxCl)] do

clause← empty list of literals
vars← Sample(Vars(LTM),RandNum(maxV ))
for each v in vars do

newLit← RandChoice({v, v});
clause← newLit :: clause

ϕ← clause :: ϕ
return (ϕ)

where push and pop are the operations that re-
spectively add and delete an element from a fifo
(here they are used to delete and add clauses to
the WM since in the worse case m clauses have to
replace all the clauses that were in the WM be-
fore, these operations can be implemented in Θ(1)),
LTMprep, Qprep, WMdl are the respective abbrevia-
tions for the Algorithms LTM preprocessing (Algo 1),
Query preprocessing (Algo 2) and WM download (Algo
3).
Moreover Tmax(LTMprep(n,mL)) ∈ Θ(n.m2

L), since it
computes the AssocCl dictionnary of the mL clauses.
Tmax(Qprep(n,mL,mq)) ∈ Θ(mL.mq.n) considering
that the intersection of two clauses is done in linear
time of the number of variables (the clause literals be-
ing ordered) and this intersection being done between
all the mL clauses of the LTM and all the mq clauses of
the query. Tmax(WMdl(n,mL,m,mq)) ∈ Θ(mq.mL +
m.(m + m.mL + m log(m))) (since the while is done
at worst m times and runs one membership test (in
Θ(m)), one inclusion test to the MUS list (in Θ(m.mL)
assuming that the clauses in the MUSes are ordered),
one Remove and at worst m Adds to a heap of capacity
size m which are both in Θ(logm)). After simplifica-
tion, we get Tmax(WMdl(n, mL, m, mq) ∈ Θ(m2.mL).
Wrapping it up yields Tmax(WM(n,mL,m, k,mq)) ∈
Θ(n.m2

L+k(mL.mq.n+m2.mL+poly(m+mq)×2n))),
we finally obtain the result. �

Hence if we ignore the first preprocessing of the LTM ,
comparing Rem. 1 and Prop. 3 leads to a theoretical
gain in time in the worst case provided that m� mL,
i.e., when the size of the WM is small w.r.t. the size of
the LTM. This is confirmed by the following empirical
results.
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4.2 Empirical results

In order to assess the empirical interest of our approach,
we implemented5 the approach and placed ourselves in
the situations where the base is receiving several con-
secutive queries. These queries are randomly gener-
ated from the clauses in the base (see Function QRand-
Gener). Intuitively, the function creates a random
number of clauses (bounded by a parameter maxCl)
that are populated by a random number of variables
(bounded by a parameter maxV ) that appear in some
clauses of the base (or a specific cluster); each of these
variables is then randomly set positive or negative.
Please note that it is possible to generate queries on a
specific cluster of the base by replacing Vars(LTM) line
5 by Vars(Cluster); clusters are computed by transitive
closure of the neighborhood relation between clauses
(where neighbor means to have common variables, see
Definition 6).

In order to assess our approach, we observed its re-
sults under different maximal sizes for the WM. As a
baseline, a WM representing the most relevant maxi-
consistent subbase is computed (WM MaxiCons); this
WM is created by associating the query with all the
clauses from the base (assigning 0 in case no variables
are shared) and by using the regular WM download al-
gorithm. We then run the experiment with WM hav-
ing respectively the size of the LTM (WM LTMSize),
the size of the cluster of clauses of maximum size (WM
MaxCluster) and the size of the average size of all the
clusters of clauses (WM AverageCluster).

Table 1 summarizes the results for different bases
built on two Dimacs files coming from the SAT bench-
mark Blocks World6: mdi and ami are respectively
Medium.cnf cut off after 150 lines and Anomaly.cnf cut
off after 50 lines, both of them made inconsistent by
negating their first clause; mdiX and amiX are the files
obtained by repeating the mdi and ami X times (liter-
als are renamed to avoid redundancy); uma is the union
of mdi2 and ami4. Hence, adi60, mdi20 and um6 are
all composed of 3000 clauses.

The notation qXY indicates that the generated query
has a maximum number of clauses of X and a maximum
number of variables per clause of Y . (1st) and (5th)
indicates respectively that the row corresponds to the
first or the last queries of five successive queries.

Based on the results on the table, we can make the
following remarks. Bases that have several connected
components benefit from the approach when the query
concerns a limited amount of these components, since
the solver will be executed on a much smaller base which
will reduce the execution time while maintaining accu-
racy. We argue however that it is fair to assume that a
general base will have a tendency to cluster its formulas,

5Using Python 3.9.2, Sat4J 2.3.5 and CAMUS 1.0.7.
6https://www.cs.ubc.ca/∼hoos/SATLIB/Benchmarks/

SAT/PLANNING/BlocksWorld/descr.html

where each cluster represents some sort of “context” or
“domain”.

Iterative querying on the same cluster allows to re-
duce of lot of the overhead caused by the approach
since the WM does not need to be recomputed. On the
other hand, iterative querying on the whole base forces
the re-computation of the WM quite often, which im-
plies longer execution times. In that case, the accuracy
may decrease since the working memory may be over-
whelmed by the number of subjects that must be cov-
ered at the same time; it is interesting to note that this
behavior is somewhat reminiscent of human behavior,
for instance when a person, by mixing different subjects
and domains, makes it impossible to apprehend the full
extent of her statement.

Finally, as expected, let us note that the choice of a
suitable WM capacity is a matter of compromise be-
tween time and correctness: a bigger size will give
more correct results but will take more time to compute
whereas a smaller size may be less correct but faster.
That being said, as Table 1 shows, selecting a size equal
to the average of the clusters demonstrates noticeable
decrease in time while maintaining good results.

5 Conclusion
In this paper, we presented an approach to handle in-
consistency in a knowledge base by using a notion of as-
sociations between clauses based on common variables.
These associations are used to extract one consistent
subbase. We showed that this approach has interesting
results both in terms of complexity and execution time.

It should be noted that our approach, by eliciting
only one subbase, may give results that are different
from some classical approaches that consider all the
consistent subbases. Moreover, depending on the his-
tory of the knowledge base, i.e. the sequence of queries
that happened beforehand, different consistent sub-
bases can be chosen. In addition, we can remark that
our approach behaves in a different way than MAXSAT
(which also selects only one subbase). This can be ob-
served in the following small example:

Example 6. Let us consider a KB LTM ′ in CNF form:

LTM ′ =

c1︷ ︸︸ ︷
(a ∨ b ∨ c)∧

c2︷ ︸︸ ︷
¬a ∨ ¬d∧

c3︷ ︸︸ ︷
(a ∨ ¬c ∨ ¬d)∧

c4︷ ︸︸ ︷
¬b ∨ c∧

c5︷ ︸︸ ︷
(¬d ∨ ¬e)∧

c6︷ ︸︸ ︷
a ∨ e∧

c7︷︸︸︷
c ∨ e∧

c8︷ ︸︸ ︷
(¬c ∨ d)∧

c9︷ ︸︸ ︷
(¬a ∨ c)∧

c10︷︸︸︷
(¬e)

Let ϕ = (c∨d)∧ (¬b). In order to minimize the number
of deleted clauses, MAXSAT would find a solution by
removing only the clause c8, and ϕ would be accepted.
On the contrary, our approach would create the WM
by selecting all the clauses but c9 and c10 and reject
the query. In that example, it seems more desirable to
exclude c9 and c10 since they are less related to the query
than c8.
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Query type Filename WM MaxiCons

(Tbuild, Tsat)

WM LTMSize

(Tbuild, Tsat)

WM

MaxCluster

(Tbuild,Tsat)

WM

AverageCluster

(Tbuild,Tsat)

q11

adi60 (1st) (1299.02,17.8) (3.3,6.1) 100% (2.43,6.1) 100% (2.32,6.1)

adi60 (5th) (2.03,14.3) (1.72,5.8) 100% (1.16,5.9) 100% (1.22,5.8)

mdi20 (1st) (1299.02,17.8) (7.84,7.2) 100% (8.68,7.1) 100% (8.25,7.3)

mdi20 (5th) (1.51,17.5) (1.32,7.2) 97% (1.36,7.1) 97% (1.41,7.1)

uma6 (1st) (1181.35,16.4) (4.02,6.6) 100% (5.03,6.6) 100% (3.03,6.5)

uma6 (5th) (1.29,14.9) (1.08,6.5) 100% (1.33,6.4) 97% (1.51,6.3)

q33
on same
cluster

adi60 (1st) (1034.53,15.8) (3.54,6.0) 100% (2.85,6.0) 100% (2.53,6.0)

adi60 (5th) (2.72,15.5) (1.6,5.8) 98% (1.36,5.9) 98% (1.25,5.9)

mdi20 (1st) (1304.62,18.2) (8.08,7.2) 100% (7.86,7.3) 100% (8.44,7.2)

mdi20 (5th) (2.17,17.3) (1.4,7.0) 99% (1.32,7.1) 99% (1.58,7.2)

uma6 (1st) (1166.63,16.6) (6.14,6.7) 100% (5.15,6.6) 99% (2.81,6.5)

uma6 (5th) (2.37,16.1) (1.31,6.2) 100% (1.25,6.2) 92% (1.58,6.3)

q33

on different
clusters

adi60 (1st) (1025.18,15.3) (14.36,7.2) 83% (3.02,6.6) 83% (2.89,6.5)

adi60 (5th) (2.53,14.9) (5.74,9.4) 85% (3.1,6.6) 85% (2.73,6.6)

mdi20 (1st) (1285.47,18.1) (57.22,9.1) 89% (6.19,7.6) 89% (6.79,7.5)

mdi20 (5th) (2.1,17.5) (13.74,11.8) 89% (5.56,7.8) 89% (5.86,7.6)

uma6 (1st) (1174.62,16.9) (36.65,8.6) 90% (7.02,7.4) 86% (4.66,7.0)

uma6 (5th) (2.22,16.5) (9.15,11.5) 92% (5.68,7.6) 94% (4.17,7.0)

Table 1: Agreement ratio between differently sized WM for 100 runs. Percentages in the cells correspond respectively
to agreement ratio between the WM LTMSize and, respectively, WM MaxCluster and WM AverageCluster.
Tbuild and Tsat represent respectively the time (in ms) to build the WM and to execute the sat solver.

This first preliminary study opens several research
avenues:

Finer WM building : extending the relevance between
clauses by being able to compare them semantically
instead of just counting their common variables (see
e.g. (Bisquert et al. 2017) where associated formu-
las are built on the results of a serious game) could
overcome the drawbacks related to the syntax depen-
dency of the non-monotonic inference relation |∼ ϕ

LTM .
It is important to note that, with the current syntac-
tic definition of relevance, different sets of clauses may
be relevant to two equivalent clauses (e.g. by disjunc-
tively adding superfluous literals): for instance, con-
sider the clauses c and a ∨ ¬a ∨ c. On that note,
the reader can check that |∼ m

LTM satisfies some clas-
sical properties of non-monotonic inference relations of
(Kraus, Lehmann, and Magidor 1990) like reflexivity
(α |∼ m

LTMα) and right weakening (if ` α → β and
γ |∼m

LTMα then γ |∼m
LTMβ). However, left logical equiv-

alence, cut or cautious monotony7 are not guaranteed
since two equivalent formulas may imply different WM

7The reader can refer to (Lagasquie-Schiex 1995) for a
well-organized overview of the main classical non-monotonic
inference relations and their properties (in French) or to
(Cayrol and Lagasquie-Schiex 1995; Cayrol, Lagasquie-
Schiex, and Schiex 1998) for its English counterparts.

downloading. Other, more semantical, definitions of
relevance between clauses may allow for the satisfaction
of more non-monotonic properties, for instance the se-
mantical dependence built on the notion of forgetting
(Lang, Liberatore, and Marquis 2003).

WM & LTM updating : an interesting study would
focus on the evolution of the knowledge with the ar-
rival of different queries, i.e. under which conditions
the formula of the query might be accepted and stored
in the WM . Moreover, considering a capacity limited
WM implies that some WM clauses might be discarded
to make room for others clauses when a query is irrele-
vant to the current WM . These currently unnecessary
clauses might still be relevant for later incoming queries
and purely losing them might be detrimental in the long
run. One perspective is hence to study in detail which
clauses should be unloaded from WM and stored in the
LTM and, in order to avoid too much redundancy, how
those clauses could be compacted in the LTM . Updat-
ing the LTM prompts then the computation of a new
association table to account for the new pieces of in-
formation, which may be done efficiently by using the
old AssocCl together with QAssocV. In this context,
an incremental algorithm has to be created in order to
update the MUSes associated to the updated LTM.

Different inconsistency handling : Our approach han-
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dles inconsistency based on the idea that inconsistent
pieces of information lead to concealing some other for-
mulas, meaning that depending on the context some
knowledge will be ignored. Introducing uncertainty on
the formula, for instance with penalty logic (Dupin de
Saint-Cyr, Lang, and Schiex 1994), would ensure that
every piece of information is taken into consideration,
albeit with different “strength”.
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Abstract

We present algorithms based on answer set programming
(ASP) encodings for solving the problem of determining in-
consistency degrees in propositional knowledge bases. For
that, we consider the contension inconsistency measure, the
forgetting-based inconsistency measure, and the hitting set in-
consistency measure. Our experimental evaluation shows that
all three algorithms significantly surpass the state of the art.

1 Introduction
A major challenge in symbolic approaches to AI is the han-
dling of inconsistent information. The field of Inconsistency
Measurement—see the seminal work (Grant 1978) and the
book (Grant and Martinez 2018)—provides an analytical
perspective on the issue of inconsistency in formal knowl-
edge representation formalisms. Its aim is to quantitatively
assess the severity of inconsistency in order to both guide au-
tomatic reasoning mechanisms and to help human modellers
in identifying issues and compare different alternative for-
malizations. For example, inconsistency measures have been
used to estimate reliability of agents in multi-agent systems
(Cholvy, Perrussel, and Thevenin 2017), to analyze incon-
sistencies in news reports (Hunter 2006), to support collabo-
rative software requirements specifications (Martinez, Arias,
and Vilas 2004), to allow for inconsistency-tolerant reason-
ing in probabilistic logic (Potyka and Thimm 2017), and to
monitor and maintain quality in database settings (Bertossi
2018).

Previous research on the computational complexity of in-
consistency measures (Thimm and Wallner 2019) showed
that evaluating them is computationally hard in general.
However, as the list of application areas above shows,
there is a need to practical working solutions. In this pa-
per, we address this need by leveraging existing problem
solving paradigms to develop effective algorithmic solu-
tions to some prominent inconsistency measures. More pre-
cisely, we consider the contension inconsistency measure
(Grant and Hunter 2011), the hitting set inconsistency mea-
sure (Thimm 2016), and the forgetting-based inconsistency
measure (Besnard 2016) (we will give their formal defini-
tions in Section 2). Natural decision problems pertaining to

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

those measures are hard for the first level of the polyno-
mial hierarchy, but still easier compared to many other mea-
sures (Thimm and Wallner 2019). We therefore believe that
these measures are most likely suitable for real-world ap-
plications, due to the existence of general problem solving
paradigms able to solve problems of this complexity in com-
parably short time. Here, we use Answer Set Programming
(ASP) (Gelfond and Lifschitz 1991; Gelfond and Leone
2002; Gebser et al. 2012) for this purpose, a non-monotonic
logic programming language that has been proven success-
ful to solve problems in many other areas such as formal
argumentation (Dvorák et al. 2020) and automated planning
(Erdem et al. 2013), see also (Erdem, Gelfond, and Leone
2016). We selected the contension, forgetting-based, and
hitting set inconsistency measure, as they are conceptually
more similar to each other than to the other measures which
Thimm and Wallner identified to be on the first level of the
polynomial hierarchy (Thimm and Wallner 2019). Part of
our ongoing research is, however, to investigate the other
measures on this level, for instance the distance-based in-
consistency measures proposed by Grant and Hunter (2017).

In summary, the contributions of this paper are as follows:

1. We introduce algorithms based on answer set encodings
for determining the inconsistency value wrt. the conten-
sion inconsistency measure, the forgetting-based incon-
sistency measure, and the hitting set inconsistency mea-
sure (Section 3).

2. We present our findings of an experimental evaluation of
these algorithms, where we compare their runtime with
the runtime of existing baseline implementations (Sec-
tion 4).

In Section 2 we give an overview on the necessary prelim-
inaries, in particular about inconsistency measurement and
answer set programming. We conclude with a discussion of
our findings and possible future work in Section 5.

A short paper introducing a preliminary version of the en-
coding for the contension inconsistency measure has been
published before (Kuhlmann and Thimm 2020). In this pa-
per, we present an improved encoding of that measure and
novel encodings for the other two measures.
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2 Preliminaries
Let At be a fixed set of propositional atoms and let L(At) be
the corresponding propositional language constructed with
the usual connectives ∧ (conjunction), ∨ (disjunction), and
¬ (negation). A knowledge base K is a finite set of formu-
las K ⊆ L(At). Moreover, we define K as the set of all
knowledge bases. Further, At(X) denotes the set of atoms
appearing in a formula (or set of formulas) X .

Interpretations give semantics to propositional languages.
An interpretation i on At is a function i : At→ {true, false}.
We define Int(At) as the set of all interpretations wrt. At. An
interpretation i satisfies an atom x ∈ At, denoted i |= x,
iff i(x) = true. This concept is extended to formulas in the
usual manner. If an interpretation i satisfies a formula φ, it
is called a model of φ, respectively.

Let Φ ⊆ L(At) be a set of formulas. We define i |= Φ
iff i |= φ for all φ ∈ Φ. A formula (or set of formulas) X1

entails another formula (or set of formulas) X2, indicated as
X1 |= X2 if i |= X1 implies i |= X2 for every interpretation
i. If there exists no interpretation i with i |= X , we denote
this as X |= ⊥, and X is called inconsistent.

2.1 Inconsistency Measurement
In general, an inconsistency measure I is a function I :
K → R∞≥0 (Thimm 2019). The intuition behind such in-
consistency measures is that a higher value indicates a more
severe inconsistency than a lower one. The minimal value 0
is supposed to model the absence of inconsistency, i.e., con-
sistency.

The Contension Inconsistency Measure The contension
inconsistency measure (Grant and Hunter 2011) is based on
Priest’s three-valued logic (Priest 1979). In addition to true
and false, this logic introduces a third truth value denoted
both (true and false) or paradoxical. In the remainder of this
work we will also refer to these truth values as T , F , and
B, respectively. The truth tables of this logic are presented
in Table 1. A corresponding three-valued interpretation i3 is
a function that assigns one of the three truth values to each
atom in a knowledge base K:

i3 : At(K) 7→ {true, both, false}
Such an interpretation is called a model if each formula φ ∈
K evaluates to either true or both. The set of all models wrt.
K is defined as

Models(K) = {i3 | ∀φ ∈ K, i3(φ) = T or i3(φ) = B}
Further, we can divide the domain of an interpretation i3

into two sets. One contains those atoms that are assigned a
classical truth value (T , F ), the other one contains those that
are assigned truth value B, i. e., those which are involved in
a conflict. The latter is defined as

Conflictbase(i3) = {x ∈ At(K) | i3(x) = B}.
Finally, we can define the contension inconsistency measure
Ic wrt. a knowledge base K as follows:

Ic(K) = min{|Conflictbase(i3)| | i3 ∈ Models(K)}.
Hence, Ic describes the minimum number of atoms that are
assigned truth value B wrt. a knowledge base K.

x y x ∧ y x ∨ y
T T T T
T B B T
T F F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

x ¬x
T F
B B
F T

Table 1: Truth tables for Priest’s propositional three-valued
logic.

Example 1 Consider the following inconsistent knowledge
base:

K1 = {a ∧ b,¬a ∧ c, a,¬a,¬b}
Let i31 be the interpretation that assigns T to c, and B to a
and b. Thus, Conflictbase(i31) = {a, b}. Because each for-
mula in K1 evaluates to either T or B given i31, then i31 is
also a model of K1. It is easy to see that a and b must be
assigned B in order to make the knowledge base satisfiable,
and that no lower number of atoms being assigned B could
make K1 satisfiable. Hence, we get Ic(K1) = 2.

The Forgetting-Based Inconsistency Measures The in-
tuition behind the forgetting-based inconsistency measure
(Besnard 2016) is to count how many atom occurrences in
a knowledge base K have to be “forgotten” in order to re-
cover consistency in K, where “forgetting” is interpreted as
replacing the atom occurrence with either > or ⊥. To illus-
trate this, we first label each atom occurrence according to
its position in K. For instance, we can give label “1” to the
first occurrence of an atom a, label “2” to the second occur-
rence, and so forth.

Example 2 Recall knowledge base K1 given in Example 1.
Assigning labels as described above yields the knowledge
base

Kl1 = {a1 ∧ b1,¬a2 ∧ c1, a3,¬a4,¬b2}.
For a formula φ, let φ[xn1

1 → ψ1, . . . , x
nk
p → ψk] de-

note the formula φ′ where the atoms x1, . . . , xp with labels
n1, . . . , nk are replaced by ψ1, . . . , ψk.

Example 3 Let φ1 := (a1 ∧ b1) ∨ (¬a2 ∧ b2).

φ1[a2 → >, b1 →⊥] = (a∧ ⊥) ∨ (¬> ∧ b)
Consequently, we can define the forgetting-based inconsis-
tency measure as

If (K) = min{k | (
∧
K)[xn1

1 → ψ1, . . . ,

xnk
p → ψk] 6|= ⊥, ψ1, . . . , ψk ∈ {>,⊥}}

for all K ∈ K with {x1, . . . , xp} ∈ At(K) and n1, . . . , nk
being the corresponding labels.

Example 4 With regard to the labeled knowledge base Kl1,
given in Example 2, we could replace a1, a3, and b1 by >,
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i.e., we could forget a1, a3, and b1, in order to restore con-
sistency. Although there are other options to recover con-
sistency, e. g., by forgetting a2, a4, and b2, one can clearly
see that it is not possible to obtain consistency by forgetting
fewer than 3 atom occurrences. Hence, If (K1) = 3.

The Hitting Set Inconsistency Measure A subset H ⊆
Int(At) is a hitting set of a knowledge base K if for ev-
ery formula φ ∈ K there is an interpretation ω ∈ H with
ω |= φ. Thus, there only exists a hitting set for K iff there
is no φ ∈ K with φ |= ⊥, i.e., no formula φ ∈ K is con-
tradictory. Moreover, if there exists a hitting set H wrt. K,
and |H| = 1, the only element in H is a model of K. Thus,
in this case, K is consistent. Based on the preceding defini-
tions, the hitting set inconsistency measure Ih(K) (Thimm
2016) is defined as the minimum number of elements in the
hitting set, subtracted by 1. If there exists no hitting set wrt.
K, then Ih(K) =∞. Formally,

Ih(K) = min{|H| | H is a hitting set of K} − 1,

with min ∅ =∞ for all K ∈ K\{∅}. Further, Ih(∅) = 0.

Example 5 Consider again K1 as defined in Example 1. As
none of the formulas in K1 is contradictory, there must exist
a hitting set. Also, as the knowledge base is obviously in-
consistent, we need at least two interpretations to compile a
hitting set. Let interpretation i1 assign T to the formulas a,
b, and c, and let interpretation i2 assign F to a and b, and
T to c. Each formula φ ∈ K1 is satisfied by one of these two
interpretations. Hence, Ih(K1) = 2− 1 = 1.

2.2 Answer Set Programming

Answer set programming (ASP) (Gebser et al. 2012; Lif-
schitz 2008; Brewka, Eiter, and Truszczynski 2011) is a
declarative problem solving approach targeted at difficult
search problems. ASP incorporates ideas of logic program-
ming and Reiter’s default logic (Reiter 1980). A problem is
modeled as an extended logic program which consists of a
set of rules. An ASP rule is of the form

r = H ← A1, . . . , An, notB1, . . . , notBm. (1)

where H , Aj with j ∈ {1, . . . , n}, and Bk with k ∈
{1, . . . ,m} are classical literals. ASP rules consist of a head
and a body, both of which can be empty. We denote the
sets of literals contained in the head and body of a rule
r as head(r), and body(r), respectively. A rule with an
empty body is called a fact, a rule with an empty head is
referred to as a constraint. In (1), head(r) = {H}, and
body(r) = {A1, . . . , An, B1, . . . , Bm}. An extended logic
program is positive if it does not contain any instance of not.
Moreover, a set of literals L is called closed under a positive
program P if and only if for any rule r ∈ P , head(r) ∈ L
whenever body(r) ⊆ L. The set L is consistent if it does
not contain both A and ¬A for some literal A. The small-
est of such sets wrt. a positive program P , which is always
uniquely defined, is referred to as Cn(P ). With regard to
an arbitrary program P , a set L is an answer set of P if

L = Cn(PL) and L is consistent, with

PL = {H ← A1, . . . , An |
H ← A1, . . . , An, notB1, . . . , notBm. ∈ P,
{B1, . . . , Bm} ∩ L = ∅}

The head of an ASP rule is not necessarily comprised of
only one literal. Some ASP dialects allow for more com-
plex structures, such as cardinality constraints, which can
be used as both body elements and heads. A cardinality con-
straint with lower bound l and upper bound u is defined as

l{A1, . . . , An, notB1, . . . , notBm}u.
This can be interpreted as follows: if at least l and at most
u of the literals A1, . . . , An, B1, . . . , Bm are included in an
answer set, a cardinality rule is satisfied by this answer set.

ASP additionally offers the option to express cost func-
tions involving minimization and/or maximization in order
to solve optimization problems (Gebser et al. 2012). Here,
we only need optimisation statements of the form

minimize{`1, . . . , `n}
which instruct the ASP solver to include only a minimal
number of the literals `1, . . . , `n in any answer set.

3 Measuring Inconsistency Using ASP
The proposed algorithms involve the development of ASP
encodings for each one of the three previously described in-
consistency measures. Although the specifics of each incon-
sistency measure have to be considered individually, there
are some aspects that all ASP-based algorithms we propose
have in common. To begin with, each atom is supposed to
be assigned a unique truth value.
Example 6 In classical propositional logic, we could model
that an atom x is supposed to be assigned either T or F by
introducing two corresponding ASP atoms exT

and exF
. An

atom is true, if it is not false, and vice versa. The respective
ASP rules can be defined as follows:

exT
← not exF

.

exF
← not exT

.

In the remainder of this paper, we refer to this part as unique
atom evaluation. Note that ASP atoms eφT

, eφF
represent-

ing the evaluation of a formula φ can be created in the same
manner as shown above wrt. propositional atoms.

Moreover, within the encoding, each formula φ must be
satisfied, i.e., no formula should evaluate to F . This is
achieved through integrity constraints of the form

← eφF
.

for every φ ∈ K. Another element that is common in all
three encodings is that the relations between elements within
a formula have to be encoded. More precisely, encodings for
the connectors ∧, ∨, and ¬ have to be created.
Example 7 The evaluation of a conjunction of two propo-
sitional formulas φ, ψ can be modeled in ASP by encoding
that it is only true if both φ and ψ are true, and false other-
wise:

e(φ∧ψ)T ← eφT
, eψT

.

e(φ∧ψ)F ← not e(φ∧ψ)T .
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In the following, we will refer to this part as connector en-
codings.

Since the possible inconsistency values regarding all three
considered measures are natural numbers from a well-
defined interval (Thimm and Wallner 2019), we can make
use of a minimization statement to compute the desired in-
consistency value.
Example 8 Let our aim be to minimize the number of atoms
x ∈ At(K) that are assigned truth value B in three-valued
logic, wrt. a knowledge base K. Let the ASP atom exB

en-
code the assignment ofB to atom x. The corresponding min-
imize statement can be expressed as

minimize{ex1
B
, . . . , exn

B
}.

with {x1, . . . , xn} = At(K)

The subsequent sections describe the specific ASP encod-
ings for Ic, Ih, and If .

3.1 The Contension Inconsistency Measure
With regard to the contension inconsistency measure Ic, we
can construct an extended logic program Pc(K) to compute
Ic(K) wrt. a knowledge base K as follows.

1. We first include rules that guess a three-valued interpreta-
tion. For that, we need to ensure unique atom evaluation
for each x ∈ At(K) wrt. Priest’s three-valued logic. Thus,
an atom is true if it is neither both nor false. The other two
cases follow analogously:

exT
← not exB

, not exF
.

exB
← not exT

, not exF
.

exF
← not exB

, not exT
.

2. The connector encodings for each (sub)formula in K fol-
low from the truth tables given in Table 1. For instance,
a conjunction is only true if both conjuncts are true. It is
false, if at least one of its conjuncts is false, and it is both
if it is neither true nor false. The rules for disjunction and
negation are created in the same fashion.
φ ∧ ψ 7→ e(φ∧ψ)T ← eφT

, eψT
.

e(φ∧ψ)F ← eφF
.

e(φ∧ψ)F ← eψF
.

e(φ∧ψ)B ← not e(φ∧ψ)F , not e(φ∧ψ)T .

φ ∨ ψ 7→ e(φ∨ψ)F ← eφF
, eψF

.

e(φ∨ψ)T ← eφT
.

e(φ∨ψ)T ← eψT
.

e(φ∨ψ)B ← not e(φ∨ψ)F , not e(φ∨ψ)T .

¬φ 7→ e(¬φ)B ← eφB
.

e(¬φ)T ← eφF
.

e(¬φ)F ← eφT
.

3. Every formula φ ∈ K must be evaluated to true or both in
three-valued logic, i.e., it must not be evaluated to false.
We therefore add an integrity constraint for each formula:

← eφF
.

4. Finally, we want to minimize the number of atoms in K
that are assigned the truth value B. Hence, we add the
following minimize statement:

minimize{ex1
B
, . . . , exn

B
}.

Now Pc(K) is the union of all rules defined in 1–4. Further,
let i3M be the three-valued interpretation represented by an
answer set M of Pc(K).

Theorem 1 LetM be an optimal answer set of Pc(K). Then
|i3M (B)−1| = Ic(K)1.

The proof of the above theorem as well as further technical
results are omitted due to space restrictions, but can be found
in the appendix2.

3.2 The Forgetting-Based Inconsistency Measure
The forgetting-based inconsistency measure If (K) is deter-
mined by the number of atom occurrences that need to be
“forgotten” in order to make the knowledge base K con-
sistent. An extended logic program Pf (K) which computes
If (K) wrt. a knowledge base K can be constructed as de-
scribed below.

1. We first include rules that guess a model for the knowl-
edge base after forgetting operations took place, in order
to ensure that the knowledge base is consistent. Although
individual atom occurrences may be replaced by > or ⊥,
an atom must be either true or false in that interpretation.
Thus, for every x ∈ At(K):

exT
← not exF

.

exF
← not exT

.

2. We need to ensure that each atom occurrence is evaluated
uniquely. This means that an atom occurrence xn can ei-
ther be true, false, or forgotten, i.e., replaced by either
> or ⊥. If an atom occurrence xn is supposed to be re-
placed by > or ⊥, we represent this using the ASP atoms
exn

forget>
or exn

forget⊥
, respectively:

exn
forget>

← not exn
T
, not exn

F
, not exn

forget⊥
.

exn
forget⊥

← not exn
T
, not exn

F
, not exn

forget>
.

We also need to ensure that an individual atom occurrence
is only set to true or false if the atom as a whole is evalu-
ated to true or false, respectively.

exn
T
← exT

, not exn
F
, not exn

forget>
, not exn

forget⊥
.

exn
F
← exF

, not exn
T
, not exn

forget>
, not exn

forget⊥
.

3. The connector encodings for all (sub)formulas φ, ψ in K

1For any function f : X 7→ Y and y ∈ Y we define f−1(y) =
{x ∈ X | f(x) = y}

2http://mthimm.de/misc/nmr21 ikmt.pdf
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simply model propositional entailment:

φ ∧ ψ 7→ e(φ∧ψ)T ← eφT
, eψT

.

e(φ∧ψ)F ← not e(φ∧ψ)T .

φ ∨ ψ 7→ e(φ∨ψ)F ← eφF
, eψF

.

e(φ∨ψ)T ← not e(φ∨ψ)F .

¬φ 7→ e(¬φ)T ← eφF
.

e(¬φ)F ← not e(¬φ)T .

4. If a (sub)formula φ is actually an atom occurrence xn, it
can either be set to true or false, or forgotten:

eφT
← exn

T
.

eφT
← exn

forget>
.

eφF
← exn

F
.

eφF
← exn

forget⊥
.

5. All formulas φ ∈ K must evaluate to true after the for-
getting operation is applied. Hence, we add the following
integrity constraint for each φ ∈ K:

← eφF
.

6. Lastly, we minimize the number of atom occurrences
which are forgotten:

minimize{exn
forget>

, exn
forget⊥

, . . . ,

eynforget>
, eynforget⊥

, . . . }.

Note that the rules described in 2. ensure that no atom
occurrence is simultaneously replaced by > and ⊥.

The union of all rules defined above (in 1–6) constitute the
extended logic program Pf (K). We denote the set of atom
occurrences that are replaced by > wrt. a knowledge base K
as TM , and the set of atom occurrences that are replaced by
⊥ as FM . With M being an answer set of Pf (K) we define

TM = {xn | x ∈ At(K), exn
forget>

∈M},
FM = {xn | x ∈ At(K), exn

forget⊥
∈M}.

Theorem 2 LetM be an optimal answer set ofPf (K). Then
|TM |+ |FM | = If (K).

3.3 The Hitting Set Inconsistency Measure
The hitting set inconsistency measure Ih(K) is defined by
the size of the minimal hitting set wrt. a knowledge base K,
subtracted by 1. The maximal size of such a hitting set is de-
termined by the number of formulas in K. In the following,
we denote the number of formulas in K as N . Further, in
refers to the n-th interpretation out of the N possible inter-
pretations we need to consider, assuming that the interpreta-
tions have an arbitrary, but fixed order. An interpretation in
is represented as ωn in our ASP encoding. Note that the no-
tation ωn does not only appear as an ASP atom on its own,

but also serves the purpose of a label linking the representa-
tions of formulas and atoms to specific interpretations. For
example, the ASP atom eφT ,ωn

represents the formula φ be-
ing evaluated to T under the interpretation in. We construct
an extended logic program Ph(K) which computes Ih(K)
as follows.

1. We first include rules that guess the N interpretations,
some of those may be used in the final hitting set. We
need to ensure unique atom evaluation wrt. each atom
x ∈ At(K), as we did with the previous two encodings.
However, this time we need to take each possible inter-
pretation into account as well, because an atom may be
assigned the truth value T wrt. one interpretation in the
hitting set, but F wrt. another one. Thus, for each atom
x ∈ At(K) and each interpretation in, n ∈ {1, . . . , N},
we define:

exT ,ωn ← not exF ,ωn .

exF ,ωn
← not exT ,ωn

.

2. We ensure that at least one ASP atom ωn representing an
interpretation is contained in the answer set by construct-
ing the following cardinality constraint:

1{ω1, . . . , ωN}N.

3. The connector encodings for each (sub)formula in K fol-
low classical propositional entailment. Again, each rule
has to be created with regard to each possible interpreta-
tion:

φ ∧ ψ 7→ e(φ∧ψ)T ,ωn
← eφT ,ωn

, eψT ,ωn
.

e(φ∧ψ)F ,ωn
← not e(φ∧ψ)T ,ωn

.

φ ∨ ψ 7→ e(φ∨ψ)F ,ωn
← eφF ,ωn , eψF ,ωn .

e(φ∨ψ)T ,ωn
← not e(φ∨ψ)F ,ωn

.

¬φ 7→ e(¬φ)T ,ωn
← eφF ,ωn

.

e(¬φ)F ,ωn
← not e(¬φ)T ,ωn

.

4. In order to meet the definition of a hitting set, we need to
ensure that each formula φ ∈ K is satisfied wrt. at least
one interpretation:

eφT
← eφT ,ωn

, ωn.

eφF
← not eφT

.

5. Again, we add an integrity constraint for each formula
φ ∈ K:

← eφF
.

6. We minimize the number of interpretations that are re-
quired to satisfy each formula in the given knowledge
base using the following minimize statement:

minimize{ω1, . . . , ωN}.
As opposed to the minimize statements of the other two
encodings, the minimal value is not 0, but 1. This is be-
cause we minimize the number of interpretations required
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Data-
set

Signature
size

Formulas
per

knowl.
base

Atoms
per

formula
(mean)

Atoms
per

formula
(max)

Timeouts
Ic naive

Timeouts
Ic ASP

Timeouts
Ih naive

Timeouts
Ih ASP

Timeouts
If naive

Timeouts
If ASP

A 3 5–15 2.22 6 0 0 0 0 116 0
A 5 15–25 3.10 11 0 0 107 0 200 0
A 10 15–25 3.14 10 0 0 74 0 200 0
A 15 15–25 3.11 11 25 0 108 0 200 0
A 15 25–50 3.11 11 195 0 179 0 200 0
A 20 25–50 3.12 11 199 0 198 0 200 0
B 25 25–50 3.08 13 198 0 199 0 200 0
B 25 50–100 3.11 11 200 0 200 24 200 116
B 30 50–100 3.10 13 200 0 200 9 200 140

Table 2: Overview of the sets of knowledge bases making up dataset A and dataset B.

to make a knowledge base consistent. Hence, if we only
need one interpretation, the respective knowledge base is
consistent. Consequently, we need to subtract 1 from the
computed minimum in order to get the correct value of
Ih(K).

It should be noted that there are knowledge bases which con-
tain one or more contradictory formulas, such as a ∧ ¬a. In
such a case, there exists no interpretation (in classical propo-
sitional logic) which could satisfy the respective formula. If
a formula φ ∈ K is contradictory, we cannot include eφT

in any answer set of Ph(K). We therefore needed to include
eφF

in the answer set—which is not allowed due to the in-
tegrity constraint. Thus, no answer set of Ph(K) exists, and
Ih(K) has the value∞.

We define Ph(K) to be the extended logic program spec-
ified by the union of all rules defined in 1–6. For each
ωn ∈ M , with M being an answer set of Ph(K), we de-
fine iM,ωn via

iM,ωn(x) =

{> eaT ,ωn ∈M
⊥ eaF ,ωn

∈M
for all x ∈ At(K). Further, we define

Ω(M) = {iM,ωn
| ωn ∈M},

which corresponds to the minimal hitting set of K.
Theorem 3 LetM be an optimal answer set ofPh(K). Then
|Ω(M)| − 1 = Ih(K). If no answer set of Ph(K) exists,
Ih(K) =∞.

4 Experiments
The goal of our experimental evaluation is to compare the
empirical runtime of our ASP-based implementations with
existing baseline implementations of the individual mea-
sures.

The three introduced ASP encodings for inconsistency
measurement were constructed by means of the Java li-
braries provided by TweetyProject3. The actual calculation
of the answer sets is performed by the Clingo solver, ver-
sion 5.4.0 (Gebser et al. 2016). TweetyProject also includes

3http://tweetyproject.org/

naive (brute-force) implementations of all three inconsis-
tency measures. More precisely, Ic is implemented by iter-
ating through all subsets of atoms (with increasing cardinal-
ity), forgetting all occurrences of the atoms of the current set
in the knowledge base (thus effectively setting their three-
valued truth value to B), and then checking whether the
resulting knowledge base is consistent by means of a SAT
solver (here, Sat4j v2.3.54). Once a consistent knowledge
base is found, the cardinality of the current set of atoms is re-
turned. The measure If is implemented by iterating through
all possible forgetting operations (with increasing number)
and checking whether the resulting knowledge base is con-
sistent (again using Sat4j v2.3.5). The measure Ih is imple-
mented by considering every set of interpretations (with in-
creasing cardinality) and checking whether each formula of
the knowledge base is satisfied by at least one interpretation.
To the best of our knowledge, no further implementations of
the three inconsistency measures exist.

All experiments were run on a computer with 16 GB
RAM and a quad core Intel Core i7-8550U CPU which has
a maximum clock speed of 4000 MHz.

4.1 Datasets
For evaluation, we consider both some existing benchmarks
as well as a set of newly compiled knowledge bases which
were created using TweetyProject. It should be noted that, to
the best of our knowledge, in the field of inconsistency mea-
surement no dedicated dataset exists that could be utilized
to evaluate different implementations against each other.
Hence, we compile our own dataset. More specifically, we
generated four different sets of knowledge bases (datasets
A–D)5 tailored for different purposes as elaborated in the
following.

To get a fundamental overview of the behavior of our im-
plementations, we compiled dataset A, which consists of
overall rather small random knowledge bases of varying
complexity. To be precise, the dataset is comprised of six
subsets, each containing 200 knowledge bases. The simplest
subset contains between 5 and 15 formulas per knowledge

4https://www.sat4j.org
5All datasets will be made publicly available.
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Figure 1: Overview of the inconsistency values of the knowl-
edge bases in dataset A.

base wrt. a signature size of 3, the most complex one be-
tween 25 and 50 wrt. a signature size of 20. More details can
be obtained from the upper left part of Table 2. To generate
these knowledge bases, the SyntacticRandomSampler6 pro-
vided by TweetyProject was utilized. A few knowledge bases
in dataset A are consistent, and some knowledge bases con-
tain contradictory formulas (i. e., wrt. the latter knowledge
bases, Ih = ∞). More details regarding the inconsistency
values of the knowledge bases of dataset A are provided in
Figure 1.

As dataset A already reveals the limits of some of the im-
plementations, dataset B is designed to be a bit more chal-
lenging for the remaining ones. Again, the SyntacticRan-
domSampler was used for the generation process, and again,
the dataset consists of subsets of 200 formulas each. Over-
all, the dataset is comprised of 600 knowledge bases which
contain between 25 and 150 formulas with signature sizes
of 25 or 30. More details are given in the lower left part of
Table 2. Besides, an overview of the inconsistency values of
dataset B is provided in Figure 2.

In addition to the sampled knowledge bases, we consid-
ered benchmark data from different SAT competitions in
dataset C. Because the subject of this work is to measure in-
consistency, only inconsistent instances were considered. In
total, we gathered 105 instances from four different sources:

1. 5 instances referring to the Pigeon Hole problem7. They
consist of between 42 and 110 variables as well as be-
tween 133 and 561 clauses.

2. 8 knowledge bases encoding the two-coloring of a graph
consisting of 60 to 160 variables and 160 to 400 clauses.

3. 8 knowledge bases from circuit fault analysis which com-
prise between 435 and 10,410 variables, and between
1027 and 34,238 clauses.

6http://tweetyproject.org/api/1.17/net/sf/tweety/logics/pl/util/
SyntacticRandomSampler.html

7Those instances referring to the two-coloring of graphs, to cir-
cuit fault theory, and to the Pigeon Hole problem are available at
https://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html

Figure 2: Overview of the inconsistency values of the knowl-
edge bases in dataset B. Note that the set of values regard-
ing If is incomplete due to both implementations timing out
wrt. 256 out of the 600 instances.

4. 84 DaimlerChrysler benchmarks8 with between 1608 and
2038 variables and between 4496 and 11,352 clauses.

The inconsistency values of the knowledge bases in dataset
C are 1 in all cases wrt. Ic and If . Regarding Ih, the incon-
sistency values are either 1 or ∞. Note that we refer only
to those knowledge bases which did not cause a timeout for
both implementations of If and Ih.

Dataset D consists of knowledge bases extracted from
benchmark data of the International Competition on Compu-
tational Models of Argumentation 2019 (ICCMA’19)9. An
abstract argumentation framework (Dung 1995) is a directed
graphF = (A,R) whereA is a set of arguments andRmod-
els a conflict relation between arguments. A computational
task here is to find a stable extension, i. e., a set E ⊆ A with
(a, b) /∈ R for all a, b ∈ E and (a, c) ∈ R for all c ∈ A \ E
and some a ∈ E. For each instance from ICCMA’19, we
encode the instance and the problem of finding such a sta-
ble extension via the approach from (Besnard, Doutre, and
Herzig 2014) and, additionally, add constraints to ensure that
20% of randomly selected arguments have to be contained in
E. Note that the latter constraints usually make the knowl-
edge base inconsistent.

4.2 Results
To begin with, we measure the runtime of both the naive
(brute-force) and the ASP-based versions of all three in-
consistency measures Ic, Ih, and If on dataset A. A time-
out is set to 120 seconds. The results clearly demonstrate
the limitations of all three brute-force algorithms. Figure 3
shows a cactus plot which illustrates a direct comparison be-
tween the naive versions of all measures and their respec-
tive ASP-based counterparts. The measured execution times
were sorted from low to high wrt. each algorithm. None
of the ASP-based algorithms produced a timeout, while all

8Available at https://web.archive.org/web/20080820084020/
http://www-sr.informatik.uni-tuebingen.de/∼sinz/DC/

9http://argumentationcompetition.org/2019/
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Figure 3: Runtimes of Ic, Ih, and If regarding both the
naive and the ASP-based algorithms wrt. dataset A. The red
dashed line indicates the timeout of 120 seconds.

Figure 4: Runtimes of the ASP-based algorithms wrt. dataset
B. Because the naive algorithms produced timeouts for all
instances (except Ic in two cases and Ih in one case), they
are not visualized in the plot. The red dashed line indicates
the timeout of 120 seconds.

three naive versions did so in several hundred cases. In par-
ticular, the naive algorithm for If performs very poorly. The
right part of Table 2 reveals that it could only handle some
instances of the simplest subset of dataset A at all—for all
other instances, it produced a timeout. Another noteworthy
point is that both implementations for Ic performed com-
paratively well. The reason for this presumably lies in the
nature of the inconsistency measure itself. For example, the
number of possible values is, in most cases, smaller than that
of Ih or If .

Next, we applied all algorithms on dataset B. However,
it turned out that all three naive algorithms produce time-
outs in almost all instances. The only exceptions are two in-
stances that could be solved by the naive variant of Ic and
one instance that could be solved by the naive variant of Ih.
Hence, when considering dataset B, we focus on the ASP-
based algorithms. Although the knowledge bases in dataset
B are not much more complex than those of dataset A (see
Table 2 for details), the ASP-based algorithms for Ih and

If exhibit some difficulties, as Figure 4 visualizes. More
precisely, the ASP-based implementation of Ih produces a
timeout in 33 out of 600 cases, and the implementation for
If even in 256 cases. More details regarding the number of
timeouts for each implementation wrt. each subset of dataset
B are provided in the lower right section of Table 2. Never-
theless, it should be noted that the ASP-based implementa-
tion of the contension inconsistency measure behaved differ-
ently: not only did it not produce any timeouts, it took only
< 1 second for each knowledge base in dataset B.

We also applied all algorithms on dataset C. Because
of the large size of some of the knowledge bases (up to
2038 variables and 11,352 clauses), we increased the time-
out from 2 to 5 minutes. As Figure 5 shows, both implemen-
tations of Ic as well as both implementations of If were
able to compute inconsistency values for most knowledge
bases. However, regarding both measures, the ASP version
produced fewer timeouts than its respective naive counter-
part. The naive implementation of Ih could not solve a sin-
gle instance of dataset C. The corresponding ASP-based im-
plementation could at least compute the inconsistency val-
ues of 11 knowledge bases.

The overall rather poor performance of both implemen-
tations of Ih compared to the implementations of the other
two measures is presumably due to the nature of dataset C:
all knowledge bases are given in the DIMACS10 file format.
This means that all knowledge bases are in conjunctive nor-
mal form and each clause is considered an individual for-
mula. Moreover, the inconsistency value is always 1, except
for some instances regarding Ih, where the inconsistency
value is ∞. Further, most knowledge bases contain a large
number of clauses. The size of the ASP encodings regarding
Ic and If largely depends on the number of atoms, or atom
occurrences, respectively, as well as the size and complexity
of the individual formulas. The size of the ASP encoding of
Ih, on the other hand, highly depends on the number of pos-
sible interpretations, i. e., the number of formulas, because
every formula, subformula and atom needs to be encoded
wrt. each of these interpretations. Consequently, with a large
number of formulas in a knowledge base, we also get an an-
swer set program containing a vast number of rules. This
makes Ih slower and less practically applicable as the other
two measures in a dataset which possesses properties like
datset C.

Another aspect that strikes out with regard to dataset C
is that the naive implementations of Ic and If perform rel-
atively well in comparison to dataset A and B. The reason
for this lies most probably in the inconsistency values of
the knowledge bases in dataset C, which is always 1 for
Ic and If . The inconsistency values of most instances in
both dataset A and B are significantly higher (see Figures
1 and 2). Since the brute-force implementations of Ic and
If check the lowest possible values first, they can compute
lower inconsistency values faster than higher ones, given the
size of the respective knowledge bases is the same.

Finally, we run all implementations on dataset D. As with

10http://www.satcompetition.org/2011/format-
benchmarks2011.html

166



Figure 5: Runtimes of Ic, If , and Ih regarding dataset C.
The naive implementation of Ih produced a timeout for all
instances, so it is not shown in the plot. The red dashed line
indicates the timeout of 300 seconds.

Figure 6: Runtimes of Ic, Ih, and If regarding both the
naive and the ASP-based algorithms wrt. dataset D. The red
dashed line indicates the timeout of 300 seconds.

dataset C, we set a timeout to 5 minutes. As Figure 6 visual-
izes, all six implementations could solve a non-empty sub-
set of the knowledge bases in the dataset. Nonetheless, it is
noticeable that none of the implementations could compute
inconsistency values for the entire dataset. All implementa-
tions produced a timeout for at least 100 instances. Again,
each ASP-based implementation had fewer timeouts than its
respective naive counterpart.

5 Conclusion
In the course of this paper, we presented algorithms based
on reductions to ASP for the contension inconsistency mea-
sure, the forgetting-based inconsistency measure, and the
hitting set inconsistency measure. Moreover, we experimen-
tally evaluated them against corresponding brute-force algo-
rithms wrt. execution time. The evaluation showed that the
novel ASP-based implementations perform clearly superior.
We also learned that the naive implementations perform rel-
atively worse when inconsistency values are large. The ASP
encodings, on the other hand, are not dependent on the level

of inconsistency.
With regard to future work, one aim is to utilize answer

set programming to encode other inconsistency measures
as well. For example, measures with higher computational
complexity than those considered in this paper may be ex-
amined. Furthermore, it is of interest to investigate how our
ASP-based algorithms perform in real-world applications.
For instance, Nagel et al. presented a study about inconsis-
tencies in business rules, which takes a quantitative perspec-
tive (Nagel, Corea, and Delfmann 2019), and thus could ben-
efit from practically applicable algorithms. Other possible
areas of application are mentioned in Section 1.

One of the insights gained throughout the course of this
work is that large-sized knowledge bases are still problem-
atic. With regard to datasets B and C, the ASP-based im-
plementations for both If and Ih produced some timeouts,
and with regard to dataset D, none of the three implemen-
tations could compute inconsistency values for a number of
knowledge bases within the time limit. Therefore, another
area of research that may be relevant with respect to the al-
gorithmic perspective on inconsistency measures is that of
approximate algorithms.
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Abstract
In many scenarios, a set of beliefs can be interpreted in differ-
ent ways, leading to different outcomes. In this work we pro-
pose an argumentation-based view of interpretation of pieces
of knowledge, using legal provisions as a leading example.
We formalize conflicts and entailment towards a characteri-
zation of an acceptable, rational position of the agent on a
set of knowledge, i.e. a subset of interpretations, inspired by
argumentation semantics.

1 Introduction
There exist several scenarios in which pieces of information
are subject to interpretation, for several reasons. A politi-
cal discourse highlighting a set of beliefs, a plan of actions
for financial investments, the official report of a setback in
war and the set of norms in a legal system are all examples
of structures of knowledge that require some form of inter-
pretation in order to properly work with them. Generally
speaking, to interpret a piece of information X is to provide
a link between X and another piece of information about the
meaning of X , the interpretation itself. In a lot of situations,
more than one interpretation can be associated to a partic-
ular piece of information. For instance, if the police stops
a driver and says ”what is the emergency?”, the driver may
interpret that as a request for information about an actual
ongoing emergency, or as a sarcastic way for referencing
excessive speed. The first interpretation, a merely syntactic
one, is probably not the intended one in the encounter. Nev-
ertheless, one may argue that it is still a valid interpretation.
This simple, perhaps funny, example serves to illustrate an
elemental aspect of any set of beliefs: they are exposed to be
interpreted in several ways leading to different outcomes.

A model of interpretations must take into account some
intrinsic characteristics. Mainly, the fact that interpretations
are not isolated units of knowledge and may be related to
other interpretations. One interpretation may be in conflict
with another, or it may be supporting another interpretation
on a different piece of knowledge. For instance, the con-
cept of “freedom of speech” (k1) may be interpreted as “the
right to express ourselves freely on any subject on any con-
text” (i1). This interpretation is in conflict with the one that
states that freedom of speech is a limited right of expression
that excludes offenses (i2). Following interpretation i2, a
denial of Holocaust (k2) may be interpreted as a crime (i3).

Conflict also arises on different interpretations for different
pieces of knowledge. The interpretation i3 cannot be ap-
plied to k2 under interpretation i1 of k1. Hence, there are
two rational standing positions here, namely S1 = {i1} and
S1 = {i2, i3}.

Given these conflicts and supports among interpretations,
it is interesting to define a framework for the characteriza-
tion of rational standing positions on a given set of knowl-
edge, i.e. the identification of sets of interpretations with par-
ticular properties. We think abstract argumentation provides
a pathway for the study of complex situations regarding mul-
tiplicity of interpretations, and here we propose an abstract
formalism as a basic framework for this.

This paper is organized as follows. Section 2 analyzes the
idea of interpreted knowledge in a logical scenario for these
notions: the law and its defined norms. Section 3 presents
the abstract framework to model provisions and interpreta-
tions. Mandatory and permitted interpretations are charac-
terized. Section 4 discusses classical notions of argument
semantics in the context of interpretations. In Section 5 a
concordance relation between legal systems is introduced.
Finally, in Section 6 we present a related works, and conclu-
sions and future work in Section 7.

2 Law as interpretable knowledge
One of the most common scenarios where the interpretation
of knowledge is relevant is the law. There are many ways
to read legal texts, being this an important subject in legal
studies. Legal interpretation is an essential method to as-
sign a meaning to legal provisions, i.e., to determine the con-
tent of the law, often beyond the literal meaning of the legal
texts (Greenberg 2017). However, due to the proper nature
of texts and the human process of contextual understanding,
there are constant debates over legal interpretation.

Recent formal studies refer to interpretations from the
point of view of logic and computer science (Rotolo, Gov-
ernatori, and Sartor 2015; Malerba, Rotolo, and Governa-
tori 2016; Boella et al. 2010; Broezk 2013). Such previous
works (in particular (Rotolo, Governatori, and Sartor 2015;
Malerba, Rotolo, and Governatori 2016; Boella et al. 2010))
proposed complex rule-based systems for capturing several
subtleties behind reasoning about interpretive canons. In
(Maranhão 2017) a logical framework is proposed for the
representation of legal interpretation. Interpretations are
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considered as a dynamic of theory change, where rules, val-
ues and meaning ascriptions are related and revised in order
to reach a coherent explanation of the legal order. In (Wal-
ton, Sartor, and Macagno 2018a) a relation between argu-
mentation and interpretations is explored. There, interpre-
tive schemes are incorporated into a formal argumentation
system such as Carneades or APSIC+ and then applied to
displaying the pro–contra structure of the argumentation us-
ing argument maps applied to legal cases. These proposals
provide logic details suitable to model specific, different as-
pects of legal interpretation.

In this paper we propose a contribution to the topic by
defining a simpler approach, i.e., an abstract framework
which deals with interpretations and conflicts between in-
terpretive solutions. The focus is put in discovering the
argumentation-like behaviour of the general interaction of
interpretations linked to abstract pieces of knowledge. Con-
sider the following example.
EXAMPLE 1. Suppose the teenager Jim steals a horse for
the first time in his life, and rides into the City Park. Jim is
arrested and put on trial. Consider the following provisions:
• n1 = “A man stealing a horse should be punished with

jail.”
• n2 = “Vehicles are not allowed in the pedestrian area, and

fines should be imposed”
• n3 = “Unclaimed recovered vehicles in the Police Lot will

be sent to the car shredder machine after three months.”
and consider the following interpretations:
• for n1:

φa=“A man is an adult male”,
φb=“A man is a person of any age and gender”

• for n2:
φc=“A vehicle is a machine that transports people”
φd=“A vehicle is any form of transportation used by hu-
mans”.

• for n3:
φe=“A horse can be killed by police after three months”
φ f =“Only cars can be sent to car shredder”
Provision n1 seems to indicate that Jim faces a time in

jail. However, interpretation φa considers that the reference
to “man” is about an adult male, and then provision n1 can-
not be applied to Jim, a young teenager. What makes provi-
sion n1 relevant here is an interpretation of the word “man”
as a reference to any human being, that is, interpretation φb.
Clearly, there is a conflict between φa and φb. On the other
hand, provision n2 establishes that, additionally, Jim should
pay a fine for entering the Park. This makes sense only un-
der interpretation φd that considers a horse a legal vehicle.
Under interpretation φc, however, the fine cannot be applied
since a horse is obviously an animal and not a machine.
Again, it is not possible to accept interpretation φc and φd
simultaneously and then both interpretations are in conflict.
Provision n3 establishes the destination for storing vehicles
that are not claimed by its owners after a certain period of
time. Note that if a horse is considered a vehicle (interpre-
tation φd) then the horse must be sent to the car shredder,
i.e. φe is the reasonable interpretation for n3. In this case we

say that interpretation φd entails φe. Also, there is a conflict
between interpretation φc and φe because since a horse is not
considered a vehicle, then its life is not at risk.

Conflicts and entailments are two basic elements of argu-
mentation and then an argumentative analysis of the set of
interpretations using abstract frameworks is interesting and
constitutes a novel approach in the literature. The overall
scenario deserves further studies. Some interpretations may
be the only ones that a rational agent may adopt given the
sets of conflicts and entailments. For instance, suppose in
Example 1 there is only one interpretation for n3, say φe.
Then, since there are no alternative interpretations for n3,
the only valid non-conflictive interpretation for n2 is φd .

In the following section we present the abstract formalism
for knowledge and interpretations.

3 Abstract Framework for Interpretations
In this work, provisions and interpretations are treated ab-
stractly, leading out their logical structures and representing
the possible conceptual relationships between them. Thus,
we define a framework where these elements are formalized,
together with two distinct relations between interpretations.
Definition 1. An interpretative framework is defined as
⟨Pr, I,Ln,C,T ⟩, where

• Pr is a set of abstract legal provisions, denoted n1,n2, ...

• I is a set of abstract interpretations, denoted φ1,φ2, ... pro-
viding a sentential meaning to any provision n.

• Ln : Pr→ 2I a function denoting the set of all the inter-
pretations for a given provision.

• C ⊆ I× I is a symmetric conflict relation between inter-
pretations.

• T ⊆ I× I is the entailment relation between interpreta-
tions.

The interpretative framework characterizes an abstract le-
gal system, formed by provisions, the universe of interpre-
tations for every one of them, and two simple relations be-
tween interpretations: conflicts and entailments. The sym-
metric conflict relation between interpretations models the
fact that some interpretations cannot be adopted simultane-
ously. Hence if (φ1,φ2) ∈C then whenever interpretation φ1
is adopted, φ2 should be not, or vice-versa being C symmet-
ric. On the other hand, relation T establishes an entailment
relation between interpretations. If (φ1,φ2) ∈ T then inter-
pretation φ2 should be adopted given the adoption of inter-
pretation φ1. In this direction, we can specify a sequence of
interpretation under an entailment relation. Formally:
Definition 2. Let ⟨Pr, I,Ln,C,T ⟩ be an interpretative frame-
work. We define a sequence of interpretations under entail-
ment relation as (φ1,φ2) ∈ T,(φ2,φ3) ∈ T...,(φn−1,φn) ∈ T .
We will denote this sequence of entailments as (φ1,φn)

⋆.

For a particular purpose, usually a subset of the legal sys-
tem is considered. We characterize then a restricted set
of provisions equipped with a selection of interpretations,
called here dossier.
Definition 3. A dossier D is an ordered set of pairs
(n1,S1),(n2,S2), ..,(nn,Sn) where (ni,Si) is such that ni is
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a provision and Si ⊆ Ln(ni). The set of interpretations of the
dossier D is defined as D I =

⋃
Si,1≤ i≤ n.

The dossier is a collection of provisions to be considered
as a whole for some legal purpose, such as a criminal case,
civil action or a legislative reformation. Every provision has
attached a set of relevant interpretations that may be applied
to that provision. The pair (ni,Si) states that provision ni
could be interpreted as any of the members of Si.

It is possible for some interpretations in a dossier to be in
conflict. This may occur between interpretations of a single
provision (i.e., inside Si) called intra-provision conflicts or
between interpretations of different norms (i.e., an interpre-
tation of Si in conflict with an interpretation of S j), called
inter-provisions conflicts.

Definition 4. A dossier D is said to be consistent if D I is
conflict-free.

A consistent dossier is such that any provision can even-
tually be interpreted in any of the given alternatives. It rep-
resents a legal system with no conflictive interpretations on
any provision. However, a non-consistent dossier requires
further examination, since a selection of interpretations must
be addressed. Suppose (n1,{φa,φb}) and (n2,{φc,φd}) are
in dossier D , such that (φa,φc) ∈ C. Here there is a risk
to interpret two different provisions under a contradiction:
according to the legal framework, φa and φc are not compat-
ible. If n1 is interpreted as φa then provision n2 should not be
interpreted as φc. In other words, the set {φa,φc} is not a ra-
tional interpretation of the dossier as a whole. It constitutes
indeed a position of the rational agent towards the dossier,
although contradictory. On the other hand, the set {φa,φd}
represents a conflic-free position towards provisions n1 and
n2. Note that here, in order to avoid conflicts, n2 must be
interpreted as φd because the dossier does not allows other
interpretations for n2. This constitutes an obligation for the
agent, which we will address in later sections.

Given a dossier, which is simply a set of legal provisions
equipped with plausible interpretations, a rational agent may
adopt a particular view of every provision, adopting then a
position about them, formalized as follows.

Definition 5. Let D be dossier. A position for D is a set of
interpretations Φ ⊆ D I such that for every norm (ni,Si) in
D it holds that Φ∩Si ̸= /0. A position Φ is said to be definite
if |Φ∩ Si| = 1 for every Si. The restriction of D to position
Φ is defined as D(Φ) = {(ni,Φ∩Si),1≤ i≤ n}. The set of
all of positions for D is denoted as D∗

Figure 1: A dossier and a position.

A position is simply a selection of interpretations for ev-
ery provision. The restriction of a dossier is simply the pair-
ing of its provisions with the selected interpretations of a
given position. Note that D I is also a position of D , since it
includes every possible interpretation. It is in fact the most
general position that can be defined on D .

Some provisions may receive more than one interpreta-
tion, which may be even still in conflict with other inter-
pretations. Hence, even as a subset of D I , a position is not
necessarily free of conflicts.

PROPOSITION 1. Any restriction of a consistent dossier is
also a consistent dossier.

Since the characterization of rational interpretative posi-
tions is our main subject, positions that are free of conflicts
are of primary attention. These positions, applied to the pro-
visions in the dossier, yields to a set of legal norms under
consistent interpretations.

Definition 6. Let D be dossier. A position Φ for D is said
to be sound if there are no φa,φb ∈Φ such that (φa,φb) ∈C.
A sound position Φ is said to be maximal if there is no sound
position Φ′ such that Φ⊂Φ′.

A sound position Φ for a dossier D makes D(Φ) consis-
tent, and then it represents a reasonable set of interpretations
that can be adopted. Thus, soundness is the first, most basic
notion of rational stand towards a dossier as a whole. In fact,
in a consistent dossier any position is sound.

EXAMPLE 2. Consider the running example about Jim
and the horse. It can be represented by the dossier
D2 = {(n1,{φa,φb}),(n2,{φc,φd}),(n3,{φe φ f )} such that
(φa,φb),(φc,φd),(φc,φe),(φe,φ f ) ∈C and (φd ,φe) ∈ T . Po-
sition Φ1 = {φa,φc,φ f } is sound and corresponds to the po-
sition affirming that “Jim should not be charged since it is
a boy and horses are not vehicles”. On the other hand, po-
sition Φ2 = {φb,φd} is also sound and corresponds to the
position stating that “Jim is a person and should be charged
of stealing and making use of vehicle in a pedestrian area”.
Note that position Φ3 = {φa,φc,φe} is not sound since it uses
contradictory interpretations.

As showing in the previous example, there may be sev-
eral sound positions for a dossier. On these alternatives, a
primary notion of mandatory interpretation emerges, as il-
lustrated in the following example.

EXAMPLE 3. Let D3 = {(n1,{φ1,φ2}),(n2,{φ3,φ4}),
(n3,{φ5})} be a dossier such that (φ1,φ4), (φ2,φ4) ∈ C.
Here interpretation φ4 is in conflict with all of the inter-
pretations for n1. Since a position, as such, must provide
an interpretation for n1, no sound position can include φ4.
There are only three sound positions: Φ1 = {φ1,φ3,φ5} ,
Φ2 = {φ2,φ3,φ5} and Φ3 = {φ1,φ2,φ3,φ5}.

In Example 3, interpretation φ5 is the only interpretation
for provision n3. For some lawyers, n3 is a well-written
provision, without alternative interpretations. On the other
hand, interpretation φ3 is not the only one provided for n2,
but it is the only interpretation that can be consistently se-
lected for n2. Therefore, they are a necessity in order to
construct a sound position for the dossier. Interpretations φ1
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and φ2 are permitted, although not mandatory since there is
one position excluding one of them.
Definition 7. Let D be a dossier. An interpretation is said to
be mandatory in D , if it is included in every sound position
of D . An interpretation is said to be permitted if it is not
mandatory and it is included in at least one sound position.

The trivial reason for an interpretation φi to be a necessity
is because it is the only one provided for a provision ni. If
there are more than one interpretation for provision ni, then
in order to be φi a necessity, it must be the only “survivor”
in the overall scene of interpretations and conflicts for that
provision, just like φ3 in Example 3.
EXAMPLE 4. Let D4 = {(n1,{φ1}),(n2,{φ2})} be a dossier
such that (φ1,φ2) ∈ C. The only position for D4 is Φ1 =
{φ1,φ2} and it is not sound. These interpretations are not
considered mandatory for D4.

Hence, necessity as a mandatory act of interpretation,
makes sense towards a non-contradictory stand for a legal
system. In Example 4 there are no other choices to interpret
both provisions and it is impossible to avoid contradiction.
The problem here is the dossier, lacking of sound positions,
being then a non-consistent set of norms.

Although, as stated in Definition 7, sound positions are
the basis for determining necessities in a dossier, the analy-
sis is not complete since in order to model a rational stand
for a legal system, the entailment between interpretations
must be taken into account. This relation models a different
concept of obligation, where the use of some interpretation
for a given provision may result in the adoption of others for
different provisions. We may call these as interpretations
as a consequence. This notion is explicitly characterized in
the abstract interpretive framework. As stated before, re-
lation T models an entailment relation between interpreta-
tions. If interpretation φa entails φb, then (φa,φb) ∈ T de-
noting that φb should be adopted given the adoption of in-
terpretation φa. This has an effect on positions, since some
interpretations are explicitly entailed. Suppose there are two
norms in a dossier (n1,{φ11,φ12}),(n2,{φ21,φ22}) such that
(φ11,φ21) ∈C. Any sound position including φ11 cannot in-
clude φ21 and viceversa. Suppose now that φ12 entails φ21.
Then the sound position {φ12,φ21} is somehow better than
the sound position {φ12,φ22}, since in the former one inter-
pretation entails the other. In fact, {φ12,φ22} violates the
entailment by choosing a different interpretation for provi-
sion n2. Hence, this position should not be valid according
to entailments.
Definition 8. A position Φ is said to be closed if it in-
cludes every interpretation φi such ∃φ j ∈Φ,(φ j,φi)∈ T and
(φi,φk) ̸∈C for any φk ∈Φ.

A closed position Φ includes every entailed interpretation
that is not in conflict with Φ. Closed positions are not neces-
sarily definite, since they must include some interpretations
because of the entailment relation. Hence, there may be a
provision with more than one interpretation in a closed po-
sition.

Due to entailments, there is another level of inconsistency
within a position. Note that in the previous example any

position including {φ11,φ12} is somehow contradictory in
the sense that these interpretations are in conflict with, yet
entailing, the same interpretation φ21. This is formalized in
the following definition.

Definition 9. Let D be a dossier and let Φ ⊆ D I . The po-
sition Φ is said to be internally coherent if it is conflict-free
and ̸ ∃φ j ∈D I , such that (φm,φ j) ∈C and (φn,φ j)

⋆ is possi-
ble, for some φm,φn ∈Φ.

A position is internally coherent if, besides being conflict-
free, it does not entails an interpretation that falls into con-
flict with itself. It is possible for a position to be sound and
not internally coherent.

EXAMPLE 5. Let D5 = {(n1,{φ1}),(n2,{φ2,φ3}),
(n3,{φ4})} be a dossier such that (φ1,φ3) ∈ C and
(φ4,φ3) ∈ T . The position Φ = {φ1,φ2,φ4} is closed. It
does not include the entailed interpretation φ3 because it is
in conflict with φ1. Although it is sound, this position is not
internally coherent, because it entails interpretation φ3 that
is in conflict with φ1 ∈Φ.

The dossier of Example 5 has the particularity that the
only sound position is not internally coherent. However, φ1
and φ4 are the only available interpretations for provisions
n1 and n3 respectively. Are these positions a necessity for
dossier D5? Indeed they are, for a lack of better interpre-
tations. But the problem here, just as in Example 4, is the
dossier: this selection of provisions and interpretations is not
rational in the sense that a contradiction is present.

Definition 10. Let D be a dossier. A position Φ for D is
said to be robust if it is closed.

A robust position is a semantic concept characterizing a
rational selection of interpretations for a dossier, where con-
flicts and entailments are observed. In a robust position there
are no conflicts nor conflictive interpretations are entailed.
This position is not unique and a dossier may have several
robust extensions. Or it may have none, as in the dossier of
Example 5.

Dossiers of Example 4 and 5 are problematic. Both of
them are populated with provisions and interpretations in
such a way that no internally coherent positions can be in-
duced. It can be viewed as a legal system in which the inter-
preter of the law is forced to incur in contradiction. Any law
with this characteristic behavior should be revised.

Definition 11. A dossier is said to be well-formed if it has
at least one robust position.

Hence, our concept of necessity on interpretations only
applies to well-formed dossiers, where there is an open cri-
terion of interpretations in all the provisions that allows
to any agent, beyond its particular bias, to adopt a non-
contradictory position towards this notion of legal system.

Next, we analyze positions from the point of view of ar-
gumentation semantics. This is interesting since the set of
interpretations and its conflicts resembles a symmetric argu-
mentation framework (Coste-Marquis, Devred, and Marquis
2005). Hence, some classic argumentation semantics can be
applied.
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4 Argumentation Semantics on
Interpretations

For a given dossier D , a symmetric argumentation frame-
work AFD may be induced, where AFD = ⟨D I ,C ↓D I⟩
formed by the set of interpretations of the dossier and the
corresponding conflict relation on these interpretations only.
If we take the entailment relation into account, it is similar to
bipolar argumentation frameworks (Cayrol and Lagasquie-
Schiex 2005).

An interpretation φ is acceptable with respect to a set of
interpretations S if whenever φ j is in conflict with φ , an in-
terpretation of S is in conflict with φ j. A set S of interpreta-
tions is admissible if every interpretation in S is acceptable
with respect to S. Since every conflict is symmetric, from
the point of view of admissibility, every interpretation is de-
fended by itself. As a consequence, {φ} is an admissible set
for any interpretation φ . Clearly, maximal admissible sets
are of interest.

PROPOSITION 2. Every sound position is an admissible set
of interpretations.

Preferred extensions are maximal (w.r.t. set inclusion) ad-
missible sets and they are not necessarily unique. They pro-
vide a set of interpretations free of conflict that can be ap-
plied to the dossier. Even more, in a symmetric framework,
every preferred extension is stable. This means that the ex-
tension is in conflict with every interpretation outside the set,
which seems to capture a strong adoption of interpretations.

PROPOSITION 3. Since conflicts between interpretations
are symmetric, every interpretation belongs to at least one
preferred extension.

Preferred extensions are defined from interpretations
without taking provisions into account. Suppose α is a pre-
ferred extension of AF . Since it is an admissible set, there
are no conflictive interpretations in α . However, it may not
provide interpretations for some provisions. In other words,
not every preferred extension is a position for D .

EXAMPLE 6. In the framework of Example 4, there are only
two preferred extensions S1 = {φ1}, and S2 = {φ2}. Both
extensions fail to provide an interpretation for a norm in the
dossier.

The coverage of interpretations under preferred exten-
sions, however, provide an indication of coherence for a
dossier. If, for a given dossier, every preferred extension
fails to provide an interpretation for some provision (of
course, possibly not the same), then the dossier has no sound
position and vice-versa.

PROPOSITION 4. A dossier D has no sound position if and
only if every preferred extension of AFD leaves a provision
of D without interpretation

Proof (⇒): Consider all the preferred extensions,
E1,E2, ..,En, of AFD . Suppose that AFD has no sound po-
sition, but there is a an extension Ei, 1 ≤ i ≤ n, such that
provides an interpretation for each provision. Since E1 is
conflic-free and provides an interpretation for each provi-
sion then it is also a sound position, wich is absurd.

Proof (⇐): Suppose E1,E2, ..,En are the preferred exten-
sions of AFD such that a provision ni has not an interpre-
tation in Ei, 1 ≤ i ≤ n. Suppose there is a sound position
P = {φ1,φ2, ...,φm}. If P is sound, then it is conflict free. If
P is conflict free, then P is admissible (since the framework
is symmetric) and then P is included in at least one preferred
extension Ek for some 1 ≤ k ≤ n. But then Ek provides an
interpretation for every norm in D , which is absurd.

Some interpretations may be free of conflicts. In a symmet-
ric framework, these interpretations constitute the grounded
extension. The grounded extension is the least complete ex-
tension with respect to set inclusion, representing the skep-
tical point of view. A complete extension S includes every
interpretation that is acceptable with respect to S. Hence,
given a dossier D with corresponding framework AFD , the
grounded extension of AFD is defined as GE(AFD ) = {a ∈
D I |∄b ∈ D I ,(a,b) ∈ C↓D I}. These interpretations are in-
cluded in every maximal position of the dossier.
REMARK 1. Interpretations in GE(AFD ) are not necessar-
ily mandatory. Although these interpretations are included
in every preferred extension, there may be non-maximal
sound positions excluding some of them, if they are alter-
native interpretations for the same provision.

In bipolar argumentation frameworks, an indirect conflict
arises when an argument A supports another argument B
which attacks C. In this case, there is certain contradiction
between A and C, since the former supports an attacker of
the latter. In our interpretative framework there is a similar
situation, although our notion of entailment has a different
meaning than the notion of support. An interpretation may
entail another, which in turn may be in confict with a third
interpretation. This indirect conflict is captured in Defini-
tion 9, inspired by the same situation in bipolar frameworks.
We do not, however, consider the entailment relation as a
support relation that strengthens or weakens the consequent.

5 Legal Doctrines: Interpretations as a
Principle

As stated before, there is another form of mandatory inter-
pretation besides the one defined in Definition 7. Some in-
terpretations must be adopted as a principle, i.e., there is a
fundamental point of view, constituting a doctrine, that de-
mands the use of these interpretations. For instance, politi-
cal ideologies may define particular interpretations on some
civil rights as freedom of speech, or a high-level judicial in-
stitution may promote only some interpretations, hence con-
stituting a legal doctrine on some aspects of the legal system.
We call this kind of mandatory interpretation an interpreta-
tion as a principle. Then, in some contexts, legal provi-
sions may have only a reduced sets of acceptable interpreta-
tions, even when more interpretations exists. Since these le-
gal stands also involves provisions and interpretations, they
can be modelled as dossiers. The question then is how a
dossier conforms to another referential dossier according to
positions on interpretations. They can refer to different pro-
visions although with different sets of interpretations. This
is formalized as follows.
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Definition 12. Let D1,D2 be two dossiers. We say that D2
conforms to D1, denoted D1 ◁ D2, iff D I

2 ⊆D I
1.

A dossier D2 conforms to another dossier D1 if the former
includes provisions with a (possibly) reduced set of interpre-
tations. Hence, any position for D2 also provides a position
for D1. Note that not necessarily a position for D1 is a po-
sition for D2 since D1 may have more interpretations than
D2.
REMARK 2. For any dossier D , it holds that D ◁D and
D◁D(Φ) for any position Φ.

Given the conformance relation, it is possible to evalu-
ate dossiers according to the point of view of a referential
dossier. Suppose dossier D1 includes the pair (na,{φa}). It
means that the only valid interpretation for provision na is
φa, i.e., this interpretation is mandatory. Thus, any dossier
Di conforming D1 is obligated to adopt interpretation φa. In
other words, there may be a position on Di that leads to a
restriction of that dossier such that this restriction conforms
to D1.
EXAMPLE 7. Let Da = {(n1,{φ1})} and Db =
{(n1,{φ1,φ2}),(n2,{φ3})} be two dossiers. Dossier
Db does not conform to Da since it includes another
interpretation for n1. However, for position Φ = {φ1,φ3},
the restriction Db(Φ) does conforms to Da.

A particular position may lead then to a restriction sat-
isfying conformity. The conformance relation then induces
some interpretations in other, non-conforming dossiers to-
wards the satisfaction of conformity. Although maybe D1 ⋪
D2 it is possible that D1◁D2(Φ) for a some position Φ. It
turns out then that some interpretation is considered manda-
tory for D1 not because of its constant presence in semantic
extensions (such as sound positions), but because it is re-
quired to conform to a referential dossier.
Definition 13. An interpretation φ is mandatory in D ac-
cording to D ′ if φ is in every robust position Φ of D such
that D ′◁D(Φ).

This means that, for every position Φ that makes D ′(Φ)
able to conform to D , the interpretation φ is always present.
Hence, the dossier D marks a referential point of view for
the interpretation of dossier D ′, by filtering some alternative
positions. This concept of conformity is simple since the
underlying idea is to properly share interpretations. How-
ever, the entailment relation provides a more subtle notion
of conformity.
EXAMPLE 8. Consider DIt = {(n1,{φa, ...)(n2,{φb...)}
where φa =“Nationalisation of companies is against the
Treaty of Rome” and φb =“The Treaty of Rome does not ap-
ply since a subsequent national statute applies” Let DEU =
{(n3,{φc})} where φc =“European treaties cannot be over-
ruled by domestic legal provisions” Here dossier DIt does
not conforms to DEU since interpretations are different.
However, clearly (φc,φa) ∈ T . Hence, technically a position
for DIt that includes φa may be in concordance with DEU ,
since the only mandatory interpretation φc entails the one
selected for DIt . Moreover, since (φa,φb) ∈C, this notion of
conformity, by preferring φa, forbids the use of φb. The posi-
tion for the dossier DIt implies that the Treaty of Rome must

prevail, despite other reasons for and against the intention
of the demandant.

The revised notion of conformity then goes beyond the
use of the exact same interpretation for two dossiers, and
consider the entailment relation as an enabling mechanism
for positions.
Definition 14 (Revised). Let D1,D2 be two dossiers. We
say that D2 conforms to D1, denoted D1 ◁ D2, iff every
interpretation of D2 is either (a) an interpretation of D1 or
(b) an interpretation φ entailed by an interpretation of D1 in
such a way that D I

1∪{φ} is internally coherent.
In order to conform to a dossier D1, the exact same in-

terpretations can be selected, or new interpretations that are
entailed by D1 as long as it does not introduces a conflict, ei-
ther in a direct way or through entailments. According then
to Definition 14, in Example 8 a position that includes φa is
able to conform to the dossier DEU regarding the precedence
of normative systems.

6 Related works
Several works in the literature of AI and Law explore
how norms and their interpretation are models to improve
the analysis of a specific legal domain. In this direction,
the argumentation community address the interpretations of
norms in a legal context from two perspectives: from an ab-
stract point of view where norms and interpretations are ab-
stract entities that interact in a certain way, or from a struc-
tured point of view based on logical language norms are
studied at a higher level of description.

Kawasaki et al. in (Kawasaki, Moriguchi, and Takahashi
2018) preset a work where a transformation from the legally
descriptive language PROLEG to a BAF. Thus, they create
a bipolar model from a PROLEG program and present a se-
mantic where the meaning of legal reasoning was preserved.
To do that, first, the authors need the underlying PROLEG
program providing a legal description of the domain. How-
ever, an abstract model that captures certain aspects like the
provision with their possible interpretations and how they
are linked is difficult to discern without the underlying log-
ical description. In this sense, our work provides the tools
to represent abstractly a legal scenario without a logical le-
gal description about: provision and possible interpretation
about such provision. Then, based on conceptual analysis,
we identify permitted and mandatory interpretations speci-
fying a specific legal position. Finally, the classical argu-
mentation semantics are refined in the legal context, preserv-
ing some special properties.

In another direction, Malerba et al. in (Malerba, Rotolo,
and Governatori 2016) present a logical formalism to treat
with canons of interpretation coming from different legal
systems. Thus, the authors defining a logic-based conceptual
framework that could encompass the occurring interpretive
interactions without neglecting the existing, broader norma-
tive background each legal system is nowadays part of. The
spirit of this work is aligned with ours work, only that we
treat the problem from an abstract point of view. Also, as
future work, we intend to couple the theories from the pos-
sible worlds, where it would be possible to analyze how dif-
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ferent legal systems can interact with each other according
to a specific legal position.

From an abstract point of view, Bench-Capon and Modgil
present in (Bench-Capon and Modgil 2009) a work where
the capability of the extended abstract argumentation frame-
work and the tools provided by the valued-based argumenta-
tion framework are combined to analyze a legal argumenta-
tion discussion. Briefly speaking, after considering the at-
tacks between arguments and the attacks between attacks
(giving legal mining about that), where arguments and at-
tacks have assigned a preference order by an audience help-
ing to resolve the conflicts, they arrive into a meta-level ar-
gumentation framework where the arguments have a legal
value that they promote (social value, relevance level, ethical
ideas, among other interpretations). Finally, valued-based
semantics are applied to obtain an admissible set of argu-
ments with the corresponding promoted value. In our work,
the principal issue represents how provision can be inter-
preted, giving the place different kinds of conflict. More
specifically, we see more inside the argument, splitting it ac-
cording to provisions and the possible interpretation from
each of them. However, it is interesting for future works to
combine these research lines to obtain a set of admissible
interpretations for a provision with the legal value that they
promote, giving more information about the acceptance.

Finally, Walton et al. in (Walton, Sartor, and Macagno
2018b) carry out an in-depth study of how it is possible
to interpret the arguments from the law. They argue that
the justification of an interpretation can be regarded as an
argumentation-based procedure in which the best interpre-
tation is the one supported by the strongest or less defea-
sible set of arguments. Thus, to analyze an argument con-
sidering two points of view: the study of the possible in-
terpretation associated with a provision and the argumen-
tation scheme to study the argument strength. They show
how the interpretation of provisions can be translated into
argumentation schemes, and they distinguished two general
macro-structures for positive and negative, total and partial
provisions, under which various types of schemes and re-
buttals can be classified. This classification was then used
for modeling the interpretive arguments in a formal manner
and integrating them into computational systems. Based on
the above, our work is related to how interpretations are se-
lected, conditioned, and analyzed to put a certain provision
into context using our semi-structured argumentation frame-
work. However, a way to improve our formalism is to con-
sider the argumentation scheme (based on the expert opinion
or cause-effect schemes) to specify another dimension of the
provision interpretation quality or impact.

7 Conclusions and Future Work
In this work we proposed an abstract framework for seman-
tic elaborations about provisions and interpretations. Two
relations between interpretations are modelled: a conflict
relation and an entailment relation. The former states that
two interpretations are somehow incompatible and cannot
be adopted simultaneously, while the latter establishes that
some interpretations must be adopted as a consequence of

other interpretations. The notion of legal dossier is intro-
duced, as a set of provisions with some available interpreta-
tions. Using this structure, different qualities of positions (in
the form of set of provisions) towards the dossier are intro-
duced, such as sound and robust positions, and the relation
to basic argumentation semantics are established. Later on,
we explored the notion of mandatory and permitted interpre-
tations, first for a stand-alone dossier and later under the use
of another, second dossier as a referential legal system.

As stated before, this provides a general view of the
argumentation-based behaviour of the interaction of inter-
pretations applied to pieces of knowledge, showing how ar-
gumentation semantics can be applied to the basic quest of
identifying rational standing positions. The abstract level
is very high, inspired by classical abstract argumentation,
by simply treating with the elemental relation knowledge-
interpretation. Although legal reasoning is the leading field
of study, the framework can be applied to different contexts,
such as the analysis of detailed political platforms, news-
feeds, religion studies and any other situation in which po-
tential conflictive interpretations can be applied to formal-
ized knowledge. Legal reasoning is, however, a natural sce-
nario for the consideration of concepts formalized in this ar-
ticle and the prime source of inspiration for the notion of
abstract standing positions.

Future work has several directions. As one of our kind-
est reviewers mention, the work deals with some “incom-
plete argument” where parts of the support are missing and
could be completed in different manners. In that sense, con-
cepts as ”legal provision” and ”interpretation” seem to be
related. Some discussion on those relations should be added
in any case see (Black and Hunter 2012). We are interested
in more semantic elaborations regarding positions across le-
gal systems using dossiers as the basic structure by adding
new relations between interpretations such as equivalence
or preference order. We use entailment as positive relation
among interpretations, but other forms of positive relations
can be analyzed. We are also interested in the characteriza-
tion of conflicts between norms, either by their intrinsic na-
ture or due to conflictive interpretations. In order to achieve
a proper level of detail, logic language could be used to rep-
resent provisions.
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José-Luis Vilchis-Medina1 , Karen Godary-Déjean2 , Charles Lesire3
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Abstract
In this article we propose a decision process integrating Non-
Monotonic Reasoning (NMR), embedded in a deliberative
architecture. The NMR process uses Default Logic to im-
plement goal reasoning, managing partially observable or
incomplete information, allowing the design of default be-
haviours completed by the handling of specific situations,
in order to manage the current mission objective as well as
safety rules. We illustrate our approach through an appli-
cation of an underwater robot performing a marine biology
mission.

1 Introduction
Over the past decades, autonomous robots have been used
in environments where risk is high or access is difficult for
humans. However, there is still work to be done when these
robots have to integrate automated reasoning: autonomous
robots will face unforeseen events (changes in the environ-
ment, uncertainty information, failures) and will then have
to adapt their behaviour. More specifically, we are interested
in giving to these robots goal reasoning. Goal reasoning will
make the robot able to decide what should be its current ob-
jective according to the current situation, in order to ensure
both the mission aims and safety constraints. Goal reasoning
is a must-have for long-term autonomy in robotics (Ingrand
and Ghallab 2017).

In this paper1, we are more specifically interested in
a marine biology application in which an autonomous
underwater vehicle must film fishes along specific tran-
sects (Thanopoulou et al. 2018) defined by marine biolo-
gists. To perform a correct transect (w.r.t. the outcomes
expected by the biologists), the robot must follow a straight
line enforcing some specific constraints (Hereau et al. 2020).
In this paper, we are not interested in the trajectory control
of the robot, but rather on the goal reasoning process. De-
pending on the current situation, the goal reasoning process
can decide either to fulfil mission objectives, i.e. transects
defined by the biologists, or change the objective to respect
the constraints and ensure the safety of the robot (e.g. go-
ing back to a home point, or urgently surfacing). Due to

1This article has been and published in the IEEE Robotics
and Automation Letters (RA-L) and accepted to be presented
at the 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2021).

the intrinsic uncertainty of the robot environment, it is nec-
essary for the goal reasoning process to manage uncertain
information. While some automated planning methods al-
low to manage uncertainty, for instance using contingent
approaches (Hoffmann and Brafman 2005) or probabilistic
planning (Delamer, Watanabe, and Chanel 2021), they man-
age uncertainties related to the achievement of one objective
(or optimizing one utility function), and do not allow to in-
tegrate goal reasoning, i.e. the ability to adapt the current
objectives according to the situation.

Such goal reasoning capability generally roots in Knowl-
edge Reasoning (KR) approaches. The KR approach that ad-
dresses incomplete and contradictory information is called
Non-Monotonic Reasoning (NMR), in which the reasoning
process can make some assumptions, and revise the conclu-
sions according to further observations. In this paper, we are
more specifically interested in Default logic (Reiter 1980),
a non-monotonic logic in which we can reason by default,
i.e. we can derive consequences only because of lack of
evidence of the contrary. Such reasoning is indeed very rel-
evant and flexible to handle autonomous robotic situations,
in which we want to specify some default behaviours, ex-
cept when observing specific situations where a specific rea-
soning should be applied, such as applying safety rules, or
changing the current mission goal to adapt to environment
changes.

In this paper, we propose a decision process for au-
tonomous systems that uses NMR when incomplete or pos-
sibly contradictory information must be considered. The
NMR process implements goal reasoning, determining
which goals are relevant according to the observed situation.
Then an automated planning algorithm computes an action
plan to achieve this goal. Finally, the NMR process decides
what action the robot should actually perform: either the first
action of this plan, or another action imposed by a specific
rule (typically a safety rule). In Sec. 2, we describe related
works. Next, we remind the basic concepts of Default Logic.
We then present our contribution in Sec. 4. We show some
results in Sec. 5, and finally conclude.

2 Related Works
In Robotics, automated reasoning with logical or formal
models is often based on techniques like model-checking
or temporal logic. However the purpose of model-checking
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is generally to verify properties on a discrete-event system
model (Bride et al. 2021; Bensalem, Havelund, and Orlan-
dini 2014). Other works used Linear Temporal Logic for
under-actuated robots planning (Shoukry et al. 2017; Bolo-
tov, Grigoriev, and Shangin 2007), describing behaviours of
motion in a first-order language and using a theorem solver
to obtain moves. Nevertheless, these approaches fail to cap-
ture the non-monotonic properties.

Knowledge Representation and Reasoning (KRR) has
proposed languages to reason about actions and changes,
which have been the basis of formal theory of actions (Gel-
fond and Lifschitz 1998) and dynamic modelling (Levesque
et al. 1997; Jin and Thielscher 2004). More recently, a no-
ticeable effort has been made in leveraging KRR processes
for robotic applications, more specifically for human-robot
interactions, in the KnowRob framework (Tenorth and Beetz
2013), where queries are done to a knowledge base to de-
duce information about the environment or the robot tasks.
However, they still rely on a monotonic reasoning and do
not include uncertainty or incompleteness at the logic level.

Robotics applications that integrate NMR generally use
Answer Set Programming (ASP) (Kern, Kreijger, and Will-
cocks 2002). ASP is a declarative language based on a stable
model paradigm. Among other applications, ASP has been
used in robotics for human-robot collaboration through dia-
log to handle underspecification and further support knowl-
edge accumulation (Chen et al. 2010), or for planning with
time-bounded generation of actions (Schäpers et al. 2018).
However, ASP generally has difficulties to reason on all
classes of stable models related to a program (e.g. to make
a choice of a model according to a user-defined criteria or
to compare across the models), and as far as we know, no
methodology based on ASP has been proposed for goal rea-
soning in robotics.

However, there are works that strive to solve problems
through NMR based on default reasoning, e.g., for decision
support in naval missions (Toulgoat, Siegel, and Doncescu
2011), and UAV control (Medina et al. 2018). Default logic
is indeed a relevant reasoning framework for robotic mis-
sions in which we must handle safety rules and unknown
environments. However, the latter works use default logic at
the control level, without integration of long-term reasoning,
nor providing a methodology for applying default logic.

In this context we propose a decision architecture that in-
tensively uses default reasoning, to manage partial and/or
contradictory observations and safety rules. We claim that
default logic is an appropriate formal tool to design the goal
reasoning that must take place in an autonomous robot, as it
allows to define a default behaviour, and then to specialize
this default behaviour by specific rules depending on the en-
countered (partially observed or incomplete) situation. This
reasoning is done at a high-level of abstractions.

3 Default Logic
Default logic is one of the best known formalization
for commonsense reasoning, introduced by Reiter (Reiter
1980). This kind of formalization allows to infer argu-
ments based on partial and/or contradictory information as
premises. A default theory ∆ is a pair (D,W ), where D

is a set of defaults and W a set of formulas in First-Order
Logic (FOL). A default d ∈ D is defined by a quadruplet
X,A(X), B(X), C(X), with X = (x1, . . . , xn) a vector
of (non-quantified) free variables, and A(X), B(X), C(X)
well-formed formulas (wffs) over X , and is represented as:

d =
A(X) : B(X)

C(X)
(1)

A(X) are the prerequisites, B(X) the justifications, C(X)
the consequences. Intuitively a default means: “if A(X) is
true, and there is no evidence thatB(X) might be false, then
C(X) can be true”.

The possible situations that can be derived from a default
theory ∆ are called extensions. An extension E∆ can be
seen as a set of believes of acceptable alternatives accord-
ing to a theory ∆. Formally, an extension E∆ is defined
as a smallest fixed-point set for which the following prop-
erty holds: “if d is a default of D, whose the prerequi-
site is in E∆, and the negation of its justification is not in
E∆, then the consequence of d is in E∆”, and defined as
E∆ =

⋃∞
i=0Ei with (Reiter 1980):

E0 = W (2)

∀i > 0, Ei+1 = Th(Ei) ∪
{
C(X) | A(X) : B(X)

C(X)
∈ D,

A(X) ∈ Ei,¬B(X) 6∈ E∆
}

(3)

where Th(Ei) is the set of closed wffs (i.e. with no free
variables) that are provable from Ei. However, extensions
are difficult to compute in practice since condition ¬B 6∈
E∆ (3) assumes that E∆ is known, while E∆ is not yet
computed.

Normal default theories (Reiter 1980) is a specific class
of default theories in which all defaults have the form
A(X) : C(X)

C(X)
, that can be read “if A(X) is true, and there

is no evidence that C(X) might be false, then C(X) can be
true”. The consequence of this formulation is that (3) can be
rewritten (Reiter 1980):

∀i > 0, Ei+1 = Th(Ei) ∪
{
C(X) | A(X) : C(X)

C(X)
∈ D,

A(X) ∈ Ei, ¬C(X) 6∈ Ei
}

(4)

Normal default theories have two main advantages: (1)
at least one extension is always guaranteed to exist, and
(2) computation of extensions using Horn clauses has a
quasi-linear complexity (Marek, Nerode, and Remmel 1997;
Dantsin et al. 2001).

4 Decision-Making with Default Logic
In order to handle incomplete or contradictory information
in the goal reasoning process of an autonomous robot, we
have proposed the decision architecture depicted in Fig. 1.
This architecture is based on a perception - reasoning - ac-
tion scheme, focusing here on the reasoning part.

178



Automated Planning

Non-Monotonic Reasoning
Action / Perception

S, Gπ

dosafe(X) obs.
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Figure 1: Decision layer based on NMR.

The NMR is made on some observations (obs) coming
from the robot functional layer, being values of the inter-
nal states of the system, environment sensing, failures, etc.
From these observations, we build and evaluate a default
theory ∆ = (D,W ), where formulas in D have the form
A(X) : C(X)

C(X)
and formulas in W have the form A(X) →

C(X). Then an extension of ∆ is computed, and two situa-
tions may occur:
• the extension contains a dosafe statement, which indi-

cates that an action must be executed immediately, as a
reactive response to the observations; in that case, the au-
tomated planning part is not called and the action is cho-
sen to be executed;

• the extension does not contain a dosafe statement, but
produces a current situation estimation S and a goal2 G,
which are given to the automated planning module. Then
this module provides a plan π which indicates the next
action(s) to be executed.
Once an action has been chosen to be executed, we eval-

uate again this action in ∆. The extension resulting from ∆
must then define a dosafe statement, that corresponds to the
action that will really be executed on the robot. In the fol-
lowing, we first briefly describe how we abstracted the func-
tional layer (observations and actions) through a skill formal
model, then we describe the design process of the default
theory we used in the architecture, with examples from our
marine biology application.

4.1 Functional Layer Abstraction
In order to formalize the interactions with the robot func-
tional layer, we adopted a representation of the robot ca-
pabilities and features through a formal skill model (Lesire,
Doose, and Grand 2020). The skills represent the actions
in our reasoning model, that can be triggered through the
dosafe predicate. These skill models have an executable

2When several goals are computed in an extension, then a single
one is selected thanks to specific rules.

semantics, described by required inputs, behaviours, ex-
pected outcomes, preconditions, etc. In addition to skills,
the model also provides two complementary elements: re-
sources, modeled as finite state-machine, and data. The
skills toolchain includes code generators that provide: (1)
a library to interface with the functional layer, in order to re-
trieve the resource and data values (used as observations for
the NMR), and to trigger skill (i.e. action) execution, and
(2) a PDDL formalization of skills used by the automated
planning algorithm.

4.2 Non-Monotonic Reasoning Model
The first step of the deliberative scheme we propose consist
in evaluating observations with respect to the default theory
∆. It has a relevant role because it allows to deduce conclu-
sions from observable (functional layer data and resource
states) and/or non-observable information, whose model is
defined using defaults. Moreover, in addition to estimat-
ing non-observable information, ∆ can adapt the mission
objective to the current observed situation, either defining
a new goal for the automated planning process, or directly
performing an emergency action.

In this paper, we propose some design patterns, that can
be seen as modeling guidelines to define such a default the-
ory ∆ for goal reasoning and safety management of a robotic
system. We illustrate these guidelines through examples of
logical rules for our marine application.

In order to structure ∆ in a design perspective, we break-
down ∆ in subsets which are specific to the type of infor-
mation they deal with. First, ∆ must contain a set of facts,
summarized in a set Wobs (that can come either from ob-
servations of the functional layer, or be static information
about the environment). ∆ can also contain formulas that
correspond to rules relative to three other classes: state esti-
mation in ∆est (that allows to infer values of unobserved
states), goal management in ∆goal and emergency safety
rules in ∆safety . Each of these sets is composed of a subset
of defaults and a subset of FOL formulas. Thus we have:

D = Dest ∪Dgoal ∪Dsafety (5)
W = Wobs ∪West ∪Wgoal ∪Wsafety (6)

Modeling guidelines for each of these sets are given in the
following paragraphs.

Observed Facts The propositions that are used in Wobs

are directly deduced from the skill-based model of the func-
tional layer, that correspond to the data that can be read from
this layer, resource states, and skill execution statuses.

Let’s look at the model we developed for our marine robot
application. Wobs contains observed propositions, such as
the robot position through the at predicate, the state of sen-
sors, and the status of internal information, such as the pre-
cision level of the robot localization. For instance, a typi-
cal initial situation in our mission is when our robot is on
the surface: so the GPS sensor could be captured, while the
USBL (acoustic) sensor could not be. This situation is mod-
eled by the formula:

at(home) ∧ ¬usbl captured∧
gps captured ∧ on surface (7)
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Predicate Estimation ∆est = (Dest,West) is the part of
the default theory that models formulas to infer the truth
value of some hidden state variables, i.e. that are not directly
observed from the functional layer.

Designing formulas in ∆est is very specific to the appli-
cation. The only guideline that we can enforce is to restrain
the C part of the formulas (i.e., the consequences) to only
rely on estimated propositions, and never on elements of
Wobs.

In our application, this typically corresponds to the lo-
calized predicate, that models the fact that we consider the
robot well localized enough to perform a specific task. We
want to model the following informal behaviour:

1. we can generally assume that the robot is localized
enough to navigate;

2. however, if the USBL signal has not been captured, and
neither was the GPS signal, then the robot has never been
geo-referenced and we consider that the localization is not
good enough.

It results in the following model, where statement 1) is mod-
elled as a default dloc ∈ Dest (8), while statement 2) is
an exception to dloc, modelled as classical logical formula
ϕloc ∈West (9).

dloc =
> : localized

localized
(8)

ϕloc = ¬usbl was captured ∧ ¬gps was captured
→ ¬localized

(9)

Safety rules Emergency rules consists in situations where
we want to directly apply an action instead of relying on an
automated planning process. To design such safety rules of
our model, we have defined a specific predicate, dosafe(a),
where a is a possible action of the functional layer. This
predicate represents the fact that action a has to be per-
formed as a consequence to the current situation.

In our application, safety rules correspond for example to
situations when we observe a critical failure due to safety
sensors of the robot (e.g., internal temperature or pressure,
water ingress). In that case, we have either to shut down the
robot to ensure its integrity, or to immediately surface.

Formulas in ∆safety must then comply with the follow-
ing guidelines: safety defaults pattern (Dsafety) are given
in eq. (10); FOL formulas patterns (Wsafety) are given in
eq. (11).

A(X) : dosafe(a)

dosafe(a)
(10)

A(X)→ dosafe(a) or A(X)→ ¬dosafe(a) (11)

where A(X) is a formula over observed or estimated pred-
icates (from Wobs and ∆est), and a is an action. Note that
formulas in Wsafety can “cancel” the application of a safety
action (when it is negated) as such formulas may correspond

to exception to a default safety rule. In our robotic applica-
tion, the model that corresponds to the loss of a safety sensor
is:

safety sensor failure(X) : dosafe(shut down())

dosafe(shut down())
(12)

Note that the possibility to model defaults saves us from
listing all the safety sensors, leading to a smaller number of
rules. As an exception to this, we can model two formulas
(one negative and one positive) that express that, for a
specific sensor, instead of shutdown, we want to surface.

Goal Reasoning The formulas in ∆goal aim at deducing
the current mission objective. To express these formulas,
we have introduced a new predicate, goal(X), where X is a
formula over the observable propositions, that correspond to
elements of the functional layer (e.g., the robot position, the
achievement of an action, the state of a sensor). Proposition
goal(X) then means that we want X to be achieved, i.e. to
be the current mission objective.

Formulas in ∆goal must then comply with the follow-
ing guidelines: goal reasoning defaults patterns (Dgoal) are
given in eq. (13); FOL formulas patterns (Wgoal) are given
in eq. (14).

A(X) : goal(Y )

goal(Y )
or
A(X) : ¬goal(Y )

¬goal(Y )
(13)

A(X)→ goal(Y ) or A(X)→ ¬goal(Y ) (14)

whereA(X) is a formula over observable or estimated pred-
icates,and Y a formula on observable predicates only. In our
application, a goal reasoning can be informally described as:
(1) the general mission objective is to perform a transect be-
tween pA and pB ; (2) except if the localisation is too bad to
do a transect. This behaviour is modeled through a default
and an exception to this default:

> : goal(transect done(pA, pB))

goal(transect done(pA, pB))
(15)

¬localized→ ¬goal(transect done(X,Y )) (16)

4.3 Non-Monotonic Reasoning Process
In the previous paragraphs, we have seen how to model the
Default Theory ∆ to integrate goal reasoning and safety
management. In this paragraph, we will discuss the execu-
tion loop of the NMR process. In our application, we have
implemented a periodic loop, where, at each period, we ap-
ply the steps described below. The decision architecture can
then be seen as a continuous planning architecture.

Observation First, we get observations from the func-
tional layer, and fill Wobs with the observed predicates.

Computing extensions We compute the set of extensions
E∆ corresponding to the current default theory.
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Applying safety actions If the computed extension has
any dosafe(a) predicate, then we directly execute the ac-
tion a (by triggering the corresponding skill in the functional
layer), and wait for the next period.

Automated planning If there is no safety action in
E∆, we split E∆ in two sets: the set of goals G =
{X, s.t. goal(X) ∈ E∆}, and the set of states S = E∆−G.
We then use an automated planning algorithm to compute
the plan π that leads to G from S. In our architecture,
we have used the well-known FF algorithm (Hoffmann and
Nebel 2001). Note that if G is empty, there is no current
goal, and the mission is then finished.

Verifying the planned action Before executing the first
action of plan π, we want to ensure that this action is not con-
tradictory with the safety behaviours modeled in the NMR.
We then add the first action a0 of π to ∆, and compute a
new extension E∆

π . This step is modeled through a specific
predicate, next action(a0), and a default rule:

next action(a0) : dosafe(a0)

dosafe(a0)
(17)

This equation models the fact that, if nothing prevents to
execute a0, then we can execute it. It is then possible to add
in the knowledge database an exception to this default. For
instance, in our application, we defined the formula:

next action(X) ∧ ¬enough energy(X)

→ dosafe(go boat)
(18)

meaning that if the energy is not sufficient to perform the
next planned action X , we decide to go back to the boat and
abort the mission. E∆

π must then contain a dosafe predicate,
indicating the action to execute, which will be most of the
time the planned action to reach the current goal, except if a
safety rule imposed an alternative action.

5 Results
We have implemented the proposed architecture using the
ROS2 middleware, with the skill management layer gen-
erated from (Lesire, Doose, and Grand 2020), and a spe-
cific ROS2 node implementing the decision process in
Python/Prolog. The skill model defines 3 data and 9 re-
sources, leading to 12 observable state variables, and 10
skills/actions. Most of the behaviours we have modeled in
the default theory have been defined based on a fault analysis
of our robot (Hereau et al. 2021). We have also integrated
several goal reasoning complementary behaviours. In the
end, our default theory consists of 44 rules, including 17 de-
faults and 27 exceptions as FOL formulas.

To evaluate our approach, we made a set of simulations,
activating the several goal reasoning and safety rules. In this
section, we first present a simulation run in order to illustrate
the approach, and then report an evaluation of computation
times when the size of the models increases.

5.1 Simulated Scenario
Figure 2 shows the skills executions (from the functional
layer perspective) during our simulated scenario. In this sce-
nario, the robot must perform two transects. The successive

actions performed by the robot are to move to a first loca-
tion, then to dive, activate the video camera, and perform the
first transect. Then, the robot moves to the start point of the
second transect. During the second transect, the localization
precision drops under a threshold, leading to the estimation
of proposition ¬localized. As a consequence, the transect
is cancelled, and the robot goes directly to its home point.
In this simulation, the decision architecture ran at a period
of 1 second. Figure 3 shows the computation times of the
NMR process (to compute extensions) and the FF planning
algorithm.

The computation times are quite stable all along the mis-
sion, and have quite low values, the total computation time
being below 0.1 second. Note that the FF time is the time
measured when calling FF as an external process, i.e. in-
cluding file parsing.

5.2 Computation Time Evaluation
In the previous scenario, the mission objectives defined by
the biologists included 2 transects, and the number of pos-
sible positions of the robot was restrained to the transects
start and end points, as well as the home point and the boat
position. While this situation correspond to an actual ex-
periment specified by the marine biologists using our robot,
the complexity of the problem is limited. In this section,
we evaluated the number of inferences and the computation
times when we increase the size of the problem (Fig. 4).

Figure 4a shows the evolution of the computation times
when the number of possible positions increases up to 32
positions, which correspond to large problem: in the pro-
posed architecture, we are not interested in trajectory plan-
ning, but only on goal reasoning, and the model must then
only involve the positions that may have an impact on the
mission objectives. We can see that the computation time of
FF grows, but the absolute values stay reasonable. The com-
putation time of the NMR is constant, which is expected as
there is still only two transects to perform, and the NMR
model only relies on the positions attached to the mission
objectives. The evolution of the number of inferences (not
shown due to lack of place) confirms the constant behaviour
of the NMR.

Figure 4b shows the evolution of the number of logical
inferences done during the computation of extensions, with
respect to the number of mission objectives. In this setup,
we fixed the number of positions to 16, and defined from
2 to 10 transects. We can notice that the number of in-
ferences grows linearly, which is consistent with the theo-
retical complexity of Normal Default Theory (Reiter 1980;
Marek, Nerode, and Remmel 1997). Figure 4c shows the
evolution of the computation times. Even if the number of
goals increases, we can notice that the computations times
are almost static whatever the number of transects.

6 Conclusion
In this paper, we have proposed a new decision architecture
based on a non-monotonic reasoning, more particularly de-
fault reasoning, that encompasses goal reasoning and safety
management, two major features in long-term autonomy of
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Figure 2: Timeline of the skill execution. Blue segments indicate successful skill executions, and gray segment shows a skill interruption.

Figure 3: Evolution of the computation time of the NMR and Plan-
ning (FF) processes. The dashed lines indicate their respective
mean values.

robotic systems. We presented the concept of the architec-
ture, along with guidelines to model the several behaviours
in default logic, relying on specific predicates to manage
goals and emergency actions. The main decision-making
process first gathers observations from the functional layer,
then evaluates the default theory to compute an extension.
This extension may include a dosafe statement, with an ac-
tion to execute immediately, or a goal state to achieve. In
the latter case, we use the FF algorithm to compute a plan
of actions, and check the consistency of the first action w.r.t.
to the default theory. We have illustrated the approach on a
marine biology mission, and presented the results of simu-
lations. This application and the associated results clearly
show that the proposed method is a practicable approach
to manage safety rules and goal reasoning for autonomous
robots. Default logic is indeed very convenient and concise
framework to model such behaviours, as it allows to define
general defaults rules, and then only specify specific excep-
tions.

Based on this architecture, future work will address the
implementation of an interactive decision process, to allow
the biologists to modify the NMR rules online while the
robot is doing a mission, in order to integrate new behaviours
due to not modeled situations.
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Abstract

We extend the KLM approach to defeasible reasoning to be
applicable to a restricted version of first-order logic. We de-
scribe defeasibility for this logic using a set of rationality pos-
tulates, provide an appropriate semantics for it, and present a
representation result that characterises the semantic descrip-
tion of defeasibility in terms of the rationality postulates.
Based on this theoretical core, we then propose a version of
defeasible entailment that is inspired by Rational Closure as
it is defined for defeasible propositional logic and defeasible
description logics. We show that this form of defeasible en-
tailment is rational in the sense that it adheres to our rational-
ity postulates. The work in this paper is the first step towards
our ultimate goal of introducing KLM-style defeasible rea-
soning into the family of Datalog+/- ontology languages.

1 Introduction
The past 15 years have seen a flurry of activity to intro-
duce defeasible-reasoning capabilities into languages that
are more expressive than propositional logic (Casini and
Straccia 2010, 2013; Casini et al. 2015; Giordano et al. 2013,
2015; Bonatti et al. 2015; Bonatti 2019; Pensel and Turhan
2018). Most of the focus has been on defeasibility for de-
scription logics (DLs), with much of it devoted to versions
of the so-called KLM approach to defeasible reasoning ini-
tially advocated for propositional logic by Kraus, Lehmann,
and Magidor (1990), and Lehmann and Magidor (1992). In
DLs, knowledge is expressed as general concept inclusions
of the form C v D, where C and D are concepts, with the
intended meaning that every instance ofC is also an instance
of D. Defeasible DLs allow, in addition, for defeasible con-
cept inclusions of the formC@∼D with the intended meaning
that instances of C are usually instances of D. For instance,
Student @∼ ¬∃pays.Tax (students usually don’t pay tax) is a
defeasible version of Student v ¬∃pays.Tax (students don’t
pay tax).

Given the tight formal relationship between DLs and the
family of Datalog+/- ontology languages (Calì et al. 2010;
Calì, Gottlob, and Lukasiewicz 2012), it is surprising that
this form of defeasibility has not yet found its way into
Datalog+/-. In this paper we take the first steps to fill that

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gap by providing the theoretical foundations for defeasibil-
ity in a restricted version of first-order logic. We refer to the
classical version of the logic as RFOL and the defeasible
extension as DRFOL. It suffices to to use Herbrand interpre-
tations for the semantics of RFOL. However, the availabil-
ity of non-unary predicates means that the definition of an
appropriate semantics for DRFOL is a non-trivial exercise.
This is because the intuition underlying KLM-style defea-
sibility generally depends on the type of language in which
it is implemented. For propositional logics the intuition dic-
tates a notion of typicality over possible worlds. The state-
ment “birds usually fly”, formalised as bird |∼ fly, is in-
tended to convey that in the most typical worlds in which
bird is true, fly is also true. In contrast, defeasibility in DLs
invokes a form of typicality over individuals. The statement
Student@∼¬∃pays.Tax states that of all those individuals that
are students, the most typical ones don’t pay taxes. Consider,
for instance, the following example of (Delgrande 1998):

Example 1. The following DRFOL knowledge base states
that humans don’t feed wild animals, that elephants are usu-
ally wild animals, that keepers are usually human, and that
keepers usually feed elephants, but that Fred the keeper usu-
ally does not feed elephants (the connective ; refers to de-
feasible implication and variables are implicitly quantified).

K = { wild_animal(x) ∧ human(y)→ ¬feeds(y, x),

elephant(x) ; wild_animal(x),

keeper(x) ; human(x),

elephant(x) ∧ keeper(y) ; feeds(y, x),

elephant(x) ∧ keeper(fred) ; ¬feeds(fred, x) }

Note that all statements, except for the first one, are defea-
sible. For any appropriate semantics, the knowledge base in
the example should be satisfiable (given an appropriate no-
tion of satisfiability). With this in mind it soon becomes clear
that the propositional approach cannot achieve this. To see
why, note that applying the propositional intuition to the ex-
ample would result in elephant(x)∧keeper(y) ; feeds(y, x)
meaning that in the most typical worlds (Herbrand interpre-
tations in this case) all keepers feed all elephants. This is in
conflict with elephant(x)∧ keeper(fred) ; ¬feeds(fred, x),
which states that in the most typical Herbrand interpreta-
tions, keeper Fred does not feed any elephants. For any
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reasonable definition of satisfiability, this would render the
knowledge base unsatisfiable.

The DL-based intuition of object typicality is also prob-
lematic. Under this intuition the statement elephant(x) ;

wild_animal(x) would mean that the most typical elephants
are wild animals. Similarly, keeper(x) ; human(x) would
mean that the most typical keepers are human. Combined
with the first statement in the knowledge base, it would then
follow that the most typical keepers (being humans) do not
feed the most typical elephants (being wild animals). On the
other hand, the fourth statement in the knowledge base ex-
plicitly states that the most typical keepers feed the most typ-
ical elephants, from which we obtain the counter-intuitive
conclusion that typical elephants and typical keepers cannot
exist simultaneously.

We resolve this matter with a semantics that is in line
with the propositional intuition of a typicality ordering over
worlds, but also includes aspects of the DL intuition of the
typicality of individuals. We achieve the latter by enrich-
ing our semantics with a set of typicality objects, the el-
ements of which are used to represent typical individuals.
Thus, elephant(x) ∧ keeper(y) ; feeds(y, x) means that in
the most typical enriched Herbrand interpretations, all typi-
cal keepers feed all typical elephants, with the understanding
that there may be exceptional keepers that don’t feed some
elephants. Note that the term typical is used here in two dif-
ferent, but related, ways.

The central theoretical result of the paper is a represen-
tation result (Theorems 2 and 3), showing that defeasible
implication defined in this way can be characterised w.r.t.
a set of KLM-style rationality postulates adapted for DR-
FOL. We show that DRFOL formally generalises propo-
sitional KLM-style defeasible reasoning in two ways. The
cases where DRFOL, restricted to 0-ary predicates, or where
n-ary predicates for any n > 0 are allowed, but with a re-
striction to variable-free statements, both reduce to proposi-
tional KLM-style defeasibility. A comparison with defeasi-
ble DLs is more complicated, but the semantics of defeasible
DLs, for the most part, carries over to DRFOL. An important
exception is that whereas a defeasible DL statement of the
form A@∼⊥ is equivalent to its classical counterpart A v ⊥,
it is possible to distinguish between the DRFOL version of
the same statement,A(x) ; ⊥, and its classical counterpart
A(x)→ ⊥. In fact, the former is weaker than the latter.

Another important consequence of our representation re-
sult is that it provides the theoretical foundation for the def-
inition of various forms of defeasible entailment for DR-
FOL. We present one such form of defeasible entailment
in Section 5, and show that it can be viewed as the DR-
FOL analogue of Rational Closure, as originally defined for
the propositional case (Kraus, Lehmann, and Magidor 1990;
Lehmann and Magidor 1992).

The rest of the paper is structured as follows. Section 2 is
a brief introduction to RFOL, as well as to KLM-style de-
feasible reasoning for propositional logics. Section 4 is the
heart of the paper. It introduces DRFOL, describes an ab-
stract notion of satisfaction w.r.t. a set of KLM-style pos-
tulates, provides a semantics, and proves a representation
result, showing that the KLM-style postulates characterise

the semantic construction. Section 5 presents a form of de-
feasible entailment for DRFOL that can be viewed as the
DRFOL equivalent of the well-known propositional form of
defeasible entailment known as Rational Closure. Section 6
compares defeasible reasoning in DRFOL with KLM-style
defeasible reasoning in propositional logic and DLs. Section
7 provides an overview of related work, while Section 8 con-
cludes and briefly discusses future work. The proofs can be
found in an appendix: https://tinyurl.com/7472fn2a.

2 Background
We consider a restricted version of a first-order language,
which we refer to as RFOL. The language of RFOL is de-
fined by three disjoint sets of symbols: CONST, a finite set
of constants; VAR, a countably infinite set of variable sym-
bols; and PRED, a finite set of predicate symbols. It has no
function symbols. Associated with each predicate symbol
α ∈ PRED is an arity, denoted ar(α) ∈ N, which repre-
sents the number of terms it takes as arguments. We assume
the existence of predicate symbols > and ⊥, which we take
to have arity 0. A term is an element of CONST ∪ VAR. An
atom is an expression of the form α(t1, . . . , tar(α)) where
α ∈ PRED and the ti are terms. Observe that > and ⊥ are
atoms as well.

A compound is defined to be a boolean combination of
atoms, i.e. an expression built out of atoms and the standard
logical connectives ¬, ∧, and ∨. An implication is defined
to have the form A(~x) → B(~y) where A(~x) and B(~y) are
compounds, and where the terms occurring in ~x and ~y may
overlap. A compound (respectively, implication) is said to
be ground if all the terms contained in it are constants; oth-
erwise it is open. In RFOL, the only formulas we permit
are compounds and implications. When viewed as formulas,
compounds and implications are understood to be implicitly
universally quantified.

We adopt the following conventions for various kinds
of formula. Constant symbols and variables will be writ-
ten in lowercase English, with early letters used for
constants (a, b, . . . ) and later letters used for variables
(x, y, . . . ). Compounds will be written in uppercase English
(A,B, . . . ). A tuple of variables or constants will be written
with overbars, such as ~x and ~a respectively, and A(~x) and
B(~a) will be used as shorthand for compounds over their re-
spective tuples of terms. We use lowercase greek (α, β, . . . )
to denote RFOL formulas.

We omit specifying the symbol sets under consideration,
as they can be inferred from context. The set of all formulas
(compounds and implications) is denoted by L, and a knowl-
edge base K is defined to be a finite subset of L.

RFOL can be thought of as an extension of Datalog
(Abiteboul, Hull, and Vianu 1995). In fact, we use Herbrand
interpretations to specify the semantics of RFOL. The Her-
brand universe U is the set of constant symbols CONST. The
Herbrand base of U, denoted B, is the set of facts defined
over U. A Herbrand interpretation is a subsetH ⊆ B.

Substitutions are defined to be functions ϕ : VAR →
VAR ∪ CONST assigning a term to each variable symbol.
Variable substitutions are substitutions that assign only vari-
ables, and ground substitutions are substitutions that assign
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only constants. The application of a substitution ϕ to a com-
pound A(~x) is denoted A(ϕ(~x)). RFOL knowledge bases
are interpreted by Herbrand interpretationsH as follows:

1. if A(~a) is a ground atom, thenH  A(~a) iff A(~a) ∈ H.

2. if A(~a) and B(~b) are ground compounds (where ~a and ~b
may overlap), then H  A(~a) and H  A(~a) → B(~b)
according to the usual laws of boolean connectives.

3. if A(~x) is an open compound, then H  A(~x) iff H 
A(ϕ(~x)) for every ground substitution ϕ.

4. if A(~x) → B(~y) is an open implication (where ~x and
~y may overlap), then H  A(~x) → B(~y) iff H 
A(ϕ(~x))→ B(ϕ(~y)) for every ground substitution ϕ.

5. IfK is a knowledge base, thenH  K iffH  α for every
α ∈ K.

The set of Herbrand interpretations is denoted by H . A
Herbrand interpretation that satisfies a knowledge base K is
a Herbrand model of K.

3 Propositional Defeasible Reasoning
Kraus, Lehmann, and Magidor (1990) originally define |∼
as a consequence relation over a propositional language,
with statements of the form α |∼ β to be interpreted as
the meta-statement “β is a defeasible consequence of α”.
Lehmann and Magidor (1992) subsequently shift to inter-
preting α |∼ β as the object-level statement “α defeasibly
implies β”, with |∼ viewed as an object-level connective.
An abstract notion of satisfaction can then be defined in
terms of satisfaction sets. A satisfaction set S of statements
of the form α |∼ β is said to be rational if it satisfies the
well-known KLM properties below (Lehmann and Magidor
1992). Lehmann and Magidor did not refer to satisfaction
sets, but our formulation here is equivalent to theirs for the
propositional case:

(REFL) α |∼ α ∈ S

(RW)
α |∼ β ∈ S, |= β → γ

α |∼ γ ∈ S

(LLE)
|= α↔ β, α |∼ γ ∈ S

β |∼ γ ∈ S

(AND)
α |∼ β ∈ S, α |∼ γ ∈ S

α |∼ β ∧ γ ∈ S

(OR)
α |∼ γ ∈ S, β |∼ γ ∈ S

α ∨ β |∼ γ ∈ S

(RM)
α |∼ β ∈ S, α |∼ ¬γ /∈ S

α ∧ γ |∼ β ∈ S
A semantics for defeasible implications is provided by

ranked interpretations R, which are defined to be total pre-
orders over a subset UR ⊆ U of valuations. Valuations that
are lower in the ordering are considered to be more typi-
cal, whereas valuations that are not in UR are impossibly
atypical. A defeasible statement α |∼ β is satisfied in R
(R  α |∼ β) iff the R-minimal models of α are also mod-
els of β, which formalises the intuition that β holds in the
most typical situations in which α is true. A classical state-
ment α is satisfied by R iff every valuation in UR satisfies
α.

Lehmann and Magidor (1992) prove the following cor-
respondence between rational satisfaction sets and ranked
interpretations:

Theorem 1. (Lehmann and Magidor 1992). A set S of state-
ments of the form α |∼ β is a rational satisfaction set iff
there is a ranked interpretation R such that α |∼ β ∈ S iff
R  α |∼ β.

To conclude this section, observe that R  ¬α |∼ ⊥ iff
R contains no models of ¬α (which are therefore viewed as
impossible). In other words, R  ¬α |∼ ⊥ iff R  α. We
return to this property of propositional defeasible reasoning
in Section 6.

4 Defeasible Restricted First-Order Logic
Defeasible Restricted First-Order Logic (DRFOL for short)
extends the logic RFOL that was presented in Section 2 with
defeasible implications of the form A(~x) ; B(~y), where
A(~x) and B(~y) are compounds, and where ~x and ~y may
overlap. Observe that ; is intended to be the defeasible ana-
logue of classical implication. That is, A(~x) ; B(~y) is the
defeasible analogue of the RFOL formula A(~x) → B(~y).
The set of defeasible implications is denoted L;, and a DR-
FOL knowledge base K is defined to be a subset of L∪L;.
Note that DRFOL knowledge bases may include (classical)
RFOL formulas.

As demonstrated in Example 1, defeasible implications
are intended to model properties that typically hold, but
which may have exceptions. In this example, for instance,
elephant(x) ∧ keeper(fred) ; ¬feeds(x, fred), is an excep-
tion to elephant(x) ∧ keeper(y) ; feeds(x, y). A DRFOL
knowledge base containing these statements ought to be sat-
isfiable (for an appropriate notion of satisfaction). The same
goes for the DRFOL knowledge base {bird(x) ; fly(x),
bird(tweety), ¬fly(tweety)}. To formalise these intuitions,
we describe the intended behaviour of the defeasible con-
nective ;, and its interaction with (classical) RFOL formu-
las, in terms of a set of rationality postulates in the KLM
style (Kraus, Lehmann, and Magidor 1990; Lehmann and
Magidor 1992). These postulates are expressed via an ab-
stract notion of satisfaction:

Definition 1. A satisfaction set is a subset S ⊆ L ∪ L;.
We denote the classical part of a satisfaction set by SC =

S ∩ L. The first postulate we consider ensures that a satis-
faction set respects the classical notion of satisfaction when
restricted to classical formulas, where |= refers to classical
entailment:

(CLASSF)
SC |= A(~x)

A(~x) ∈ S

(CLASSR)
SC |= A(~x)→ B(~y)

A(~x)→ B(~y) ∈ S

Next, we consider the interaction between classical and de-
feasible implications. We expect the following supraclassi-
cality postulate to hold:

(SUPR)
A(~x)→ B(~y) ∈ S
A(~x) ; B(~y) ∈ S
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A similar postulate for compounds then holds:

(SUPF)
A(~x) ∈ S

¬A(~x) ; ⊥ ∈ S

Proposition 1. (SUPF) follows from (CLASSR) and
(SUPR).

We now consider the core of the proposal for defining ra-
tional satisfaction sets, the KLM rationality postulates, lifted
to the DRFOL case, and expressed in terms of satisfaction
sets:

(REFL) A(~x) ; A(~x) ∈ S

(RW)
A(~x) ; B(~y) ∈ S, |= B(~y)→ C(~z)

A(~x) ; C(~z) ∈ S

(LLE)
A(~x) ; C(~z) ∈ S, |= A(~x)→ B(~y), |= B(~y)→ A(~x)

B(~y) ; C(~z) ∈ S

(AND)
A(~x) ; B(~y) ∈ S, A(~x) ; C(~z) ∈ S

A(~x) ; B(~y) ∧ C(~z) ∈ S

(OR)
A(~x) ; C(~z) ∈ S, B(~y) ; C(~z) ∈ S

A(~x) ∨B(~y) ; C(~z) ∈ S

(RM)
A(~x) ; B(~y) ∈ S, A(~x) ; ¬C(~z) 6∈ S

A(~x) ∧ C(~z) ; B(~y) ∈ S
Next we consider instantiations of implications. To begin

with, note that universal instantiation is not a desirable prop-
erty for defeasible implications:

(DUIR)
A(~x) ; B(~y) ∈ S

A(ϕ(~x)) ; B(ϕ(~y)) ∈ S
To see why, consider a satisfaction set S containing

elephant(x) ∧ keeper(y) ; feeds(y, x) and elephant(x) ∧
keeper(fred) ; ¬feeds(y, fred). From (DUIR) we have
elephant(x)∧keeper(fred) ; feeds(y, fred) ∈ S, and hence
by (AND) and (RW) that elephant(x)∧keeper(fred) ; ⊥ ∈
S as well, which is in conflict with the intuition that excep-
tional cases (all elephants usually not being fed by keeper
Fred) should be permitted to exist alongside the general case
(all elephants usually being fed by all keepers).

Weaker forms of instantiation for defeasible implications
are more reasonable. Consider keeper(x) ; feeds(x, y),
which states that keepers typically feed everything. While
we cannot conclude anything about instances of x, for the
reasons discussed above, we should at least be able to con-
clude things about instances of y, since y only appears in the
consequent of the implication. This motivates the following
postulate, where ψ is a variable substitution and ~x ∩ ~y = ∅:

(IRR)
A(~x) ; B(~x, ~y) ∈ S

A(~x) ; B(~x, ψ(~y)) ∈ S
There are some more subtle forms of defeasible instanti-

ation that seem reasonable as well. Consider the following
relation defined over L:
Definition 2. A(~x) is at least as typical asB(~y) with respect
to S, denoted A(~x) 4S B(~y), iff A(~x)∨B(~y) ; ¬A(~x) 6∈
S.

Intuitively, A(~x) 4S B(~y) states that typical instances
of A(~x) are at least as typical as typical instances of B(~y).
Note that 4S does not partially order L in general, but is

rather a partial ordering of the subset of consistent formulas
of L, i.e. A(~x) ∈ L such that A(~x) ; ⊥ 6∈ S .

For any variable substitution ψ, a typical instance of
A(ψ(~x)) is always an instance of A(~x). Thus we should ex-
pect the following postulate to hold, where ψ is any variable
substitution:

(TYP) A(~x) 4S A(ψ(~x))

The last postulate we consider has to do with defeasibly im-
possible formulas. Suppose that A(ϕ(~x)) ; ⊥ ∈ S for all
substitutions ϕ : VAR → VAR∪U. This intuitively states that
there are no typical instances of any specialisation of A(~x).
Thus we should expect that there are in fact no instances of
A(~x) at all:

(IMP)
A(ϕ(~x)) ; ⊥ ∈ S for all ϕ : VAR → VAR ∪ U

¬A(~x) ∈ S
This puts us in a position to define the central construction

of the paper: that of a rational satisfaction set.
Definition 3. A satisfaction set S is rational iff it satisfies
(CLASSF), (CLASSR), (SUPR), (IRR), (TYP), (IMP) and
(REFL)-(RM).

Note that rational satisfaction sets satisfy the following
form of label invariance for defeasible implications, where
the variable substitution ψ is a permutation:

(PER)
A(~x) ; B(~y) ∈ S

A(ψ(~x)) ; B(ψ(~y)) ∈ S

Proposition 2. (PER) follows from (REFL)-(RM), (IRR)
and (TYP).

4.1 Semantics
We now proceed to define an appropriate semantics for de-
feasible implications. The first step is to enrich the Herbrand
universe with a set T of typicality objects. Typicality objects
represent the individuals that aren’t explicitly mentioned in
a given knowledge base, and are used to interpret defeasible
implications in a ranking of (enriched) Herbrand interpreta-
tions.
Definition 4. The enriched Herbrand universe is defined to
be the set UT = U ∪ T . An enriched Herbrand interpreta-
tion (or EHI) E is a Herbrand interpretation over the enriched
Herbrand universe.

Observe that every enriched Herbrand interpretation E re-
stricts to a unique Herbrand interpretation HE over U, de-
fined by HE = E ∩ B. The set of EHIs over T is denoted
by HT . To interpret defeasible implications, we make use
of preference rankings over HT .
Definition 5. A ranked interpretation is a function rk :
HT → Ω ∪ {∞}, for some linear poset Ω, satisfying the
following properties, where we define H rk

T = {E ∈ HT :
rk(E) 6= ∞} to be the set of possible EHIs w.r.t. rk, and
H rk
T (A(~x)) = {E ∈ H rk

T : E  A(ϕ(~x)) for some ϕ :
VAR → T } to be the set of possible EHIs w.r.t. rk satisfying
some typical instance of A(~x) ∈ L:

1. if rk(E) = x < ∞, then for every y ≤ x there is some
E ′ ∈HT such that rk(E ′) = y.
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2. for all A(~x) ∈ L, H rk
T (A(~x)) is either empty or has

an element that is an rk-minimal model of A(~x). This is
smoothness (Kraus, Lehmann, and Magidor 1990).
The set of all ranked interpretations over T is denoted

RT .
Definition 6. For A(~x), B(~y) ∈ L:

1. rk  A(~x) iff E  A(~x) for all E ∈H rk
T .

2. rk  A(~x) → B(~y) iff E  A(~x) → B(~y) for all E ∈
H rk
T .

3. rk  A(~x) ; B(~y) iff E  A(ϕ(~x)) → B(ϕ(~y)) for all
E ∈ minrk H rk

T (A(~x)) and all ϕ : VAR → T .
Thus, compounds and classical implications are true in a

ranked interpretation rk if they are true in all possible EHIs
w.r.t. rk, while a defeasible implication is true in rk if its
classical counterpart, with variables substituted for typical-
ity objects, are true in all minimal EHIs (possible w.r.t. rk) in
which the antecedent of the defeasible implication is true. A
ranked interpretation in which a statement is true is a ranked
model of the statement.
Example 2. This is an example proposed by Delgrande
(1998). The following DRFOL knowledge base states that
elephants usually like keepers, that elephants usually don’t
like the keeper Fred, and that the elephant Clyde usually
does like Fred:

K = {elephant(x) ∧ keeper(y) ; likes(x, y),
elephant(x) ∧ keeper(fred) ; ¬likes(x, fred),
elephant(clyde) ∧ keeper(fred) ; likes(clyde, fred)}.

Let T = {t1, . . .} be the set of typicality objects. For
readability we abbreviate elephant by e, keeper by k and
likes by l.

Consider the EHIs E1 = {e(t1), k(t2), l(t1, t2), e(t2),
e(clyde), k(fred), l(clyde, fred)}, E2 = {e(t1), k(t2),
l(t1, t2), k(t3), l(t1, t3), e(clyde), k(fred), l(clyde, fred)},
and E3 = {e(t1), k(t2), e(t2), e(clyde), k(fred),
l(clyde, fred)}.

Let rk1(E1) = rk1(E2) = 0, rk1(E3) = 0, and
rk1(E) = ∞ for all other EHIs. Then rk1 is a ranked
model of the knowledge base above. Let rk2(E1) =
rk2(E3) = 0, rk2(E2) = 1, and rk2(E) = ∞ for
all other EHIs. Then rk2 is not a ranked model of
elephant(x) ∧ keeper(y) ; likes(x, y), but is a ranked
model of elephant(x) ∧ keeper(fred) ; ¬likes(x, fred) and
elephant(clyde) ∧ keeper(fred) ; likes(clyde, fred).

4.2 A Representation Result
In this section we show that ranked interpretations precisely
characterise rational satisfaction sets.
Definition 7. The satisfaction set Srk corresponding to a
ranked interpretation rk is defined as: Srk = {α ∈ L∪L; :
rk  α}.

Our representation result is obtained by showing that
all ranked interpretations generate rational satisfaction sets
(Theorem 2), and that every rational satisfaction set S can be
realised as the satisfaction set corresponding to some ranked
interpretation (Theorem 3).

Theorem 2. For every ranked interpretation rk, Srk is a ra-
tional satisfaction set.

To show the converse of Theorem 2, we adapt the rep-
resentation proof of Lehmann and Magidor Lehmann and
Magidor (1992) to the DRFOL setting. The main idea is
to show that the defeasible implications in a given rational
satisfaction set can be completely characterised by normal
EHIs, which are EHIs that satisfy all of the defeasible con-
sequences of some compound A(~x). By ranking these nor-
mal EHIs over an appropriate linear poset, we can capture
the satisfaction set exactly.
Definition 8. For a rational satisfaction set S , the com-
pounds A(~x), B(~y) are equally typical w.r.t. S (denoted
A(~x) ≡S B(~y)) iff A(~x) 4S B(~y) and B(~y) 4S A(~x).

We denote the equivalence class of a compoundA(~x) ∈ L
with respect to ≡S by [A(~x)]S . As predicates can have arbi-
trarily high arity in general, it is necessary in what follows to
assume that T is a countably infinite set of typicality objects.
Definition 9. Let S be a rational satisfaction set. Then
E ∈ HT is normal for a formula A(~x) ∈ L w.r.t. S iff
the following properties hold:

1. E  α for all α ∈ SC .
2. E  A(ϕ(~x)) for some ϕ : VAR → T .
3. for all B(~y) ∈ [A(~x)]S and ϕ : VAR → T , B(~y) ;

C(~z) ∈ S implies that E  B(ϕ(~y))→ C(ϕ(~z)).
The set of normal EHIs for A(~x) is denoted

normS(A(~x)). For the rest of this section, we will
consider a fixed rational satisfaction set S, and sketch the
construction of a ranked interpretation rk : HT → Ω∪{∞}
such that S = Srk. First, we show that normal EHIs
completely characterise the defeasible implications in a
given rational satisfaction set:
Lemma 1. A(~x) ; B(~y) ∈ S iff for every E ∈
normS(A(~x)) and substitution ϕ : VAR → T we have
E  A(ϕ(~x))→ B(ϕ(~y)).

Corollary 1. A(~x) has a normal EHI iff A(~x) is consistent
with respect to S, i.e. A(~x) ; ⊥ 6∈ S .

Let Ω∗ = {〈A(~x), E〉 : A(~x) ∈ L, E ∈ normS(A(~x))}.
We order elements of Ω∗ using the relation 4S as follows:

〈A(~x), EA〉 ≤ 〈B(~y), EB〉 iff A(~x) 4S B(~y)

Proposition 3. ≤ is reflexive, transitive and total over Ω∗.
Let Ω = Ω∗/ ∼ be the quotient of Ω∗ with respect to its

equivalence classes, which we denote by [α]≤ for α ∈ Ω∗.
By Proposition 3, Ω is a linear poset, though in general it
is not well-ordered. We now show that any given EHI is
contained in at most one equivalence class:
Lemma 2. For any E ∈ HT , the following set is either
empty or contains a single element:

Ω(E) = {[〈A(~x), E〉]≤ : 〈A(~x), E〉 ∈ Ω∗}.
This lets us construct a ranking function rk : HT → Ω ∪

{∞} as follows:

rk(E) =

{
[〈A(~x), E〉]≤ if Ω(E) = {[〈A(~x), E〉]≤}
∞ if Ω(E) = ∅
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Proposition 4. The ranking function rk : HT → Ω ∪ {∞}
is a ranked interpretation.

Finally, we have the following result relating normal EHIs
to minimal elements in rk:
Lemma 3. For any formula A(~x) ∈ L, we have that
minrk H rk

T (A(~x)) = normS(A(~x)).
Lemmas 1 and 3 prove the converse to Theorem 2.

Theorem 3. For every rational satisfaction set S there ex-
ists a ranked interpretation rk, over an infinite set of T of
typicality objects, such that S = Srk.

4.3 Finite Sets of Typicality Objects
Theorem 3 has some limitations in that it requires an infinite
set of typicality objects to be true in general. In this section
we detail some ways ranked interpretations can be restricted
to finite sets of typicality objects, which will be useful for
defining a basic notion of entailment for DRFOL knowledge
bases.

First, consider a fixed finite set T ′ ⊂ T . Note that the set
of EHIs over T ′ is finite, as there are only finitely many pos-
sible atoms over the extended Herbrand base BT ′ . Further-
more, given any such E ∈HT ′ , we can define a characteris-
tic compound for E that parallels the notion of characteristic
formula for a propositional valuation:
Definition 10. Let E ∈ HT ′ be an EHI over T ′, and π :
T ′ → VAR any injective function. Then the characteristic
compound for E , denoted chπ(E), is defined as follows:

chπ(E) =
∧

A(~c,~t)∈BT ′

±A(~c, π(~t))

Here, ~c is a tuple of constants, ~t is a tuple of typicality ob-
jects, and ±A(~x, π(~t)) means A(~c, π(~t)) if E  A(~c,~t), or
¬A(~c, π(~t)) otherwise.

Note that, while chπ(E) depends on π, the characteris-
tic formula is nevertheless unique up to relabelling of vari-
ables and the order of clauses. For this reason we will omit
defining π explicitly where we refer to it. The important fact
about characteristic formulas is that they reflect satisfaction
properties of the underlying EHI E :
Lemma 4. Let E ∈ HT and E ′ ∈ HT ′ be any two EHIs
over T and T ′ respectively such that E  ϕ(chπ(E ′)) for
some ϕ : VAR → T . Then for any compound A(~x) and
substitution ψ : VAR → T ′, E ′  A(ψ(~x)) iff E  A(ϕ ◦
π ◦ ψ(~x)).

The number of typicality objects required to model a de-
feasible formula depends on the number of variables in the
formula. With this in mind, we define the order of a formula
A(~x) to be the length of the tuple ~x.
Definition 11. For any ranked interpretation rk ∈ RT , the
restriction of rk to E ′, denoted rk∗ ∈ RT ′ , is defined by
rk∗(E) = minrk H rk

T (chπ(E)).
The following lemma proves that rk∗ and rk agree for for-

mulas of small enough order:
Lemma 5. rk∗ satisfies the following properties, where n =
|T ′| is the number of typicality objects in T ′:

1. for all classical formulas α ∈ L, rk∗  α iff rk  α.
2. for all defeasible formulas α ∈ L; of order≤ n, rk∗  α

iff rk  α.

This lets us define approximations to any given ranked
interpretation using a finite subset of typicality objects. In
particular, if one only cares about satisfaction for formulas
of bounded order, then a finite set suffices to model them.
Defining the order of a knowledge base to be the maximum
order of any formula contained within it, we have the fol-
lowing corollary:

Corollary 2. Let K ⊆ L ∪ L; be any knowledge base of
order n. ThenK has a ranked model iff it has a ranked model
over a set T ′ of typicality objects where |T ′| = n.

5 Defeasible Entailment
A central question that we have left unaddressed until now
is entailment. That is, given a DRFOL knowledge base K,
when are we justified in asserting that a DRFOL formula
α follows defeasibly from K? In this section we provide one
answer to this question by defining a semantic version of Ra-
tional Closure (Lehmann and Magidor 1992) for DRFOL. It
is, by now, well-established that systems for defeasible rea-
soning are amenable to multiple forms of defeasible entail-
ment, and the work we present in this section should there-
fore be viewed as the first step in a larger investigation into
defeasible entailment.

Rational Closure is a well-known framework for non-
monotonic reasoning that can be viewed as one of the core
forms of defeasible entailment in KLM-style reasoning. Due
to the so-called drowning effect (Benferhat et al. 1993), it
is considered inferentially too weak for some application
domains. Despite that, it is a semantic construction that
can be extended to obtain other interesting entailment rela-
tions (Lehmann 1995; Casini and Straccia 2013; Casini et al.
2014; Giordano and Gliozzi 2019). It has gained attention in
the framework of DLs (Casini and Straccia 2010; Britz et al.
2020; Giordano et al. 2015; Bonatti et al. 2015). An equiva-
lent semantic construction, System Z (Pearl 1990), has been
considered for unary first-order logic (Kern-Isberner and
Beierle 2015; Beierle et al. 2016, 2017). Several equivalent
definitions of Rational Closure can be found in the literature.
Here we refer to the one due to Booth and Paris (1998).

Let a knowledge base K be a set of propositional defeasi-
ble implications α |∼ β (see Section 3). Booth and Paris pro-
vide a construction with the following two immediate con-
sequences:

1. Given all the ranked models of K there is a model R∗ of
K, that we can call the minimal one, which is such that
it assigns to every propositional valuation v the minimal
rank assigned to it by any of the ranked models of K.

2. Propositional Rational Closure can be characterised us-
ing R∗. That is, α |∼ β is in the (propositional) Ratio-
nal Closure of K iff R∗  α |∼ β. The intuition behind
the use of the ranked model R∗ for the definition of en-
tailment is that it formalises the presumption of typical-
ity (Lehmann 1995): assigning to each valuation the low-
est possible rank, we model a reasoning pattern in which
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we assume that we are in one of the most typical situations
that are compatible with our knowledge base.
Based on Corollary 2 and the other results in Section 4.3,

we can define an analogous construction for DRFOL:
Definition 12. Let K ⊆ L ∪ L; be a DRFOL knowledge
base of order n, and take T ′ ⊂ T to be a finite set of typical-
ity objects of cardinality n. Then the minimal ranked inter-
pretation ofK, which we denote by rkK : HT ′ → N∪{∞},
is defined as follows:

rkK(E) = min{rk(E) : rk ∈ RT ′ and rk  K}
Note that we take min ∅ =∞ by convention, and that rkK

is a ranked interpretation over T ′, hence rkK ∈ RT ′ . Intu-
itively, rkK is what you get if you let every EHI rank as low
as possible amongst the models of K. This minimal ranked
interpretation can be used to define a defeasible entailment
relation for DRFOL:
Definition 13. For any DRFOL knowledge base K and for-
mula α, we say that α is in the Rational Closure of K, de-
noted K |≈rc α, iff rkK  α.
Example 3. Consider the knowledge base K from Example
2. We add the unary predicate purple(x) to PRED . The order
of K is 2, so we build our minimal model rkK using the set
of EHIs HT ′ , where the set of typical constants is T ′ =
{t1, t2}. Since K does not contain classical formulas, there
are no EHIs of infinite rank. All the EHIs satisfying K will
be assigned rank 0. That is, all the EHIs in which if ti is
an elephant and tj is a keeper (i, j ∈ {1, 2}), ti likes tj
but, if fred is a keeper, ti does not like fred. Also, if fred is
a keeper and clyde is an elephant, clyde likes fred. All the
other EHIs will be assigned rank 1. For example, the EHI
E1 from Example 2 would have rank 0, while E3 would have
rank 1, since it does not satisfy the formula elephant(x) ∧
keeper(y) ; likes(x, y) (E2 is not considered in rkK, since
it uses the constant t3).

It then follows that a desirable form of constrained
monotonicity, formalised by (RM), holds. Note that all
the EHIs at rank 0 in the minimal model rkK would ei-
ther satisfy purple(ti) (i ∈ {1, 2}) or not, since it is ir-
relevant to the satisfaction of K. The outcome would be
that, while of course satisfying the formula elephant(x) ∧
keeper(fred) ; ¬likes(x, fred), since it is in K, rkK would
not satisfy elephant(x)∧keeper(fred) ; ¬purple(x), while
it would satisfy elephant(x) ∧ purple(x) ∧ keeper(fred) ;

¬likes(x, fred).
More generally, Rational Closure, in the propositional and

DL cases, satisfies a number of attractive properties:

(INCL) α ∈ K implies K |≈rc α
(SMP) S = {α : K |≈rc α} is rational

It is straightforward that our definition of |≈rc carries over
to these properties:
Theorem 4. The entailment relation |≈rc satisfies (INCL)
and (SMP).

It is worthwhile delving a bit deeper into each of these
properties. The first one, (INCL), also known as Inclusion,

simply requires that statements in K also be defeasibly en-
tailed by K. It is a meta-version of the (REFL) rationality
postulate for propositional logic (described in Section 2)
and for DRFOL (described in Section 4). While the prop-
erty itself might seem self-evident, it is instructive to view
it in concert with the definition of rkK. From this it follows
that rkK, which essentially defines Rational Closure, is the
ranked interpretation in which EHIs are assigned a ranking
that is truly as low (i.e., as typical) as possible, subject to the
constraint that rkK is a model of K. This aligns with the in-
tuition of propositional Rational Closure which requires of
propositional valuations in a ranked interpretation to be as
typical as possible.

(SMP) requires the set of statements corresponding to the
Rational Closure of knowledge base K to be rational (in the
sense of Definition 3). By virtue of Theorem 3, this requires
defeasible entailment to be characterised by a single ranked
interpretation. This accounts for the fact that the property is
also referred as the Single Model Property.

6 Comparison
Given that KLM-style defeasible reasoning started off as a
propositional endeavour, it makes sense to begin this section
with a formal comparison to the propositional case. Note
firstly that, when restricted to 0-ary predicates, the language
of RFOL reduces to a propositional one. In this case the
Herbrand universe becomes superfluous, the Herbrand base
is the set of 0-ary predicates (propositional atoms), and a
Herbrand interpretation is a subset of propositional atoms.
Clearly then, Herbrand interpretations reduce to proposi-
tional valuations. For DRFOL we work with enriched Her-
brand interpretations in which typicality objects are added
to the Herbrand universe. But since the Herbrand universe
plays no role in the semantics of 0-ary predicates, it is re-
dundant. The ranked interpretations for DRFOL (Definition
5) then reduce to propositional ranked interpretations (de-
scribed in Section 3, from which it follows that defeasi-
ble implication in DRFOL reduces to propositional defea-
sible implication (represented by the symbol |∼ in Section
3). More specifically, consider a defeasible propositional
language generated from a set of atoms, and take this set
to be the 0-ary predicates of a DRFOL language. It fol-
lows that for every propositional ranked interpretation R
there is a DRFOL ranked interpretation rk such that for all
propositional statements α, β constructed from ¬,∧ and ∨,
rk  α ; β iff R  α |∼ β and rk  α iff R  α.
Conversely, for every DRFOL ranked interpretation rk, there
is a propositional ranked interpretation R such that for all
propositional statements α, β constructed from ¬,∧ and ∨,
rk  α; β iff R  α |∼ β and rk  α iff R  α.

A similar result holds when DRFOL is restricted to com-
pounds, implications, and defeasible implications that are
all ground. Considering RFOL first, observe that, unlike the
case discussed above, the Herbrand universe is used to con-
struct the Herbrand base here, and it is therefore used in
the definition of Herbrand interpretations. But since we only
consider ground statements, each ground atom in a Herbrand
interpretation effectively functions like a propositional atom,
which again means that Herbrand interpretations reduce to
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propositional valuations (for the propositional language with
the ground atoms as its set of propositional atoms). Mov-
ing on to DRFOL we note that since we are restricted to
ground statements, the substitutions referred to in Definition
6 do not play any role, which means that the typicality ob-
jects in enriched Herbrand interpretations are redundant. In
summary, consider a defeasible propositional language gen-
erated from the ground atoms of a language of DRFOL. It
follows that for every propositional ranked interpretation R
there is a DRFOL ranked interpretation rk such that for all
propositional statements α, β constructed from ¬,∧ and ∨,
rk  α ; β iff R  α |∼ β and rk  α iff R  α. And
conversely, for every DRFOL ranked interpretation rk, there
is a propositional ranked interpretation R such that for all
propositional statements α, β constructed from ¬,∧ and ∨,
rk  α; β iff R  α |∼ β and rk  α iff R  α.

Space considerations prevent us from providing a detailed
comparison of DRFOL with DALC, the defeasible version
of the DL ALC (Britz et al. 2020). Suffice it to note that
when DALC is stripped of existential and value restrictions
and confined to Tbox statements, and when DRFOL is re-
stricted to unary predicates and open implications (defeasi-
ble and classical), every concept C inDALC can be mapped
to a compound C(x) in DRFOL, and vice versa. It is then
possible to obtain a result that is analogous to the proposi-
tional cases above, with one exception: a defeasible implica-
tion of the form C(x) ; ⊥ has a meaning that is different
than C @∼ ⊥, its DALC counterpart.

This marks an important distinction between DRFOL
and both the propositional KLM framework and DALC, in
which classical statements are equivalent to certain defeasi-
ble implications. In the propositional case α is equivalent to
¬α |∼ ⊥ (R  α iff R  ¬α |∼ ⊥ for all R) while, for
DALC, C v ⊥ is equivalent to C @∼ ⊥. But in DRFOL, de-
feasible implications cannot inform us about compounds or
classical implications. Formally, rational satisfaction sets do
not necessarily satisfy the following postulate:

(SUB)
A(~x) ; ⊥ ∈ S
A(~x)→ ⊥ ∈ S

One way this difference manifests itself is in the way
our framework handles the finitary Lottery Paradox (Poole
1991). Consider the DRFOL knowledge base K =
{penguin(x) → bird(x), cuckoo(x) → bird(x), bird(x) →
cuckoo(x) ∨ penguin(x), bird(x) ; flies(x) ∧ nests(x),
cuckoo(x) → ¬nests(x), penguin(x) → ¬flies(x)}. This
can also be modelled as a propositional defeasible knowl-
edge base and as a DALC knowledge base.

In all three cases KLM rationality dictates that being a
bird defeasibly implies a contradiction: bird(x) ; ⊥ in the
case of DRFOL, bird |∼ ⊥ in the propositional defeasible
case, and Bird @∼ ⊥ in the case of DALC. In the defeasible
propositional case this means there are no birds (bird |∼ ⊥ is
equivalent to ¬bird). Similarly forDALC, where Bird@∼⊥ is
equivalent to Bird v ⊥. In DRFOL, however, bird(x) ; ⊥
is not equivalent to bird(x) → ⊥. Rather than stating that
there are no birds, bird(x) ; ⊥ means that there are no
typical birds. This leaves open the possibility of there be-
ing only atypical birds, something that is not possible in the
propositional and DL cases.

Example 4. Let CONST = {tweety}, VAR = {x}, PRED =
{bird, penguin, cuckoo, flies, nests}, with T = {t1, . . .} the
set of typicality objects. Let rk be the ranked interpretation
for which rk(E) = 0 and rk(E ′) = ∞ for all other EHIs,
where E = {bird(tweety), penguin(tweety)}. It is easily
verified that rk satisfies all statements in the DRFOL knowl-
edge base K above, and also satisfies bird(x) ;⊥, since
rk 6 bird(ti) for all i. But rk does not satisfy bird(x)→ ⊥.

We regard this as a significant advantage of DRFOL over
previous KLM-style defeasible formalisms.

As a final remark, observe that this distinction is not in
conflict with the claim that DRFOL is a proper generali-
sation of propositional defeasible logic. For a ground com-
pound α (including those containing 0-ary predicates) it is
indeed the case that α ; ⊥ is equivalent to α → ⊥. It is
when α is an open compound that (SUB) need not hold.

7 Related Work
Defeasible reasoning is part of a broader research pro-
gramme on conditional reasoning (Arlo-Costa 2019), most
of which was developed for propositional logic. This pa-
per falls in the class of approaches aimed at moving be-
yond propositional expressivity. We pointed out the connec-
tion with defeasible DLs (Casini and Straccia 2010, 2013;
Casini et al. 2015; Giordano et al. 2013, 2015; Bonatti et al.
2015; Bonatti 2019; Pensel and Turhan 2018) in Section 6,
but there have also been proposals to extend this approach
to first-order logic. Most of these define a preferential or-
der over the elements of the first-order domain (Schlechta
1995; Brafman 1997; Delgrande and Rantsoudis 2020), in
line with some of the DL proposals (Giordano et al. 2015;
Britz et al. 2020), and present rationality postulates, but they
do not provide characterisations in terms of rationality pos-
tulates. Others (Delgrande 1998; Kern-Isberner and Thimm
2012) are formally closer to our work in that they use pref-
erence orders over interpretations.

Delgrande (1998) proposes a semantics that is closer to
the intuitions behind circumscription (McCarthy 1980), giv-
ing preference to interpretations that minimise the counter-
examples to defeasible conditionals. On the other hand,
Kern-Isberner and Thimm (2012) propose a technical solu-
tion that is much closer to the work we present here. Like
ours, their semantics is based on Herbrand interpretations.
They define ordinal conditional functions over the set of
Herbrand interpretations, obtaining a structure that is very
close to our ranked interpretations. They identify some indi-
viduals as representatives of a conditionals. This is done to
formalise the same intuition (or, at least, an intuition that is
very similar) that underlies our decision to introduce typical-
ity objects. Apart from other formal differences (e.g. the ex-
pressivity of their language is slightly different), their work
focuses on the definition of a notion of entailment based
on a specific semantic construction carried over from the
propositional framework known as c-representations of a
conditional knowledge base (Kern-Isberner 2001, 2004). In
contrast, our focus in this paper is on getting the theoreti-
cal foundations of defeasible reasoning for restricted first-
order logics in place. Thus, our work here is centred around
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a representation result that provides a characterisation of the
semantics in terms of structural properties. And while we
present some results on defeasible entailment in Section 5,
we have left a more in-depth study of this important topic as
future work. Indeed, it is our conjecture that the foundations
we have put in place in this paper will allow for the defini-
tion of more than one form of defeasible entailment. At the
same time, a more in-depth comparison with the proposal of
Kern-Isberner and Thimm is also necessary. We leave that
for future work.

Kern-Isberner and Beierle (2015); Beierle et al. (2016,
2017) use the same semantic approach of Kern-Isberner and
Thimm (2012) to develop an extension of Pearl’s System Z
(1990) for first-order logic, but they restrict their attention
to unary predicates. System Z is a form of entailment that is
very close to the approach we introduce in Section 5.

Brafman (1997) suggests that preference orders over the
domain should result in forms of reasoning quite different
from the use of preference orders over interpretations, com-
parable to the difference between statistical and subjective
readings of probabilities. We leave a proper investigation of
the differences between these two different modelling solu-
tions as future work.

As mentioned, the final goal of our investigation is the de-
velopment of a defeasible extension of Datalog+/-. To the
best of out knowledge there is no research on the intro-
duction of defeasible implication in Datalog+/-. Of course,
there is a longstanding tradition of non-monotonic exten-
sions of Disjunctive Datalog with an Answer Set seman-
tics (Leone et al. 2006). Although there are some connec-
tions between conditional reasoning (of which defeasible
reasoning is a special case) and negation-as-failure (Makin-
son 1994, 2005), these two approaches are different. Answer
Set Programming is a popular solution to model the closed-
world assumption, while conditional reasoning is focused on
reasoning with the potential conflicts resulting from defea-
sible pieces of information.

8 Conclusion and Future Work
In this paper we have laid the theoretical groundwork for
KLM-style defeasible Datalog (DRFOL). Our primary con-
tribution is a set of rationality postulates describing the be-
haviour of defeasibility in DRFOL, a typicality semantics
for interpreting defeasibility in DRFOL, and a representa-
tion result, proving that the proposed postulates characterise
the semantic behaviour precisely.

With the theoretical core in place, we then proceeded to
define a form of defeasible entailment for DRFOL that can
be viewed as the DRFOL equivalent of the propositional
form of defeasible entailment known as Rational Closure.

There are at least three important avenues for future re-
search. The first one relates to a more detailed investiga-
tion of defeasible entailment for DRFOL knowledge bases.
While Rational Closure for DRFOL is on par with the anal-
ogous notions for propositional logic and DLs (restricted
to Tboxes), it is not able to fully manage reasoning about
individuals. Going back to Example 3, assume that we
add a constant bob to CONST. Since we are not informed
of anything atypical about bob, we would like to be able

to infer the statement elephant(bob) ∧ keeper(fred) ;

¬likes(bob, fred). But Rational Closure does not sanction
this, since the formula elephant(x) ∧ keeper(fred) ;

¬likes(x, fred) is evaluated only on the typicality constants,
and whether bob behaves in a typical way or not is irrelevant
w.r.t. the satisfaction of the knowledge base. Consequently,
on rank 0 of rkK there are EHIs in which elephant(bob)
behaves like an atypical elephant. Rational Closure would
therefore need to be refined to model the inferences about
individuals properly.

Next we discuss a more general point about defeasible
entailment. Based on the theoretical basics we have put in
place and the preliminary work on Rational Closure for
DRFOL, we conjecture that all appropriate forms of DR-
FOL defeasible entailment will satisfy the (SMP) prop-
erty, thereby ensuring that all forms of defeasible entail-
ment are rational. This will be similar to the propositional
case (Lehmann 1995; Booth and Paris 1998; Giordano et al.
2015), and unlike the case for DLs (Casini and Straccia
2010; Casini et al. 2013).

With a suitable definition (or definitions) of DRFOL de-
feasible entailment in place, the next step is to investigate al-
gorithms for computing DRFOL defeasible entailment. Here
we plan to draw inspiration from both the propositional and
DL cases, where defeasible entailment can be reduced to a
series of classical entailment checks, sometimes in polyno-
mial time and with a polynomial number of classical entail-
ment checks (Casini, Straccia, and Meyer 2019; Giordano
et al. 2015; Casini, Meyer, and Varzinczak 2019).

Finally, in line with our stated aim in Section 1, the basic
theoretical framework presented in this paper places us in a
position to see whether the work on DRFOL can be extended
to Datalog +/-.
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Abstract

Humans have the ability to reason conditionally despite the
existence of disablers. They have the capability to consider
content and background knowledge and they are prototypical
non-monotonic reasoners. So far most research has focused
on explaining an “average” reasoner and neglected the indi-
vidual reasoning process. Towards identifying the specifics
of human reasoning, we investigate the inference mechanism
for conditional reasoning considering experimental data pre-
sented by a previous psychological study. The experimen-
tal material included a range of different problems and con-
tents with varying amounts of disablers and alternatives. We
consider individual inference patterns and explain them by a
ranking on worlds and ordinal conditional functions. We in-
vestigate: (i) Do effects found on aggregate level still hold on
the individual level, and if yes - to which extent? (ii) How
can possible disablers and alternatives change the inference
pattern? (iii) How do individuals differ among each other and
are there any common patterns? With this analysis we show
how non-monotonic logic provides a suitable tool to express
and explain the specifics of human reasoning formally in a
more coherent way than classical logic.

1 Introduction
You are given the following information (Singmann, Klauer,
and Beller 2016):

If a balloon is pricked with a needle, then it will pop.
A balloon is pricked with a needle.

Then, you are asked to answer the following question with
an endorsement in the form of a probability value between
0% and 100%:

How likely is it that it will pop?

Given the information you are provided with, and no reason
to believe otherwise, your answer would most likely tend
towards 100%. However, in this world of balloons and nee-
dles, consider the following information:

The balloon is without air, i.e., empty.

If you mentally consider such situations where the balloon
would not pop, then your endorsement will most likely be
lower than 100%. States like this are called disablers. On
the other hand, there can be additional cases, e.g.:

The balloon is pricked with a pen.

that are called alternatives.
Depending on the different scenarios, in the form of dis-

ablers and alternatives, that an individual knows about and
can think of, their endorsements can vary to a great extent.
E.g., in the balloon scenario, after considering the infor-
mation that the balloon might be without air, your answer
might be 95% instead of 100%. Another person, due to their
own personal background, might consider that information
as more influential, so they would answer with e.g., 80%. In
human reasoning literature many have focused on aggregat-
ing over an experiment’s participants and just explaining the
most frequently given answers. However, examples like this
point to the need for an analysis shift to the individual level.

Table 1: Conditional Inference Forms

Premise MP AC DA MT

Major X→Y X→Y X→Y X→Y
Minor X Y ¬X ¬Y

Conclusion Y X ¬Y ¬X

Conditionals are statements usually of the form “If X
then Y”, or equivalently “Y, if X” (also written as X→Y,
where X is the antecedent and Y the consequent). Condi-
tionals are relevant in everyday life and science to describe
causal, counterfactual, and other forms of relations between
two propositions X and Y. By combining a conditional (also
called a major premise) with a current state of a proposition
(also called a minor premise), a conclusion can be inferred
about the state of the other proposition. There are four major
inference forms: modus ponens (MP), modus tollens (MT),
affirming the consequent (AC) and denying the antecedent
(DA), as shown in Table 1. Humans systematically devi-
ate from interpreting conditionals as material implication
(Ragni, Kola, and Johnson-Laird 2018). Despite more than
50 years of research there is still no cognitive theory that can
fully explain human conditional reasoning processes and ef-
fects recognized through experimental data (Ragni, Dames,
and Johnson-Laird 2019). Learning more about how indi-
viduals interpret different conditional reasoning tasks is cru-
cial in order to take a step forward towards understanding
human reasoning.
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As motivated earlier, in this paper, we turn to the individ-
ual participant. We are interested in the inference process of
the individual, we want to investigate which conclusion de-
pending on the inference types this individual endorses and
which not and how this individual differs in applying these
inference mechanisms.

Eichhorn, Kern-Isberner, and Ragni (2018) propose an
inference analysis approach using inference patterns based
upon conditional logic. Contrary to previous research that
largely focuses on the inference forms individually, they
joined all inferences into one tuple. Here, we propose an
enhancement that allows for inference patterns to be applied
on probabilistic experimental data, by also taking into ac-
count the relationships between the inference form endorse-
ments. Similarly, here the rationality of an inference pattern
is assessed based on a plausibility semantics derived from
preferential models (Makinson 1994) respectively Ordinal
Conditional Functions (OCF, (Spohn 1988)), allowing for a
deviation from following logical inference rules. Following
this idea, we propose total preorders over possible worlds as
preferential mental models, serving as cognitive models for
reasoning of humans when they are presented with a condi-
tional reasoning task.

In this way, we combine basic approaches from non-
monotonic reasoning and cognitive science on a deep
methodological level to set up a formal framework of hu-
man reasoning that goes beyond classical logic, but does not
need quantifications via, e.g., probabilities in the first place.
These preferential mental models can be applied on the level
of individuals, as well as on an aggregated level, to reveal
basic structures of reasoning.

A mental model consists of the true states of the propo-
sitions in a premise. Given a conditional premise “If A
then B”, its mental model representation would consider
the states of the propositions A and B. One of the most
prominent reasoning theories that uses mental models is
the Mental Model Theory (Johnson-Laird and Byrne 1991;
Johnson-Laird and Byrne 2002). It assumes that when pre-
sented with a conditional, individuals start with an initial
model where both propositions are true:

A B
...

Once the initial mental model is created, it triggers the recol-
lection of relevant facts and background knowledge related
to the conditional premise (Johnson-Laird and Byrne 1991).
With that the initial model is either confirmed as correct or it
stimulates the individual to engage in search for counterex-
amples, which would lead to the so-called fleshed-out rep-
resentation, consisting of all states for which the conditional
holds:

A B
¬A ¬B
¬A B

However, an interesting question is – given that there are
limited cognitive capacities, which models are constructed
and which are neglected? Is it possible to reverse-engineer
the underlying rank of models and identify the preferred
mental models? Which influence do alternatives or disablers

have? Is it possible to formally found the Mental Model
Theory (Johnson-Laird and Byrne 2002)? This will be in-
vestigated in the paper.

The paper is structured as follows. In the next section we
will provide the empirical bases, an experimental study con-
ducted by Singmann et al. (2016). Then we introduce some
formal preliminaries and introduce plausible reasoning. In
Section 5 we introduce the formal foundation for inference
patterns and in Section 6 how they can be extended towards
endorsements. In Section 7 we explain the empirical results
with the formal framework we have developed. Section 8
discusses and concludes the article.

2 Experimental Data
Singmann et al. (2016) present four experiments in which
they studied endorsement rates of the respective conclusions
for the four inference forms. In three of them they use con-
tents with a varying amount of disablers and alternatives.
The fourth experiment manipulates the speaker expertise
and differs from the others, hence, we do not consider it
here.

The experimental data by Singmann et al. (2016)1 con-
sidered here is from Experiments 1, 3a and 3b. In all three
experiments, participants gave endorsements for the four in-
ference forms. The contents are the same in all three ex-
periments and they vary in the amounts of disablers and al-
ternatives associated with them, quantified with ‘Few’ and
‘Many’, as shown in Table 2. Moreover, in Experiments 3a
and 3b, participants were divided in three groups. In two
of them they are given additional information in the form of
disablers and alternatives, whereas in the last group partic-
ipants received only the conditional task. Participants were
asked to endorse the conclusion as a probability in the range
0 - 100%.

Each content is presented as a reduced inference (no ma-
jor premise), e.g., for MP:

A balloon is pricked with a needle.

How likely is it that it will pop?

and additionally as a full conditional inference.
In the original study, Singmann et al. (2016) aggregate

the participants from all three experiments, which is the ap-
proach that we also follow here. The number of participants
in Exp. 1 is N = 31, in Exp. 3a is N = 77 and Exp. 3b is N =
91, making the total N = 199.

Table 3 presents the average endorsement values among
participants for each inference form for all contents in both
conditional presentation forms (reduced and full inference).

3 Formal Preliminaries
Building up on Eichhorn et al. (2018), we base our for-
mal modeling approach on propositional logic with a lan-
guage set up from a finite set of propositional atoms
Σ = {V1, . . . , Vm} which can be interpreted to be true (vi)
or false (vi). The propositional language L is composed
from Σ with the logical connectives and (∧), or (∨), and

1The data can be found at https://osf.io/zcdfq
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Table 2: Contents used in Singmann et al. (2016) experiments. Note: This is a translation of the contents in English as provided by the
authors. The experiment has been conducted in German.

Keyword Content Disablers Alternatives

Predator If a predator is hungry, then it will search for prey. Few Few
Balloon If a balloon is pricked with a needle, then it will pop. Few Many
Girl If a girl has sexual intercourse, then she will be pregnant. Many Few
Coke If a person drinks a lot of coke, then the person will gain weight. Many Many

Table 3: Average inference form endorsements for each task in
each conditional presentation form from Singmann et al.’s (2016)
experimental data. (‘Red.’ - Reduced Inference, ‘Full’ - Full Infer-
ence, ‘Dis’ - Disablers, ‘Alt’ - Alternatives, ‘F’ - Few, ‘M’ - Many)

Form Task Dis/Alt MP AC DA MT

Red.

Predator F/F 91 84 74 81
Balloon F/M 89 64 74 81

Girl M/F 32 88 85 44
Coke M/M 64 52 57 60

Full

Predator F/F 92 87 80 85
Balloon F/M 93 77 76 86

Girl M/F 62 87 83 62
Coke M/M 78 64 63 73

not (¬), as usual. For simplicity, the symbol ∧ might be
omitted and the conjunction would be written by juxtapo-
sition. Additionally, the negation (¬A) would be abbrevi-
ated by (A). The set of possible worlds over Σ will be
called Ω, we often use the 1-1 association between worlds
and complete conjunctions, that is, conjunctions of literals
v̇i ∈ {vi, vi} where every variable Vi ∈ Σ appears exactly
once. A formula A ∈ L is evaluated under a world ω ac-
cording to the classical logical rules, that is, JAKω = true
if and only if ω |= A if and only if ω ∈ Mod(A), that
is, ω is an element of the classical models Mod(A) of
A. The set of classical consequences of a set of formu-
las A ⊆ L is Cn(A) = {B|A |= B}. The deductively
closed set of formulas which has exactly a subset W ⊆ Ω
as models is called the formal theory of W and defined as
Th(W) = {A ∈ L | ω |= A for all ω ∈ W}. The material
implication “FromA it (always) follows thatB” is, as usual,
equivalent to A ∨B and written as A⇒ B.

We introduce the binary operator | to obtain the set (L|L)
of conditionals written as (B|A). Conditionals are three-
valued logical entities with the evaluation (DeFinetti 1974)

J(B|A)Kω =





true iff ω |= AB (verification)
false iff ω |= AB (falsification)
undefined iff ω |= A (neutrality).

A (conditional) knowledge base is a finite set of condi-
tionals ∆ = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L). To give
appropriate semantics to conditionals and knowledge bases,
we need richer structures like epistemic states in the sense of
(Halpern 2005), most commonly being represented as prob-
ability distributions, possibility distributions (Dubois and

Prade 2015) or Ordinal Conditional Functions (Spohn 1988;
Spohn 2012). A knowledge base is consistent if and only if
there is (a representation of) an epistemic state that accepts
(all conditionals in) the knowledge base.

4 Plausible Reasoning
Similarly to Eichhorn et al. (2018), we will implement
non-monotonic inferences by plausibility relations on pos-
sible worlds by instantiating preferential models (Makinson
1994) with total preorders resp. Ordinal Conditional Func-
tions (OCF, (Spohn 1988; Spohn 2012)) which we derive
from the statistical data of experiments via inference pat-
terns.

4.1 Preferential Inference
For non-monotonic inference and the modeling of epistemic
states, total preorders4 on possible worlds expressing plau-
sibility are of crucial importance. If ω1 4 ω2, ω1 is deemed
as at least as plausible as ω2. Such a preorder can be lifted
to the level of formulas by stating that A 4 B if for each
model of B, there is a model of A that is at least as plau-
sible. As usual, the relations ≺ and ≈ are derived from 4
by A ≺ B if and only if A 4 B and not B 4 A, and
A ≈ B if and only if both A 4 B and B 4 A. Non-
monotonic inference can then be easily realized as a form
of preferential entailment of high logical quality (Makinson
1994): A|∼≺B if and only if AB ≺ AB, i.e., from A, B
can be plausibly inferred if in the context of A, B is more
plausible than B. Hence total preorders provide convenient
epistemic structures for plausible reasoning, and epistemic
states Ψ can be represented by such a total preorder 4Ψ.
The belief set, i.e., the most plausible beliefs that an agent
with epistemic state Ψ holds, is defined to be the set of all
formulas which are satisfied by all most plausible worlds:
Bel(Ψ) = Th(min(4Ψ)), where min(4Ψ) is the set of all
minimal worlds according to 4. Conditionals can then be
integrated smoothly into this reasoning framework by defin-
ing Ψ |= (B|A) if and only if A|∼≺B, i.e., conditionals can
encode non-monotonic inferences on the object level. We
illustrate this with the following example, for more details,
we refer to, e.g., Kern-Isberner and Eichhorn (2014).

Example 1. We illustrate this inference using the ‘Balloon’
content from Singmann et al.’s (2016) experiments – “If a
balloon is pricked with a needle, then it will pop”. Let N in-
dicate that a balloon is pricked with a needle (n), or not (n),
and P indicate that the balloon has popped (p), or not (p).
Here the possible worlds are {np, np, np, n p}. We define
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the epistemic state Ψ to be represented by the preorder

np ≈Ψ n p ≺Ψ np ≈Ψ np.

Applying preferential inference we obtain that, for instance,
n|∼≺p because np ≺ np, thus Ψ |= (p|n). Here,
min(4Ψ) = {np, n p}, thus Bel(Ψ) = Th({np, n p}) =
Cn(n⇔ p).

4.2 Ordinal Conditional Functions
Ordinal conditional functions (Spohn 2012) are specific im-
plementations of such epistemic states that assign to each
level of plausibility a degree of (im)plausibility. Also called
a ranking function, an Ordinal Conditional Function (OCF,
(Spohn 1988; Spohn 2012)) is a function κ : Ω → N0 ∪
{∞} that assigns to each world ω an implausibility rank
κ(ω) such that the higher κ(ω), the less plausible ω is. Given
a normalization constraint, there are worlds that are max-
imally plausible, that is, the pre-image κ−1(0) cannot be
empty. The rank of a formula A ∈ L is the minimal rank of
all worlds that satisfy A, and the rank of a conditional is the
rank of the verification of the conditional normalized by the
rank of the premise, so we have κ(A) = min{κ(ω)|ω |= A}
and κ(B|A) = κ(AB)− κ(A).

A ranking function accepts a conditional (written
κ |= (B|A)) if and only if its verification is more plausible
than its falsification, and a formula B is κ-inferred from a
formula A (written A|∼κB) if and only if κ accepts the con-
ditional (B|A), if and only if κ |= (B|A), if and only if
κ(AB) < κ(AB), in accordance with preferential inference
as defined above. An OCF is admissible with respect to a
knowledge base (written κ |= ∆) if and only if it accepts all
conditionals in ∆.

Example 2. We continue Example 1 to illustrate OCF. A
ranking function that induces 4Ψ is the OCF κ(np) =
κ(n p) = 0, κ(np) = κ(np) = 1. With κ we have
κ(np) < κ(np), and thus κ |= (p|n) and also n|∼κp.

5 Inference Patterns
Eichhorn et al. (2018) proposed an approach to combine all
four inference rules into tuples called inference patterns in
order to classify psychological findings. Their initial point
are the inference rules and their respective inferences as
shown in Table 4, followed by a formalization of what it
means that it is plausible to draw conclusions according to
these rules, as (re-)introduced in the following.

Definition 1 (Inference Pattern). An inference pattern % is
a 4-tuple of inference rules that for each inference rule MP,
MT, AC, and DA indicates whether the rule is used (positive
rule, e.g., MP) or not used (negated rule, e.g., ¬MP) in an
inference scenario. The set of all 16 inference patterns is
calledR.

To draw plausible inferences with respect to an inference
rule, a plausibility preorder 4 has to be defined on the set of
worlds, see Section 4. For instance, we have MP if any only
if for a statement “IfA thenB” the inferenceA|∼B is drawn.
This is the case if and only if the worlds are ordered such
that for each world violating the statement (each ω′ |= AB)

Table 4: Overview of the inferences drawn or not drawn from
“From A it (usually) follows that B” with respect to application
of the inference rules.

Rule Inference Rule Inference

MP A |∼B ¬MP A |�B
MT B |∼A ¬MT B |�A
AC B |∼A ¬AC B |�A
DA A |∼B ¬DA A |�B

Table 5: Constraints on the plausibility relation on worlds in order
to satisfy inference rules.

Rule Plausibility Rule Plausibility
constraint constraint

MP AB≺AB ¬MP AB4AB
MT AB≺AB ¬MT AB4AB
AC AB≺AB ¬AC AB4AB
DA AB≺AB ¬DA AB4AB

there is a world that verifies the statement (ω |= AB) which
is more plausible than ω′ (ω ≺ ω′), that is, if and only if
AB ≺ AB . Table 5 gives all of the plausibility constraints
which are equivalent to using the inference rules.

To satisfy an inference pattern, the plausibility relation
has to satisfy each of the constraints given in Table 5. So
each reasoning pattern % ∈ R imposes a set of constraints
on the plausibility relation, which in the following is called
C(%); C(%) is satisfiable if and only if there is a plausibil-
ity relation ≺ and hence an epistemic state that satisfies all
constraints in C(%).

For instance, to satisfy the pattern (MP,MT,¬AC,DA)
(which occurs as an individual pattern in the balloon exam-
ple, see Table 9), the worlds have to be ordered such that all
four constraints given in Table 6 are satisfied.

If for a given pattern %, there is a plausibility relation 4
that satisfies C(%), that is, there is a total preorder on the
worlds which is in accordance with plausible reasoning, %
can be deemed to be rational. Therefore, we call an infer-
ence pattern rational if and only if there is a plausibility re-
lation � that satisfies the inference pattern. Note that, sim-
ilar to more classical approaches, rationality is understood
in terms of compliance with logic. However, here we use
non-monotonic logics and its preferential models as norms
for rational reasoning behavior.

Inspecting all % ∈ R we obtain that only two patterns,
namely (MP,¬MT,¬AC,DA) and (¬MP,MT,AC,¬DA),
are irrational: For the first pattern, the constraints impose the
unrealizable ordering AB ≺ AB 4 AB ≺ AB 4 AB, for
the second, the constraints impose the unrealizable ordering
AB ≺ AB 4 AB ≺ AB 4 AB.

Eichhorn et al. (2018) used this approach to analyze the
combination of inference rules in an experiment. We will
perform a similar analysis on the experimental data pre-
sented in Section 2, however, since now we are dealing with
probabilistic endorsements, in order to enable such analysis,
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Table 6: Constraints for the inference pattern
(MP,MT,¬AC,DA).

{
AB ≺ AB , A B ≺ AB , AB 4 AB , A B ≺ AB

}

yields AB ≺ AB 4 AB ≺ AB

we will propose an enhancement of the inference patterns in
the following section.

6 Inference Patterns with Endorsement
A probabilistic endorsement of a conclusion describes the
degree of subjective belief an individual has in that world,
in the range 0-100%. We consider endorsements that are
≥ 50% as true , i.e., the inference form has been applied and
otherwise false– the inference form has not been applied.
Definition 2. For a conditional (B|A) and an ordinal con-
ditional function κ, we say κ accepts (B|A) with strength
s if κ |= (B|A) and s = κ(AB) − κ(AB). We call
s = sκ((B|A)) the κ-strength of (B|A).
Definition 3. An inference rule r is more endorsed than
an inference rule r′ with respect to a ranking function κ
if sκ(ϕr) > sκ(ϕr′) holds for the associated conditionals
ϕr, ϕr′ .

Following Definition 3, we examined the relationships
between endorsements in Singmann et al.’s (2016) exper-
imental data on both aggregate and individual level. We
also specified a difference tolerance of 5, meaning that two
endorsements (in the range 0-100%) will be considered as
equal if the difference between them is ≤ 5%.
Example 3 (Ranking of endorsements). Let us consider the
task ‘Girl’ in reduced inference (Table 3). Given the en-
dorsements MP: 32%, MT: 44%, AC: 88%, DA: 85%, the
respective rankings would then be ¬MP � ¬MT (false , not
applied) and AC = DA (true , applied). Additionally, the
corresponding (non-enhanced) inference pattern would be
(¬MP,¬MT,AC,DA).

Note that for negated inference rules, the preorder � is
reversed, i.e., in the example above, both MP and MT are
not applied (i.e. false), but the endorsement of MP is lower
than MT. This results in MP �MT.

The derived rankings of the average inference form en-
dorsements are presented in Table 7. With them, we can now
enhance the inference patterns from Eichhorn et al. (2018)
by statements about the strengths of inference rules.
Definition 4 (Extended Inference Pattern). An extended in-
ference pattern % is a 4-tuple of inference rules that for each
inference rule MP, MT, AC, and DA indicates whether the
rule is used (positive rule, e.g., MP) or not used (negated
rule, e.g., ¬MP) in an inference scenario, possibly together
with statements about the ranking of endorsements of these
(negated) inference rules.
Example 4. In Ex. 3, we obtain the extended inference pat-
tern (¬MP,¬MT,AC,DA;¬MP � ¬MT,AC = DA).
It shows that MP and MT have not applied, AC and DA have
been applied, MP is less endorsed than MT, and AC and DA
are endorsed equally.

7 Explaining Human Inferences
In the introduction we have briefly introduced the theory of
mental models (Johnson-Laird and Byrne 2002). This the-
ory argues that people represent possibilities (we call them
here possible worlds) that can depend on “knowledge, prag-
matics, and semantics”. As this theory can represent even
the case AB the question arises, which worlds are preferred
over others. The state of art in psychological research im-
plicitly suggests that there are some orders on worlds.

Another psychological experiment (Barrouillet, Grosset,
and Lecas 2000) suggests the order AB ≺ AB ≺ AB.
This has been so far identified experimentally only on the
aggregate level (i.e., the mean of answers), but it has not yet
been shown if this order holds for the individual reasoner.
This is, however, most important as modeling each individ-
ual is the preferred goal of cognitive modeling, since models
for the aggregate can distort theories (Fisher, Medaglia, and
Jeronimus 2018). In the following, we introduce the neces-
sary definitions and analyses to support or reject the claimed
order and to analyze the inference patterns.
Definition 5. A preferential mental model is a set of possible
worlds together with a total preorder.

As Eichhorn et al. (2018) explained, inference patterns
can be realized by preferential mental models. Now, to-
gether with the endorsements, we are able to refine these
preferential mental models. For that, we make use of or-
dinal conditional functions to be able to use arithmetics for
the comparisons. However, in order to only make use of
arithmetics on an intuitive level, we restrict the exploitation
of these comparisons to basic cases. For instance, via ordi-
nal conditional functions, the statement MP�MT translates
into κ(AB)− κ(AB) > κ(AB)− κ(AB), which is equiv-
alent to κ(AB) < κ(AB). Note that κ(AB) occurs in both
differences which allows for an easy comparison by basic
arithmetics. In this way, we obtain the following results for
qualitative comparisons among the endorsements of infer-
ence rules:

MP �MT AB ≺ AB
MP � AC AB ≺ AB
MT � DA AB ≺ AB
AC � DA AB ≺ AB

Regarding disablers and alternatives, we translate their in-
fluence on the acceptance/endorsement of inference forms
into these schemata, so that we are able to identify them in
the preferential mental models. The presence of many dis-
ablers reduces the degree of belief in the logically valid MP
and MT, and alternatives reduce the endorsement of AC and
DA (Byrne 1989; Singmann, Klauer, and Beller 2016).
• Few disablers make the antecedent very informative for

the consequent, similarly as in classical implications.
Therefore, the logically valid MP and MT inference rules
should be strong. So, we characterize this scenario by
MP � AC, which results in AB � AB. Note that
MT � DA yields the same constraint.

• Consequently, many disablers are modeled by AB ≺
AB.

198



Table 7: Derived rankings of the average inference form endorsements for each task in each conditional presentation form, corresponding
preferential mental models and scenarios. Scenarios that coincide with expected scenarios are marked in bold. In the rankings, inference
forms that are True (applied, endorsement ≥ 50) are preceded with a ‘T’, ones that are False (not applied, endorsement < 50) with a ‘F’.
The average values of the inference form endorsements are presented in Table 3. (‘Red.’ - Reduced Inference, ‘Full’ - Full Inference, ‘Dis’ -
Disablers, ‘Alt’ - Alternatives, ‘Sc.’ - Scenario)

Form Task Dis / Alt Ranking of Endorsements Preferential Mental Model Sc. (Dis / Alt)

Red.

Predator Few/Few T: MP � AC = MT � DA AB ≺ AB ≺ AB ≺ AB Few/Few
Balloon Few/Many T: MP �MT � DA � AC (no preferential mental model)

Girl Many/Few T: AC = DA ; F: MP �MT AB � AB ≺ AB ≺ AB Many/Many
Coke Many/Many T: MP = MT � DA � AC AB ≺ AB ≺ AB ≺ AB Few/Many

Full

Predator F / F T: MP = AC � DA
AB � AB � AB,AB¸ Few/Few

AC = MT ;MP �MT
Balloon Few/Many T: MP �MT � AC = DA AB ≺ AB ≺ AB ≺ AB Few/Few

Girl Many/Few T: AC = DA �MP = MT AB,AB ≺ AB ≺ AB Many/Few
Coke Many/Many T: MP = MT � AC = DA AB,AB ≺ AB ≺ AB Few/Few

Table 8: Number of individuals out of 199 that have the same rank-
ing that is found on the aggregate level (shown in Table 7).

Task # Individuals
Reduced Full

Predator 3 (1.51%) 0 (0.0%)
Balloon 3 (1.51%) 5 (2.51%)

Girl 27 (13.57%) 11 (5.53%)
Coke 0 (0.0%) 4 (2.01%)

• Few alternatives make the antecedent very plausible when
observing the consequent, so particularly AC should be
strong. We model this via AC � DA which gives us
AB � AB.

• Consequently, many alternatives are modeled by AB ≺
AB.

Please keep in mind that artifacts that contradict these
schematic classifications may arise due to the general plau-
sibility of A and B in the background knowledge of the in-
dividuals.

Aside from the inference patterns, Table 7 also presents
the corresponding preferential mental models and the re-
spective scenarios.

If we look at the aggregate case (Table 7) for the reduced
inference presentation form, the scenarios respective to the
induced preferential mental models do not necessarily cor-
respond to the original quantification of disablers and alter-
natives associated with the tasks’ contents. E.g., the ‘Coke’
task, leads to the question whether alternatives are more in-
fluential than disablers when a content has ‘Many’ of both
associated with it. Additionally, when looking into the ‘Bal-
loon’ task, the inference pattern derived from aggregate data
is inconsistent, i.e. it induced no preferential mental mod-
els. This may happen due to too divergent views of the in-
dividuals. In their analysis, Singmann et al. (2016) showed
that when presented with a reduced inference, individuals
tend to rely more on their background knowledge and have

a stronger influence by the corresponding disablers and al-
ternatives, in contrast to the full inference. That effect can
also be seen here, as in the full inference presentation form,
the scenarios identify ‘Few’ disablers and alternatives even
when there are ‘Many’, meaning that individuals were not
integrating their background knowledge as much. An ex-
ception is the ‘Girl’ content, where disablers seem to be ex-
ceptionally influential, which is also visible when looking at
the average inference forms endorsements (Table 3).

However, to which extent do these findings on the ag-
gregate level hold for the individual reasoner? We looked
into each participant’s endorsements and found out for how
many participants the ranking derived from the aggregate
data holds. The numbers are shown in Table 8. We can
immediately see that the number of individuals that are cap-
tured by the aggregate rankings is exceptionally low. This
was an expected outcome (Fisher, Medaglia, and Jeronimus
2018), and strongly confirms our need for individual anal-
ysis. Therefore, we also derived the rankings, the induced
preferential models and scenarios for each individual sepa-
rately.

The different rankings found for at least 5% of partici-
pants are shown in Table 9. It can be seen that individuals are
not divided in only a few largely populated groups, but there
are multiple different rankings found across the 199 partic-
ipants. For each pattern the size of the participant group
is also presented in the table. In most cases, the scenarios
identify the same quantities of disablers and alternatives as
originally associated with the respective tasks. This is ex-
tremely important, as we can see that groups of individuals
do interpret the conditionals as intended. If we only focused
on the aggregate analysis, we would most likely dismiss the
tasks in the reduced inference case due to the lack of corre-
spondence between derived scenarios and expected ones.

Additionally, the inference patterns whose preferential
mental models do not identify the same quantities are still
present among a larger group of participants, which points
to possible differences in conditional interpretation and dif-
ferent knowledge bases. E.g., the third most frequent pattern
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Table 9: Individual rankings, preferential mental models and corresponding scenarios for all contents in both conditional presentation forms.
The rankings and preferential models are listed in descending order of the frequencies of the appertaining extended inference patterns, i.e., the
first line corresponds to the most frequent extended inference pattern. Only inference patterns that were found for at least 5% of participants
are taken into consideration and the exact number of individuals for each ranking is presented. Scenarios that correspond to the expected
scenarios are marked in bold. In the rankings, inference forms that are True (applied, endorsement ≥ 50) are preceded with a ‘T’, ones
that are False (not applied, endorsement < 50) with a ‘F’. (‘Red.’ - Reduced Inference, ‘Full’ - Full Inference, ‘Dis’ - Disablers, ‘Alt’ -
Alternatives, ‘Ind.’ - Individuals)

Task Dis / Alt Form Ranking Preferential Mental Model Scenario (Dis / Alt) # Ind.

Predator Few/Few Red. T: MP = AC = DA = MT AB,AB ≺ AB,AB Few/Few 49
Full 59

Balloon Few/Many

Red.

T: DA = MP = MT � AC AB ≺ AB ≺ AB,AB Few/Many 16
T: MP = MT � DA ; F: AC AB ≺ AB � AB ≺ AB Few/Many 15
T: MP = AC = DA = MT AB,AB ≺ AB,AB Few/Few 12
T: MP = MT � DA � AC AB ≺ AB ≺ AB ≺ AB Few/Many 10

Full

T: MP = AC = DA = MT AB,AB ≺ AB,AB Few/Few 46
T: MP = MT � DA ; F: AC AB ≺ AB � AB ≺ AB Few/Many 13
T: MP = MT � AC = DA AB,AB ≺ AB ≺ AB Few/Many 13
T: DA = MP = MT � AC AB ≺ AB ≺ AB,AB Few/Many 12

Girl Many/Few

Red.

T: AC = DA ; F: MP �MT AB � AB ≺ AB ≺ AB Many/Many 27
T: AC = DA ; F: MP = MT AB � AB,AB ≺ AB Many/Few 19
T: AC = DA �MT ; F: MP AB ≺ AB � AB ≺ AB Many/Many 17
T: AC = DA ; F: MT �MP AB � AB ≺ AB ≺ AB Many/Few 15
T: AC = DA �MP ; F: MT AB ≺ AB � AB � AB Many/Few 12
T: AC = DA �MP = MT AB,AB ≺ AB ≺ AB Many/Few 11

Full

T: MP = AC = DA = MT AB,AB ≺ AB,AB Few/Few 29
T: AC = DA ; F: MP = MT AB � AB,AB ≺ AB Many/Few 13
T: AC = DA �MP = MT AB,AB ≺ AB ≺ AB Many/Few 11

T: AC = DA ; F: MP �MT AB � AB ≺ AB ≺ AB Many/Many 10
T: AC = DA �MP ; F: MT AB ≺ AB � AB � AB Many/Few 10
T: AC = DA �MT ; F: MP AB ≺ AB � AB ≺ AB Many/Many 10

Coke Many/Many

Red. (no consistent ranking found) – – –

Full T: MP = AC = DA = MT AB,AB ≺ AB,AB Few/Few 23
T: MP = MT = AC � DA AB,AB ≺ AB ≺ AB Few/Few 11
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for the ‘Balloon’ content in the reduced inference case does
not suggest that those individuals were able to incorporate
‘Many’ alternatives when reasoning.

When comparing reduced inference with full inference,
it can be seen that patterns that induce a ‘Few/Few’ sce-
nario even if there are ‘Many’ disablers and alternatives
present are rather frequent, meaning that the influence of
background knowledge has been suppressed. However,
there is still a significant amount of individuals who nev-
ertheless successfully integrate information about the dis-
ablers/alternatives when reasoning. A conclusion about the
influence of the full inference in contrast to the reduced one
on the effect of disablers and alternatives should absolutely
not be derived based on aggregate data. As we show here,
individuals and their interpretations differ.

It is also noteworthy that even though there are different
inference form endorsement combinations present among
individuals, after deriving the corresponding preferential
mental models, they all suggest the same interpretation. The
presence of a certain amount of disablers and alternatives
can be modeled and endorsed in various ways by different
people.

8 Discussion and Conclusion
We followed the inference evaluation approach by apply-
ing logic based on conditionals and plausible reasoning pro-
posed by Eichhorn et al. (2018) and extended it towards
probabilistic endorsements. We do not only take into con-
sideration whether an inference form has been applied or
not, but also look into the relationships between the sub-
jective degrees of belief in said inference forms for various
contents. Using OCFs (Spohn 2012) a plausibility relation
on possible worlds was defined in order to obtain a prefer-
ential entailment.

The beauty of this interdisciplinary field is that different
formalisms can be used in analysis and with that we can get
insight into human reasoning from many different perspec-
tives which can be joined to get an even better understanding
of reasoning processes. Given the preferential character of
probabilistic endorsements, ranks are a natural approach to
consider. Our contribution is to show how ranking functions
can be applied to probabilistic conditional reasoning experi-
mental data and what we can learn from them.

The extended inference patterns reveal in an abstract way
how people understood the task they were given. Our fo-
cus was on tasks with a varying amount of disablers and
alternatives – events that make humans diverge from logical
reasoning. They are especially influential in a reduced infer-
ence presentation form, when individuals are not bound by a
conditional rule but can rather integrate their personal back-
ground knowledge on a higher level. Our approach is flexi-
ble enough to be able to show the impact of disablers and al-
ternatives. We are already familiar with the fact that humans
deviate from classical logic when reasoning, so shifting the
focus of research to everyday contents is important. Under-
standing how background knowledge, personal and cultural
differences influence reasoning is of our interest.

As illustrated by the large variety in the derived inference
patterns we can see the effect of individual differences (e.g.

substantial cultural differences) and how human reasoning
can be very diverse. Therefore, an aggregate analysis ap-
proach might not always be appropriate to get a better under-
standing of inference mechanisms, but the individual differ-
ences play a big role and should be taken into consideration.

Additionally, by performing individual analysis we can
also learn whether certain experimental content managed to
achieve its goal. For example, the ‘Coke’ content is sup-
posed to have ‘Many’ disablers and alternatives associated
with it, which as true as it might be, it does not seem to be
understood that way by the participants. In Table 9 we see
that in the reduced inference case, where the background
knowledge should be dominating, no consistent pattern was
found. That means that there was not a single group of in-
dividuals formed by at least 5% of the total participants that
understood the task in the same way, which points to the
need for reconsideration of the chosen content.

The inference pattern derived from aggregate data for the
‘Balloon’ task in the reduced inference case is inconsis-
tent. Contradictory patterns show irrationality when found
on an individual level, e.g. the three individual participants
that had the same endorsement ranking reasoned irrationally,
which is, of course, a common occasional human trait, and
our approach can account for this! However, having found
an inconsistent pattern on the aggregate level means that the
individuals’ perspectives and interpretation are diverging too
much in order to be aggregated consistently. This supports
the idea that an individual analysis approach is necessary.
Moreover, it also indicates a potential requirement to recon-
sider whether such content is suitable to test human reason-
ing. Naturally, in order to determine proper task contents a
significant increase in various experimental data is required.

To conclude, we analyzed the same experimental data on
two levels – aggregate and individual. In many ways we
showed that the focus undoubtedly needs to be switched to
the individual. Humans are diverse, their personal experi-
ences lead to diverging background knowledge and inter-
pretation abilities. In order to make a larger leap forward
towards understanding the human reasoning processes, these
differences have to be taken into consideration and modeling
approaches should be able to account for the deviations be-
tween individuals. We found preferential mental models on
the individual level whose interpretations give us insight into
how the experimental content manipulation affected (or not)
the participants’ reasoning. Generally, the fact that many
different individual inference patterns induce the same men-
tal models points to a significant strength of our approach –
using mental models is more fundamental than representa-
tion forms that heavily rely on statistics.

The next step in this work would be to look more into
the specifics of the relevant background knowledge and its
influence on reasoning. Additionally, an even larger focus
on the individual would be of interest. For instance, how
do the individual’s subjective believes and inference mech-
anism change between different contents or conditional pre-
sentation forms? The theoretical foundation of our approach
would allow for gaining more insight into such questions
and aid in getting a better understanding of the individual
reasoning processes.
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Abstract

In this paper we discuss the relationships between conditional
and preferential logics and neural network models, based on
a multi-preferential semantics. We propose a concept-wise
multipreference semantics, recently introduced for defeasible
description logics to take into account preferences with re-
spect to different concepts, as a tool for providing a semantic
interpretation to neural network models. This approach has
been explored both for unsupervised neural network models
(Self-Organising Maps) and for supervised ones (Multilayer
Perceptrons), and we expect that the same approach might be
extended to other neural network models. It allows for logical
properties of the network to be checked (by model checking)
over an interpretation capturing the input-output behavior of
the network. For Multilayer Perceptrons, the deep network
itself can be regarded as a conditional knowledge base, in
which synaptic connections correspond to weighted condition-
als. The paper describes the general approach, through the
cases of Self-Organising Maps and Multilayer Perceptrons,
and discusses some open issues and perspectives.

1 Introduction
Preferential approaches (Kraus, Lehmann, and Magidor
1990; Pearl 1990; Lehmann and Magidor 1992) to com-
mon sense reasoning, having their roots in conditional logics
(Lewis 1973; Nute 1980), have been recently extended to
description logics, to deal with inheritance with exceptions in
ontologies, allowing for non-strict forms of inclusions, called
typicality or defeasible inclusions (namely, conditionals),
with different preferential semantics (Giordano et al. 2007;
Britz, Heidema, and Meyer 2008) and closure constructions
(Casini and Straccia 2010; Casini et al. 2013; Giordano et al.
2015; Pensel and Turhan 2018), allowing for defeasible or
typicality inclusions, e.g., of the form T(C) v D, meaning
“the typicalCs areDs” or “normally Cs areDs”, correspond-
ing, in the propositional case, to the conditionals C |∼ D
in Kraus, Lehmann and Magidor’s (KLM) preferential ap-
proach (1990; 1992). Description logics allow for a limited
first-order language. A first-order extension of system Z has
also been explored by Bierle et al. (2017).

In this paper we consider a “concept-wise” multi-
preferential semantics, recently introduced by Giordano and
Theseider Dupré (2020a) to capture preferences with respect
to different aspects (concepts) in ranked EL knowledge bases,
and describe how it has been used as a semantics for some

neural network models. We have considered both an unsu-
pervised model, Self-Organising Maps, and a supervised one,
Multilayer Perceptrons.

Self-organising maps (SOMs) are psychologically and
biologically plausible neural network models (Kohonen,
Schroeder, and Huang 2001) that can learn after limited ex-
posure to positive category examples, without need of con-
trastive information. They have been proposed as possible
candidates to explain the psychological mechanisms underly-
ing category generalisation. Multilayer Perceptrons (MLPs)
(Haykin 1999) are deep networks. Learning algorithms in the
two cases are quite different but, in this work, we only aim
to capture, through a semantic interpretation, the behavior of
the network resulting after training and not to model learning.
We will see that this can be accomplished in both cases in a
similar way, based on a multi-preferential semantics.

The result of the training phase is represented very differ-
ently in the two models: for SOMs it is given by a set of units
spatially organized in a grid (where each unit u in the map is
associated with a weight vector wu of the same dimension-
ality as the input vectors); for MLPs, as a result of training,
the weights of the synaptic connections have been learned.
In both cases, considering the domain of all input stimuli pre-
sented to the network during training (or in the generalization
phase), one can build a semantic interpretation describing the
input-output behavior of the network as a multi-preference
interpretation, where preferences are associated to concepts.
For SOMs, the learned categories are regarded as concepts
C1, . . . , Cn so that a preference relation (over the domain of
input stimuli) is associated to each category. In case of MLPs,
each neuron in the deep network (including hidden neurons)
can be associated to a concept and a preference relation can
be associated to it.

In both cases, the preferential model resulting from the
network after training describes the input-output behavior of
the network on the input stimuli considered, and the prefer-
ence relations define a notion of typicality (with respect to
different concepts/categories) on the domain of input stimuli.
For instance, given two input stimuli x and y, the model can
assign to x a degree of typicality which is higher than the de-
gree of typicality of y with respect to some category Horse,
so that x is regarded as a being more typical than y as a horse
(x <Horse y), while vice-versa y can be regarded as a being
more typical than x as a zebra (y <Zebra x ). The preferen-
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tial interpretation can be used for checking properties like:
are the instances of a category C1 also instances of category
C2? Are typical instances of a category C1 also instances
of category C2? This verification can be done by model-
checking given multipreference interpretation describing the
input-output behavior of the network (Giordano, Gliozzi, and
Theseider Dupré 2021).

This kind of construction establishes a strong relationship
between the logics of commonsense reasoning and the neural
network models, as the first ones are able to reason about
the properties of the second ones. The relationship can be
made even stronger in some cases, e.g., for MLPs, when
the neural network itself can be seen as a conditional knowl-
edge base. In (Giordano and Theseider Dupré 2021b), the
concept-wise multipreference semantics has been adapted
to deal with weighted knowledge bases, where typicality in-
clusions have a weight, a real (positive or negative) number,
representing the plausibility of the typicality inclusions. It
has been proven that Multilayer Perceptrons can be regarded
as weighted conditional knowledge bases under a fuzzy exten-
sion of the multipreference semantics. The multipreference
interpretation which can be built over the set of input stimuli
to describe the input-output behavior of the deep network can
be proven to be a coherent fuzzy multipreference model of
such a knowledge base (under some condition on the activa-
tion functions).

This approach raises several issues, from the standpoint
of knowledge representation, from the standpoint of neuro-
symbolic integration, as well as from the standpoint of ex-
plainable AI (Adadi and Berrada 2018; Guidotti et al. 2019;
Arrieta et al. 2020). We will discuss some of these issues in
the paper after describing the approach in some detail.

2 A concept-wise multi-preference semantics
In this section we shortly describe an extension of ALC with
typicality based on the same language as the typicality logics
(Giordano et al. 2007; Giordano et al. 2015), but on a different
concept-wise multipreference semantics, first introduced for
EL+
⊥ (Giordano and Theseider Dupré 2020a).

We consider the description logic ALC. Let NC be a set
of concept names, NR a set of role names and NI a set of
individual names. The set of ALC concepts can be defined
as follows: C := A | > | ⊥ | ¬C | C uC | C tC | ∃r.C |
∀r.C, where a ∈ NI , A ∈ NC and r ∈ NR. A knowledge
base (KB) K is a pair (T ,A), where T is a TBox and A
is an ABox. The TBox T is a set of concept inclusions (or
subsumptions) of the form C v D, where C,D are concepts.
The ABox A is a set of assertions of the form C(a) and
r(a, b) where C is a concept, r ∈ NR, and a, b ∈ NI .

In addition to standard ALC inclusions C v D (called
strict inclusions in the following), the TBox T also contains
typicality inclusions of the form T(C) v D, where C and D
areALC concepts and T is a new concept constructor (T(C)
is called a typicality concept). A typicality inclusion T(C) v
D means that “typical Cs are Ds” or “normally Cs are Ds”
and corresponds to a conditional implicationC |∼ D in Kraus,
Lehmann and Magidor’s (KLM) preferential approach (1990;
1992). Such inclusions are defeasible, i.e., admit exceptions,

while strict inclusions must be satisfied by all domain ele-
ments.

Let C = {C1, . . . , Ck} be a set of distinguished ALC
concepts. For each concept Ci ∈ C, we introduce a modu-
lar preference relation <Ci which describes the preference
among domain elements with respect to Ci. Each preference
relation <Ci has the same properties of preference relations
in KLM-style ranked interpretations (Lehmann and Magidor
1992), i.e., it is a modular and well-founded strict partial order
(an irreflexive and transitive relation), where: <Ci

is well-
founded if, for all S ⊆ ∆, if S 6= ∅, then min<Ci

(S) 6= ∅;
and <Ci

is modular if, for all x, y, z ∈ ∆, if x <Cj
y then

(x <Cj
z or z <Cj

y).

Definition 1. A multipreference interpretation is a tuple
M = 〈∆, <C1

, . . . , <Ck
, ·I〉, where:

(a) ∆ is a non-empty domain;
(b) <Ci

is an irreflexive, transitive, well-founded and modular
relation over ∆;

(c) ·I is an interpretation function, as in an ALC interpre-
tation, that maps each concept name C ∈ NC to a set
CI ⊆ ∆, each role name r ∈ NR to a binary rela-
tion rI ⊆ ∆ × ∆, and each individual name a ∈ NI
to an element aI ∈ ∆. It is extended to complex con-
cepts as usual: >I = ∆, ⊥I = ∅, (¬C)I = ∆\CI ,
(C u D)I = CI ∩ DI and (C t D)I = CI ∪ DI ,
(∃r.C)I = {x ∈ ∆ | ∃y.(x, y) ∈ rI and y ∈ CI} and
(∀r.C)I = {x ∈ ∆ | ∀y.(x, y) ∈ rI → y ∈ CI}.
The preference relation <Ci

allows the set of prototypi-
cal Ci-elements to be defined as the Ci-elements which are
minimal with respect to <Ci

, i.e., min<Ci
(CIi ). As a con-

sequence, the multipreference interpretation above is able
to single out the typical Ci-elements, for all distinguished
concepts Ci ∈ C.

The multipreference structures above are at the basis of
the semantics for ranked EL knowledge bases (Giordano
and Theseider Dupré 2020a), which have been inspired
by Brewka’s framework of basic preference descriptions
(Brewka 2004). While we refer to (Giordano and Thesei-
der Dupré 2020a) for the construction of the preference
relations <Ci’s from a ranked knowledge base K, in the
following we shortly recall the notion of concept-wise multi-
preference interpretation which can be obtained by combining
the preference relations <Ci

into a global preference rela-
tion <. This is needed for reasoning about typicality for
arbitrary ALC concepts C, which do not belong to the set
of distinguished concepts C. For instance, we may want
to verify whether typical employed students are young, or
whether they have a boss, starting from a ranked KB contain-
ing inclusions T(Stud) v Young , T(Emp) v Has Boss ,
T(Emp) v NonYoung , and Young uNonYoung v ⊥. To
answer the query above both preference relations <Emp

and <Stud are relevant, and they might be conflicting as,
for instance, Tom is more typical than Bob as a student
(tom <Stud bob), but more exceptional as an employee (
bob <Emp tom). By combining the preference relations <Ci

into a single global preference relation < we can exploit
< for interpreting the typicality operator, which may be ap-
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plied to arbitrary concepts, and verify, for instance, whether
T(Stud u Emp) v Has Boss .

A natural definition of the notion of global preference< ex-
ploits the Pareto combination of the relations <C1

, . . . , <Ck
,

as follows:

x < y iff (i) x <Ci
y, for some Ci ∈ C, and

(ii) for all Cj ∈ C, x ≤Cj y

where ≤Ci
is the non-strict preference relation associated

with <Ci
(≤Ci

is a total preorder). A slightly more sophis-
ticated notion of preference combination, which exploits a
modified Pareto condition taking into account the specificity
relation among concepts (such as, for instance, the fact that
concept PhdStudent is more specific than concept Student),
has been considered for ranked knowledge bases (Giordano
and Theseider Dupré 2020a) to allow a form of overriding
which relates to (Bonatti et al. 2015).

The addition of the global preference relation allows
for defining a notion of concept-wise multipreference in-
terpretation M = 〈∆, <C1

, . . . , <Ck
, <, ·I〉, where a typ-

icality concept T(C) is interpreted as the set of the <-
minimal C elements, i.e., (T(C))I = min<(CI), where
Min<(S) = {u : u ∈ S and @z ∈ S s.t. z < u}.

The notions of cwm-model of a ranked EL+
⊥ knowledge

base K, and of cwm-entailment can be easily extended to
ALC. For EL+

⊥ ranked knowledge bases, cwm-entailment
has been proven to be Πp

2-complete and to satisfy the KLM
postulates of a preferential consequence relation (Giordano
and Theseider Dupré 2020a).

3 A multi-preferential interpretation of
Self-organising maps

In this section, we report about the multi-preferential seman-
tics for SOMs, originally introduced to support the plausi-
bility of a semantics with multiple perferences, (Giordano,
Gliozzi, and Theseider Dupré 2020), and later extended by
the same authors to consider fuzzy interpretations and proba-
bilistic interpretations (2021).

Self-organising maps, introduced by Kohonen (Kohonen,
Schroeder, and Huang 2001), are particularly plausible neu-
ral network models that learn in a human-like manner. In
this section we shortly describe the architecture of SOMs
and report about Gliozzi and Plunkett’s similarity-based ac-
count of category generalization based on SOMs (Gliozzi
and Plunkett 2019).

SOMs consist of a set of neurons, or units, spatially orga-
nized in a grid (Kohonen, Schroeder, and Huang 2001). Each
map unit u is associated with a world representation, given by
a weight vector wu of the same dimensionality as the input
vectors. At the beginning of training, all weight vectors are
initialized to random values, outside the range of values of
the input stimuli. During training, the input elements are
sequentially presented to all neurons of the map. After each
presentation of an input x, the best-matching unit (BMUx) is
selected: this is the unit i whose weight vector wi is closest
to the stimulus x (i.e. i = arg minj ‖x− wj‖).

The weights of the best matching unit and of its surround-
ing units are updated in order to maximize the chances that

the same unit (or its surrounding units) will be selected as
the best matching unit for the same stimulus or for similar
stimuli on subsequent presentations. In particular, it reduces
the distance between the best matching unit’s weights (and
its surrounding neurons’ weights) and the incoming input.
The learning process is incremental: after the presentation of
each input, the map’s representation of the input (in particu-
lar the representation of its best-matching unit) is updated in
order to take into account the new incoming stimulus. At the
end of the whole process, the SOM has learned to organize
the stimuli in a topologically significant way: similar inputs
(with respect to Euclidean distance) are mapped to close by
areas in the map, whereas inputs which are far apart from
each other are mapped to distant areas of the map.

Once the SOM has learned to categorize, to assess category
generalization, Gliozzi and Plunkett (Gliozzi and Plunkett
2019) define the map’s disposition to consider a new stimulus
y as a member of a known category C as a function of the
distance of y from the map’s representation of C. They
use BMUC to refer to the map’s representation of category
C and define category generalization as depending on the
distance of the new stimulus y with respect to the category
representation compared to the maximal distance from that
representation of all known instances of the category. This is
captured by the following notion of relative distance (rd for
short) (Gliozzi and Plunkett 2019) :

rd(y, C) =
min‖y −BMUC‖

maxx∈C‖x−BMUx‖
(1)

where min‖y − BMUC‖ is the (minimal) Euclidean dis-
tance between y and C’s category representation, and
maxx∈C‖x−BMUx‖ expresses the precision of category
representation, and is the (maximal) Euclidean distance be-
tween any known member of the category and the category
representation.

By judging a new stimulus as belonging to a category by
comparing the distance of the stimulus from the category
representation to the precision of the category representation,
Gliozzi and Plunkett demonstrate (Gliozzi and Plunkett 2019)
that the Numerosity and Variability effects of category gener-
alization, described by Griffiths and Tenenbaum (Tenenbaum
and Griffiths 2001), and usually explained with Bayesian
tools, can be accommodated within a simple and psycholog-
ically plausible similarity-based account. Their notion of
relative distance can as well be used as a basis for a logical
semantics for SOMs.

3.1 Relating self-organising Maps and
multi-preference models

Once the SOM has learned to categorize, we can regard the
result of the categorization as a multipreference interpretation.
Let X be the set of input stimuli from different categories,
C1, . . . , Ck, which have been considered during the learning
process. For each category Ci, we let BMUCi

be the ensem-
ble of best-matching units corresponding to the input stimuli
of category Ci, i.e., BMUCi

= {BMUx | x ∈ X and x ∈
Ci}. We regard the learned categories C1, . . . , Ck as being
the concept names (atomic concepts) in the description logic

205



and we let them constitute our set of distinguished concepts
C = {C1, . . . , Ck}.

To construct a multi-preference interpretation, first we
fix the domain ∆s to be the space of all possible stimuli;
then, for each category (concept) Ci, we define a preference
relation <Ci

, exploiting the notion of relative distance of
each stimulus y from the map’s representation of Ci. Finally,
we define the interpretation of concepts.

Let ∆s be the set of all the possible stimuli, including all
input stimuli (X ⊆ ∆s) as well as the best matching units of
input stimuli (i.e., {BMUx | x ∈ X} ⊆ ∆s). For simplicity,
we will assume the space of input stimuli to be finite.

Once the SOM has learned to categorize, the notion of
relative distance rd(x,Ci) of a stimulus x from a category
Ci can be used to build a binary preference relation <Ci

among the stimuli in ∆s w.r.t. category Ci as follows: for all
x, x′ ∈ ∆s,

x <Ci
x′ iff rd(x,Ci) < rd(x′, Ci) (2)

Each preference relation <Ci
is a strict modular partial order

relation on ∆s. The relation <Ci
is also well-founded, as we

have assumed ∆s to be finite.
We exploit this notion of preference to define a concept-

wise multipreference interpretation associated with the SOM.
We restrict to the boolean fragment of ALC with no individ-
ual names and no roles.
Definition 2 (multipreference-model of a SOM). The
multipreference-model of the SOM is a multipreference in-
terpretationMs = 〈∆s, <C1

, . . . , <Ck
, ·I〉 such that:

(i) ∆s is the set of all the possible stimuli, as above;
(ii) for each Ci ∈ C, <Ci is the preference relation defined by

equivalence (2).
(iii) the interpretation function ·I is defined for concept names

(i.e. categories) Ci as:

CIi = {y ∈ ∆s | rd(y, Ci) ≤ rdmax,Ci
}

where rdmax,Ci
is the maximal relative distance of an in-

put stimulus x ∈ Ci from category Ci, that is, rdmax,Ci
=

maxx∈Ci{rd(x,Ci)}. The interpretation function ·I is
extended to complex concepts in the fragment of LC ac-
cording to Definition 1.
Informally, we interpret as Ci-elements those stimuli

whose relative distance from categoryCi is not larger than the
relative distance of any input exemplar belonging to category
Ci. Given <Ci

, we can identify the most typical Ci-elements
wrt <Ci

as the Ci-elements whose relative distance from
category Ci is minimal, i.e., the elements in min<Ci

(CIi ).
Observe that the best matching unit BMUx of an input stim-
ulus x ∈ Ci is an element of ∆s. As, for y = BMUx,
rd(y, Ci) is 0, BMUCi ⊆ min<Ci

(CIi ).

3.2 Evaluation of concept inclusions by model
checking

We have defined a multipreference interpretationMs where,
in the domain ∆s of the possible stimuli, we are able to
identify, for each category Ci, the Ci-elements as well as the
most typical Ci-elements wrt <Ci

. We can exploitMs to

verify which inclusions are satisfied by the SOM by model
checking, i.e., by checking the satisfiability of inclusions
over model Ms. This can be done both for strict concept
inclusions of the form Ci v Cj and for defeasible inclusions
of the form T(Ci) v Cj , whereCi andCj are concept names
(i.e., categories), by exploiting a notion of maximal relative
distance ofBMUCi

fromCj , defined as rd(BMCCi
, Cj) =

maxx∈Ci
{rd(BMUx, Cj)}. We refer to (Giordano, Gliozzi,

and Theseider Dupré 2020; Giordano, Gliozzi, and Theseider
Dupré 2021) for details. Let us observe that checking the
satisfiability of strict or defeasible inclusions on the SOM
may be non trivial, depending on the number of input stimuli
that have been considered in the learning phase, although
from a logical point of view, this is just model checking.
Gliozzi and Plunkett have considered self-organising maps
that are able to learn from a limited number of input stimuli,
although this is not generally true for all self-organising maps
(Gliozzi and Plunkett 2019).

Note also that the multipreference interpretationMs in-
troduced in Definition 2 allows to determine the set of Ci-
elements for all learned categories Ci and to define the most
typical Ci-elements, exploiting the preference relation <Ci .
Although we are not able to define, for instance, the most typ-
ical Ci u Cj-elements just using single preferences, starting
fromMs, we can construct a concept-wise multipreference
interpretationMsom that combines the preferential relations
inMs into a global preference relation <, and provides an
intepretation to all typicality concepts as T(Ci u Cj). The
interpretationMsom can be constructed fromMs according
to the definition of the global preference in Section 2.

As an alternative to a multipreference semantics for SOMs,
a fuzzy semantics has also been considered (Giordano,
Gliozzi, and Theseider Dupré 2021), based on fuzzy De-
scription Logics (Lukasiewicz and Straccia 2009), as well as
a related probabilistic account exploiting Zadeh’s probability
of fuzzy events (Zadeh 1968).

Our work has focused on the multipreference interpretation
of a self-organising map after the learning phase. However,
the state of the SOM during the learning phase can as well
be represented as a multipreference model (in the same way).
During training, the current state of the SOM corresponds
to a model representing the beliefs about the input stimuli
considered so far (beliefs concerning the category of the
stimuli). One can regard the category generalization process
as a model building process and, in a way, as a belief change
process. For future work, it would be interesting to study the
properties of this notion of change and compare it with the
notions of change studied in the literature (Gardenförs 1988;
Gardenfors and Rott 1995; Katsuno and Mendelzon 1989;
Katsuno and Sato 1991).

4 A multi-preferential interpretation of
multilayer perceptrons

Let us first shortly introduce multilayer perceptrons. We
first recall from (Haykin 1999) the model of a neuron as an
information-processing unit in an (artificial) neural network.
The basic elements are the following:

• a set of synapses or connecting links, each one charac-
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terized by a weight. We let xj be the signal at the input
of synapse j connected to neuron k, and wkj the related
synaptic weight;

• the adder for summing the input signals to the neu-
ron, weighted by the respective synapses weights:∑n
j=1 wkjxj ;

• an activation function for limiting the amplitude of the
output of the neuron (typically, to the interval [0, 1] or
[−1,+1]).

The sigmoid, threshold and hyperbolic-tangent functions are
examples of activation functions. A neuron k can be de-
scribed by the following pair of equations:

uk =

n∑

j=1

wkjxj

yk = ϕ(uk + bk)

where x1, . . . , xn are the input signals and wk1, . . . , wkn
are the weights of neuron k; bk is the bias, ϕ the activation
function, and yk is the output signal of neuron k. By adding a
new synapse with input x0 = +1 and synaptic weight wk0 =
bk, one can write: uk =

∑n
j=0 wkjxj , and yk = ϕ(uk),

where uk is called the induced local field of the neuron.
A neural network can then be seen as “a directed graph

consisting of nodes with interconnecting synaptic and ac-
tivation links” (Haykin 1999). Nodes in the graph are the
neurons (the processing units) and the weight wij on the
edge from node j to node i represents “the strength of the
connection [..] by which unit j transmits information to unit
i” (McLeod, Plunkett, and Rolls 1998). MLPs are classified
by their synaptic connection topology. In a feedforward net-
work the architectural graph is acyclic, while in a recurrent
network it contains cycles. In a feedforward network neurons
are organized in layers. In a single-layer network there is an
input-layer of source nodes and an output-layer of computa-
tion nodes. In a multilayer feedforward network there is one
or more hidden layer, whose computation nodes are called
hidden neurons (or hidden units). The source nodes in the
input-layer supply the activation pattern (input vector) pro-
viding the input signals for the first layer computation units,
and so on, up to the final output layer of the network, which
provides the overall response of the network to the activation
pattern. In a recurrent network at least one feedback exists.

4.1 A two-valued multipreference interpretation
of multilayer perceptrons

In the following, we consider a deep networkN after training,
when the synaptic weights wkj have been learned. We asso-
ciate a concept name Ci ∈ NC to any unit i in N (including
input units and hidden units) and construct a multi-preference
interpretation over a (finite) domain ∆ of input stimuli, the
input vectors considered so far, for training and generaliza-
tion. In case the network is not feedforward, we assume that,
for each input vector v in ∆, the network reaches a station-
ary state (Haykin 1999), in which yk(v) is the activity level
of unit k. In essence, we are not considering the transient
behavior of the network, but rather it behavior at stationary
states.

Let C = {C1, . . . , Cn} be a subset of concepts in NC ,
the concepts associated to the units we are focusing on (e.g.,
C might be associated to a subset of output units, or to all
units). We associate toN and ∆ a (two-valued) concept-wise
multipreference interpretation over the boolean fragment of
ALC (with no roles or individual names).
Definition 3. The cwminterpretation M∆

N = 〈∆, <C1

, . . . , <Cn , <, ·I〉 over ∆ for network N wrt C is a cwm-
interpretation where:
• the interpretation function ·I is defined for named concepts
Ck ∈ NC as: x ∈ CIk if yk(x) 6= 0, and x 6∈ CIk if
yk(x) = 0;

• for Ck ∈ C, relation <Ck
is defined for x, x′ ∈ ∆ as:

x <Ck
x′ iff yk(x) > yk(x′), where yk(x) is the output

signal of unit k for input vector x.
The relation<Ck

is a strict partial order, and≤Ck
and∼Ck

are defined as usual. In particular, x ∼Ck
x′ for x, x′ 6∈ CIk .

Clearly, the boundary between the domain elements which
are inCIk and those which are not could be defined differently,
e.g., by letting x ∈ CIk if yk(x) > 0.5, and x 6∈ CIk if
yk(x) ≤ 0.5. This would require only a minor change in the
definition of the <Ck

.
This model provides a multipreference interpretation of the

network N , based on the input stimuli considered in ∆. For
instance, when the neural network is used for categorization
and a single output neuron is associated to each category,
each concept Ch associated to an output unit h corresponds
to a learned category. If Ch ∈ C, the preference relation <Ch

determines the relative typicality of input stimuli wrt category
Ch. This allows to verify typicality properties concerning
categories, such as T(Ch) v D (where D is a boolean
concept built from the named concepts in NC), by model
checking on the modelM∆

N .
Evaluating properties involving hidden units might be of

interest, although their meaning is usually unknown. In the
well known Hinton’s family example (Hinton 1986), one
may want to verify whether, normally, given an old Person 1
and relationship Husband, Person 2 would also be old, i.e.,
T(Old1 u Husband) v Old2 is satisfied. Here, concept
Old1 (resp., Old2) is associated to a (known, in this case)
hidden unit for Person 1 (and Person 2), while Husband is
associated to an input unit.

4.2 From a two-valued to a fuzzy preferential
interpretation of multilayer perceptrons

The definition of a fuzzy model of a neural networkN , under
the same assumptions as in the previous section, is straightfor-
ward. In a fuzzy DL interpretation I = 〈∆, ·I〉 (Lukasiewicz
and Straccia 2009) concepts can be interpreted as fuzzy sets,
and the fuzzy interpretation function ·I assigns to each con-
cept C ∈ NC a function CI : ∆ → [0, 1]. For a domain
element x ∈ ∆, CI(x) represents the degree of membership
of x in concept C.

Let NC be the set containing a concept name Ci for each
unit i inN , including hidden units. We restrict to the boolean
fragment of ALC with no individual names and no roles.
A fuzzy interpretation IN = 〈∆, ·I〉 for N (Giordano and
Theseider Dupré 2021b) is defined as follows:
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(i) ∆ is a (finite) set of input stimuli;
(ii) the interpretation function ·I is defined for named concepts

Ck ∈ NC as: CIk(x) = yk(x), ∀x ∈ ∆; where yk(x) is
the output signal of neuron k, for input vector x.

The verification that a fuzzy axiom 〈C v D ≥ α〉 is sat-
isfied in the model IN , can be done based on satisfiability
in fuzzy DLs, according to the choice of the t-norm and im-
plication function. It requires CIk(x) to be recorded for all
k = 1, . . . , n and x ∈ ∆. Of course, one could restrict NC
to the concepts associated to input and output units in N , so
to capture the input/output behavior of the network.

The fuzzy interpretation IN above, induces a preference
relation over the domain ∆ as, for all x, x′ ∈ ∆, x <Ck

x′

iff yk(x) > yk(x′). Based on this idea, a fuzzy multipref-
erence interpretationMf,∆

N = 〈∆, <C1 , . . . , <Cn , ·I〉 over
C can be associated to the network N starting from IN . In
a fuzzy multipreference interpretation a typicality concept
T(C) can be interpreted as a crisp concept having the value
1 for the minimal C-elements in the domain with respect to
the preference relation <C , and 0 otherwise. This relation is
well-founded if we restrict to finite models (as we do), or to
witnessed models, as usual in fuzzy DLs (Lukasiewicz and
Straccia 2009).

5 Multilayer perceptrons as weighted
conditional knowledge bases

The three interpretations considered above for MLPs describe
the input-output behavior of the network, and allow for the
verification of properties by model-checking. The last one,
Mf,∆
N is, in essence, a combination of the first two, and

can be proved to be a model of the neural network N when
regarded as a weighted conditional knowledge base.

In this section, we report the notion of a weighted con-
ditional knowledge base for ALC from (Giordano and The-
seider Dupré 2021b), and we describe how a weighted con-
ditional knowledge base KN can be associated to a deep
network N . We give some hint about its two-valued and
fuzzy multipreference semantics, and we refer to (Giordano
and Theseider Dupré 2021b) for a detailed description.

5.1 Weighted conditional knowledge bases
Weighted ALC knowledge bases are ALC knowledge bases
in which defeasible or typicality inclusions of the form
T(C) v D are given a positive or negative weight (a real
number).

A weighted ALC knowledge base K, over a set C =
{C1, . . . , Ck} of distinguished ALC concepts, is a tuple
〈T , TC1

, . . . , TCk
,A〉, where T is a set of ALC inclusion

axiom, A is a set of ALC assertions and TCi
= {(dih, wih)}

is a set of weighted typicality inclusions dih = T(Ci) v Di,h

for concept Ci, where each inclusion dih has a weight wih, a
real number. The concepts Ci occurring on the l.h.s. of some
typicality inclusion T(Ci) v D are called distinguished
concepts. In the fuzzy case, T and A contain fuzzy axioms.
Example 4. Consider the weighted knowledge base K =
〈T , TBird, TPenguin, A〉, over the set of distinguished
concepts C = {Bird ,Penguin}, with empty ABox and

with T containing the inclusions Penguin v Bird and
Black uGrey v ⊥. The weighted TBox TBird contains the
following weighted defeasible inclusions:

(d1) T(Bird) v Fly , +20
(d2) T(Bird) v ∃has Wings.>, +50
(d3) T(Bird) v ∃has Feathers.>, +50;

TPenguin contains the defeasible inclusions:
(d4) T(Penguin) v Fly , - 70
(d5) T(Penguin) v Black , +50;
(d6) T(Penguin) v Grey , +10;

The meaning is that a bird normally has wings, has feathers
and flies, but having wings and feathers (both with weight 50)
for a bird is more plausible than flying (weight 20), although
flying is regarded as being plausible. For a penguin, flying
is not plausible (inclusion (d4) has a negative weight -70),
while being black or being grey are plausible properties of
prototypical penguins, in fact, (d5) and (d6) have positive
weights, resp. 50 and 10, so that being black is more plausible
than being grey.

A two-valued semantics for weighted DL knowledge bases
has been defined by developing a semantic closure con-
struction in the same spirit as Lehmann’s lexicographic
closure (1995), but more related to Kern-Isberner’s seman-
tics of c-representations (2001; 2014). The approach of c-
representations assigns an individual impact to each condi-
tional and generates the world ranks as a sum of impacts of
falsified conditionals. Here, conditionals have a positive or
negative weight, and negative weights can be interpreted as
penalties. We consider a concept-wise construction, as we
want to associate different (ranked) preferences to the differ-
ent concepts. For an element x in the domain ∆, and a con-
cept Ci, the weight Wi(x) of x wrt Ci is defined as the sum
of the weights wih of the typicality inclusions T(Ci) v Di,h

in TCi
verified by x (and is −∞ when x is not an instance

of Ci). From the weights Wi(x) the preference relation
≤Ci

can be defined by letting: for x, y ∈ ∆, x ≤Ci
y iff

Wi(x) ≥ Wi(y). The higher the weight of x wrt Ci the
higher its typicality relative to Ci. This closure construc-
tion defines preferences <Ci and allows for the definition of
concept-wise multipreference interpretations as in Section 2.

A similar construction has been adopted in the fuzzy case.
Rather then summing weights wih of the typicality inclusions
T(Ci) v Di,h ∈ TCi

verified in I , Wi(x) is defined by
summing the productswih ·DI

i,h(x) for all h, thus considering
the degree of membership of x in each Di,h (a value in
the interval [0, 1]). Furthermore, for fuzzy multipreference
interpretations, a condition is needed to enforce the coherence
of the values CIi (x), defining the degree of membership of a
domain element x in a concept Ci in a fuzzy interpretation
I , with the weights Wi(x), which are computed from the
knowledge base (given I). The requirement that, for all
x, y ∈ ∆, CIi (x) ≥ CIi (y) iff Wi(x) ≥ Wi(y) leads to
the definition of coherent fuzzy multipreference models (cfm-
models) of the weighted conditional knowledge base. We
refer to (Giordano and Theseider Dupré 2021b) for details.
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5.2 Mapping multilayer perceptrons to
conditional knowledge bases

Let us now consider how a multilayer perceptron can be
mapped to a weighted conditional knowledge base. For each
unit k, we consider all the units j1, . . . , jm whose output
signals are the input signals of unit k, with synaptic weights
wk,j1 , . . . , wk,jm . Let Ck be the concept name associated
to unit k and Cj1 , . . . , Cjm the concept names associated
to units j1, . . . , jm, respectively. For each unit k the fol-
lowing set TCk

of typicality inclusions is defined, with their
associated weights:

T(Ck) v Cj1 with wk,j1 ,
. . . ,
T(Ck) v Cjm with wk,jm .

The KB extracted from network N is defined as the tuple:
KN = 〈Tstrict, TC1

, . . . , TCn
,A〉, where Tstrict = A = ∅

and, for each k ∈ N , Ck ∈ C, and KN contains the set
TCk

of weighted typicality inclusions associated to neuron
k (as defined above). KN is a weighted knowledge base
over the set of distinguished concepts C = {C1, . . . , Cn}.
Given a network N , it can be proven that the interpretation
Mf,∆
N (see Section 4.2) is a cfm-model of the knowledge

base KN , provided the activation functions ϕ of all units are
monotonically increasing and have value in (0, 1].
Under some conditions on activation functions (that hold, for
instance, for the sigmoid activation function), for any choice
of C ⊆ NC and for any choice of the domain ∆ of input
stimuli (provided that they lead to a stationary state ofN ), the
fm-interpretationMf,∆

N is a coherent fuzzy multipreference
model of the defeasible knowledge base KN .

This result can be further generalized by weakening the
notion of coherence of a fuzzy multipreference interpretation
to a notion called weak consistency in the technical report
(Giordano and Theseider Dupré 2020b) and faithfulness in
(Giordano 2021), where it has been proven that, also in the
fuzzy case, the concept-wise multipreference semantics has
interesting properties and satisfies most of the KLM proper-
ties of a preferential consequence relation, depending of their
reformulation and on the fuzzy combination functions.

6 Conclusions
We have explored the relationships between a concept-wise
multipreference semantics and two very different neural net-
work models, Self-Organising Maps and Multilayer Percep-
trons, showing that a multi-preferential semantics can be
used to provide a logical model of the network behavior after
training. Such a model can be used to learn or to validate con-
ditional knowledge from the empirical data used for training
and generalization, by model checking of logical properties.
A two-valued KLM-style preferential interpretation with mul-
tiple preferences has been considered, based on the idea of
associating preference relations to categories (in the case of
SOMs) or to neurons (for Multilayer Perceptrons), as well as
a fuzzy semantics. Due to the diversity of the two models we
would expect that a similar approach might be extended to
other neural network models and learning approaches.

Much work has been devoted, in recent years, to the
combination of neural networks and symbolic reasoning
(d’Avila Garcez, Broda, and Gabbay 2001; d’Avila Garcez,
Lamb, and Gabbay 2009; d’Avila Garcez et al. 2019), lead-
ing to the definition of new computational models, such
as Graph Neural Networks (Lamb et al. 2020), Logic Ten-
sor Network (Serafini and d’Avila Garcez 2016), Recur-
sive Reasoning Networks (Hohenecker and Lukasiewicz
2020), neural-symbolic stream fusion (Le-Phuoc, Eiter, and
Le-Tuan 2021), and to extensions of logic programming
languages with neural predicates (Manhaeve et al. 2018;
Yang, Ishay, and Lee 2020). Among the earliest systems com-
bining logical reasoning and neural learning are the KBANN
(Towell and Shavlik 1994) and the CLIP (d’Avila Garcez and
Zaverucha 1999) systems and Penalty Logic (Pinkas 1995),
a non-monotonic reasoning formalism used to establish a
correspondence with symmetric connectionist networks. The
relationships between normal logic programs and connection-
ist network have been investigated by Garcez et al. (1999;
2001) and by Hitzler et al. (2004).

The correspondence between neural network models and
fuzzy systems has been first investigated by Bart Kosko in
his seminal work (Kosko 1992). In his view, “at each in-
stant the n-vector of neuronal outputs defines a fuzzy unit
or a fit vector. Each fit value indicates the degree to which
the neuron or element belongs to the n-dimentional fuzzy
set.” Our fuzzy interpretation of a multilayer perceptron re-
gards, instead, each concept (representing a single neuron)
as a fuzzy set. This is the usual way of viewing concepts in
fuzzy DLs (Straccia 2005; Lukasiewicz and Straccia 2008;
Bobillo and Straccia 2016), and we have used fuzzy con-
cepts within a multipreference semantics based on a semantic
closure construction in the line of Lehmann’s semantics for
lexicographic closure (Lehmann 1995) and Kern-Isberner’s
c-representations (Kern-Isberner 2001; Kern-Isberner and
Eichhorn 2014). A combination of fuzzy logic with the pref-
erential semantics of conditional knowledge bases has been
first studied by Casini and Straccia (2013), who have also
developed a rational closure construction for propositional
Gödel logic. The multipreference semantics we have intro-
duced for weighted conditionals appears to be a relative of
c-representations, which generate the world ranks as a sum
of impacts of falsified conditionals, (Kern-Isberner 2001;
Kern-Isberner 2004).

We have further considered a semantics with multiple pref-
erences, in order to make it concept-wise: each distinguished
concept Ci has its own set TCi

of (weighted) typicality in-
clusions, and an associated preference relation <Ci

. This
allows a preference relation to be associated to each category
(e.g., in the preferential interpretation of SOMs) or neuron
(in a deep network). Related semantics with multiple pref-
erences have been proposed, starting from Brewka’s frame-
work of basic preference descriptions (Brewka 2004), based
on different approaches: in system ARS, as a refinement of
System Z by Kern-Isberner and Ritterskamp (2010), using
techniques for handling preference fusion; in ALC + T (an
extension of ALC with typicality) by Gil (2014); in a refine-
ment of rational closure by Gliozzi (2016); by associating
multiple preferences to roles by Britz and Varzinczak (2018;
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2019); in ranked EL knowledge bases by Giordano and The-
seider Dupré (2020a); in the first-order logic setting by Del-
grande and Rantsaudis (2020).

For Multilayer Perceptrons, under a fuzzy semantics, a
deep neural network can itself be regarded as a conditional
knowledge base, where conditional implications are asso-
ciated to synaptic connections with their weights. That a
conditional logic, belonging to a family of logics which are
normally used for hypothetical and counterfactual reason-
ing, for common sense reasoning, and for reasoning with
exceptions, can be used for capturing reasoning in a deep
neural network model is rather surprising. It suggests that
slow thinking and fast thinking (Kahneman 2011) might be
more related than expected.

Opening the black-box and recognizing that multilayer
perceptrons can be seen as a set of conditionals, can be ex-
ploited as a possible basis for an integrated use of symbolic
reasoning and neural networks (at least for this neural net-
work model). While a neural network, once trained, is able
and fast in classifying the new stimuli (that is, it is able to do
instance checking), all other reasoning services such as satis-
fiability, entailment and model-checking are missing. These
capabilities would be needed for dealing with tasks combin-
ing empirical and symbolic knowledge, such as, for instance:
to prove whether the network satisfies some (strict or con-
ditional) properties; to learn the weights of a conditional
knowledge base from empirical data; to combine defeasi-
ble inclusions extracted from a neural network with other
defeasible or strict inclusions for inference.

To make these tasks possible, the development of proof
methods for such logics is a preliminary step. Undecidability
results for fuzzy description logics with general inclusion ax-
ioms (Baader and Peñaloza 2011; Cerami and Straccia 2011;
Borgwardt and Peñaloza 2012) motivate the investigation of
decidable approximations of fuzzy-multipreference entail-
ment. In the two-valued case multipreference entailment is
decidable for weighted EL⊥ knowledge bases and a proof
method for reasoning with weighted conditional knowledge
bases with integer weights has been developed (Giordano
and Theseider Dupré 2021a) by exploiting Answer Set Pro-
gramming (ASP) and asprin (Brewka et al. 2015). The ap-
proach is based on a fragment of the materialization calcu-
lus (Krötzsch 2010), and has been defined by adapting the
encoding for ranked EL+

⊥ knowledge bases (Giordano and
Theseider Dupré 2020a). This is a first step towards the
definition of proof methods for multi-valued extensions of
our concept-wise preferential semantics based on a notion
of faithful interpretations (Giordano 2021). Other possible
extensions concern the definition of multiple typicality op-
erators, based on the combination of selected concepts, and
a temporal extension to capture the transient behavior of
Multilayer Perceptrons.

An interesting issue is whether the mapping of deep neu-
ral networks to weighted conditional knowledge bases can
be extended to more complex neural network models, such
as Graph Neural Networks (Lamb et al. 2020), or whether
different logical formalisms and semantics would be needed.

Another issue is whether the fuzzy-preferential interpreta-
tion of neural networks can be related with the probabilistic

interpretation of neural networks based on statistical AI. This
is an interesting issue, as the fuzzy DL interpretations we
have considered, where concepts are regarded as fuzzy sets,
also suggest a probabilistic account based on Zadeh’s proba-
bility of fuzzy events (Zadeh 1968). We refer to (Giordano,
Gliozzi, and Theseider Dupré 2021) for some results concern-
ing a probabilistic interpretation of SOMs and to (Giordano
and Theseider Dupré 2020b) for a preliminary account for
MLPs. A methodology for commonsense reasoning based
on probabilistic conditional knowledge under the principle
of maximum entropy (MaxEnt) has been developed by Kern-
Isberner (1998) starting from the propositional case. Wilhelm
et al. (2019) have recently shown how to calculate MaxEnt
distributions in a first-order setting by using typed model
counting and condensed iterative scaling, and have explored
the connection to Markov Logic Networks for drawing in-
ferences. A description logic with probabilistic conditionals
ALCME has also been proposed (Wilhelm and Kern-Isberner
2019) based on this methodology.
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Borgwardt, S., and Peñaloza, R. 2012. Undecidability of
fuzzy description logics. In Brewka, G.; Eiter, T.; and McIl-
raith, S. A., eds., Principles of Knowledge Representation
and Reasoning: Proc. of the 13th Int. Conf., KR 2012, Rome,
Italy, June 10-14, 2012.
Brewka, G.; Delgrande, J. P.; Romero, J.; and Schaub, T.
2015. asprin: Customizing answer set preferences without a
headache. In Proc. AAAI 2015, 1467–1474.
Brewka, G. 2004. A rank based description language for
qualitative preferences. In Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, Valencia,
Spain, August 22-27, 2004, 303–307.

210



Britz, K., and Varzinczak, I. J. 2018. Rationality and con-
text in defeasible subsumption. In Proc. 10th Int. Symp. on
Found. of Information and Knowledge Systems, FoIKS 2018,
Budapest, May 14-18, 2018, 114–132.
Britz, A., and Varzinczak, I. 2019. Contextual rational
closure for defeasible ALC (extended abstract). In Proc.
32nd International Workshop on Description Logics, Oslo,
Norway, June 18-21, 2019.
Britz, K.; Heidema, J.; and Meyer, T. 2008. Semantic
preferential subsumption. In Brewka, G., and Lang, J., eds.,
KR 2008, 476–484. Sidney, Australia: AAAI Press.
Casini, G., and Straccia, U. 2010. Rational Closure for
Defeasible Description Logics. In Janhunen, T., and Niemelä,
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Montréal, Canada, 3753–3763.
McLeod, P.; Plunkett, K.; and Rolls, E., eds. 1998. Intro-
duction to Connectionist Modelling of Cognitive Processes.
Oxford university Press.
Nute, D. 1980. Topics in conditional logic. Reidel, Dordrecht.
Pearl, J. 1990. System Z: A natural ordering of defaults
with tractable applications to nonmonotonic reasoning. In
TARK’90, Pacific Grove, CA, USA, 1990, 121–135. Morgan
Kaufmann.
Pensel, M., and Turhan, A. 2018. Reasoning in the defeasible
description logicEL⊥ - computing standard inferences under
rational and relevant semantics. Int. J. Approx. Reasoning
103:28–70.
Pinkas, G. 1995. Reasoning, nonmonotonicity and learning in
connectionist networks that capture propositional knowledge.
Artif. Intell. 77(2):203–247.
Serafini, L., and d’Avila Garcez, A. S. 2016. Learning and
reasoning with logic tensor networks. In Proc. AI*IA 2016,
Genova, Italy, November 29 - December 1, 2016, volume
10037 of LNCS, 334–348. Springer.
Straccia, U. 2005. Towards a fuzzy description logic for
the semantic web (preliminary report). In Second European
Semantic Web Conference, ESWC 2005, Heraklion, Crete,
Greece, May 29 - June 1, 2005, Proc., volume 3532 of LNCS,
167–181. Springer.
Tenenbaum, J. B., and Griffiths, T. L. 2001. Generalization,
similarity, and bayesian inference. Behavioral and Brain
Sciences 24:629–641.
Towell, G. G., and Shavlik, J. W. 1994. Knowledge-based
artificial neural networks. Artif. Intell. 70(1-2):119–165.
Wilhelm, M., and Kern-Isberner, G. 2019. Maximum entropy
calculations for the probabilistic description logic ALCME .
In Description Logic, Theory Combination, and All That,
LNAI 11560, pp. 588–609.
Wilhelm, M.; Kern-Isberner, G.; Finthammer, M.; and
Beierle, C. 2019. Integrating typed model counting into
first-order maximum entropy computations and the connec-
tion to markov logic networks. In Proc. 32-nd Int. Florida
Artificial Intelligence Research Society Conference, Sarasota,
Florida, USA, May 19-22 2019, 494–499. AAAI Press.
Yang, Z.; Ishay, A.; and Lee, J. 2020. Neurasp: Em-
bracing neural networks into answer set programming. In
Bessiere, C., ed., Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2020,
1755–1762. ijcai.org.
Zadeh, L. 1968. Probability measures of fuzzy events.
J.Math.Anal.Appl 23:421–427.

212



Postulates for Transformations Among Epistemic States Represented by
Ranking Functions or Total Preorders

Jonas Haldimann1 , Christoph Beierle1 , Gabriele Kern-Isberner2
1FernUniversität in Hagen, 58084 Hagen, Germany

2TU Dortmund, 44221 Dortmund, Germany
{jonas.haldimann, christoph.beierle}@fernuni-hagen.de, gabriele.kern-isberner@cs.tu-dortmund.de

Abstract

There are different kinds of models for representing epistemic
states. Two popular approaches to this are ranking functions
(OCFs) and total preorders (TPOs) on possible worlds. Both
approaches allow for modelling conditional beliefs. To better
understand the relationship among the different models, we
consider mappings between models concerning the preserva-
tion of desirable properties like syntax splitting, or the com-
patability with operations like marginalization and condition-
alization. We introduce a set of postulates for such transi-
tions and evaluate them with respect to mappings within and
across the two frameworks. Doing this, we establish both de-
pendencies as well as incompatibilities among the postulates.
Our results will be useful in particular for transferring meth-
ods and tools developed for OCF-based semantics to the TPO
framework as well as the other way around.

1 Introduction
In the field of knowledge representation, there is a long tra-
dition to employ conditionals as fundamental objects. A
conditional formalizes a defeasible rule “If A then usu-
ally B” for logical formulas A,B and is often denoted as
(B|A). A set of conditionals is called a conditional belief
base. As conditional logic is more expressive than proposi-
tional logic, it requires a richer semantics as well. There
are different approaches to the semantics for conditional
logic, e.g., (Lewis 1973; Adams 1975; Kraus, Lehmann,
and Magidor 1990; Pearl 1990; Dubois and Prade 1994;
Benferhat, Dubois, and Prade 1999; Kern-Isberner 2004).
These approaches often use either some form of ranking
functions (Spohn 1988) or total preorders on interpretations
as models for conditionals and conditional knowledge bases.

In this paper, we focus on these two kinds of models
for conditionals, ranking functions (or ordinal conditional
functions, OCFs) and total preorders on worlds (TPOs).
Both models have their own advantages. TPOs are fun-
damental for nonmonotonic logics (AGM revision, System
P) whereas OCFs are convenient implementations of TPOs
that, however, crucially provide an arithmetics that is lack-
ing in TPOs. This arithmetics allows in particular for a more
sophisticated conditional reasoning, approximating nicely
what is possible in probabilistics. Studying mappings be-
tween TPOs and OCFs make it possible to transfer prop-
erties and techniques from the richer framework of OCFs

to TPOs, on the one hand, and to focus on purely quali-
tative aspects of reasoning and revision with OCFs, on the
other hand. More specifically, TPOs are used in characteri-
sation theorems for AGM revisions (Katsuno and Mendel-
zon 1992) as well as system P inference (Adams 1975;
Kraus, Lehmann, and Magidor 1990). OCFs allow to model
the strength of conditional beliefs by assigning numbers to
logical interpretations (Spohn 1988; Goldszmidt and Pearl
1996). Furthermore, some belief revision operators with
interesting properties have been defined for OCFs, e.g.,
(Kern-Isberner 2004). To better understand the connection
between OCFs and TPOs, we investigate transformations
among these frameworks, i.e., functions that map OCFs to
TPOs or TPOs to OCFs. Furthermore, we generalize by also
including transformations from OCFs to OCFs and TPOs to
TPOs.

We formalize functions on these models within and across
the two different frameworks as epistemic state mappings
and propose postulates that govern epistemic state map-
pings. The postulates require the epistemic state map-
pings to preserve certain properties of the models like the
entailed inference relation and syntax splittings. Syntax
splitting is a concept describing that beliefs about differ-
ent parts of the signature are uncorrelated (Parikh 1999;
Peppas et al. 2015). Other postulates ensure compatibil-
ity with the operations marginalization and conditionaliza-
tion. These operations are relevant e.g. for some forms of
forgetting (Delgrande 2017; Eiter and Kern-Isberner 2019;
Beierle et al. 2019), syntax splitting, and some aspects of
belief revision (Kern-Isberner, Beierle, and Brewka 2020;
Sezgin and Kern-Isberner 2020). We investigate relation-
ships among our postulates in general as well as for each
framework in particular. Our results elaborate dependencies
among the postulates, and they also unveil situations where
certain combinations of postulates cannot be satisfied simul-
tanously.

In summary, the main contributions of this paper are:

• Introduction of epistemic state mappings for TPOs and
OCFs

• Coverage of marginalization and conditionalization also
for the iterated case via the introduction of restricted
TPOs and restricted OCFs

• Formalization of desireable properties of epistemic state
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mappings in terms of general postulates

• Establishment of relationships among the postulates and
of realizability results for the postulates and for subsets
thereof.

The paper is structured as follows. After giving some
background on conditional logic, ranking functions and to-
tal preorders in Section 2, we introduce the operations
marginalization and conditionalization and the property syn-
tax splitting in Section 3. We proceed to introduce the con-
cept of epistemic state mappings and postulates for such
mappings in Section 4. Then we analyse the relationship
among the postulates for epistemic state mappings from to-
tal preorders to total preorders in Section 5 and among the
postulates for epistemic state mappings from ranking func-
tions to ranking functions in Section 6. In Section 7, we
consider epistemic state mappings from ranking functions
to total preorders, and in Section 8 we consider epistemic
state mappings from total preorders to ranking functions. In
Section 9, we conclude and point out future work.

2 Background: Conditional Logic, Ranking
Functions, and Total Preorders

A (propositional) signature is a finite set Σ of identifiers. For
a signature Σ, we denote the propositional language over Σ
by LΣ. Usually, we denote elements of the signatures with
lowercase letters a, b, c, . . . and formulas with uppercase let-
ters A,B,C, . . .. We may denote a conjunction A ∧ B by
AB and a negation ¬A by A for brevity of notation. The
set of interpretations over a signature Σ is denoted as ΩΣ.
Interpretations are also called worlds and ΩΣ is called the
universe. An interpretation ω ∈ ΩΣ is a model of a formula
A ∈ LΣ if A holds in ω. This is denoted as ω |= A. The
set of models of a formula (over a signature Σ) is denoted as
Mod Σ(A) = {ω ∈ ΩΣ | ω |= A}. A formula A entails a
formula B if Mod Σ(A) ⊆ Mod Σ(B).

A conditional (B|A) connects two formulas A,B and
represents the rule “If A then usually B”. For a condi-
tional (B|A) the formula A is called the antecedent and
the formula B the consequent of the conditonal. The condi-
tional language over a signature Σ is denoted as (L|L)Σ =
{(B|A) | A,B ∈ LΣ}. (L|L)Σ is a flat conditional lan-
guage as it does not allow nesting conditionals. A finite set
of conditionals is called a conditional belief base.

We use a three-valued semantics of conditionals in this
paper (de Finetti 1937). For a world ω a conditional (B|A)
is either verified by ω if ω |= AB, falsified by ω if ω |= AB,
or not applicable to ω if ω |= A. Conditionals are usually
considered in the context of epistemic states. An epistemic
state is a structure that represents all beliefs that are relevant
for an agent’s reasoning.

There exist different kinds of models for epistemic states
that can handle conditionals. Two approaches to this are
ranking functions (ordinal conditional functions, OCFs) and
total preorders (TPOs) on possible worlds.

A ranking function (Spohn 1988), also called ordinal con-
ditional function (OCF), is a function κ : ΩΣ → N0 ∪ {∞}
such that κ−1(0) 6= ∅. The intuition of a ranking function is

that the rank of a world is lower if the world is more plau-
sible. Therefore, ranking functions can be seen as some
kind of “implausibility measure”. Ranking functions are
extended to formulas by κ(A) = minω∈Mod(A) κ(ω) with
min∅(. . .) =∞. A ranking function κ models a conditional
(B|A), denoted as κ |= (B|A) if κ(AB) < κ(AB), i.e., if
the verification of the conditional is strictly more plausible
than its falsification. A ranking function κ models a con-
ditional belief set R, denoted as κ |= R if κ |= r for every
r ∈ R. The uniform ranking function κuni with κuni(ω) = 0
for every ω ∈ Mod Σ(A) represents the state of complete ig-
norance.

A total preorder (TPO) is a total, reflexive, and transi-
tive binary relation. The meaning of a total preorder � on
ΩΣ as model for an epistemic state is that ω1 is at least as
plausible as ω2 if ω1 � ω2 for ω1, ω2 ∈ ΩΣ. Total pre-
orders on worlds are extended to formulas by A � B if
min(Mod Σ(A),�) � min(Mod Σ(B),�). A total preorder
� models a conditional (B|A), denoted as � |= (B|A)
if AB ≺ AB, i.e., if the verification of the conditional is
strictly more plausible than its falsification. A total preorder
� models a conditional belief set R, denoted as � |= R if
� |= r for every r ∈ R.

3 Marginalization, Conditionalization,
Syntax Splitting

We want to consider transformations among models of epis-
temic states represented by ranking functions or total pre-
orders. To establish a notion for the domain of such trans-
formations, we define the sets MTPO(Σ) and MOCF (Σ)
containing all models over a certain signature.

Definition 1. Let Σ be a signature.

MTPO(Σ) = {� ⊆ ΩΣ × ΩΣ | � total preorder over ΩΣ}
MOCF (Σ) = {κ : ΩΣ 7→ N0 ∪ {∞} | κ ranking function}

3.1 Marginalization and Conditionalization on
TPOs and OCFs

Two operations on epistemic states that we will use in this
paper are marginalization and conditionalization. Marginal-
ization restricts the epistemic state to a sub-signature of the
original signature.

Definition 2 (marginalization of ranking functions (Spohn
1988; Beierle and Kern-Isberner 2012)). The marginal-
ization of ranking functions from a signature Σ to a
sub-signature Σ′ ⊆ Σ is a function MOCF (Σ) →
MOCF (Σ′), κ 7→ κ|Σ′ such that κ|Σ′(ω) = κ(ω) for
ω ∈ ΩΣ′ .

Definition 3 (marginalization of total preorders (Beierle
and Kern-Isberner 2012; Kern-Isberner and Brewka 2017)).
The marginalization of total preorders from a signature Σ
to a sub-signature Σ′ ⊆ Σ is a function MTPO(Σ) →
MTPO(Σ′), � 7→ �|Σ′ such that ω1 �|Σ′ ω2 iff ω1 � ω2

for ω1, ω2 ∈ ΩΣ′ .

Note that a world ω over a sub-signature Σ′ ⊆ Σ is con-
sidered as a formula when evaluated in the context of Σ.
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The marginalizations of OCFs and TPOs presented above
are special cases of general forgetful functors Mod(%) from
Σ-models to Σ′-models given in (Beierle and Kern-Isberner
2012) where Σ′ ⊆ Σ and % is the inclusion from Σ′ to Σ.
Informally, a forgetful functor forgets everything about the
interpretation of the symbols in Σ \ Σ′ when mapping a Σ-
model to a Σ′-model.

Conditionalization on the other hand restricts the set of
worlds that are considered in an epistemic state. After the
conditionalization with a formula A the resulting state only
considers the elements of Mod Σ(A) as possible worlds. To
capture the outcome of a conditionalization, we extend the
notion of ranking functions and total preorders.
Definition 4 (restricted ranking function). A restricted rank-
ing function over a setM ⊆ ΩΣ is a function κ : M → N0∪
{∞} such that κ−1(0) 6= ∅. Restricted ranking functions
are extended to formulas by κ(A) = minω∈Mod(A)∩M κ(ω)
with min∅(. . .) =∞.

A total preorder� on a setM ⊆ ΩΣ as model for an epis-
temic state is also called a restricted total preorder. Its intu-
ition is the same as that of usual total preorders: ω1 is at least
as plausible as ω2 if ω1 � ω2 for ω1, ω2 ∈M . Restricted to-
tal preorders on worlds are extended to formulas by A � B
if min(Mod Σ(A) ∩M,�) � min(Mod Σ(B) ∩M,�).
Definition 5. Let Σ be a signature and A ∈ LΣ. Let MA =
Mod Σ(A).

MTPO(Σ, A) =

{� ⊆MA ×MA | � total preorder over MA}
MOCF (Σ, A) =

{κ : MA 7→ N0 ∪ {∞} | κ restricted ranking function}
The restricted OCFs and TPOs properly include the origi-

nal notation: MI(Σ) =MI(Σ,>) for I ∈ {TPO ,OCF}.
For Ψ ∈MI(Σ, A), we call sig(Ψ) = Σ the signature of Ψ
and dom(Ψ) = Mod Σ(A) the domain of Ψ. Now we can
define conditionalization using restricted OCFs/TPOs.
Definition 6 (conditionalization of ranking functions (Spohn
1988; Sezgin and Kern-Isberner 2020)). The conditionaliza-
tion of ranking functions over a signature Σ to the mod-
els of a formula A ∈ LΣ is a function MOCF (Σ) →
MOCF (Σ, A), κ 7→ κ|A such that κ|A(ω) = κ(ω)− κ(A)
for ω ∈ Mod Σ(A).

A notion of conditionalization for TPOs with respect to a
formula A where the models of A are shifted to the upper-
most layer has been introduced in (Kern-Isberner, Beierle,
and Brewka 2020). Here, we will use the following con-
cept of TPO conditionalization where the models of A are
removed entirely from the TPO by conditionalization.
Definition 7 (conditionalization of total preorders). The
conditionalization of total preorders over a signature Σ to
the models of a formulaA ∈ LΣ is a functionMTPO(Σ)→
MTPO(Σ, A), � 7→ �|A such that ω1 (�|A) ω2 iff
ω1 � ω2 for ω1, ω2 ∈ Mod Σ(A).

Note that Definitions 6 and 7 for conditionalization in-
tegrate nicely with our notions of restricted TPOs and re-
stricted OCFs, because models of A occur neither in the el-
ements ofMOCF (Σ, A) norMTPO(Σ, A).

3.2 Marginalization and Conditionalization on
Restricted TPOs and OCFs

While originally, both marginalization and conditionaliza-
tion were defined on OCFs/TPOs with the full set of Σ-
models, we will also consider the iterative case. Therefore,
we extend the definitions of these operations to cover already
conditionalized states (which are restricted TPOs/OCFs).

Definition 8 (marginalization of restricted OCFs). The
marginalization of ranking functions over Mod Σ(A) from
signature Σ to a sub-signature Σ′ ⊆ Σ is a function
MOCF (Σ, A) → MOCF (Σ′, A), κ 7→ κ|Σ′ such that
κ|Σ(ω) = κ(ω) for ω ∈ Mod Σ′(A).

Definition 9 (marginalization of restricted TPOs). The
marginalization of total preorders over Mod Σ(A) from
signature Σ to a sub-signature Σ′ ⊆ Σ is a function
MTPO(Σ, A) → MTPO(Σ′, A), � 7→ �|Σ′ such that
ω1 �|Σ′ ω2 iff ω1 � ω2 for ω1, ω2 ∈ Mod Σ′(A).

Definition 10 (conditionalization of restricted OCFs). The
conditionalization of ranking functions over Mod Σ(B)
to the models of a formula A ∈ LΣ is a function
MOCF (Σ, B) → MOCF (Σ, A ∧ B), κ 7→ κ|A such that
κ|A(ω) = κ(ω)− κ(A) for ω ∈ Mod Σ(A ∧B).

Definition 11 (conditionalization of restricted TPOs). The
conditionalization of total preorders over Mod Σ(B) to the
models of a formula A ∈ LΣ is a functionMTPO(Σ, B)→
MTPO(Σ, A ∧ B), � 7→ �|A such that ω1 �|A ω2 iff
ω1 � ω2 for ω1, ω2 ∈ Mod Σ(A ∧B).

Because for MI(Σ,>), the marginaliza-
tion/conditionalization of the restricted OCFs/TPOs
coincides with the marginalization/conditionalization of
OCFs/TPOs, Definitions 8, 9, 10, and 11 of marginalization
and conditionalization properly cover and extend the
Definitions 2, 3, 6, and 7.

3.3 Syntax Splitting
An interesting feature of a ranking function or a total pre-
order is if they allow for syntax splittings. Syntax split-
ting was first introduced as property of belief sets in (Parikh
1999). The basic idea is that a belief set contains indepen-
dent information over different parts of the signature. The
partition of the signature in these parts is called a syntax
splitting for the considered belief set. Syntax splittings are
useful properties of epistemic states, as they indicate that
different parts of the state can be processed independently
of each other.

The notion of syntax splitting was extended to other rep-
resentations of epistemic states such as ranking functions
in (Kern-Isberner and Brewka 2017). For a partitioning
Σ = Σ1 ∪̇ · · · ∪̇ Σn of a signature Σ and a world ω ∈ ΩΣ,
the world ωj ∈ ΩΣj

denotes the variable assignment of the
variables in Σj as in ω in the following definitions.

Definition 12 (syntax splitting for total preorders (Kern-Is-
berner and Brewka 2017)). Let � be a total preorder over
a signature Σ. Let Σ = Σ1 ∪̇ · · · ∪̇ Σn be a partitioning
and ω 6=i :=

∧
j=1,...,n
i 6=j

ωj for ω ∈ Ω and i = 1, . . . , n. The
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Figure 1: Example for an OCF κwith the syntax splitting {a}∪̇{b}
.

partitioning Σ1 ∪̇ · · · ∪̇ Σn is a syntax splitting for � if, for
i = 1, . . . , n,

ω 6=i1 = ω 6=i2 implies
(
ω1 � ω2 iff ωi1 �|Σi

ωi2
)
.

Definition 13 (syntax splitting for ranking functions
(Kern-Isberner and Brewka 2017)). Let κ be a ranking func-
tion over Σ.

A partitioning Σ = Σ1 ∪̇ · · · ∪̇Σn is a syntax splitting for
κ if there are ranking functions κi : Σi 7→ N0 ∪ {∞} for
i = 1, . . . , n such that κ(ω) = κ1(ω1)+ · · ·+κn(ωn). This
is denoted as κ = κ1 ⊕ · · · ⊕ κn.

The notion of syntax splitting can be extended to re-
stricted ranking functions and total preorders.

Definition 14 (syntax splitting for restricted TPOs). Let �
be a total preorder inMTPO(Σ, A). Let Σ = Σ1 ∪̇ · · · ∪̇
Σn be a partitioning, ωj be the variable assignment of the
variables in Σj as in ω, and ω 6=i :=

∧
j=1,...,n
i 6=j

ωj for ω ∈ Ω

and i = 1, . . . , n. The partitioning Σ1 ∪̇ · · · ∪̇Σn is a syntax
splitting for � if

• there are formulas A1, . . . , An such that A ≡ A1 ∧ · · · ∧
An and Ai ∈ Σi for i = 1, . . . , n

• and, for i = 1, . . . , n and ω1, ω2 ∈ dom(�),

ω 6=i1 = ω 6=i2 implies
(
ω1 � ω2 iff ωi1 �|Σi

ωi2
)
.

Definition 15 (syntax splitting for restricted OCFs). Let κ
be a ranking function inMOCF (Σ, A). Let ωj be the vari-
able assignment of the variables in Σj as in ω. A partition-
ing Σ = Σ1 ∪̇ · · · ∪̇ Σn is a syntax splitting for κ if

• there are formulas A1, . . . , An such that A ≡ A1 ∧ · · · ∧
An and Ai ∈ Σi for i = 1, . . . , n

• and there are ranking functions κi ∈ MOCF (Σi, Ai) for
i = 1, . . . , n such that κ(ω) = κ1(ω1) + · · · + κn(ωn)
for ω ∈ dom(κ).

This is denoted as κ = κ1 ⊕ · · · ⊕ κn.

Again, the definitions of syntax splitting for restricted to-
tal preorders or ranking functions are compatible with the
definition of syntax splitting for TPOs/OCFs.

Example 1. The ranking function κ over Σ = {a, b} dis-
played in Figure 1 and the total preorder induced by κ both
have the syntax splitting {a} ∪̇ {b}.

Analoguosly to Parikh’s (P), postulates for revision and
contraction of total preorders and ranking functions, that are
based on the notions of syntax splitting from Definitions 12

and 13, have been introduced and investigated in (Kern-
Isberner and Brewka 2017), (Haldimann, Kern-Isberner, and
Beierle 2020), and (Haldimann, Beierle, and Kern-Isberner
2021).

4 Postulates for Mappings on Epistemic
States

To formalize the transformations among models of epis-
temic states we introduce epistemic state mappings.
Definition 16. Let I1, I2 ∈ {TPO ,OCF}. An epistemic
state mapping from I1 to I2, denoted as ξ : I1  I2, is a
function family ξ = (ξΣ,A) for signatures Σ and formulas
A ∈ LΣ with ξΣ,A : MI1(Σ, A) → MI2(Σ, A) such that
A ≡ B implies ξΣ,A = ξΣ,B .
Example 2. The family of functions ξreverse that reverses
every TPO defined by ξreverseΣ,A (�) = �′ with ω1 �′ ω2 iff
ω2 � ω1 for a signature Σ, A ∈ LΣ, � ∈ MTPO(Σ, A),
and ω1, ω2 ∈ Mod Σ(A) is an epistemic state mapping from
TPOs to TPOs.

The family of functions τ that maps every OCF to the TPO
induced by it, defined by τΣ,A(κ) = l−κ for a signature Σ,
A ∈ LΣ, and κ ∈ MOCF (Σ, A) is an epistemic state map-
ping from TPOs to OCFs.

Every epistemic state mapping represents a way to trans-
form epistemic states of kind I1 to epistemic states of kind
I2 for different domains. Desirable properties of epistemic
state mappings (ξΣ,A) can be stated in form of postulates.

Some of these postulates use the fact that both ranking
functions and total preorder induce a total preorder on their
domain. For a total preorder �, the induced order l−� is
the order � itself. For a ranking function κ, the induced
ordering l−κ is given by ω1 l−κ ω2 iff κ(ω1) 6 κ(ω2) for
ω1, ω2 ∈ dom(κ).
Postulates. Let I1, I2 ∈ {TPO ,OCF} and let (ξΣ,A) be an
epistemic state mapping from I1 to I2. Let Σ be a signature
and A ∈ LΣ, and Ψ ∈MI1(Σ, A).

Let (C|D) ∈ (L | L)Σ.
(IE) Ψ |= (C|D) iff ξΣ,A(Ψ) |= (C|D).
(wIE⇒) Ψ |= (C|D) implies ξΣ,A(Ψ) |= (C|D).
(wIE⇐) ξΣ,A(Ψ) |= (C|D) implies Ψ |= (C|D).

Let ω1, ω2 in dom(Ψ).
(Ord) ω1 lΨ ω2 iff ω1 lξΣ,A(Ψ) ω2.
(wOrd⇒) ω1 lΨ ω2 implies ω1 lξΣ,A(Ψ) .ω2

(wOrd⇐) ω1 lξΣ,A(Ψ) ω2 implies ω1 lΨ ω2.

(SynSplit) If sig(Ψ) = Σ1 ∪̇ · · · ∪̇ Σn is a syntax splitting
for Ψ, then Σ1 ∪̇· · ·∪̇Σn is a syntax splitting for ξΣ,A(Ψ).

(SynSplitb) If Σ = Σ1 ∪̇Σ2 is a syntax splitting for Ψ, then
Σ1 ∪̇ Σ2 is a syntax splitting for ξΣ,A(Ψ).

Let Σ′ ⊆ Σ with Σ′ 6= ∅ and A′ ∈ LΣ′ such that
Mod Σ′(A′) = {ω′ | ω ∈ Mod Σ(A)} where ω′ is the as-
signment of the variables in Σ′ as in ω.
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MI(Σ, A) MI(Σ
′, A)

MI(Σ, A) MI(Σ
′, A)

·|Σ′

·|Σ′

ξ ξ

(a) Illustration of (Marg).

MI(Σ, A) MI(Σ, A ∧ F )

MI(Σ, A) MI(Σ, A ∧ F )

·|F

·|F

ξ ξ

(b) Illustration of (Cond).

Figure 2: A commutative diagram illustrating the postulates (Cond)
and (Marg).

(Marg) ξΣ′,A′(Ψ|Σ′) = ξΣ,A(Ψ)|Σ′

Let F ∈ LΣ with Mod Σ(F ) ∩ dom(Ψ) 6= ∅.
(Cond) ξΣ,A∧F (Ψ|F ) = ξΣ,A(Ψ)|F

The postulate (IE) requires inferential equivalence and
states that the epistemic state mapping may not change the
set of conditionals accepted by an epistemic state. The epis-
temic state and its mapping induce the same inference re-
lation with respect to conditionals. This is a quite strong
postulate, the postulates (wIE⇒) and (wIE⇐) are weaker
versions of (IE). Postulate (wIE⇒) states that an epistemic
state mapping may not remove conditionals from the set of
inferred conditionals. Postulate (wIE⇐) states that after an
epistemic state mapping, we may not accept additional con-
ditionals.

The postulate (Ord) expresses the postulate (IE) in terms
of the induced total preorders of the epistemic states. Anal-
ogously (wOrd⇒) and (wOrd⇐) represent (wIE⇒) and
(wIE⇐), respectively.

(SynSplit) states that an epistemic state mapping should
preserve syntax splittings of the epistemic state. (SynSplitb)
is a special case of (SynSplit) for syntax splittings in two
sub-signatures.

The postulate (Marg) ensures the compatibility of an epis-
temic state mapping with marginalization. It states that
changing the order in which marginalization and the epis-
temic state mapping are applied does not matter. This pos-
tulate is illustrated in Figure 2a. Similarly, the postulate
(Cond) ensures the compatibility of an epistemic state map-
ping with conditionalization. (Cond) is illustrated in Fig-
ure 2b.

It is easy to see that (IE) is equivalent to the conjunction
of (wIE⇒) and (wIE⇐) and that (Ord) is equivalent to the
conjunction of (wOrd⇒) and (wOrd⇐). Other relationships
among the postulates, as the following, are less obvious.

Proposition 1. The following relationships hold between
the introduced postulates:

1. (IE) is equivalent to (Ord).
2. (wIE⇒) is equivalent to (wOrd⇒).
3. (wIE⇐) is equivalent to (wOrd⇐).

Proof. Let ξ : I1  I2 be a epistemic state mapping with
I1, I2 ∈ {TPO ,OCF}.
Ad (2): “⇐” Let (ξΣ,A) satisfy (wOrd⇒). Let Ψ ∈
MI1(Σ, A) and Φ = ξΣ,A(Ψ). If Ψ |= (D|C),
then min(Mod Σ(CD),lΨ) lΨ min(Mod Σ(CD),lΨ). In
this case, (wOrd⇒) implies min(Mod Σ(CD),lΦ) lΦ

min(Mod Σ(CD),lΦ). This is equivalent to Φ |= (C|D).
Therefore, (ξΣ,A) satisfies (wIE⇒).

“⇒” Let (ξΣ,A) satisfy (wIE⇒). Let Ψ ∈ MI1(Σ, A)
and Φ = ξΣ,A(Ψ). Let ω1, ω2 ∈ Ω with ω1 lΨ ω2. Then,
Ψ |= (ω1|ω1∨ω2). (wIE⇒) implies that Φ |= (ω1|ω1∨ω2).
Therefore, ω1 lΦ ω2. We see that (ξΣ,A) satisfies (wOrd⇒).
Ad (3): “⇐” Let (ξΣ,A) satisfy (wOrd⇐). Let
Ψ ∈ MI1(Σ, A) and Φ = ξΣ,A(Ψ). If Φ |= (D|C),
then min(Mod Σ(CD),lΦ) lΦ min(Mod Σ(CD),lΦ). In
this case, (wOrd⇐) implies min(Mod Σ(CD),lΨ) lΨ

min(Mod Σ(CD),lΨ). This is equivalent to Ψ |= (D|C).
Therefore, (ξΣ,A) satisfies (wIE⇐).

“⇒” Let (ξΣ,A) satisfy (wIE⇐). Let Ψ ∈ MI1(Σ, A)
and Φ = ξΣ,A(Ψ). Let ω1, ω2 ∈ Ω with ω1 lΦ ω2. Then,
Φ |= (ω1|ω1∨ω2). (wIE⇐) implies that Ψ |= (ω1|ω1∨ω2).
Therefore, ω1 lΨ ω2. We see that (ξΣ,A) satisfies (wOrd⇐).
Ad (1): This follows from (2) and (3) as (IE) is the con-
junction of (wIE⇒) and (wIE⇐) and (Ord) is the conjunction
of (wOrd⇒) and (wOrd⇐).

In the next sections, we will investigate the introduced
postulates further for specific combinations of I1 and I2.

5 Mapping Total Preorders to Total
Preorders

Let us first consider epistemic state mappings from total pre-
orders to total preorders. If we want (IE) or the equivalent
(Ord) to hold, we do not have much choice.

Proposition 2. The only epistemic state mapping from TPOs
to TPOs that fulfils (Ord) is the identity.

From Proposition 2 it follows that (IE) or (Ord) imply
(SynSplit), (Cond), and (Marg) for epistemic state mappings
from TPOs to TPOs as the identity fulfils these postulates.

But what if we require only (wIE⇒) or (wIE⇐)? To bet-
ter understand these postulates, we can think of a total pre-
order � as a stack of “layers”. We say that two worlds
ω1, ω2 ∈ dom(�) have the same position in �, denoted as
ω1 ≈� ω2, if ω1 � ω2 and ω1 � ω2. The relation ≈� is an
equivalence relation and layers are the equivalence classes
of ≈� on dom(�). I.e., two worlds ω1, ω2 ∈ dom(�) are
in the same layer if they have the same position in the TPO.
The layers are stacked according to the TPO: the lower a
layer is, the smaller the worlds in it are with respect to �.

A consequence of each (wIE⇒) and (wIE⇐) is that we
cannot swap parts of different layers. If ω1 ≺ ω2 then it
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is not possible that ω2 ≺′ ω1 where �′ = ξ(�) if ξ fulfils
either (wIE⇒) or (wIE⇐).

(wOrd⇒) allows the “splitting” of layers. For ω1, ω2 with
ω1 ≈� ω2 we may have an epistemic state mapping ξ ful-
filling (wOrd⇒) with ω1 ≺′ ω2 where �′ = ξ(�). Thus,
(wOrd⇒) allows to extend the set of accepted conditionals as
stated in the equivalent (wIE⇒). However, the opposite di-
rection is not allowed: An epistemic state mapping fulfilling
(wOrd⇒) may not merge parts of different layers together.

(wOrd⇐) is the opposite. For ω1, ω2 with ω1 ≺ ω2 we
may have an epistemic state mapping ξ fulfilling (wOrd⇐)
with ω1 ≈ξ(�) ω2, i.e., merging of layers is allowed. Note
that in this case we have ω1 ≈ξ(�) ω3 ≈ξ(�) ω2 for any
ω1 � ω3 � ω2. Thus, (wOrd⇐) allows to reduce the set of
accepted conditionals which can be seen as a form of forget-
ting. (wOrd⇐) does not allow splitting of layers.

6 Mapping Ranking Functions to Ranking
Functions

Let us consider the case where we map ranking functions
to ranking functions. For such epistemic state mappings all
postulates are compatible, in the sense that all postulates can
be satisfied simultaneously by some epistemic state map-
ping.

Proposition 3. The epistemic state mapping ξ : OCF  
OCF , κ 7→ a · κ for some a ∈ N+ fulfils (Ord), (SynSplit),
(Cond), and (Marg).

To understand the meaning of (Ord), (wOrd⇒), and
(wOrd⇐), we can use the concept of layers introduced in
the previous section for total preorders. For a ranking func-
tion κ, each layer contains the worlds in κ−1(k) for a k ∈
N0. Contrary to total preorders, ranking functions can have
empty layers. This empty layers (or the lack thereof) make
ranking functions more expressive than total preorders.

The implications of (Ord) for epistemic state mappings
from OCFs to OCFs are similar to the implications for epis-
temic state mappings from TPOs to TPOs in terms of layers.
The layers are not swapped, split, or merged by the epis-
temic state mapping. (Ord) allows for adding or removing
empty layers. For example, the epistemic state mapping that
removes all empty layers beneath a non-empty layer fulfils
(Ord).

In contrast to (Ord), the postulate (wOrd⇒) allows split-
ting of layers. If two worlds have the same rank in a rank-
ing function κ they may have different ranks in ξ(κ). But
(wOrd⇒) prevents merging different layers. If two worlds
have different ranks in a ranking function κ before the epis-
temic state mapping, they may not have the same rank in
ξ(κ).

The postulate (wOrd⇐) allows merging but not splitting
of layers. If two worlds ω1, ω2 have different ranks in κ
they may have the same rank in κ′ = ξ(κ) without violating
(wOrd⇐). In this case it holds that κ′(ω1) = κ′(ω2) =
κ′(ω3) for any world ω3 with κ(ω1) 6 κ(ω3) 6 κ(ω2).

7 Mapping Ranking Functions to Total
Preorders

In this section, we want to investigate epistemic state map-
pings from ranking functions to total preorders on worlds.

Proposition 4 (τ∗). There is a unique epistemic state map-
ping τ∗ : OCF  TPO fulfilling (IE).

Proof. Let κ be any ranking function. (Ord) states, that
�= ξ(κ) induces the same ranking function as κ. As the
total preorder induced by a total preorder is the total pre-
order itself, the only epistemic state mapping from ranking
functions to total preorders fulfilling (IE) is

τ∗ : OCF  TPO , κ 7→ l−κ.

In the following, we will investigate the properties of the
epistemic state mapping τ∗. τ∗ is injective: For a given total
preorder � it is easy to construct a ranking function κ such
that � = τ∗(κ). But τ∗ is not surjective as there are more
ranking functions than total preorders for any given (non-
empty) signature.

The transformation τ∗ preserves syntax splittings of the
ranking function.

Proposition 5. τ∗ fulfils (SynSplit).

Proof. Let κ = κ1 ⊕ · · · ⊕ κn be a ranking function over Σ
with a syntax splitting Σ = Σ1 ∪̇ · · · ∪̇ Σn. Let � = τ∗(κ).
Let i ∈ {1, . . . , n} and ω1, ω2 ∈ ΩΣ with ω 6=i1 = ω 6=i2 and
ω1 � ω2. Because τ∗ fulfils (O2Torder), we have κ(ω1) 6
κ(ω2). The syntax splitting on κ and ω 6=i1 = ω 6=i2 implies
κi(ω

i
1) 6 κi(ωi2). This and the syntax splitting on κ implies

ωi1 �|Σi
ωi2.

Thus, Σ1 ∪̇ · · · ∪̇ Σn is a syntax splitting for �.

As a direct implication of this, τ∗ fulfils (SynSplitb).
However, the transformation may introduce new syntax
splittings as the following example shows.

Example 3. Let Σ = {a, b} and κ1, κ2 be ranking functions
over Σ such that

κ1(ab) = 0 κ1(ab) = 1 κ1(ab) = 1 κ1(ab) = 2

κ2(ab) = 0 κ2(ab) = 1 κ2(ab) = 1 κ2(ab) = 3

κ1 has the syntax splitting {a} ∪̇ {b}, κ2 has not. Both
ranking functions are mapped to the total preorder ab ≺
ab, ab ≺ ab by τ∗ which has the syntax splitting {a} ∪̇ {b}.

Furthermore, the example shows that there cannot be a
notion of syntax splitting for total preorders such that for ev-
ery ranking function κ the total preorder τ∗(κ) has a syntax
splitting if and only if κ has a syntax splitting.

The function τ∗ behaves nicely with respect to marginal-
ization and conditionalization.

Proposition 6. τ∗ fulfils (Marg).
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Proof. Let κ ∈ MOCF (Σ, A) be an OCF and Σ1 ⊆ Σ. Let
�1 = τ∗(κ|Σ1

) and �2 = τ∗(κ). Let ωa, ωb ∈ ΩΣ1 .

ωa �1 ωb

⇔ κ|Σ1
(ωa) 6 κ|Σ1

(ωb)

⇔ min({κ(ω) | ω ∈ dom(κ), ω1 = ωa},6)

6 min({κ(ω) | ω ∈ dom(κ), ω1 = ωb},6)

⇔ min({ω | ω ∈ Mod Σ(A), ω1 = ωa},�2)

�2 min({ω | ω ∈ Mod Σ(A), ω1 = ωb},�2)

⇔ ωa �2|Σ1
ωb

Proposition 7. τ∗ fulfils (Cond).

Proof. Let κ ∈ MOCF (Σ, A) be a ranking function and
F ∈ LΣ such that Mod Σ(A) ∩ Mod Σ(F ) 6= ∅. Let �1 =
τ∗(κ|F ) and �2 = τ∗(κ). Let ω1, ω2 ∈ Mod (A ∧ F ).

ω1 �1 ω2

⇔ κ|F (ω1) 6 κ|F (ω2)

⇔ κ(ω1) 6 κ(ω2)

⇔ ω1 �2 ω2

⇔ ω1 �2|F ω2

8 Mapping Total Preorders to Ranking
Functions

Now, we want to consider epistemic state mappings that map
a total preorder to a ranking function.

Since the functions in τ∗ are not bijective, we cannot sim-
ply reverse them. On the contrary, there is more than one
epistemic state mapping ρ : TPO  OCF that fulfils
(Ord). That is not surprising as a ranking function contains
more information than a total preorder over the same do-
main. The additional information is the absolute distance
between worlds. The functions in ρ need to fill in this miss-
ing information.
Example 4. Let ρ : TPO  OCF be an epistemic state
mapping defined as follows. For � ∈ MTPO(Σ, A) let
L�0 = min(dom(�),�) and L�k = min(dom(�) \ (L�0 ∪
· · · ∪L�k−1),�). Every set L�k corresponds to the k-th layer
of �. The sets L�i and L�j are disjunct for i 6= j. We de-
fine ξ(�) = κ with κ(ω) = k such that ω ∈ L�k for every
ω ∈ dom(�).

For example, the TPO ab ≺ ab, ab ≺ ab over Σ = {a, b}
is mapped to κ : {ab 7→ 0, ab 7→ 1, ab 7→ 1, ab 7→ 2} by ρ.

The epistemic state mapping ρ fulfils (Ord).
To limit the possible outcomes of the transformation, we

consider additional postulates such as (SynSplit). Unfortu-
nately, there is no epistemic state mapping ρ that fulfils both
(Ord) and (SynSplit).
Proposition 8. There is no epistemic state mapping ρ :
TPO  OCF that fulfils (Ord) and (SynSplit).

≺

abc

ābc ab̄c abc̄

ab̄c̄

ābc̄

āb̄c

āb̄c̄

Figure 3: Total preorder � on Σ = {a, b, c} with syntax splitting
{a} ∪̇ {b} ∪̇ {c}. There is no ranking function with that syntax
splitting that induces �.

Proof. Let Σ = {a, b, c} be a signature and � be the to-
tal preorder over Σ displayed in Figure 3. This TPO has the
syntax splitting {a}∪̇{b}∪̇{c}. Considering the highlighted
(red and circled) worlds in Figure 3, we can see that there is
no ranking function κ such that both (Ord) holds and κ has
the syntax splitting {a} ∪̇ {b} ∪̇ {c}. The worlds abc and
abc must have the same rank due to (Ord) and the world abc
must have a lower rank than abc. A ranking function with
these properties cannot have the considered syntax splitting:
A ranking function κwith the syntax splitting {a}∪̇{b}∪̇{c}
would also have the syntax splitting {a} ∪̇ {b, c} and there-
fore, we would have κ(abc) − κ(abc) = κ(abc) − κ(abc).

This incompatibility persists if we consider the weaker
(SynSplitb) instead of (SynSplit) and (wIE⇒) instead of
(IE).

Proposition 9. There is no epistemic state mapping ρ :
TPO  OCF that fulfils both (wIE⇒) and (SynSplitb).

Proof. Let Σ = {a, b, c, d} be a signature and � be the total
preorder over Σ displayed in Figure 4. This TPO has the
syntax splitting {a, b} ∪̇ {c, d}. Assume there is a ranking
function κwith syntax splitting {a, b}∪̇{b, c} such that ω1 ≺
ω2 implies κ(ω1) < κ(ω2). Then there are ranking functions
κ1 : Ω{a,b} → N0 and κ2 : Ω{c,d} → N0 such that κ =
κ1 ⊕ κ2. Let

κ1(ab) = 0 κ1(ab) = i κ1(ab) = j κ1(ab) = k

κ2(cd) = 0 κ2(cd) = l κ2(cd) = m κ2(cd) = n.

As ω1 ≺ ω2 implies κ(ω1) < κ(ω2) for every ω1, ω2 ∈ ΩΣ

we have that

m+ j = κ1(ab) + κ2(cd) = κ(abcd) < κ(abcd)

= κ1(ab) + κ2(cd) = i+ n.

Analogously, we get j > n from κ(abcd) > κ(abcd) and
m > i from κ(abcd) > κ(abcd). The combination of these
inequations is a contradiction. The assumed ranking func-
tion κ cannot exist.
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≺

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

Figure 4: Total preorder � on Σ = {a, b, c, d} with syntax split-
ting {a, b} ∪̇ {c, d}. There is no ranking function with that syntax
splitting that induces a superset of �.

However, the combination of (wIE⇐) and (SynSplit) is
consistent, as we will see later (in Proposition 14).

Any epistemic state mapping ρ from total preorders to
ranking functions satisfying (Ord) is compatible with τ∗ (see
Proposition 4) with respect to marginalization and condi-
tionalization.

Proposition 10. Let ρ : TPO  OCF be an epistemic
state mapping that fulfils (Ord). For every total preorder
� ∈MTPO(Σ, A) and Σ′ ⊆ Σ it holds that

τ∗(ρ(�)|Σ′) = �|Σ′ .

Proof. Let ρ satisfy (Ord). Let � be a TPO over Σ and
κ = ρ(�). Let Σ′ ⊆ Σ and �′= τ∗(κ|Σ′). Let ω1, ω2 ∈
dom(�′).

ω1 �′ ω2

⇔ κ|Σ′(ω1) 6 κ|Σ′(ω2)

⇔ min({κ(ω) | ω ∈ ΩΣ, ω1 |= ω},6)

6 min({κ(ω) | ω ∈ ΩΣ, ω2 |= ω},6)

⇔ min({ω | ω ∈ ΩΣ, ω1 |= ω},�)

� min({ω | ω ∈ ΩΣ, ω2 |= ω},�)

⇔ ω1 �|Σ′ ω2

Proposition 11. Let ρ : TPO  OCF be an epistemic
state mapping fulfilling (Ord). For every total preorder �∈
MTPO(Σ, A) and F ∈ LΣ it holds that

τ∗(ρ(�)|F ) = �|F .

Proof. Let ρ satisfy (Ord). Let � be a TPO over Mod Σ(A)
and κ = ρ(�). Let F ∈ LΣ and �′ = τ∗(κ|F ). Let

MOCF (Σ, A) MOCF (Σ′, A)

MTPO(Σ, A) MTPO(Σ′, A)

·|Σ′

·|Σ′

ρ τ∗

(a) A commutating diagram illustrating Proposition 10.

MOCF (Σ, A) MOCF (Σ, A ∧ F )

MTPO(Σ, A) MTPO(Σ, A ∧ F )

·|F

·|F

ρ τ∗

(b) A commutating diagram illustrating Proposition 11.

Figure 5: Illustration of Propositions 10 and 11. Precondition of
both propositions is that ρ : TPO  OCF fulfils (Ord).

ω1, ω2 ∈ Mod Σ(A ∧ F ).

ω1 �′ ω2

⇔ κ|F (ω1) 6 κ|F (ω2)

⇔ κ(ω1) 6 ω2

⇔ ω1 � ω2

⇔ ω1 �|F ω2

It would be useful, if a transformation from a total pre-
order to a ranking function preserved marginalization and
conditionalization in the way τ∗ does for the other direction.

But Postulate (Cond) is unfulfillable in combination with
(Ord). (Cond) is even incompatible with the weaker Postu-
late (wIE⇒).

Proposition 12. There is no epistemic state mapping ρ :
TPO  OCF that fulfils (Cond) and (wIE⇒).

Proof. Let Σ = {a, b} be a signature and�1,�2 be the total
preorders over Σ displayed in Figure 6. We have �1|a =
�2|a and �1|b = �2|b. Let κ1 = ρ(�1) and κ2 = ρ(�2).
If (wIE⇒) and (Cond) were true it would imply κ1(ab) =
κ1|b(ab) = κ2|b(ab) = κ2(ab) and κ1(ab) = κ1|a(ab) =
κ2|a(ab) = κ2(ab). This contradicts (wIE⇒) as (wIE⇒)
requires κ1(ab) > κ1(ab) and κ2(ab) < κ2(ab).

Also, postulate (Marg) is unfulfillable in combination
with (Ord) or (wIE⇒) in general.

Proposition 13. There is no epistemic state mapping ρ :
TPO  OCF that fulfils (wIE⇒) and (Marg).

Proof. Let Σ = {a, b} be a signature and�1,�2 be the total
preorders over Σ displayed in Figure 7. Let Σ1 = {a} and
Σ2 = {b}. We have �1|Σ1

=�2|Σ1
and �1|Σ2

=�2|Σ2
. Let

κ1 = ρ(�1) and κ2 = ρ(�2). If (wIE⇒) and (Marg) were
true it would imply κ1(ab) = κ1|Σ1

(ab) = κ2|Σ1
(ab) =
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≺
1

ab

āb

ab̄ āb̄ ≺
2

ab

āb

ab̄

āb̄

Figure 6: Total preorders �1 and �2 on Σ = {a, b} which show
that (Cond) is incompatible with (wIE⇒) for epistemic state map-
pings from TPOs to OCFs.

≺
1

ab

āb

ab̄

āb̄
≺

2

ab

āb

ab̄

āb̄

Figure 7: Total preorders �1 and �2 on Σ = {a, b} which show
that (Marg) is incompatible with (wIE⇒) for epistemic state map-
pings from TPOs to OCFs.

κ2(ab) and κ1(ab) = κ1|Σ2
(ab) = κ2|Σ2

(ab) = κ2(ab).
This contradicts (wIE⇒) as (wIE⇒) requires κ1(ab) >
κ1(ab) and κ2(ab) < κ2(ab).

The Propositions 9, 12, and 13 all showed that (wIE⇒)
in combination with some of the other postulates cannot be
fulfilled. (wIE⇐) on the other hand can be fulfilled in com-
bination with these other postulates.
Proposition 14. The combination of (wIE⇐), (Cond), and
(Marg) is consistent.

Proof. The epistemic state mapping that maps every TPO
to the uniform ranking function κuni over the respective do-
main fulfils all three postulates.

However, the following triviality result shows that there is
only one epistemic state mapping fulfilling the combination
of (wIE⇐) and (Cond).
Proposition 15. The only epistemic state mapping ρ :
TPO  OCF that fulfils (wIE⇐) and (Cond) maps every
TPO to the trivial uniform ranking function κuni.

Proof. Let ρ be an epistemic state mapping fulfilling
(wIE⇐) and (Marg). Let Σ be a signature and ω1, ω2 ∈ ΩΣ

with ω1 6= ω2. Choose a third world ω3 ∈ ΩΣ with
ω3 /∈ {ω1, ω2} and consider the TPOs

ω3 ≺1 ω2 ≺1 ω1 ≺1 ω4, . . . , ωn

ω3 ≺2 ω1 ≺2 ω2 ≺2 ω4, . . . , ωn

with {ω4, . . . , ωn} = ΩΣ \ {ω1, ω2, ω3}. Let κ1 = ρ(�1)
and κ2 = ρ(�2). The postulate (wIE⇒) requires that

κ1(ω2) 6 κ1(ω1) and κ2(ω1) 6 κ2(ω2). (∗)
Let A = ω3 ∨ ω1 and B = ω3 ∨ ω2. Conditionalization
yields �′A= �1|A = �2|A and �′B= �1|B = �2|B.

Postulate (Cond) requires κ1|A = ρ(�′A) = κ2|A and
κ1|B = ρ(�′B) = κ2|B. This implies κ1(ω1) = κ2(ω1)
and κ1(ω2) = κ2(ω2). With (∗) it follows that κ1(ω2) 6
κ1(ω1) = κ2(ω1) 6 κ2(ω2) = κ2(ω2). Therefore we
can replace the 6 in this chain of (in-)equations by =. Let
C = ω1 ∨ ω2. We can see that both �1|C = {ω1 ≺ ω2}
and �2|C = {ω2 ≺ ω1} are mapped to the uniform ranking
function κuni due to (Cond).

Since we can choose any two worlds as ω1, ω2 in this ar-
gumentation, (Cond) requires that any TPO is mapped to the
uniform ranking function κuni.

Note that this results only apply to epistemic state map-
pings defined for all TPOs. Mappings that are defined over
a certain subset of TPOs might still fulfil combinations of
postulates.

9 Conclusions and Future Work
In this paper, we introduced the notion of epistemic state
mappings, i.e., mappings within and across the frameworks
of OCFs and TPOs. We proposed postulates for epistemic
state mappings that ensure the preservation of certain prop-
erties of the epistemic state across the mapping. The proper-
ties considered in the paper include the set of entailed con-
ditionals and syntax splitting. Other postulates ensure com-
patibility with the operations marginalization and condition-
alization, respectively. Furthermore, we investigated the re-
lationships among the proposed postulates in general and for
each combination of the considered framework. Some pos-
tulates are entailed by other postulates, e.g., (SynSplit) en-
tails (SynSplitb), (IE) is equivalent to (Ord). We also showed
that there are constellations and combinations of the postu-
lates which cannot be satisfied simultaneously, e.g., there is
no epistemic state mapping from TPOs to OCFs that ful-
fils both (wIE⇒) and (SynSplitb). The only epistemic state
mapping from TPOs to OCFs that fulfils both (wIE⇒) and
(SynSplitb) is the trivial mapping of every TPO to κuni rep-
resenting the state of complete ignorance.

Our current work includes extending the investigation of
epistemic state mappings and their properties for establish-
ing further relationships between OCFs and TPOs and thus
to transfer more results between the two frameworks. Fur-
thermore, we will consider epistemic state mappings among
particular subclasses of TPOs and OCFs. We expect to find
interesting and relevant subclasses such that epistemic state
mappings over these subclasses fulfil combinations of pos-
tulates that are not fulfilled by epistemic state mappings over
the full sets of TPOs and OCFs.
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Abstract

Numerous results in psychology demonstrate that inferences
humans draw from conditional sentences (i.e., sentences of
the form “if antecedent then consequent”) differ system-
atically from classical two-valued logical inferences. To-
day, still no formal approach yet exists which captures
the specifics of semantic differences between types of con-
ditional sentences (obligation vs. factual) or types of an-
tecedents (necessary vs. non-necessary). We claim that the
three-valued, non-monotonic weak completion semantics can
model human conditional reasoning adequately, especially
with this distinction. We test the predictions of the weak com-
pletion semantics in a psychological experiment and demon-
strate its cognitive adequacy. We situate the results within
formal and cognitive theories and argue that we need logics
that are descriptive for the human inference process.

1 Introduction
To demonstrate some specifics of human reasoning, we con-
sider four examples: What follows in each of the following
reasoning problems?

1. If it rains, then the roofs must be wet and it rains (AA).
2. If Paul rides a motorbike, then Paul must wear a helmet

and Paul does not ride a motorbike (DA).
3. If the library is open, then Elisa is studying late in the

library and Elisa is studying late in the library (AC).
4. If Nancy rides her motorbike, then Nancy goes to the

mountains and Nancy does not go to the mountains (DC).
In each example, a conditional sentence is given together
with a positive or negative atomic sentence, which is the
affirmation of the antecedent (AA), the denial of the an-
tecedent (DA), the affirmation of the consequent (AC), or
the denial of the consequent (DC). The examples are adapted
from the literature (Dietz Saldanha, Hölldobler, and Lourêdo
Rocha 2017; Byrne 2005; Byrne 1989).

We claim that most humans answer the roofs are wet, Paul
does not wear a helmet, the library is open, and Nancy does
not ride her motorbike, respectively, if they have not been
exposed to logic before. For the Examples 1 and 4 the an-
swers can be obtained by applying modus ponens and modus
tollens, respectively; two valid inference rules in classical
∗Authors are given in alphabetical order.

two-valued logic. However, for Examples 2 and 3 the an-
swers are invalid in classical two-valued logic.

Such a logic does not seem to be of great help when
modeling human conditional reasoning as long as condi-
tional sentences are represented by implications. Moreover,
as Byrne has shown in (Byrne 1989) for each of the four
types of inference, humans may suppress previously drawn
conclusions when additional knowledge becomes available;
this holds for valid as well as invalid inferences with re-
spect to classical two-valued logic. Hence, this calls for
a theory based on non-monotonic logic. The well estab-
lished mental model theory (Johnson-Laird and Byrne 1991;
Khemlani, Byrne, and Johnson-Laird 2018) claims that con-
ditional sentences trigger the representation of sets of pos-
sibilities. The respective possibilities can be modulated by
a reasoner’s knowledge, or pragmatics, or semantics lead-
ing to different representations (Johnson-Laird and Byrne
2002). Barrouillet et al. demonstrated in (Barrouillet, Gros-
set, and Lecas 2000) that there is an implicit order on these
possibilities in conditional reasoning. A default represen-
tation (not considering these modulations above) correctly
predicts the answers in the cases AA and DC, but in the cases
DA and AC it predicts that humans will answer nothing
follows. It is well-known that humans sometimes consider
conditional sentences as bi-conditionals (see e.g. (Johnson-
Laird and Byrne 1991)), but it is surprising that this seems
to hold for all four examples if our earlier claim is correct.

Returning to human conditional reasoning, the main ques-
tion tackled in this paper is how can human conditional
reasoning be adequately modeled? Following Bibel (Bibel
1991) we believe that there is an adequate general proof
method that can automatically discover any proof done by
humans provided the problem (including all required knowl-
edge) is stated in appropriately formalized terms where ad-
equateness, roughly speaking, is understood as the property
of a theorem proving method that for any given knowledge
base, the method solves simpler problems faster than more
difficult ones.

In this paper we will show that the weak completion se-
mantics (WCS), a three-valued, and non-monotonic cogni-
tive theory, can adequately model human conditional reason-
ing. In particular, it can adequately model the four examples
discussed above. Moreover, it can also explain the differ-
ences humans seem to make in the cases AC and DC when
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dealing with conditional sentences classified as obligation
or factual and antecedents classified as necessary or non-
necessary. In the case of AC, humans answer with nothing
follows significantly more often when given a non-necessary
antecedent. In the case of DC, on the other hand, they an-
swer with nothing follows much more often when given a
factual conditional.

In order to validate the claims made above as well as the
predictions made by the WCS we designed and performed
an experiment involving 56 logically naive participants from
Central Europe and Great Britain. The results confirm the
claims made above as well as (most of) the predictions made
by the WCS. But the results also point towards open research
questions.

The paper is organized as follows. After presenting the
WCS in Section 2, we introduce a classification of condi-
tional sentences in Section 3. Taking this classification into
account, we extend the WCS. As shown in Section 4, this
will lead to a number of predictions made by the WCS.
These predictions including the claims made at the begin-
ning of this paper are tested in an experiment specified in
Section 5. The experiment will be evaluated in Section 6.
A discussion and an outlook to future work concludes the
paper in Section 7.

2 The Weak Completion Semantics
We assume the reader to be familiar with logic and logic
programming as presented in e.g. (Fitting 1996) and (Lloyd
1984). Let >, ⊥, and U be truth constants denoting true,
false, and unknown, respectively. A (logic) program is a
finite set of clauses of the form B ← body , where B is
an atom and body is either >, or ⊥, or a finite, non-empty
set of literals. Clauses of the form B ← >, B ← ⊥, and
B ← L1, . . . , Ln are called facts, assumptions, and rules,
respectively, where Li, 1 ≤ i ≤ n, are literals. We restrict
our attention to propositional programs although the WCS
extends to first-order programs as well (Hölldobler 2015).

Throughout this paper, P will denote a program. An
atom B is defined in P iff P contains a clause of the form
B ← body . As an example consider the program

Pc = {C ← A ∧ ¬ab, ab ← ⊥},
where A, C, and ab are atoms. C and ab are defined,
whereas A is undefined. ab is an abnormality predicate
which is assumed to be false. In the WCS, this program
represents the conditional sentence ifA then C.

Consider the following transformation: (1) For all defined
atoms B occurring in P , replace all clauses of the form
B ← body1, B ← body2, . . . byB ← body1∨body2∨ . . . .
(2) Replace all occurrences of← by↔. The resulting set of
equivalences is called the weak completion of P . It differs
from the completion defined in (Clark 1978) in that unde-
fined atoms are not mapped to false, but to unknown instead.

As shown in (Hölldobler and Kencana Ramli 2009a), each
weakly completed program admits a least model under the
three-valued Łukasiewicz logic (Łukasiewicz 1920) (see Ta-
ble 1). This model will be denoted byMP . It can be com-
puted as the least fixed point of a semantic operator intro-
duced in (Stenning and van Lambalgen 2008). Let P be a

program and I a three-valued interpretation represented by
the pair 〈I>, I⊥〉, where I> and I⊥ are the sets of atoms
mapped to true and false by I , respectively, and atoms which
are not listed are mapped to unknown by I . We define
ΦP I = 〈J>, J⊥〉,1 where

J> = {B | there is B ← body ∈ P and I body = >},
J⊥ = {B | there is B ← body ∈ P and

for all B ← body ∈ P we find I body = ⊥}.
Following (Kakas, Kowalski, and Toni 1992) we consider
an abductive framework 〈P,AP , IC, |=wcs〉, where P is a
logic program, AP = {B ← > | B is undefined in P} ∪
{B ← ⊥ | B is undefined in P} is the set of abducibles, IC
is a finite set of integrity constraints,2 andMP |=wcs F iff
MP maps the formula F to true. Let O be an observation,
i.e., a finite set of literals. O is explainable in the abductive
framework 〈P,AP , IC, |=wcs〉 iff there exists a non-empty
X ⊆ AP called an explanation such thatMP∪X |=wcs L
for all L ∈ O andMP∪X satisfies IC. Formula F follows
credulously from P and O iff there exists an explanation X
forO such thatMP∪X |=wcs F . F follows skeptically from
P and O iff O can be explained and for all explanations X
for O we find MP∪X |=wcs F . One should observe that
if an observation O cannot be explained, then nothing fol-
lows credulously as well as skeptically. In case of skeptical
consequences this is an application of the so-called Gricean
implicature (Grice 1975): humans normally do not quantify
over things which do not exist.

Given premises, general knowledge, and observations,
reasoning in the WCS is hence modeled in five steps:

1. Reasoning towards a program P following (Stenning and
van Lambalgen 2008).

2. Weakly completing the program.
3. Computing the least modelMP of the weak completion

of P under the three-valued Łukasiewicz logic.
4. Reasoning with respect toMP .
5. If observations cannot be explained, then applying skep-

tical abduction.
In Section 4 we will explain how these five steps work in
the case of the conditional reasoning tasks considered in this
paper. More examples can be found, for example, in (Di-
etz, Hölldobler, and Ragni 2012) or (Oliviera da Costa et al.
2017).

3 A Classification of Conditional Sentences
Obligation versus Factual Conditionals A conditional
sentence whose consequent appears to be obligatory given
the antecedent is called an obligation conditional. As
pointed out by Byrne (Byrne 2005), for each obligation con-
ditional there are two initial possibilities people think about.
The first possibility is the conjunction of the antecedent and
the consequent; it is permitted. The second possibility is the

1Whenever we apply a unary operator like ΦP to an argument
like I , then we omit parenthesis and write ΦP I instead. Likewise,
we write I body instead of I(body).

2In all examples discussed in this paper IC = ∅.
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F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >

Table 1: The truth tables for the Łukasiewicz logic. One should observe that U← U = U↔ U = > as shown in the grey cells.

conjunction of the antecedent and the negation of the con-
sequent; it is forbidden. Reconsidering Example 1, the per-
mitted possibility is it rains and the roofs are wet, whereas
the forbidden possibility is it rains and the roofs are not wet.
Obligations are deontic obligations, i.e. legal, moral, or so-
cietal obligations of a person to perform certain actions, or
naive physical obligations that cannot be avoided under nor-
mal circumstances. The fact that the consequence is oblig-
atory may be explicitly marked with a word like must, but
this is unnecessary. The exemplary conditional sentences 1
and 2 presented in the Introduction appear to be obligations.

If the consequent of a conditional is not obligatory, then
it is called a factual conditional. In particulr, there is no
forbidden possibility in such a case. This appears to hold for
Examples 3 and 4 given in the introduction.

Necessary versus Non-Necessary Antecedents The an-
tecedent A of a conditional sentence ifA then C is said to
be necessary if and only if its consequent C cannot be true
unless A is true. More precisely, A may be true while C is
not, but C cannot be true whileA is not. For example, the li-
brary being open is a necessary antecedent for studying late
in the library, but visitors of a library can have varying rea-
sons like reading textbooks or having an essay to write for
studying late in the library. In the examples presented in the
introduction, it appears that the antecedents of Examples 1
and 3 are necessary, whereas the antecedents of Examples 2
and 4 appear to be non-necessary.

Pragmatics Humans may classify conditional sentences
as obligation or factual and antecedents as necessary or non-
necessary. This is an informal and pragmatic classification.
It depends on the background knowledge and experience of
a person as well as on the context. For example, the condi-
tional sentence if it is cloudy, then it is raining discussed in
(Khemlani, Byrne, and Johnson-Laird 2018) may be classi-
fied as an obligation conditional with necessary antecedent
by people living in Java, whereas it may be classified as a
factual conditional by people living in Central Europe.

WCS The classification of conditional sentences can be
taken into account by extending the definition of the set of
abducibles:

AeP = AP ∪ AnnP ∪ AfP ,
where AP is as defined above,

AnnP = {C ← > | C is the head of a rule occurring in P
representing a conditional with
non-necessary antecedent},

AfP = {ab ← > | ab occurs in the body of a rule in P
representing a factual conditional}.

C ← A ∧ ¬ab A non-necessary A necessary

Factual ab ← >, C ← > ab ← >
Obligation C ← >

Table 2: The additional facts in the set of abducibles for a rule of
the form C ← A ∧ ¬ab representing a conditional ifA then C.

The set AnnP contains facts for the consequents of condi-
tional sentences with non-necessary antecedent. If an an-
tecedent of a conditional sentence is non-necessary then
there may be other unknown reasons for establishing the
consequent of the conditional sentence. The set AfP con-
tains facts for the abnormalities occurring in the bodies of
the representation of factual conditionals. The antecedent of
a factual conditional may be true, yet the consequent of the
conditional sentence may still not hold. Adding a fact for
the abnormality predicate occurring in the body will force
this abnormality to become true and its negation to become
false. Hence, the body of the clause containing the abnor-
mality predicate will be false.3 Table 2 illustrates the new
facts in the set of abducibles.

4 Predictions of WCS for Human Responses
If a conditional premise ifA then C is given as the first
premise, then according to (Stenning and van Lambalgen
2008) this shall be represented as a license for inference by
the program Pc presented in Section 2. It is called a licence
as in human reasoning it is usually not the case that all an-
tecedents which are necessary to enforce a conclusion are
mentioned. Weakly completing the program we obtain

{C ↔ A ∧ ¬ab, ab ↔ ⊥}.

Computing its least model we obtain 〈∅, {ab}〉. In this
model A and C are mapped to unknown, whereas ab is
mapped to false. Please note that this model is the least fixed
point of the ΦPc

operator which can be computed by iterat-
ing the operator starting with the empty interpretation 〈∅, ∅〉.

In the following subsections we assume that a conditional
sentence ifA then C is given as the first premise and con-
sider the four different cases which occur if a second premise
is added.

3This technique is used in (Dietz, Hölldobler, and Ragni 2012)
to represent an enabling relation and model the suppression effect.
In particular, a library not being open prevents a person from study-
ing in it.
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ifA then C

A

〈∅, {ab}〉

〈{A,C}, {ab}〉 C

Figure 1: AA reasoning. The left column shows the premises, the
middle column the constructed least models, and the right column
the generated responses.

ifA then C

¬A

〈∅, {ab}〉

〈∅, {ab, A,C}〉 ¬C

Figure 2: DA reasoning.

4.1 Affirmation of the Antecedent
If the antecedent A of the conditional sentence ifA then C
is affirmed as a second premise, then this is represented by
the program

Paa = Pc ∪ {A← >}.
Weakly completing the program and computing its least
model we obtain 〈{A,C}, {ab}〉. Reasoning with respect
to this model we conclude C (see Figure 1). This is in-
dependent of the classification of conditional sentences as
obligation or factual or that of antecedent as necessary or
non-necessary. Example 1 presented in the introduction be-
longs to this category withA and C denoting it rains and the
roofs must be wet, respectively.

Predictions of WCS for Human Responses on AA In
AA inferences with the premises ifA then C and A, most
humans will answer C, and this is independent of the classi-
fication of the conditional sentence and the antecedent.

4.2 Denial of the Antecedent
If the antecedent A of the conditional sentence ifA then C
is denied as a second premise, then this is represented by the
program

Pda = Pc ∪ {A← ⊥}.
Weakly completing the program and computing its least
model we obtain 〈∅, {ab, A,C}〉. Reasoning with respect to
this model we conclude ¬C (see Figure 2). This is indepen-
dent of the classification of the conditional sentence as well
as the antecedent. Example 2 presented in the introduction
belongs to this category with A and C denoting Paul rides a
motorbike and Paul is wearing a helmet, respectively.

Prediction of WCS for Human Responses on DA In DA
inferences with the premises ifA then C and ¬A, most hu-
mans will answer ¬C, and this is independent of the classi-
fication of the conditional sentence and the antecedent.

ifA then C

C

〈∅, {ab}〉

abduction APc

〈{A,C}, {ab}〉 A

abduction AePc

〈{C}, {ab}〉 nf

Figure 3: AC reasoning. The answer nothing follows (nf) is given
if the antecedent of the conditional sentence is non-necessary, the
reasoner considers Ae

Pc
and is reasoning skeptically.

4.3 Affirmation of the Consequent
If the consequent C of the conditional sentence ifA then C
is affirmed as a second premise, then this is consid-
ered to be an observation to be explained because C
is already defined in the program Pc. But A is un-
defined. Hence, we obtain APc

= {A ← >,
A ← ⊥}. {A ← >} is the only minimal explanation for
{C}. Let

Pac = Pc ∪ {A← >}.
Weakly completing the program and computing its least
model we obtain 〈{A,C}, {ab}〉. Reasoning with respect
to this least model we conclude A.

However, if the classification of antecedents is taken into
account and if the conditional sentence has a non-necessary
antecedent, then the set of abducibles will be extended by
the fact C ← >. In this case, there is a second minimal
explanation for {C}, viz. {C ← >}. Let

P ′ac = Pc ∪ {C ← >}.
Weakly completing the program and computing its least
model we obtain 〈{C}, {ab}〉. Taking both explanations
into account and reasoning skeptically, we conclude noth-
ing follows (nf) (see Figure 3).4 The case of a conditional
sentence with necessary antecedent is exemplified by Ex-
ample 3 from the introduction, with A and C denoting the
library is open and Elisa is studying late in the library, re-
spectively. Here we conclude that the library is open.

Let us now consider an everyday conditional sentence
with non-necessary antecedent. What follows from

5. if Paul rides a motorbike, then Paul must wear a helmet
and Paul wears a helmet?

We expect that a significant number of humans will answer
nothing follows.

Prediction of WCS for Human Responses on AC In AC
inferences with the premises ifA then C and C, most hu-
mans will answer A. If A is a non-necessary antecedent,
then the number of nf answers will increase. Moreover, the

4Formally, C and ¬ab follow skeptically, but this is nothing
new as C is the observation and ab is assumed to be false in the
weak completion of Pc. We would like to draw conclusions which
preserve semantic information, are parsimonious, and state some-
thing new (Johnson-Laird and Byrne 1991).
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ifA then C

¬C

〈∅, {ab}〉

abduction APc

〈∅, {ab, A,C}〉 ¬A

abduction AePc

〈{ab}, {C}〉 nf

Figure 4: DC reasoning. The answer nf is given if the condi-
tional sentence is a factual one, the reasoner considers Ae

Pc
and is

reasoning skeptically.

time to generate an nf answer will be longer than the time to
generate the answer A.

4.4 Denial of the Consequent
If the consequent C of the conditional sentence ifA then C
is denied as a second premise, then this is again considered
to be an observation because C is already defined in Pc. But
A is undefined. Hence, we obtain APc

= {A ← >, A ←
⊥}. {A ← ⊥} is the only minimal explanation for {¬C}.
Let

Pdc = Pc ∪ {A← ⊥}.
Weakly completing the program and computing its least
model we obtain 〈∅, {ab, A,C}〉. Reasoning with respect
to this least model we conclude ¬A.

However, if the classification of conditional sentences is
taken into account and if the sentence is a factual one, then
the set of abducibles will be extended by the fact ab ← >. In
this case, there is a second minimal explanation for {¬C},
viz. {ab ← >}. Let

P ′dc = Pc ∪ {ab ← >}.
Weakly completing the program and computing its least
model we obtain 〈{ab}, {C}〉. Taking both explanations
into account and reasoning skeptically, we conclude nf (see
Figure 4). Example 4 presented in the introduction belongs
to this category with A and C denoting Nancy rides her mo-
torbike and Nancy goes to the mountains, respectively. As
this was classified as a factual conditional we expect that a
significant number of humans will answer nothing follows.

Let us now consider an everyday obligation conditional.
What follows from

6. if Paul rides a motorbike, then Paul must wear a helmet
and Paul does not wear a helmet?

We expect that most participants will conclude that Paul
does not ride a motorbike.

Prediction of WCS for Human Responses on DC In DC
inferences with the premises ifA then C and ¬C, most hu-
mans will answer ¬A. If the conditional sentence is a factual
one, then the number of nf answers will increase. Moreover,
the time to generate an nf answer will be longer than the time
to generate the answer ¬A.

5 Putting it to the Test
The goal of our investigation is to test the predictions made
in the previous section in an everyday context, i.e., in a con-
text familiar to the participants.

5.1 Participants, materials and methods
We tested 56 logically naive participants on an online web-
site (Prolific, prolific.co). We restricted the participants to
Central Europe and Great Britain to have a similar back-
ground knowledge about weather etc. We assume that the
participants had not received any education in logic beyond
high school training. We took the usual precautions for such
a procedure; for example, the website checked that partici-
pants were proficient speakers of English. The participants
were first presented with a story followed by a first assertion
(“a conditional premise”), and a second assertion (“a (pos-
sibly negated) atomic premise”), and then for each problem
they had to answer the question “What follows?”. Both parts
were presented simultaneously. The participants responded
by clicking one of the answer options. They could take as
much time as they needed. Participants acted as their own
controls.

The participants carried out 48 problems consisting of
the 12 conditionals listed in the Appendix and solved all four
inference types (AA, DA, AC, DC). They could select one
of three responses: nothing follows, the atomic sentence that
had not been presented in the second premise, and the nega-
tion of this atomic sentence. We chose the content based
on (i) previously tested conditional sentences in the litera-
ture and (ii) on everyday context. The classification of the
conditional sentences was done by the authors.

As an example consider the following story: Peter has
a lawn in front of his house. He is keen to make sure that
the grass on lawn does not dry out, so whenever it has been
dry for multiple days, he turns on the sprinkler to water the
lawn. Then, the conditional sentence if it rains, then the
lawn is wet and the negated atomic sentence the lawn is not
wet are given. In this case, the three answers from which
participants could select were it rains, it does not rain, and
nothing follows.

6 Evaluation
6.1 Affirmation of the Antecedent
The total number of selected responses as well as the me-
dian response time (in milliseconds) for C (Mdn C) and nf
(Mdn nf ) responses can be found in Table 3 for AA infer-
ences that is for a given conditional ifA then C and fact A.

The everyday context elicited a high response rate of AA
inferences of about 95% (640 out of 672) for C-answers.
The number of participants answering ¬C or nf as well as
the classification of conditional sentences appears to be irrel-
evant. The WCS models human AA inferences adequately.

6.2 Denial of the Antecedent
The total number of selected responses as well as the me-
dian response time (in milliseconds) for ¬C (Mdn ¬C) and

227



Class C ¬C nf Sum Mdn C Mdn nf

(1) 55 1 0 56 3343 na
(2) 55 1 0 56 3487 na
(3) 53 3 0 56 3516 na

ON 163 5 0 168 3408 na

(4) 53 1 2 56 3403 3472
(5) 53 2 1 56 3903 3572
(6) 54 1 1 56 3088 6959

ONN 160 4 4 168 3543 4183

(7) 49 1 6 56 3885 7051
(8) 54 1 1 56 3559 7349
(9) 54 1 1 56 3710 3826

FN 157 3 8 168 3615 6926

(10) 51 2 3 56 3929 6647
(11) 54 1 1 56 3777 5073
(12) 55 1 0 56 2977 na

FNN 160 4 4 168 3644 5860

Obligation 323 9 4 336 3516 4183

Factual 317 7 12 336 3640 6575

Necessary 320 8 8 336 3546 6926

Non-nec 320 8 8 336 3588 4934

Total 640 16 16 672 3570 5925

Table 3: The results for AA inferences. The grey line shows the
numbers for Example 1. ’na’ is an acronym for not applicable.
’ON’ refers to obligation conditionals with necessary antecedent,
which are the conditional sentences (1) - (3) in the experiment.
’ONN’ refers to obligation conditionals with non-necessary ante-
cendent, which are the conditional sentences (4) - (6) in the exper-
iment. ’FN refers to factual conditionals with necessary antecen-
dent, which are the conditional sentences (7) - (9) in the experi-
ment. ’FNN’ refers to factual conditionals with non-necessary an-
tecedent, which are the conditional sentences (10) - (12) in the ex-
periment. In the lines labeled ’Obligation’ and ’Factual’ the results
for obligation and factual conditionals are shown, respectively. In
the lines labeled ’Necessary’ and ’Non-nec’ the results for condi-
tionals with necessary and non-necessary antecedents are shown,
respectively. The line labeled ’Total’ shows the results for all ex-
periments.

Class C ¬C nf Sum Mdn ¬C Mdn nf

(1) 0 45 11 56 2863 4901
(2) 2 54 0 56 3367 na
(3) 2 51 3 56 3647 10477

ON 4 150 14 168 3356 5115

(4) 1 40 15 56 3722 7189
(5) 3 28 25 56 5735 7814
(6) 4 36 16 56 3602 6240

ONN 8 104 56 168 4064 7471

(7) 2 51 3 56 3928 7273
(8) 1 47 8 56 3296 5728
(9) 1 52 3 56 3549 8735

FN 4 150 14 168 3605 6582

(10) 1 39 16 56 3725 6874
(11) 0 41 15 56 3374 5887
(12) 1 41 14 56 3205 7002

FNN 2 121 45 168 3374 6221

Obligation 12 254 70 336 3583 6613

Factual 6 271 59 336 3518 6221

Necessary 8 300 28 336 3474 5808

Non-nec 10 225 101 336 3646 6700

Total 18 525 129 672 3558 6450

Table 4: The results for DA inferences. The grey line shows the
numbers for Example 2. If the antecedent is non-necessary, then nf
is answered significantly more often (grey cells).

nf (Mdn nf ) responses can be found in Table 4 for DA in-
ferences that is for a given conditional sentence ifA then C
and atomic sentence ¬A.

The everyday context elicited a high response rate of DA
inferences of about 78% (525 out of 672) for ¬C-answers,
but the case of nf -answers varied from 8% (14 out of 168)
up to 33% (56 out of 168). The number of participants an-
swering C is irrelevant.

The answer nf was more often given in case of condi-
tional sentences with non-necessary antecedents than in the
case of conditional sentences with necessary antecedents
(30% vs. 8%, Wilcoxon signed rank, W = 0, p < .001).
The WCS predicts the answer ¬C given by the major-
ity of the participants, but it cannot model the difference
of the nf -answers. We speculate that in case of an nf -
answer the clauses representing conditional sentences with
non-necessary antecedents should not be weakly completed.
This would require a modification to the semantic definitions
of WCS, whose theoretical and algorithmic properties have
not yet been investigated.
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Class A ¬A nf Sum Mdn A Mdn nf

(1) 37 1 18 56 3952 7995
(2) 48 1 7 56 4003 4170
(3) 43 1 12 56 3458 9001

ON 128 3 37 168 3797 8175

(4) 42 1 13 56 3659 8828
(5) 32 1 23 56 4704 6044
(6) 29 1 26 56 3593 4396

ONN 103 3 62 168 3968 5939

(7) 51 1 4 56 3767 4397
(8) 42 1 13 56 3798 4565
(9) 45 1 10 56 3492 4598

FN 138 3 27 168 3699 4565

(10) 34 2 20 56 5224 6289
(11) 29 2 25 56 3218 6205
(12) 33 1 22 56 3483 4992

FNN 96 5 67 168 3885 6116

Obligation 231 6 99 336 3888 6044

Factual 234 8 94 336 3769 5650

Necessary 266 6 64 336 3735 5450

Non-nec 199 8 129 336 3906 6039

Total 465 14 193 672 3826 5802

Table 5: The results for AC inferences. The grey lines show the
results for Examples 3 (line marked (7)) and 5 (line marked (4)). If
the antecedent is non-necessary, then nf is answered significantly
more often (grey cells).

6.3 Affirmation of the Consequent
The total number of selected responses as well as the me-
dian response time (in milliseconds) for A (Mdn A) and nf
(Mdn nf ) responses can be found in Table 5 for AC infer-
ences that is for a given conditional sentence ifA then C and
atomic sentence C.

The everyday context elicited a high response rate of AC
inferences of about 69% (465 out of 672) forA-answers, but
the case of nf -answers varied from 16% (27 out of 168) up to
40% (67 out of 168). The number of participants answering
¬A is irrelevant.

As predicted by the WCS, the answer nf was more often
given in case of conditional sentences with non-necessary
antecedents than in the case of sentences with necessary an-
tecedents (38% vs. 19%, Wilcoxon signed rank, W = 82,
p < .001).

6.4 Denial of the Consequent
The total number of selected responses as well as the me-
dian response time (in milliseconds) for ¬A (Mdn ¬A) and
nf (Mdn nf ) responses can be found in Table 6 for DC in-
ferences that is for a given conditional sentence ifA then C

Class A ¬A nf Sum Mdn ¬A Mdn nf

(1) 1 45 10 56 3449 4758
(2) 0 50 6 56 4058 7922
(3) 2 46 8 56 3796 4517

ON 3 141 24 168 3767 5732

(4) 3 46 7 56 3872 4154
(5) 1 54 1 56 4946 8020
(6) 0 36 20 56 4062 5235

ONN 4 136 28 168 4293 5803

(7) 1 37 18 56 5974 4744
(8) 3 42 11 56 4367 5013
(9) 0 47 9 56 4208 3966

FN 4 126 38 168 4849 4574

(10) 2 35 19 56 4879 4167
(11) 0 39 17 56 4411 5647
(12) 0 34 22 56 3726 3813

FNN 2 108 58 168 4338 4542

Obligation 7 277 52 336 4053 4790

Factual 6 234 96 336 4459 4345

Necessary 7 267 62 336 4096 4758

Non-nec 6 244 86 336 4325 4555

Total 13 511 148 672 4311 5162

Table 6: The results for DC inferences. The grey lines show the
results for Examples 4 (line marked (10)) and 6 (line marked (4)).
In case of factual conditionals, nf is answered significantly more
often (grey cells).

and negative atomic sentence ¬C.
The everyday context elicited a high response rate of DC

inferences of about 76% (511 out of 672) for ¬A-answers,
but the case of nf -answers varied from 14% (24 out of 168)
up to 35% (58 out of 168). The number of participants an-
swering A is irrelevant.

As predicted by the WCS, the answer nf was more of-
ten given in case of a factual conditional than in case of an
obligation conditional (35% vs. 14%, Wilcoxon signed rank,
W = 133, p < .001). So the predicted increase in the selec-
tion of nf can be confirmed.

6.5 Interpreting the Results
For each conditional sentence used in the experiments and
for each type of inference, the WCS correctly predicted the
answer given by a majority of the participants. This can
be explained in classical, two-valued logic if one assumes
that each conditional sentence used in the experiments was
erroneously considered to be a bi-conditional by the ma-
jority. This is quite surprising given that six of the twelve
antecedents of the conditional sentences used in the ex-
periment were classified as non-necessary (see Appendix).
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Moreover, the WCS correctly predicted the rising number
of nf -answers in AC inferences if the antecedent was non-
necessary and in DC inferences if the conditional sentence
was a factual one.

Given an AA inference task, reasoners just conclude the
consequent of the conditional sentence. This corresponds
to modus ponens. Reasoners are familiar with this kind of
inference and deviate seldomly.

Given a DA inference task, most reasoners conclude the
negation of the consequent of the conditional sentence as
predicted. One should note that the median response time
of the answer C in AA inferences and the median response
time of the answer ¬C in DA inferences are almost identical
(3570 vs. 3558). This can also be explained by the WCS
in that the steps taken to construct the least models in AA
and DA inference tasks are very similar. In each case, the
semantic operator ΦP needs to be applied twice to reach a
fixed point. In the connectionist network implementing the
semantic operator (Hölldobler and Kencana Ramli 2009b)
the stable states corresponding to the least fixed points are
computed in six steps in both cases.

Given an AC or DC inference task, reasoners may search
for a minimal explanation of {C} or {¬C} using the setAP
of abducibles. Such a minimal explanation always exists
and gives rise to a model that maps the antecedent A of the
given conditional sentence ifA then C to either true or false,
respectively. This model may be called the preferred model
in the sense of (Ragni and Knauff 2013). Once the preferred
model has been constructed, a reasoner may upon further
thought search for models using the extended setAeP ⊇ AP
of abducibles and find a second minimal explanation, giving
rise to a second model. In this second model A is unknown.
Reasoning skeptically, the reasoner will answer nf. This
not only explains the difference between necessary and non-
necessary antecedents or obligation and factual conditionals
but also why a significantly larger number of participants
answered nf in the case of non-necessary antecedents and
factual conditionals, respectively. In order to fully support
his interpretation of the results, further experiments record-
ing the time of deliberation are required.

WCS correctly predicts that the answer nf appears signif-
icantly less frequently for AC inferences with a necessary
antecedent as well as for DC inferences with an obligation
conditional. However, even though the answer nf does ap-
pear significantly less frequently in these cases, the number
of nf answers for these inference tasks is not as insignifi-
cantly small as in the case of AA inferences. This is not
predicted by WCS, but may have multiple various reasons:
Some reasoners might not consider C or ¬C as an observa-
tion that needs to be explained. Rather, if they might just
add C ← > or C ← ⊥ to the program, in which case
no model assigning A to true or false can be constructed.
Some reasoners might consider C or ¬C as an observation
that needs to be explained but not necessarily by A or ¬A,
respectively; moreover, the classification of the given con-
ditional sentence may depend on the cultural background
of the reasoner. Or the reasoners may make a mistake in
constructing the preferred model, which is – as mentioned
before – the least fixed point of the semantic operator intro-

duced in (Stenning and van Lambalgen 2008).
One should observe that it took participants less time to

answer C and ¬C in AA and DA inferences compared to
the time to answerA and ¬A in AC and DC inferences. This
is a well-known phenomenon, as AC and DC inferences are
considered to be more difficult than AA and DA ones (see
e.g. (Barrouillet, Grosset, and Lecas 2000)). This can also
be explained by the WCS: In AA and DA inferences it suf-
fices to compute the least fixed point of the semantic oper-
ator, whereas in AC and DC inferences abduction needs to
be added considering the consequent or its negation as an
observation to be explained. Apart from that, at the mo-
ment we can only speculate why the median response time
of ¬A-answers in DC inferences is larger than the median
response time of A-answers in AC inferences: This may de-
pend on the sequences in which possible explanations for
the observations are considered; in particular, the possible
explanation {A← >}may have been considered before the
possible explanation {A← ⊥}.

The second hypothesis is, however, a core question: is an-
swering nf an indication that a participant did not know the
answer, or is it at the end of a deliberation process that might
follow the predicted process in the WCS? While this answer
cannot be given in general, the median response times for
nf are higher than for the respective responses A, ¬A, C,
or ¬C. This often indicates more thinking and less guess-
ing, because participants do not quickly and easily respond
nf to avoid thinking. These findings indicate towards the
processes predicted for each inference type in the WCS, but
for further support more studies are necessary.

7 Summary and Outlook
As shown in this paper, the WCS adequately models human
conditional reasoning in that it generates the answers given
by a majority of the participants. It is based on several prin-
ciples: (1) Conditional sentences are represented as licenses
for inference in a (logic) program. (2) Abnormality predi-
cates are used to represent unknown additional conditions;
they are initially assumed to be false. (3) The definitions
given in a program are weakly completed. (4) Programs are
interpreted under the three-valued Łukasiewicz logic. (5)
A positive or negative atomic sentence given as a premise
is considered to be an observation which needs to be ex-
plained if the program already contains a definition for the
atomic sentence. (6) Skeptical abduction is applied. (7) The
Gricean implicature is applied.

These principles are well justified. In most human reason-
ing scenarios not all necessary antecedents of a conditional
sentence will or can be given. The abnormality predicate
takes care of this. If a detail becomes important later on,
then this can be added. Reconsider Example 4, the absence
of gas will prevent Nancy from riding the motorbike to the
mountains. Sufficient amount of gas is an enabling relation
for riding a motorbike. This can be modeled by adding the
rule ab ← ¬gas to the program representing Example 4.
The new rule will override ab ← ⊥ when the weak comple-
tion is computed as ab ↔ ⊥ ∨ ¬gas is semantically equiv-
alent to ab ↔ ¬gas . In general, positive information will
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override a negative one. During the weak completion pro-
cess, the only-if halves of definitions5 are added, which is
based on ideas underlying conditional perfection in linguis-
tics (Van der Auwera 1997).

It has been shown that two-valued logics cannot model
human reasoning (Ragni et al. 2016). Furthermore, un-
der the three-valued Łukasiewics logic, programs and their
weak completions have least models. This does not hold
for the three-valued Kleene logic (Kleene 1952). There,
U ← U = U and, consequently, programs like {a ← b}
have two minimal models 〈{a, b}, ∅〉 and 〈∅, {a, b}〉, but no
least one. Reasoning credulously does not adequately model
human reasoning as shown in this paper, because credulous
reasoning does not account for the growing number of nf -
responses in AC and DC inferences if conditionals are clas-
sified. The Gricean implicature has been applied at various
occasions: an atom can only be false if there is evidence for
this falsehood; otherwise it is unknown. This can be seen
in the definition of weak completion as well as in the defi-
nition of the Φ-operator. Likewise, skeptical consequences
are only defined if the observations are explainable.

The WCS constructs models, which are considered to be
mental models in the sense of (Craik 1945) and (Johnson-
Laird 1983). Reasoning is performed with respect to the
constructed mental models. The WCS is non-monotonic,
multi-valued, and the background knowledge need not be
consistent which might be closer to humans than to formal
databases. Furthermore, the semantic operator, which is
used to construct the models can be represented as a feed-
forward network (Hölldobler and Kencana Ramli 2009b;
Dietz Saldanha et al. 2018a), can be learned (d’Avila Garcez
and Zaverucha 1999; Besold et al. 2017), and can be applied
to model the average human reasoner. Thus, it suggests a
solution for the five fundamental problems for logical mod-
els of human reasoning discussed in (Oaksford and Chater
2020). Moreover, the WCS is computational, meaning an-
swers to queries are computed. It is also comprehensive in
that different human reasoning tasks can be modeled with-
out changing the theory. For example, in (Dietz, Hölldobler,
and Ragni 2012) it is shown that the suppression task (Byrne
1989) is modeled adequately by the WCS. In (Oliviera da
Costa et al. 2017) it is shown that the WCS models human
syllogistic reasoning better than the twelve cognitive theo-
ries investigated in (Khemlani and Johnson-Laird 2012) and
in (Dietz Saldanha et al. 2018b) it was shown how ethical de-
cision problems can be modeled by the WCS. The WCS as
shown here, is a formally founded approach that can explain
human reasoning and is a bridging system at the intersection
between human and formal reasoning.

However, much remains to be done and we have already
raised various open questions in the paper. How can the
increased number of nf -answers in DA inferences be ex-
plained? How can we distinguish between the third truth
value ’unknown’ and ’I don’t have a clue’ in the answers of
participants? How is WCS related to MMT?

5The weak completion of the definition A ← C ∧ ¬ab is
A ↔ C ∧ ¬ab, whereas the bi-conditional corresponding to the
conditional ifA then C is A iff C.
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Appendix: Conditionals of the Experiment
Obligation Conditionals with Necessary Antecedent
(ON) (1) If it rains, then the roofs must be wet. (2) If water
in the cooking pot is heated over 99◦C, then the water starts
boiling. (3) If the wind is strong enough, then the sand is
blowing over the dunes.

Obligation Conditionals with Non-Necessary Antecedent
(ONN) (4) If Paul rides a motorbike, then Paul must wear
a helmet. (5) If Maria is drinking alcoholic beverages in a
pub, then Maria must be over 19 years of age. (6) If it rains,
then the lawn must be wet.

Factual Conditionals with Necessary Antecedent (FN)
(7) If the library is open, then Sabrina is studying late in
the library. (8) If the plants get water, then they will grow.
(9) If my car’s start button is pushed, then the engine will
start running.

Factual Conditionals with Non-Necessary Antecedent
(FNN) (10) If Nancy rides her motorbike, then Nancy goes
to the mountains. (11) If Lisa plays on the beach, then Lisa
will get sunburned. (12) If Ron scores a goal, then Ron is
happy.
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Abstract

Delgrande’s knowledge level account of forgetting provides
a general approach to forgetting syntax elements from sets
of formulas with links to many other forgetting operations,
in particular, to Boole’s variable elimination. On the other
hand, marginalisation of epistemic states is a specific ap-
proach to actively reduce signatures in more complex seman-
tic frameworks, also aiming at forgetting atoms that is very
well known from probability theory. In this paper, we bring
these two perspectives of forgetting together by showing that
marginalisation can be considered as an extension of Del-
grande’s approach to the level of epistemic states. More pre-
cisely, we generalize Delgrande’s axioms of forgetting to for-
getting in epistemic states, and show that marginalisation is
the most specific and informative forgetting operator that sat-
isfies these axioms. Moreover, we elaborate suitable phras-
ings of Delgrande’s concept of forgetting for formulas by
transferring the basic ideas of the axioms to forgetting for-
mulas from epistemic states. However, here we show that
this results in trivial approaches to forgetting formulas. This
finding supports the claim that forgetting syntax elements is
essentially different from belief contraction, as e.g. axioma-
tized in the AGM belief change framework.

1 Introduction
In the past decade, the popularity and presence of artificial
intelligence (AI) grew rapidly and thereby reached almost
every part of our daily lives. From product and media rec-
ommendations, voice assistants, and smart homes over in-
dustrial optimizations, medical research, and traffic, to even
criminal prosecution. And most probably, the importance of
AI will grow even further in the near future, due to the ever-
increasing amount of data that accumulates day by day and
the huge potential it carries. However, so far only little at-
tention was given to the concept of forgetting, even though
it plays an essential role in many areas of our daily lives
as well. In 2018 the General Data Protection Regulation
(GDPR) became applicable, which gives every citizen of the
European Union the right to be forgotten (GDPR - Article
17). This raises the question what it actually means to forget
something, and whether it is sufficient to only delete some
data in order to forget certain information. This is clearly
not the case, since AI systems fitted on this data might still
be able to infer the information we like to forget. Thus, for-
getting is far more complex than just deleting data. From a

cognitive point of view, forgetting is an inextricable part of
any learning process that helps handling information over-
load, sort out irrelevant information, and resolve contradic-
tions. Moreover, it is also of importance when it comes to
knowledge management in organisational contexts (Kluge
et al. 2019), socio-digital systems (Ellwart et al. 2019), and
domains with highly dynamic information such as supply
chain and network management. These few examples illus-
trate the importance of forgetting in AI systems to guarantee
individual privacy and informational self-determination, but
also efficient reasoning by blinding out irrelevant informa-
tion.

In the domain of logic and knowledge representation, sev-
eral logic-specific forgetting definitions exist, e.g. Boole’s
variable elimination (Boole 1854), fact forgetting in first-
order logic (Lin and Reiter 1994) and forgetting in modal
logic (Baral and Zhang 2005). However, none of these spe-
cific approaches argued about the general notions of forget-
ting, but rather provided a way to compute its result. In (Del-
grande 2017), Delgrande presented a general forgetting ap-
proach with the goal to unify many of the hitherto existing
logic-specific approaches. Moreover, he stated a set of prop-
erties he refers to as right and desirable when it comes to the
notions of forgetting. In contrast to Delgrande’s approach,
Beierle et al. (2019) presented a general framework for cog-
nitively different kinds of forgetting, which also consider the
common-sense understanding of forgetting, and their reali-
sation by means of ordinal conditional functions. In the fol-
lowing, we take this broad, common-sense motivated view
of forgetting in contrast to the viewpoint put forward by Del-
grande, who explicitly states that e.g. the belief change of
contraction should not be considered as forgetting.

In this work, we show that Delgrande’s forgetting ap-
proach is included in and even generalized by the cogni-
tively different kinds of forgetting presented in (Beierle et
al. 2019), concretely by means of the marginalisation. More-
over, we show that the forgetting properties Delgrande refers
to as right and desirable are not suitable to axiomatise the
general properties of all kinds of forgetting, but only of those
that aim to forget signature elements instead of formulas.
Thus, the here presented results form another step towards a
general framework for different kinds of forgetting, and pro-
vide a deeper understanding of their properties and inherent
differences.
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Finally, we want to give an overview of how this work is
structured. In Section 2, we give all the preliminaries needed
in the later sections including model theoretical basics and
ordinal conditional functions. Then we will present both of
the above-mentioned general forgetting approaches in Sec-
tion 3 and show that the marginalisation extends Delgrande’s
forgetting to epistemic states, since both approaches always
result in the same posterior beliefs. In Section 4, we will
then generalize and extend the properties stated by Del-
grande to epistemic states, and show that the marginalisation
satisfies all of them. Moreover, we show that the marginal-
isation is the most specific approach satisfying these prop-
erties. Finally, we extend the same properties to forgetting
formulas in epistemic states and show that they are not suit-
able for axiomatizing general properties of forgetting, since
they imply trivial approaches of forgetting formulas. In Sec-
tion 6, we present our conclusions as well as some outlooks
for future works.

2 Formal Basics
In the following, we introduce the formal basics as needed in
this work. With LΣ we state a propositional language over
the finite signature Σ with formulas ϕ,ψ ∈ LΣ. The corre-
sponding interpretations are denoted as ΩΣ. The interpreta-
tions ω ∈ ΩΣ that satisfy a formula ϕ ∈ LΣ, i.e. ω |= ϕ, are
called models of ϕ and are denoted as JϕKΣ. If the signature
of a model set is unambiguously given by the context, we
also write JϕK instead. The explicit declaration of the cor-
responding signature is of particular importance when argu-
ing about different (sub-)signatures. Moreover, each model
ω ∈ ΩΣ can also be considered as a conjunction of literals
corresponding to the truth values ω assigns to each signa-
ture element ρ ∈ Σ. Thus, we can also write ω |= ω′, where
ω, ω′ ∈ ΩΣ, but ω′ is considered to be the conjunction of lit-
erals corresponding to the interpretation. Note that we will
make use of this notation several times in this paper. When
we specifically want to argue about some signature elements
in an interpretation ω ∈ ΩΣ, we denote those signature el-
ements ρ ∈ Σ as ρ̇ for which the concrete truth assignment
is not needed, e.g. pḃḟ ∈ ΩΣ with Σ = {p, b, f}. For
two formulas ϕ,ψ ∈ LΣ, we say that ϕ infers ψ, denoted
as ϕ |=Σ ψ, if and only if JϕK ⊆ JψK. In case that both
model sets are equal, ϕ and ψ are equivalent, i.e. ϕ ≡ ψ, iff
ϕ |= ψ and ψ |= ϕ. Furthermore, the deductively closed set
of all formulas that can be inferred from a formula ϕ ∈ LΣ

is given by CnΣ(ϕ) = {ψ ∈ LΣ | ϕ |=Σ ψ}. Again, the
signature in the index of the Cn operator as well as |= can
be omitted when its clearly given by the context. Notice that
a formula ϕ ∈ LΣ is always equivalent to its deductive clo-
sure, since their models are equal. The deductive closure
CnΣ(ϕ) of a formula ϕ ∈ LΣ can also be expressed by
means of the theory Th(JϕK) = {ψ ∈ LΣ | JϕK |= ψ} of its
models JϕK. All of the above-mentioned formal basics also
hold for sets of formulas Γ ⊆ LΣ.

In order to argue about inferences and models in differ-
ent (sub-)signatures, further basic terms are needed. For two
interpretations ω, ω′ ∈ ΩΣ, we say that ω and ω′ are elemen-
tary equivalent with the exception of the signature elements

P , denoted as ω ≡P ω′, if and only if they agree on the truth
values they assign to all signature elements in Σ \ P (Del-
grande 2017). Furthermore, we define the reduction and ex-
pansion of models in Def. 1, which allow us to argue about
models in sub- or super-signatures as well.

Definition 1. (Delgrande 2017) Let Σ′ ⊆ Σ be signatures
and ϕ ∈ LΣ, ϕ′ ∈ LΣ′ formulas. The reduction to Σ′ of
models JϕKΣ is defined as

(JϕKΣ)|Σ′ = {ω′ ∈ ΩΣ′ | there is ω ∈ JϕKΣ s.t. ω |=Σ ω′}.
The expansion to Σ of models Jϕ′KΣ′ is defined as

(Jϕ′KΣ′)↑Σ =
⋃

ω′∈Jϕ′KΣ′

ω′↑Σ,

where ω′↑Σ = {ω ∈ ΩΣ | ω |=Σ ω′}. Thereby, ω |=Σ ω′

denotes that ω ∈ ΩΣ is more specific than ω′ ∈ ΩΣ′ w.r.t.
Σ, which holds if and only if ω|Σ′ = ω′.

Notice that multiple subsequently performed reductions
(JϕK|Σ′)|Σ′′ can be reduced to a single reduction JϕK|Σ′′ , if
the signature Σ′′ is a subset of Σ′.

In this work, we generally argue about epistemic states in
the form of ordinal conditional functions (OCFs) introduced
in a more general form by Spohn (1988). An OCF κ is a
ranking function that assigns a rank r ∈ N0 to each interpre-
tation ω ∈ ΩΣ with κ−1(0) 6= ∅. The rank of an interpre-
tation can be understood as a degree of plausibility, where
κ(ω) = 0 means that ω is most plausible. The most plau-
sible interpretations according to an OCF κ are also called
models of κ, and are therefore denoted by JκKΣ. The rank of
formula κ(ϕ) = min{κ(ω) | ω ∈ JϕK} is given by the mini-
mal rank of its models, where κ(ϕ∨ψ) = min{κ(ϕ), κ(ψ)}.
The beliefs of an OCF BelΣ(κ) = {ϕ ∈ LΣ | JκK |= ϕ} is
the deductively closed set of formulas ϕ ∈ LΣ that are sat-
isfied by the OCF’s models JκKΣ. Instead of BelΣ(κ) |= ϕ,
we also write κ |= ϕ.

3 Delgrande’s Forgetting and
Marginalisation

In this section, we will first introduce Delgrande’s general
forgetting approach (Delgrande 2017) as well as some of
its most important properties. Afterwards, we consider the
OCF marginalisation as a kind of forgetting (Beierle et al.
2019) and show that it generalizes Delgrande’s definition to
epistemic states.

3.1 Delgrande’s General Forgetting Approach
In (Delgrande 2017), Delgrande defines a general forget-
ting approach with the goal to unify many of the hitherto
existing logic-specific forgetting definitions, e.g. forgetting
in propositional logic (Boole 1854), first-order logic (Lin
and Reiter 1994), or answer set programming (Wong 2009;
Zhang and Foo 2006). While most of these logic-specific
approaches depend on the syntactical structure of the knowl-
edge, Delgrande defines forgetting on the knowledge level
itself, which means that it is independent of any syntacti-
cal properties, and only argues about the beliefs that can be
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inferred. Concretely, this is realized by arguing about the
deductive closure CnΣ(Γ) of a set of formulas Γ as seen in
Def. 2

Definition 2. (Delgrande 2017) Let Σ and P be signatures,
LΣ a language with corresponding consequence operator
CnΣ, and LΣ\P ⊆ LΣ a sub-language, then forgetting a
signature P in a set of formulas Γ ⊆ LΣ is defined as

F(Γ, P ) = CnΣ(Γ) ∩ LΣ\P .

By intersecting the prior knowledge CnΣ(Γ) with the
sub-language LΣ\P all formulas that mention any signature
element ρ ∈ P will be removed. Therefore, forgetting ac-
cording to Def. 2 results in those consequences of Γ that
are included in the reduced language LΣ\P . However, since
many of the logic-specific forgetting approaches do not re-
sult in a sub-language, Delgrande provides a second defini-
tion of forgetting that results in the original language instead
(Def. 3). This allows comparing the results of the different
forgetting approaches more easily.

Definition 3. (Delgrande 2017) Let Σ and P be signatures
and LΣ a language with corresponding consequence oper-
ator CnΣ, then forgetting a signature P in the original lan-
guage LΣ in a set of formulas Γ ⊆ LΣ is defined as

FO(Γ, P ) = CnΣ(F(Γ, P )).

Thereby, forgetting in the original language LΣ is defined
as the deductive closure of F(Γ, P ) with respect to Σ. Due
to the syntax independent nature of Delgrande’s forgetting
definition, it is theoretically applicable to each logic with a
well-defined consequence operator. Note that even though
the posterior knowledge still consists of formulas mention-
ing the forgotten signature elements P , we know that they do
not provide any information about P , since forgetting in the
original signature results in knowledge equivalent the result
of forgetting in the reduced language, due to the deductive
closure CnΣ. This also follows from the model theoretical
properties of both forgetting definitions stated in Th. 1.

Theorem 1. (Delgrande 2017) Let Γ ⊆ LΣ be a set of for-
mulas and P a signature, then the following equations hold:

1. JF(Γ, P )KΣ\P = (JΓKΣ)|(Σ\P )

2. JF(Γ, P )KΣ = ((JΓKΣ)|(Σ\P ))↑Σ

From Th. 1, we can conclude that the models of forgetting
in the original language are equal to those of forgetting in the
reduced language with respect to Σ (Cor. 1).

Corollary 1. Let Γ ⊆ LΣ be a set of formulas and P a
signature, then the following holds:

JFO(Γ, P )KΣ = (JF(Γ, P )KΣ\P )↑Σ = JF(Γ, P )KΣ

In Ex. 1 below, we illustrate the relations of both forget-
ting definitions stated by Delgrande.

Example 1. In this example, we illustrate both Delgrande’s
forgetting in the reduced as well as in the original language,
and its effects on the model level. For this, we consider the
knowledge base Γ = {p → b, f → p, f → b, f → (p ∨

JΓKΣ JF(Γ, {p})KΣ\{p} JFO(Γ, {p})KΣ

pbf , pbf , pbf bf , bf , bf
pbf , pbf , pbf ,
pbf , pbf , pbf

Table 1: Models of Γ, F(Γ, {p}), and FO(Γ, {p}) with respect to
the corresponding signatures of the languages, where Γ = {p →
b, f → p, f → b, f → (p ∨ b)} ⊆ LΣ and Σ = {p, b, f}.

b)} ⊆ LΣ with Σ = {p, b, f}, where the signature elements
can be read as:

p− the observed animal is a penguin,
b− the observed animal is a bird,
f − the observed animal can fly.

Thus, f → (p ∨ b) for example reads if the observed ani-
mal cannot fly, then it is a penguin or not a bird at all. In
the following, we want to forget the subsignature {p} ⊆ Σ.
Forgetting {p} in the reduced language LΣ\{p} results in

F(Γ, {p}) = CnΣ(Γ) ∩ LΣ\{p} = ThΣ(JΓKΣ) ∩ LΣ\{p},

where JΓKΣ = {pbf, pbf, pbf}. Concretely, F(Γ, {p})
consists of all conclusions that can be drawn from Γ and
are part of the reduced language LΣ\{p}, i.e. those conclu-
sions that do not argue about penguins (p). According to
Th. 1, we know that the models after forgetting {p} from Γ
correspond to the prior models JΓKΣ reduced to Σ \ {p}:

JF(Γ, {p})KΣ\{p} = (JΓKΣ)|Σ\{p}

= {pbf, pbf, pbf}|Σ\{p} = {bf, bf, bf}.
Thus, the posterior models after forgetting {p} are obtain by
mapping each interpretation ṗḃḟ to ḃḟ .

If we forget {p} in the original language LΣ instead, we
obtain

FO(Γ, {p}) = CnΣ(F(Γ, {p})) = Th(JF(Γ, {p})KΣ)

= Th((JF(Γ, {p})KΣ\{p})↑Σ) = Th(((JΓKΣ)|Σ\{p})↑Σ).

By means of the deductive closure of F(Γ, {p}) with respect
to Σ, the result of forgetting in the reduced language is ex-
tended by those formulas ϕ ∈ LΣ in the original language
that can be inferred by it. However, due to the relations of
the prior models JΓKΣ and those after forgetting {p} in the
reduced and the original language

JFO(Γ, {p})KΣ = ((JΓKΣ)|Σ\{p})↑Σ

= ({pbf, pbf, pbf}|Σ\{p})↑Σ = {bf, bf, bf}↑Σ
= {pbf, pbf, pbf, pbf, pbf, pbf},

we see that FO(Γ, {p}) can only contain trivial propo-
sition about penguins (p), since we know that if pḃḟ ∈
JFO(Γ, {p})K, then pḃḟ ∈ JFO(Γ, {p})K must hold as well.
This way non-trivial propositions about penguins are pre-
vented, which is why forgetting in the original language can
still be considered as forgetting p. We provide an overview
of the different models in Tab. 1.
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Besides defining a general forgetting approach, Delgrande
also states several properties of his definition, which he
refers to as right and desirable (Delgrande 2017). In this
work, we refer to these properties as (DFP-1)-(DFP-7) as
stated in Th. 2.

Theorem 2. (Delgrande 2017) Let LΣ be a language over
signature Σ and CnΣ the corresponding consequence oper-
ator, then the following relations hold for all sets of formulas
Γ,Γ′ ⊆ LΣ and signatures P, P ′.

(DFP-1) Γ |= F(Γ, P )

(DFP-2) If Γ |= Γ′, then F(Γ, P ) |= F(Γ′, P )

(DFP-3) F(Γ, P ) = CnΣ\P (F(Γ, P ))

(DFP-4) If P ′ ⊆ P , then F(Γ, P ) = F(F(Γ, P ′), P )

(DFP-5) F(Γ, P ∪ P ′) = F(Γ, P ) ∩ F(Γ, P ′)
(DFP-6) F(Γ, P ∪ P ′) = F(F(Γ, P ), P ′)
(DFP-7) F(Γ, P ) = FO(Γ, P ) ∩ LΣ\P

(DFP-1) states the monotony of forgetting, which means
that it is not possible to obtain new knowledge by means
of forgetting. (DFP-2) states that any consequence relation
Γ |= Γ′ of prior knowledge sets is preserved after forget-
ting a signature P in both. (DFP-3) describes that forgetting
always results in a deductively closed knowledge set with re-
spect to the reduced signature. This also corresponds to Del-
grande’s idea of defining forgetting on the knowledge level –
forgetting is applied to a deductively closed set and results in
such. In (DFP-4), Delgrande states that forgetting two sig-
natures P ′ and P consecutively always equals the forgetting
of P , if P ′ is included in P . Thus, forgetting a signature
twice has no effect on the prior knowledge. (DFP-5) and
(DFP-6) argue about iterative and simultaneous forgetting.
Finally, (DFP-7) describes the relation between forgetting in
the original and the reduced language by stating that the re-
sult of forgetting in the reduced language can always be ob-
tained by intersecting the result of forgetting in the original
language with the reduced language. Note that we changed
the notation of (DFP-7) in order to make it more explicit.
For more information on (DFP-1)-(DFP-7) we refer to (Del-
grande 2017).

3.2 Marginalisation
A general framework of forgetting and its instantiation to
an approach using OCFs is developed in (Beierle et al.
2019). For the purpose of this paper, we concentrate on the
marginalisation, which on a cognitive level corresponds to
the notion of focussing and can briefly be summarized as:

1. Focussing on relevant aspects retains our beliefs about
them.

2. Focussing on relevant aspects (temporarily) changes our
beliefs such that they do not contain any information
about irrelevant aspects anymore.

In practice, this notion of forgetting is useful when it
comes to efficient and focussed query answering by means
of abstracting from irrelevant details, e.g. marginalisation
is crucially used in all inference techniques for probabilistic
networks. At this point, we consider the relevant aspects to

be given and focus on the marginalisation (Def. 4) as a kind
of forgetting as such.
Definition 4. (Beierle et al. 2019) Let κ be an OCF over
signature Σ and ω′ ∈ ΩΣ′ an interpretation with Σ′ ⊆ Σ.
κ|Σ′ is called a marginalisation of κ to Σ′ with

κ|Σ′(ω′) = min{κ(ω) | ω ∈ ΩΣ with ω |= ω′}.
By marginalising an OCF to a subsignature Σ′, we con-

sider interpretations over Σ′ as conjunctions and assign the
corresponding rank to them.

The first notion of focussing corresponds to Lem. 1,
which states that a formula over the reduced signature is
believed after the marginalisation, if and only if it is also
believed by the prior OCF. Thus, the beliefs that only argue
about the relevant aspects Σ′ are retained.
Lemma 1. Let κ be an OCF over Σ and Σ′ ⊆ Σ, then for
each ϕ ∈ LΣ′ the following holds:

κ|Σ′ |= ϕ⇔ κ |= ϕ

Similarly to Delgrande’s forgetting, marginalisation re-
duces beliefs to a subsignature. Note that Lem. 1 di-
rectly follows from (Beierle et al. 2019), where they already
stated that this relations generally holds for conditional be-
liefs. Furthermore, Lem. 1 allows us to express the poste-
rior beliefs analogously to Delgrande’s forgetting definition
(Prop. 1).
Proposition 1. Let κ be an OCF over signature Σ and Σ′ ⊆
Σ a reduced signature.

Bel(κ|Σ′) = Bel(κ) ∩ LΣ′

Proof of Prop. 1. Due to Lemma 1, we haveBel(κ)∩LΣ′ =
Bel(κ|Σ′) ∩ LΣ′ = Bel(κ|Σ′) because (Bel(κ|Σ′) ⊆ LΣ′).

Thereby, Prop. 1 also corresponds to the second notion
of focussing, due to the intersection with reduced language
LΣ′ . The above-stated relations of the prior and posterior
beliefs further imply that the models of the posterior beliefs
are equal to the those of the prior when reducing them to Σ′

(Prop. 2). This rather technical property allows us to freely
switch between the models of the marginalised and the prior
OCF, which will be useful in later proofs.
Proposition 2. Let κ be an OCF over signature Σ and Σ′ ⊆
Σ a subsignature. Then Jκ|Σ′K = JκK|Σ′ holds.

Proof of Prop. 2. By definition,

Jκ|Σ′K = {ω′ ∈ ΩΣ′ | κ|Σ′(ω′) = 0},
so applying Def. 4 yields

Jκ|Σ′K
={ω′ ∈ ΩΣ′ | min{κ(ω) | ω ∈ ΩΣ with ω |= ω′} = 0},

which is the same as

{ω′ ∈ ΩΣ′ | ∃ω ∈ ΩΣ with ω |= ω′ and κ(ω) = 0}
={ω′ ∈ ΩΣ′ | ∃ω ∈ ΩΣ with ω |= ω′ and ω ∈ JκK}
={ω′ ∈ ΩΣ′ | ∃ω ∈ JκK with ω |= ω′} = JκK|Σ′ .
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Similar to Delgrande’s idea of forgetting in the original
language, we might be interested in arguing about the origi-
nal signature after focussing, e.g. for reasons of comparabil-
ity. Thus, we define the concept of lifting an OCF in Def. 5
below.

Definition 5. Let κ′ be an OCF over signature Σ′ ⊆ Σ. A
lifting of κ′ to Σ, denoted by κ′↑Σ, is uniquely defined by
κ′↑Σ(ω) = κ′(ω|Σ′) for all ω ∈ ΩΣ.

By means of lifting an OCF κ′ over signature Σ′ to a sig-
nature Σ with Σ′ ⊆ Σ, we (re-)introduce new signature ele-
ments to κ′ in a way that κ′↑Σ acts invariantly towards them.
This is guaranteed by the fact that all interpretations ω ∈ ΩΣ

that only differ in the truth value they assign to the new sig-
nature elements Σ \Σ′ are assigned to the same rank. Anal-
ogously to Prop. 2, we show in Prop. 3 that the models of a
lifted OCF are equal to the prior models when expanded to
the super-signature.

Proposition 3. Let κ′ be an OCF over signature Σ′ ⊆ Σ.
Then the models of the lifted κ′ are the expanded models of
κ′, i.e., Jκ′↑ΣK = Jκ′K↑Σ.

Proof of Prop. 3. By definition,

Jκ′K↑Σ =
⋃

ω′∈Jκ′K
{ω ∈ ΩΣ | ω |= ω′},

and hence

Jκ′K↑Σ = {ω ∈ ΩΣ | ∃ω′ ∈ Jκ′KΣ′ with ω |= ω′}
= {ω ∈ ΩΣ | ∃ω′ ∈ Jκ′KΣ′ with ω|Σ′ ≡ ω′},

due to ω |= ω′ ⇔ ω|Σ′ = ω′ (Def. 1). Since we know that
if there is an interpretation ω′ ∈ Jκ′KΣ′ that is equivalent to
ω|Σ′ , then ω|Σ′ is included in Jκ′KΣ′ as well, and vice-versa,
this last set is the same as

{ω ∈ ΩΣ | ω|Σ′ ∈ Jκ′KΣ′} = {ω ∈ ΩΣ | κ′(ω|Σ′) = 0}
={ω ∈ ΩΣ | κ′↑Σ(ω) = 0} = Jκ′↑ΣK,

again by definition.

Therefore, we also know that the beliefs after lifting are
equivalent to the prior with respect to Σ, which can also be
denoted as the deductive closure of the prior beliefs with
respect to Σ (Prop. 4).

Proposition 4. Let κ′ be an OCF over signature Σ′ ⊆ Σ
and κ′↑Σ be a lifting of κ′ to Σ, then the beliefs of κ′↑Σ are
given by Bel(κ′↑Σ) = CnΣ(Bel(κ′)).

Proof of Prop. 4. In a straightforward way, we obtain from

Prop. 3

Bel(κ′↑Σ) = Th(Jκ′↑ΣK)
= CnΣ(

∨

ω∈Jκ′
↑ΣK
ω) = CnΣ(

∨

ω∈Jκ′K↑Σ

ω)

= CnΣ(
∨

ω∈ ⋃
ω′∈Jκ′K

ω′
↑Σ

ω) = CnΣ(
∨

ω′∈Jκ′K
(

∨

ω∈ω′
↑Σ

ω))

= CnΣ(
∨

ω′∈Jκ′K
ω′) = CnΣ(CnΣ′(

∨

ω′∈Jκ′K
ω′))

= CnΣ(Th(Jκ′K)) = CnΣ(Bel(κ′)).

Prop. 4 clearly shows that the beliefs of a marginalised
OCF relate to those after lifting it to the original signature
again in the same way Delgrande’s forgetting in the original
language relates to forgetting in the reduced language (see
Def. 3).

Finally, we can show that the marginalisation generalizes
Delgrande’s forgetting definition to epistemic states, since
both forgetting approaches result in equivalent posterior be-
liefs when applied to the same prior knowledge (Th. 3).

Theorem 3. Let Γ ⊆ LΣ be a set of formulas and κ an OCF
over signature Σ with Bel(κ) ≡ Γ, then

F(Γ, P ) = Bel(κ|(Σ\P ))

holds for each signature P .

Proof of Th. 3. Due to Prop. 1, we have Bel(κ|(Σ\P )) =
Bel(κ) ∩ LΣ\P . Since Bel(κ) ≡ Γ, this is the same as
CnΣ(Γ) ∩ LΣ\P = F(Γ, P ), by definition.

The equivalence of the prior knowledge for both ap-
proaches can be stated as Bel(κ) ≡ Γ, which means that
the set of formulas Delgrande’s forgetting is applied to must
be equivalent to the prior beliefs Bel(κ). Furthermore, note
that Delgrande’s forgetting definition argues about the el-
ements that should be forgotten, while the marginalisation
argues about the remaining subsignature.

In Ex. 2 below, we illustrate the marginalisation as well
as a subsequently performed lifting of an OCF κ over the
signature Σ = {p, b, f}, and show how marginalisation
and lifting corresponds to Delgrande’s forgetting definitions.
For this we refer to the example on Delgrande’s forgetting
(Ex. 1).

Example 2. In this example, we illustrate a marginalisa-
tion and a consecutively performed lifting of the OCF κ over
Σ = {p, b, f} (see Ex. 1) given in Tab. 2, as well as the rela-
tions to Delgrande’s forgetting definitions. In the following,
we want to forget the subsignature {p} ⊆ Σ.

First of all, we want to note that the beliefs of κ are equiv-
alent to the knowledge base Γ (Ex. 1), since their corre-
sponding models are the same:

BelΣ(κ) = Th(JκKΣ) = Th({pbf, pbf, pbf})
= Th(JΓKΣ) = CnΣ(Γ) ≡ Γ
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κ κ|(Σ\{p}) (κ|(Σ\{p}))↑Σ
2 pbf , pbf - -
1 pbf , pbf , pbf bf pbf , pbf

0 pbf , pbf , pbf bf , bf , bf
pbf , pbf , pbf ,
pbf , pbf , pbf

Table 2: OCFs κ over signature Σ = {p, b, f}, as well
as its marginalisation κ|(Σ\{p}) and the corresponding lifting
(κ|(Σ\{p}))↑Σ.

Marginalising κ to Σ \ P results in κ|(Σ\P ) as given in
Tab. 2. There it can be seen that the posterior most plau-
sible interpretation correspond to those of κ when omit-
ting p, i.e. each interpretation ṗḃḟ ∈ JκK is mapped to
ḃḟ ∈ Jκ|(Σ\{p})K. This exactly corresponds to the way Del-
grande’s forgetting in the reduced language affects the mod-
els of the given knowledge base Γ:

Jκ|(Σ\{p})KΣ\P = JκK|(Σ\{p}) = {pbf, pbf, pbf}|(Σ\{p})
= {bf, bf, bf} = JF(Γ, {p})KΣ\{p}
In conclusion, we that know the posterior beliefs of the
marginalisation and the result of Delgrande’s forgetting
must be equal:
Bel(κ|(Σ\{p})) = Th(Jκ|(Σ\{p})KΣ\{p})

= Th({bf, bf, bf}) = Th(JF(Γ, {p})KΣ\P ) = F(Γ, {p})
When we lift the marginalised OCF κ|(Σ\{p}) back to

the original signature Σ, the posterior most plausible inter-
pretations can be obtained by mapping each interpretation
ḃḟ ∈ Jκ|(Σ\{p})KΣ\{p} to {pḃḟ , pḃḟ} ⊆ J(κ|(Σ\{p}))↑ΣKΣ

(see Tab. 2). Just as for the marginalisation, this exactly
corresponds to the way Delgrande’s forgetting in the origi-
nal language affects the prior models of the knowledge base
Γ:

J(κ|(Σ\{p}))↑ΣKΣ = {bf, bf, bf}↑Σ
= {pbf, pbf, pbf, pbf, pbf, pbf} = JFO(Γ, {p})KΣ

Therefore, the result of Delgrande’s forgetting in the origi-
nal language is equal to the beliefs after marginalising and
lifting κ:

BelΣ((κ|(Σ\{p}))↑Σ) = Th(J(κ|(Σ\{p}))↑ΣKΣ)

= Th({pbf, pbf, pbf, pbf, pbf, pbf})
= Th(JFO(Γ, {p})KΣ) = FO(Γ, {p})

From the equivalence stated in Th. 3, we know that all re-
lations of the logic-specific forgetting approaches and Del-
grande’s general approach that can be traced back to the
equivalence of the results must hold for the marginalisa-
tion as well. In the following, we exemplarily state this for
Boole’s atom forgetting in propositional (Def. 6), of which
we know that it can also be described by means ofF (Th. 4).
Definition 6. (Boole 1854) Let ϕ ∈ LΣ be a formula and
ρ ∈ LΣ be an atom. Forgetting ρ in ϕ is then defined as

forget(ϕ, ρ) = ϕ[ρ/>] ∨ ϕ[ρ/⊥],

where ϕ[ρ/>] denotes the substitution of ρ by >, and
ϕ[ρ/⊥] the substitution by ⊥.

Theorem 4. (Delgrande 2017) Let LΣ be the language in
propositional logic with signature Σ and let ρ ∈ Σ be an
atom.

forget(ϕ, ρ) ≡ F(ϕ, {ρ})
From Th. 3 and Th. 4, we can directly conclude that

Boole’s forgetting definition can also be realized by means
of a marginalisation (Cor. 2).

Corollary 2. Let κ be an OCF over signature Σ andϕ ∈ LΣ

a formula with Bel(κ) ≡ ϕ, then

forget(ϕ, ρ) ≡ Bel(κ|Σ\{ρ})
holds for each atom ρ ∈ Σ.

4 Postulates for Forgetting Signatures in
Epistemic States

In (Delgrande 2017), Delgrande argues that the properties
(DFP-1)-(DFP-7) (Th. 2) of his forgetting definition are
right and desirable for describing the general notions of for-
getting. Since we already proved that his definition can be
generalised to epistemic states by means of the marginal-
isation, we also present an extended and generalised form
of (DFP-1)-(DFP-7), namely (DFPes-1)Σ-(DFPes-6)Σ, and
show that the marginalisation satisfies all of them. For this,
let Ψ,Φ be epistemic states, P, P ′, P1, P2 signatures, and ◦Σf
an arbitrary operator that maps an epistemic state together
with a signature to a new epistemic state:

(DFPes-1)Σ Bel(Ψ) |= Bel(Ψ ◦Σf P )

(DFPes-2)Σ If Bel(Ψ) |= Bel(Φ), then Bel(Ψ ◦Σf P ) |=
Bel(Φ ◦Σf P )

(DFPes-3)Σ If P ′ ⊆ P , then Bel((Ψ ◦Σf P ′) ◦Σf P ) ≡
Bel(Ψ ◦Σf P )

(DFPes-4)Σ Bel(Ψ ◦Σf (P1 ∪ P2)) ≡ Bel(Ψ ◦Σf P1) ∩
Bel(Ψ ◦Σf P2)

(DFPes-5)Σ Bel(Ψ◦Σf (P1∪P2)) ≡ Bel((Ψ◦Σf P1)◦Σf P2)

(DFPes-6)Σ Bel(Ψ ◦Σf P ) ≡ Bel((Ψ ◦Σf P )↑Σ) ∩ LΣ\P

For a detailed explanation of the above-stated postulates
(DFPes-1)Σ-(DFPes-6)Σ, we refer to the explanations of
the postulates (DFP-1)-(DFP-7) as originally stated by Del-
grande. However, there are a few points we want to em-
phasise in particular. First, since the beliefs of an epistemic
state are deductively closed by definition, it is not necessary
to maintain (DFP-3). Notice that due to omitting (DFP-3)
the postulates (DFP-4)-(DFP-7) correspond to (DFPes-3)Σ-
(DFPes-6)Σ. Furthermore, we expressed the forgetting in
the original signature FO(Γ, P ) in (DFP-7) as the beliefs
after forgetting P and lifting the posterior epistemic state
back to the original signature. The models of FO(Γ, P ) are
equal to the models of forgetting P in Γ in the reduced sig-
nature lifted back to the original signature, i.e. JF(Γ, P )K↑Σ
(Cor. 1). When we consider the models ofBel((Ψ◦Σf P )↑Σ),
i.e. JΨ ◦Σf P K↑Σ, we see that this also describes the mod-
els after forgetting P lifted back to the original signature.
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Therefore, (DFPes-6)Σ exactly matches the property origi-
nally stated by (DFP-7). In the following, we refer to those
operators satisfying (DFPes-1)Σ-(DFPes-6)Σ as signature
forgetting operators.

Next, we show in Th. 5 that the marginalisation satisfies
(DFPes-1)Σ-(DFPes-6)Σ, and therefore not only yields re-
sults equivalent to those of Delgrande’s forgetting definition,
but also corresponds to the notions of forgetting stated by
Delgrande by means of (DFP-1)-(DFP-7).

Note that there exist forgetting approaches that yield re-
sults semantically equivalent to those of Delgrande’s ap-
proach, but do not satisfy (DFP-1)-(DFP-7). An example
is Boole’s atom forgetting (Def. 6), which violates (DFP-3).
Theorem 5. Let κ be an OCF over signature Σ and P a
signature. The marginalisation κ|(Σ\P ) to a subsignature
(Σ \ P ) ⊆ Σ satisfies (DFPes-1)Σ-(DFPes-6)Σ.

Proof of Th. 5. In the following, we assume the epistemic
states Ψ and Φ to be OCFs, since the marginalisation is
specifically defined over OCFs, denoted as κ and κ′, and
further denote the marginalisation κ|Σ\P as κ ◦Σ,mf P .

For (DFPes-1)Σ, we need to show Bel(κ) |= Bel(κ◦Σ,mf

P ), which means Bel(κ) |= Bel(κ|(Σ\P )). This holds due
to Lem. 1. For (DFPes-2)Σ, we presuppose Bel(κ) |=
Bel(κ′). Then also Bel(κ) ∩ LΣ\P |= Bel(κ′) ∩ LΣ\P
which is equivalent to Bel(κ|(Σ\P )) |= Bel(κ′|(Σ\P )) be-

cause of Prop. 1, and hence by definition, Bel(κ ◦Σ,mf P ) |=
Bel(κ′ ◦Σ,mf P ).

Regarding (DFPes-3)Σ, we have the following equalities
due to Prop. 2, and because of P ′ ⊆ P :

Bel((κ ◦Σ,mf P ′) ◦Σ,mf P )

= Bel(κΣ\P ′ ◦Σ,mf P ) = Bel((κ|Σ\P ′)|(Σ\P ′)\P )

= Bel((κ|Σ\P ′)|(Σ\(P ′∪P ))) = Th(J(κ|Σ\P ′)|(Σ\(P ′∪P ))K)
= {ϕ ∈ LΣ\(P ′∪P ) | J(κ|Σ\P ′)|(Σ\(P ′∪P ))K |= ϕ}
= {ϕ ∈ LΣ\(P ′∪P ) | Jκ|Σ\P ′K|Σ\(P ′∪P ) |= ϕ}
= {ϕ ∈ LΣ\(P ′∪P ) | (JκK|Σ\P ′)|Σ\(P ′∪P ) |= ϕ}
= {ϕ ∈ LΣ\(P ′∪P ) | JκK|Σ\(P ′∪P ) |= ϕ}
= {ϕ ∈ LΣ\P | JκK|Σ\P |= ϕ}
= {ϕ ∈ LΣ\P | Jκ|Σ\P K |= ϕ}
= Th(Jκ|Σ\P K) = Bel(κ|Σ\P ) = Bel(κ ◦Σ,mf P ).

The proof of (DFPes-4)Σ is mainly based on Prop. 1, here
we compute

Bel(κ ◦Σ,mf (P1 ∪ P2)) = Bel(κ|Σ\(P1∪P2))

= Bel(κ) ∩ LΣ\(P1∪P2) = Bel(κ) ∩ LΣ\P1
∩ LΣ\P2

= Bel(κ) ∩Bel(κ) ∩ LΣ\P1
∩ LΣ\P2

= (Bel(κ) ∩ LΣ\P1
) ∩ (Bel(κ) ∩ LΣ\P2

)

= Bel(κ|Σ\P1
) ∩Bel(κ|Σ\P2

)

= Bel(κ ◦Σ,mf P1) ∩Bel(κ ◦Σ,mf P2).

Similarly for (DFPes-5)Σ, we have

Bel(κ ◦Σ,mf P1 ∪ P2) = Bel(κ|Σ\(P1∪P2))

= Bel(κ) ∩ LΣ\(P1∪P2) = Bel(κ) ∩ LΣ\(P1∪(P1∪P2))

= Bel(κ) ∩ (LΣ\P1
∩ LΣ\(P1∪P2))

= (Bel(κ) ∩ LΣ\P1
) ∩ LΣ\(P1∪P2)

= Bel(κ|Σ\P1
) ∩ LΣ\(P1∪P2) = Bel(κ|Σ\P1

) ∩ L(Σ\P1)\P2

= Bel((κ|Σ\P1
)|(Σ\P1)\P2

) = Bel((κ ◦Σ,mf P1)|(Σ\P1)\P2
)

= Bel((κ ◦Σ,mf P1) ◦Σ,mf P2).

Finally, Prop. 4 is used for proving (DFPes-6)Σ:

Bel((κ ◦Σ,mf P )↑Σ) ∩ LΣ\P = Bel((κ|Σ\P )↑Σ) ∩ LΣ\P

= CnΣ(Bel(κ|Σ\P )) ∩ LΣ\P = Bel(κ|Σ\P ) ∩ LΣ\P

= Bel(κ|Σ\P ) = Bel(κ ◦Σ,mf P ).

From Th. 5 above, we can also conclude that the marginal-
isation forms the signature forgetting operator that only in-
duces minimal changes to the prior beliefs.
Proposition 5. Let κ be an OCF over signature Σ, P ⊆
Σ a subsignature, and ◦Σf an operator satisfying (DFPes-
1)Σ-(DFPes-6)Σ, where κ ◦Σf P is an OCF over the reduced
signature Σ \ P , then the following relation holds:

Bel(κ|Σ\P ) |= Bel(κ ◦Σf P )

Proof of Prop. 5. Because of (DFPes-1)Σ and (DFPes-6)Σ,
we haveBel(κ) |= Bel(κ◦Σf P ) = Bel((κ◦Σf P )↑Σ)∩LΣ\P ,
hence κ |= ϕ for all ϕ ∈ Bel((κ ◦Σf P )↑Σ) ∩ LΣ\P . But
then also, due to Lem. 1, κ|Σ\P |= ϕ for all ϕ ∈ Bel((κ ◦Σf
P )↑Σ) ∩ LΣ\P , which means Bel(κ|Σ\P ) |= Bel((κ ◦Σf
P )↑Σ) ∩ LΣ\P , and therefore again due to (DFPes-6)Σ,
Bel(κ|Σ\P ) |= Bel(κ ◦Σf P ), which was to be shown.

Thus, we know that any signature forgetting operator
other than the marginalisation must induce further belief
changes for some epistemic states and signatures. Such
signature forgetting operators could for example depend on
some model prioritisation in addition to the epistemic state
and the signature itself.

5 Forgetting Signatures vs. Forgetting
Formulas – A Triviality Result

In the following, we want to discuss (DFP-1)-(DFP-7) dis-
playing the right properties to describe the general notions
forgetting. In our opinion, these properties might display
the right properties when assuming forgetting as a reduction
of the language, or as forgetting signature elements, respec-
tively. Delgrande also comments on this, and argues that
other (belief change) operators that could be considered as
some kind of forgetting, e.g. contraction, should simply not
be considered as forgetting. We think that this view on the
concept of forgetting as such is debatable, since there exist
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multiple intuitively and cognitively different kinds of forget-
ting (Beierle et al. 2019) from which Delgrande’s approach,
which corresponds to the notion of focussing (Th. 3), only
forms one. Therefore, it is still to be investigated whether
(DFP-1)-(DFP-7) also states the right properties for other
kinds of forgetting.

Following the overview of cognitively different kinds of
forgetting presented in (Beierle et al. 2019), it can be seen
that the concept of focussing, i.e. the marginalisation, forms
the only kind of forgetting that describes forgetting with re-
spect to signatures. Thus, in order to investigate Delgrande’s
forgetting properties for those kinds of forgetting that argue
about formulas instead, we have to generalise and extend
(DFP-1)-(DFP-7) such that they not only argue about arbi-
trary epistemic states and operators, but also about formulas.
We refer to them as (DFPes-1)L-(DFPes-6)L. For this, let
Ψ,Φ be epistemic states, ϕ,ψ ∈ L formulas, and ◦Lf an ar-
bitrary belief change operator:

(DFPes-1)L Bel(Ψ) |= Bel(Ψ ◦Lf ϕ)

(DFPes-2)L If Bel(Ψ) |= Bel(Φ), then Bel(Ψ ◦Lf ϕ) |=
Bel(Φ ◦Lf ϕ)

(DFPes-3)L If ϕ |= ψ, then Bel(Ψ ◦Lf ϕ) ≡ Bel((Ψ ◦Lf
ψ) ◦Lf ϕ)

(DFPes-4)L Bel(Ψ◦Lf (ϕ∨ψ)) ≡ Bel(Ψ◦Lf ϕ)∩Bel(Ψ◦Lf
ψ)

(DFPes-5)L Bel(Ψ ◦Lf (ϕ ∨ ψ)) ≡ Bel((Ψ ◦Lf ϕ) ◦Lf ψ)

(DFPes-6)L If ϕ 6≡ >, then Bel(Ψ ◦Lf ϕ) |6= ϕ

While the extension to (DFPes-1)L-(DFPes-6)L works
almost analogously to the extension to (DFPes-1)Σ-(DFPes-
6)Σ, there exist some crucial differences, which we will ad-
dress in the following. In (DFP-4), Delgrande argues about
forgetting signature P, P ′ for which we assume that P ′ is
fully included in P . In order to extend and generalise this
property, we have to examine how this notion can be de-
scribed with respect to formulas. We found it most accurate
to generalise this relation of the information we would like
to forget by means of the specificity of formulas, i.e. ϕ |= ψ.
Thereby, we say that the knowledge described by ψ is fully
included in that of ϕ, if and only if ψ can be inferred from ϕ.
More formally, this can be stated by means of the deductive
closures of ϕ and ψ, i.e. ϕ |= ψ ⇔ Cn(ψ) ⊆ Cn(ϕ).

In (DFP-5) and (DFP-6), Delgrande argues about forget-
ting two signatures P, P ′ at once, which is described as for-
getting P ∪P ′. On a more intuitive level this can be viewed
as only forgetting a single piece of information that consist
of both the information we actual like to forget. When ar-
guing about formulas instead of signatures, this can be ex-
pressed by means of a disjunction ϕ∨ψ, where ϕ and ψ are
the two formulas we actually want to forget. Even though it
might seem more appropriate to describe this idea by means
of a conjunction ϕ ∧ ψ, it is not sufficient to forget the con-
junction in order to forget both ϕ and ψ, since it is generally
sufficient to forget one of the formulas in order to forget the
conjunction as well. Thus, describing the unification of two

pieces of information by means of a disjunction guarantees
that both formulas can no longer be inferred after forgetting.

Just as for the postulates for forgetting signatures, we omit
(DFP-3), since a belief set is already deductively closed by
definition. Furthermore, we omit (DFP-7) since it argues
about the relation of forgetting in the reduced and in the
original language, which is not applicable in case of forget-
ting formulas. Instead, we introduce an additional postulate
(DFPes-6)L that explicitly states the success of the forget-
ting operator, i.e. after forgetting a non-tautologous formula
ϕ, we are no longer able to infer ϕ.

When extending (DFP-1)-(DFP-7) to forgetting formu-
las, Delgrande’s idea that forgetting should be performed on
the knowledge level, and therefore should be independent of
the syntactic structure of the given knowledge also extends
to the knowledge we want to forget. Thus, we show in Th. 6
the syntax independence implied by (DFPes-1)L-(DFPes-
6)L.

Theorem 6 (Syntax Independence). Let Ψ be an epistemic
state and ◦Lf a belief change operator satisfying (DFPes-
1)L-(DFPes-6)L. Further, let ϕ,ψ ∈ L be formulas, then
the following holds:

If ϕ ≡ ψ, then Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ψ).

Proof of Th. 6. From ϕ ≡ ψ, we obtain with (DFPes-3)L
and (DFPes-5)L:

Bel(Ψ ◦Lf ϕ) = Bel((Ψ ◦Lf ψ) ◦Lf ϕ) = Bel(Ψ ◦Lf ψ ∨ ϕ)

and

Bel(Ψ ◦Lf ψ) = Bel((Ψ ◦Lf ϕ) ◦Lf ψ) = Bel(Ψ ◦Lf ϕ ∨ ψ).

Therefore,

Bel(Ψ ◦Lf ϕ) = Bel(Ψ ◦Lf ψ) ∩Bel(Ψ ◦Lf ϕ)

= Bel(Ψ ◦Lf ψ),

due to (DFPes-4)L.

Next, we show that there cannot exist any non-trivial
belief change operator satisfying (DFPes-1)L-(DFPes-6)L.
For this, we first show that (DFPes-3)L together with
(DFPes-5)L imply that the forgetting of any conjunction
ϕ∧ψ must result in beliefs equivalent to just forgetting ϕ or
ψ (Prop. 6).

Proposition 6. Let Ψ be an epistemic state and ◦Lf a belief
change operator satisfying (DFPes-1)L-(DFPes-6)L, then

Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ϕ ∧ ψ) ≡ Bel(Ψ ◦Lf ψ)

holds for all formulas ϕ,ψ ∈ L.

Proof of (Prop. 6). Using (DFPes-3)L, (DFPes-5)L, and
Th. 6, we compute

Bel(Ψ ◦Lf ϕ ∧ ψ) = Bel((Ψ ◦Lf ϕ) ◦Lf ϕ ∧ ψ)

= Bel(Ψ ◦Lf ϕ ∨ (ϕ ∧ ψ)) = Bel(Ψ ◦Lf ϕ).

This holds for ψ analogously. Thus, we can conclude
Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ϕ ∧ ψ) ≡ Bel(Ψ ◦Lf ψ).
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From Prop. 6 we can especially conclude that forgetting
according to (DFPes-1)L-(DFPes-6)L must be independent
of the formula we actually like to forget (Cor. 3).

Corollary 3. Let Ψ be an epistemic state and ◦Lf a belief
change operator satisfying (DFPes-1)L-(DFPes-6)L, then

Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ψ)

holds for all formulas ϕ,ψ ∈ L.

Therefore, we know that a forgetting operator satisfying
(DFPes-1)L-(DFPes-6)L must always forget all prior beliefs
except for tautologies (Th. 7).

Theorem 7 (Triviality Result). Let Ψ be an epistemic state.
A belief change operator ◦Lf satisfies (DFPes-1)L-(DFPes-
6)L, if and only if Bel(Ψ ◦Lf ϕ) ≡ > holds for each ϕ ∈ L.

Proof of Th. 7. We prove Th. 7 in two steps. First, we
show that if a belief change operator satisfies (DFPes-1)L-
(DFPes-6)L, then it must always result in posterior beliefs
Bel(Ψ ◦Lf ϕ) equivalent to >. Second, we show that each
belief change operator ◦Lf with Bel(Ψ ◦Lf ϕ) ≡ > for
each ϕ ∈ L satisfies (DFPes-1)L-(DFPes-6)L. We refer to
these two steps as (⇒) and (⇐). Note that we assume all
formulas ϕ,ψ ∈ L to be non-tautologous.

Case (⇒): From Cor. 3, we know that applying ◦Lf to
an epistemic state Ψ must result in equivalent beliefs for all
formulas ϕ,ψ ∈ L. From (DFPes-6)L we know that after
forgetting a formula ϕ, we are no longer able to infer ϕ.
Since the posterior beliefs are equivalent for all formulas,
we can conclude that after applying ◦Lf to Ψ, we are not able
to infer any formula, but tautologies.

Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ψ),

for all ϕ,ψ ∈ L
(Cor. 3)

⇒Bel(Ψ ◦Lf ϕ) |6= ϕ,ψ, for all ϕ,ψ ∈ L (DFPes-1)L
⇔ Bel(Ψ ◦Lf ϕ) ≡ >, for all ϕ ∈ L

Case (⇐): Let Ψ and Φ be epistemic states and ϕ,ψ ∈ L
be non-tautologous formulas, and ◦Lf a belief change opera-
tor withBel(Ψ◦Lf ϕ) ≡ > for all epistemic states Ψ and for-
mulas ϕ. The fact that ◦Lf satisfies (DFPes-1)L-(DFPes-6)L
directly concludes from the assumption Bel(Ψ ◦Lf ϕ) ≡ >,
for all ϕ ∈ L.

We showed that both cases (⇒) and (⇐) hold, and there-
fore proved the triviality result stated in Th. 7.

6 Conclusion
We discussed two of the existing approaches towards a gen-
eral forgetting framework. The first approach was that of
Delgrande (2017) in which he gives a general forgetting def-
inition that argues about forgetting on the knowledge level,
and is capable of representing several of the hitherto existing
logic-specific forgetting approaches, such as Boole’s atom
forgetting in propositional logic (Boole 1854). The second
approach was that of Beierle et al. (2019). In contrast to

Delgrande’s approach, Beierle et al. define several cogni-
tively different kinds of forgetting in a general OCF frame-
work, which is generally more expressive than just argu-
ing about knowledge sets. Thereby, we concretely focussed
on the marginalisation or the concept of focussing as one
kind of forgetting, respectively, which is of importance when
it comes to efficient and focussed query answering. We
showed that the marginalisation generalizes Delgrande’s for-
getting definition to epistemic states by resulting in equiva-
lent posterior beliefs, as well as holding the same properties,
which Delgrande referred to as right and desirable. Further-
more, this implies that the relations Delgrande elaborated
between his and the logic-specific approaches also hold for
the marginalisation. We exemplarily showed this by means
of Boole’s atom forgetting in propositional logic. We think
that (DFP-1)-(DFP-7), or (DFPes-1)Σ-(DFPes-6)Σ respec-
tively, describe properties that are right and desirable as long
as we consider the forgetting of signature elements. How-
ever, we showed that these properties are not suitable for
postulating properties for any kind of forgetting formulas,
since generalizing these properties to formulas (DFPes-1)L-
(DFPes-6)L implies the triviality result stated in Th. 7.

In principle, we agree with Delgrande insofar that belief
change operators like contraction are essentially different
from the notion of forgetting as it is implemented by Del-
grande’s approach. However, we argue that Delgrande’s ap-
proach and in general, approaches based on variable elim-
ination, are too narrow to cover cognitive forgetting in its
full generality. As our triviality result shows, Delgrande’s
postulates seem to be unsuitable for describing the forget-
ting of formulas. Nevertheless, as the works of Beierle et al.
(2019) show, very different kinds of forgetting are realizable
in a common framework, distinguishable by different prop-
erties. So, as part of our future work, we pursue the research
question which of Delgrande’s postulates (which all seem
very rational at first sight) need to be modified or omitted
to make the idea of forgetting by variable elimination rec-
oncilable to other forms of forgetting and how Delgrande’s
forgetting definition itself could be amended to satisfy the
adapted postulates.
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Abstract

We investigate learnability of possibilistic theories from entail-
ments in light of Angluin’s exact learning model. We consider
cases in which only membership, only equivalence, and both
kinds of queries can be posed by the learner. We then show
that, for a large class of problems, polynomial time learnability
results for classical logic can be transferred to the respective
possibilistic extension. In particular, it follows from our re-
sults that the possibilistic extension of propositional Horn
theories is exactly learnable in polynomial time. As polyno-
mial time learnability in the exact model is transferable to the
classical probably approximately correct model extended with
membership queries, we establish such results in this model. †

1 Introduction
Uncertainty is found in many phases of learning, such as
model selection and processing noisy, imperfect, incomplete
or limited data. In most cases, knowledge-based systems
are constrained to live under conditions of ignorance. There
are different approaches to deal with uncertainty (Parsons
and Hunter 1998). A well-studied formalism for dealing
with it is possibilistic logic (Dubois et al. 1994; Lang 2000).
It admits a graded notion of possibility and makes a clear
distinction between the concepts of truth and belief (Dubois
and Prade 2001). Uncertainty of formulas in possibilistic
logic is not subject to the complement rule as in probability
theory (Agarwal and Nayal 2015; Dubois and Prade 1993).
Indeed, complementary formulas may be considered fully
possible, meaning complete ignorance about their truth value.

Example 1. Consider a doctor who has to diagnose a patient
that suffers from extreme fatigue. A doctor can consider
blood-related conditions: iron deficiency, iron overload, and
vitamin B12 deficiency. Within possibility theory, one can
model cases of complete uncertainty. Both iron deficiency
and iron overload, which are two mutually exclusive condi-
tions, can be considered fully possible. Consider that vitamin
B12 deficiency is considered to be less possible, e.g. associ-
ated with the value 1/3, based on some information provided
by the patient. In probability theory, complete ignorance of
∗Contact Author.
†This paper was published at IJCAI20 (https://static.ijcai.org/

2020-accepted papers.html). Available at https://arxiv.org/abs/2005.
03157.

the first two conditions would make us assign probability 1/3
to every condition (Laplace criterion). Thus, it would not
model the knowledge about vitamin B12 deficiency and the
ignorance about iron deficiency and iron overload. /

Although possibilistic logic has been extensively studied
(Dubois and Prade 2015), there are not many works that
investigate learnability of possibilistic theories. We partially
cover this gap by studying whether possibilistic theories are
learnable in Angluin’s exact learning model (Angluin 1988).
In this model, a learner interacts with a teacher to exactly
identify an abstract target concept. One can see the doctor, in
Example 1, as a learner who inquires the patient (playing the
role of a teacher) to identify a disease by posing queries.

The most studied communication protocol in this model
contains questions of two kinds, called membership and
equivalence queries. Membership queries allow the learner
to know whether a certain statement holds (e.g. “Anaemia
in family history?”). Equivalence queries allow the learner
to check whether a hypothesis (e.g. a diagnose) is correct
and, if not, to fix it using a counterexample. In our example,
the patient may not be able to provide a counterexample but
new symptoms or reactions can reveal that the hypothesis is
not correct. To the best of our knowledge, this is the first
work where learnability of possibilistic theories is investi-
gated in Angluin’s model. We consider cases in which only
membership, only equivalence, and both kinds of queries
can be posed by the learner. We also study whether known
polynomial time exact learning results for classical logic can
be transferred to possibilistic settings.

Our main result is that, for a large class of problems, poly-
nomial time learnability (with both types of queries) can be
transferred from classical logic to the respective possibilistic
extension (Theorem 18). If only membership queries are al-
lowed (and the maximal precision of valuations in the target
is fixed) then polynomial time learnability of a classical logic
can also be transferred to the possibilistic extension. We
leave open the case in which only equivalence queries can be
asked. With our main result, we establish, e.g., that the possi-
bilistic extension of propositional Horn (Angluin et al. 1992;
Frazier and Pitt 1993; Hermo and Ozaki 2020) and fragments
of first-order Horn (Arimura 1997; Reddy and Tadepalli 1998;
Konev et al. 2018) are exactly learnable in polynomial time
(with both kinds of queries). We also establish polynomial
time learnability results in the probably approximately cor-

243



rect (PAC) (Valiant 1984) model extended with membership
queries.

Related Work. Among the works that combine learning and
possibilistic logic, we can find results on learning possibilis-
tic logic theories from default rules within the PAC learning
model (Kuzelka et al. 2016). Possibilistic logic has been
used to reason with default rules (Benferhat et al. 1992)
to select the most plausible rule and in inductive logic pro-
gramming to handle exceptions (Serrurier and Prade 2007).
In statistical relational learning, possibilistic logic has been
used as a formal encoding of statistical regularities found
in relational data (Kuzelka et al. 2017). Possibilistic for-
mulas can encode Markov logic networks (Kuzelka et al.
2015). Formal concept analysis has been applied to generate
attribute implications with a degree of certainty (Djouadi et
al. 2010). We also point out an extension of version space
learning that deals with examples associated with possibility
degrees (Prade and Serrurier 2008).

In Section 2, we present basic definitions. In Section 3, we
investigate whether possibilistic logic theories can be learned
and, in Section 4, we show transferability of polynomial time
learnability results.

2 Basics
In the following, we provide relevant notions of possibilistic
logic and learning theory used in the paper.

2.1 Possibilistic Theories
Let L be a propositional or a first-order (FO) language (re-
stricted to well-formed formulas without free variables) with
the semantics of classical FO logic. We say that ϕ ∈ L is
satisfiable if there is an interpretation I such that ϕ is sat-
isfied in I. Moreover, ϕ is falsifiable if its negation ¬ϕ is
satisfiable. An FO knowledge base (FO KB) is a finite set of
FO formulas. An FO KB is non-trivial if it is satisfiable and
falsifiable. The possibilistic extension of an FO language L
is defined as follows. A possibilistic formula is a pair (ϕ, α),
where ϕ ∈ L and α is a real number (with finite precision) in
the interval (0, 1], called the valuation of ϕ. A possibilistic
KB (or a possibilistic theory) is a finite set K of possibilistic
formulas. Given a set Ω of interpretations for L, a possibility
distribution π is a function from Ω to the interval [0, 1]. The
possibility and necessity measures, Π and N , are functions
(induced by π) from L to [0, 1], defined respectively as

Π(ϕ) = sup{π(I) | I ∈ Ω, I |= ϕ}
N(ϕ) = 1−Π(¬ϕ) = inf{1− π(I) | I ∈ Ω, I |= ¬ϕ}.

A possibility distribution π satisfies a possibilistic formula
(ϕ, α), written π |= (ϕ, α), if N(ϕ) ≥ α, and it satisfies a
possibilistic KB K = {(ϕi, αi) | 0 ≤ i < n} if it satisfies
each (ϕi, αi) ∈ K. We have that (ϕ, α) is entailed by K,
written K |= (ϕ, α), if all possibility distributions that satisfy
K also satisfy (ϕ, α). Given K as above and I ∈ Ω, we
define the possibility distribution πK as follows: πK(I) = 1,
if I |= ϕi, for every (ϕi, αi) ∈ K; otherwise, πK(I) =
min{1− αi | I |= ¬ϕi, 0 ≤ i < n}.

The FO projection of K is the set K∗ = {ϕi | (ϕi, αi) ∈
K}. The α-cut and the α-cut of K, with α ∈ (0, 1], are

defined respectively as Kα = {(ϕ, β) ∈ K | β ≥ α} and
Kα = {(ϕ, β) ∈ K | β > α}. The set of all valuations
occurring in K is Kv = {α | (ϕ, α) ∈ K}. Moreover,
val(ϕ,K) = sup{α | K |= (ϕ, α)} is the least upper bound
of the valuations of formulas entailed by K. Finally, the
inconsistency degree of K is defined as inc(K) = sup{α |
K |= (⊥, α)}.
Lemma 2. (Dubois et al. 1994) Let K be a possibilistic KB.
For every possibilistic formula (φ, α),

1. K |= (φ, α) iff K∗α |= φ;
2. K |= (φ, α) iff α ≤ val(φ,K); and
3. K |= (φ, α) implies val(φ,K) ∈ Kv ∪ {1}.
Proof. Point 1 is a consequence of Propositions 3.5.2, 3.5.5,
and 3.5.6, and Point 2 is Property 1 at page 453 in (Dubois et
al. 1994). We argue about Point 3. By definition of πK, for
all I ∈ Ω, πK(I) is either 1 or 1− β for some β ∈ Kv. Let
NK be the necessity measure induced by πK. By definition
of NK, NK(φ) = inf{1− πK(I) | I ∈ Ω, I |= ¬ϕ}. Then,
NK(φ) ∈ Kv ∪ {0, 1} (recall that inf{} is 1, which is the
case for tautologies). By the semantics of possibilistic logic,
NK(φ) = val(φ,K) (Dubois et al. 1994, Corollary 3.2.3).
As (φ, α) is a possibilistic formula, α > 0. So, by Point 2,
NK(φ) = val(φ,K) ∈ Kv ∪ {1}.

We denote by =p the operator that checks if two numbers
are equal up to precision p. For example 0.124 =2 0.12345
but 0.124 6=3 0.12345. Assume α ∈ (0, 1] has finite preci-
sion. We write prec(α) for the precision of α and prec(t) for
sup{prec(α) | (φ, α) ∈ t}. Given an interval I , we write Ip
for the set containing all α ∈ I with prec(α) = p.

Example 3. One can express (1) mutual exclusion of iron
deficiency and iron overload and (2) lower necessity of
iron overload to be the cause of fatigue than iron defi-
ciency with the possibilistic KB {(∀x(IronDef(x) →
¬IronOver(x)), 1), (∀x(IronDef(x) →
Fatigue(x)), 0.9), (∀x(IronOver(x)→ Fatigue(x), 0.8)}. /

2.2 Learnability
In learning theory, examples are pieces of information that
characterise an abstract target the learner wants to learn. We
consider the problem of learning targets represented in decid-
able fragments of FO logic or in their possibilistic extensions.
Examples in our case are formulas expressed in the chosen
logic (in this context called ‘entailments’).

A learning framework F is a pair (E ,L); where E is a non-
empty and countable set of examples, and L is a non-empty
and countable set of concept representations (also called
hypothesis space). Each element l of L is assumed to be
represented using a set of symbols Σl (the signature of l). In
all learning frameworks considered in this work, E is a set of
formulas and L is a set of KBs (in a chosen language). We
say that e ∈ E is a positive example for l ∈ L if l |= e and a
negative example for l if l 6|= e. Given a learning framework
F = (E ,L), we are interested in the exact identification of
a target t ∈ L, by posing queries to oracles. Let MQF,t be
the oracle that takes as input some e ∈ E and returns ‘yes’ if
t |= e and ‘no’ otherwise. A membership query is a call to the
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oracle MQF,t. Given t, h ∈ L, a counterexample for t and
h is an example e ∈ E s.t. t |= e and h 6|= e (or vice-versa,
h |= e and t 6|= e). For every t ∈ L, we denote by EQF,t

an oracle that takes as input a hypothesis h ∈ L and returns
‘yes’ if h ≡ t and a counterexample otherwise. There is no
assumption regarding which counterexample is chosen by
the oracle. An equivalence query is a call to EQF,t.

Example 4. A blood test to check for vitamin B12 defi-
ciency on patient 42 can be modelled with a call to MQF,t

with (B12Def(patient 42), α) for some α ∈ (0, 1] as input
(depending on the result and accuracy of the test). /

A learner for F = (E ,L) is a deterministic algorithm that,
for a fixed but arbitrary t ∈ L, takes Σt as input, is allowed to
pose queries to MQF,t and EQF,t (without knowing the target
t), and that eventually halts and outputs some h ∈ L with
h ≡ t. This notion of an algorithm with access to oracles
can be formalised using learning systems (Watanabe 1990),
where posing a query to an oracle means writing down the
query in an (additional) communication tape, entering in a
query state, and waiting. The oracle then writes the answer
in the communication tape, enters in an answer state, and
stops. After that, the learner resumes its execution and can
now read the answer in the communication tape.

We say that F is (exactly) learnable if there is a learner for
F and that F is polynomial time learnable if it is learnable by
a learner A such that at every step (the time used by an oracle
to write an answer is not taken into account) of computation
the time used byA up to that step is bounded by a polynomial
p(|t|, |e|), where t ∈ L is the target and e ∈ E is the largest
counterexample seen so far. We denote by PTIMEL the class
of learning frameworks which are polynomial time learnable
and the complexity of the entailment problem is in PTIME1.
We also consider cases in which the learner can only pose one
type of query (only membership or only equivalence queries).
Whenever this is the case we write this explicitly.

Let F = (E ,L) be a learning framework where E is a set
of FO formulas and L is a set of FO KBs. We call such F
an FO learning framework. We say that F is non-trivial if
L contains a non-trivial FO KB; and that it is safe if l ∈ L
implies that l′ ∈ L, for all l′ ⊆ l. A possibilistic extension
lπ of an FO KB l is a possibilistic KB obtained by adding
a possibilistic valuation α to every formula ϕ ∈ l. The
possibilistic extension Fπ of F is the pair (Eπ,Lπ) where Lπ
is the set of all possibilistic extensions of each l ∈ L, and Eπ
is the set of all possibilistic formulas entailed by an element
of Lπ .

We write N+ for the set of positive natural numbers. Given
p ∈ N+, we denote by Fpπ = (Eπ,Lpπ) the result of removing
from Lπ in Fπ every l ∈ Lπ that does not satisfy prec(l) = p.

Remark 1. Let F = (E ,L) be an FO learning framework
and let t ∈ L be the target. If a learner A has access to
MQF,t then we can assume w.l.o.g. that all counterexam-

1In general, non-trivial algorithms need to perform entailment
checks to combine the information of the examples. So polynomial
time learning algorithms are normally for logics in which the entail-
ment problem is tractable. This is the case e.g. for the Horn results
mentioned in the Introduction.

ples returned by EQF,t are positive: the learner can check
whether each φ ∈ h is entailed by t. The same holds for Fπ .

3 Learnability Results
We start by studying the problem of whether there is a learner
for a learning framework such that it always terminates with
a hypothesis equivalent to the target. The main difficulty in
learning with only membership queries (even for plain FO
settings) is that the learner would ‘not know’ whether it has
found a formula equivalent to a (non-trivial) target.

Example 5. Let Φn := ∃x1 . . . ∃xn.
∧

0≤i<n r(xi, xi+1).
A learner may ask membership queries of the form ∃x0Φn
for an arbitrarily large n without being able to distinguish
whether the target theory is ∃x0Φn or ∀x0(Φn → Φn+1)
(knowing the signature of the target theory does not help the
learner). /

For possibilistic theories, another difficulty arises even for
the propositional case. As the precision of a formula can be
arbitrarily high, the learner may not know when to stop (e.g.,
is the target (p, 0.1)? or (p, 0.11)?). Theorem 6 states that,
except for trivial cases, learnability cannot be guaranteed.

Theorem 6. Let F be a non-trivial FO learning framework.
Fπ is not (exactly) learnable with only membership queries.

Sketch. The existence of a learner A for the possibilistic
extension Fπ = (Eπ,Lπ) of a non-trivial learning framework
F would imply the existence of a procedure that terminates
in n steps. A would not distinguish between the elements of
Lπ with precision higher than n.

If the precision of the target is known or fixed, learnability
of an FO learning framework can be transferred to its possi-
bilistic extension. We state this in Theorem 8. To show this
theorem, we use the following technical result.

Lemma 7. Let t be a possibilistic KB. Let I be a set of
valuations such that tv ⊆ I . If for each α ∈ I there is some
FO KB k∗α such that k∗α ≡ t∗α then t ≡ {(φ, α) | φ ∈ k∗α, α ∈
I}.
Proof. Let h = {(φ, α) | φ ∈ k∗α, α ∈ I}. Assume h |=
(φ, γ). If γ = 1 and γ 6∈ I then φ is a tautology. In this case,
for all β ∈ (0, 1], t |= (φ, β). Suppose this is not the case.
By Points 2 and 3 of Lemma 2, γ ≤ α, α = val(φ, h) ∈
hv ∪ {1}. Also, h |= (φ, α). By construction of h, hv = I ,
so α ∈ I . Moreover, for every β ∈ I , we know that h∗β = k∗β .
Therefore k∗α ≡ h∗α. By Point 1 of Lemma 2, h |= (φ, α)
implies h∗α |= φ. Then, k∗α |= φ. As k∗α ≡ t∗α, we have
that t∗α |= φ. Again by Point 1 (of Lemma 2), t∗α |= φ iff
t |= (φ, α). Since α ≥ γ, t |= (φ, γ) by Point 2. The other
direction can be proved similarly.

Theorem 8. Suppose F is an FO learning framework that
is learnable with only membership queries. For all p ∈ N+,
Fpπ = (Eπ,Lpπ) is learnable with only membership queries.

Proof. Let A be a learner for F and let t ∈ Lpπ be the tar-
get. For each α ∈ (0, 1]p, we run an instance of A, de-
noted Aα. Whenever Aα calls MQF,t∗α with φ as input, we
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call MQFπ,t with (φ, α) as input. By Point 1 of Lemma 2,
MQF,t∗α(φ) = MQFπ,t(φ, α). Since A is a learner for F,
every Aα eventually halts and outputs a hypothesis k∗α such
that k∗α ≡ t∗α. Since t ∈ Lpπ, tv ⊆ (0, 1]p. By Lemma 7,
t ≡ {(φ, α) | φ ∈ k∗α, α ∈ (0, 1]p}. Thus, we can transfer
learnability of F (with only membership queries) to Fpπ .

If, e.g., MQFπ,t((φ, 0.01)) = ‘yes’, MQFπ,t((φ, 0.02)) =
‘no’, and the precision of the target is 2, then val(φ, t) = 0.01.
So, knowing the precision is important for learning with
membership queries only. If equivalence queries are allowed
then a learner can build a hypothesis equivalent to the target
without knowing the precision in advance (Theorem 9).

Theorem 9. The possibilistic extension Fπ of a learnable
FO learning framework F is learnable with only equivalence
queries.

Proof. Every FO learning framework F is learnable with
only equivalence queries. Indeed, a naive learner A for F
is one that enumerates all l ∈ L built using symbols from
Σt, taken as input, and asks the possible hypothesis to oracle
EQF,t, one by one. The learner does not know the size of
the target in advance but it can estimate it to be n, ask all
possible hypothesis of this size, then increase to n+1, and so
on. Since the target is finite, eventually A halts and outputs
h equivalent to t. For Fπ, a similar naive learner Aπ exists,
but in this case, it also needs to estimate the precision of the
target and increase it as it navigates the search space. As the
precision of the target is finite, eventually Aπ also halts and
outputs an equivalent hypothesis.

If both membership and equivalence query oracles are
available, learnability is guaranteed by the previous theorem
(even when the precision of the target is unknown).

Corollary 1. Let F be an FO learning framework. F is
learnable iff Fπ is learnable.

4 Polynomial Time Reduction
We now investigate whether results showing that an FO learn-
ing framework is in PTIMEL can be transferred to their pos-
sibilistic extensions and vice-versa. Theorem 10 shows the
transferability of PTIMEL membership from the possibilistic
extension Fπ of an FO learning framework F to F.

Theorem 10. Let F be an FO learning framework. If Fπ is
in PTIMEL then F is in PTIMEL.

Proof. In our proof, we use the following claim.

Claim 10.1. Let k be an FO KB and let t be the possibilistic
KB {(φ, 1) | φ ∈ k}. For all (φ, α), k |= φ iff t |= (φ, α).

Proof. If t |= (φ, α), since t∗ |= t∗α and k = t∗, k |= φ. If
k |= φ, by construction t∗1 |= φ. By Point 1 of Lemma 2,
t∗1 |= φ iff t |= (φ, 1), so, for all α ∈ (0, 1], t |= (φ, α).

Let F = (E ,L) and let k ∈ L be the target. Since Fπ is in
PTIMEL, there is a learner Aπ for Fπ . We start the execution
of Aπ that attempts to learn a hypothesis h equivalent to
t = {(φ, 1) | φ ∈ k}. By Claim 10.1, for all α ∈ (0, 1],
MQFπ,t((φ, α)) = MQF,k(φ). Also, we can simulate a call

to EQFπ,t with h as input by calling EQF,k with h∗ as input.
By Claim 10.1, for all α ∈ (0, 1], k |= φ iff t |= (φ, α), in
particular, for α = 1. By Remark 1, we can assume that all
counterexamples returned by EQF,k are positive. Whenever
we receive a (positive) counterexample φ, we return (φ, 1)
to Aπ. Eventually, Aπ will output a hypothesis h ≡ t in
polynomial time w.r.t. |t| and the largest counterexample
received so far. Clearly, h∗ is as required.

The converse of Theorem 10 does not hold as shown by
Theorem 11. Simple FO learning frameworks can become
difficult to learn when extended with possibilistic valuations
because algorithms also have to deal with multiple valuations.

Theorem 11. There exists an FO learning framework F such
that F is in PTIMEL but Fπ = (Eπ,Lπ) is not in PTIMEL.

Proof. Let F = (E ,L) be an FO learning framework that is
not in PTIMEL. Such F exists, one can consider, for instance,
the EL learning framework (Konev et al. 2018, Theorem 68)2.
We use F to define the learning framework F⊥ = (E ,L⊥)
where L⊥ = {h ∪ {φ,¬φ} | h ∈ L} for a fixed but arbitrary
non-trivial FO formula φ. Even though F is not learnable in
polynomial time, F⊥ is. The learner can learn any l ∈ L⊥
by returning the hypothesis {⊥} (in constant time). Assume
that F⊥π = (Eπ,L⊥π ) is in PTIMEL. This means that for every
target l ∈ L⊥π we can learn in polynomial time a hypothesis
h such that h ≡ l. By construction, for every t ∈ L there is
l ∈ L⊥π such that t ≡ l∗

inc(l)
. By learning h such that h ≡ l

we have also learned a hypothesis h such that h∗
inc(h)

≡
t. By Theorem 10, F ∈ PTIMEL, which contradicts our
assumption that this is not the case. Therefore we have found
an FO learning framework F⊥ that is is in PTIMEL but its
possibilistic extension F⊥π is not in PTIMEL.

The FO learning framework F⊥ in the proof of Theorem 11
is not safe (see definition in Subsection 2.2) because, for
l 6⊆ {φ,¬φ} we have l ∈ L⊥ with (l \ {φ,¬φ}) 6∈ L⊥. Intu-
itively, non-safe learning frameworks allow cases in which
the target is easy to learn if we aim at learning the whole
target, not a subset of it. In the following, we focus on FO
learning frameworks that are safe3. The first transferability
result we present is for the case in which the learner has
access to only membership queries. Before showing the re-
duction, we define the procedure FindValuationt that takes
as input a precision p and a formula φ and returns the highest
valuation β with precision p of a formula φ entailed by the
target t (or zero if it is not entailed). That is, β is such that
β =p val(φ, t). For any γ ∈ [0, 1]p the procedure can check
if t |= (φ, γ) by calling the oracle MQFπ,t with (φ, γ) as in-
put. To compute β such that β =p val(φ, t), FindValuationt
performs a binary search on [0, 1]p. Lemma 12 states the
correctness and the complexity of FindValuationt.

Lemma 12. Let Fπ = (Eπ,Lπ) be a possibilistic learning
framework and let t ∈ Lπ be the target. FindValuationt, with

2Non-polynomial query learnability is proved in (Konev et al.
2018, Theorem 68), which implies non-polynomial time learnability.

3All learning from entailment results we found in the literature
could be formulated in terms of safe learning frameworks.
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input a precision p ∈ N+ and φ ∈ Eπ, runs in polynomial
time in p and |φ| and outputs β such that β =p val(φ, t).

Sketch. By Point 2 of Lemma 2, FindValuationt can deter-
mine β such that β =p val(φ, t) by performing a binary
search on the interval of numbers [0, 1]p. So the number of
iterations is bounded by log2(10p + 1), which is polynomial
in p. Clearly, each iteration can be performed in polynomial
time in |φ| and p (each call to the membership oracle MQFπ,t

counts as one step of computation).

In our next theorem, we show that, for safe FO learning
frameworks, polynomial time results with only membership
queries can be transferred to their possibilistic extensions if
the precision of the target is known (recall that, by Theorem 6,
we cannot remove this assumption).

Theorem 13. Let F be a safe FO learning framework. For
all p ∈ N+, when only membership queries can be asked, F
is in PTIMEL iff Fpπ is in PTIMEL.

Proof. To show the transferability of PTIMEL membership
from F to Fπ , we use the following claim.

Claim 13.1. Assume F = (E ,L) is safe and in PTIMEL with
only membership queries. For every p ∈ N+ and frame-
work Fpπ = (Eπ,Lpπ) with t ∈ Lpπ, given a valuation α with
prec(α) = p, one can learn k∗α such that k∗α ≡ t∗α in time
polynomial w.r.t. |t| with only membership queries.

Proof. We start the execution of a polynomial time learner
A for F. Whenever A calls MQF,t∗α

with φ as input, we
call MQFπ,t with (φ, α + 10−p) as input and we return the
same answer to A. By Point 1 of Lemma 2, MQF,t∗α

(φ) =

MQFπ,t(φ, α+10−p). Since F is safe, A will build a hypoth-
esis k∗α such that k∗α ≡ t∗α in polynomial time w.r.t. |t|.

We set γ := 0 and S := ∅. By Claim 13.1 we can find in
polynomial time w.r.t. |t| a hypothesis k∗γ such that k∗γ ≡ t∗γ .
For every φ ∈ k∗γ , we run FindValuationt with p = prec(t)
and φ as input to find val(φ, t). In this way, by Point 3 of
Lemma 2 and Lemma 12, we identify in polynomial time
w.r.t. |t| some β ∈ tv ∪ {1} such that k∗γ ≡ t∗β . We set
k∗β := k∗γ and add k∗β to S. Then, we update γ to the value
β and apply Claim 13.1 again. For every φ ∈ k∗γ , we run
FindValuationt again with p = prec(t) and φ as input to
find val(φ, t). We repeat this process until we find k∗γ ≡ ∅
or γ + 10−p > 1. Each time we run FindValuationt, we
identify a higher valuation in tv. Therefore, this happens at
most |tv| times. For all α ∈ tv , there is k∗α ∈ S that satisfies
k∗α ≡ t∗α, therefore, by Lemma 7,

h =
⋃

k∗α∈S
{(φ, α) | φ ∈ k∗α}

is such that h ≡ t.
We now show the transferability of PTIMEL membership

from Fπ to F. Let k ∈ L be the target. We start the execution
of a learner Aπ for Fπ that attempts to learn a hypothesis
equivalent to t = {(φ, 1) | φ ∈ k}. By Claim 10.1 of
Theorem 10, we can simulate a call to MQFπ,t with input

(φ, 1) by calling MQF,k with φ as input and returning the
same answer to Aπ . Aπ terminates in polynomial time w.r.t.
|t| with a hypothesis h such that h ≡ t. As h∗ ≡ t∗ = k, h∗
is as required.

When we want to transfer learnability results from F to Fπ
it is important to learn one hα such that hα ≡ tα for each
α ∈ tv , where t is the target (Example 14).

Example 14. Let t = {(p → q1, 0.3), (p → q2, 0.7)}. We
can use the polynomial time algorithm for propositional
Horn (Frazier and Pitt 1993) to learn a hypothesis k∗ =
{p→ (q1 ∧ q2)} ≡ t∗. However, if h = {(φ, val(φ, t)) | φ ∈
k∗} then h = {(p→ (q1 ∧ q2), 0.3)} 6≡ t.

A learner that has access to both membership and equiv-
alence query oracle has a way of finding the precision of
the target when it is unknown. With membership queries,
we can use FindValuationt to find the valuation of formu-
las up to a given precision. By Lemma 15, we can obtain
useful information about the precision of the target with the
counterexamples obtained after an equivalence query.

Lemma 15. Assume Fπ = (Eπ,Lπ) is the possibilistic ex-
tension of a safe FO learning framework and t ∈ Lπ is the
target. Given p ∈ N+, one can determine that p < prec(t)
or compute h ∈ Lπ such that h ≡ t, in polynomial time w.r.t.
|t|, p, and the largest counterexample seen so far.

Proof. In our proof, we use the following claims.

Claim 15.1. Given h ∈ Lπ such that t |= h, one can con-
struct in polynomial time in |h| some h′ ∈ Lπ such that
t |= h′ |= h and, for all (φ, α) ∈ h′, t |= (φ, α) and
α =prec(h′) val(φ, t).

Proof. Let h′ be the set of all (φ, β) such that (φ, α) ∈ h
and FindValuationt returns β with φ and prec(h) as input.
As t |= h, by construction of h′, t |= h′ |= h. By Lemma 12,
h′ can be constructed in polynomial time in |h| and is as
required.

Claim 15.2. Let h ∈ Lπ be such that, for all (φ, α) ∈ h,
t |= (φ, α) and α =prec(h) val(φ, t). If EQFπ,t with input h
returns (φ, α) then either we know that prec(t) > prec(h) or
h∗β 6|= φ where β =prec(h) val(φ, t).

Proof. By Point 1 of Lemma 2, h∗β |= φ iff h |= (φ, β).
If h |= (φ, β) or β = 0 (note: β can be 0 because, e.g.,
0.01 =1 0), then prec(val(φ, t)) > prec(h). By Point 3 of
Lemma 2, val(φ, t) ∈ tv ∪ {1}, so prec(t) > prec(h).

By Remark 1, we can assume at all times in this proof that
any hypothesis constructed is entailed by the target (possi-
bilistic or not). Moreover, by Claim 15.1, we can assume that,
for any target and hypothesis t, h ∈ Lπ, we have that, for
all (φ, α) ∈ h, t |= (φ, α) and α =prec(h) val(φ, t). So we
can assume at all times in our proof that the hypothesis h we
construct (Equation 1) satisfies the conditions of Claim 15.2.
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Let A be a polynomial time learner4 for F. As in the proof
of Theorem 13, we run multiple instances of A. We denote
by R the set of instances of A. Each instance in R is denoted
Aβ and attempts to learn a hypothesis equivalent to t∗β , where
β is a valuation. We sometimes write Anβ to indicate that
the instance Aβ has asked n equivalence queries so far. We
denote by kβ,n the hypothesis given as input by Anβ when it
asks its n-th equivalence query. For n = 0, we assume that
kβ,n = ∅.

Initially, R := {A0
10−p}. Whenever Aβ ∈ R asks a mem-

bership query with input φ ∈ E , by Point 1 of Lemma 2,
we can simulate MQF,t∗β

by calling MQFπ,t with (φ, β) as
input and returning the same answer to Aβ . Let h0 be
{(φ>, α)} where φ> is a tautology and α is a valuation with
prec(α) = p. Whenever Anβ ∈ R asks its n-th equivalence
query, we leaveAnβ waiting in the query state (see description
of a learning system in Subsection 2.2). When all Amα ∈ R
are waiting in the query state, we create

h :=
⋃

Amα ∈R
{(φ, α) | φ ∈ kα,m} ∪ h0 (1)

and call EQFπ,t with h as input (note: each instance Aα ∈ R
may have asked a different number of equivalence queries
when Anβ asks its n-th equivalence query). If the answer is
‘yes’, we have computed h such that h ≡ t and we are done.
Upon receiving a (positive) counterexample (φ, γ), we run
FindValuationt with φ and prec(h) as input and compute
a valuation β such that β =prec(h) val(φ, t) (Lemma 12).
If Aβ 6∈ R, we start the execution of the instance Aβ of
algorithm A and add Aβ to R. Otherwise, Aβ ∈ R and
we check whether kβ,m |= φ (assume m is the number of
equivalence queries posed so far by Aβ). If kβ,m |= φ then,
by Claim 15.2, we know that prec(h) < prec(t) then we are
done. If kβ,m 6|= φ then φ is a (positive) counterexample for
kβ,m and t∗β . We return φ to every Amα ∈ R such that α ≤ β
and kα,m 6|= φ and these instances resume their executions.
Observe that, since h0 ⊆ h, by the construction of h, at all
times prec(h) = p.

We now argue that this procedure terminates in polynomial
time w.r.t. |t|, p, and the largest counterexample seen so far.
Since there is only one instance Aβ in R for each valuation
β such that β =p val(φ, t), by Point 3 of Lemma 2, we have
that at all times |R| is linear in |tv|, which is bounded by |t|.
By Lemma 12, whenever we run FindValuationt to compute
a valuation with φ and p as input, only polynomially many
steps in |φ| and p are needed. Since F is safe and A is a
polynomial time learner for F either we can determine that
p < prec(t) or each Aβ ∈ R terminates, in polynomial time
in the size of t∗β and the largest counterexample seen so far,
and outputs kβ,n = h∗β such that h∗β ≡ t∗β . In this case, by
Lemma 7, h ≡ t and the process terminates.

The constructive proof of Lemma 15 delineates the steps
made in Example 16 where the precision of the target is 1.

4Assume w.l.o.g. that A always eventually asks an equivalence
query until it finds an equivalent hypothesis (but may execute other
steps and ask membership queries between each equivalence query).

(a)

(b)

(c)

EQFπ,t(h) = (p→ q1, 0.1)

EQFπ,t(h) = (p→ q1, 0.1)

EQFπ,t(h
′) = (p→ q2, 0.21)

⇐ p→ q1⇐ p→ q1

A0.1

A0.3

A0.7

Figure 1: Multiple instances of algorithm A in Example 16. Time
flows top-down. A dotted line means that the learner is waiting in
query state, a continuous line means that the learner is running.

Example 16. Let F = (E ,L) be the safe learning framework
where L is the set of all propositional Horn KBs and E is
the set of all (propositional) Horn clauses. Let t ∈ Lπ and
A be, respectively, the target and the learner of Example 14.
Following our argument in Lemma 15, we start an instance
A0.1 of A. When A0.1 is waiting in the query state, we build
h = {(φ>, 0.1)} (Equation 1) and call EQFπ,t with h as
input (Point (a) in Figure 1). Assume we receive the positive
counterexample (p→ q1, 0.1). We run FindValuationt with
1 and p→ q1 as input, which computes val(p→ q1, t) = 0.3.
Since A0.3 6∈ R, we start A0.3. When all learners are waiting
in the query state, we call again EQFπ,t with h as input
(Point (b) in Figure 1). At this point, R = {A0.1, A0.3}.

Assume we receive (p → q1, 0.1) again. We have that
val(p→ q1, t) = 0.3 and A0.3 ∈ R. Since k0.3,1 6|= p→ q1
and k0.1,1 6|= p → q1, we return p → q1 to both A1

0.1 and
A1

0.3 and they resume their executions. All learners will
eventually be waiting in query state. When this happens
we call EQFπ,t with h′ = {(φ>, 0.1), (p → q1, 0.1), (p →
q1, 0.3)} as input.

Assume the response is (p → q2, 0.21). We run
FindValuationt with 1 and p → q2 as input, which re-
turns val(p → q2, t) = 0.7. As before, we start A0.7

(Point (c) in Figure 1) and add it to R. When all learn-
ers are waiting again we call EQFπ,t with h′ as input. As-
sume we receive (p → q2, 0.1). We then send p → q2
to every learner in R. Next time we call EQFπ,t, with
h′ ∪ {(p → q2, 0.7), (p → q2, 0.3), (p → q2, 0.1)} as in-
put. The answer is ‘yes’ and we are done. /

In some cases, the learner can discover if the precision of
the hypothesis needs to increase (Example 17).

Example 17. Assume the target is t = {(p→ q, 0.32)} and
the learner built the hypothesis h = {(p → q, 0.3)}. Simi-
larly to Example 16, the precision of the hypothesis is set to
1. A future equivalence query will return the counterexam-
ple h = {(p → q, α)} with α > 0.3. The learner will run
FindValuationt with input 1 and p → q, which will return
0.3. Since h |= (p → q, 0.3), this can happen only if the
precision of the hypothesis is low. /

A direct consequence of Lemma 15 is Theorem 18.

Theorem 18. For every safe FO learning frameworks F we
have, F is in PTIMEL iff Fπ is in PTIMEL.

Proof. One direction holds by Theorem 10. We prove the
other direction. Let F be a safe FO learning framework in
PTIMEL and let Fπ = (Eπ,Lπ) be its possibilistic extension.

248



Consider a learner that initially estimates precision p of the
target t ∈ Lπ to be 1. Using Lemma 15, we can assume that
this learner can either determine that p < prec(t) or find a
hypothesis h such that h ≡ t, in time polynomial with respect
to |t|, p and the largest counterexample seen so far. In the
former case, this learner sets the estimated precision p of the
target to p+ 1. This happens at most prec(t) times, which is
bounded by |t|. As a consequence, Fπ is in PTIMEL.

We end this section recalling a connection between the
exact and the PAC learning models. In the PAC model, a
learner receives classified examples drawn according to a
probability distribution and attempts to create a hypothesis
that approximates the target. It is known that polynomial
time results for the exact learning model can be transferred
to the PAC learning model (Valiant 1984) extended with
membership queries (Theorem 19).
Theorem 19 ((Angluin 1988; Mohri et al. 2012)). Let PTI-
MEPL be the class of all learning frameworks that are PAC
learnable with membership queries in polynomial time. Then,
PTIMEL ⊆ PTIMEPL.

By Theorems 18 and 19, the following holds.
Corollary 2. For all safe FO learning frameworks F, if F ∈
PTIMEL then Fπ ∈ PTIMEPL.

5 Conclusion
Uncertainty is widespread in learning processes. Among dif-
ferent uncertainty formalisms, possibilistic logic stands out
because of its ability to express preferences among worlds
and model ignorance. We presented the first study on the
exact (polynomial) learnability of possibilistic theories. Var-
ious algorithms designed for exact learning fragments of
first-order logic can be adapted to learn their possibilistic
extensions. We leave open the problem of polynomial time
transferability with only equivalence queries.

Ack. We thank Andrea Mazzullo for joining the discussion.
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Abstract

Iterated belief change investigates principles for changes on
epistemic states and their representational groundings. A com-
mon realisation of epistemic states are total preorders over
possible worlds. In this paper, we consider the problem of
certifying whether an operator over total preorders satisfies a
given postulate. We introduce the first-order fragment FOTPC

for expressing belief change postulates and present a way
to encode information on changes into an FOTPC-structure.
As a result, the question of whether a belief change fulfils
a postulate becomes a model checking problem. We present
Alchourron, an implementation of our approach, consisting of
an extensive Java library, and also of a web interface, which
suits didactic purposes and experimental studies.

1 Introduction
A fundamental problem for intelligent agents is adapting their
world-view to potentially new and conflicting information.
Iterated belief change discusses properties of operators that
model transition of currently held beliefs under newly re-
ceived information. The field has a large body of literature
with differentiated results for a variety of different types of
operations, e.g., revision (Darwiche and Pearl 1997; Booth,
Meyer, and Wong 2006), contraction (Hild and Spohn 2008;
Konieczny and Pino Pérez 2017; Sauerwald, Kern-Isberner,
and Beierle 2020), expansion, the area of non-prioritized
change (Konieczny and Pino Pérez 2008; Booth et al. 2014;
Schwind and Konieczny 2020) and many more (Schwind,
Konieczny, and Marquis 2018).

The research on (iterated) belief change is focussed on
propositional logic (but not limited to). Often, total preorders
over interpretations (Darwiche and Pearl 1997; Konieczny
and Pino Pérez 2008; Booth et al. 2014; Schwind, Konieczny,
and Marquis 2018; Sauerwald, Kern-Isberner, and Beierle
2020; Schwind and Konieczny 2020; Konieczny and Pino
Pérez 2017; Schwind and Konieczny 2020) or refinements
thereof (Hild and Spohn 2008; Booth, Meyer, and Wong
2006) are considered as a representation formalism for epis-
temic states.

A common aspect of many approaches in the area of iter-
ated belief change is that the type of an operator class is given
by syntactic postulates, constraining how to change, and that
representation theorems show, which semantic postulates ex-
actly reconstruct that class of operations in the realm of total

preorders. The typical structure of postulates, regardless of
whether there are syntactic or semantic postulates; is that they
focus on a single (but arbitrary) epistemic state and constrain
the result of subsequent changes on that state. When total
preorders are considered as epistemic states, then very of-
ten, the so-called faithfulness condition and a representation
theorem connects the syntactic viewpoint with the semantic
perspective, e.g. (Darwiche and Pearl 1997).

Given the large variety of different postulates and types of
operations, it is tedious and cumbersome to check manually
whether a given specific change satisfies a certain postulate,
or to decide whether the change falls into a certain category
of type of operation.

This leads to the general problem of checking whether a
belief change operator or a singular change satisfies a given
syntactic or semantic postulate, which we call the certifica-
tion problem. The certification problem got not much at-
tention, notable exceptions are results about the complex-
ity for specific operations (Nebel 1998; Liberatore 1997;
Schwind et al. 2020) and results about inexpressibility (Turán
and Yaggie 2015). Furthermore, there seems to be no imple-
mentation for the certification problem for the area of iterated
belief change.

In this paper, we propose an approach to grasp the certi-
fication problem for the case where total preorders are used
as epistemic states and provide an implementation. The ap-
proach consists of defining the first-order fragment FOTPC,
which is meant as a language for semantic postulates. To
focus on semantic postulates seems to be only a minor re-
striction, as, given the many representation theorems, many
syntactic postulates are known to be expressible by semantic
postulates in the total preorder realm. Second, we describe
how an FOTPC-structure can be constructed for a belief
change operator and for a singular belief change, respectively.
The certification problem then becomes a first-order model-
checking problem. Third, we present an implementation of
the approach, which is publically available on the web.

2 Belief Change on Epistemic States
Let L be a propositional language over a finite signature
of propositional variables Σ, and Ω its corresponding set
of interpretations. Following the framework of Darwiche
and Pearl (Darwiche and Pearl 1997), we deal with belief
changes over epistemic states and propositions. An epistemic
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Predicate Intended meaning Exemplary appearance

Mod(w, x) w is a model of x ω ∈ Mod(Ψ), ω ∈ Mod(α)
LessEQ(w1, w2, e) w1 6 w2 in e ω1 6Ψ ω2

Int(w) w is an interpretation ω ∈ Ω
ES(e) e is an epistemic state Ψ ∈ E
Form(a) a is a formula α ∈ L
Function Intended meaning Exemplary appearance

op(e0, a) op(e0, a) is a result of changing e0 by a Ψ ∗ α = Ψ′

or(a, b) propositional disjunction Bel(Ψ ◦ (α ∨ β)) = . . .
not(a) propositional negation ¬α /∈ Bel(Ψ ◦ α)

Figure 1: Allowed predicates and functions symbols in FOTPC, their intended meaning and how they are typically formulated in belief change
literature.

state is an abstract entity from a set E , where each Ψ ∈ E
is equipped with a deductively closed set Bel(Ψ). A belief
change operator is a function ◦ : E × L → E . In this paper,
we only consider operators satisfying the following syntax-
independence condition for each Ψ ∈ E and α, β ∈ L:

(sAGM5es*) if α ≡ β, then Ψ ◦ α = Ψ ◦ β
Here (sAGM5es*) is a stronger version of the extension-
ality postulate from the revision approach by Alchourrón,
Gärdenfors and Makinson (1985) (AGM).

The framework by Darwiche and Pearl is different from
the classical setup for belief revision theory by Alchourrón,
Gärdenfors and Makinson (1985), where deductively closed
sets (called belief sets) are used as states (Fermé and Hansson
2011). However, the richer structure of epistemic states is
necessary to include the information required to capture the
change strategy of iterative belief change (Darwiche and Pearl
1997).

There are many possible instantiations of E ; however, we
will stick here to the very common one by total preorders.
More precisely, we consider total preorders over Ω that fulfil
the so-called faithfulness condition (Katsuno and Mendelzon
1992; Darwiche and Pearl 1997), stating that the minimal
elements of each total preorder 6= Ψ ∈ E are exactly the
models of Bel(Ψ), i.e., Mod(Bel(Ψ)) = min(Ω,6). Thus,
in the scope of this paper, each total preorder 6∈ E is as-
sumed to entirely describe an epistemic state.

3 Problem Statement
Postulates are central objects in the area of (iterative) belief
change and are grouped together to define classes of belief
change operators in a descriptive way. The problem we ad-
dress is to check whether a given operator satisfies a postulate,
i.e., belongs to a class of change operators specified by postu-
lates. We call this particular problem the certification problem
(which could be considered as a generalisation of the revision
problem (Nebel 1998)):

CERTIFICATION-PROBLEM
Given: A belief change operator ◦ and a postulate P
Question: Does ◦ satisfy the postulate P ?

Clearly, information about a whole belief change operator
is available or even finitely representable only in few ap-

plication scenarios. This gives rise to several sub-problems
depending on how much information of the particular opera-
tor is known. Apart from the full operator ◦, we consider the
certification of the following cases:
• A singular belief change from Ψ to Ψ′ by α,

i.e.: Does Ψ ◦ α = Ψ′ hold?
• A sequence of belief changes Ψ1◦α1 = Ψ2, and Ψ2◦α2 =

Ψ3, and . . .
• All singular belief changes on a state Ψ, i.e. the set
{(Ψ1, α,Ψ2) ∈ ◦ | Ψ = Ψ1}
In the next section we present a model-checking based

formalisation of the CERTIFICATION-PROBLEM.

4 The Approach
In belief change, postulates are usually described by com-
mon mathematical language, which is close to (first-order)
predicate logic. In the following, we use the toolset of first-
order logic to formalise the CERTIFICATION-PROBLEM as a
first-order model-checking problem.

Language for Postulates As an initial study, we considered
several postulates from literature on iterated belief change,
e.g. (Darwiche and Pearl 1997; Booth and Meyer 2006;
Jin and Thielscher 2007; Booth 2002; Nayak, Pagnucco, and
Peppas 2003), and selected the most common predicates
and functions used. We compiled them into a fragment of
first-order logic with equality over a fixed set of predicates
and function symbols1, denoted by FOTPC (Total Preorder
Change), with the intention to describe changes over total
preorders. Figure 1 summarises the permitted symbols and
describes only the minimal required set.

Several common predicates and functions used in postu-
lates are expressible by the means of FOTPC by employing
this minimal set, e.g. logical entailment, semantic equality,
the strict part of a total preorder, checking whether a for-
mula has no model, etc. For a specific example, consider the
following:
LogImpl(x, y):=∀w.Int(w)→ (Mod(w, x)→Mod(w, y))

1Note that we could also use a fragment of many-sorted first-
order logic. However, some predicates are ”overloaded” in respect
to sorts.
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Universe UAC = Ω ∪ {Ψ0,Ψ1} ∪ P(Ω)

Predicates
ModAC = {(ω, x) | x ∈ P(Ω) ∪ {Ψ0,Ψ1}, ω ∈ Mod(x)}}
IntAC = Ω
ESAC = {Ψ0,Ψ1}

FormAC = P(Ω)
LessEQAC = {(ω1, ω2,Ψi) | ω1 6Ψi ω2}
Functions

orAC = λα1, α2. α1 ∪ α2 eAC
0 = Ψ0

notAC = λα1.Ω \ α1 aAC = Mod(α)
opAC = ({(Ψ, β,Ψ) | β ∈ P(Ω),Ψ ∈ {Ψ0,Ψ1}} \ {(Ψ0, α,Ψ0}) ∪ {(Ψ0, α,Ψ1)}

Figure 2: Structure AC , encoding a singular change C = (Ψ0, α,Ψ1)

where LogImpl(x, y) describes that x logically implies y.
For illustration, we consider some aspects about belief

change postulates. First, belief change postulates are typically
formulated with a locality aspect; every postulate focusses an
initial state and a change formula α, describing a condition for
this change. As prominent examples, the following postulates
are an excerpt of the AGM revision postulates (Alchourrón,
Gärdenfors, and Makinson 1985):

(AGM2*) α ∈ Bel(Ψ ◦ α)

(AGM7*) Bel(Ψ ◦ (α ∧ β)) ⊆ Cn(Bel(Ψ ◦ α)∪{β})
In FOTPC, we address this by reserving e0 and a as special
terms, where e0 denotes the initial state and a denotes the
formula representing the new information.

Postulates for (iterated) belief change typically come in
two fashions: Semantic postulates describe changes in a se-
mantic domain, such as faithful total preorders. For example,
consider the following postulate:

(CR1) if ω1, ω2∈Mod(α), then ω16Ψω2⇔ω16Ψ◦αω2

This could be expressed in FOTPC by the following formula
ϕ(CR1):

ϕ(CR1) =∀w1, w2.

(Int(w1) ∧ Int(w2) ∧ ES(e0) ∧ Form(a))

→ (LessEQ(w1, w2, e0)

↔ LessEQ(w1, w2, op(e0, a)))

(1)

On the other hand, syntactic postulates describe changes
of Bel(Ψ). Aside of the AGM revision postulates, promi-
nent examples are the Darwiche-Pearl postulates for revision
(Darwiche and Pearl 1997) such as:

(DP1) if β |= α, then Bel(Ψ ◦ α ◦ β) = Bel(Ψ ◦ β)

Several representation results in the literature show how syn-
tactic and semantic postulates are interrelated. For instance,
it is well-known that, given ◦ is an AGM revision operator,
(CR1) holds if and only if (DP1) holds (Darwiche and Pearl
1997). Moreover, the semantic and syntactic domains are of
course related, which allows us to describe many predicates
used in the syntactic realm by semantic means. For example,

a statement like Bel(Ψ ◦ α ◦ β) = Bel(Ψ ◦ β) is expressible
in FOTPC by employing the following formula:

Bel(a, e) := (Form(a) ∧ ES(e))

→ (∀x.Mod(x, a)↔Mod(x, e))

We describe now how objects like belief change operators,
singular changes and so on are related to FOTPC formulas.

Encoding as Model-Checking Internally, we use the
standard truth-functional semantics of first-order logic for
FOTPC. Therefore, we translate a belief change operator,
respectively the known part of it, into a first-order structure.

The general idea is to define a structure A by the follow-
ing pattern: The universe UA consists of all propositional
interpretations Ω, all formulas from L and all considered
epistemic states from Ψ, i.e., the total preorders over Ω. We
represent formulas by their models, i.e., by elements of2

P(Ω). The rationale is that, because of (sAGM5es*), the
considered belief change operators are insensitive to syn-
tactic differences. Additionally, predicates are interpreted in
the straight-forward manner, e.g., Int is interpreted as all
propositional interpretations, IntA = Ω, and LessEQ al-
lows access to the total preorder Ψ of each epistemic state,
LessEQA = {(ω1, ω2,Ψi) | (ω1, ω2) ∈ Ψi}. Depending
on whether a full change operator, a singular change, or an-
other sub-problem is considered, some special treatment is
necessary.

For instance, consider the signature Σ = {a, b}, yielding
the interpretations Ω = {ab, ab, ab, ab}. Moreover, consider
the singular change C = (Ψ0, α,Ψ1), where Ψ0 =60 is
the total preorder treating every interpretation to be equally
plausible, i.e., ab =0 ab =0 ab =0 ab. Furthermore, let
α = a. The total preorder Ψ1 =61 treats all a-models
to be equally plausible, but prefers them over all non a-
models, which are considered to be equally plausible, i.e.
ab =1 ab <1 ab =1 ab. We construct a structure AC as fol-
lows: The universe is given by UAC = Ω∪{Ψ0,Ψ1}∪P(Ω).
The predicates and function symbols are interpreted accord-
ing to Figure 2. The terms e0 and a are interpreted as
eAC

0 = Ψ0 and aAC = Mod(α).

2P(·) is the powerset function.
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Figure 3: Input fields for the change from Ψ0 to Ψ1 by α = a in Alchourron.

In summary, the CERTIFICATION-PROBLEM of whether
C satisfies (CR1) is expressed as a model-checking problem
for FOTPC, i.e., a change C satisfies the postulate (CR1) if
AC |= ϕ(CR1) holds, where ϕ(CR1) is the formula given in (1).

5 Implementation
We provide an implementation of the approach by combin-
ing independent, self-developed Java libraries. The approach
is publicly accessible by a web-frontend called Alchour-
ron3, which expands on the previous work by Sauerwald
and Haldimann (Sauerwald and Haldimann 2019). The cur-
rently available version allows the specification of a singular
belief change using a browser-based client. First, the user
decides on a propositional signature for the language of the
belief change. Then a prior total preorder, an input formula,
as well as the posterior total preorder is entered. Figure 3
illustrates the belief change input.

After specifying the change, Alchourron allows the user
to check whether several preconfigured belief change postu-
lates are satisfied. Optionally, a user can also enter her own
postulate by defining a first-order formula using FOTPC. For-
mulas are described in TPTP syntax (Sutcliffe 2017), e.g., the
postulate (CR1) from Section 4 can be expressed as follows:

! [W1,W2] :
((int(W1) & int(W2) & mod(W1, A) & mod(W2,

A))
=> (lesseq(W1, W2, E0)

<=> lesseq(W1, W2, op(E0, A))))

Internally, Alchourron has a client-server architecture.
The implementation is highly modularized, and we expect
reusability of components for further projects. In particular,
postulate checking via compilation into a model-checking
problem as described in Section 4 is happening completely
on the server side. Display of total preorders is provided by
web components4 that can also represent ordinal conditional
functions (Spohn 1988), which for instance implement total
preorders, but provide also more fine-grained representations

3Visit: https://www.fernuni-hagen.de/wbs/alchourron/
4Heltweg, P.: Logic components, 2021. DOI: 10.5281/zenodo.

4744650.

of epistemic states. Our implementation of logic is an ex-
tensive institution-inspired implementation called Logical
Systems5, which allows representation and evaluation of a
variety of different logics in a unified way. Preconfigured
postulates are stored in TPTP syntax and parsed from there6,
mapping TPTP specified formula into our internal represen-
tation.

6 Summary and Future Work
We proposed FOTPC, a first-order fragment to describe be-
lief change postulates, complemented with a methodology to
construct a finite structure for a belief change operator, em-
ploying total preorders as representation of epistemic states.
With this toolset, the certification of belief change operators
can be understood as a model-checking problem. We pre-
sented our implementation, which is available online3, as a
proof of concept for our approach for singular belief changes.
In summary, we defined and formalized the certification prob-
lem and provide an implementation therefore.

While this is only the first proposal, we expect that this
approach will be highly flexible regarding improvements and
extensions. In particular, for future work we want to expand
our approach to more complex representations of epistemic
states. Moreover, we will work to improve the efficiency of
the implementation.

5Sauerwald, K.: Logical Systems, 2021, github.com/Landarzar/
logical-systems.

6Steen, A.: Scala TPTP parser, 2021. DOI: 10.5281/zenodo.
4672395.
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Abstract

In this work, we propose a new paradigm for Belief Change:
we require that new pieces of information are represented as
finite models, while the agent’s body of knowledge is repre-
sented as a finite set of formulae. When the logic does not
ensure that every set of models has a corresponding finite
base, as it is the case of most of description logics (DLs),
the standard rationality postulates of Belief Change cannot
be captured. We define new Belief Change operations for this
setting, and we identify the rationality postulates that emerge
due to the finite representability requirement. Moreover, we
instantiate our approach to the case of the description logic
ALC-formula.

1 Introduction
Processing how a rational agent should autonomously mod-
ify its current knowledge base in response to new pieces of
information is the object of study of Belief Change (Hans-
son 1999) which is tightly connected to non-monotonic sys-
tems (Makinson and Gärdenfors 1989). The most interesting
and challenging situations emerge when the new incoming
information is in conflict with the agent’s current knowledge
base. In this case, the agent should minimally remove only
the beliefs that are in conflict with the incoming informa-
tion. This principle of minimal change is captured in Be-
lief Change via rationality postulates that dictate the mini-
mal properties of a rational change. The main paradigms of
Belief Change assume that an agent’s knowledge base is rep-
resented as a set of formulae expressed in some underlying
logic, such as classical propositional logics; while incom-
ing pieces of information are represented as formulae of the
same underlying logic. This kind of representation system
can be inconvenient in scenarios where the incoming pieces
of information should be represented in other formats as, for
instance, a finite model. This is the case in the paradigm of
Learning from Interpretations (De Raedt 1997), where a for-
mula needs to be created or changed to either incorporate
or block certain interpretations (here called ‘models’) in a
finite way. Example 1 illustrates the intuition behind using
models as input.

A version to this paper was accepted at the 34th International Work-
shop on Description Logics (DL 2021).

Example 1. Suppose that a system, which serves a univer-
sity, uses an internal logical representation of the domain
with an open world behaviour and unique names. Let B be
its current representation:

B = {Professors : {Mary},Courses : {DL,AI},
{teaches : {(Mary,AI), (Mary,DL)}} .

Assume that a user finds mistakes in the course sched-
ule which is caused by the wrong information that Mary
teaches the DL course. The user may lack knowledge to
define the issue formally. An alternative is to provide the
user with an interface where one can specify, for instance,
that the model M = {Professors = {Mary},Courses =
{DL,AI}, teaches = {(Mary,AI)}}, should be accepted (in
this model Mary does not teach the DL course). Given this
input, the system should repair itself (semi-)automatically.

In this work, we introduce a new paradigm for Belief
Change. We consider the case in which incoming pieces of
information are represented as finite models, while the cur-
rent knowledge of the agent is represented as a finite set of
formulae. We impose the finite representability requirement
because, in Computer Science, resources such as memory,
are limited and the knowledge of an agent should to be rep-
resented finitely. In classical propositional logic, represent-
ing new information as a set of models is straightforward;
but this not so in some more expressive non-classical logics,
such as Description Logics (DLs). This problem emerges be-
cause in many DLs, not every set of models can be repre-
sented with a finite formula (which is only satisfied by such
models). In other words, not every set of models has a fi-
nite base. As an alternative, a ‘close’ finitely representable
knowledge base needs to be chosen instead. We identify
these new postulates that arise with this requirement, and
we show the belief change operations that they characterise.
Also, we analyse the case ofALC-formula using quasimod-
els as a way to define new belief change operations. This
logic satisfies properties which facilitate the design of these
operations and it is close to ALC: a well-studied DL.

In Section 2, we briefly review some basic concepts from
Belief Change and we detail the new belief change paradigm
we propose. In Section 3, we investigate the new paradigm
of Belief Change for the ALC-formulae case. We identify
the respective representation theorems. In Section 4, we
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highlight studies which share similarities with our proposal
and we conclude in Section 5.

2 Belief Change
2.1 The Classical Setting
Belief Change (Alchourrón, Gärdenfors, and Makinson
1985; Hansson 1999) studies the problem of how an agent
should modify its knowledge in light of new information.
In the original paradigm of Belief Change, the AGM the-
ory, an agent’s body of knowledge is represented as a set of
formulae closed under logical consequence, called a belief
set, and the new information is represented as a single for-
mula. In the propositional classical logics, every belief set
can be finitely represented by a finite set of formulae, called
a belief base (Hansson 1999). In the AGM paradigm, when
confronted with an information ϕ, an agent might modify its
current belief set B in three ways:

When modifying its body of knowledge an agent should
rationally modify its beliefs conserving most of its origi-
nal beliefs. This principle of minimal change is captured
in Belief Change via sets of rationality postulates. Each of
the three operations (expansion, contraction and revision)
presents its own set of rationality postulates which character-
ize precisely different classes of belief change constructions.
The AGM paradigm was initially proposed for classical log-
ics that satisfy specific requirements, dubbed AGM assump-
tions, among them taskianicity, compactness and deduction.
See (Flouris 2006; Ribeiro 2013) for a complete list of the
AGM assumptions and a discussion on the topic. Recently,
efforts have been applied to extend Belief Change to logics
that do not satisfy such assumptions. For instance, logics that
are not closed under classical negation of formulae (such as
is the case for most DLs) (Ribeiro 2013; Ribeiro and Wasser-
mann 2014), and temporal logics and logics without com-
pactness (Ribeiro, Nayak, and Wassermann 2018, 2019b,a).

2.2 Changing Finite Bases by Models
In this work, unlike the standard representation methods in
Belief Change, we consider that an incoming piece of infor-
mation is represented as a finite model. Belief Change op-
erations defined in this format will be called model change
operations. Recall that a model M is simply a structure used
to give semantics to an underlying logic language. The set
of all possible models is given by M. Moreover, we assume
a semantic system that, for each set of formulae B of the
language L gives a set of models Mod(B) := {M ∈ M |
∀ϕ ∈ B : M |= ϕ}. Let Pfin(L) denote the set of all finite
bases in L. We also say that a set of models M is finitely
representable in L if there is a finite base B ∈ Pfin(L) such
that Mod(B) = M. Additionally, if for all ϕ ∈ L it holds
that M |= ϕ iff M ′ |= ϕ then we write M ≡L M ′. We also
define [M ]L := {M ′ ∈M |M ′ ≡L M}.

The first model change operation we introduce is model
contraction, which eliminates one of the models of the cur-
rent base (which in Section 3 is instantiated as an ontology).
Model contraction is akin to a belief expansion, where a for-
mula is added to the belief set or base, reducing the set of

models accepted. The counterpart operation, model expan-
sion, changes the base to include a new model. This relates
to belief contraction, in which a formula is removed, and
thus more models are seen as plausible.

We write rationality postulates for an ideal contraction
over finitely representable theories, where the incoming
piece of information represented as a finite model, instead
of a single formula.

Definition 2 (Model Contraction). Let L be a language.
A function con : Pfin(L) × M 7→ Pfin(L) is a finitely
representable model contraction function iff for every B ∈
Pfin(L) and M ∈M it satisfies the following postulates:

(success) M 6∈ Mod(con(B,M)) = ∅,
(inclusion) Mod(con(B,M)) ⊆ Mod(B),
(retainment) if M ′ ∈ Mod(ϕ) \ Mod(con(ϕ,M)) then
M ′ ≡L M ,

(extensionality) con(B,M) = con(B,M ′), if M ≡L M ′.
We might also need to add a model to the set of models of

the current base. This addition relates to classical contrac-
tions in Belief Change, which reduces the belief base.

Definition 3 (Model Expansion). Let L be a language. A
function ex : Pfin(L) × M 7→ Pfin(L) is a finitely rep-
resentable model expansion iff for every B ∈ Pfin(L) and
M ∈M it satisfies the postulates:

(success) M ∈ Mod(ex(B,M)),

(persistence) Mod(B) ⊆ Mod(ex(B,M)),

(vacuity) Mod(ex(B,M)) = Mod(B), if M ∈ Mod(B),
(extensionality) ex(B,M) = ex(B,M ′), if M ≡L M ′.
Definition 4. Let L be a language and Cn a Tarskian conse-
quence operator defined over L. Also let M be a fixed set of
models. We say that a triple (L,Cn,M) is an ideal logical
system if the following holds.

• For every B ⊆ L and ϕ ∈ L, B |= ϕ (i.e. ϕ ∈ Cn(B)) iff
Mod(B) ⊆ Mod(ϕ).

• For each M ⊆ M there is a finite set of formulae B such
that Mod(B) = M.

Given the conditions in Definition 4, we can define a func-
tion FR such that Mod(FR(M)) = M. Then, we can define
model contraction as con(B,M) = FR(Mod(B) \ [M ]L)
and expansion as ex(B,M) = FR(Mod(B) ∪ [M ]L). An
example that fits these requirements is to consider classical
propositional logic with a finite signature Σ, together with
its usual consequence operator and models. In this situation,
we can define FR as follows:

FR(M) =
∨

M∈M


 ∧

a∈Σ|M |=a
a ∧

∧

a∈Σ|M |=¬a
¬a


 .

Next, we show that the construction proposed with FR
has the properties stated in Definitions 2 and 3.

Theorem 5. Let (L,Cn,M) be an ideal logical system as in
Definition 4. Then iCon(B,M) := FR

(
Mod(B) \ [M ]L

)
satisfies the postulates in Definition 2.
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Proof. Success and inclusion are trivially satisfied. IfM ≡L
M ′, then [M ]L = [M ′]L, thus extensionality is satisfied.
Also, if M ′ ∈ Mod(ϕ) \ Mod(iCon(ϕ,M)) then M ′ ∈
[M ]L, hence the operation satisfies retainment.

Theorem 6. Let (L,Cn,M) be an ideal logical system as in
Definition 4. Then iExp(B,M) := FR

(
Mod(B) ∪ [M ]L

)
satisfies the postulates in Definition 3.

Proof. Success, vacuity and persistence are trivially satis-
fied. Extensionality also holds because wheneverM ≡L M ′
we have then [M ]L = [M ′]L.

A revision operation incorporates new formulae, and re-
moves potential conflicts in behalf of consistency. In our set-
ting, incorporating information coincides with model con-
traction which could lead to an inconsistent belief state. In
this case, model revision could be interpreted as a condi-
tional model contraction: in some cases the removal might
be rejected to preserve consistency. We leave the study on
revision as a future work.

3 The case of ALC-formula
The logic ALC-formula corresponds to the DL ALC en-
riched with boolean operators over ALC axioms. As dis-
cussed in Section 2.2, in finite representable logics, such
as the classical propositional logics, we can easily add and
remove models while keeping the representation finite. For
ALC-formula, however, it is not possible to uniquely add
or remove a new model M since, for instance, the language
does not distinguish quantities (e.g., a model M and another
model that has two duplicates of M ).

Even if quantities are disregarded and our input is a
class of models indistinguishable by ALC-formulae, there
are sets of formulae in this language that are not finitely
representable. As for instance in the following infinite set:
{C v ∃rn.> | n ∈ N>0}, where ∃rn+1.> is a shorthand
for ∃r.(∃rn.>) and ∃r1.> := ∃r.C. As a workaround for
the ALC-formula case, we propose a new strategy based on
the translation of ALC-formulae into DNF.

3.1 ALC-formulae and Quasimodels
Let NC, NR and NI be countably infinite and pairwise disjoint
sets of concept names, role names, and individual names,
respectively. ALC concepts are built according to the rule:
C ::= A | ¬C | (C u C) | ∃r.C, where A ∈ NC. ALC-
formulae are defined as expressions φ of the form

φ ::= α | ¬(φ) | (φ ∧ φ) α ::= C(a) | r(a, b) | (C = >),

where C and D are concepts, a, b ∈ NI, and r ∈ NR
1. De-

note by ind(ϕ) the set of all individual names occurring in
an ALC-formula ϕ.

The semantics of ALC-formulae and the definitions re-
lated to quasimodels are standard (Gabbay 2003, page 70).
In what follows, we reproduce the essential definitions and
results for this work. Let ϕ be an ALC-formula. Let f(ϕ)

1We may omit parentheses if there is no risk of confusion. The
usual concept inclusions C v D can be expressed with> v ¬Ct
D and ¬C tD v >, which is (¬C tD = >).

and c(ϕ) be the set of all subformulae and subconcepts of ϕ
closed under single negation, respectively.

A concept type for ϕ is a subset c ⊆ c(ϕ) such that: D ∈
c iff ¬D 6∈ c, for all D ∈ c(ϕ); and (2) D u E ∈ c iff
{D,E} ⊆ c, for all D u E ∈ c(ϕ). A formula type for ϕ
is a subset f ⊆ f(ϕ) such that: (1) φ ∈ f iff ¬φ 6∈ f , for
all φ ∈ f(ϕ); and (2) φ ∧ ψ ∈ f iff {φ, ψ} ⊆ f , for all
φ ∧ ψ ∈ f(ϕ).

We may omit ‘for ϕ’ if this is clear from the context. A
model candidate for ϕ is a triple (T, o, f) such that T is a
set of concept types, o is a function from ind(ϕ) to T , f a
formula type, and (T, o, f) satisfies the conditions: ϕ ∈ f ;
C(a) ∈ f implies C ∈ o(a); r(a, b) ∈ f implies {¬C |
¬∃r.C ∈ o(a)} ⊆ o(b).

Definition 7 (Quasimodel). A model candidate (T, o, f) for
ϕ is a quasimodel for ϕ if the following holds

• for every concept type c ∈ T and every ∃r.D ∈ c, there
is c′ ∈ s such that {D} ∪ {¬E | ¬∃r.E ∈ c} ⊆ c′;

• for every concept type c ∈ T and every concept C, if
¬C ∈ c then this implies (C = >) 6∈ f ;

• for every concept C, if ¬(C = >) ∈ f then there is c ∈ T
such that C 6∈ c;

• T is not empty.

Theorem 8 motivates the decision of using quasimodels to
implement our operations for finite bases described inALC-
formulae.

Theorem 8 (Theorem 2.27 (Gabbay 2003)). An ALC-
formula ϕ is satisfiable iff there is a quasimodel for ϕ.

3.2 ALC-formulae in Disjunctive Normal Form
Any ALC-formula can be translated into an equivalent (al-
though potentially exponentially larger)ALC-formula made
of a disjunction of conjunctions of (possibly negated) atomic
formulae. Let S(ϕ) be the set of all quasimodels for ϕ.

We define ϕ† =
∨

(T,o,f)∈S(ϕ)

(
∧

α∈f
α ∧

∧

¬α∈f
¬α),

where α is of the form (C = >), C(a), r(a, b).

Definition 9 ((Gabbay 2003)). Let I be an interpretation
and ϕ an ALC-formula formula. The quasimodel of I w.r.t.
ϕ, symbols qm(ϕ, I) = (T, o, f), is

• T := {{C ∈ c(ϕ) | x ∈ CI} | x ∈ ∆I},
• o(a) := {C ∈ c(ϕ) | a ∈ CI}, for all a ∈ ind(ϕ),
• f := {ψ ∈ f(ϕ) | I |= ψ}.
Theorem 10. For every ALC-formula ϕ: ϕ ≡ ϕ†.

In the next subsections, we present finite base model
change operations for ALC-formulae, i.e., functions from
L ×M 7→ L. We can represent the body of knowledge as
a single formula because every finite belief base of ALC-
formulae can be represented by the conjunction of its ele-
ments. We use our translation to add models in a “minimal”
way by adding disjuncts, while removing a model amounts
to removing disjuncts.
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3.3 Model Contraction for ALC-formulae
We define model contraction for ALC-formulae using the
notion of quasimodels discussed previously and a correspon-
dence between models and quasimodels.

We use the following operator, denoted µ, to define model
contraction in Definition 11. Let ϕ be an ALC-formula and
let M be a model. Then,

µ(ϕ,M) = ftypes(ϕ) \ {f}, where qm(ϕ,M) = (T, o, f)

and ftypes(ϕ) is {f | (T, o, f) ∈ S(ϕ)}. Let lit(f) be the set
of all literals in a formula type f .
Definition 11. A finite base model contraction function is a
function con : L ×M 7→ L such that

con(ϕ,M)=





∨
f∈µ(ϕ,M)

∧
lit(f), if M |=ϕ, µ(ϕ,M)6=∅

⊥ if M |=ϕ, µ(ϕ,M)=∅
ϕ otherwise.

As we see later in this section, there are models M,M ′

such thatM 6≡LM ′ but our operations based on quasimodels
cannot distinguish them. Given ALC-formulae ϕ,ψ, we say
that ψ is in the language of the literals of ϕ, written ψ ∈
Llit(ϕ), if ψ is a boolean combination of the atoms in ϕ. Our
operations partition the models according to this restricted
language. We write M ≡ϕ M ′ instead of M ≡Llit(ϕ) M ′,
and [M ]ϕ instead of [M ]Llit(ϕ) for conciseness.
Theorem 12. Let M be a model and ϕ an ALC-formula.
A finite base model function con∗(ϕ,M) is equivalent to
con(ϕ,M) iff con∗ satisfies:

(success) M 6|= con∗(ϕ,M),
(inclusion) Mod(con∗(ϕ,M)) ⊆ Mod(ϕ),
(atomic retainment): For all M′ ⊆ M, if

Mod(con∗(B,M)) ⊂ M′ ⊆ Mod(B) \ [M ]ϕ then
M′ is not finitely representable in ALC-formula.

(atomic extensionality) if M ′ ≡ϕ M then

Mod(con∗(ϕ,M)) = Mod(con∗(ϕ,M ′)).

The postulate of success guarantees that M will be in-
deed relinquished, while inclusion imposes that no model
will be gained during a contraction operation. Recall that in
order to guarantee finite representability, it might be neces-
sary to remove M jointly with other models. The postulates
atomic retainment and atomic extensionality capture a no-
tion of minimal change, dictating which such models are al-
lowed to be removed together with M .

Example 13 illustrates how con works.
Example 13. Consider the following ALC-formula and in-
terpretation M :

ϕ :=P (Mary) ∧ C(DL) ∧ C(AI)∧
((teaches(Mary,DL) ∧ ¬teaches(Mary,AI))∨
(¬teaches(Mary,DL) ∧ teaches(Mary,AI)))

and M = (∆I , ·I), where ∆I = {m, d, a}, CI = {d, a},
P I = {m}, teachesI = {(m, d)}, MaryI = m,
AII = a, and DLI = d. Assume we want to remove

M from Mod(ϕ). As there only two equivalence classes
in Mod(ϕ) w.r.t. Llit(ϕ), µ(ϕ,M) will have single for-
mula type, whose literals are: P (Mary), C(DL), C(AI),
¬teaches(Mary,DL) and teaches(Mary,AI). Hence:

con(ϕ,M) = ¬teaches(m, a) ∧ teaches(m, d)∧
C(d) ∧ C(a) ∧ P (m).

3.4 Model Expansion in ALC-formulae
In this section, we investigate model expansion for ALC-
formulae. Recall that we assume that a knowledge base is
represented as a single ALC-formula ϕ. Expansion consists
in adding an input modelM to the current knowledge base ϕ
with the requirement that the new epistemic state can be rep-
resented also as a finite formula. To show that this strategy
indeed guarantees finite representability, we start by defining
a new expansion operation ‘ex’ as shown in Definition 14.

Definition 14. Given a quasimodel (T, o, f), we write∧
(T, o, f) as a short-cut for

∧
lit(f). A finite base model

expansion is a function ex : L ×M→ L s.t.:

ex(ϕ,M) =

{
ϕ if M |= ϕ

ϕ ∨∧ qm(¬ϕ,M) otherwise.

Example 15 illustrates how ex works.

Example 15. Consider the interpretation M from
Example 13 and ϕ := P (Mary) ∧ C(DL) ∧
C(AI) ∧ teaches(Mary,AI) ∧ ¬teaches(Mary,DL).
Assume we want to add M to Mod(ϕ) and
qm(¬ϕ,M) = (T, o, f). Thus, lit(f) =
{¬teaches(m, a), teaches(m, d), C(d), C(a), P (m)},

ex(ϕ,M) = ϕ ∨
∧
lit(f) = ϕ ∨

(
¬teaches(m, a)∧

teaches(m, d) ∧ C(d) ∧ C(a) ∧ P (m)
)
.

The operation ‘ex’ maps a current knowledge base repre-
sented as a single formula ϕ and maps it to a new knowl-
edge base that is satisfied by the input model M . The intu-
ition is that ‘ex’ modifies the current knowledge base only
if M does not satisfy ϕ. This modification is carried out by
making a disjunct of ϕ with a formula ψ that is satisfied by
M . This guarantees that M is present in the new epistemic
state and that models of ϕ are not discarded. The trick is to
find such an appropriate formula ψ which is obtained by tak-
ing the conjunction of all the literals within the quasimodel
qm(¬ϕ,M). Here, the quasimodel needs to be centred on
¬ϕ because M 6|= ϕ, and therefore it is not possible to con-
struct a quasimodel based on M centred on ϕ.

Lemma 16. For every ALC-formula ϕ and model M :

Mod(ex(ϕ,M)) = Mod(ϕ) ∪ [M ]ϕ.

Actually, any operation that adds precisely the equiva-
lence class of M modulo the literals is equivalent to ‘ex’.

Our next step is to investigate the rationality of ‘ex∗’. As
expected adding the whole equivalence class of M with re-
spect to Llit(ϕ) does not come freely, and some rationality
postulates are captured, while others are lost:
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Theorem 17. Let M be a model and ϕ an ALC-formula.
A finite base model function ex∗(ϕ,M) is equivalent to
ex(ϕ,M) iff ex∗ satisfies:
(success) M ∈ Mod(ex∗(ϕ,M)).
(persistence): Mod(ϕ) ⊆ Mod(ex∗(ϕ,M)).
(atomic temperance): For all M′ ⊆ M, if Mod(ϕ) ∪

[M ]ϕ ⊆ M′ ⊂ Mod(ex∗(ϕ,M)) ∪ {M} then M′ is not
finitely representable in ALC-formula.

(atomic extensionality) if M ′ ≡ϕ M then

Mod(ex∗(ϕ,M)) = Mod(ex∗(ϕ,M ′)).

The postulates success and persistence come from requir-
ing that M will be absorbed, and that models will not be
lost during an expansion. The atomic extensionality postu-
late states that if two models satisfy exactly the same literals
within ϕ, then they should present the same results. Atomic
temperance captures a principle of minimality and guaran-
tees that when adding M , the loss of information should be
minimised. Precisely, the only formulae allowed to be given
up are those that are incompatible with M modulo the lit-
erals of ϕ. Lemma 16 and Theorem 17 prove that the ‘ex’
operation is characterized by the postulates: success, persis-
tence, atomic temperance and atomic extensionality.

4 Related Work
Belief bases have been used in the literature of Belief
Change with two main purposes: as a finite representation
of an agent’s knowledge (Nebel 1991; Dixon and Wobcke
1993), and as a way of distinguishing an agent’s knowledge
explicitly (Hansson 1994). The syntactic connectivity in a
knowledge base has a strong consequence of how an agent
should modify its knowledge (Hansson 1999). This sensi-
tivity to syntax is also present in Ontology Repair and Evo-
lution. Classical approaches preserve the syntactic form of
the ontology as much as possible (Kalyanpur 2006; Suntis-
rivaraporn 2009). However, these approaches may lead to
drastic loss of information, as noticed by Hansson (1993).
This problem has been studied in Belief Change for pseudo-
contraction (Santos et al. 2018). In the same direction, Tro-
quard et al. (2018) proposed the repair of DL ontologies by
weakening axioms using refinement operators. Building on
this study, Baader et al. (2018) devised the theory of gentle
repairs, which also aims at keeping most of the information
within the ontology upon repair. In fact, gentle repairs are
closely related to pseudo-contractions (Matos et al. 2019).

Other remarkable works in Belief Change in which the
body of knowledge is represented in a finite way include
the formalisation of revision due to Katsuno and Mendel-
zon (1991) and the base-generated operations by Hansson
(1996). In the former, Katsuno and Mendelzon (1991) for-
malise traditional belief revision operations using a single
formula to represent the whole belief set. This is possible
because they only consider finitary propositional languages.
Hansson provides a characterisation of belief change oper-
ations over finite bases but restricted for logics which sat-
isfy all the AGM-assumptions (such as propositional clas-
sical logic). Guerra and Wassermann (2019) develop opera-
tions for rational change where an agent’s knowledge or be-

haviour is given by a Kripke model. They also provide two
characterisations with AGM-style postulates.

5 Conclusion and Future Work
In this work, we have introduced a new kind of belief change
operation: belief change via models. In our approach, an
agent is confronted with a new piece of information in the
format of a finite model, and it is compelled to modify its
current epistemic state, represented as a single finite for-
mula, either incorporating the new model, called model ex-
pansion; or removing it, called model contraction. The price
for such finite representation is that the single input model
cannot be removed or added alone, and some other models
must be added or removed as well. As future work, we will
investigate model change operations in other DLs, still tak-
ing into account finite representability. We will also explore
the effects of relaxing some constraints on Belief Base op-
erations, allowing us to rewrite axioms with different levels
of preservation in the spirit of Pseudo-Contractions, Gentle
Repairs, and Axiom Weakening.
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A Proofs for Section 3
Lemma 18. Let ϕ, φ be ALC-formulae. If ϕ ∈ f(φ) then
f(ϕ) ⊆ f(φ).

Proof. The proof follows by induction in the structure of φ.
Base: φ is atomic. Then, by construction f(φ) = {φ,¬φ}.

Thus, if ϕ ∈ f(φ) then ϕ = φ or ϕ = ¬φ. In either case,
f(ϕ) = {ϕ,¬ϕ} which implies that f(ϕ) = {φ,¬φ}. Thus,
f(ϕ) ⊆ f(φ).

In the following, assume that φ is not atomic.
Induction Hypothesis: by construction φ is defined as the
conjunction of two formulae ψ and ψ′ or the negation of
such conjunction, that is, φ = ψ ∧ ψ′ or ϕ = ¬(ψ ∧ ψ′).
Let us assume that for all β ∈ {ψ,ψ′}, if ϕ ∈ f(β) then
f(ϕ) ⊆ f(β).
Induction step: consider the cases (i) φ = ψ ∧ ψ′ and (ii)
φ = ¬(ψ ∧ ψ′).

(i) φ = ψ ∧ ψ′. By construction

f(φ) = f(ψ ∧ψ′) = {ψ ∧ψ′,¬(ψ ∧ψ′)} ∪ f(ψ)∪ f(ψ′).
(1)

Thus, (a) ϕ ∈ {ψ ∧ ψ′,¬(ψ ∧ ψ′)} or (b) ϕ ∈ f(ψ) or (c)
ϕ ∈ f(ψ′).

(a) ϕ ∈ {ψ ∧ ψ′,¬(ψ ∧ ψ′)}. Thus, either ϕ = ψ ∧ ψ′
or ϕ = ¬(ψ ∧ψ′). For ϕ = ψ ∧ψ′, we get that f(ϕ) =
f(ψ ∧ ψ′) = f(φ) which means that f(ϕ) ⊆ f(φ). For
ϕ = ¬(ψ ∧ ψ′), we get that f(ϕ) = f(¬(ψ ∧ ψ′)).
By construction, f(¬(ψ ∧ψ′)) = f(ψ ∧ψ′). Therefore,
f(ϕ) = f(ψ ∧ ψ′) = f(φ) and so f(ϕ) ⊆ f(φ).
(b) ϕ ∈ f(ψ). By the inductive hypothesis, f(ϕ) ⊆
f(ψ). From (1), f(ψ) ⊆ f(φ). So, f(ϕ) ⊆ f(φ).
(c) ϕ ∈ f(ψ′). Analogous to item (b).

(ii) φ = ¬(ψ ∧ ψ′). By construction, f(¬(ψ ∧ ψ′)) =
f(ψ∧ψ′). So, f(φ) = f(ψ∧ψ′) = {ψ∧ψ′,¬(ψ∧ψ′)}∪
f(ψ) ∪ f(ψ′). Proof proceeds as in item (i).

Lemma 19. For every ALC-formula φ and formula type f
for φ, if φ, ϕ ∈ f then f ∩ f(ϕ) is a formula type for ϕ.

Proof. Let fφ be a fixed but arbitrary formula type for φwith
φ ∈ fφ. We will show that f := fφ ∩ f(ϕ) is a formula type
for ϕ. Suppose for contradiction that f is not a formula type
for ϕ. Thus, as f ⊆ f(ϕ), either condition (1) or (2) of the
formula type definition is violated:

1. There are formulae ψ,¬ψ ∈ f(ϕ) such that either (a) ψ 6∈
f and ¬ψ 6∈ f , or (b) ψ,¬ψ ∈ f .

(a) ψ 6∈ f and ¬ψ 6∈ f . By hypothesis, ϕ ∈ fφ. Thus,
as f = fφ ∩ f(ϕ), and by construction ϕ ∈ f(ϕ), we get
that ϕ ∈ f . Since fφ is a formula type, we have that for
all ψ′ ∈ f(φ), ψ′ ∈ fφ iff ¬ψ′ 6∈ fφ. As ϕ ∈ fφ ⊆ f(φ),
it follows from Lemma 18 that f(ϕ) ⊆ f(φ). Therefore,
for all ψ′ ∈ f(ϕ), ψ′ ∈ fφ iff ¬ψ′ 6∈ fφ. By hypothesis,
¬ψ,ψ ∈ f(ϕ) which implies from above that either:

ψ ∈ fφ and ¬ψ 6∈ fφ, or ψ 6∈ fφ and ¬ψ ∈ fφ. (2)

By hypothesis, ¬ψ,ψ ∈ f(ϕ) but ¬ψ,ψ 6∈ f . Thus, as
f = fφ ∩ f(ϕ), we get ¬ψ,ψ 6∈ fφ, contradicting (2).
(b) ψ,¬ψ ∈ f . By hypothesis, fφ is a formula type
which implies that for all ψ′ ∈ fφ, ψ′,¬ψ′ 6∈ fφ. There-
fore, as f ⊆ fφ, we get that ψ,¬ψ 6∈ f , a contradiction.

2. Let ψ ∧ ψ′ ∈ f(ϕ). We will show that ψ ∧ ψ′ ∈ f iff
{ψ,ψ′} ⊆ f which contradicts the hypothesis that condi-
tion (2) from the formula type definition is violated. We
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split the proof in two cases: either (a) ψ ∧ ψ′ ∈ f or (b)
ψ ∧ ψ′ 6∈ f . If ψ ∧ ψ′ ∈ f , as f = fφ ∩ f(ϕ), we get
that ψ ∧ ψ′ ∈ fφ. Since fφ is a formula type, we have that
{ψ,ψ′} ⊆ fφ. By definition of f(ϕ), if ψ∧ψ′ ∈ f(ϕ) then
{ψ,ψ′} ⊆ f(ϕ). Hence, {ψ,ψ′} ∈ f = fφ ∩ f(ϕ).
Otherwise,ψ∧ψ′ 6∈ f . As f = fφ∩f(ϕ) andψ∧ψ′ ∈ f(ϕ),
we get that ψ ∧ψ′ 6∈ fφ. Thus, as fφ is a formula type, we
get that {ψ,ψ′} 6⊆ fφ. Therefore, as f ⊆ fφ, we get that
{ψ,ψ′} 6⊆ f . From (a) and (b) we conclude that ψ∧ψ′ ∈ f
iff {ψ,ψ′} ⊆ f . But this contradicts the hypothesis that
condition (2) from the formula type definition is violated.

Therefore, we conclude that f is a formula type.

Lemma 20. For every ALC-formula ϕ, f(ϕ) = f(¬ϕ) 2.

Proof. By construction ϕ is a subformula of ¬ϕ. We can
see that f(¬ϕ) = f(ϕ) ∪ {¬ϕ}. Since f(ϕ) is closed under
single negation and, by construction, ϕ ∈ f(ϕ), we have that
¬ϕ ∈ f(ϕ). Thus, f(ϕ) = f(¬ϕ).

Definition 21. Let ϕ be an ALC-formula. The set of of for-
mula types for ϕ that has ϕ is given by the set

τ(ϕ) = {f ⊆ f(ϕ) | f is a formula type for ϕ and ϕ ∈ f}.
Lemma 22. For every ALC-formula φ and formula type f
for φ, if φ ∈ f and ϕ ∈ f(φ) then f ∩ f(ϕ) ∈ τ(ϕ) ∪ τ(¬ϕ).

Proof. Let fφ be a fixed but arbitrary formula type for φwith
φ ∈ fφ. As fφ is a formula type (for φ) and ϕ ∈ f(φ), either
(i) ϕ ∈ fφ or ¬ϕ ∈ fφ:

(i) ϕ ∈ fφ. Thus, by Lemma 19, we have that fφ ∩ f(ϕ) is
a formula type of ϕ. Also, ϕ ∈ fφ ∩ f(ϕ). Therefore, fφ ∩
f(ϕ) ∈ τ(ϕ) which means that fφ∩ f(ϕ) ∈ τ(ϕ)∪τ(¬ϕ).
(ii) ¬ϕ ∈ fφ. Thus, by Lemma 19, we have that fφ∩f(¬ϕ)
is a formula type for ¬ϕ. Also, ¬ϕ ∈ fφ ∩ f(¬ϕ). There-
fore, fφ∩ f(¬ϕ) ∈ τ(¬ϕ) which means that fφ∩ f(¬ϕ) ∈
τ(ϕ)∪τ(¬ϕ). By Lemma 20, we have that f(ϕ) = f(¬ϕ)
which implies that fφ ∩ f(¬ϕ) = fφ ∩ f(ϕ). Therefore,
fφ ∩ f(ϕ) ∈ τ(ϕ) ∪ τ(¬ϕ).

Lemma 23. For every ALC-formula ϕ, f ∈ τ(ϕ) iff f is a
formula type for ϕ and

1. if ϕ is atomic then f = {ϕ};
2. if ϕ = ψ ∧ ψ′ then f = {ψ ∧ ψ′} ∪ fψ ∪ fψ′ , for some

fψ ∈ τ(ψ) and fψ′ ∈ τ(ψ′);
3. if ϕ = ¬(ψ ∧ ψ′) then f = {¬(ψ ∧ ψ′)} ∪ fψ ∪ fψ′ , for

some fψ ∈ τ(ψ)∪τ(¬ψ), fψ′ ∈ τ(ψ′)∪τ(¬ψ′) such that
either fψ ∈ τ(¬ψ) or fψ′ ∈ τ(¬ψ′).

Proof. The direction “⇐” is trivial, so we focus only on the
“⇒” direction. Let f ∈ τ(ϕ). Thus, ϕ ∈ f and f is a formula
type for ϕ. By construction, (I) either ϕ is atomic or (II)
ϕ = ψ ∧ ψ′ or (III) ϕ = ¬(ψ ∧ ψ′):

(I) ϕ is atomic. Thus, by construction f = {ϕ} or f =
{¬ϕ}. Thus, as ϕ ∈ f , we get f = {ϕ}.
2We silently remove double negation and treat ¬¬φ as equal to

φ.

(II) ϕ = ψ ∧ ψ′. As ϕ ∈ f , we get that ψ ∧ ψ′ ∈ f .
Moreover, as f is a formula type for ϕ and ψ ∧ ψ′ ∈ f , it
follows that ψ,ψ′ ∈ f .
Let fψ := f ∩ f(ψ) and fψ′ := f ∩ f(ψ′). As ψ,ψ′ ∈ f
and f is a formula type for ϕ = ψ ∧ ψ′, by Lemma 19,
fψ = f ∩ f(ψ) is a formula type for ψ and fψ′ = f ∩
f(ψ′) is a formula type for ψ′. We have that ψ ∈ f(ψ) and
ψ′ ∈ f(ψ′) which means that ψ ∈ fψ and ψ′ ∈ fψ′ . Thus,
fψ ∈ τ(ψ) and fψ′ ∈ τ(ψ′). We still need to show that
f = {ψ ∧ ψ′} ∪ fψ ∪ fψ′ . For this, we will show that (i)
f ⊆ {ψ ∧ψ′}∪ fψ ∪ fψ′ and (ii) {ψ ∧ψ′}∪ fψ ∪ fψ′ ⊆ f .
The case (ii) is trivial, so we focus only on case (i). Let
φ ∈ f . As f is a formula type for ϕ = ψ ∧ ψ′, we get that

φ ∈ f ⊆ f(ψ∧ψ′) = {ψ∧ψ′,¬(ψ∧ψ′)}∪ f(ψ)∪ f(ψ′).
Therefore, (a) φ ∈ {ψ ∧ ψ′,¬(ψ ∧ ψ′)} or (b) φ ∈ f(ψ)
or (c) φ ∈ f(ψ′).

(a) φ ∈ {ψ∧ψ′,¬(ψ∧ψ′)}. As f is a formula type and
ϕ = ψ ∧ ψ′ ∈ f , we get that ¬(ψ ∧ ψ′) 6∈ f . Thus, as
φ ∈ f , we have that φ 6= ¬(ψ∧ψ′). Hence, φ = ψ∧ψ′,
which implies that φ ∈ {ψ ∧ ψ′} ∪ fψ ∪ fψ′ .
(b) φ ∈ f(ψ). Thus, as φ ∈ f , we get that φ ∈ fψ =
f ∩ f(ψ) which implies that φ ∈ {ψ ∧ ψ′} ∪ fψ ∪ fψ′ .
(c) φ ∈ f(ψ′). Thus, as φ ∈ f , we get that φ ∈ fψ′ =
f ∩ f(ψ′) which implies that φ ∈ {ψ ∧ ψ′} ∪ fψ ∪ fψ′ .

Thus, φ ∈ {ψ ∧ ψ′} ∪ fψ ∪ fψ′ .
(III) ϕ = ¬(ψ∧ψ′). As ϕ ∈ f , we get that ¬(ψ∧ψ′) ∈ f .
Let fψ := f ∩ f(¬ψ) and fψ′ := f ∩ f(¬ψ′).
As ¬ψ,¬ψ′ ∈ f(ϕ = ¬(ψ∧ψ′)), by Lemma 22, we have
that fψ ∈ τ(ψ) ∪ τ(¬ψ) and fψ′ ∈ τ(ψ′) ∪ τ(¬ψ′).
Moreover, as f is a formula type for ϕ and ϕ = ¬(ψ ∧
ψ′) ∈ f , it follows that ψ ∧ ψ′ 6∈ f . Therefore, {ψ,ψ′} 6⊆
f . Thus, either ψ 6∈ f or ψ′ 6∈ f . Thus, as f is a formula
type, either (i) ¬ψ ∈ f or (ii) ¬ψ′ ∈ f .

(i) ¬ψ ∈ f . Thus, as f is a formula type for ϕ = ¬(ψ ∧
ψ′), by Lemma 19, fψ = f ∩ f(¬ψ) is a formula type
for ¬ψ. We have that ¬ψ ∈ f(¬ψ). So ¬ψ ∈ fψ . Thus,
fψ ∈ τ(¬ψ).
(ii) ¬ψ′ ∈ f . Analogously to item (i): fψ′ ∈ τ(¬ψ′).

Thus, fψ ∈ τ(¬ψ) or fψ′ ∈ τ(¬ψ′).
We still need to show that f = {¬(ψ∧ψ′)}∪ fψ∪ fψ′ . For
this we need to show that (i) f ⊆ {¬(ψ ∧ ψ′)} ∪ fψ ∪ fψ′

and (ii) {¬(ψ∧ψ′)}∪ fψ∪ fψ′ ⊆ f . The case (ii) is trivial.
So we focus only on case (i).
Let φ ∈ f . As f is a formula type for ϕ = ¬(ψ ∧ ψ′),
we get that φ ∈ f ⊆ f(¬(ψ ∧ ψ′)) = f(ψ ∧ ψ′) = {ψ ∧
ψ′,¬(ψ ∧ ψ′)} ∪ f(ψ) ∪ f(ψ′). Therefore, (a) φ ∈ {ψ ∧
ψ′,¬(ψ ∧ ψ′)} or (b) φ ∈ f(ψ) or (c) φ ∈ f(ψ′).

(a) φ ∈ {ψ∧ψ′,¬(ψ∧ψ′)}. As f is a formula type and
ϕ = ¬(ψ∧ψ′) ∈ f , we get that (ψ∧ψ′) 6∈ f . Since φ ∈
f , we have that φ 6= (ψ∧ψ′). Therefore, φ = ¬(ψ∧ψ′),
which implies that φ ∈ {¬(ψ ∧ ψ′)} ∪ fψ ∪ fψ′ .
(b) φ ∈ f(ψ). By Lemma 20, we get f(ψ) = f(¬ψ).
Therefore, φ ∈ f(¬ψ). Thus, as φ ∈ f , we get that
φ ∈ fψ = f ∩ f(¬ψ) which implies that φ ∈ {¬(ψ ∧
ψ′)} ∪ fψ ∪ fψ′
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(c) φ ∈ f(ψ′). Analogously to item (b), we get φ ∈
{¬(ψ ∧ ψ′)} ∪ fψ ∪ fψ′ .

Thus, φ ∈ {¬(ψ ∧ ψ′)} ∪ fψ ∪ fψ′ .

Definition 24 (Formula degree). The degree of an ALC-
formula φ, denoted degree(φ), is

• 1 if φ is an atomic ALC-formula;
• degree(ϕ) + 1 if φ = ¬ϕ; and
• degree(ϕ) + degree(ψ) if φ = ϕ ∧ ψ.

Lemma 25 ((Gabbay 2003)). If I |= ϕ then qm(ϕ, I) is a
quasimodel for ϕ.

Lemma 26. Let ϕ be an ALC-formula. If f ∈ τ(ϕ) then
(∧

lit(f)

)
|= ϕ.

Proof. The proof follows by induction in the degree of φ.

Base: degree(φ) = 1. Then φ is atomic. This implies from
Lemma 23 that f = {φ}. Thus,

∧
lit(f) = φ. ForALC, this

means that
∧
lit(f) |= φ.

Induction Hypothesis: For every formula ϕ, and formula
type fϕ for ϕ, if ϕ ∈ fϕ and degree(ϕ) < degree(φ) then∧
lit(fϕ) |= ϕ.

Induction Step: If degree(φ) > 1 then φ is of the form
ϕ ∧ ψ or ¬ϕ, for some ALC-formulae ϕ and ψ:

1. φ = ϕ ∧ ψ. Thus, from Lemma 23,

f = {ϕ ∧ ψ} ∪ fϕ ∪ fψ, such that fϕ ∈ τ(ϕ), fψ ∈ τ(ψ).

Note that lit(f) = lit(fϕ) ∪ lit(fψ). Therefore,

∧
lit(f) =

(∧
lit(fϕ)

)
∧
(∧

lit(fψ)

)

By the definition of degree, we get that degree(φ) =
degree(ϕ ∧ ψ) = degree(ϕ) + degree(ψ) and 1 ≤
degree(ϕ) and 1 ≤ degree(ψ). Therefore, degree(ϕ) <
degree(φ) and degree(ψ) < degree(φ). By the induc-
tive hypothesis,

∧
lit(fϕ) |= ϕ and

∧
lit(fψ) |= ψ.

Therefore,
∧
lit(f) =

∧
lit(fϕ) ∧ ∧ lit(fψ) |= ϕ ∧ ψ.

Thus, as φ = ϕ ∧ ψ , we get
∧
lit(f) |= φ.

2. φ = ¬ϕ. By construction, either: (a) ϕ is atomic, or
(b)ϕ = ψ ∧ ψ′.

(a) ϕ is atomic. We get from Lemma 23 that f = {¬ϕ},
which implies that lit(f) = {¬ϕ}, and analogous to
the base case, we get that

∧
lit(f) |= ¬ϕ that is,∧

lit(f) |= φ.
(b) ϕ = ψ ∧ ψ′. By Lemma 23, we get that

f = {¬(ψ ∧ ψ′)} ∪ fψ ∪ fψ′ , (3)

where fψ ∈ τ(ψ) ∪ τ(¬ψ), fψ′ ∈ τ(ψ′) ∪ τ(¬ψ′) such
that either (i) fψ ∈ τ(¬ψ) or (ii) fψ′ ∈ τ(¬ψ′).

i. fψ ∈ τ(¬ψ). By the definition of degree, we
get that degree(φ) = degree(¬(ψ ∧ ψ′)) =
degree(ψ)+degree(ψ′)+1, and degree(ψ) ≥ 1 and
degree(ψ′) ≥ 1 and degree(¬ψ) = degree(ψ) +
1. Thus, degree(φ) = degree(¬(ψ ∧ ψ′)) =
degree(¬ψ) + degree(ψ′). Thus, as degree(ψ′) ≥ 1
we get degree(¬ψ) < degree(φ). Thus, by the in-
ductive hypothesis,

∧
lit(fψ) |= ¬ψ. Note that for

every formula β, ¬ψ |= ¬(ψ ∧ β). Therefore, for
β = ψ′:

∧
lit(fψ) |= ¬(ψ ∧ ψ′).

From (3), we get that
∧
lit(f) =

∧
lit(fψ) ∧

∧
lit(fψ′).

Thus, as
∧
lit(fψ) |= ¬(ψ ∧ ψ′), we get that∧

lit(fψ) ∧ ∧ lit(fψ′) |= ¬(ψ ∧ ψ′) which implies
from above that

∧
lit(f) |= ¬(ψ ∧ ψ′) that is,
∧
lit(f) |= φ.

ii. fψ ∈ τ(¬ψ′). Analogous to item (i).

Theorem 10. For every ALC-formula ϕ: ϕ ≡ ϕ†.

Proof. Let ϕ be an ALC-formula and I an interpretation.
First, suppose that I |= ϕ. From Lemma 25 we know that
qm(ϕ, I) = (T, o, f) is a quasimodel of ϕ. Therefore, there
is a disjunct ψ of ϕ† which is the conjunction of all atomic
formulae in f . By Definition 9 I |= f , thus we can conclude
that I |= ϕ†. Now, assume that I |= ϕ†. This means that
there is one disjunct ψ of ϕ† such that I |= ψ. By con-
struction, this disjunct is a conjunction of atomic formulae
in the formula type of a quasimodel (T, o, f) for ϕ. Using
Lemma 26 we can conclude that I |= f . As ϕ ∈ f we get
that I |= ϕ. Hence, I |= ϕ iff I |= ϕ†, i.e., ϕ ≡ ϕ†.

Corollary 27 is a direct consequence of the definition of a
formula type.

Corollary 27. Let (T, o, f) and (T ′, o′, f ′) be quasimodels
for an ALC-formula ϕ. Then, lit(f) = lit(f ′) iff f = f ′.

Given ALC-formulae ϕ,ψ, we say that ψ is in the lan-
guage of the literals of ϕ, written ψ ∈ Llit(ϕ), if ψ is a
boolean combination of the atoms in ϕ.

Lemma 28. Let M,M ′ be models and ϕ an ALC-
formula. Also let (T, o, f) := qm(ϕ,M) and (T ′, o′, f ′) :=
qm(ϕ,M ′). Then, [M ]ϕ = [M ′]ϕ iff f = f ′.

Proof. First, assume that [M ]ϕ = [M ′]ϕ. Then we know
that for every α ∈ Llit(ϕ), M |= α iff M ′ |= α. With
Corollary 27 we can conclude that f = f ′. Now, assume that
f = f ′. Corollary 27 implies that lit(f) = lit(f ′). That is, for
every atomic subformula α ∈ Llit(ϕ) we have that M |= α
iff M ′ |= α, i.e., [M ]ϕ = [M ′]ϕ.

Lemma 29. Let M be a model and ϕ an ALC-
formula. Then, the following holds: Mod(ϕ) \ [M ]ϕ =
Mod(con(ϕ,M)).
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Proof. Let (T, o, f) := qm(ϕ,M) and (T ′, o′, f ′) :=
qm(ϕ,M ′). First, suppose that M ′ ∈ Mod(ϕ) \ [M ]ϕ.
We know that M ′ |= ϕ and by Lemma 25 we get that
qm(ϕ,M ′) is a quasimodel for ϕ. We also know that M ′ 6∈
[M ]ϕ. Thus, from Lemma 28, we obtain f 6= f ′. There-
fore, f ′ ∈ µ(ϕ,M). Hence, M ′ ∈ Mod(con(ϕ,M)) and
so Mod(ϕ) \ [M ]ϕ ⊆ Mod(con(ϕ,M)).

Now, let M ′ ∈ Mod(con(ϕ,M)). This means that there
is at least one f ′′ ∈ µ(ϕ,M) such that M ′ |= ∧

lit(f ′′).
But as consequence of the definition of formula type, this
implies that M ′ ∈ Mod(ϕ) and thus (T ′, o′, f ′) ∈ S(ϕ).
We also know that M 6∈ [M ]ϕ, otherwise f ′ = f due to
Lemma 28. Therefore, M ′ ∈ Mod(ϕ) \ [M ]ϕ and we can
conclude that Mod(con(ϕ,M)) ⊆ Mod(ϕ) \ [M ]ϕ.

Therefore, Mod(con(ϕ,M)) = Mod(ϕ) \ [M ]ϕ.

Proof. Assume M ∈ Mod(ϕ) and M ′ ∈ [M ]ϕ. Also
let (T, o, f) := qm(ϕ,M) and (T ′, o′, f ′) := qm(ϕ,M ′).
As M ′ ∈ [M ]ϕ, it follows that [M ]ϕ = [M ′]ϕ. Due
to Lemma 28 we get that f = f ′. Since f = f ′, M
and M ′ are indistinguishable for the ALC-formula ϕ and
M ′ ∈ Mod(ϕ) (see Definition 9). Since M ′ was an arbi-
trary model in Mod(ϕ) it follows that [M ]ϕ ⊆ Mod(ϕ).
The other direction is straightforward.

Theorem 12. Let M be a model and ϕ an ALC-formula.
A finite base model function con∗(ϕ,M) is equivalent to
con(ϕ,M) iff con∗ satisfies:

(success) M 6|= con∗(ϕ,M),
(inclusion) Mod(con∗(ϕ,M)) ⊆ Mod(ϕ),
(atomic retainment): For all M′ ⊆ M, if

Mod(con∗(B,M)) ⊂ M′ ⊆ Mod(B) \ [M ]ϕ then
M′ is not finitely representable in ALC-formula.

(atomic extensionality) if M ′ ≡ϕ M then

Mod(con∗(ϕ,M)) = Mod(con∗(ϕ,M ′)).

Proof. Assume that con∗(ϕ,M) ≡ con(ϕ,M). From
Lemma 29 we have that Mod(con∗(ϕ,M)) = Mod(ϕ) \
[M ]ϕ, hence success and inclusion are immediately sat-
isfied. To prove atomic retainment, assume that M ′ 6∈
Mod(con∗(ϕ,M)) and that there is a set of models M′ with
M ′ ∈M′, Mod(con∗(ϕ,M)) ⊂M′ ⊆ Mod(ϕ)\ [M ]ϕ and
that is finitely representable inALC-formula. Lemma 29 im-
plies that Mod(con∗(ϕ,M)) = Mod(ϕ) \ [M ]ϕ. Hence,
M ′ ∈ [M ]ϕ, a contradiction as we assumed that M′ ⊆
Mod(ϕ)\[M ]ϕ. Therefore, no such M′ could exist, and thus,
con∗ satisfies atomic retainment.

Let M ′ ≡ϕ M . Since Mod(con∗(ϕ,M)) = Mod(ϕ) \
[M ]ϕ and [M ′]ϕ = [M ]ϕ, we have that: Mod(ϕ) \ [M ]ϕ =
Mod(ϕ) \ [M ′]ϕ = Mod(con∗(ϕ,M ′)). Hence, atomic ex-
tensionality is also satisfied.

On the other hand, suppose that con∗(ϕ,M) satisfies the
postulates stated. LetM ′ ∈ Mod(ϕ)\[M ]ϕ and assume that
M ′ 6∈ Mod(con∗(ϕ,M)). Due to atomic retainment, this
means that there is no set M′ finitely representable in ALC-
formula such that Mod(con∗(ϕ,M)) ⊂ M′ ⊆ Mod(ϕ) \
[M ]ϕ and M ′ ∈ M′. But we know from Lemma 29 that
Mod(ϕ)\[M ]ϕ is finitely representable inALC-formula and

includes M ′ by assumption, a contradiction. Thus, no such
M ′ could exist and Mod(ϕ) \ [M ]ϕ ⊆ Mod(con∗(ϕ,M)).

Now, let M ′ ∈ Mod(con∗(ϕ,M)). By inclusion M ′ ∈
Mod(ϕ) and by success M ′ 6= M . We will show that
M ′ 6∈ [M ]ϕ. By contradiction, suppose that M ′ ∈
[M ]ϕ. Due to atomic extensionality Mod(con∗(ϕ,M)) =
Mod(con∗(ϕ,M ′)), but success implies that M ′ 6∈
Mod(con∗(ϕ,M ′)). This contradicts our initial assumption
that M ′ ∈ Mod(con∗(ϕ,M)). Therefore M ′ ∈ Mod(ϕ) \
[M ]ϕ and we can conclude that Mod(con∗(ϕ,M)) ⊆
Mod(ϕ) \ [M ]ϕ.

Hence, Lemma 29 yields con(ϕ,M) ≡ con∗(ϕ,M).

Proposition 30. Let f be a formula type. If M |= ∧
lit(f),

ψ ∈ Llit(f) and M |= ψ then
∧
lit(f) |= ψ.

Proof. Let f be a formula type, M a model such that M |=∧
lit(f), and ψ and ALC-formula such that M |= ψ. The

proof is by induction on the degree of ψ.
Base: degree(ψ) = 1. Thus, from its definition, ψ has to
be an atomic formula. As f is a formula type, we have that
ϕ ∈ f iff ¬ϕ 6∈ f . Let us suppose for contradiction that
ψ 6∈ f . Thus, ¬ψ ∈ f . This implies that

∧
f |= ¬ψ. Thus,

as M |= ∧
lit(f), we have that M |= ¬ψ. This contradicts

the hypothesis that M |= ψ. Thus, we conclude that ψ ∈ f .
Therefore,

∧
lit(f) |= ψ.

Induction Hypothesis: For every formula ϕ, if
degree(ϕ) < degree(ψ) and M |= ϕ then

∧
lif(f) |= ϕ.

Induction Step: Let degree(ψ) > 1. By construction, ψ is
of the form (1) ϕ ∧ ϕ′ or (2) ¬ϕ, for ALC-formulae ϕ,ϕ′:

(1) ψ = ϕ ∧ ϕ′. By definition, degree(ϕ ∧ ϕ′) =
degree(ϕ) + degree(ϕ′). Recall from the definition of
degree that degree(β) > 1, for every formula β. There-
fore,
degree(ϕ) < degree(ϕ ∧ ψ′) and degree(ϕ′) <
degree(ϕ∧ϕ′). This means that degree(ϕ) < degree(ψ)
and degree(ϕ′) < degree(ψ). From hypothesis, M |=
ψ = ϕ ∧ ϕ′. Thus, M |= ϕ and M |= ψ. This implies
from IH that

∧
lit(f) |= ϕ and

∧
lit(f) |= ϕ′ Therefore,∧

lit(f) |= ϕ ∧ ϕ′ = ψ.
(2) ψ = ¬ϕ. We have two cases, either (i) ϕ is an atomic
formula or (ii) ϕ = (β ∧ β′). For the first case, anal-
ogous to the base case, we get that

∧
lit(f) |= ψ. So

we focus only on the second case. From the definition
of degree, we get that degree(¬β) < degree(ψ) and
degree(¬β′) < degree(ψ). As M |= ψ = ¬(β ∧β′), we
get that either (a) M |= ¬β or (b) M |= ¬β′.

(a) M |= ¬β. From above, degree(¬β) < degree(ψ).
Thus, from IH, we get that

∧
lit(f) |= ¬β. Thus,∧

lit(f) |= ¬(β ∧ β′) = ψ.
(b): M |= ¬β′. Analogous to case (a).

Lemma 31. If M |= ϕ, f ∈ ftypes(ϕ) and M |= ∧
lit(f)

then Mod(
∧
lit(f)) = [M ]ϕ.

Proof. We prove that M ′ ∈ Mod(
∧
lit(f)) iff M ′ ∈ [M ]ϕ.

“⇒”. M ′ ∈ Mod(
∧
lit(f)). To show that M ′ ∈ [M ]ϕ,

it suffices to show that M ′ ≡ϕ M . Let ψ ∈ Llit(ϕ), we
need to show that M |= ψ iff M |= ψ.
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(a) “⇒” M |= ψ. From Proposition 30, we have that∧
lit(f) |= ψ. This jointly withM ′ |= ∧ lit(f) implies

that M ′ |= ψ.
(b) “⇐” M ′ |= ψ. Analogous to item (a).

“⇐” M ′ ∈ [M ]ϕ. Note that
∧
lit(f) ∈ Llit(ϕ). Thus

as M ′ ≡ϕ M , and M |= ∧
lit(f), we get that M ′ |=∧

lit(f).

Lemma 16. For every ALC-formula ϕ and model M :

Mod(ex(ϕ,M)) = Mod(ϕ) ∪ [M ]ϕ.

Proof. We have two cases: either (i) M |= ϕ or (ii)M 6|= ϕ.
(i) M |= ϕ. Then, by the definition of ex, we have that
ex(ϕ,M) = ϕ which implies that Mod(ex(ϕ,M)) =
Mod(ϕ). As M |= ϕ, we get that [M ]ϕ ⊆ Mod(ϕ). There-
fore, Mod(ϕ) ∪ [M ]ϕ = Mod(ϕ). This implies that

Mod(ex(ϕ,M)) = Mod(ϕ) ∪ [M ]ϕ.

(ii)M 6|= ϕ. Thus, by the definition of ex, we get that

ex(ϕ,M) = ϕ ∨
∧
lit(f), where qm(¬ϕ,M) = (T, o, f).

This implies that Mod(ex(ϕ,M)) = Mod(ϕ ∨∧ lit(f)).
Note that Mod(ϕ ∨∧ lit(f)) = Mod(ϕ) ∪Mod(

∧
lit(f)).

As qm(¬ϕ,M) = (T, o, f), it follows from the definition
of qm that f ∈ ftypes(¬ϕ) and M |= ∧ lit(f). In summary,
M |= ¬ϕ, f ∈ ftypes(¬ϕ) and M |= ∧

lit(f). Thus, from
Lemma 31, we have that Mod(

∧
lit(f)) = [M ]ϕ. There-

fore, Mod(ex(ϕ,M)) = Mod(ϕ)∪[M ]ϕ.

Theorem 17. Let M be a model and ϕ an ALC-formula.
A finite base model function ex∗(ϕ,M) is equivalent to
ex(ϕ,M) iff ex∗ satisfies:
(success) M ∈ Mod(ex∗(ϕ,M)).
(persistence): Mod(ϕ) ⊆ Mod(ex∗(ϕ,M)).
(atomic temperance): For all M′ ⊆ M, if Mod(ϕ) ∪

[M ]ϕ ⊆ M′ ⊂ Mod(ex∗(ϕ,M)) ∪ {M} then M′ is not
finitely representable in ALC-formula.

(atomic extensionality) if M ′ ≡ϕ M then

Mod(ex∗(ϕ,M)) = Mod(ex∗(ϕ,M ′)).

Proof. First, assume that ex∗(ϕ,M) ≡ ex(ϕ,M). From
Lemma 16 we have that Mod(ex∗(ϕ,M)) = Mod(ϕ) ∪
[M ]ϕ, hence success and persistence are immediately sat-
isfied. To prove atomic temperance, assume that M ′ ∈
Mod(ex∗(ϕ,M)) and that there is a set of models M′ with
M ′ that is finitely representable in ALC-formula and such
that Mod(ϕ)∪[M ]ϕ ⊆M′ ⊂ Mod(ex∗(ϕ,M)). Lemma 16
implies that Mod(ex∗(ϕ,M)) = Mod(ϕ) ∪ [M ]ϕ. Hence,
M ′ 6∈ [M ]ϕ, a contradiction as we assumed that M′ ⊇
Mod(ϕ) ∪ [M ]ϕ. Therefore, no such M′ could exist, and
thus, ex∗ satisfies atomic temperance.

Let M ′ ≡ϕ M . Since Mod(ex∗(ϕ,M)) = Mod(ϕ) ∪
[M ]ϕ and [M ′]ϕ = [M ]ϕ, we have that: Mod(ϕ)∪ [M ]ϕ =
Mod(ϕ) ∪ [M ′]ϕ = Mod(ex∗(ϕ,M ′)). Hence, atomic ex-
tensionality is also satisfied.

On the other hand, suppose that ex∗(ϕ,M) satisfies the
postulates stated. Let M ′ ∈ Mod(ϕ) ∪ [M ]ϕ. If M ′ ∈

Mod(ϕ) then success ensures that M ′ ∈ Mod(ex∗(ϕ,M)).
Otherwise, we have M ′ ≡ϕ M , and as consequence
of success and atomic extensionality we also obtain
M ′ ∈ Mod(ex∗(ϕ,M)). Therefore, Mod(ϕ) ∪ [M ]ϕ ⊆
Mod(ex∗(ϕ,M)).

Now, let M ′ ∈ Mod(ex∗(ϕ,M)) and assume that M ′ 6∈
Mod(ϕ) ∪ [M ]ϕ. Success, persistence and atomic exten-
sionality imply that Mod(ex∗(ϕ,M)). Atomic temperance
states that there is no set of models M′ that is finitely rep-
resentable in ALC-formula with Mod(ϕ) ∪ [M ]ϕ ⊆ M′ ⊂
Mod(ex∗(ϕ,M))∪{M}. But we know from Lemma 16 that
Mod(ϕ) ∪ [M ]ϕ is finitely representable in ALC-formula
and does not include M ′ by assumption, a contradiction.
Thus, no such M ′ could exist and Mod(ex∗(ϕ,M)) ⊆
Mod(ϕ) ∪ [M ]ϕ.

Hence, Lemma 16 yields ex∗(ϕ,M) ≡ ex(ϕ,M).
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Abstract

This paper presents a methodology for constructing belief
base contraction operators which preserve the syntactic struc-
ture of the initial belief base. We believe that preserving the
structure of the initial belief base is an important requirement
for practical belief base contraction. In our approach, indi-
vidual occurrences of propositional variables are differenti-
ated by the introduction of tags. Using the characterisation of
unsatisfiability provided by the connection method, we may
identify which specific variable occurrences result in a be-
lief being entailed, and thus apply selective substitutions for
these occurrences in order to block that entailment by effec-
tively cutting connections. The resulting belief base has a
structure almost identical to that of the initial belief base. We
demonstrate that these contraction operators satisfy a num-
ber of desirable properties. Next, we present an algorithm for
path-contraction with complexity DP. Finally, we introduce
the notion of path-entailment to capture precisely what is pre-
served after a contraction, and show that the class of regu-
lar path-contraction operators satisfy an analogue of Parikh’s
postulate.

1 Introduction
Belief contraction is a form of belief change which occurs
whenever an agent realises that it holds a belief which is no
longer justified, and subsequently must modify its existing
beliefs to ensure that this specified belief is no longer en-
tailed by those beliefs it decides to retain. The challenge
is to preserve as many of its existing beliefs as possible.
This process is formalised as a belief contraction operator
− which takes a belief state κ alongside an existing belief φ
and produces a contracted belief state κ− φ.

Our contention is that belief contraction operators, and
belief change functions more generally, should satisfy a
principle of structural preservation analogous to the princi-
ple of categorical matching, which requires that the structure
of the contracted beliefs should resemble the structure of the
initial beliefs to the greatest extent possible. This is in con-
flict with purely semantic approaches to belief change, such
as the Katsuno–Mendelzon approach, which require syntax-
independence. This is also in conflict with approaches such
as prime implicate based belief revision (Bienvenu, Herzig,
and Qi 2008), and with approaches relying on disjunctive
normal forms (Hunter and Agapeyev 2019) which generally
involve an exponential cost as knowledge bases generally

have the form of a large conjunction of small beliefs. We
believe that pursuing the principle of structural preservation
will help close the gap between practical belief representa-
tion and the representations convenient for naive implemen-
tations of belief change functions.

In this paper, we introduce the class of path-contraction
operators which satisfy the principle of structural preserva-
tion for formulae in negation normal form. As conversion
to negation normal form largely preserves the structure of
a formula, we consider this a reasonable restriction. These
operators work by tagging every occurrence of a proposi-
tional variable within the existing belief base with a unique
tag, and then applying the connection method (Bibel 1981)
to determine which particular occurrences contribute to the
unwanted belief being entailed. Using this information, a
process of selective substitution of > or ⊥ for these partic-
ular occurrences, which we call attenuation, is employed to
produce the resulting contracted belief base. The nature of
this construction means that these path-contraction operators
preserve the initial structure to a great extent.

This can be understood from a tableaux perspective: in
order to compute κ − φ we proceed as follows. Assuming
κ ` φ it follows that κ∧¬φ is unsatisfiable, and therefore we
may construct a closed fully expanded tableaux for κ ∧ ¬φ.
At this point, we select one or more branches, and selec-
tively remove literals appearing along these branches which
originate in κ until at least one branch is open. This results
in a formula κ′ obtained from κ by our process of attenua-
tion, with the property that κ ` κ′ and κ′ 0 φ. Then, define
κ− φ as κ′.

In Section 2 we present background material on proposi-
tional matrices, the connection method, existing approaches
to belief base contraction, and on the distinction between
explicit an implicit beliefs. Section 3 introduces the tech-
nique of attenuation, the notion of a cutting, and uses these
to define the class of path-contraction operators which are
shown to satisfy a handful of desirable properties. Sec-
tion 4 presents a concrete algorithm for performing path-
contraction alongside a complexity analysis. In Section
5 we introduce the notion of path-entailment and path-
independence, which allow for characterising the preserva-
tion properties of path-contraction operators, and show an
analogue of Parikh’s Postulate to be satisfied by all regular
path-contraction operators. We next compare this to exist-
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ing literature in Section 6, and finally offer a summary of
our contributions in Section 7.

2 Background Material
2.1 Propositional Logic
Let V = {p, q, r, . . . } be a finite set of propositional vari-
ables. The corresponding propositional language L is con-
structed from V by applying the propositional connectives
¬, ∧, ∨, and →. We use φ, ψ, κ, . . . to range over propo-
sitional formulae in L. We write V (φ) to denote the set of
propositional variables occurring within φ.

Propositional formulae of the form ¬p or p are called lit-
erals. When every negation occurring in φ is the negation of
a variable we say that φ is in negation normal form. When
φ is a disjunction of conjunctions of literals we say it is in
disjunctive normal form, and when φ is a conjunction of dis-
junctions of literals we say it is in conjunctive normal form.

Functions ν, µ : V → {T, F} are referred to as truth-
value assignments or just as assignments. Given a proposi-
tional formula φ we write [φ] for the set of assignments sat-
isfying φ, with φ ` ψ indicating that [φ] ⊆ [ψ], and φ ≡ ψ
indicating that [φ] = [ψ]. In the case [φ] 6= ∅ we say that
φ is satisfiable, which is denoted by writing ` φ. Similarly,
we write φ 0 ψ if it is not the case that φ ` ψ, and 0 φ if it
is not the case that ` φ.

2.2 Belief Base Contraction Operators
Belief contraction operators were formalised by Alchour-
ron, Gärdenfors, and Makinson (1985) as binary functions
− which map a belief state κ alongside a belief to con-
tract φ into a new contracted belief state κ − φ such that
κ − φ 0 φ. Working with a finite vocabulary, both the be-
lief state κ and the belief φ may be represented as proposi-
tional formulae along the lines of (Katsuno and Mendelzon
1991). Among the many postulates discussed in the afore-
mentioned, there is an assumption that whenever κ1 ≡ κ2
then κ1 − φ ≡ κ2 − φ meaning that belief contraction is
meant to be syntax-independent. Rejecting this assumption
leads to the subject of belief base contraction.

There are a number of approaches to belief base contrac-
tion in literature, where, usually, belief bases are represented
as arbitrary sets of formulae. For instance, using selection
functions to combine remainders of κ by φ which are max-
imal sets of beliefs from κ which do not entail φ (Hansson
1991), or by using incision functions to combine kernels of
κ for φ which are minimal sets of beliefs from κ which do
entail φ (Hansson 1994). Additional approaches are sum-
marised nicely in (Peppas 2008).

In (Hansson 1999) a number of different properties are
proposed that a belief base contraction operator may be re-
quired to satisfy. For our purposes, where we consider be-
lief bases as comprising a single formula, we work with the
following subset of those postulates discussed in (Caridroit,
Konieczny, and Marquis 2017).

Definition 2.1. A binary function − : L × L → L is a
belief base contraction operator iff it satisfies the following
postulates:

C1. If 0 φ then κ− φ 0 φ.
C2. If ` φ then κ− φ = κ.
C3. κ ` κ− φ.
C4. If κ 0 φ then κ− φ = κ.

Postulate (C1) states that whenever φ is not a tautology,
then κ−φmust not entail φ. Postulate (C2) states that when-
ever φ is a tautology, then κ−φ should not change anything
as there is nothing which can be done to stop the entailment
of φ anyways. Postulate (C3) states that κ − φ must be a
consequence of κ, so that the process of contraction cannot
result in new beliefs being adopted. Finally, postulate (C4)
states that whenever φ is not a consequence of κ then con-
tracting κ by φ should result in nothing being changed. We
regard these postulates as serving to demarcate the broad-
est class of functions worth considering as belief base con-
traction operators, as the postulates capture very little of the
requirement of minimal change.

In addition to these, we consider Parikh’s relevance pos-
tulate (Parikh 1999) which further captures the requirement
of minimal change by requiring that when some beliefs κ are
being revised by a new belief φ then those beliefs in κ irrel-
evant to φ should remain unchanged. For example, beliefs
about automobiles are irrelevant to those about birds. Thus,
when contracting our beliefs about bird and automobiles so
as to no longer entail that birds can fly, say in order to ac-
commodate penguins, there should be no reason for any of
our beliefs about automobiles to be altered in this process.

Irrelevance is formalised by considering decompositions
κ ≡ κ1 ∧ κ2 with V (κ1) ∩ V (κ2) = ∅ called syntax-
splittings and considering κ1 as irrelevant when revising κ
by any φ with V (κ1) ∩ V (φ) = ∅. For our purposes of
studying belief base contraction, rather than belief revision,
we use the following formulation of this:

Definition 2.2. A belief base contraction operator − satis-
fies Parikh’s relevance postulate if and only if for any for-
mulae κ1, κ2, and φ such that V (κ1)∩(V (κ2)∪V (φ)) = ∅
then it follows that

P. (κ1 ∧ κ2)− φ ≡ κ1 ∧ (κ2 − φ).

2.3 Propositional Matrices
Our approach to belief contraction relies on the selective
substitution of > or ⊥ for propositional variables appearing
within the belief base κ. In order to facilitate this, we attach
distinct tags to each separate occurrence of a propositional
variable in κ. Our examples use positive integers for tags,
but the choice is arbitrary. We refer to propositional for-
mulae in negation normal form which have been annotated
with tags as propositional matrices, and use the variables
A,B, C,K, . . . to range over them.

Definition 2.3. A matrix is an expression constructed via
the following rules:

1. The symbol > is a matrix.
2. If p is a variable in V and i is a tag then pi and ¬pi are

matrices.
3. If A and B are matrices with no tags in common, then

(A ∧ B) is a matrix.
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4. If A and B are matrices with no tags in common, then
(A ∨ B) is a matrix.

5. Nothing else is a matrix.
We write M for the set of matrices.

It is worth noting that the use of the term “matrix”
for a formula in negation normal form within the connec-
tion method literature is motivated by a graphical notation
wherein disjunctions are represented by vertical juxtaposi-
tion, and conjunctions are represented by horizontal juxta-
position, or vice versa depending on the author. To illustrate,
one might write

p1 ∧ (¬p2 ∨ q3) ∧ ¬q4 =

[
p1

[
¬p2
q3

]
¬q4

]
.

Our introduction of tags into the definition of a matrix
amounts to a slight simplification of the approach in (Kreitz
and Otten 1999; Otten 2011) which instead associates every
subformula with a position label of its own.

Although matrices are required to be in negation normal
form, we write ¬A to refer to the matrix obtained by tem-
porarily treatingA as a formula, and computing the negation
normal form of ¬A by pushing negations down while retain-
ing the tags. For example, ¬(p1 ∨ q2) refers to the matrix
¬p1 ∧ ¬q2
Definition 2.4. We write T (A) for the set of tags occurring
in A, and say that matrices A and B are tag-disjoint when
T (A) ∩ T (B) = ∅.
Definition 2.5. If p is a propositional variable then a matrix
of the form pi or ¬pi is called a literal. In the case the
literal pi or ¬pi appears in a matrixA we say that i tags the
variable p.
Definition 2.6. The detagging of a matrix A is the proposi-
tional formula φ obtained by deleting the tags fromA, which
we denote by ε(A).
Example 2.1. The matrix p1 ∧ (¬p2 ∨ q3)∧¬q4 has detag-
ging p ∧ (¬p ∨ q) ∧ ¬q.

When working with matrices we say a truth-value assign-
ment ν satisfies A when ν satisfies ε(A). We also say that
A entails B and write A ` B when ε(A) entails ε(B).

2.4 Connections in Propositional Matrices
Unsatisfiability of propositional matrices may be charac-
terised in terms of paths and connections, where paths corre-
spond roughly to the disjuncts of a disjunctive normal form
of a formula, and connections correspond to pairs of com-
plementary literals in those disjuncts. In the context of au-
tomated reasoning, this has become known as the connec-
tion method which originates with (Bibel 1981) and (An-
drews 1976). Our presentation below is a variation on that
of (Wallen 1987) and (Otten 2011).
Definition 2.7. A path is a set p of literal matrices such
that each tag occurring in p occurs exactly once. If there
exists a variable p and tags i and j such that p contains pi
and ¬pj then {pi,¬pj} is called a connection in p, and p is
said to be connected. If p contains no connection, then p is
unconnected.

In order to construct the set of paths through a particular
matrix, we employ the following two functions defined on
sets of paths:
Definition 2.8. If X and Y are sets of paths, then X ⊕ Y
and X ⊗ Y are defined as follows:

X ⊕ Y := X ∪ Y,
X ⊗ Y := {p ∪ q | p ∈ X and q ∈ Y } .

Definition 2.9. IfA is a matrix then the set of paths through
A, denoted by JAK, is defined by the following rules:

1. If A is > then JAK = {∅}.
2. If A is pi or ¬pi then JAK = {{A}}.
3. If A is (B ∨ C) then JAK = JBK⊕ JCK.
4. If A is (B ∧ C) then JAK = JBK⊗ JCK.

Computing the paths through a matrix effectively amounts
to converting the matrix into a disjunctive normal form. We
can also think of paths as representing branches in a fully
expanded tableau for the formula underlying the matrix.
Example 2.2. Consider the matrix p1 ∧ (¬p2 ∨ q3) ∧ ¬q4,
which is unsatisfiable and has the following paths:

Jp1 ∧ (¬p2 ∨ q3) ∧ ¬q4K
= Jp1K⊗ (J¬p2K⊕ Jq3K)⊗ J¬q4K
= {{p1}} ⊗ ({{¬p2}} ⊕ {{q3}})⊗ {{¬q4}}
= {{p1}} ⊗ {{¬p2}, {q3}} ⊗ {{¬q4}}
= {{p1,¬p2,¬q4}, {p1, q3,¬q4}}.

Observe that the first path contains the connection
{p1,¬p2} whereas the second path contains the connection
{q3,¬q4}, so that every path is connected. Recalling the
graphical notation

p1 ∧ (¬p2 ∨ q3) ∧ ¬q4 =

[
p1

[
¬p2
q3

]
¬q4

]
,

we see that the paths through a matrix correspond to hor-
izontal lines drawn across the matrix which intersect one
literal from every column.

That every path through our example matrix is connected,
and the matrix itself is unsatisfiable, is not a coincidence.
At the heart of the connection method in (Bibel 1981;
Andrews 1976) is a theorem stating that a matrix is un-
satisfiable if and only if every path through the matrix is
connected. Although this characterisation is well known,
given our modified definitions for matrices and paths, we
take a moment to prove this result for the convenience of the
reader. We start with the following lemma:
Lemma 2.1. An interpretation ν satisfies a matrix A if and
only if for some path p through A it follows that ν satisfies
every element of p.

Proof. SupposeA is a matrix and ν is an interpretation, and
proceed by induction on the complexity of A followed by
case analysis on the primary connective of the matrix under-
lying A.
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1. In the case A is > then it follows that ν satisfies A, and ν
satisfies every element of the single path ∅ ∈ JAK.

2. In the case A is a literal pi or ¬pi, then ν satisfies A if
and only if it satisfies every element of the path {A}. As
JAK = {{A}} the conclusion follows.

3. In the case A is a disjunction (B ∨ C) suppose ν is a val-
uation satisfying A. It follows that ν satisfies either B or
C, and therefore by the induction hypothesis there either
exists a path p ∈ JBK such that ν satisfies every element
of p, or there exists a path p ∈ JCK such that ν satisfies
every element of p. Observing that JAK = JBK ⊕ JCK, it
follows in either case that there exists a path p ∈ JAK such
that ν satisfies every element of p as required. Conversely,
suppose that ν is a valuation such that there exists a path
p ∈ JAK such that ν satisfies every element of p. Observ-
ing that JAK = JBK ⊕ JCK it follows that either p ∈ JBK
in which case the induction hypothesis shows that ν satis-
fies B, or p ∈ JCK in which case the induction hypothesis
shows that ν satisfies C. In either case, it follows that ν
satisfies A = (B ∨ C) so the conclusion follows.

4. In the case A is a conjunction (B ∧ C) suppose ν is a val-
uation satisfying A. It follows that ν satisfies both B and
C, and therefore by the induction hypothesis there exists a
path q ∈ JBK such that ν satisfies every element of q, and
there also exists a path r ∈ JCK such that ν satisfies every
element of r. Observing that JAK = JBK ⊗ JCK it follows
that p = q ∪ r is a path through A such that ν satisfies
every element of p, as required. Conversely, suppose that
ν is a valuation for which there exists a path p ∈ JAK
such that ν satisfies every element of p. Observing that
JAK = JBK⊗ JCK it follows that there exist paths q ∈ JBK
and r ∈ JCK such that p = q ∪ r. Therefore, as ν satisfies
every element of q and every element of r, by applying
the induction hypothesis it follows that ν satisfies B and
C, which is to say ν satisfies A = (B ∧ C) so the conclu-
sion follows.

Theorem 2.1. A matrixA is unsatisfiable if and only if every
path through A is connected.

Proof. Suppose thatA is unsatisfiable. Assume for the sake
of contradiction that there exists a path p through A which
contains no connection. Then consider an interpretation ν
such that ν(p) = T if pi ∈ p, ν(p) = F if ¬pi ∈ p, with
ν(p) chosen arbitrarily otherwise. It follows that ν satisfies
every element of the path p, and hence by the prior Lemma
2.1 ν satisfies A. This is a contradiction, so it must be that
every path through A was connected.

Conversely, suppose every path through A is connected
and assume for the sake of contradiction that ν is an inter-
pretation satisfying A. It follows that there exists a path p
such that ν satisfies every element of p. However, because
every path is connected, p is connected and therefore there
exists a variable p alongside tags i and j such that p contains
both pi and ¬pj . However, this means that ν(p) = T and
ν(p) = F which is a contradiction. Therefore, A must be
unsatisfiable.

2.5 Explicit and Implicit Beliefs
Requiring belief contraction operators to be invariant under
logical equivalence is unreasonable when studying resource-
limited agents. It becomes impossible to differentiate be-
tween the beliefs the agent holds, and the logical conse-
quences of those beliefs. Effectively, every consequence of
its beliefs must be treated as if it is instantaneously known,
and any contradictory beliefs results in every sentence being
believed.

These sorts of concerns motivated (Levesque 1984) to dif-
ferentiate between the explicit beliefs which an agent pos-
sesses, and those implicit beliefs which it would be able
to conclude based off of inferences from its explicit beliefs
given adequate time.

One concern is that explicitly believing A ∧ B seems
to imply one should explicitly believe A as well. Hence,
there is a need for an intermediate approach, wherein cer-
tain immediate consequences of explicit beliefs are regarded
as among the explicit beliefs, while consequences involving
more elaborate inferences are relegated to the category of
implicit belief.

Definition 2.10. Matrices A and B are path-equivalent iff
JAK = JBK.

Example 2.3. The matrices p1∨(q2∨r3) and r3∨(q2∨p1)
are path-equivalent, whereas the matrices p1 ∨ ¬p2 and >
are not path-equivalent.

In our approach, almost everything is invariant under
path-equivalence, or can be chosen to be so. It follows from
Lemma 2.1 that path-equivalence implies logical equiv-
alence, however path-equivalence is far more restrictive.
We consider path-equivalence to offer an intermediary be-
tween completely syntax-insensitive approaches which fail
to differentiate implicit and explicit beliefs, and completely
syntax-sensitive approaches which risk becoming ad-hoc.

3 Path-Contraction via Matrix Attenuation
In this section we introduce the class of path-contraction op-
erators which operate by applying selective substitutions of
> or⊥ for particular occurrences of literals variables within
a matrix K in order to construct a matrix K′ which does
not entail another matrix A. We refer to this process of se-
lective substitution as matrix attenuation. An advantage of
matrix attenuation is that it amounts to a straightforward edit
to the original knowledge base, without any requirement of
a costly conversion to a conjunctive or disjunctive normal
form. Hence, the path-contraction operators we obtain leave
the structure of the knowledge bases being contracted rela-
tively unchanged.

Definition 3.1. The attenuation of a matrix A at a tag i is
the matrix Ai defined by the following rules:

1. If A is > then Ai = >.
2. If A is pj or ¬pj and i 6= j then Ai = A.
3. If A is pj or ¬pj and i = j then Ai = >.
4. If A is (B ∨ C) then Ai = (Bi ∨ Ci).
5. If A is (B ∧ C) then Ai = (Bi ∧ Ci).
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Simply,Ai is the matrix obtained fromA by replacing the
literal containing the variable tagged by i inA with>, or by
doing nothing when the tag i does not appear inA. We think
of this as replacing the specific variable occurrence tagged
by i in A with > if it appears positively, or with ⊥ if it
appears negatively.

Example 3.1. SupposeK is the matrix p1∧(¬p2∨q3) which
logically entails q. If we attenuate at the tag 2 we get K2 =
p1 ∧ (> ∨ q3) which no longer entails q. Note that K ` K2,
so we can think of K2 as a contraction of K by q.

It turns out that A always entails Ai. This can be proven
directly via an induction, or as a consequence of Theorems
5.2 and 5.1 below. However, for now we merely state this as
an observation:

Observation 3.1. If A is a matrix and i is a tag then A `
Ai.

It is possible to characterise the paths through an attenu-
ation of a matrix as being attenuations of the paths through
the matrix itself, where attenuations of paths are defined as
follows:

Definition 3.2. The attenuation of a path p at a tag i is the
path pi consisting of those literals in p not containing the
tag i.

Theorem 3.1. If A is a matrix and i is a tag then JAiK =
{pi | p ∈ JAK}.

Proof. Proceed by induction on the complexity of A, and
within the induction by case analysis.

1. If A is > then JAK = {∅} and Ai = A so it follows that

JAiK = J>K
= {∅}
= {∅i}
= {pi | p ∈ {∅}}
= {pi | p ∈ JAK}.

2. If A is pj or ¬pj then there are two cases. In the case
i = j then Ai = > it follows that

JAiK = J>K
= {∅}
= {{A}i}
= {pi | p ∈ {{A}}}
= {pi | p ∈ JAK}.

In the case i 6= j then Ai = A and it follows that

JAiK = {{A}}
= {{A}i}
= {pi | p ∈ {{A}}}
= {pi | p ∈ JAK}.

In either case, our choice satisfies the requirement.

3. If A is (B ∨ C) then by the induction hypothesis JBiK =
{qi | q ∈ JBK} and JCiK = {ri | r ∈ JCK}. Observing
Ai = (Bi ∨ Ci) it follows that

JAiK = JBi ∨ CiK
= JBiK ∪ JCiK
= {qi | q ∈ JBK} ∪ {ri | r ∈ JCK}
= {pi | p ∈ JBK ∪ JCK}
= {pi | p ∈ JAK}.

Thus, the requirement is satisfied.
4. If A is (B ∧ C) then by the induction hypothesis JBiK =
{qi | q ∈ JBK} and JCiK = {ri | r ∈ JCK}. Observing
Ai = (Bi ∧ Ci) it follows that

JAiK = JBi ∧ CiK
= JBiK⊗ JCiK
= {qi | q ∈ JBK} ⊗ {ri | r ∈ JCK}
= {qi ∪ ri | q ∈ JBK, r ∈ JCK}
= {(q ∪ r)i | q ∈ JBK, r ∈ JCK}
= {pi | p ∈ JBK⊗ JCK}
= {pi | p ∈ JAK}.

Thus, the requirement is satisfied.

Example 3.2. Consider the matrix p1∧ (¬p2∨q3)∧ (¬q4∨
r5) which logically entails r, and has the following paths:

Jp1 ∧ (¬p2 ∨ q3) ∧ (¬q4 ∨ r5)K
= Jp1K⊗ (J¬p2K⊕ Jq3K)⊗ (J¬q4K⊕ Jr5K)
= {{p1}} ⊗ ({{¬p2}} ⊕ {{q3}})⊗ ({{¬q4}} ⊕ {{r5}})
= {{p1}} ⊗ {{¬p2}, {q3}} ⊗ {{¬q4}, {r5}}
= {{p1,¬p2}, {p1, q3}} ⊗ {{¬q4}, {r5}}
= {{p1,¬p2,¬q4}, {p1, q3,¬q4},

{p1,¬p2, r5}, {p1, q3, r5}}.

Attenuating this matrix at the tag 3, we obtain the following
paths:

Jp1 ∧ (¬p2 ∨ >) ∧ (¬q4 ∨ r5)K
= Jp1K⊗ (J¬p2K⊕ J>K)⊗ (J¬q4K⊕ Jr5K)
= {{p1}} ⊗ ({{¬p2}} ⊕ {∅})⊗ ({{¬q4}} ⊕ {{r5}})
= {{p1}} ⊗ {{¬p2},∅} ⊗ {{¬q4}, {r5}}
= {{p1,¬p2}, {p1}} ⊗ {{¬q4}, {r5}}
= {{p1,¬p2,¬q4}, {p1,¬q4}, {p1,¬p2, r5}, {p1, r5}}

Notice that it is possible to build a valuation satisfying
{p1,¬q4} but not r. Therefore, it follows that via attenu-
ation we have prevented the logical entailment of r.

In the subsequent development we make use of iterated
attenuations:
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Definition 3.3. If I = {i1, i2, . . . , ik} is a finite set of tags
and A is a matrix then the attenuation of A by I is defined
as the iterated attenuation (. . . ((Ai1)i2) . . . )ik .

That this definition is well-defined follows from the fol-
lowing observation:
Observation 3.2. If i and j are tags and A is a matrix then
(Ai)j = (Aj)i and (Ai)i = Ai.

Path-contraction operators will compute a contraction of
K by A via attenuating a number of tags within a matrix K
to obtain a matrix KI which does not entail a matrix A. We
refer to these sets of tags I as cuttings.
Definition 3.4. If K and A are tag-disjoint matrices then a
cutting of K by A is either ∅ in the case K 0 A or ` A,
or a subset I of T (K) such that KI 0 A otherwise. It is a
regular cutting iff every tag in I tags a variable in K which
also appears in A.

Example 3.3. In our previous example of K = p1 ∧ (¬p2 ∨
q3) ∧ (¬q4 ∨ r5) it follows that {3} is a non-regular cutting
of K by r whereas {5} is a regular cutting of K by r.

We show in Section 5 that working with regular cuttings
results in an analogue of Parikh’s Postulate being satisfied.
It is conceivable that additional restrictions on cuttings may
prove desirable. For instance, whenever I and J are sets
of tags with I ⊆ J then KI ` KJ and hence in the case
KI 0 A it follows that KJ 0 A as well. Seeking belief base
contraction operators which result in minimal change, i.e.
which preserve as many of the existing beliefs as possible,
suggests that we should always prefer KI to KJ , in effect
imposing a requirement that a cutting must be minimal with
respect to set inclusion. However, this would increase the
complexity of computing a cutting, and thus we do not take
this to be a defining feature of our approach. We leave the
question of additional restrictions on cuttings to the design-
ers of concrete path-contraction operators.
Definition 3.5. A binary function − : M ×M → M is a
path-contraction operator iff for all satisfiable K and A it
follows that K−A = KI for some cutting I of K byA. It is
regular in the case K−A = KI for some regular cutting I .

Note our restriction to satisfiable formulae in the prior
definition. Although in practice sufficiently-complex knowl-
edge bases will likely have inconsistencies which require
repair, we consider this a separate issue which path-
contraction operators will not be responsible for addressing.

Path-contraction operators preserve the syntactic structure
of the original knowledge base for the reason that matrix at-
tenuation preserves the syntactic structure of a matrix, and
K − A = KI for some cutting I of K by A. Addition-
ally, path-contraction operators satisfy analogues of the pos-
tulates for belief base contraction in Definition 2.1.
Theorem 3.2. Suppose that − is a path-contraction opera-
tor, then the following properties are satisfied:

C1. If 0 A then K −A 0 A.
C2. If ` A then K −A = K.
C3. K ` K −A.
C4. If K 0 A then K −A = K.

Proof.

1. In the case 0 A let I be a cutting of K by A such that
K−A = KI . Being that 0 A it follows from the definition
of a cutting that I is a set of tags such that KI 0 A, which
is to say K −A 0 A.

2. In this case ` A it follows by definition that ∅ is the only
cutting of K by A, and hence K −A = K∅ = K.

3. It follows that K − A = KI and therefore K ` KI =
K −A by Theorem 5.2 and Theorem 5.1 below.

4. In the case K 0 A then ∅ is the only cutting of K by A.
Letting I be the cutting such that K − A = KI it then
follows that I = ∅ showing K −A = K∅ = K.

It follows that every path-contraction operator produces
a belief base contraction operator in the following manner.
Given κ and φ choose tag-disjoint matrices K and A such
that κ is the detagging of K and φ is the detagging of A.
Apply the path-contraction operator to computeK−A, then
define κ−φ as the detagging of K−A. It follows by Theo-
rem 3.2 that the binary function− on propositional formulae
defined above satisfies the requirements to be a belief base
contraction operator. Example 4.3 in the next section shows
this in action.

4 An Algorithm for Regular
Path-Contraction

In this section we present an algorithm for implementing a
regular path-contraction operator−, and show that this algo-
rithm can be used to decide whether K − A ` B with com-
plexity DP, where DP = {L1∩L2 | L1 ∈ NP, L2 ∈ coNP}.
Further, in the case A is not a tautology, computing K − A
has complexity FNP1. Our algorithm makes use of the no-
tion of an extracted path, and the notion of a cross-cut,
which we now present.
Definition 4.1. If A is a satisfiable matrix with satisfying
assignment ν, then the extracted path ext(A, ν) is defined
by the following rules:

1. If A is > then ext(A, ν) = ∅.
2. If A is pi or ¬pi then ext(A, ν) = {A}.
3. If A is (B ∧ C) then ext(A, ν) = ext(B, ν) ∪ ext(C, ν).
4. If A is (B ∨ C) and ν satisfies B then ext(A, ν) =

ext(B, ν), otherwise ext(A, ν) = ext(C, ν).

Example 4.1. The matrix K defined as (p1 ∧¬q2)∨ (¬p3 ∧
q4) has the paths {p1,¬q2} and {¬p3, q4}. The satisfying
assignment µ for K given by setting µ(p) = T and µ(q) =
F results in ext(K, ν) = {p1,¬q2} whereas the satisfying
assignment ν forK given by setting ν(p) = F and ν(q) = T
results in ext(K, ν) = {¬p3, q4}.
Lemma 4.1. If ν is an assignment satisfying A then
ext(A, ν) is an unconnected path through A.

1FNP is the function problem version of NP consisting,
roughly, of those functions which may be evaluated in polynomial-
time on a non-deterministic Turing machine. For example, FSAT,
the problem of finding a satisfying assignment, is FNP-complete.
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Definition 4.2. If p and q are unconnected paths then the
cross-cut, denoted by cr(p, q), is the set of tags i in p for
which there exists a tag j in q alongside a propositional
variable p such that either {pi,¬pj} or {¬pi, pj} is a con-
nection in p ∪ q.

Example 4.2. Consider the matrices K and A defined as
p1 ∧ (¬p2 ∨ q3) and q4 respectively. It follows that p =
{p1, q3} is an unconnected path through K. It also follows
that q = {¬q4} is an unconnected path through ¬A = ¬q4.
In this case their cross-cut is cr(p, q) = {3}, and it follows
that K3 = p1 ∧ (¬p2 ∨ >) which does not entail A = q4.

Lemma 4.2. If K ` A, p is an unconnected path through
K, and q is an unconnected path through ¬A then cr(p, q)
is a regular cutting of K by A.

Proof. Suppose p is an unconnected path through K and
q is an unconnected path through ¬A. It follows that
r = p ∪ q is a path through K ∧ ¬A. By the as-
sumption that p and q are unconnected, it follows that ev-
ery connection in r may be written as {`i, `j} where `i

is in K and `j is in ¬A. Enumerating these connec-
tions as {`i1 , `j1}, {`i2 , `j2}, . . . , {`in , `jn} it follows that
cr(p, q) = {i1, i2, . . . , in}. Letting I = cr(p, q) it fol-
lows that rI is a unconnected path through (K ∧ ¬A)I . Be-
ing that I contains only tags appearing in K it follows that
(K ∧ ¬A)I = KI ∧ ¬A. Therefore rI is an unconnected
path through KI ∧ ¬A. By Theorem 2.1 it follows that
KI ∧ ¬A is satisfiable, showing that KI 0 A. If ` A then
there would exist no unconnected path through ¬A, contra-
dicting our hypotheses. If K 0 A this would also contradict
our hypothesis. Hence, I = cr(p, q) is a cutting of K by A.
Furthermore, as every tag in I appears in K, it follows that
I is a regular cutting of K by A.

With these tools in hand, we can now present the Path-
Contraction Algorithm. Given matrices K and A such that
K ` A and 0 A, the Path-Contraction Algorithm will
choose an unconnected path p through K alongside an un-
connected path q through ¬A. This is accomplished by
using a satisfiability solver to construct satisfying assign-
ments for K and ¬A, then defining p and q as the extracted
paths corresponding to their respective satisfying assign-
ments. Having chosen these paths, the algorithm computes
the cross-cut I = cr(p, q) which is a regular cutting of K by
A, then it returns KI . In pseudo-code, we have the follow-
ing:

Depending on the satisfiability solver used, this algorithm
produces different path-contraction operators. Further, if the
satisfiability solver is non-deterministic, as many systems
with randomised restarts are, then the path-contraction op-
erator produced is non-deterministic. However, fixing a de-
terministic satisfiability solver, we obtain a deterministic al-
gorithm, and thus a well-defined path-contraction operator.
Before turning to the correctness and complexity of this al-
gorithm, we present the following example:

Example 4.3. Consider a propositional vocabulary where
p symbolises that Tweety is a penguin, b symbolises that

Algorithm 1 Path-Contraction Algorithm
Input: Initial belief base K
Input: Belief to contract A
Output: The contracted belief base K −A

1: if K 0 A or ` A then
2: return K
3: else
4: ν := a satisfying assignment for K
5: µ := a satisfying assignment for ¬A
6: p := ext(K, ν)
7: q := ext(¬A, µ)
8: I := cr(p, q)
9: return KI

10: end if

Tweety is a bird, f symbolises that Tweety flies, and n sym-
bolises that Tweety builds nests. Consider the naive be-
lief base κ defined as (p → b) ∧ (b → f) ∧ (b → n)
which has the undesirable consequence φ := (p → f)
suggesting that were Tweety a penguin then Tweety could
fly. In order to apply our Path-Contraction Algorithm to
compute κ − φ, we first convert κ and φ to negation nor-
mal form, and tag everything to obtain the matrices K :=
(¬p1 ∨ b2)∧ (¬b3 ∨ f4)∧ (¬b5 ∨n6) andA := (¬p7 ∨ f8).

As K ` A and 0 A our algorithm must do some work.
We start by choosing a truth-value assignment ν satisfying
K such as the one satisfying p∧ b∧f ∧n, alongside a truth-
value assignment µ satisfying ¬A = p7 ∧ ¬f8 such as the
one satisfying p ∧ b ∧ ¬f ∧ n. Using these assignments, we
extract the path p = {b2, f4, n6} through K alongside the
path q = {p7,¬f8} through ¬A.

Computing the cross-cut, we find I = cr(p, q) = {4}.
Our algorithm now returns

KI = (¬p1 ∨ b2) ∧ (¬b3 ∨ >) ∧ (¬b5 ∨ n6)

whose detagging is (¬p ∨ b) ∧ (¬b ∨ n). This is just the
negation normal form of (p → b) ∧ (b → n). Note that the
beliefs regarding penguins being birds, and birds building
nests, have been preserved.

Theorem 4.1. The Path-Contraction Algorithm defines a
regular path-contraction operator.

Proof. For any satisfiable matrices K and A let K − A be
defined as the result returned by the Path-Contraction Algo-
rithm. This is well-defined as the Path-Contraction Algo-
rithm is deterministic once we fix deterministic satisfiability
solvers, and always terminates regardless. We must show
that K − A = KI for some regular cutting I of K by A.
In the case K 0 A or ` A then, by definition, I = ∅
is a regular cutting of K by A, and furthermore the algo-
rithm returns K = KI . Otherwise, we proceed under the
assumption K ` A and 0 A. It follows that there exists
a truth value assignment ν satisfying K as well as a truth
value assignment µ satisfying ¬A. By Lemma 4.1 it follows
that p = ext(ν,K) is an unconnected path through K, and
q = ext(µ,¬K) is an unconnected path through A. Further,
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recalling our assumption that K ` A it follows by Lemma
4.2 that I = cr(p, q) is a regular cutting of K by A. In this
case, the algorithm returns with K − A = KI . Hence, in
every case the algorithm returns K−A = KI for some reg-
ular cutting I of K by A, and therefore it follows that − is a
regular path-contraction operator.

Theorem 4.2. If − is a regular path-contraction operator
defined by the Path-Contraction Algorithm, then the deci-
sion problem of deciding whether K−A ` B is in the class
DP.

Proof. Let n be the sum of the size of K, the size of A, the
size of B, and the number of variables in the language. We
start by applying the Path-Contraction Algorithm to com-
pute K − A. Initially the algorithm checks whether K 0 A
using a satisfiability solver, and if this is the case then returns
K −A = K. Otherwise, the algorithm next checks whether
` A using a theorem prover, and if this is the case it also re-
turnsK−A = K. In the caseK ` A and 0 A, the algorithm
proceeds to call a satisfiability solver to obtain satisfying as-
signments ν and µ on lines (4) and (5). Recursively labelling
every subformula of K and A by its value assigned under ν
and µ respectively costs O(n log n) time, and after the paths
p = ext(ν, κ) and q = ext(µ,¬φ) are computed on lines
(6) and (7) using only O(n) time. Computing I = cr(p, q)
on line (8) can be done in time O(n2), and computing KI
on line (9) can be done in time O(n log n), after which the
algorithm returns K −A = KI .

In total, a satisfiability solver has been called at most three
times, and a theorem prover has been called at most once.
Deciding whether K − A ` B may now be accomplished
with one more call to a theorem prover. In total, this de-
cision procedure shows the decision problem to be in the
complexity class DP.

It is worthwhile observing that when A is assumed to not
be a tautology, then the check for whether ` A on line (1)
of the Path-Contraction Algorithm can be omitted, so that
it computes K − A with only three calls to a satisfiability
solver and additional work taking only polynomial-time on
a deterministic machine. This gives an overall complexity
of FNP for computing K − A when A is assumed to not
be a tautology. The existence of a regular path-contraction
operator with a worst-case time complexity of FNP is in
striking contrast to other concrete belief change functions
discussed in (Eiter and Gottlob 1992) whose complexity is
often Π2

p-complete. Though, it must be pointed out that
path-contraction operators comprise a class of operators of
which the Path-Contraction Algorithm contributes only a
small subset, and it may ultimately prove desirable to sacri-
fice some additional performance in order to ensure stronger
guarantees over the properties of the overall path-contraction
operator.

5 Path-Entailment and Path-Independence
In this section we introduce the notion of path-entailment
which strengthens logical entailment to a structural property
of matrices. Our central results are that every matrix path-
entails its attenuations, and further that attenuation preserves

the path-entailment of matrices not containing the attenuated
tag. Using path-entailment, we then show that regular path-
contraction operators satisfy preservation properties analo-
gous to Parikh’s relevance postulate.

Definition 5.1. If A and B are matrices such that for every
path p ∈ JAK there exists a path q ∈ JBK with p ⊇ q then
A path-entails B, which we indicate by writing A  B. We
also say that B is a path-consequence of A.

Example 5.1. Consider the matrixK defined as (¬p1∨q2)∧
(¬q3∨r4). The paths throughK are as follows: {¬p1,¬q3},
{¬p1, r4}, {q2,¬q3}, and finally {q2, r4}. As the paths
through ¬p1∨q2 are {¬p1} and {q2} it follows thatK path-
entails ¬p1∨q2, as each path throughK contains either ¬p1
or q2. However, despite ¬p1∨ r4 being logically entailed by
K, this is not a path-consequence of K for the reason that
the path {q2,¬q3} contains no path through ¬p1 ∨ r4.

Theorem 5.1. If A  B then A ` B.

Proof. Suppose that A  B, and consider an interpretation
ν which satisfies A. By Lemma 2.1 this means that there
exists a path p ∈ JAK such that ν satisfies every element of
p. Under our assumption that A  B it follows that there
exists some path q ∈ JBK such that p ⊇ q. However, this
means that ν satisfies every element of q, which by Lemma
2.1 implies ν satisfies B. With ν being arbitrary, it follows
that A ` B.

Theorem 5.2.
1. A  A.
2. If A  B and B  C then A  C.
3. If A  C and B is tag-disjoint with A then A ∧ B  C.
4. If A is a matrix and i is a tag then A  Ai.
5. If A  B ∧ C then A  B.
6. If A  B then A  B ∨ C.

Proof.

1. Immediate.
2. Suppose A  B and B  C. Suppose that p ∈ JAK

and observe that A  B implies there exists some q ∈
JBK such that p ⊇ q, and furthermore observe that B 
C implies there exists some r ∈ JCK with q ⊇ r. By
transitivity it follows that p ⊇ r. With p being arbitrary, it
follows that A  C.

3. Suppose p is a path throughA∧B and observe there exist
paths q1 ∈ JAK and q2 ∈ JqK with p = q1 ∪ q2. As
A  C there exists a path r ∈ JCK such that q1 ⊇ r. As
p = q1 ∪ q2 it follows that p ⊇ r. With p being arbitrary,
it then follows that A ∧ B  C.

4. Suppose p is a path throughA, then it follows that p ⊇ pi
and pi ∈ JAiK. Hence, A  Ai.

5. Suppose A  B ∧ C and consider a path p ∈ JAK. It
follows that there exists a path q ∈ JB ∧ CK such that
p ⊇ q. However, as JB ∧ CK it follows that q = q1 ∪ q2
for some q1 ∈ JBK and q2 ∈ JB2K, showing that p ⊇ q1
where q1 ∈ Jq1K. With p being arbitrary, it then follows
that A  B.
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6. Suppose p is a path through A. It follows from the as-
sumption that A  B then there exists a path q ∈ JBK
such that p ⊇ q. As JB ∨ CK = JBK ∪ JCK, this implies
that there exists a path q ∈ JB ∨ CK with p ⊇ q. Hence,
A  B ∨ C.

Note that properties (1), (2), and (3) of Theorem 5.2
correspond to the requirements for path-entailment to be
a Tarskian consequence relation, modulo the proviso of
the tag-disjointness for (3). Regardless, the motivation for
studying path-entailment is that we can easily formulate
a criterion for attenuation to preserve an individual path-
consequence, whereas in the case of logical entailment the
situation is not straightforward.
Theorem 5.3. If A  B and i is a tag not occurring in B
then Ai  B.

Proof. Suppose that p ∈ JAiK. Then there exists a path
p′ ∈ JAK such that p = p′i, and as A  B there exists a path
q ∈ JBK such that p ⊇ q. However, as i does not occur in B
it follows that p = p′i ⊇ q. With p being arbitrary, it follows
that Ai  B.

Using Theorem 5.3 it is possible to demonstrate that
regular path-contraction operators satisfy a structural ana-
logue of Parikh’s relevance postulate. Rather than con-
sider formulae κ logically equivalent to some conjunction
κ1 ∧ κ2 with V (κ1) ∩ V (κ2) = ∅, we consider matrices
K which are path-equivalent to a conjunction K1 ∧ K2 with
V (K1) ∩ V (K2) = ∅. We refer to these decompositions as
path-splittings:
Definition 5.2. If X and Y are disjoint subsets of V with
V = X ∪ Y then X and Y are path-independent modulo
K iff there exist tag-disjoint matrices K1 and K2 such that
V (K1) ⊆ X , V (K2) ⊆ Y , and JKK = JK1 ∧ K2K. In this
case we say that (K1,K2) is a path-splitting of K.
Example 5.2. Although the matrices p1∧(¬p2∨q3) and p1∧
q3 are logically equivalent, and it follows that {p} and {q}
are path-independent modulo p1 ∧ q3, it follows that Jp1 ∧
(¬p2∨q3)K = {{p1,¬p2}, {p1, q3}} cannot be expressed as
JK1∧K2K = JK1K⊗JK2K for anyK1 andK2 with V (K1) =
{p} and V (K2) = {q} showing that {p} and {q} are not
path-independent modulo p1 ∧ (¬p2 ∨ q3).
Definition 5.3. A path-contraction operator − satisfies the
path-independence postulate if and only if given a matrix
K with path-splitting (K1,K2) alongside a matrix A with
V (K1) ∩ V (A) = ∅, it follows that

K −A  K1.

In order words, a path-contraction operator satisfies the
path-independence postulate when for any matrix K such
that X and Y are path-independent modulo K, after con-
traction by a belief over the vocabulary Y it follows that the
beliefs in the X-component of K are preserved after con-
traction.
Theorem 5.4. Every regular path-contraction operator sat-
isfies the path-independence postulate.

Proof. Suppose− is a regular path-contraction operator and
K is a matrix with path-splitting (K1,K2) such that V (K1)∩
V (K2) = ∅. Given a matrix A with V (K1) ∩ V (A) = ∅ it
follows that there exists a regular cutting I of K by A such
that K − A = KI . As (K1,K2) is a path-splitting of K it
follows that JKK = JK1 ∧ K2K. By Theorem 5.2 it follows
that K  K1. Therefore, as I is a regular cutting of K by
A and V (K1) ∩ V (A) = ∅, it follows by Theorem 5.2 that
KI  K1. As K − A = KI this means that K − A  K1.
Therefore, the path-independence postulate is satisfied.

6 Discussion
6.1 Related Work
There are attempts to leverage the connection method and
similar techniques for belief contraction already in literature,
however we believe our work to be unique in utilising matrix
attenuation to preserve the structure of the original formula.

In (Bienvenu, Herzig, and Qi 2008), knowledge bases
are converted into prime implicate normal form, resulting
in a syntax-independent but nevertheless syntactic belief re-
vision function.

In (Schwind 2010) and (Schwind 2012) belief revision
functions are introduced which operate on implicants, which
are taken there to be roughly paths through matrices with
tags erased. These functions are required to satisfy the AGM
postulates, and thus correspond to belief revision rather than
belief base revision.

In (Gabbay, Rodrigues, and Russo 2010) a version of the
connection method for knowledge bases in conjunctive nor-
mal form is used to repair inconsistent knowledge bases.
This is accomplished by replacing the knowledge base with
the disjunction formed by the conjunctions associated with
each maximally consistent subset of those paths through the
knowledge base. Their approach can be adapted to belief
revision by prioritising which maximally consistent subsets
of paths to use. This is accomplished by tagging every vari-
able based on the clause it originated from, placing a pri-
ority order on those tags, and then selecting the maximal
consistent subpaths which retain the highest priority tags if
at all possible. Our approach differs in that we do not require
conversion to conjunctive normal form, we focus on belief
base contraction rather than revision or repair, and our path-
contraction operators comply with the principle of structural
preservation.

6.2 Future Work
Clarifying the connection between path-contraction opera-
tors and other approaches to belief base contraction via hit-
ting sets and incision functions, as well as attempting to
obtain versions of properties such as core-retainment suit-
able for path-contraction remains an open problem. We be-
lieve that investigating “path-remainders” of K modulo A,
defined as those logically strongest K′ such that K  K′ yet
K′ 0 A will prove illuminating.

Variants of the connection method have been developed
for intuitionistic and modal logics (Wallen 1987), as well
as for the description logic ALC (Freitas and Otten 2016).
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We believe that the theory of path-contraction operators in-
troduced here will generalise well to these formalisms. It
would also be interesting to investigate whether this ap-
proach also extends to tableaux methods for non-monotonic
logics (Olivetti 1999) such as sceptical default reasoning
(Bonatti and Olivetti 1997b) or circumscription (Bonatti and
Olivetti 1997a).

We are also interested in conducting an empirical study of
the performance of our Path-Contraction Algorithm.

7 Conclusion
In this paper we introduced the class of path-contraction
operators, which utilise the process of matrix attenuation
to carry out a form of belief base contraction in a manner
which leaves the syntactic structure of the original belief
base minimally changed. We have presented an algorithm
for implementing a path-contraction operator and shown it
to have complexity DP, and better yet FNP under reason-
able restrictions. We have further introduced the notion of
path-entailment, and shown that regular path-contraction op-
erators satisfy an analogue of Parikh’s relevance postulate,
which further substantiates the claim that path-contraction
operators are carrying out only minimal changes to the orig-
inal formula. Finally, we discussed where our approach fits
in with other related approaches to belief change.
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Abstract

We extend the challenge of merging possibly conflicting con-
ditional belief bases to consistent beliefs of agents. Since
conditional beliefs are logically more intertwined, the merg-
ing process offers a lot of challenges and also leaves room
for different interpretations of reasonable merging processes.
In this paper, we present one conditional-based merging op-
erator and two conditional merging operators that take the
agents’ epistemic states into account. Moreover, we define
quality criteria for general conditional merging operators that
can be seen as a guideline for reasonable merging processes
and discuss two well-known subclasses of merging operators
for conditional merging.

1 Introduction
Belief merging aims at combining several pieces of informa-
tion when there are no strict precedence between them, for
example if an agents learns different rules or mechanisms
to handle a problem from different sources of information,
which are equally reliable. In order to make the informa-
tion from different contexts usable an agent has to perform
a merging process, and it seems quite natural that this in-
formation does not solely consist of propositional beliefs,
but rather of conditional beliefs. A variety of merging oper-
ators, dealing with conflicting information have been stud-
ied in the literature, e.g. in (Baral, Kraus, and Minker 1991;
Revesz 1997; Liberatore and Schaerf 1998). Among the
most influential works in this field, Konieczny and Pino
Pérez’s logical characterization of propositional merging op-
erators in (Konieczny and Pérez 1998; Konieczny and Pérez
2002) can be found. Yet, the information provided by con-
ditional beliefs is quite different from propositional ones.
Conditionals are three-valued logical entities and they dis-
play rather an agent’s preferences and reasoning patterns
than static knowledge. So, we cannot simply transfer the
properties and operators for propositional merging to the
framework of conditional beliefs. The following example il-
lustrates conditional belief merging as planning with uncer-
tainty:
Example 1. Suppose we want to speculate on the stock mar-
ket and ask three financial experts about their instruction for
action in the event of a stock bubble. The first one states, that
bubbles (B) lead to crashes (R) in the stock market. If we rec-
ognize a bubble, we should sell (S) our shares. Yet, in gen-

C = {∆i}mi=1

MC E = {κ∆i
}mi=1

K(E) Kc(E)

ΓpmS (C)C ΓcoK (C) ΓcocKc(C)

S

Figure 1: Schematic representation of the three merging operators
in this paper.

eral, in the event of a crash, we should hold our shares. The
second one shares the opinion that bubbles lead to crashes,
but, recommends to hold the shares in case the bubble bursts.
The third states that it is best to sell shares if we recognize a
bubble, but hold shares when the bubble has already burst.
These experts are equally reliable, so what should we do
now with our shares?

We propose in this paper a conditional-based approach to
conditional merging, that selects a consistent set of condi-
tionals from, possibly conflicting, sets of conditionals. How-
ever, this approach does not take into account the role of con-
ditional beliefs as representations of an agent’s preferences
and reasoning patterns, i.e., the close relationship between
conditional beliefs and epistemic states. So, we also propose
two more fine-grained conditional merging operators that
are based on the epistemic state of an agent, representing
semantic approaches of conditional belief merging. We call
these approaches to conditional merging, epistemic condi-
tional merging. A set of quality criteria defined in this paper
enables us to compare conditional merging operators, also
we distinguish between two common subclasses of them. In
Figure 1, we give a schematic representation of the three
merging operators presented in this paper. The rest of this
paper is organized as follows: We start with some formal
preliminaries in Section 2. Section 3 introduces the logical
framework for conditional merging operators. In Section 4
we present a conditional-based merging operator and then
in Section 5 epistemic conditional merging is presented and
two ways of epistemic conditional merging are presented in
the following subsections. We conclude and discuss the re-
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sults of this paper in Section 6.

2 Formal Preliminaries
We start by recalling basics of propositional and conditional
logic together with epistemic states represented as ranking
functions.

2.1 Propositional Logic
Let L be a finitely generated propositional language over
an alphabet Σ with atoms a, b, c, . . . and with formulas
A,B,C, . . .. For conciseness of notation, we will omit the
logical and-connector, writing AB instead of A ∧ B, and
overlining formulas will indicate negation, i.e.Ameans ¬A.
The set of all propositional interpretations over Σ is denoted
by ΩΣ. As the signature will be fixed throughout the pa-
per, we will usually omit the subscript and simply write Ω.
ω |= Ameans that the propositional formulaA ∈ L holds in
the possible world ω ∈ Ω; then ω is called a model ofA, and
the set of all models ofA is denoted byMod(A). For propo-
sitions A,B ∈ L, A |= B holds iff Mod(A) ⊆ Mod(B),
as usual. By slight abuse of notation, we will use ω both for
the model and the corresponding conjunction of all positive
or negated atoms. This will allow us to ease notation a lot.
Since ω |= A means the same for both readings of ω, no
confusion will arise.

2.2 Conditionals and Ranking Functions
We extend L to a conditional language (L |L) by introduc-
ing a conditional operator |: (L |L) = {(B |A)|A,B ∈ L}.
(L|L) is a flat conditional language, no nesting of condi-
tionals is allowed. A is called the antecedent or the premise
of (B |A), and B is the consequence. (B |A) expresses “If
A then plausibly B”. According to de Finetti (1975), con-
ditionals can be regarded as three-valued logical entities on
possible worlds ω ∈ Ω, distinguishing between verification
ω |= AB, falsification ω |= AB and neutrality ω |= A. Two
conditionals (B |A) and (B′ |A′) are equivalent, denoted
by (B |A) ≡ (B′ |A′), if they have the same verification
and the same falsification behavior, i.e. AB ≡ A′B′ and
AB ≡ A′B′. We presuppose in this paper that all condi-
tionals are not self-contradicting, i.e., it holds that AB 6≡ ⊥
for each conditional (B |A). A conditional belief base is a
finite set of conditionals ∆ = {(B1 |A1), . . . , (Bn |An)}.
We denote the set of all verifying models for a conditional
belief base Mod({AB | (B |A) ∈ ∆}) as Ωv∆. In the same
manner we denote by Ωf∆ the set of all worlds falsifying the
conditionals in ∆, i.e. Ωf∆ = Mod({AB | (B |A) ∈ ∆}).

To give an appropriate semantics to conditional belief
bases, we need richer semantic structures like epistemic
states in the sense of Halpern (2005). In this paper, we build
upon ordinal conditional functions (Spohn 1988, 2014),
which are a representation of epistemic states. Ordinal con-
ditional functions (OCFs, also called ranking functions) κ :
Ω→ N∪{∞}, with κ−1(0) 6= ∅, assign to each world ω an
implausibility rank κ(ω). The higher κ(ω), the less plausi-
ble ω is, and the normalization constraint requires that there
are worlds having maximal plausibility. We have κ(A) :=
min{κ(ω) | ω |= A}, and in particular, κ(⊥) = ∞.

Due to κ−1(0) 6= ∅, at least one of κ(A) and κ(A) must
be 0. A proposition A is believed if κ(A) > 0. A condi-
tional (B |A) is accepted by κ, denoted by κ |= (B |A), if
κ(AB) < κ(AB). κ accepts a conditional belief base ∆,
κ |= ∆, iff κ |= (B |A) for each (B |A) ∈ ∆, then κ
is called admissible with respect to ∆. Vice versa, a condi-
tional belief base ∆ is consistent, iff there exists an OCF κ
s.t. κ |= ∆.

A conditional profile is a nonempty multi-set of condi-
tional bases C = {∆j}j=1,...,m with ∆j 6= ∅ (hence differ-
ent agents are allowed to exhibit identical bases), and repre-
sents a group of m agents. We denote by

⋃
C the union of

bases of C, i.e.
⋃
C = ∆1∪ . . .∪∆m and by

⋂
C the inter-

section of bases of C, i.e.
⋂
C = ∆1 ∩ . . . ∩∆m. A profile

C is said to be consistent if and only if
⋃
C is consistent.

Remark 1. Since the world views of agents shall be con-
sistent, we will presuppose in the rest of the paper that all
belief bases in a profile are consistent.

The multiset union is denoted by t. By abuse of notation,
we will write ∆ t C instead of {∆} t C. We denote by
∆n the profile in which ∆ appears n times, more precisely
∆n = ∆ t . . . t∆︸ ︷︷ ︸

n

. Two sets of conditionals ∆,∆′ are ele-

mentwise equivalent (∆ ≡e ∆′) iff for every conditional in
each set there is an equivalent conditional in the other set.
Definition 1. Let C, C ′ be conditional belief profiles.C and
C ′ are equivalent, noted C ≡c C ′, iff there exists a bijection
f from C = {∆j}j=1,...,m to C ′ = {∆′j′}j′=1,...,m′ s.t. for
any ∆j ∈ C there exists a ∆′j′ ∈ C ′, s.t. f(∆j) ≡e ∆′j′ .

Note that the relation ≡c is an equivalence relation on be-
lief profiles. As for conditional belief bases, we define the set
of verifying resp. falsifying worlds for a conditional profile
as Ωv⋃C resp. Ωf⋃C . To ease notation, we write ΩvC instead

of Ωv⋃C and ΩfC instead of Ωf⋃C .

3 Conditional Merging Operators
In this section, we give a logical definition of conditional
merging operators and provide a set of postulates that define
good behavior concerning the merging. Furthermore, we in-
troduce two subclasses of conditional merging operators.

A conditional merging operator defines a mapping be-
tween a conditional belief profile C and a consistent set of
conditionals:
Definition 2. Let C = {∆1, . . . ,∆m} be a conditional pro-
file. A conditional merging operator Γ : C 7→ Γ(C) assigns
to each conditional belief profile a consistent set of condi-
tionals Γ(C) with Γ(C) ⊆ ⋃

C.
Note that, in our definition of conditional merging,

we take only conditionals from
⋃
C into account. This

puts our operators more in the vicinity of selection
operators as defined by Liberatore and Schaerf for propo-
sitions (Liberatore and Schaerf 1998). Now that we
have general conditional merging operators Γ(C) for
a conditional profile C, we provide a set of desirable
quality criteria in order for a conditional merging op-
erator to behave rationally in the process of merging.
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(CM*) Γ(C) ⊆ ⋃
C

(CM0) Γ(C) is consistent
(CM1) If

⋃
C is consistent, then Γ(C) =

⋃
C

(CM2) If C1 ≡c C2, then Γ(C1) ≡c Γ(C2)
(CM3)

⋂
C ⊆ Γ(C)

The first postulate (CM*), is a special one. It states that
for the merging process we only take conditional informa-
tion that is already given in one of the conditional bases
∆i ∈ C into consideration. This postulate is inherent
in our definition of conditional merging operators. Since
more general conditional merging operators that also
include conditionals outside of

⋃
C are also conceivable we

include this postulate in our listing of postulates. The other
postulates define basic properties a conditional merging
operator should satisfy: (CM0) requires the belief base
obtained to be satisfiable, this is actually a restatement
of the definition of conditional merging operators. (CM1)
assures that if it is possible to retain all the information
contained in a conditional belief profile, then we should
do so. Since we consider only consistent conditional belief
bases (CM1) implies for singleton profiles C = {∆} that
Γ(C) = Γ(∆) = ∆. (CM2) demands irrelevance of syntax
and, since we demand elementwise-equivalence, commits
us to commutativity, i.e. the result of the merging operation
is independent of any order of elements in the belief profile.
(CM3) states if a conditional is included in every base ∆i

in C, this information should also be present in the merged
belief base Γ(C).

Now, we turn to two (common) subclasses of merg-
ing operations, majority and arbitration merging op-
erators. So called majority conditional merging op-
erators strive to satisfy a maximum of protagonists,
i.e. if a conditional belief set has a large audience,
then it will be included in the opinion of the group.

(Maj) For all ∆ there exists n ∈ N, s.t. ∆ ⊆ Γ(Ct∆n)
In contrast to majority merging operators, arbitration
conditional merging operators implement the idea of inde-
pendence from the cardinality of opinions in the merging
process. Conditional operators from this subclass prefer
median possible choices, i.e., they strive to satisfy each pro-
tagonist to the best possible degree in the merging process
and therefore minimize individual dissatisfaction, whereas
majority merging operators minimize global dissatisfaction.

(Arb) For C,∆, it holds that Γ(C t∆n) = Γ(C t∆)
for all n ∈ N

Note that, this is a more strict version of arbitration,
which resembles the majority independence postulate
from (Konieczny and Pérez 2002) for integrity constraints
merging operators. We prefer this version, which is closer
to the intuition of arbitration. The following theorem proves
the incompatibility of merging behavior in the sense of
majority and arbitration conditional merging:

Theorem 1. A conditional merging operator Γ cannot sat-
isfy both (Maj) and (Arb).

Proof. Let ∆1,∆2 be conditional belief bases, s.t. ∆1 ∪∆2

is inconsistent. From (Arb), if follows that Γ(∆1 t ∆2) =
Γ(∆1 t∆n

2 ) = Γ(∆n
1 t∆2) and with (Maj), we can follow

that ∆1 ⊆ Γ(∆1t∆2) and ∆2 ⊆ Γ(∆1t∆2), thus, Γ(∆1t

∆2) is inconsistent, which contradicts that Γ is a conditional
merging operator.

4 Conditional-based Merging Operators
Conditional-based merging operators for conditional pro-
files are sensitive to the syntax of conditionals in the con-
ditional belief bases to be merged. They are depicted on
the left-hand side of Figure 1. A straightforward approach
for conditional-based merging is adapted from partial-meet
contraction (Alchourrón, Gärdenfors, and Makinson 1985).
Via the intersection of selected maximal consistent sets of
conditionals (for set inclusion) from

⋃
C we determine a

consistent set of conditionals in C.
Definition 3. Let C be a conditional profile. A set M is
called a maximal consistent set of C, if it holds that:
•
⋂
C ⊆M ⊆ ⋃

C

• M is consistent
• For every set M ′ with M ⊆ M ′ ⊆ ⋃

C, M 6= M ′, it
holds that M ′ is inconsistent.

The set of all maximal consistent sets of C is denoted by
MC .

A selection function S : {Λ1 . . . ,Λk} 7→ {Λ′1, . . . ,Λ′k′}
⊆ {Λ1, . . . ,Λk} is a mapping between sets of consistent
conditional belief bases Λi to a set of consistent conditional
belief bases Λ′i′ . In order to realize our conditional merging
operator we takeMC as input for S, s.t.

S(MC) ⊆MC

with S(MC) 6= ∅ if MC 6= ∅. Using this selection func-
tion we are able to define a partial meet conditional merging
operator:
Definition 4. Let C = {∆1, . . . ,∆m} be a conditional pro-
file andMC be the set of all maximal consistent sets of C.
For a selection function S, we define a partial meet condi-
tional merging operator as

ΓpmS (C) =
⋂
S(MC).

The following example illustrates the behavior of the par-
tial meet merging operator:
Example 2 (Continue Example 1). The three experts’
advices can be represented by the following condi-
tional belief bases: ∆1 = {(R |B), (S |R), (S |B)},
∆2 = {(R |B), (S |BR)} and ∆3 = {(S |B), (S |BR)}.
We have C = {∆1,∆2,∆3} and

⋃
C =

{(R |B), (S |R), (S |B), (S |BR)} is inconsistent.
There are three maximal consistent subsets of C,
MC = {M1,M2,M3} with

M1 = {(S |R), (S |B), (S |BR)}
M2 = {(S |R), (R |B), (S |BR)}
M3 = {(S |R), (R |B), (S |B)}.

Note that, C is not consistent, since there is no world
ω ∈ Ω that verifies one of the conditionals in
{(R |B), (S |B), (S |BR)} ⊆ ⋃

C and does not falsify
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any of the others. There are several options for selection
functions, e.g. a cautious one, that takes all agents possible
maximal sets into account S1 = {M1,M2,M3} therefore
implementing a full-meet strategy. Or a maxichoice strategy,
i.e. a selection function that takes only the opinion of one
agent, e.g., ∆1, into account, i.e. S2 = {M1}. It is also
possible that the decision maker in the merging process ex-
plicitly wants to exclude agent 2, i.e. S3 = {M1,M3}. We
get the following corresponding merging results:

ΓpmS1
(C) = {(S |R)}

ΓpmS2
(C) = {(S |R), (S |B), (S |BR)}

ΓpmS3
(C) = {(S |R), (S |B)}.

The following theorem investigates the behavior of
ΓpmS (C) in the light of the postulates from Section 3:
Theorem 2. Let C = {∆i}mi=1 be a conditional profile.
The partial meet conditional merging ΓpmS (C) =

⋂
S(MC)

defined via a selection function S satisfies (CM*), (CM0),
(CM1), (CM2), (CM3).

Proof. (CM*) follows straightforward from the first prop-
erty for maximal consistent sets in Definition 3. ΓpmS (C)
is defined via the intersection of maximally consistent sets
of conditionals, i.e., there exists a set M ∈ MC , s.t.
ΓpmS (C) =

⋂
S(MC) ⊆ M and therefore ΓpmS (C) is con-

sistent and ΓpmS always satisfies (CM0). Since it holds that
MC =

⋃
C 6= ∅, if

⋃
C is consistent, (CM1) holds for

ΓpmS (C) for any selection functions S(MC). (CM2), (CM3)
follow immediately from Definition 3 since we define sets,
i.e. we are bound to commutativity and irrelevance of syn-
tax. From first property of maximal consistent set of C it
follows that

⋂
C ⊆ M ∈ MC , i.e. for any S it holds that⋂

C ⊆ ⋂
S(MC) = ΓpmS (C).

Note that the result of ΓpmS is maximally consistent, only
for a selection function that satisfies a maxichoice strategy,
i.e., picks just one of the maximally consistent sets from
MC . The next theorem classifies ΓpmS as an arbitration con-
ditional merging operator:
Theorem 3. Every partial meet conditional merging opera-
tor ΓpmS satisfies (Arb).

Proof. Let n ∈ N and C = {∆1, . . . ,∆m} be a condi-
tional profile and ∆ be a conditional belief base. It holds
that MCt∆ = MCt∆n and therefore ΓpmC (C t ∆) =⋂
S(MCt∆) =

⋂
S(MCt∆n) = ΓpmS (C t∆n), i.e., ΓpmS

satisfies (Arb).

As we have seen, merging via partial-meet merging satis-
fies desirable properties for conditional merging operators.
However, conditional bases make only part of the agents’
epistemic states explicit. Taking the full epistemic states into
account might provide more information that proves helpful
for merging.

5 Epistemic Conditional Merging Operators
In this Section, we discuss two approaches to merging that
are depicted on the right-hand side of Figure 1. Therefore,
we introduce a mapping between conditional belief profiles
and ranking functions in Subsection 5.1.

5.1 Coalescent Assignments

Conditionals and epistemic states are strongly connected. In
this paper epistemic states are represented via ranking func-
tions. On the one hand, it holds that for each consistent set of
conditionals ∆ there exists a ranking function κ that models
∆, i.e. κ |= ∆, therefore ranking functions can be seen as
an implementation of conditional beliefs. On the other hand,
every ranking function κ defines a set of conditionals via the
following extraction:

∆κ = {(B |A) ∈ (L |L) |κ(AB) < κ(AB)}. (1)

This bidirectional (but not bijective) translation between
ranking functions and conditional belief bases, enables us
to define conditional merging operators for conditional pro-
files C = {∆1, . . . ,∆m} via the combination of sets of
admissible ranking functions E = {κ1, . . . , κm} with ∆i-
admissible ranking functions κ∆i

, since (1) defines an ex-
traction of sets of conditionals from epistemic states.

Using the extraction of conditional beliefs from ranking
functions, we define a semantic characterization of condi-
tional merging operators in general, which we call coales-
cent assignment and transfer the quality criteria defined in
Section 3 to the framework of ranking functions.

Definition 5. Let C be conditional belief profile. A coales-
cent assignment is a mapping C 7→ κC that assigns to each
conditional belief profile C a ranking function κC .

This definition of coalescent assignments corresponds to
the definition of conditional merging operators in Definition
2. Note that our coalescent assignments are inspired by syn-
cretic assignments for integrity constraint merging operators
defined by Konieczny and Pino Pérez in (2002). We propose
the following set of postulates for coalescent assignments:

(CA1) If
⋃
C is consistent, then for each (B |A) ∈⋃

C it holds that κC(AB) < κC(AB)
(CA2) If C1 ≡c C2, then κC1

= κC2

(CA3) If (B |A) ∈ ⋂
C then κC(AB) < κC(AB)

The following postulates implement different strate-
gies for determining κC , one in the style of ma-
jority merging and one in the style of arbitration:

(Majκ) There exists n ∈ N, s.t. for all (B |A) ∈ ∆, it
holds that κCt∆n(AB) < κCt∆n(AB)

(Arbκ) For all n ∈ N, κCt∆(AB) < κCt∆(AB) iff
κCt∆n(AB) < κCt∆n(AB) for (B |A) ∈ Ct
∆

The next theorem connects the postulates for conditional
merging operators and for coalescent assignments via the
lifting from ranking functions to sets of conditionals defined
in (1).

Theorem 4. Let C be a conditional profile and ∆ be a con-
ditional belief base. Let κC be the result of a coalescent as-
signment. For

Γ(C)={(B |A) ∈
⋃
C | κC(AB)<κC(AB)} (2)

it holds that:
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ω ∈ Ω κ∆1
κ∆2

κ∆3
KMin KMax KΣ

BRS 0 2 3 0 3 5
BRS 2 1 2 1 2 5
BRS 2 2 1 1 2 5
BRS 1 2 2 1 2 5
BRS 1 1 0 0 1 2
BRS 0 1 1 0 1 2
BRS 0 1 0 0 1 1
BRS 0 0 0 0 0 0

Table 1: The table shows three admissible ranking functions for
∆1, ∆2 and ∆3 from Example 3 and the result of the com-
bination operation of E = {κ∆1 , κ∆2 , κ∆3} via the operators
KMin,KMax and KΣ.

1. If κC satisfies (CA1) then Γ(C) satisfies (CM1)
2. If κC satisfies (CA2) then Γ(C) satisfies (CM2)
3. If κC satisfies (CA3) then Γ(C) satisfies (CM3)
4. If κCt∆n satisfies (Majκ) then Γ satisfies (Maj)
5. If κCt∆ and κCt∆n satisfy (Arbκ) then Γ satisfies
(Arb)

Proof. Γ(C) is a conditional merging operator, i.e. the set
defined in (2) is always consistent, because κC is a co-
alescent assignment and therefore a ranking function that
models Γ(C). The statements 1.-3. follow in a straightfor-
ward way. Let n ∈ N, s.t. κCt∆(AB) < κCt∆(AB) for
all (B |A) ∈ ∆. Note that the existence of such an n is
guaranteed since κCt∆ satisfies (Majκ). Because (B |A) ∈⋃

(C t ∆) it follows from (2) that (B |A) ∈ Γ(C t ∆n),
i.e., ∆ ⊆ Γ(C t ∆n) and Γ satisfies (Maj). For (Arb), we
assume that (B |A) ∈ Γ(C t ∆). From (2), it follows that
κCt∆(AB) < κCt∆(AB) and therefore κCt∆n(AB) <
κCt∆n(AB) due to (Arbκ). Thus (B |A) ∈ Γ(Ct∆n). The
other inclusion follows the same argumentation vice versa
and thus, Γ satisfies (Arb).

Note that, due to the lifting in (2), we are able to define
epistemic conditional merging operators via coalescent as-
signments. Following this strategy, we will define epistemic
conditional merging operators in the following subsections
via the combination of epistemic states that implement the
conditional beliefs of the agents in the merging process. The
concatenation of defining sets of ranking functions from the
conditional profile and the combination of these representa-
tions of conditional beliefs will define a coalescent assign-
ment, i.e. a fruitful approach to epistemic conditional merg-
ing.

5.2 Epistemic Conditional Merging via
Combination

In this section, we define combination operators for ranking
functions that map sets of ranking functions {κ1, . . . , κm}
to a combined ranking function K({κ1, . . . , κm}). We call
a finite set of epistemic states E = {κ1, . . . , κm} a ranking
profile. We assume in this and the following subsection that
the mapping between conditional profiles C and the corre-
sponding ranking profileE is given in a straightforward way

by the belief states of the agents participating in the merging
process.
Definition 6. A combination operator K for ranking
functions is a function from the set of all non-empty
ranking profiles E to the set of all ranking func-
tions, i.e. K : E 7→ K(E) and K(E) is a rank-
ing function satisfying the following basic properties:

(K0) K({κ})(ω) = κ(ω)
(K1) If κi(ω) 6 κi(ω

′) for all i ∈ {1, . . . , |E|} then
K(E)(ω) 6 K(E)(ω′)

(K2) If K(E)(ω) 6 K(E)(ω′) then κi(ω) 6 κi(ω
′)

for some i ∈ {1, . . . , |E|}
(K0) requires that trivial combinations with singleton

ranking profiles lead to no changes. (K1) states that if all
ranking functions in E agree that ω is at least as plausible
as ω′, then this should also hold for the resulting ranking
function. If ω is at least as plausible as ω′ after combination,
then (K2) expects justification for this via a ranking function
κ in which ω is at least as plausible than ω′. Note that (K2)
is a restatement of the Pareto’s principle in its contraposi-
tive form, which is one of the properties used to establish
Arrow’s impossibility theorem in social choice theory (Ar-
row 1963). Note that, the definition of combination opera-
tors for ranking functions and the corresponding postulates
are inspired by the definition of combination operators for
lists of epistemic states from (Meyer 2001). Meyer intro-
duces more postulates that guide the combination operation
on more general epistemic states, which become obsolete in
the framework of ranking functions. Furthermore, combina-
tion operators by Meyer share some similarities with propo-
sitional merging operators á la Konieczny and Pino Pérez,
but also take on a different perspective due to the usage of
full epistemic states which is useful for our purposes. Now,
we introduce three combination operators for ranking func-
tions, which are inspired by common combination opera-
tions in the framework of Meyer:
Definition 7. Let E = {κ1, . . . , κm} be a ranking profile
and ω ∈ Ω:

• KMin(E)(ω) = K0 + mini=1,...,m{κi(ω)} with K0 =
−minω∈Ω{mini=1,...,m{κi(ω)}}

• KMax(E)(ω) = K0 + max
i=1,...,m

{κi(ω)} with K0 =

−minω∈Ω{maxi=1,...,m{κi(ω)}}
• KΣ(E) = K0 +

∑m
i=1 κi(ω) with K0 =

−minω∈Ω{
∑m
i=1 κi(ω)}

K0 is a normalization constant, s.t. the result of each com-
bination operator is again a ranking function.

The following proposition shows that the operators from
Definition 7 are in fact combination operators for ranking
functions, i.e. they satisfy (K0) to (K2):
Proposition 1. Let E = {κi}mi=1 be a ranking profile.
KMin(E),KMax(E) and KΣ(E) are combination opera-
tors on ranking functions.

Proof. Due to K0, it follows that KMin(E),KMax(E) and
KΣ(E) are ranking functions. (K0) follows immediately for
E = {κ}. Let ω, ω′ ∈ Ω with κi(ω) 6 κi(ω

′) for all i ∈
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{1, . . . ,m}, then KMin(E)(ω) 6 KMin(E)(ω′), the same
holds for KMax(E) and KΣ(E), i.e. (K1) holds. Now, we
assume that KMin(E)(ω) 6 KMin(E)(ω′), it follows im-
mediately that there exists some i ∈ {1, . . . ,m} s.t. κi(ω) 6
κi(ω

′). The same holds for KMax. For KΣ, we assume that
there exists no κi, s.t. κi(ω) 6 κi(ω

′), then it follows that
for all κi with 1 6 i 6 m, that κi(ω) > κi(ω

′), this
contradicts that KΣ(E) =

∑m
i=1 κi(ω) 6

∑m
i=1 κi(ω

′) =
KΣ(E). We can follow that (K2) holds for all combination
operation from Definition 7.

Now, that we have defined suitable mappings between
ranking profiles and combined epistemic states, we will use
them as coalescent assignment in order to define conditional
merging operators. Note that in order to show, that the com-
bination operators for ranking functions defined in Defini-
tion 7 are coalescent assignments that satisfy some desirable
properties, we need a mapping from C to E, we assume that
this mapping is given via the epistemic states of the agents
corresponding to the conditional beliefs in C. We do not
make any further restrictions than ∆i-admissibility.

Theorem 5. Let C = {∆i}mi=1 be a conditional profile and
E = {κi}mi=1 be a ranking profile with ∆i-admissible rank-
ing functions κi. The combination operators KMin,KMax

and KΣ define results of coalescent assignments via the
mapping C 7→ E 7→ K, that satisfy (CA2).

Proof. KMin,KMax and KΣ are ranking functions due to
K0 from Definition 7. They satisfy postulate (CA2) for co-
alescent assignments, which follows straight from the Defi-
nition 1.

We define the following conditional merging operator via
the extraction of conditional information as in (1) from com-
bined ranking functions:

Definition 8. Let C = {∆1, . . . ,∆m} be a conditional pro-
file and E = {κ1, . . . , κm} be a ranking profile with ∆i-
admissible ranking functions κi, i.e., κi |= ∆i. Let K be
a combination operator for ranking functions. We define a
conditional merging operator via combination operators as

ΓcoK (C) = {(B |A) ∈
⋃
C |K(E)(AB) < K(E)(AB)}.

Using Theorem 4 we can follow:

Corollary 1. ΓcoK (C) satisfies (CM*), (CM0) and (CM2) for
each combination operation KMin,KMax and KΣ.

Proof. (CM*) follows immediately from the definition of
ΓcoK . ΓcoK (C) is defined via combination operatorsK(E) and
K(E) |= ΓcoK (C), i.e. (CM0) follows immediately. (CM2)
follows from Theorem 5 via Theorem 4.

The benefit of conditional merging via combination oper-
ators is that it enables us to take not only the beliefs of agents
concerning conditional rules but also their entire current be-
lief state including information about their preferences into
account. This information is used to guide the merging pro-
cess. We illustrate the influence of epistemic states of the
agents on the merging process by continuing the example
from Section 2:

Example 3 (Continue Example 2). Table 1 shows suitable
ranking functions κ∆1 , κ∆2 , κ∆3 ∈ E corresponding to the
financial experts’ beliefs ∆1,∆2,∆3 ∈ C. For example both
expert 1 and expert 2 believe that, bubbles lead to crashes,
but agent 1 thinks that a bubble is very likely, whereas agent
2 thinks that a bubble is not. The merging via combination
operators is also illustrated in Table 1, we use KMin(E),
KMax(E) and KΣ(E) as combination operators and get
the following results for ΓcoMin,Γ

co
Max and ΓcoΣ :

ΓcoMin(C) = {(R |B), (S |B)}
ΓcoMax(C) = {(S |BR)}

ΓcoΣ (C) = ∅.
In this example, we see that conditional relationships across
conditional belief bases are not respected by the combina-
tion operators, since (R |S) cannot be found in any of the
merging results but is part of every maximal consistent set
MC , i.e., (R |S) ∈ ΓpmS (C) for any selection function S.

In the following, we show which of our conditional merg-
ing operators defined via combination operators classify as
majority resp. arbitration conditional merging operators:
Theorem 6. The following statements hold:
• The coalescent assignments defined by KMin and KMax

satisfy (Arbκ) and therefore ΓcoMin and ΓcoMax are arbitra-
tion conditional merging operators.

• The coalescent assignment defined byKΣ satisfies (Majκ)
and therefore ΓcoΣ is a majority conditional merging oper-
ator.

Proof. For the first statement, we show that (Arbκ) holds
for KMin,KMax. Let E = {κ1, . . . , κm, κ∆} and
En = {κ1, . . . , κm, κ∆, . . . , κ∆} with n−times κ∆. Then
KMin(E)(ω) = K0+mini=1,...,m{κi(ω), κ∆(ω)} = K0+
mini=1,...,m{κi(ω), κ∆(ω), . . . , κ∆(ω)} = KMin(En) for
all ω ∈ Ω and therefore (Arbκ) holds for all n ∈ N.
The same argumentation holds for KMax, i.e. KMin and
KMax define coalescent assignments that satisfy (Arbκ) and
via Theorem 4 we can follow that ΓcoMin and ΓcoMax sat-
isfy (Arb). Now, we show that (Majκ) holds for KΣ: Pick
any k such that KΣ(C t ∆k)(AB) > KΣ(C t ∆k)(AB)
and (B |A) ∈ ∆. It holds that κ∆(AB) < κ∆(AB). Let
ñ > KΣ(Ct∆n)(AB)−KΣ(Ct∆n)(AB)

κ∆(AB)−κ∆(AB)
. Note that by hypoth-

esis ñ > 0. Observe that KΣ(C t∆k+ñ)(AB) < KΣ(C t
∆k+ñ)(AB). In this way, we can find a n = k + ñ such
that KΣ(C t∆n)(AB) < KΣ(C t∆n)(AB), which con-
tradicts our hypothesis and therefore (Majκ) holds. And via
Theorem 4, we can follow that ΓcoMax satisfies (Maj).

The theorem shows that conditional merging operators
defined via combination operations are versatile and cover
different subclasses of merging operators via different com-
bination operations K in ΓcoK , making them more flexible in
the merging process.

The following example shows that (CM1) and (CM3) do
not hold for ΓcoK and that it makes sense to refine combi-
nation operators so that they take logical dependencies be-
tween conditionals more into account:
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ω ∈ Ω κ∆1
κ∆2

KMin KMax KΣ

ABD 0 1 0 1 1
ABD 1 0 0 1 1
ABD 1 1 1 1 2
ABD 1 1 1 1 2
ABD 0 1 0 1 1
ABD 1 0 0 1 1
ABD 0 0 0 0 0
ABD 0 0 0 0 0

Table 2: The table shows two admissible ranking functions for ∆1,
∆2 from Example 4 and the result of the combination operation of
E = {κ∆1 , κ∆2} via the operators KMin,KMax and KΣ. Note
that, κ∆1 , κ∆2 are the System-Z ranking functions corresponding
to ∆1,∆2.

Example 4. Let ∆1 = {(B |A), (D |B)}, ∆2 =
{(B |A), (B |D)} and C = {∆1,∆2}. Note that C is con-
sistent and that (B |A) ∈ ⋂

C. As ∆i-admissible ranking
functions κ∆1 , κ∆2 we take the System-Z ranking functions
of ∆1 and ∆2, they can be found in Table 2. As combi-
nation operation on E = {κ∆1

, κ∆2
} we take KMin(E),

KMax(E) and KΣ(E). Table 2 shows the result of the com-
bination operators and we get the following results for the
conditional merging via the corresponding combination op-
erators KMin(E), KMax(E) and KΣ(E)

ΓcoMin(C) = {(B |A)}
ΓcoMax(C) = {(B |D)}

ΓcoΣ (C) = {(B |A), (B |D)}.
None of the conditional merging operators determines a
combined ranking function that satisfies all conditionals
in

⋃
C even though

⋃
C is consistent. Moreover,

⋂
C 6⊆

ΓcoMax(C) even though all agents agree that this conditional
rule should be accepted. We conclude that combination op-
erators are not sufficient to handle conditional relationships
across conditional belief bases in a conditional profile.

Admissible ranking functions for conditional belief bases
∆i in C respect conditional dependencies within ∆i, but, in
order to merge the bases in C we also need to monitor con-
ditional dependencies from conditionals across conditional
belief bases in C.

5.3 Epistemic Conditional Merging via
Combination w.r.t. Conditional Dependencies

In order to monitor conditional interactions while combining
ranking functions, we need to take all conditionals in C into
consideration. Therefore, we make use of ordered tolerance
partitions of conditional belief bases ∆ (first introduced by
Pearl in (1990)) which are commonly used to define System-
Z ranking functions for conditional belief bases ∆. The par-
tition ∆ = (∆0, . . . ,∆p) can only be determined for a con-
sistent ∆ and it defines maximal sets ∆k (k ∈ {0, . . . , p}) of
conditionals that tolerate each other and are tolerated by all
conditionals in

⋃
j>k ∆j . We use the standard definition of

tolerance introduced by Adams (Adams 1965), where a con-
ditional is tolerated by a set of conditionals iff there exists a

ω ∈ Ω κ∆1
κ∆2

Kc
Min Kc

Max Kc
Σ

ABD 0 1 1 2 2
ABD 1 0 2 3 4
ABD 1 1 3 3 5
ABD 1 1 3 3 5
ABD 0 1 1 2 5
ABD 1 0 0 1 1
ABD 0 0 0 0 0
ABD 0 0 0 0 0

Table 3: For Example 5, the table shows κ∆1 , κ∆2 and the com-
bined ranking functions KMin(E),KMax(E) and KΣ(E), the
layers of Ω are depicted using different shades of gray, where Ω0

is white (ζ0 = 0), Ω1 is light gray (ζ1 = 2) and Ω is dark gray
(ζ = 3). In this example the factors ζi and ζ are the same for all
combination operations.

world that verifies the conditional and does not falsify any
of the conditionals in the set of conditionals. The notion of
tolerance keeps track of conditional relationships, which the
sheer combination of admissible ranking functions fails to
do for conditionals from different ∆i’s in C. Therefore, we
extend the standard combination operators with the ability
to respect tolerance relations across conditional bases in C.
Since tolerance partition can only be determined for consis-
tent sets of conditionals and

⋃
C is in general not consistent,

we define paraconsistent partitions for (inconsistent) sets ∆.

Definition 9. Let ∆ be a set of conditionals and let
(∆0, . . . ,∆p,∆) be a partition of ∆ such that each
(B |A) ∈ ∆k is tolerated by the conditionals in

⋃
k6j6p ∆j

and

∆ = {(B |A) ∈ ∆ | (B |A) is not tolerated by ∆p},

we call ∆ the conflicting subbase of ∆ and (∆0, . . . ,∆p,∆)
the paraconsistent partition of ∆.

Note that ∆ is consistent if and only if ∆ = ∅. Using the
paraconsistent partition of

⋃
C, we define conditional merg-

ing operators via combination operators that respect condi-
tional dependencies. In order to differentiate between condi-
tionals that tolerate each other and conditionals that do not
on the level of possible worlds in Ω, we define layers of Ω,
s.t. Ω = (Ω0, . . . ,Ωp,Ω).

Definition 10. Let ∆ be a set of conditionals and ∆ =
(∆0, . . . ,∆p,∆) be its paraconsistent partition. We de-
fine the paraconsistent partition of possible worlds Ω =
(Ω0, . . . ,Ωp,Ω) w.r.t ∆ as follows:

Ωk = Ω \ (Ωf⋃
k6j6p ∆j∪∆

)−
⋃

06l6k−1

Ωl

and Ω = Ω−
⋃

k>0

Ωk.

Ωk ⊆ Ω = (Ω0, . . . ,Ωp,Ω) is the set of worlds that
have not been inserted in any layer of Ω before, and that
do not falsify any of the conditionals that tolerate all condi-
tionals in

⋃
k6j6p ∆j ∪∆. Since we determine the partition
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∆ = (∆0, . . . ,∆p,∆) via the tolerance test the correspond-
ing layer Ωk for ∆k is always non-empty. Note that it is
possible that ∆ = ∆ and Ω = Ω, in this case the network
of conditional dependencies is too dense to identify condi-
tionals that are tolerated by all other conditionals across the
conditional belief bases. This is a special case which we will
deal with later in the paper. We illustrate the paraconsistent
partition of conditional profiles and the corresponding par-
titions of worlds via continuing Example 4 in the upcoming
Example 5.

Using the layers of Ω, we can define new combination
operators that also divide the result of the combination op-
eration K into layers and therefore respect conditional rela-
tionships:
Definition 11. Let C be a conditional profile and
(C0, . . . , Cp, C) be the paraconsistent partition of

⋃
C and

Ω = (Ω0, . . . ,Ωp,Ω) be the corresponding partition of Ω.
Let E = {κ1, . . . , κm} with ∆i-admissible ranking func-
tions κi, we define combination operators w.r.t. conditional
dependencies Kc(E) as follows:

Kc(E)(ω) = K0 +K(E)(ω) + ζk

with ζk = max
ω∈Ωk−1

{Kc(E)(ω)}+ 1 and ζ0 = 0

for each ω ∈ Ωk and

Kc(E)(ω) = K0 +K(E)(ω) + ζ

with ζ = max
ω∈Ωk

{Kc(E)(ω)}+ 1

for ω ∈ Ω, where K0 is a normalization constant that as-
sures that Kc is a ranking function. The factors ζk, ζ sepa-
rate the layers of Ω determined by (Ω0, . . . ,Ωp,Ω).

The following proposition holds for all of the above de-
fined operators and shows that Kc(E) separates the plausi-
bility ranks of worlds from different Ωk’s:
Proposition 2. For a combination operator Kc(E) as
defined in Definition 11 and ω ∈ Ωk, it holds that
Kc(E)(ω) < Kc(E)(ω′) for ω′ ∈ Ωk+1 resp. if ω ∈ Ωp
and ω′ ∈ Ω.

Proof. Let ω ∈ Ωk and ω′ ∈ Ωk+1, 0 6 k 6 p − 1, then
Kc(E)(ω) < ζk+1, i.e., Kc(E)(ω) < Kc(E)(ω′). This
works in an analogous way for ω ∈ Ωp and ω′ ∈ Ω.

Using different combination operations K, we can define
different combination operators that respect conditional de-
pendencies. As in the section before, we take the minimum
KMin, the maximum KMax and the sum of worlds KΣ

and get the combination operators w.r.t. conditional depen-
dencies Kc

Min, Kc
Max and Kc

Σ. The following theorem ad-
dresses the relationship between standard combination op-
erators as defined in Definition 6 and combination operators
that respect conditional dependencies:
Theorem 7. LetC = (C0, . . . , Cp, C) be a conditional pro-
file and Ω = (Ω0, . . . ,Ωp,Ω) be the corresponding partition
of Ω. Let E = {κ1, . . . , κm} with ∆i-admissible ranking
functions κi and Kc(E) be a combination operator as de-
fined in Definition 11, then Kc(E) with KMin,KMax and

ω ∈ Ω κ∆′1 κ∆′2 KMin KMax KΣ

ABD 0 1 0 0 0
ABD 2 3 2 3 5
ABD 2 1 4 6 9
ABD 1 1 4 5 8
ABD 0 2 5 9 12
ABD 3 0 5 10 13
ABD 2 1 6 9 13
ABD 2 1 6 9 13

Table 4: The table shows two ∆′
i-admissible ranking functions

κ∆′1
, κ∆′2

∈ E′ from Example 5 and the combined ranking func-
tions KMin(E′),KMax(E′) and KΣ(E′). The layers of Ω are
depicted using different shades of gray, where Ω0 is white, Ω1 is
light gray and Ω is dark gray. For each layer of Ω and each com-
bination operator KMin, KMax and KΣ, we get different factors
ζ′j (j = 0, 1) resp. ζ

′
, for all combination operators it holds that

K0 = 0.

KΣ satisfies (K0) and for ω, ω′ ∈ Ωk it satisfies (K1) and
(K2).

Proof. That Kc satisfies (K0) follows straightforward from
K0 in Definition 11. For ω, ω′ from the same Ωk the factor
ζk is the same for both worlds, i.e. we can follow (K1) and
(K2) from the fact that (K1) and (K2) hold for the combina-
tion operators K that define Kc.

Since we add factors ζ resp. ζ and therefore assure that
Kc respects conditional dependencies within C, we cannot
guarantee that (K1) and (K2) hold for world ω ∈ Ωk and
ω′ ∈ Ωk′ with k 6= k′. For a counterexample for (K1) and
(K2) from worlds ω ∈ Ωk and ω′ ∈ Ωk′ with k 6= k′, see
Example 5 and Table 4, where κ∆′i

(ABC) < κ∆i(ABC)

for i = 1, 2 but Kc(E′)(ABC) < Kc(E′)(ABC) for each
operator. Following the same line as in the previous subsec-
tion, we show that Kc defines a coalescent assignment and
therefore a conditional merging operator. Again, for the co-
alescent assignment we assume that the mapping from C to
E is given via the belief sets of the agents that participate in
the merging process.

Theorem 8. Let C = {∆i}mi=1 be a conditional profile and
E = {κi}mi=1 be a ranking profile with ∆i-admissible rank-
ing functions κi. The combination operators Kc

Min,K
c
Max

and Kc
Σ define coalescent assignments via the mapping

C 7→ E 7→ K, that satisfy (CA1) and (CA2).

Proof. Kc
Min,K

c
Max and Kc

Σ are ranking functions due to
K0 from Definition 11. For (CA1), we show that Kc(C)
with C = (C0, . . . , Cp, C) respects logical relationships be-
tween conditionals outside C and therefore satisfies all con-
ditionals inC\C. For a conditional in (B |A) ∈ Ck, it holds
that there exists a world ω s.t. ω verifies (B |A) and does not
falsify any conditional from

⋃
k6j6p Cj ∪ C, i.e. ω ∈ Ωl

with l 6 k. For all ω′ ∈ Mod(AB) it holds that ω′ ∈ Ωl′

with k < l′, since ω′ ∈ Ωf⋃
06j6k Cj∪C

, i.e., Kc(E)(ω) <

Kc(E)(ω′), since l < l′ and the choice of ζl′ . Therefore, we
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can follow that Kc(E)(AB) < Kc(E)(AB) for all Kc
Min,

Kc
Max and Kc

Σ and (B |A) ∈ ΓcocKc(C). For consistent
⋃
C,

it holds that C = ∅ and therefore ΓcocKc(E) |= ⋃
C. (CA2)

follows straightforward from the Definition 1.

We get the following conditional merging operator via the
extraction of conditional information as in (1) from the com-
bined ranking functions that respect conditional dependen-
cies:
Definition 12. Let C = {∆1, . . . ,∆m} be a conditional
profile and E = {κ1, . . . , κm} be a ranking profile with ∆i-
admissible ranking functions κi, i.e., κi |= ∆i. Let Kc be
a combination operator that respects conditional dependen-
cies. We define a conditional merging operator via combina-
tion operators w.r.t. conditional dependencies as follows:

ΓcocKc(C) = {(B |A) ∈
⋃
C |Kc(E)(AB) < Kc(E)(AB)}.

Using Theorem 8 we can follow:
Corollary 2. ΓcocKc(C) satisfies (CM*),(CM0), (CM1) and
(CM2) for each combination operation that respects condi-
tional dependencies Kc

Min,K
c
Max and Kc

Max.

Proof. (CM*) follows immediately from the definition of
ΓcocKc . ΓcocKc(C) is defined via combination operators Kc(E)
and Kc(E) |= ΓcocKc(C), i.e. (CM0) follows immediately.
(CM1) and (CM2) follow from Theorem 5 via Theorem
8.

We illustrate paraconsistent partitions and the correspond-
ing partition of Ω and the combination operators from Defi-
nition 11 and continue Example 4:
Example 5 (Continue Example 4). For C = {∆1,∆2}
from Example 4, we get the paraconsistent partition C =
({(B |D)}, {(B |A), (D |B)}, ∅) with C = ∅. The corre-
sponding layers of Ω are depicted in Table 3 using different
gray tones. The determination of the layers Ωk in the parti-
tion of Ω in detail works as follows: For Ω0, we first deter-
mine Ωf

C0∪C1∪C
= Ωf⋃C

Ωf⋃C = {ABD,ABD,ABD,ABD,ABD,ABD}
⇒ Ω0 = {ABD,ABD}.

For the next layer, we have to determine the set of worlds that
falsify any conditional from C1 = {(B |A), (D |B)} ∪ C,
whereby however C = ∅, i.e.,

Ωf
C1∪C

= {ABD,ABD,ABD,ABD}

and Ω1 = Ω \Ωf
C1∪C

−Ω0 = {ABD,ABD}. The remain-

ing worlds are part of Ω = {ABD,ABD,ABD,ABD}
and it holds that Ω = Ω0 ∪ Ω1 ∪ Ω. We get the following
merging result:

ΓcoMin(C) = ΓcoMax(C) = ΓcoΣ (C) =
⋃
C.

This result corresponds to the intuition that all condition-
als in

⋃
C should be accepted. Note that as ∆i-admissible

ranking functions in E = {κ∆1
, κ∆2

} we used the System-Z

ranking functions as in Example 4, but this does not con-
tribute to the fact that ΓcoMin(C) =

⋃
C since Proposition 2

holds for all combinations on general ∆i-admissible rank-
ing functions. To illustrate conditional combination opera-
tors for inconsistent conditional profiles, we modify ∆1,∆2

and take ∆′1 = {(B |A), (D |A), (A |B)} and ∆′2 =
{(B |A), (D |A)}, so that C ′ = {∆′1,∆′2} is inconsistent
and we get the following paraconsistent partition C ′ =
(C ′1, C

′
2, C

′) = ({(B |A)}, {(A |B)}, {(D |A), (D |A)}).
The layers of Ω = (Ω′0,Ω

′
1,Ω

′
) can be found in Table 4 de-

picted in different gray tones. We get the following merging
result:

ΓcoMin(C ′) = ΓcoMax(C ′) = {(B |A), (A |B)}
ΓcoΣ (C ′) = {(B |A), (A |B), (D |A)}.

Example 5, shows that the combination with respect to
logical dependencies among conditionals leads to intuitive
merging results. For conditionals in C, the combination op-
erators yield different results but the least conflicting condi-
tionals outside of C are always accepted.

The following theorem classifies ΓcocMin and ΓcocMax as arbi-
tration conditional merging operators:

Theorem 9. The coalescent assignments defined by Kc
Min

andKc
Max satisfy (Arbκ) and therefore ΓcocMin and ΓcocMax sat-

isfy (Arb).

Proof. It holds that C t ∆ = C ′ = (C ′0, . . . , C
′
p, C

′) =

C t∆n = C ′n, i.e., the layers of Ω = (Ω′0, . . . ,Ω
′
p,Ω

′) that
correspond to C ′ and C ′n are the same. Thus, the constants
ζk that seperate the layers inKc

Min resp.Kc
Max are the same

and we can follow (Arbκ) forKc
Min andKc

Max from (Arbκ)
for KMin resp. KMax from the proof of Theorem 6 and
therefore (Arb) holds for ΓcocMin resp. ΓcocMin.

Note that, ΓcocΣ also prefers majorities in the merging pro-
cess but only within the conditionals of C, the strict separa-
tion of layers prevents the sheer overvaluation of majorities
in C and therefore ΓcocΣ does not satisfy (Maj) in general.

We also continue the example from Section 2, to illustrate
the results of the conditional combination operators:

Example 6 (Continue Example 3). It holds
that C = (C0, C) with C0 = {(S |R)} and
C = {(R |B), (S |B), (S |BR)}, i.e. Ω0 =
{BRS,BRS,BRS} and Ω = Ω \ Ω0 as depicted in
Table 5 alongside the conditional combination operators
Kc
Min,K

c
Max and Kc

Σ. We get the following results for
ΓcocMin,Γ

coc
Max and ΓcocΣ :

ΓcocMin(C) = {(S |R), (R |B), (S |B)}
ΓcocMax(C) = {(S |R), (S |BR)}

ΓcocΣ (C) = {(S |R)}.
Note that, we get similar results as for the merging oper-
ation with standard combination operators, but (S |R) is
added to each set of ΓcocKc , i.e. we respect conditional interac-
tions inbetween C and the overall beliefs of every agent are
still taken into account. This is a great advantage of merging
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ω ∈ Ω κ∆1
κ∆2

κ∆3
Kc
Min Kc

Max Kc
Σ

BRS 0 2 3 1 5 8
BRS 2 1 2 2 4 8
BRS 2 2 1 2 4 8
BRS 1 2 2 2 4 8
BRS 1 1 0 1 3 5
BRS 0 1 1 0 1 2
BRS 0 1 0 0 1 1
BRS 0 0 0 0 0 0

Table 5: The table shows three ∆i-admissible ranking functions
κ∆1 , κ∆2 , κ∆3 ∈ E for Example 6 and the combined ranking
functions KMin(E),KMax(E) and KΣ(E). The layers of Ω are
depicted using different shades of gray, where Ω0 is white and
Ω1 is light gray. For each layer of Ω and each combination op-
erator Kc

Min(E), Kc
Max(E) and Kc

Σ(E), we get different factors
ζj (j = 0, 1) resp. ζ, for all combination operators it holds that
K0 = 0.

operators for conditional beliefs determined by conditional
combination operators over conditional merging operators
via maximal consistent sets.

6 Discussion and Conclusion
Merging conditional belief bases, i.e. synthesizing different,
possibly conflicting, inference rules, is a challenging task
that occurs in various scenarios, especially in multi-agent
systems. For propositional merging operators, we can find a
variety of approaches in literature (see (Konieczny and Pérez
2011) for an overview), but, since the logical structure of
conditionals differs fundamentally from the one of proposi-
tions new challenges emerge. In this paper, we proposed two
suitable approaches to conditional merging, the first one is
based on the syntax of the agents’ beliefs and the second one
on the belief states underlying these beliefs, and provided for
both ways suitable conditional merging operators respecting
logical dependencies between conditionals. The following
example illustrates why our epistemic merging operators do
not accept all conditionals in the intersection of a conditional
profile in general:

Example 7. Let ∆1 = {(B |A), (A |B)}, ∆2 =
{(B |A), (B |A)} and ∆3 = {(B |A), (B |A)} and C =
{∆1,∆2,∆3}. It holds that no conditional in

⋃
C is toler-

ated by the other conditionals and therefore C = (C) and
Ω = Ω. The net of logical dependencies between condition-
als is too dense and it holds that K(E) = Kc(E) with
E = {κ∆i

}i=1,2,3 and therefore we cannot guarantee the
acceptance of (B |A) =

⋂
C for all ∆i-admissible ranking

functions (including System-Z ranking functions) indepen-
dent of the choice of combination operators.

A future challenge will be to gain control of conditional
beliefs across a conditional profile that highly interact with
each other. Another challenge we want to address in this dis-
cussion, which is also related to the network of logical de-
pendencies within C, is to establish conditional merging op-
erators that satisfy a conditional version of Arrow’s Pareto

principle (Arrow 1963), i.e. two groups should not agree on
a conditional that is not previously accepted by the compro-
mise within at least one of the groups. Similar problems with
combination operators on epistemic states are addressed in
(Meyer 2001). From our point of view this is due to the shift
from propositions to more complex conditional belief bases
resp. ranking functions.
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Konieczny, S., and Pérez, R. P. 1998. On the logic of
merging. In Cohn, A. G.; Schubert, L. K.; and Shapiro,
S. C., eds., Proceedings of the Sixth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’98), Trento, Italy, June 2-5, 1998, 488–498.
Morgan Kaufmann.
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Wolfgang Dvořák , Matthias König , Markus Ulbricht and Stefan Woltran
TU Wien, Institute of Logic and Computation

{dvorak,mkoenig,mulbricht,woltran}@dbai.tuwien.ac.at

Abstract

In this paper, we investigate structural properties of argumen-
tation frameworks with collective attacks (SETAFs) which
generalize Dung-style argumentation frameworks (AFs) to
scenarios where some arguments can only be defeated by a
set of arguments. We propose a notion of a reduct for SETAFs
which extends a recent proposal for Dung AFs. We show how
recent results regarding the reduct extend to the more general
SETAFs providing further evidence that they constitute a nat-
ural generalization of classical AFs. These results include ba-
sic properties of semantics w.r.t. their reduct, a compatibility
requirement (so-called modularization property) as well as a
formal tool to trace non-determinism back to even cycle ar-
guments. Moreover, we compare SETAFs to logic programs
and show relations between our reduct notion and established
ones in the domain of logic programming.

1 Introduction
Abstract argumentation frameworks (AFs) as proposed by
Dung (1995) in his seminal paper are nowadays a classi-
cal research area in knowledge representation and reasoning.
In an AF, arguments are interpreted as abstract entities and
thus the focus is solely on the relationship between them,
i.e. which arguments are in conflict with each other. Conse-
quently, an AF is simply a directed graph, where the vertices
are interpreted as arguments and edges as attacks between
them. AFs have been thoroughly investigated over the last
decade and various extensions have been proposed in order
to extend their expressive power. For example, researchers
considered the addition of supports (Cayrol and Lagasquie-
Schiex 2005), recursive attacks (Baroni et al. 2011), claims
(Dvořák, Rapberger, and Woltran 2020a), or probabilities
(Thimm 2012) to mention a few.

In the present paper we consider Argumentation Frame-
works with collective attacks (SETAFs), introduced by
Nielsen and Parsons (2006). SETAFs generalize Dung-style
AFs in the sense that some arguments can only be effec-
tively defeated by a collection of attackers, yielding a nat-
ural representation as a directed hypergraph. Many key se-
mantic properties of AFs have been shown to carry over to
SETAFs, see e.g. (Nielsen and Parsons 2006; Flouris and
Bikakis 2019). Moreover, work has been done on expres-
siveness (Dvořák, Fandinno, and Woltran 2019), and trans-
lations from SETAFs to AFs (Polberg 2017; Flouris and

Bikakis 2019). Also the hypergraph structure of SETAFs
has recently been subject of investigation (Dvořák, König,
and Woltran 2021a; Dvořák, König, and Woltran 2021b). In
this work we complement existing research by introducing
a reduct notion for SETAFs, that enables us to give alterna-
tive characterization of the semantics, show a modulariza-
tion property, and characterize extensions via explanation
schemes. Moreover, we will use the reduct to investigate
the correspondence between SETAFs and atomic logic pro-
grams.

As AFs and SETAFs (Dvořák and Dunne 2017; Dvořák,
Greßler, and Woltran 2018) constitute computationally hard
problems, researchers have investigated techniques to divide
a given framework in a way that extensions can be com-
puted step-wise. While traditional approaches are using the
graph-structure to divide the framework (Baroni et al. 2014;
Baroni, Giacomin, and Guida 2005; Baumann 2011) the re-
cently introduced modularization property for AFs (Bau-
mann, Brewka, and Ulbricht 2020a) does not make any
assumptions on the structure of the graph. The modular-
ization property formalizes a compatibility requirement be-
tween the accepted arguments within a given extension and
those whose acceptance status is not yet determined. That
is, extensions of different sub-frameworks can be merged to-
gether in order to find a novel extension of the whole frame-
work. The key underlying concept is the so-called E-reduct
of a given AF F w.r.t. an extensionE. Intuitively, this reduct
is a tool to analyze the behavior of an AF when a certain set
of arguments is set to true, similar in spirit to the Gelfond-
Lifschitz-Reduct for logic programs. In order to define a
modularization property for SETAFs we first introduce a no-
tion of E-reduct for SETAFs that is a proper generalization
of the E-reduct for AFs.

Apart from being the main tool formalizing the modular-
ization property, the reduct has also been utilized to propose
novel semantics (Baumann, Brewka, and Ulbricht 2020b)
as well as formalizing how non-determinism in AFs can be
traced back to arguments occurring in even cycles (Baumann
and Ulbricht 2021). In this work we pick up the latter and
introduce explanation schemes for SETAF that characterize
complete extensions by choices on the arguments occurring
in even cycles.

As mentioned earlier the introduced E-reduct is in spirit
of the Gelfond-Lifschitz reduct for logic programs. Logic
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programs are a well-established knowledge representation
formalism. They are not only well-understood from a theo-
retical point of view, but also utilized in many application
scenarios. A considerable amount of research is devoted
to comparing logic programs with AFs, see e.g. (Caminada
et al. 2015). We thus consider a correspondence between
atomic logic programs and SETAFs and study the E-reduct
equivalent on logic programs. This equivalence between the
reducts then results in an equivalence between argumenta-
tion and logic programming semantics.

The main contribution of this paper is to show that our nat-
ural extension of the reduct notion for AFs is well-behaving
for SETAFs as well. We show that basic properties are pre-
served, as well as their implications in terms of the structure
of extensions. More specifically the paper is organized as
follows.
• After giving necessary preliminaries in Section 2 we in-

troduce the E-reduct SFE for a SETAF SF and a set E
of arguments and investigate its core properties, including
the modularization property for SETAFs (Section 3),

• we demonstrate how non-determinism in SETAFs can be
traced back to even cycles (Section 4), leading to the no-
tion of explanation schemes for SETAFs,

• in Section 5 we show how our notion of the reduct of
a SETAF has a natural correspondence to the reduct of
atomic logic programs; thereby, we also show how to
translate SETAFs into logic programs,

• finally, we conclude in Section 6.
Notice that some technical details are omitted due to the lack
of space.

2 Preliminaries
We briefly recall the definitions of SETAFs and its semantics
(see, e.g., (Bikakis et al. 2021)). Throughout the paper, we
assume a countably infinite domain A of possible arguments.
Definition 2.1. A SETAF is a pair SF = (A,R) where
A ⊆ A is finite, andR ⊆ (2A\{∅})×A is the attack relation.
For an attack (T, h) ∈ R we call T the tail and h the head
of the attack. SETAFs (A,R), where for all (T, h) ∈ R it
holds that |T | = 1, amount to (standard Dung) AFs. In that
case, we usually write (t, h) to denote the set-attack ({t}, h).
Moreover, for a SETAF SF = (A,R), we use A(SF ) and
R(SF ) to identify its arguments A and its attack relation R,
respectively.

Given a SETAF (A,R), we write S 7→R a if there is a
set T ⊆ S with (T, a) ∈ R. Moreover, we write S′ 7→R S
if S′ 7→R a for some a ∈ S. We drop subscript R in 7→R

if there is no ambiguity. For S ⊆ A, we use S+
R to denote

the set {a | S 7→R a} and define the range of S (w.r.t. R),
denoted S⊕

R , as the set S ∪ S+
R .

Example 2.2. Consider the SETAF SF = (A,R) with
A = {a, b, c, d, e, f} and R = {(a, b), (a, d), ({b, e}, f),
({a, b}, d), ({d, e}, a), (f, c), (f, e)} (see Example 3.2(a);
the three collective attacks are colored).

We will now identify special ‘kinds’ of attacks and fix the
notions of redundancy-free and self-attack-free SETAFs.

Definition 2.3. Given a SETAF SF = (A,R), an attack
(T, h) ∈ R is redundant if there is a (T ′, h) ∈ R with T ′ ⊂
T . A SETAF without redundant attacks is redundancy-free.
An attack (T, h) ∈ R is a self-attack if h ∈ T . A SETAF
without self-attacks attacks is self-attack-free.

Redundant attacks can be efficiently detected and then be
omitted without changing the standard semantics (Dvořák,
Rapberger, and Woltran 2020b; Polberg 2017). In the
following we always assume redundancy-freeness for all
SETAFs, unless stated otherwise. The well-known notions
of conflict and defense from classical Dung-style-AFs natu-
rally generalize to SETAFs.
Definition 2.4. Given a SETAF SF = (A,R), a set S ⊆ A
is conflicting in SF if S 7→R a for some a ∈ S. A set
S ⊆ A is conflict-free in SF , if S is not conflicting in SF ,
i.e. if T ∪{h} ̸⊆ S for each (T, h) ∈ R. cf(SF ) denotes the
set of all conflict-free sets in SF .
Definition 2.5. Given a SETAF SF = (A,R), an argument
a∈A is defended (in SF ) by a set S ⊆ A if for eachB ⊆ A,
such that B 7→R a, also S 7→R B. A set T ⊆ A is defended
(in SF ) by S if each a ∈ T is defended by S (in SF ).

Moreover, we make use of the characteristic function
ΓSF of a SETAF SF = (A,R), defined as ΓSF (S) =
{a ∈ A | S defends a} for S ⊆ A.

The semantics we study in this work are the grounded,
admissible, complete, preferred, stable semantics, which
we will abbreviate by grd, adm, com, pref, stb, respec-
tively (Flouris and Bikakis 2019; Nielsen and Parsons 2006).
Definition 2.6. Given a SETAF SF = (A,R) and a
conflict-free set S ∈ cf(SF ). Then,
• S ∈ adm(SF ), if S defends itself in SF ,
• S ∈ com(SF ), if S ∈ adm(SF ) and a ∈ S for all a ∈ A

defended by S,
• S ∈ grd(SF ), if S =

⋂
T∈com(SF ) T ,

• S ∈ pref(SF ), if S ∈ adm(SF ) and there is no T ∈
adm(SF ) s.t. T ⊃ S,

• S ∈ stb(SF ), if S 7→ a for all a ∈ A \ S,
The relationship between the semantics has been clarified

in (Dvořák, Greßler, and Woltran 2018; Flouris and Bikakis
2019; Nielsen and Parsons 2006) and matches with the re-
lations between the semantics for Dung AFs, i.e. for any
SETAF SF :
stb(SF ) ⊆ pref(SF ) ⊆ com(SF ) ⊆ adm(SF ) ⊆ cf(SF )

3 Introducing the SETAF-Reduct
In the remainder of this paper, we will investigate the prop-
erties of the reduct of a SETAF w.r.t. a given set E. Intu-
itively, the reduct w.r.t. E represents the SETAF that result
from “accepting” E and rejecting what cannot be defended
now, while not deciding on the remaining arguments.
Definition 3.1. Given a SETAF SF = (A,R) and E ⊆ A,
the E-reduct of SF is the SETAF SFE = (A′, R′), with

A′ = A \ E⊕
R

R′ = {(T \ E, h) | (T, h) ∈ R, T ∩ E+
R = ∅,

T ̸⊆ E, h ∈ A′}
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Example 3.2. Consider SF and its reduct SF {d,e}.

a b c

d e f

a b c

d e f

(a) SETAF SF (b) SF {d,e}

In the reduct SFE , we only need to consider arguments
that are still undecided, i.e., all arguments neither in E nor
attacked by E. In contrast to the AF-reduct (Baumann,
Brewka, and Ulbricht 2020a), here some attacks that involve
deleted arguments are preserved. In particular, if the argu-
ments in the tail of an attack are “accepted” (i.e., in E), the
attack can still play a role in attacking or defending. How-
ever, if the tail of an attack (T, h) is already attacked by E,
we can disregard (T, h).

We start with a technical lemma to settle basic properties
of the reduct.
Lemma 3.3. Given a SETAF SF = (A,R) and two disjoint
sets E,E′ ⊆ A. Let SFE = (A′, R′).

1. If there is no S ⊆ A s.t. S 7→R E′, then the same is true
in SFE .

2. Assume E does not attack E′ ∈ cf(SF ). Then, E defends
E′ iff there is no S′ ⊆ A′ s.t. S′ 7→R′ E′.

3. Let E ∈ cf(SF ). If E ∪ E′ does not attack E in SF and
E′ ⊆ A′, with E′ ∈ cf

(
SFE

)
then E ∪ E′ ∈ cf(SF ).

4. Let E ∪ E′ ∈ cf(SF ). If E′ 7→R′ a, then E ∪ E′ 7→R a.

5. If E ∪ E′ ∈ cf(SF ), then SFE∪E′
=

(
SFE

)E′
.

We are now ready to present the main result of this sec-
tion, the modularization property, generalizing the respec-
tive result from Dung AFs (Baumann, Brewka, and Ulbricht
2020a). In particular, it allows us to build admissible sets
and complete extensions iteratively. After finding such a set
E ⊆ Awe can efficiently compute its reduct SFE and pause
before evaluating the remaining (sub-)framework to find ad-
missible/complete supersets E′ ⊃ E. Hence, this first step
can be seen as an intermediate result that enables us to re-
duce the computational effort of finding extensions in SF ,
as the arguments whose status is already determined by ac-
cepting E do not have to be considered again. Instead, we
can reason on the reduct SFE .
Theorem 3.4 (Modularization Property). Let SF be a
SETAF, σ ∈ {adm, com} and E ∈ σ(SF ).

1. If E′ ∈ σ(SFE), then E ∪ E′ ∈ σ(SF ).
2. If E ∩E′ = ∅ and E ∪E′ ∈ σ(SF ), then E′ ∈ σ(SFE).
Proof. Let SFE = (A′, R′). First consider σ = adm.

1) Since E is admissible and E′ ⊆ A′, E′ does not attack
E. By Lemma 3.3, item 3, E ∪ E′ ∈ cf(SF ). Now assume
S 7→R E ∪ E′. If S 7→R E, then E 7→R S by admissibility
of E. If S 7→R E′, there is T ⊆ S s.t. (T, e′) ∈ R for
some e′ ∈ E′. In case E 7→R T , we are done. Otherwise,
(T \E, e′) ∈ R′ and by admissibility ofE′ in SFE ,E′ 7→R′

T \ E. By Lemma 3.3, item 4, E ∪ E′ 7→R T \ E.

2) Now assume E ∪ E′ ∈ adm (SF ). We see E′ ∈
cf
(
SFE

)
as follows: If (T ′, e′) ∈ R′ for T ′ ⊆ E′ and

e′ ∈ E′, then there is some (T, e′) ∈ R with T ′ = T \ E.
Hence E ∪ E′ 7→ E′, contradiction. Now assume T ′ is not
admissible in SFE , i.e. there is (T ′, e′) ∈ R′ with e′ ∈ E′

and E′ does not counterattack T ′ in SFE . Then there is
some (T, e′) ∈ R with T ′ = T \ E and T ∩ E+

R = ∅. By
admissibility of E ∪ E′, E ∪ E′ 7→R T , say (T ∗, t) ∈ R,
T ∗ ⊆ E ∪ E′ and t ∈ T . Since E ∪ E′ is conflict-free,
T ∗ ∩ E+

R = ∅ and thus we either have a) T ∗ ⊆ E, contra-
dicting T ∩ E+

R = ∅, or b) (T ∗ \ E, t) ∈ R′ and t ∈ T ′,
i.e. E′ counterattacks T ′ in SFE contradicting the above
assumption.

Now consider σ = com.
1) We have E ∪ E′ ∈ adm(SF ) by the above consid-

erations. Moreover, E′ is complete, i.e. (SFE)E
′

does not
contain unattacked arguments in the reduct SFE (see Propo-
sition 3.5). Lemma 3.3, item 5, implies that SFE∪E′

does
not contain unattacked arguments, either. Hence E ∪ E′ ∈
com(SF ).

2) Given E ∪ E′ ∈ com(SF ) we have E′ ∈ adm
(
SFE

)
by the above considerations. Regarding completeness, we
again use the fact that SFE∪E′

= (SFE)E
′

does not con-
tain unattacked arguments.

Note that the modularization property also holds for stb
and pref semantics. However, the only admissible set in the
reduct w.r.t. a stable/preferred extension is the empty set,
rendering the property trivial. The exact relation is captured
by the following alternative characterizations of the seman-
tics under our consideration.

Proposition 3.5. Let SF = (A,R) be a SETAF, E ∈
cf(SF ) and SFE = (A′, R′).

1. E∈stb(SF ) iff SFE = (∅, ∅),
2. E∈adm(SF ) iff S →R E implies S \ E ⊈ A′,
3. E∈pref(SF ) iff E ∈ adm(SF ) and

⋃
adm

(
SFE

)
= ∅,

4. E∈com(SF ) iffE ∈ adm(SF ) and no argument in SFE
is unattacked.

Proof. The characterizations for stb and adm are straight-
forward and pref is due to the modularization property of
adm. For com(SF ) we apply Lemma 3.3, item 2, to each
singleton E′ occurring in SFE .

4 Explanation Schemes
Now that we established the modularization property for
SETAFs, we will define explanation schemes using even
length cycles and show their usefulness in computing com-
plete extensions. Cycles on directed hypergraphs can be
defined in various ways, we use the notion of the primal-
cycle (Dvořák, König, and Woltran 2021a). The results
of this section also hold for set-cycles and incidence-
cycles (Dvořák, König, and Woltran 2021b), as discussed
in Appendix A.

Definition 4.1. Let SF = (A,R) be a SETAF. Then its
primal graph is defined as Primal(SF ) = (A′, R′), where
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A′ = A, and R′ = {(t, h) | (T, h) ∈ R, t ∈ T}. A cy-
cle of length n in SF is a sequence (a1, a2, . . . , an, a1) in
its primal graph Primal(SF ) such that all ai are distinct,
(an, a1) ∈ R′, and (ai, ai+1) ∈ R′ for 1 ≤ i ≤ n − 1. By
Ev(SF ) we denote the set of arguments occurring in an even
length cycle in SF .

On AFs, explanation schemes have been defined in (Bau-
mann and Ulbricht 2021); in what follows we generalize
these definitions and results to SETAFs. The idea is to re-
strict the solution space to the power set of the arguments ap-
pearing in even length cycles. After guessing a suitable sub-
set of these arguments, complete extensions can be obtained
by propagation (i.e. iteration of the characteristic function).
This guessed set serves as an explanation for the resulting
extension.

Definition 4.2. Given a SETAF SF = (A,R) and a set
X ⊆ A. The triple (E0, E1, E2) is an explanation scheme
whenever

• E0 ∈ grd(SF ),
• E1 ⊆ Ev(SFE0) with E1 ∈ cf(SFE0), and
• E2 ∈ grd

(
(SFE0)E1

)
.

Example 4.3. The explanation scheme ({a, d}, {c}, {e}).
a b

c d

e

a b

c d

e

a b

c d

e

(a) SETAF SF (b) SFE0 (c) (SFE0)E1

If X ⊆ E0 ∪ E1 ∪ E2 then we say (E0, E1, E2) is an
explanation scheme for X . In the Definition 4.2 we require
E1 ∈ cf(SFE0), whereas in the corresponding definition for
AFs we want E1 ∈ cf(F ). For AFs F = (A,R) we have for
any setsX,Y ⊆ A andX ∈ cf(F ) thatX ′ = X∩A(FY ) ∈
cf(FY ). Hence,E1 ∈ cf(F ) iffE1 ∈ cf(FE0). For SETAFs,
this does not hold, as Example 4.4 illustrates.

Example 4.4. In (a) we have {b, c} ∈ cf(SF ), but {b, c} ̸∈
cf(SF {a}).

a b

c d

a b

c

(a) (b)

We are only interested in explanation schemes with cer-
tain properties, which we define in the following.

Definition 4.5. An explanation scheme (E0, E1, E2) is suc-
cessful if E0 ∪ E1 ∪ E2 is conflict-free in SF and defends
E1 in SF .

For AFs, every explanation scheme that defends E1 is
also conflict-free. However, this is not the case for SETAFs,

as Example 4.4(b) illustrates. The explanation scheme
(∅, {a}, {b}) defends {a}, but is not conflict-free in SF .

Towards the full characterization, first we show that suc-
cessful explanation schemes capture complete extensions.

Lemma 4.6. For every SF = (A,R) and every successful
explanation scheme (E0, E1, E2) in SF we have E = E0 ∪
E1 ∪ E2 ∈ com(SF ).

Proof. E is conflict-free and defends E1 by definition. By
construction also E0 and E2 are defended, hence, E ∈
adm(SF ). Moreover, as E2 ∈ com((SFE0)E1) and by
Lemma 3.3, item (5), SFE has no unattacked argument, i.e.
E ∈ com(SF ).

The following result generalizes from AFs. It formalizes
the intuition that in the reduct of a SETAF SF w.r.t. E ⊆
A an argument defended by a set X ⊆ A(SFE) is also
defended by E ∪X in SF and vice versa.

Lemma 4.7. Let SF = (A,R) be a SETAF, E ⊆ A and
SF ′ = SFE = (A′, R′). Then for any X ⊆ A(SF ′),
ΓSF ′(X) is the set of arguments in A′ which is defended by
E ∪X in SF .

Proof. (⊆) Let e ∈ ΓSF ′(X), i.e. e is defended by X in
SF ′. That means for any attack (T, e) ∈ R we either have
(i) T ∩ E+

R ̸= ∅, in which case E defends e in SF , or (ii)
T ∩ E+

R = ∅, and since e ∈ A(SF ′), T ̸⊆ E, i.e. T ′ =
T \E ̸= ∅ with (T ′, e) ∈ R′. As e is defended by ΓSF ′(X)
in SF ′, ΓSF ′(X) 7→R′ T ′, and ΓSF ′(X) ∪ E 7→R T .

(⊇) Assume e ∈ A′ is defended by E ∪ X in SF. Let
(T, e) ∈ R be an arbitrary attack towards e. If E 7→R T , the
attack does not appear in SF ′ and e is defended against it in
SF ′. Otherwise, there is a counterattack (S, t) with t ∈ T ,
S ⊆ E ∪ X and S ∩ X ̸= ∅. Hence, there is (S′, t) ∈ R′

with S′ ⊆ X , i.e. e is defended by X in SF ′.

Hinting at the importance of even-cycles for complete ex-
tensions, we now establish that complete extensions other
than the grounded contain arguments from even-cycle. Ulti-
mately, we will show that these arguments explain all com-
plete extensions.

Lemma 4.8. Let SF be a SETAF with E ∈ com(SF ) \
grd(SF ). Then there is some a ∈ E with a ∈ Ev(SF ).

Proof. Let E,E′ ∈ com(SF ) and assume none of them
contains an argument occurring in an even-cycle. Let SF ′

be the SETAF after adding the attack ({x}, x) for each
x ∈ Ev(SF ). Still, E,E′ ∈ com(SF ′). Now let SF ′′ be the
SETAF after deleting each attack (T, h) with h ∈ Ev(SF )
and T ∩ Ev(SF ) ̸= ∅ from SF ′. As these attacks did not
help to defend any arguments in E or E′ and moreover can-
not be defended by any conflict-free set themselves, we still
have E,E′ ∈ com(SF ′′). But as SF ′′ is even-(primal)-
cycle-free, the only complete extension is the grounded ex-
tension (Dvořák, König, and Woltran 2021a).

Lemma 4.9. Let SF = (A,R) be a SETAF and let E ∈
com(SF ). For any E′ ⊆ E we have E′′ = E \ E′ is satis-
fying (i) E′ ∪ E′′ = E, and (ii) E′′ ∈ com(SFE

′
).
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Proof. Let SF ′ = SFE
′
= (A′, R′). (i) is true by defi-

nition. For (ii) we first show E′′ ∈ cf(SF ′): any possible
attack (T ′, h) ∈ R′ with T ′ ∪ {h} ⊆ E′′ that would vio-
late its conflict-freeness corresponds to an attack (T, h) ∈ R
with T ′ ⊆ T . Since (T ′, h) ∈ R′, we have T ∩ E′+

R = ∅.
That means T \ T ′ ⊆ E′, and consequently T ∪ {h} ⊆ E,
which is a contradiction to the assumption that E is conflict-
free in SF . Hence, no such attack can exist. Next, we show
that E′′ contains every argument it defends in SF ′. As by
Lemma 3.3, item (5), it holds SFE = (SF ′)E

′′
and E is

complete, there are no unattacked arguments in (SF ′)E
′′

.
Finally, it remains to show that E′′ defends itself in SF ′. As
clearlyE′′ ⊆ A(SF ′) andE′′ ⊆ A\E′⊕

R is the set defended
by E = E′ ∪ E′′ in SF , Lemma 4.7 applies and we know
E′′ is defends itself in SF ′.

Finally, we state the decomposition property: complete
extensions correspond to a successful explanation scheme,
and every successful explanation scheme characterizes a
complete extension. In fact, several successful explanation
schemes can correspond to the same complete extension. As
a successful explanation scheme is uniquely defined by E1,
this means that no two complete extensions coincide on their
even-cycle arguments. Hence, exactly these arguments serve
well as an explanation for the extension as a whole.

Theorem 4.10. A set E ⊆ A is in com(SF ) iff E can be
decomposed into a successful explanation scheme.

Proof. The (⇐) direction is covered by Lemma 4.6. For
(⇒) let E ∈ com(SF ), and let

• E0 ∈ grd(SF ),
• E1 = Ev(SFE0) ∩ E, and
• E2 ∈ grd((SFE0)E1).

We will show that (i) E1 is conflict-free in SFE0 and (ii)
E0 ∪ E1 ∪ E2 = E. For (i) assume the opposite is true,
i.e. there is an (T ′, h) ∈ R(SFE0) with T ′ ∪ {h} ⊆ E1.
That means there is an attack (T, h) ∈ R with T ′ ⊆ T .
But as (T ′, h) ∈ R(SFE0) we know T ∩ E+

0 = ∅, hence,
T ⊆ E0 ∪ E1, but then E ̸∈ cf(SF ), a contradiction.

It remains to show (ii): (⊆): E0 ⊆ E is immediate and
E1 ⊆ E follows from the definition of Ev(.). Let SF ′ =
(A′, R′) = SFE0∪E1 and let G ∈ grd(SF ′). Towards con-
tradiction assume there is some a ∈ G \E. Let a be chosen
such that a ∈ Γi+1

SF ′(∅) and there is no a′ ∈ ΓjSF ′(∅) with
a′ ̸∈ E for all j < i (i.e. a is the first such argumentwe en-
counter when constructing the grounded extension step by
step). By Lemma 4.7 a is defended by E0 ∪ E1 ∪ ΓiSF ′(∅)
in SF . From the way we chose i we get ΓiSF ′(∅) ⊆ E, and
consequentlyE0∪E1∪ΓiSF ′(∅) ⊆ E. As Γ(.) is monotone,
E defends a in SF . Moreover, E ∪ {a} is conflict-free in
SF by Lemma 3.3, item 3. But this is a contradiction to our
assumption E ∈ com(SF ).

(⊇): By Lemma 4.9 we know X = E \ (E0 ∪ E1) ∈
com((SFE0)E1). By Lemma 4.8 we know that, as by con-
struction of E0 and E1 the set X cannot contain argu-
ments in even cycles, X is indeed the grounded extension
of (SFE0)E1 , i.e. X = E2.

5 SETAFs and Logic Programs
The goal of this section is to establish a connection between
atomic logic programs and SETAFs w.r.t. the following as-
pects:

• There shall be a translation between SETAFs and atomic
LPs which preserves the semantics in a natural way,

• there shall be compatible notions of reducts for both
SETAFs and atomic LPs.

We consider logic programs with default negation not.
Such programs consist of rules of the form

c← a1, . . . , an, not b1, . . . , not bm. (1)

where 0 ≤ n,m and the ai, bi, and c are ordinary
atoms. Throughout this section we will consider atomic
logic programs (Janhunen 2004), that is, n = 0. We let
head(r) = {c}, neg(r) = {b1, . . . , bm}, and body(r) =
{a1, . . . , an, b1, . . . , bm}. For B = {b1, . . . , bm} we use
c← not B. as a shorthand for such rules. We call rules with
empty bodies facts, and write “c.” instead of “c ← .”. We
let L(P ) be the set of all atoms occurring in P .

Definition 5.1. A 3-valued Herbrand Interprtation I of a
logic program P is a tuple I = (T, F ) with T ∪ F ⊆ L(P )
and T ∩ F = ∅. We say a ∈ L(P ) is true iff a ∈ T , false iff
a ∈ F and undefined otherwise.

In the following, we define the reduct P/I of an atomic
program w.r.t. a 3-valued interpretation I . Note that our as-
sumption n = 0 renders the definition of this reduct simpler
than the usual one given in the literature.

Given an atomic logic program P with interpretation I =
(T, F ) we define the reduct P/I of P w.r.t. I as follows:
Starting from P , i) remove each rule r from P with T ∩
neg(r) ̸= ∅, ii) remove “not b” from each remaining rule
whenever b ∈ F , and iii) replace each occurrence of “not b”
from each remaining rule with u for a fresh atom u. By
ΨP (I) = (TΨ, FΨ) we denote the least 3-valued model of
P/I , i.e. TΨ is minimal and FΨ maximal s.t.

• a ∈ TΨ iff there is a fact “a.” occurring in P/I .

• a ∈ FΨ iff no rule with head a occurs in P/I .

We are now ready to define:

Definition 5.2. Let I = (T, F ) be a 3-valued interpretation
of P . Then I is

• P -stable if I = ΨP (I);
• T is well-founded if I is P -stable with minimal T ,
• T is regular if I is P -stable with maximal T ,
• T is stable if I is P -stable and T ∪ F = L(p).
Example 5.3. Consider the following logic program P .

P : a← not b, not c. b← not a, not c.
c← not a, not b.
d← not a. e← not a.
d← not b, not c. e← not d.
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Let us verify that we have four P -stable models I1 = (∅, ∅),
I2 = ({a, d}, {b, c, e}), I2 = ({b, d, e}, {a, c}), and I4 =
({c, d, e}, {a, b}). We obtain

P/I1 : a← u. b← u. c← u. d← u. e← u.

P/I2 : a. d.

P/I3 : b. d. e.

P/I4 : c. d. e.

Indeed, we have ΨP (Ii) = Ii for i = 1, 2, 3, 4. Thereby, I1
is the well-founded one and I2, I3 and I4 are both regular
and stable.

There is a natural, well-known relation between atomic
logic programs where each rule head is unique and Dung-
style AFs (Caminada et al. 2015). In a nutshell, a rule of
the form c ← not b1, . . . , not bm. in a program P encodes
that b1, . . . , bm are the attackers of c. Vice versa, if c is
an argument in an AF F = (A,R) with (b1, c), . . . , (bm, c)
being the tuples in R of the form (·, c), then we get a rule
c ← not b1, . . . , not bm. in the corresponding logic pro-
gram. This procedure translates stable models of the given
program into stable extensions of the AF and vice versa.

Example 5.4. Consider a simplified version of the above
example:

P ′ : a← not b, not c. b← not a, not c.
c← not a, not b.
d← not b, not c. e← not d.

Observe that each rule head is unique. We note that the sta-
ble models of P ′ are {{a, d}, {b, e}, {c, e}}. Now consider
the following AF F obtained by the above described con-
struction:

a b

c d

e

Indeed, stb(F ) = {{a, d}, {b, e}, {c, e}}.
Let us examine why this construction only works for

atomic logic programs with unique rule heads. Consider for
example the two rules

d← not a. d← not b, not c.

In order to defeat d, it does not suffice to accept b or c any-
more, because as long as a is not present, d can be accepted
nonetheless. Hence, defeating d requires some collective at-
tacks containing both a and either b or c. This cannot be
straightforwardly encoded in usual AFs, but SETAFs natu-
rally possess this expressive power. Let us demonstrate how
our initial example program can be expressed as such.

Example 5.5. We observe that P models a choice between
a, b and c. Moreover, d is not acceptable iff a and b or a and
c are; e is not acceptable iff a and d is. We hence expect P
to correspond to the following SETAF SF :

a b

c d

e

Indeed, we find

com(SF ) = {∅, {a, d}, {b, d, e}, {c, d, e}}
in accordance with the P -stable models of P .

Let us formalize this construction in general. First we
require the notion of a hitting set.
Definition 5.6. LetM be a set of sets. We call H a hitting
set ofM if H ∩M ̸= ∅ for each M ∈ M. A hitting set H
ofM is a minimal hitting set ofM (H ∈ HSmin(M)) if
H′ ⊊ H impliesH′ is not a hitting set ofM.

Now we are ready to define the actual translations be-
tween SETAFs and atomic logic programs:
Definition 5.7. Let P be an atomic logic program. For c ∈
L(P ) we let BP (c) = {body(r) | head(r) = c}. We define
the corresponding SETAF SFP = (AP , RP ) by letting

AP = {a ∈ L(P ) | a ∈ ⋃
r∈P head(r)},

RP = {(T, c) | T ∈ HSmin(BP (c))}.
Definition 5.8. Let SF = (A,R) be a SETAF. For a ∈ A
we let tailsSF (a) = {T | (T, a) ∈ R}. We define the
corresponding logic program PSF by letting

PSF ={c← not B. | B ∈ HSmin(tailsSF (c))}
∪ {c. | tailsSF (c) = ∅}.

In order to infer a natural correspondence between SFP
and PSF we need the notion of redundancy-free logic pro-
grams, similar in spirit to redundancy-free SETAFs as de-
fined above.
Definition 5.9. A logic program P is redundancy-free if i)
each a ∈ L(P ) occurs in the head of some rule, ii) there are
no two distinct rules c ← not B1. and c ← not B2. with
B1 ⊆ B2.

For redundancy-free programs and SETAFs we obtain the
following relation.
Lemma 5.10. If SF is a redundancy-free SETAF, then
(SFP )SF = SF . If P is a redundancy-free logic program
then (PSF )P = P .

Proof. This follows from the following result from (Berge
1989): Let X = {X1, . . . , Xn} be a set of sets with Xi ̸⊆
Xj for i ̸= j. Then HSmin(HSmin(X)) = X .

Let us demonstrate the above result using our running ex-
ample:
Example 5.11. Consider again the above SETAF. We find

tailsSF (a) = {{b}, {c}} tailsSF (b) = {{a}, {c}}
tailsSF (c) = {{a}, {b}}
tailsSF (d) = {{a, b}, {a, c}} tailsSF (e) = {{a, d}}.
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with hitting sets

{{b, c}} {{a, c}}
{{a, b}}
{{a}, {b, c}} {{a}, {d}}

which indeed correspond to the rules in P :

P : a← not b, not c. b← not a, not c.
c← not a, not b.
d← not a. e← not a.
d← not b, not c. e← not d.

Our next goal is to compare the reduct notions of SETAFs
and LPs. In order to obtain two compatible concepts, we
need to make some adjustments. Let us start by the SETAF
reduct. A somewhat unnatural feature from the point of view
of LPs is that the SETAF reduct SFE removes the argu-
ments in E although they are intuitively set to be true. This
prevents a smooth correspondence between SFE and any
natural LP reduct notions, because one would not remove
rules of an LP based on their rule heads.

Hence, let us now examine a slightly different version of
the reduct for SETAFs in order to streamline the relation. To
this end we simply define an E-reduct for SETAFs which
preserves the arguments contained in E as follows: For a
SETAF SF = (A,R) and E ⊆ A we let Pre(SF,E) =
(A′, R′) where

A′ = A \ E+
R ,

R′ = {(T \ E, h) | (T, h) ∈ R, h ∈ A′,

T \ E ̸= ∅, T ∩ E+
R = ∅}.

Example 5.12. Consider the following SETAF SF . Con-
structing the reduct Pre(SF, {d, e}) yields removal of a,
but d and e are still present.

a b c

d e f

a b c

d e f

(a) SETAF SF (b) Pre(SF, {d, e})

Observe in particular that the attack ({b, e}, f) is reduced to
(b, f) in the reduct since e is set to be true anyway.

A key strength of SFE is that we are able to character-
ize SETAF semantics quite elegantly, as we formalized in
Proposition 3.5. The same is however true for Pre(SF, ·).
Proposition 5.13. Let SF = (A,R) be a SETAF and E ∈
cf(SF ).

1. E∈stb(SF ) iff Pre(SF,E) = (E, ∅),
2. E∈adm(SF ) iff no e ∈ E is attacked in Pre(SF,E),
3. E∈com(SF ) iff E = ΓPre(SF,E)(∅),
4. E ∈ pref(SF ) iff E = ΓPre(SF,E)(∅) and in addition

com(Pre(SF,E)) = {E}.

Let us now turn to the reduct for LPs. Here, the main
issue is the third step turning each occurrence of “not b”
into u for a fresh atom u. This three-valued approach does
not compare very well to the SETAF reduct notions. Thus,
we will adjust this reduct as well.

Definition 5.14. Given a logic program P and E ⊆ L(P ),
we define the E-reduct PE as follows: Starting from P ,
i) remove each rule r from P with E ∩ neg(r) ̸= ∅, ii) re-
move “not b” from each remaining rule whenever b does not
occur in the head of any rule anymore, and iii) remove re-
dundant rules.

Observe that the reduct PE is closely related to the first
two step when constructing P/E. Next we show that this
reduct notion is also capable of characterizing P -stable
models, similar in spirit to Proposition 5.13 for SETAFs.

Proposition 5.15. Let P be a logic program and I = (T, F )
a 3-valued interpretation. Then I is a P -stable model iff

• T = {c | c. ∈ PT } and
• F = L(P ) \ L

(
PT

)
.

Proof. (⇒) Let I = (T, F ) be a P -stable model. If c ∈ T ,
then c. must be a fact in P/I . If c ∈ F , no rule r with
head(r) = {c} occurs in P/I . So let us now compute PT .
In the first step, rules r with T ∩neg(r) ̸= ∅ are removed in
both cases. Since no other rule is removed when construct-
ing P/I , we must have that c ∈ F iff c does not occur in
the head of any rule anymore after this first step. Thus, in
the second step “not b” gets removed whenever b ∈ F in
both P/I and PT . Finally, in PT redundant rules are re-
moved; this does not change the facts or occurring atoms
in the program. We thus obtain T = {c | c. ∈ PT } and
F = L(P ) \ L

(
PT

)
.

(⇐) Let I = (T, F ) with the two mentioned properties.
Our reasoning is as above, yielding that T corresponds to
the facts in P/I and F to those atoms which never occur in
the head of any rule. So I is P -stable.

Now we show the desired compatibility result for the
reduct notions. It formalizes that moving in between the
two frameworks and constructing the reducts can be done
in any order. Before stating the actual result we require the
following auxiliary lemma about properties of hitting sets.

Lemma 5.16. LetM be a set of sets with E ⊆ M for each
M ∈ M. Let M \ E := {M \ E | M ∈ M}. Then
S ∈ HSmin(M\ E) iff S ∈ HSmin(M) with E ∩ S = ∅.

Equipped with this lemma we are now in a position to
infer the desired compatibility result of the reduct notions.

Theorem 5.17.
1. For a SETAF SF and E ⊆ A we have PPre(SF,E) =

(PSF )
E .

2. For an atomic program P and E ⊆ L(P ) we have
SFPE = Pre(SFP , E).

Proof. We prove the first item only, since the other claim
can be shown analogously. Let SF = (A,R) be a SETAF.
Set Pre(SF,E) = (A′, R′).
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(⊆) Let r ∈ PPre(SF,E). Assume r is of the form r =
c ← not B. for B ̸= ∅. By construction, c ∈ A′ implying
T \ E ̸= ∅ for each (T, c) ∈ R. Hence by definition B ∈
HSmin(tailsPre(SF,E)(c)) where

tailsPre(SF,E)(c) = {T \ E | (T, c) ∈ R, T ∩ E+
R = ∅}.

By Lemma 5.16,

B ∈ HSmin
({
T | (T, c) ∈ R, T ∩ E+

R = ∅
})

(2)

satisfying B ∩ E = ∅. By (2), c ← not B. is a rule in
PSF and since B ∩ E = ∅, it is a rule after the first step
of constructing the reduct (PSF )E . Moreover, each set T ′ ∈
tailsSFE (c) satisfies T ′ ⊆ A′ and thus,B must do so as well
by minimality implying r ∈ (PSF )

E .
Now assume r ∈ PSFE is a fact with head c. Then

tailsPre(SF,E)(c) = ∅, i.e. c is an unattacked argument in
Pre(SF,E). If c does not possess any attackers, it oc-
curs in (PSF )

E by definition. Hence suppose c possesses
attackers in SF . By construction of Pre(SF,E) we have
T ∩ E+

R ̸= ∅ for each T ∈ tailsSF (c). Now consider PSF .
Each rule c← not B. in PSF is s.t.B is a minimal hitting set
of tailsSF (c), thus at least one of them satisfies B ⊆ E+

R .
Thus, we found the corresponding fact c. if we can ensure
that the atoms occurring in E+

R do not occur in the head of
any rule in (PSF )

E . To this end let e ∈ E+
R and e← not Be.

a rule in PSF , i.e.Be is a hitting set of tailsSF (e). By defini-
tion e ∈ E+

R means T ⊆ E for at least one T ∈ tailsSF (e).
Hence Be ∩ T ̸= ∅ and thus, e← not Be. is removed when
constructing (PSF )

E .
(⊇) Consider a rule c ← not B. occurring in (PSF )

E .
We show that c /∈ E+

R and hence c ∈ A′. Indeed, suppose
(T, c) ∈ R for some T ⊆ E and consider a rule c← not Bc.
in PSF . Since Bc is a hitting set of tails(c), Bc ∩E ̸= ∅ and
hence, the rule gets removed when constructing (PSF )

E .
Since our rule was arbitrary, this is a contradiction. Having
established c ∈ A′, our rule c← not B. is s.t.

B ∈ HSmin
({
T | (T, c) ∈ R, T ∩ E+

R = ∅
})

satisfying B ∩ E = ∅ and hence by Lemma 5.16, B is a
minimal hitting set of

tailsSFE (c) = {T \ E | (T, c) ∈ R, T ∩ E+
R = ∅}.

Hence, c← not B. is a rule in PSFE .
Now let c. be a fact in (PSF )

E . As above, c ∈ A′. We
infer that c is unattacked in SFE and hence our fact occurs
in PSFE as well.

Due to the reduct characterizations of SETAFs and LPs
as well as their relation, we may characterize complete ex-
tensions E ∈ com(SF ) in terms of PSF and vice versa,
P -stable models in terms of SFP .

Proposition 5.18. Let P be a logic program, I = (T, F ) a
3-valued interpretation, SF be a SETAF and E ⊆ A.

1. I is a P -stable model iff T ∈ com(SFP ) and F = T+
SFP

.
2. E ∈ com(SF ) iff there exists a P -stable model (E,F ′)

of PSF .

Proof. 1) By Proposition 5.15 we have that I is a P -stable
model iff T = {c | c. ∈ PT } and F = L(P ) \ L

(
PT

)
.

By construction of SFPT the latter is equivalent to T =
ΓSFPT

(∅) and F = L(P ) \ A(SFPT ), which by Theo-
rem 5.17 is equivalent to T = ΓPre(SFP ,T )(∅) and F =
L(P ) \A(Pre(SFP , T )). By Proposition 5.13 and the def-
inition of Pre(SFP , T ) the last statement is equivalent to
T ∈ com(SFP ) and F = T+

SFP
.

2) By Proposition 5.13 we have that E ∈ com(SF ) iff
T = ΓPre(SF,T )(∅). By construction of PPre(SF,E)} the
latter is equivalent to E = {c | c. ∈ PPre(SF,E)} which by
Theorem 5.17 is equivalent to E = {c | c. ∈ (PSF )

E}. By
setting F ′ = L(P ) \ L

(
PT

)
and using Proposition 5.15 we

obtain that E = {c | c. ∈ (PSF )
E} iff (T, F ) is a P -stable

model of PSF .

Notice that the above correspondence between P-stable
and complete semantics directly extends to the other seman-
tics under our considerations.

6 Conclusion
In this paper we introduced an E-reduct for SETAFs which
served as a basis for (a) modularization results for SETAF
semantics, (b) alternative characterizations of the semantics
and (c) explanation schemes for complete extensions. These
results demonstrate that our definition of the E-reduct is a
proper generalization of the corresponding notion for AFs.
Moreover, we investigated the relation between SETAFs and
atomic logic programs. Our results relate the E-reduct of
SETAFs to a corresponding reduct of logic programs and
further provide an equivalence between argumentation and
logic programming semantics.

TheE-reduct for AFs has successfully been used to define
a new family of semantics based on the notion of weak ad-
missibility (Baumann, Brewka, and Ulbricht 2020b). These
semantics address problems with the standard semantics that
have already been pointed out by Dung in his original pro-
posal. Our E-reduct for SETAFs already paves the way to
generalize the notion of weak admissibility also to SETAFs.
Investigating the corresponding semantics for SETAFs is an
interesting direction for future work.
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A Incorporating Different Cycle Notions
In Section 4 we introduce explanation schemes via the no-
tion of even-primal-cycles. In (Dvořák, König, and Woltran
2021b) other cycle notions for SETAFs are introduced,
namely set-cycles and incidence-cycles. In the following
we will show that the same results hold for these cycle
notions and choosing incidence-cycles rather than primal-
cycles might even give an advantage. As a side product we
pinpoint the complexity for reasoning in SETAFs that have
no (even-/odd-length) cycles of these kinds.

To this end we assume the reader to have a basic under-
standing of complexity results in the context of formal ar-
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gumentation; for a gentle introduction see e.g. (Dvořák and
Dunne 2017). In particular, we will refer to the complex-
ity of credulous and skeptical reasoning, i.e. given a SETAF
SF = (A,R), deciding whether an argument a ∈ A is in
one/all extension(s) σ(SF ) for some semantics σ. For the
semantics under our consideration, these tasks are in general
on hard for up to the second level of the polynomial hierar-
chy, yet for odd-primal-cycle-free SETAFs the complexity
drops to the first level of the polynomial hierarchy and for
even-primal-cycle-free SETAFs they become tractable.

In the incidence graph, the SETAF (A,R) is represented
as a bipartite directed graph, with the arguments A as one
part, and the tails of the attacks in R as the other. We add
an edge from every argument to the tails it appears in, and
edges from every tail to arguments attacked by it.
Definition A.1. For a SETAF SF = (A,R) let tails(SF ) =
{T | (T, h) ∈ R}.Then Inc(SF ) = (V,E) with V = A ∪
tails(SF ) and E = {(t, T ), (T, h) | (T, h) ∈ R, t ∈ T} is
its incidence graph.
Definition A.2. Let SF = (A,R) be a SETAF. A cycle C
of length |C| = n is a directed cycle C = (T1, a1, T2, a2,
. . . , an, T1) in Inc(SF ). We say C is (i) an incidence-cycle
if all ai and all Ti are distinct; (ii) a primal-cycle if all ai are
distinct; and (iii) a set-cycle if all Ti are distinct.

As the name suggests, a primal-cycle corresponds to a cy-
cle in the primal graph (Dvořák, König, and Woltran 2021a),
a representation of a SETAF as a directed graph. For a
SETAF SF = (A,R), its primal graph Primal(SF ) is the
directed graph with A as its vertices, and an edge between
two vertices a and b iff a is part of an attack towards b in R
(see Example A.3). Every incidence-cycle is a primal-cycle
and a set-cycle. Note that on AFs all of these cycle notions
coincide with ‘classical’ directed, non-repeating cycles.
Example A.3. (a) SF , (b) Inc(SF ), and (c) Primal(SF ).

a

c

e

b

d
a b c d e

{a, c} {b} {d} {c, e} a

c

e

b

d

(a) (b) (c)

The following statement will be the basis for our results
on (even-/odd-)(incidence-/primal-/set-)cycle-free SETAFs.
Lemma A.4. Let SF be a SETAF. Every cycle C of
length k in SF can be divided into m incidence-cycles
C1, C2, . . . , Cm such that

∑m
i=1 |Ci| = |C|.

Note that in this “division” we do not form new cycles
by using “shortcuts”, i.e. edges that are not yet used in C.
Instead we just split the cycle such that no argument and
no tail appears more than once in each sub-cycle, hence not
changing the overall length in the incidence graph. From
this and that every incidence-cycle is a primal-cycle and set-
cycle, the following immediately follows:
Proposition A.5. A SETAF SF is incidence-cycle-free iff
SF is primal-cycle-free iff SF is set-cycle-free.
Corollary A.6. The complexity results for primal-cycle-free
SETAFs1 apply for incidence-cycle-free SETAFs and set-
cycle-free SETAFs.

Also every odd-primal-cycle and every odd-set-cycle con-
tains an odd-incidence-cycle, which is in turn an odd-primal-
cycle and an odd-set-cycle. Hence, the next results follows:
Proposition A.7. A SETAF SF is odd-incidence-cycle-free
iff SF is odd-primal-cycle-free iff SF is odd-set-cycle-free.

Corollary A.8. The complexity results for odd-primal-
cycle-free SETAFs1 apply for odd-incidence-cycle-free
SETAFs and odd-set-cycle-free SETAFs.

For even-cycle-free SETAFs the equivalent of Proposi-
tion A.5 does not hold. As every incidence-cycle is a primal-
cycle and a set-cycle, even-incidence-cycle-freeness implies
even-primal-cycle-freeness and even-set-cycle-freeness, but
no other direction of these implications holds, as the follow-
ing counter-examples show:
Example A.9. (a) is even-set-cycle-free, even-incidence-
cycle-free, but not even-primal-cycle- free; (b) is even-
primal-cycle-free, even-incidence-cycle-free, but not even-
set-cycle-free.

a

b

a

b

c

(a) (b)

However, for our purposes each of our cycle-notions is
sufficient, as the next lemma illustrates. This is a generaliza-
tion of the corresponding result on AFs from (Dvořák 2012)
and was already stated in this form in (Dvořák, König, and
Woltran 2021b), and for primal-cycles in (Dvořák, König,
and Woltran 2021a).
Lemma A.10. Every SETAF SF with |com(SF )| ≥ 2 has
an even-incidence-cycle (and, hence, an even-primal-cycle
and an even-set-cycle).

Again, we use the fact that every incidence-cycle is a
primal-cycle and a set-cycle.
Corollary A.11. The complexity results for even-primal-
cycle-free SETAFs1 apply for even-incidence-cycle-free
SETAFs and even-set-cycle-free SETAFs.

Finally, note that our choice of primal-cycles for the def-
inition of explanation schemes in Section 4 was arbitrary:
all results leading up and including Theorem 4.10 also hold
if the definition of Ev(·) is changed to Evs and Evi, that
we define to yield the arguments in even length set- and
incidence-cycles, respectively. With this in mind, we de-
fine (successful) incidence-explanation schemes and (suc-
cessful) set-explanation schemes analogous to Definition 4.2
and Definition 4.5. In fact, as Evi(SF ) ⊆ Ev(SF ) and
Evi(SF ) ⊆ Evs(SF ), incidence-explanation schemes re-
quire us to guess potentially less arguments than the primal-
cycle and set-cycle counterparts. Then we can obtain the
following result in the same manner as Theorem 4.10:
Theorem A.12. A set E ⊆ A is in com(SF ) iff E can
be decomposed into a successful incidence-/set-explanation
scheme.

1See (Dvořák, König, and Woltran 2021b).
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1Department of Artificial Intelligence, Bernoulli Institute,

University of Groningen, The Netherlands
2Institute of Logic and Computation, TU Wien, Austria

Abstract

Abstract dialectical frameworks (ADFs) have been intro-
duced as a formalism for modeling and evaluating argumen-
tation allowing general logical satisfaction conditions. Dif-
ferent criteria used to settle the acceptance of arguments are
called semantics. Semantics of ADFs have so far mainly been
defined based on the concept of admissibility. Recently, the
notion of strong admissibility has been introduced for ADFs.
In the current work we study the computational complexity
of the following reasoning tasks under strong admissibility
semantics. We address 1. the credulous/skeptical decision
problem; 2. the verification problem; 3. the strong justifica-
tion problem; and 4. the problem of finding a smallest witness
of strong justification of a queried argument.

1 Introduction
Interest and attention in argumentation theory has been in-
creasing among artificial intelligence researchers (Bench-
Capon and Dunne 2007). Applications of argumentation
theory are based on a variety of argumentation formalisms
and methods of evaluating arguments (Atkinson et al. 2017;
Baroni et al. 2018; van Eemeren et al. 2014). Dung’s
abstract argumentation frameworks (Dung 1995) (AFs for
short) have received notable attention, also thanks to their
simple syntax that can model and evaluate a number of non-
monotonic reasoning tasks. Semantics of AFs single out
coherent subsets of arguments that fit together, according to
specific criteria (Baroni, Caminada, and Giacomin 2011).

AFs model individual attack relations among arguments.
Abstract dialectical frameworks (ADFs) are expressive gen-
eralizations of AFs in which the logical relations among ar-
guments can be represented. ADFs were first introduced
in (Brewka and Woltran 2010), and were further refined
in (Brewka et al. 2013; Brewka et al. 2017; Brewka et al.
2018).

Often a new semantics is a refinement of an already
existing one by introducing further restrictions on the set
of accepted arguments or possible attackers. One of the
main types of semantics of AFs is the grounded seman-
tics. Its characteristics include that 1. each AF has a unique
grounded extension; 2. the grounded extension collects all
the arguments about which no one doubts their acceptance;
3. the grounded extension is often a subset of the set of ex-
tensions of other types of AF semantics. Thus, it is im-

portant to investigate whether an argument belongs to the
grounded extension of a given AF. The notion of strong ad-
missibility is introduced for AFs to answer the query ‘Why
does an argument belong to the grounded extension?’.

While the grounded extension collects all the arguments
of a given AF that can be accepted without any doubt, a
strongly admissible extension provides a (minimal) justifi-
cation why specific arguments can be accepted without any
doubt, i.e. belong to the grounded extension. Thus, the
strong admissibility semantics can be the basis for an al-
gorithm that can be used not only for answering the cred-
ulous decision problem but also for human-machine inter-
action that requires an explainable outcome (cf. (Caminada
and Uebis 2020; Booth, Caminada, and Marshall 2018)).

In AFs, the concept of strong admissibility semantics
has first been defined in the work of Baroni and Gia-
comin (2007), and later in (Caminada 2014). Furthermore,
in (2019), Caminada and Dunne presented a labelling ac-
count of strong admissibility to answer the decision prob-
lems of AFs under grounded semantics. Moreover, Cami-
nada showed in (2018; 2014) that strong admissibility plays
a role in discussion games for AFs under grounded seman-
tics. In addition, the computational complexity of strong ad-
missibility of AFs has been analyzed (Caminada and Dunne
2020; Dvořák and Wallner 2020).

Because of the specific structure of ADFs, the definition
of strong admissibility semantics of AFs cannot be directly
reused in ADFs. Thus the concept of strong admissibility for
ADFs has been introduced (Keshavarzi Zafarghandi, Ver-
brugge, and Verheij 2021a). This concept fulfils properties
that are related to those of the strong admissibility semantics
for AFs, as follows:

1. Strong admissibility is defined in terms of strongly
justified arguments. 2. Strongly justified arguments are re-
cursively reconstructed from their strongly justified parents.
3. Each ADF has at least one strongly admissible interpre-
tation. 4. The set of strongly admissible interpretations of
ADFs forms a lattice with as least element the trivial inter-
pretation and as maximum element the grounded interpreta-
tion. 5. The strong admissibility semantics can be used to
answer whether an argument is justifiable under grounded
semantics. 6. The strong admissibility semantics of ADFs
is different from the admissible, conflict-free, complete and
grounded semantics of ADFs. 7. The strong admissibility
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semantics for ADFs is a proper generalization of the strong
admissibility semantics for AFs.

Whereas several fundamental properties of strong admis-
sibility semantics for ADFs have been established, the com-
putational complexity under strong admissibility semantics
has not been studied. This work closes this gap by study-
ing the complexity of the central reasoning tasks under the
strong admissibility semantics of ADFs, as follows. 1. The
credulous decision problem, i.e., whether there exists a
strongly admissible interpretation that satisfies the queried
argument, is coNP-complete. 2. The skeptical decision
problem, i.e., whether all strongly admissible interpretations
satisfy a queried argument, is trivial. 3. The verification
problem, i.e., whether a given interpretation is a strongly ad-
missible interpretation of an ADF, is coNP-complete. 4. The
strong justification problem for an argument in an interpre-
tation, i.e., whether an argument is strongly justified in an
interpretation, is coNP-complete. 5. The problem of find-
ing a small witness of strong justification of an argument,
i.e, whether there exists a strongly admissible interpretation
that satisfies a queried argument and is smaller than a given
bound, is ΣP

2 -complete.

2 Formal Background
We recall the basics of AFs (Dung 1995) and ADFs (Brewka
et al. 2018). Also we recall the definition of strong admis-
sibility for ADFs and an associated algorithm, presented in
(Keshavarzi Zafarghandi, Verbrugge, and Verheij 2021b).

2.1 Abstract Argumentation Frameworks
We start the preliminaries to our work by recalling the basic
notion of Dung’s abstract argumentation frameworks (AFs).
Subsequently, we present the extension form of strong ad-
missibility semantics of AFs (Baroni and Giacomin 2007).

Definition 1. (Dung 1995) An abstract argumentation
framework (AF) is a pair (A,R) in which A is a set of ar-
guments and R ⊆ A × A is a binary relation representing
attacks among arguments.

Let F = (A,R) be a an AF. For each a, b ∈ A, the relation
(a, b) ∈ R is used to represent that a is an argument attack-
ing the argument b. An argument a ∈ A is, on the other
hand, defended by a set S ⊆ A of arguments (alternatively,
the argument is acceptable with respect to S) (in F ) if for
each argument c ∈ A, it holds that if (c, a) ∈ R then there is
an s ∈ S such that (s, c) ∈ R (s is called a defender of a).

Different semantics of AFs present which sets of ar-
guments in an AF can be jointly accepted (see the
overview (Baroni, Caminada, and Giacomin 2011)). Set
S ⊆ A is called a conflict-free extension (in F ) if there are
no a, b ∈ S s.t. (a, b) ∈ R. The characteristic function F :
2A 7→ 2A is defined as F (S) = {a | a is defended by S}.
Set S ⊆ A is called an admissible extension (in F ) if
S ⊆ F (S). Further, set S ⊆ A is a grounded extension
of an AF if S is the ⊆-least fixed point of F .

Definition 2. (Baroni and Giacomin 2007) Given an argu-
mentation framework F = (A,R), a ∈ A and S ⊆ A, it
is said that a is strongly defended by S if and only if each

attacker c ∈ A of a is attacked by some s ∈ S \ {a} such
that s is strongly defended by S \ {a}.
Example 1. Let F = ({a, b, c}, {(a, b), (b, c)}) be an AF.
Argument a is strongly defended by S = ∅, since a is not
attacked by any argument. Also, argument c is strongly de-
fended by set S = {a, c}, since the attacker of c, namely b
is attacked by a ∈ S \ {c} and a itself is strongly defended.
Definition 3. Given an AF (A,R) and set S ⊆ A, it is said
that S is a strongly admissible extension of S if every s ∈ S
is strongly defended by S.
In Example 1, sets S1 = ∅, S2 = {a}, and S3 = {a, c} are
strongly admissible extensions of F ; all of them are subsets
of the grounded extension of F . However, set S′ = {c} is
not a strongly admissible extension of F , since c ∈ S′ is
not strongly defended by S′ \ {c}. Because argument c is
attacked by b, however, no argument in S′ \ {c} attacks b.

2.2 Abstract Dialectical Frameworks
We summarize key concepts of abstract dialectical frame-
works (Brewka and Woltran 2010; Brewka et al. 2018).
Definition 4. An abstract dialectical framework (ADF) is a
tuple D = (A,L,C) where:
• A is a finite set of arguments (statements, positions);
• L ⊆ A×A is a set of links among arguments;
• C = {ϕa}a∈A is a collection of propositional formulas

over arguments, called acceptance conditions.
An ADF can be represented by a graph in which nodes in-
dicate arguments and links show the relation among argu-
ments. Each argument a in an ADF is labelled by a proposi-
tional formula, called acceptance condition, ϕa over par(a)
such that, par(a) = {b | (b, a) ∈ L}. The acceptance con-
dition of each argument clarifies under which condition the
argument can be accepted. An argument a is called an initial
argument if par(a) = {}.

A three-valued interpretation v (for D) is a function v :
A 7→ {t, f ,u}, that maps arguments to one of the three truth
values true (t), false (f ), or undecided (u). Interpretation v
is called trivial, and v is denoted by vu, if v(a) = u for each
a ∈ A. Further, v is called a two-valued interpretation if for
each a ∈ A either v(a) = t or v(a) = f .

Truth values can be ordered via the information ordering
relation <i given by u <i t and u <i f and no other pair of
truth values are related by <i. Relation ≤i is the reflexive
closure of <i. The pair ({t, f ,u},≤i) is a complete meet-
semilattice with the meet operator ui, such that t ui t =
t, f ui f = f , and returns u otherwise. The meet of two
interpretations v and w is then defined as (v ui w)(a) =
v(a) ui w(a) for all a ∈ A.

It is said that an interpretation v is an extension of another
interpretation w, if w(a) ≤i v(a) for each a ∈ A, denoted
by w ≤i v. Further, if v ≤i w and w ≤i v, then v and w are
equivalent, denoted by v ∼i w.

For reasons of brevity, we will shorten the notion of three-
valued interpretation v = {a1 7→ t1, . . . , am 7→ tm} with
arguments a1, . . . , am and truth values t1, . . . , tm as fol-
lows: v = {ai | v(ai) = t} ∪ {¬ai | v(ai) = f}. For
instance, v = {a 7→ f , b 7→ t} = {¬a, b}.
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a b c d

> a ∧ ¬c ¬b ∧ d ⊥

Figure 1: ADF of Examples 2 and 3

Given an interpretation v (for D), the partial valuation of
ϕa by v is v(ϕa) = ϕva = ϕa[b/> : v(b) = t][b/⊥ : v(b) =
f ], for b ∈ par(a). Semantics for ADFs can be defined via
the characteristic operator ΓD, presented in Definition 5.
Definition 5. LetD be an ADF and let v be an interpretation
ofD. Applying ΓD on v leads to v′ such that for each a ∈ A,
v′ is as follows:

v′(a) =





t if ϕva is irrefutable (i.e., ϕva is a tautology) ,
f if ϕva is unsatisfiable ,
u otherwise.

Most types of semantics for ADFs are based on the con-
cept of admissibility. An interpretation v for a given ADF
F is called admissible iff v ≤i ΓF (v); it is preferred iff
v is ≤i-maximal admissible; it the grounded interpretation
of D iff v is the least fixed point of ΓD. The set of all σ
interpretations for an ADF D is denoted by σ(D), where
σ ∈ {adm, grd, prf} abbreviates the different semantics in
the obvious manner.
Example 2. An example of an ADF D = (S,L,C) is
shown in Figure 1. To each argument a propositional for-
mula is associated, namely, the acceptance condition of
the argument. For instance, the acceptance condition of c,
namely ϕc : ¬b∧ d, states that c can be accepted in an inter-
pretation in which b is denied and d is accepted.

The interpretation v1 = {a,¬c,¬d} is an admissible
interpretation, since ΓD(v1) = {a, b,¬c,¬d} and v1 ≤i
ΓD(v1). Furthermore, v2 = {a, b,¬c,¬d} is a unique
grounded interpretation and a preferred interpretation in D.
The notions of an argument being acceptable or deniable in
an interpretation are defined as follows.
Definition 6. Let D = (A,L,C) be an ADF and let v be an
interpretation of D.
• An argument a ∈ A is called acceptable with respect to v

if ϕva is irrefutable.
• An argument a ∈ A is called deniable with respect to v if
ϕva is unsatisfiable.

We say that an argument is justified with respect to v if it is
either acceptable or deniable with respect to v.
We redefine two decision problems of ADFs in Definition 7.
Definition 7. Let D = (A,L,C) be an ADF, let σ be se-
mantics of ADFs, i.e., σ ∈ {adm, prf, grd, cf}, and let a be
an argument of A.
• a is credulously acceptable (deniable) under σ if there

exists an interpretation v with v ∈ σ(D) in which v(a) =
t (v(a) = f , respectively), denoted by Credσ .

• a is skeptically acceptable (deniable) under σ if for each
v with v ∈ σ(D) it holds that v(a) = t (v(a) = f , re-
spectively).

2.3 The Strong Admissibility Semantics for ADFs
In this section, we rephrase the concept of strong admissi-
bility semantics for ADFs from (Keshavarzi Zafarghandi,
Verbrugge, and Verheij 2021a), which is defined based on
the notion of strongly justifiable arguments (i.e., strongly ac-
ceptable/deniable arguments). Below, the interpretation v|P
is equal to v(p) for any p ∈ P , and assigns all arguments that
do not belong to P to u, i.e., v|P = vu|p∈Pv(p) .

Definition 8. Let D = (A,L,C) be an ADF and let v be
an interpretation of D. Argument a is a strongly justified
argument in interpretation v with respect to set E if one of
the following conditions holds:
• v(a) = t and there exists a subset of parents of a exclud-

ing E, namely P ⊆ par(a) \ E such that (a) a is accept-
able with respect to v|P and (b) all p ∈ P are strongly
justified in v with respect to set E ∪ {p}.

• v(a) = f and there exists a subset of parents of a exclud-
ing E, namely P ⊆ par(a) \E such that (a) a is deniable
with respect to v|P and (b) all p ∈ P are strongly justified
in v with respect to set E ∪ {p}.

An argument a is strongly acceptable, resp. strongly deni-
able, in v if v(a) = t, resp. v(a) = f , and a is strongly
justified in v with respect to set {a}. We further say that
an argument is strongly justified in v if it is either strongly
acceptable or deniable in v.
Note that in Definition 8, the set of parents of a can be the
empty set, i.e., P = ∅. If the set of parents of an argu-
ment, is empty, then v|P = vu. In this case, a is strongly
acceptable/deniable in v if ϕvua is irrefutable/unsatisfiable,
respectively. We say that a is not strongly justified in an in-
terpretation v if there is no such a set of parents of a that
satisfies the conditions of Definition 8 for a. The notion of
strongly justified arguments in a given interpretation is pre-
sented in Example 3.
Example 3. LetD = ({a, b, c, d}, {ϕa : >, ϕb : a∧¬c, ϕc :
¬b ∧ d, ϕd : ⊥}) be the ADF depicted in Figure 1. Let v =
{b,¬c,¬d}. We show that c and d are strongly justified in v
and b is not strongly justified in v. Since v(c) = v(d) = f ,
we show that c and d are strongly deniable in v. First, since
ϕvud ≡ ⊥, it holds that d is strongly deniable in v.

We show that c is strongly deniable in v with respect to
E = {c}. we choose the subset of parents of c excluding c
equal to P = {d}. It is easy to check that ϕ

v|P
c is unsatisfi-

able, i.e., ϕ
v|P
c ≡ ϕv|dc ≡ ⊥. That is, c is deniable w.r.t. v|d .

Then, since d ∈ P , v(d) = f and d is strongly justified in v
with respect to E = {c, d}, c is strongly deniable in v.

To show that b is not strongly justified in v, since v(b) =
t, we show that b is not strongly acceptable in v. Toward
a contradiction, assume that b is strongly acceptable in v.
Thus, we have to choose a set of parents of b, namely P that
satisfies ϕ

v|P
b ≡ >. Let P = par(b). Since ϕ

v|P
b 6≡ >,

there is not subset of par(b) that satisfies the conditions of
Definition 8 for b. Thus, b is not strongly acceptable in v.
In Example 3, if we choose a set of parents of c equal to {b},
then we cannot show that c is strongly deniable in interpre-
tation v. The reason is that b is not strongly justified in v,
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{}

{a} {¬d}

{a,¬d} {¬c,¬d}

{a,¬d,¬c}

{a, b,¬c,¬d}

Figure 2: Complete lattice of the strongly admissible interpreta-
tions of the ADF of Example 3

as is presented in Example 3. This shows the importance of
choosing a right set of parents that satisfies the conditions
of Definition 8 for a queried argument. However, there ex-
ists an alternative method for checking whether an argument
is strongly justified, presented in (Keshavarzi Zafarghandi,
Verbrugge, and Verheij 2021b), in which there is no need of
indicating a set of parents of a queried argument.
Definition 9. Let D = (A,L,C) be an ADF and let v be
an interpretation of D. An interpretation v is a strongly ad-
missible interpretation if for each a such that v(a) = t/f , it
holds that a is a strongly justified argument in v.
To clarify the notion of strongly admissible interpretations
of ADFs, we continue Example 3 in Example 4.
Example 4. Consider again the ADF of Example 3, i.e.,
D = ({a, b, c, d}, {ϕa : >, ϕb : a ∧ ¬c, ϕc : ¬b ∧ d, ϕd :
⊥}), depicted in Figure 1. Let v = {b,¬c,¬d}. As shown
in Example 3, c and d are strongly justified in v. However,
b is not strongly justified in v. Thus, v is not a strongly
admissible interpretation of D. However, for instance, v1 =
{a}, v2 = {¬c,¬d} and v3 = {a, b,¬c,¬d} are strongly
admissible interpretations of D. We show that b is strongly
acceptable in v3. To this end, let P = {a, c} be a set of
parents of b. First, it holds that ϕ

v3|P
b ≡ >. Thus, the first

condition is satisfied for b. We also have to check whether
each parent of b is strongly justified in v3. To this end, we
show that a is strongly acceptable in v3 and c is strongly
deniable in v3. The latter is obvious by the same method
that was presented in Example 3 to show that c is strongly
deniable in v. In addition, ϕvua ≡ >, thus, a is strongly
acceptable in v3. Hence, b and a are strongly justified in v3.
Furthermore, v3 is a unique grounded interpretation of D.
It is shown in (2021b) that the strongly admissible interpre-
tations of D form a lattice with respect to the ≤i-ordering,
with the least element being vu and the maximum element
being the grounded interpretation of D. The set of strongly
admissible interpretations of ADF D given in Example 3
form a lattice, depicted in Figure 2.

2.4 Algorithm for Strongly Admissible
Interpretations of ADFs

In this section we review an existing method, presented in
Section 5 of (Keshavarzi Zafarghandi, Verbrugge, and Ver-

heij 2021b), to answer the verification problem under strong
admissibility semantics. To this end, we introduce ΓD,v,
a variant of the characteristic operator restricted to a given
interpretation v.

Definition 10. Let D be an ADF and let v, w be interpreta-
tions of D. Let ΓD,v(w) = ΓD(w) ui v, where ΓnD,v(w) =

ΓD,v(Γ
n−1
D,v (w)) for n with n ≥ 1, and Γ0

D,v(w) = w.

We next use the ΓD,v operator to recall observations on the
sequence of interpretations generated by a least fixed-point
iteration on ΓD,v.

Lemma 1 ((Keshavarzi Zafarghandi, Verbrugge, and Verheij
2021b)). LetD = (A,L,C) be a given ADF and let v be an
interpretation of D. Let ΓnD,v(vu) be the set of interpreta-
tions constructed based on v, as in Definition 10. For each i
it holds that;

• ΓiD,v(vu) ≤i Γi+1
D,v(vu);

• ΓiD,v(vu) is a strongly admissible interpretation of D;

• if ΓiD,v(vu)(a) = t/f , then a is strongly justifiable in
ΓiD,v(vu).

The sequence of interpretations ΓiD,v(vu) as defined in Def-
inition 10 is named the sequence of strongly admissible in-
terpretations constructed based on v in D.

Based on the above observations, one can characterise
strongly admissible interpretations v as least fixed point of
the corresponding operator ΓD,v. That is, we can verify an
interpretation by computing this sequence of strongly ad-
missible interpretations.

Theorem 1 ((Keshavarzi Zafarghandi, Verbrugge, and Ver-
heij 2021b)). LetD be an ADF and let v be an interpretation
of D. Let ΓiD,v(vu) (for i ≥ 0) be the sequence of strongly
admissible interpretations constructed based on v in D. The
following conditions hold:

• there is an m with m ≥ 0 s.t. ΓmD,v(vu) ∼i Γm+1
D,v (vu);

• v ∈ sadm(D) iff there exists an m s.t. v ∼i ΓmD,v(vu).

Example 5 illustrates the role of Theorem 1 in the verifica-
tion problem under the strong admissibility semantics.

Example 5. Consider again the ADF given in Example 3,
i.e.,D = ({a, b, c, d}, {ϕa : >, ϕb : a∧¬c, ϕc : ¬b∧d, ϕd :
⊥}). Let v = {a,¬c,¬d}. We check whether v ∈ sadm(D)
based on the method presented in Theorem 1. The sequence
of strongly admissible interpretations constructed based on
v is as follows.
v1 = ΓD,v(vu) = {a,¬d} ui {a,¬c,¬d} = {a,¬d};
v2 =Γ2

D,v(vu) ={a,¬c,¬d}ui{a,¬c,¬d} = {a,¬c,¬d}.
Since v ∼i Γ2

D,v(vu), it holds that v ∈ sadm(D).
On the other hand, let v′ = {a, b}. We show that

v′ 6∈ sadm(D). The sequence of interpretations constructed
based on v′ is as follows:
v1 = ΓD(vu) ui v′ = {a,¬d} ui {a, b} = {a};
v2 = ΓD(v1) ui v′ = {a,¬d} ui {a, b} = {a}.
Thus, the sequence of interpretations constructed based on
v′ leads to v2 = {a}, which is not equal to v′, i.e., v′ 6∼i v2.
Hence, v′ is not a strongly admissible interpretation of D.
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Based on the above results (Keshavarzi Zafarghandi, Ver-
brugge, and Verheij 2021b) provides algorithms that decide
(a) verification of a given strongly admissible interpretation
and (b) whether an argument is strongly acceptable/deniable
within a given interpretation that are based on an iterative
fixed-point computation of an operator ΓD,v. However, be-
cause testing whether an argument is acceptable in ΓD is al-
ready NP/coNP-hard (Dvořák and Dunne 2018), these pro-
cedures are in PNP and as we will show, both problems allow
for algorithms of significantly lower complexity.

3 Computational Complexity
We analyse the complexity under strong admissibil-
ity semantics for (a) the standard reasoning tasks of
ADFs (Dvořák and Dunne 2018) and (b) two problems spe-
cific to strong admissibility semantics, i.e., the small witness
problem introduced for AFs in (Dvořák and Wallner 2020;
Caminada and Dunne 2020) and the strong justification
problem.

For a given ADF D we consider the following problems:

1. The credulous decision problem: whether an argument a
is credulously justifiable with respect to the strong admis-
sibility semantics of D. That is, if there exists a strongly
admissible interpretation of D in which a is strongly jus-
tified. This reasoning task is denoted as Credsadm(a 7→
t/f , D) and is presented formally as follows:

Credsadm(a 7→ t/f , D) =





yes if ∃v ∈ sadm(D) s.t.
v(a) = t/f ,

no otherwise

2. The skeptical decision problem: whether an argument a
is skeptically justified with respect to the strong admissi-
bility semantics of D. That is, if a is strongly justified
in all strongly admissible interpretations of D, denoted as
Skeptsadm(a 7→ t/f , D), which is presented formally as
follows:

Skeptsadm(a 7→ t/f , D) =





yes if ∀v ∈ sadm(D) :

v(a) = t/f holds,
no otherwise

3. The verification problem: whether a given interpretation
v is a strongly admissible interpretation of D, denoted by
Versadm(v,D), which is presented formally as follows:

Versadm(v,D) =

{
yes if v ∈ sadm(D),

no otherwise

4. The strong justification problem: The problem whether a
given argument a is strongly justified in a given interpre-
tation v is denoted as StrJust(a 7→ t/f , v,D), which is
presented formally as follows:

StrJust(a 7→ t/f , v,D) =





yes if a is strongly
justified in v,

no otherwise

5. The small witness problem: We are interested in comput-
ing a strongly admissible interpretation that has the least
information of the ancestors of a given argument, namely
a, where v(a) = t/f . The decision version of this prob-
lem is the k-Witness problem, denoted by k-Witnesssadm,
indicating whether a given argument is strongly justified
in at least one v such that v ∈ sadm(D) and |vt∪vf | ≤ k.
Note that k is part of the input of this problem. This deci-
sion problem is presented formally as follows:

k-Witnesssadm(a 7→ t/f , D) =





yes if ∃v ∈ sadm(D)

s.t. v(a) = t/f

&|vt ∪ vf | ≤ k,
no otherwise

3.1 The Credulous/Skeptical Decision Problems
In this section we study the credulous/skeptical problem un-
der the strong admissibility semantics for ADFs. That is,
we show the complexity of deciding whether an argument
in question is credulously/skeptically justifiable in at least
one/all strongly admissible interpretation(s) of a given ADF.

We show that Credsadm is coNP-complete and Skeptsadm is
trivial. To this end, we use the fact that the set of strongly
admissible interpretations of a given ADF D forms a lattice
with respect to the ≤i-ordering, with the maximum element
being grd(D). Thus, any strongly admissible interpretation
of D has at most an amount of information equal to grd(D).
Thus, answering the credulous decision problem under the
strong admissibility semantics coincides with answering the
credulous decision problem under the grounded semantics.
Theorem 2. Credsadm is coNP-complete.

Proof. We have that Credsadm(a 7→ t/f , D) = Credgrd(a 7→
t/f , D) and the latter has been shown to be coNP-complete
in (Wallner 2014, Proposition 4.1.3.).

Concerning skeptical acceptance, notice that the trivial in-
terpretation is the least strongly admissible interpretation in
each ADF. Thus, Skeptsadm(a 7→ t/f , D) is trivially no.
Theorem 3. Skeptsadm is a trivial problem.

3.2 The Verification Problem
In this section, we settle the complexity of Versadm(v,D),
i.e., of deciding whether a given interpretation v is a strongly
admissible interpretation of an ADF D. We have seen in
Section 2.4 that this problem can be solved in PNP.

We first sketch a simple translation-based approach that
reduces the verification problem of strongly admissible se-
mantics to the verification problem of grounded semantics.
In order to reduce Versadm(v,D) to Vergrd(v,D′), we mod-
ify the acceptance conditions ϕa of D to ϕ′a = ¬a if
v(a) = u and ϕ′a = ϕa otherwise. We then have that
v ∈ sadm(D) iff v ∈ grd(D), so that we can use the DP
procedure for Vergrd(v,D′) (Wallner 2014, Theorem 4.1.4).
This gives a DP procedure. However, as we will discuss
next, Versadm(v,D) can be solved within coNP.

Intuitively, since the grounded interpretation is the maxi-
mum element of the lattice of strongly admissible interpre-
tations and the credulous decision problem under grounded
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semantics is coNP-complete, it seems that the verification
problem under the strong admissibility semantics has to be
coNP-complete. However, having the positive answer for
Credgrd(a 7→ t/f , D) for each a with v(a) = t/f does not
lead to the positive answer of Versadm(v,D). This is because
v ≤i grd(D) does not imply that v is a strongly admissible
interpretation of D (see Example 6 below).

Example 6. Let D = ({a, b}, {ϕa : >, ϕb : a ∨ b}). The
grounded interpretation of D is {a 7→ t, b 7→ t}. Further-
more, the interpretation v = {a 7→ u, b 7→ t} is an admis-
sible interpretation of D such that v ≤i grd(D). However,
v is not a strongly admissible interpretation of D. As we
know, the answer of Credgrd(b 7→ t, D) is yes, but b is not
strongly acceptable in v. Thus, v is not a strongly admissible
interpretation of D, i.e., the answer to Versadm(v,D) is no.

To show that Versadm is coNP-complete, we modify and
combine both the fixed-point iteration from Section 2.4 and
the grounded algorithm from (Wallner 2014). To this end,
we need some auxiliary results that are shown in Lem-
mas 2 and 3.

Lemma 2. Given an ADF D with n arguments, the follow-
ing statements are equivalent:

1. v is a strongly admissible interpretation of D;
2. v = ΓnD,v(vu);
3. for each w ≤i v, it holds that v = ΓnD,v(w).

Proof. • 1↔ 2 : by Theorem 1.
• 2 7→ 3 : Assume that v = ΓnD,v(vu) and that w ≤i v.

We show that v = ΓnD,v(w). Since vu ≤i w ≤i v,
and ΓD is monotonic and thus also ΓD,v monotonic, we
have ΓnD,v(vu) ≤i ΓnD,v(w) ≤i ΓnD,v(v). Now using that
v = ΓnD,v(vu), we obtain v ≤i ΓnD,v(w) ≤i Γ2n

D,v(vu).
Because ΓD,v is a monotonic operator, the fixed-point is
reached after at most n iterations and thus Γ2n

D,v(vu) =

ΓnD,v(vu) = v. Hence, ΓnD,v(w) = v.
• 3 7→ 2 : Assume that for each w ≤i v it holds that
v ∼i ΓnD,v(w). Thus, since vu ≤i v, it holds that
v ∼i ΓnD,v(vu).

In the following, let v∗ = vt ∪ vf . The notions of comple-
tion of an interpretation and model are presented in Defini-
tion 11, used in Lemma 3.

Definition 11. Let w be an interpretation. We define
the completion of w as the set of all two-valued exten-
sions of w, denoted by [w]2 where: [w]2 = {u | w ≤i
u and u is a two-valued interpretation}.

Furthermore, a two-valued interpretation u is said to be a
model of formula ϕ, if u(ϕ) = t, denoted by u |= ϕ.

Lemma 3. Let D be an ADF and let v be an interpretation
of D. v 6∈ sadm(D) if and only if there exists an interpreta-
tion w of D that satisfies all the following conditions:

1. w <i v;
2. For each a ∈ wu∩vt there exists ua∈ [w]2 s.t. ua 6|= ϕa;
3. For each a ∈ wu∩vf there exists ua∈ [w]2 s.t. ua |= ϕa.

Proof. ⇐: Assume that v andw are interpretations ofD that
satisfy all of the items 1, 2, 3 presented in the lemma. We
show that v 6∈ sadm(D). Toward a contradiction assume
that v ∈ sadm(v). Let a be an argument such that a ∈
wu ∩ vt, thus, since w satisfies the conditions of the lemma,
it holds that there exists ua ∈ [w]2 such that ua 6|= ϕa, i.e.,
ua(a) = f . Furthermore, since v(a) = t and v ∈ sadm(D),
for any j ∈ [v]2 it holds that j |= ϕa. Since w <i v, it
holds that j ∈ [w]2, i.e., ΓD(w)(a) = u. The proof method
for the case that a ∈ wu ∩ vf is similar, i.e., if a ∈ wu ∩
(vt ∪ vf ), then ΓD(w)(a) = u. Thus, for a ∈ wu ∩ v∗ we
have ΓD,v(w)(a) = (ΓD(w) u v)(a) = u. In other words,
ΓD,v(w)(a) ≤i w and thus, by the monotonicity of ΓD,v(w)
also ΓnD,v(w)(a) ≤i w <i v. Thus, since ΓnD,v(w) 6∼i v the
third item of Lemma 2 does not hold for w with w <i v.
Thus, v 6∈ sadm(D).
⇒: Assume that v 6∈ sadm(D). That is, for the fixed point
w = ΓnD,v(vu) we have w <i v. Consider a ∈ wu ∩ vt.
Because w is a fixed point, we have that ΓD,v(w)(a) 6= t
and thus ΓD(w) 6= t. That is, there is a ua ∈ [w]2 such that
ua 6|= ϕa. Similar reasoning applies to a ∈ wu ∩ vf .

Lemma 4 shows that the verification problem is a coNP-
problem, and Lemma 5 shows the hardness of this problem.

Lemma 4. Versadm is a coNP-problem for ADFs.

Proof. LetD be an ADF and let v be an interpretation ofD.
For membership, consider the co-problem. By Lemma 3, if
there exists an interpretation of w that satisfies the condition
of Lemma 3, then v is not a strongly admissible interpreta-
tion of D. Thus, guess an interpretation w, together with
an interpretation ua ∈ [w]2 for each a ∈ v∗, and check
whether they satisfy the conditions of Lemma 3. Note that
sincew <i v we have to check the second and the third items
of Lemma 3 a total of |v∗\wu| number of times. That is, this
checking has to be done at most |v∗| number of times, when
w is the trivial interpretation. Thus, this checking step is lin-
ear in the size of v∗. Therefore, the procedure of guessing of
w and checking if it satisfies 1, 2, 3 of Lemma 3 is an NP-
problem. Thus, if a w satisfies the items of Lemma 3, then
the answer to Versadm(v,D) is no. Otherwise, if we check all
interpretationsw such thatw <i v and none of them satisfies
the conditions of Lemma 3, then the answer to Versadm(v,D)
is yes. Thus, Versadm(v,D) is a coNP-problem.

Lemma 5. Versadm is coNP-hard for ADFs.

Proof. For hardness of Versadm, we consider the standard
propositional logic problem of VALIDITY. Let ψ be an ar-
bitrary Boolean formula and let X = atom(ψ) be the set of
atoms in ψ. Let a be a new atom, i.e., a 6∈ X . Construct
ADF D = ({X ∪ {a}}, L, C) where ϕx : x for each x ∈ X
and ϕa : ψ. We show that ψ is valid if and only if v = vu|at
is a strongly admissible interpretation of D. An illustration
of the reduction for the formula ψ = ¬b ∨ b to the ADF
D = ({a, b}, L, ϕa : ψ,ϕb : b) is shown in Figure 3.

Assume that ψ is a valid formula. We show that v is the
grounded interpretation of D. By the acceptance condition
of each x, for x ∈ X it is clear that x is assigned to u in
the grounded interpretation of D. Further, since ψ is a valid
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a b

b¬b ∨ b

Figure 3: Reduction used in Lemma 5 and 9, for ψ = ¬b ∨ b.

formula, it holds that ϕavu ≡ >. Thus, the interpretation
v = vu|at is the grounded interpretation of D. Hence, v ∈
sadm(D).

On the other hand, assume that ψ is not valid. Then there
exists a two-valued interpretation v of atom(ψ) such that
v 6|= ψ. This implies that a 7→ t does not belong to the
grounded interpretation of D. Since the grounded interpre-
tation ofD is the maximum element of the lattice of strongly
admissible interpretations, it holds that a is not strongly ac-
ceptable in any strongly admissible interpretation of D, that
is, v 6∈ sadm(D).

Theorem 4 is a direct result of Lemmas 4–5.

Theorem 4. Versadm is coNP-complete for ADFs.

3.3 Strong Justification of an Argument
Note that it is possible that an interpretation v contains some
strongly justified arguments but v is not strongly admissi-
ble itself. Example 7 presents such an interpretation. Thus,
the problem StrJust(a 7→ t/f , v,D) of deciding whether
an argument is strongly justified in a given interpretation of
an ADF is different from the previously discussed decision
problems. We show that StrJust is coNP-complete.

Example 7. LetD = ({a, b, c, d}, {ϕa : ⊥, ϕb : ¬a∧c, ϕc :
d, ϕd : >}) be an ADF. Let v = {b, c, d} be an interpre-
tation of D. It is easy to check that c and d are strongly
acceptable in v. However, b is not strongly acceptable in
D. Thus, v is not a strongly admissible interpretation of D.
However, there exists a strongly admissible interpretation of
D in which c and d are strongly acceptable and that has less
information than v, namely, v′ = {c, d}.
As discussed in Section 2.4, (Keshavarzi Zafarghandi,
Verbrugge, and Verheij 2021b) presents a straightforward
method of deciding whether a is strongly justified in a given
interpretation v. That is, a is strongly acceptable/deniable in
v if it is acceptable/deniable by the least fixed point of the
operator ΓD,v (which is equal to ΓnD,v(vu) for sufficiently
large n).

However, the repeated evaluation of ΓD is a costly part of
this algorithm and results in a PNP algorithm. We will next
discuss a more efficient method to answer this reasoning
task. To this end, we translate a given ADF D to ADF D′,
presented in Definition 12, such that the queried argument is
strongly justifiable in a given interpretation of D if and only
if it is credulously justifiable in the grounded interpretation
of D′. As shown in Proposition 4.1.3 in (Wallner 2014),
the credulous decision problem for ADFs under grounded
semantics is a coNP-problem. Thus, verifying whether a
given argument is strongly justified in an interpretation is a

coNP-problem, since the translation can be done in polyno-
mial time with respect to the size of D.

Definition 12. Let D = (A,L,C) be an ADF and let v
be an interpretation of D. The translation of D under v is
D′ = (A′, L′, C ′) such that A′ = A ∪ {x, y} where x, y 6∈
A. Furthermore, for each a ∈ A′ we define the acceptance
condition of a in D′, namely ϕ′a as follows:

• ϕ′x : x;
• ϕ′y : y;
• if v(a) = u, then ϕ′a : ¬a;
• if v(a) = t, then ϕ′a = ϕa ∨ x;
• if v(a) = f , then ϕ′a = ϕa ∧ y.

Notice that our reduction ensures that arguments with
v(a) = u will always be u in D′, arguments with v(a) = t
will be assigned to either t or u during the least fixed-point
computation and arguments with v(a) = f will be assigned
to either f or u. That is we introduced arguments x, y to
ensure that arguments in v∗ are not assigned to the opposite
truth value during the iteration of ΓD′ that leads to the
grounded interpretation of D′.

Lemmas 6 and 7 show the correctness of the reduction.

Lemma 6. LetD be an ADF, let v be an interpretation ofD,
and letD′ be the translation ofD, via Definition 12. It holds
that if StrJust(a 7→ t/f , v,D) = yes, then Credgrd(a 7→
t/f , D′) = yes.

Proof. We assume that StrJust(a 7→ t, v,D) = yes, and we
show that Credgrd(a 7→ t, D′) = yes. The proof for the case
that StrJust(a 7→ f , v,D) = yes is similar.

Assume that vu is the trivial interpretation of D and v′u is
the trivial interpretation of D′, i.e., v′u = vu∪{x 7→ u, y 7→
u}. Assume that ΓiD,v(vu) is a sequence of strongly admis-
sible interpretations constructed based on v in D, as in Def-
inition 10. Let w be the limit of the sequence of ΓiD,v(vu).

StrJust(a 7→ t, v,D) = yes implies that w(a) = t. Since
w is a strongly admissible interpretation of D, it holds that
a 7→ t in the grounded interpretation of D, i.e., there exists
a natural number n such that ΓnD(vu)(a) = t. By induction
on n, it is easy to show that ΓnD′(v′u)(a) = t. That is, a
is assigned to t in the grounded interpretation of D′. Thus,
Credgrd(a 7→ t, D′) = yes.

Lemma 7. Let D be an ADF, let v be an interpretation of
D, and let D′ be the translation of D via Definition 12. It
holds that if Credgrd(a 7→ t/f , D) = yes, then StrJust(a 7→
t/f , v,D) = yes.

Proof. Assume that a is justified in the grounded interpre-
tation of D′, namely w. Thus, there exists a j such that
w = ΓjD′(wu) for j ≥ 0, where wu is the trivial interpreta-
tion of D′. By induction we prove the claim that for all i, if
a 7→ t/f ∈ ΓiD′(wu), then a is strongly justified in v.

Base case: Assume that a 7→ t/f ∈ Γ1
D′(wu). By the

acceptance conditions of x and y in D′, both of them are
assigned to u in w. Then it has to be the case that either
ϕ′a = ϕa ∨ x or ϕ′a = ϕa ∧ y in D′. Thus, a 7→ t/f ∈
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Γ1
D′(wu) implies that ϕ′a

wu ≡ >/⊥. Thus, w(x/y) = u,
ϕ′a = ϕa ∨ x/ϕa ∧ y and ϕ′a

wu ≡ >/⊥ together imply that
ϕa

wu ≡ >/⊥. Hence, ϕvua ≡ >/⊥ where vu is the trivial
interpretation of D. That is, a is strongly justified in v.

Induction hypothesis: Assume that for all j with 1 ≤ j ≤
i, if a 7→ t/f ∈ ΓjD′(wu), then a is strongly justified in v.

Inductive step: We show that if a 7→ t/f ∈ Γi+1
D′ (wu),

then a is strongly justified in v. Because x/y 7→ u ∈ w, we
have that ϕwa ≡ >/⊥ implies that ϕva ≡ >/⊥. Further, a 7→
t/f ∈ Γi+1

D′ (wu) says that there exists a set of parents of a,
namely P , where P ⊆ wt ∪ wf , such that, ϕ

w|P
a ≡ >/⊥.

Thus, ϕ
v|P
a ≡ >/⊥. By induction hypothesis, each p ∈ P is

strongly justified in v. Thus, a is strongly justified in v.

Theorem 5 is a direct result of Lemmas 6 and 7.

Theorem 5. Let D be an ADF, let v be an interpretation
of D, and let D′ be the translation of D, via Definition 12.
It holds that Credgrd(a 7→ t/f , D) = yes iff StrJust(a 7→
t/f , v,D) = yes.

We use the auxiliary Theorem 5 to present the main result of
this section, i.e., to show that StrJust is coNP-complete.

Lemma 8. Let D be an ADF, let a be an argument, and let
v be an interpretation of D. Deciding whether a is strongly
justified in v, i.e., whether StrJust(a 7→ t/f , v,D), is a
coNP-problem.

Proof. It is shown in (Wallner 2014, Proposition 4.1.3) that
the credulous decision problem under grounded semantics,
i.e., Credgrd, is a coNP-problem. Further, the translation
of a given ADF D to D′ via Definition 12 can be done in
polynomial time. By Theorem 5, it holds that Credgrd(a 7→
t/f , D) = yes iff StrJust(a 7→ t/f , v,D) = yes. Thus,
deciding whether a given argument is strongly justified in
interpretation v, i.e., StrJust(a 7→ t/f , v,D) is a coNP-
problem.

Lemma 9. Let D be an ADF, let a be an argument, and let
v be an interpretation of D. Deciding whether a is strongly
justified in v, i.e., StrJust(a 7→ t/f , v,D), is coNP-hard.

Proof. Let ψ be any Boolean formula and letX = atom(ψ)
be the set of atoms in ψ. Let a be a new variable that does
not appear in X . Construct D = ({X ∪ {a}}, L, C), such
that ϕx : x for each x ∈ X and ϕa : ψ. ADF D can be
constructed in polynomial time with respect to the size of
ψ. We show that a is strongly acceptable in any v where
v(a) = t if and only if ψ is a valid formula. An illustration
of the reduction for a formula ψ = ¬b ∨ b to the ADF D =
({a, b}, L, ϕa : ψ,ϕb : b) is depicted in Figure 3.

Assume that a is strongly acceptable in v, thus by Defi-
nition 8, there exists a set of parents of a, namely P , such
that ϕ

v|P
a ≡ > and for each p ∈ P it holds that p is strongly

justified in v. By the definition of D the acceptance condi-
tion of each parent of a, namely p is ϕp : p, thus, by the
acceptance condition of p, it is not strongly justifiable in v.
Thus, the only case in which a is strongly acceptable in v is
that P = ∅, i.e., ϕvua ≡ >. Hence, for any two-valued inter-
pretation u of X ∪ {a} it holds that u |= ψ. Moreover since

the atom a does not appear in ψ we obtain that for any two-
valued interpretation u of X it holds that u |= ψ. Hence, ψ
is a valid formula and it is a yes instance of the VALIDITY
problem of classical logic.

On the other hand, assume that ψ is a valid formula. Then
it is clear that the interpretation v that assigns a to t and x
to u, for each x ∈ X , is the grounded interpretation of D.
Thus, the answer to the strong acceptance problem of a in
any v with v(a) = t is yes.

For credulous denial of a, it is enough to present the ac-
ceptance condition of a equal to the negation of ψ in D, i.e.,
ϕa : ¬ψ, and follow a similar method. That is, a is strongly
deniable in v, where v(a) = f , if and only if ψ is a valid
formula.

Theorem 6 is a direct result of Lemmas 8 and 9.

Theorem 6. Let D be an ADF, let a be an argument, and let
v be an interpretation of D. Deciding whether a is strongly
justified in v, i.e., StrJust(a 7→ t/f , v,D) is coNP-complete.

3.4 Smallest Witness of Strong Justification
Assume that an argument a, its truth value, and a natural
number k are given. We are eager to know whether there
exists a strongly admissible interpretation v that satisfies the
truth value of a and |vt ∪ vf | < k. This reasoning task
is denoted by k-Witnesssadm(a 7→ t/f , D). We show that
k-Witnesssadm is ΣP

2 -complete. Lemma 10 shows that this
problem is a ΣP

2 -problem and Lemma 11 indicates the hard-
ness of this reasoning task.

Lemma 10. LetD = (A,L,C) be an ADF, let a be an argu-
ment, let x ∈ {t, f}, and let k be a natural number. Deciding
whether there exists a strongly admissible interpretation v of
D where v(a) = x and |vt ∪ vf | < k is a ΣP

2 -problem, i.e.,
k-Witnesssadm is a ΣP

2 -problem.

Proof. For membership, non-deterministically guess an in-
terpretation v and verify whether this interpretation satisfies
the following items:

1. v ∈ sadm(D);
2. v(a) = x;
3. |vt ∪ vf | < k.

If v satisfies all the items, then the answer to the decision
problem is yes, i.e., k-Witnesssadm(a 7→ t/f , D) = yes. The
complexity of each of the above items is as follows.

1. Verifying strong admissibility of v is coNP-complete, as
is presented in Section 3.2.

2. Verifying if v contains the claim, i.e., if v(a) = x, can
clearly be done in polynomial time.

3. Collecting vt ∪ vf and checking whether |vt ∪ vf | < k
takes only polynomial time.

That is, the algorithm first non-deterministically guesses an
interpretation v and then performs checks that are in coNP to
verify that v satisfies the requirements of the decision prob-
lem. Thus, this gives an NPcoNP = ΣP

2 procedure.
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y1 ϕy1 : > ȳ1 ϕȳ1 : > z1 ϕz1 : ¬z1

θ

ϕθ : ((y1 ∧ ¬z1) ∨ (z1 ∧ ȳ1)) ∧ (y1 ∨ ȳ1)

Figure 4: Illustration of the reduction from the proof of Lemma 11
for Θ = ∃y1∀z1((y1 ∧ ¬z1) ∨ (z1 ∧ ¬y1)) ∧ (y1 ∨ ¬y1).

Lemma 11. LetD = (A,L,C) be an ADF, let a be an argu-
ment, let x ∈ {t, f}, and let k be a natural number. Decid-
ing whether there exists a strongly admissible interpretation
v of D where v(a) = x and |vt ∪ vf | < k is ΣP

2 -hard, i.e.,
k-Witnesssadm is ΣP

2 -hard.

Proof. Consider the following well-known problem on
quantified Boolean formulas. Given a formula Θ =
∃Y ∀Z θ(Y,Z) with atoms X = Y ∪ Z (and Y ∩ Z = ∅)
and propositional formula θ. Deciding whether Θ is valid
is ΣP

2 -complete (see e.g. (Arora and Barak 2009)). We can
assume that θ is of the form ψ ∧ ∧y∈Y (y ∨ ¬y), where ψ
is an arbitrary propositional formula over atoms X , and that
θ is satisfiable. Moreover, we can assume that the formula
θ only uses ∧, ∨, ¬ operations and negations only appear in
literals. Let Ȳ = {ȳ : y ∈ Y }, i.e., for each y ∈ Y we
introduce a new argument ȳ.

We construct an ADF DΘ = (A,L,C) with

A =Y ∪ Ȳ ∪ Z ∪ {θ}
C ={ϕy : > | y ∈ Y } ∪ {ϕȳ : > | y ∈ Y }

∪ {ϕz : ¬z | z ∈ Z} ∪ {ϕθ : θ[¬y/ȳ]}
It is easy to verify that the grounded interpretation g of

DΘ sets all arguments Y ∪ Ȳ to t and all arguments Z to
u. Moreover, g(θ) ∈ {t,u}. An illustration of the reduction
for a formula θ = ((y1 ∧ ¬z1) ∨ (z1 ∧ ¬y1)) ∧ (y1 ∨ ¬y1)
to the ADF D = (A,L,C) is shown in Figure 4, where:
A = {y1, ȳ1, z1, θ}, ϕy1 : >, ϕȳ1 : >, ϕz1 : ¬z and ϕθ :
((y1 ∧ ¬z1) ∨ (z1 ∧ ȳ1)) ∧ (y1 ∨ ȳ1). We show that there
is a strongly admissible interpretation v with v(θ) = t and
|S| = |Y |+ 1 where S = vt ∪ vf iff Θ is a valid formula.

• Assume that Θ is a valid formula. We show that there
exists a strongly admissible interpretation v with |S| =
|Y |+ 1. Since Θ is a valid formula, there exists an inter-
pretation IY of Y such that for any interpretation IZ of
Z, it holds that IY ∪ IZ |= θ(Y,Z), i.e., θ is true. Specif-
ically, it holds that IY |= θ(Y,Z).
We define a three-valued interpretation v of A such that
v(y) = t if IY (y) = t, v(ȳ) = t if IY (y) = f , v(θ) = t,
and v(x) = u otherwise. It is easy to check that v is a
strongly admissible interpretation ofD where |S| = |Y |+
1. Thus, θ is strongly acceptable in a strongly admissible
interpretation v where |S| = |Y |+ 1.

• Let v be the strongly admissible interpretation with
v(θ) = t and |S| ≤ |Y |+1. Let g be the unique grounded
interpretation of D. It holds that v ≤i g. For each z ∈ Z,

Credsadm Skeptsadm Versadm StrJust k-Witnesssadm

AFs P trivial P n.a. NP-c
ADFs coNP-c trivial coNP-c coNP-c ΣP

2 -c

Table 1: Complexity under the strong admissibility semantics of
AFs and ADFs (C-c denotes completeness for class C)

since cz : ¬z, it is clear that v(z) = u in any strongly
admissible interpretation v of D. Moreover, because θ
is of the form ψ ∧ ∧y∈Y (y ∨ ¬y)[¬y/ȳ], we have that
for each y ∈ Y either v(y) = t or v(ȳ) = t and thus
|S| = |Y |+ 1. Because of this, we also have that not both
v(y) = t or v(ȳ) = t can be simultaneously true. We can
thus define the following interpretation IY of Y such that
IY (y) = t if v(y) = t and IY (y) = f if v(ȳ) = t. Since
θ is strongly accepted with respect to v, we have that for
each interpretation IZ of Z, the formula θ is satisfied by
IY ∪ IZ . That is, the QBF Θ is valid.

Theorem 7 is a direct result of Lemmas 10 and 11.
Theorem 7. k-Witnesssadm is ΣP

2 -complete.
In Table 1, we summarize our results on the complexity
of strong admissibility semantics in ADFs and compare
them with the corresponding results for AFs (Caminada and
Dunne 2020; Dvořák and Wallner 2020).

4 Conclusion
We studied the computational properties of the strong admis-
sibility semantics of ADFs. When compared to AFs, com-
putational complexity for ADFs increases by one step in the
polynomial hierarchy (Stockmeyer 1976) for nearly all rea-
soning tasks (Strass and Wallner 2015; Dvořák and Dunne
2018). We have shown that, similarly, ADFs have higher
computational complexity under the strong admissibility se-
mantics when compared to AFs (Table 1).

From a theoretical perspective we observe that: 1. The
credulous decision problem under the strong admissibility
semantics of ADFs is coNP-complete, while this decision
problem is tractable in AFs. 2. Since the trivial interpreta-
tion is the least strongly admissible interpretation for each
ADF, the skeptical decision problem is trivial, which is sim-
ilar for AFs. 3. The verification problem for ADFs is coNP-
complete, while it is tractable for AFs. 4. Since an argu-
ment can be strongly justified in an interpretation that is
not a strongly admissible interpretation, we defined a new
reasoning task in Section 3.3, called the strong justification
problem. The complexity of this decision problem, which
investigates whether a queried argument is strongly justified
in a given interpretation, is coNP-complete. 5. The prob-
lem of finding a smallest witness of strong justification of
an argument investigates whether there exists a strongly ad-
missible interpretation that assigns a minimum number of
arguments to t/f and satisfies a queried argument is ΣP

2 -
complete, while this reasoning task is NP-complete for AFs.

We next highlight an interesting difference in the com-
plexity landscapes of AFs and ADFs. When relating the
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complexity of grounded and strong admissibility semantics,
we have that for AFs the verification problems can be (log-
space) reduced to each other, while for ADFs there is a gap
between the coNP-complete Versadm problem and the DP-
complete Vergrd problem. That is, on the ADF level the step
of proving arguments to be u in the grounded interpretation
adds an NP part to the complexity; a similar effect can be
observed for admissible and complete semantics.

As future work, it would be interesting to analyse the
computational complexity of the current reasoning tasks for
strong admissibility semantics over subclasses of ADFs, in
particular bipolar ADFs (Brewka and Woltran 2010) and
acyclic ADFs (Diller et al. 2020).
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Abstract

Logic programs (LPs) and argumentation frameworks (AFs)
are two declarative KR formalisms used for different reason-
ing tasks. The purpose of this study is interlinking two dif-
ferent reasoning components. To this end, we introduce two
frameworks: LPAF and AFLP. The former enables to use the
result of argumentation in AF for reasoning in LP, while the
latter enables to use the result of reasoning in LP for arguing
in AF. These frameworks are extended to bidirectional frame-
works in which AF and LP can exchange information with
each other. We also investigate their connection to several
general KR frameworks from the literature. The proposed
framework shares a view similar to the multi-context system
while its semantics is different from an equilibrium seman-
tics.

1 Introduction
A logic program (LP) represents declarative knowledge as a
set of rules and realizes commonsense reasoning as logical
inference. An argumentation framework (AF), on the other
hand, represents arguments and an attack relation over them,
and defines which arguments are accepted or not under var-
ious semantics. Two frameworks specify different types of
knowledge and realize different types of reasoning.

In our daily life, however, we often use two modes of rea-
soning interchangeably. For instance, consider a logic pro-
gram representing knowledge:

get vaccine← safe∧ effective
¬get vaccine← not safe

where we get a vaccine if it is safe and effective. To see
whether a vaccine is safe and effective, we refer to an expert
opinion. It is often the case, however, that multiple experts
have different opinions. In this case, we observe argumen-
tation among experts and take it into account to make a de-
cision. For another example, consider a debate on whether
global warming is occurring. Scientists and politicians make
different claims based on evidences and scientific knowl-
edge. An argumentation framework is used for representing
the debate, while arguments appearing in the argumentation
graph are generated as results of reasoning from the back-
ground knowledge of participants.

In these examples, we can encode reasoners’ private
knowledge as logic programs and argumentation in the pub-

lic space as argumentation frameworks. It is natural to dis-
tinguish two different types of knowledge and interlink them
with each other. In the first example, an agent has a pri-
vate knowledge base that refers to a public argumentation
framework. In the second example, on the other hand, agents
participating in a debate have their private knowledge bases
supporting their individual claims.

Logic programs and argumentation are mutually trans-
formed with each other. Dung (1995) provides a transfor-
mation from LPs to AFs and shows that stable models (Gel-
fond and Lifschitz 1988) (resp. the well-founded model (Van
Gelder, et al. 1991)) of a logic program correspond to stable
extensions (resp. the grounded extension) of a transformed
argumentation framework. He also introduces a converse
transformation from AFs to LPs, and shows that the seman-
tic correspondences still hold. The results are extended to
equivalences of LPs and AFs under different semantics (e.g.
(Caminada, et al. 2015)). Using such transformational ap-
proaches, an LP and an AF are combined and one could per-
form both argumentative reasoning and commonsense rea-
soning in a single framework. One of the limitations of this
approach is that in order to combine an LP and an AF in
a single framework, two frameworks must have the corre-
sponding semantics. For instance, suppose that an agent
has a knowledge base LP and refers to an AF . If the agent
uses the stable model semantics of LP, then AF must use
the stable extension semantics to combine them into a single
framework. Argumentation can have an internal structure in
structured argumentation. In assumption based argumenta-
tion (ABA) (Dung et al. 2009), for instance, an argument for
a claim c is supported by a set of assumptions S if c is de-
duced from S using a set of LP rules (S ⊢ c). A structured
argumentation has a knowledge base inside an argument and
provides reasons that support particular claims. An argu-
ment is represented as a tree and an attack relation is intro-
duced between trees. However, merging argumentation and
knowledge bases into a single framework would produce a
huge argumentation structure that is complicated and hard to
manage.

In this paper, we introduce new frameworks, called LPAF
and AFLP, for interlinking LPs and AFs. Each framework is
defined as a collection of logic programs and argumentation
frameworks. The LPAF uses the result of argumentation in
AFs for reasoning in LPs. In contrast, the AFLP uses the
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result of reasoning in LPs for arguing in AFs. These frame-
works are extended to bidirectional frameworks in which
AFs and LPs can exchange information with each other. We
address applications of the proposed framework and investi-
gate connections to several KR frameworks. The rest of this
paper is organized as follows. Section 2 reviews basic no-
tions of logic programming and argumentation frameworks.
Section 3 introduces several frameworks for interlinking LPs
and AFs. Section 4 presents applications of the proposed
frameworks. Section 5 discusses related issues and Section 6
summarizes the paper.

2 Preliminaries
We consider a language that contains a finite set L of propo-
sitional variables.

Definition 2.1 (logic program) A (disjunctive) logic pro-
gram (LP) is a finite set of rules of the form:

p1∨·· ·∨ pl ← q1, . . . ,qm, not qm+1, . . . ,not qn

(l,m,n ≥ 0) where pi and q j are propositional variables (or
ground atoms) in L and not is negation as failure.

The left-hand side of← is the head and the right-hand side
is the body. For each rule r of the above form, head(r),
body+(r), and body−(r) respectively denote the sets of
atoms {p1, . . . , pl}, {q1, . . . ,qm}, and {qm+1, . . . ,qn}, and
body(r) = body+(r) ∪ body−(r). A (disjunctive) fact is
a rule r such that body(r) = ∅. A fact is called a non-
disjunctive fact if l = 1. If an LP contains no disjunc-
tive rule (i.e., l ≤ 1), it is called a normal logic program.
Given a program LP, put Head(LP) =

∪
r∈LP head(r) and

Body(LP) =
∪

r∈LP body(r). Throughout the paper, a pro-
gram means a propositional/ground program.

Let BLP be the set of ground atoms appearing in a
program LP (called the Herbrand base). An interpre-
tation I ⊆ BLP satisfies a rule r if body+(r) ⊆ I and
body−(r) ∩ I = ∅ imply head(r) ∩ I ̸= ∅. An interpre-
tation satisfying every rule in a program is a model of
the program. A model M of a program LP is minimal if
there is no model N of LP such that N ⊂ M. The se-
mantics of LP is defined as the set of designated models.
Given a program LP, an interpretation I is a stable model
of LP if it coincides with a minimal model of the pro-
gram: LPI = { p1 ∨ ·· · ∨ pl ← q1, . . . ,qm | (p1 ∨ ·· · ∨ pl ←
q1 , . . . , qm, not qm+1 , . . . , not qn) ∈ LP and {qm+1, . . . ,qn}∩
I = ∅}. A program may have no, one, or multiple stable
models in general. The stable model semantics is defined
as the set of stable models (Gelfond and Lifschitz 1988;
Przymusinski 1990).

Generally, a logic program LP under the µ semantics is
denoted by LPµ . The semantics of LPµ is defined as the set
M µ

LP (or simply M µ ) of µ models of LP. If a ground atom
p is included in every µ model of LP, we write LPµ |= p.
LPµ is simply written as LP if the semantics is clear in the
context. A logic programming semantics µ is universal if
every LP has a µ model. The stable model semantics is not
universal, while the well-founded semantics of normal logic

programs is universal.1 A logic program LP under the stable
model semantics (resp. well-founded semantics) is written
as LPstb (resp. LPwf ).

Definition 2.2 (argumentation framework) An argumen-
tation framework (AF) is a pair (A,R) where A ⊆ L is a
finite set of arguments and R⊆ A×A is an attack relation.

For an AF (A,R), we say that an argument a attacks an
argument b if (a,b)∈ R. We write a→ b iff (a,b)∈ R. A set
S of arguments attacks an argument a iff there is an argument
b ∈ S that attacks a. A set S of arguments is conflict-free if
there are no arguments a,b ∈ S such that a attacks b. A
set S of arguments defends an argument a if S attacks every
argument that attacks a. We write D(S) = {a | S defends a}.

The semantics of AF is defined as the set of designated
extensions. The following four extensions are introduced
in (Dung 1995). Given AF = (A,R), a conflict-free set of
arguments S⊆ A is:
• a complete extension iff S = D(S);
• a stable extension iff S attacks each argument in A\S;
• a preferred extension iff S is a maximal complete exten-

sion of AF (wrt ⊆);
• a grounded extension iff S is the minimal complete exten-

sion of AF (wrt ⊆).
An argumentation framework AF under the ω semantics is
denoted by AFω . The semantics of AFω is defined as the set
E ω

AF (or simply E ω ) of ω extensions of AF . We abbreviate
the above four semantics of AF as AFcom, AFstb, AFprf and
AFgrd , respectively. AFω is simply written as AF if the se-
mantics is clear in the context. Among the four semantics,
the following relations hold: for any AF ,

E stb
AF ⊆ E prf

AF ⊆ E com
AF and E grd

AF ⊆ E com
AF .

E stb
AF is possibly empty, while others are not. In particular,

E grd
AF is a singleton set. An argumentation semantics ω is

universal if every AF has an ω extension. The stable se-
mantics is not universal, while the other three semantics pre-
sented above are universal.

3 Linking LP and AF
Throughout this section, LP is a logic program and AF =
(A,R) is an argumentation framework.

3.1 From AF to LP
We first introduce a framework that can use the result of ar-
gumentation in AFs for reasoning in LPs. In this subsection,
we assume that Head(LP)∩A = ∅, that is, no rule in LP has
an argument in its head.

Definition 3.1 (refer) Given AF = (A,R), LP is partitioned
into LP = R+A∪R−A where

R+A = {r ∈ LP | body(r)∩ A ̸= ∅},
R−A = {r ∈ LP | body(r)∩ A = ∅}.

1We refer the reader to (Van Gelder, et al. 1991) for the defini-
tion of the well-founded semantics.
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We say that each rule in R+A refers to arguments, and each
rule in R−A is free from arguments. An argument a ∈ A is
referred by LP if a appears in LP. Define LP |A= {a ∈ A |
a is referred by LP}.
Definition 3.2 (µ model extended by A ) Let AF = (A,R)
and A ⊆ 2A. Then a µ model of LP extended by A is a
µ model of LP∪ {a←| a ∈ E ∩ LP |A} for any E ∈ A if
A ̸= ∅; otherwise, it is a µ model of R−A ⊆ LP.

Definition 3.3 (simple LPAF) A simple LPAF framework
is defined as a pair ⟨LPµ , AFω ⟩, where LPµ is a logic pro-
gram under the µ semantics and AFω is an argumentation
framework under the ω semantics.

Definition 3.4 (LPAF model) Let φ = ⟨LPµ , AFω ⟩ be a
simple LPAF framework. Suppose that AF has the set of
ω extensions: E ω = {E1, . . . ,Ek} (k ≥ 0). Then an LPAF
model of φ is defined as a µ model of LPµ extended by E ω .
The set of LPAF models of φ is denoted as Mφ .

By definition, an LPAF model is defined as a µ model of
the program LP by introducing referred arguments accept-
able under the ω semantics from the AF part. If the AF part
has no ω extension (E ω = ∅), on the other hand, the AF
part provides no justification for arguments referred by LP.
In this case, we do not take the consequences that are derived
using arguments in AF. Then an LPAF model is constructed
by rules that are free from arguments in AF.

Example 3.1 Consider φ1 = ⟨LPstb, AFstb ⟩ where

• LPstb = { p← a, q← not a};
• AFstb = ({a,b},{(a,b),(b,a)}).
As AFstb has two stable extensions {a} and {b}, φ1 has two
LPAF models {p,a} and {q}. On the other hand, if we use
ω = grounded then AFgrd has the single extension ∅. Then
⟨LPstb, AFgrd ⟩ has the single LPAF model {q}.2 Next, con-
sider φ2 = ⟨LPstb, AFstb ⟩ where

• LPstb = { p← not a, q← not p};
• AFstb = ({a,b},{(a,b),(a,a)}).
As AFstb has no stable extension and the second rule in LPstb
is free from arguments, φ2 has the single LPAF model {q}.
Note that if we keep the first rule then a different conclusion
p is obtained from LPstb. We do not consider the conclu-
sion justified because the AF part provides no information
on whether the argument a is acceptable or not.

Proposition 3.1 Let φ1 = ⟨LPµ , AF1
ω1
⟩ and φ2 =

⟨LPµ , AF2
ω2
⟩ be two LPAFs such that E ω1

AF1 ̸= ∅. If
E ω1

AF1 ⊆ E ω2
AF2 , then Mφ1 ⊆Mφ2 .

Proof: When E ω1
AF1 ̸= ∅, an LPAF model M of φ1 is a µ

model of LP∪{a←| a ∈ E ∩LPµ |A} for any E ∈ E ω1
AF1 . By

E ω1
AF1 ⊆ E ω2

AF2 , E ∈ E ω2
AF2 . Then M is also an LPAF model of

φ2. 2

2Note that an AF extension represents whether an argument is
accepted or not. If an argument a is not in an extension E, a is
not accepted in E. Then not a in LP becomes true by negation as
failure.

Proposition 3.1 implies the inclusion relations with the
same AF under different semantics: Mφ1 ⊆ Mφ2 holds
for φ1 = ⟨LPµ , AFpr f ⟩ and φ2 = ⟨LPµ , AFcom ⟩; φ1 =
⟨LPµ , AFstb ⟩ and φ2 = ⟨LPµ , AFpr f ⟩; or φ1 = ⟨LPµ , AFgrd ⟩
and φ2 = ⟨LPµ , AFcom ⟩.

Two programs LP1
µ and LP2

µ are uniformly equivalent rel-
ative to A (denoted LP1

µ ≡A
u LP2

µ ) if for any set of non-
disjunctive facts F ⊆ A, the programs LP1

µ ∪F and LP2
µ ∪F

have the same set of µ models (Eiter, et al. 2007).

Proposition 3.2 Let φ1 = ⟨LP1
µ , AFω ⟩ and φ2 =

⟨LP2
µ , AFω ⟩ be two LPAFs such that E ω ̸= ∅. Then,

Mφ1 = Mφ2 if LP1
µ |A= LP2

µ |A and LP1
µ ≡A

u LP2
µ where

AFω = (A,R).

Proof: By LP1
µ |A= LP2

µ |A, a ∈ A is referred by LP1
µ iff a is

referred by LP2
µ . Then, for any E ∈ E ω , LP1

µ ∪{a←| a ∈
E ∩LP1

µ |A} and LP2
µ ∪{b←| b ∈ E ∩LP2

µ |A} have the same
set of µ models if LP1

µ ≡A
u LP2

µ . 2

A simple LPAF framework φ = ⟨LPµ , AFω ⟩ is consistent
if φ has an LPAF model. The consistency of φ depends
on the chosen semantics µ . In particular, a simple LPAF
framework φ = ⟨LPµ , AFω ⟩ is consistent if µ is universal.
φ = ⟨LPµ , AFω ⟩ may have an LPAF model even if M µ

LP =
E ω

AF = ∅.

Example 3.2 Consider φ = ⟨LPstb, AFstb ⟩ where
• LPstb = { p← not a, not p, q←};
• AFstb = ({a}, {(a,a)}).
Then M stb

LP = E stb
AF = ∅, but φ has the LPAF model {q}.

A simple LPAF consists of a single LP and an AF, which
is generalized to a framework that consists of multiple LPs
and AFs.

Definition 3.5 (general LPAF) A general LPAF frame-
work is defined as a tuple

⟨LP1
µ1

, . . . ,LPm
µm , AF1

ω1
, . . . ,AFn

ωn ⟩

where each LPi
µi

(1≤ i≤m) is a logic program LPi under the
µi semantics and each AF j

ω j (1≤ j≤ n) is an argumentation
framework AF j under the ω j semantics.

A general LPAF framework is used in a situation such that
multiple agents have individual LPs as their private knowl-
edge bases and each agent possibly refers to open AFs. The
semantics of a general LPAF is defined as an extension of a
simple LPAF framework.

Definition 3.6 (LPAF state) Let φ =
⟨LP1

µ1
, . . . ,LPm

µm , AF1
ω1

, . . . ,AFn
ωn ⟩ be a general LPAF

framework. Then the LPAF state of φ is defined as a tuple
(Σ1, . . . ,Σm) where Σi = (Mi

1, . . . ,M
i
n) (1 ≤ i ≤ m) and Mi

j

(1≤ j ≤ n) is the set of LPAF models of ⟨LPi
µi

,AF j
ω j ⟩.

By definition, an LPAF state consists of a collection of
LPAF models such that each model is obtained by combin-
ing a program LPi

µi
and an argumentation framework AF j

ω j .
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Example 3.3 Consider φ = ⟨LPstb, LPw f , AFstb, AFgrd ⟩
where3

• LPstb = LPw f = { p← a, not q, q← a, not p};
• AFstb = AFgrd = ({a,b},{(a,b),(b,a)}).
In this case,

• ⟨LPstb, AFstb ⟩ has three LPAF models: {p,a}, {q,a} and
∅.

• ⟨LPstb, AFgrd ⟩ has the single LPAF model: ∅.
• ⟨LPw f , AFstb ⟩ has two LPAF models: {a} and ∅.
• ⟨LPw f , AFgrd ⟩ has the single LPAF model: ∅.

Then φ has the LPAF state (Σ1,Σ2) where Σ1 =
({{p,a},{q,a},∅},{∅}) and Σ2 = ({{a},∅},{∅}).

The above example shows that a general LPAF is used for
comparing the results of combination between LP and AF
under different semantics.

Given tuples (S1, . . . ,Sk) and (T1, . . . ,Tl), define

(S1, . . . ,Sk)⊕ (T1, . . . ,Tl) = (S1, . . . ,Sk,T1, . . . ,Tl).

By definition, the following result holds.

Proposition 3.3 Let φ = ⟨LP1
µ1

, . . . ,LPm
µm , AF1

ω1
, . . . ,AFn

ωn ⟩
be a general LPAF framework. Then the LPAF
state (Σ1, . . . ,Σm) of φ is obtained by (Σ1, . . . ,Σk) ⊕
(Σk+1, . . . ,Σm) (1 ≤ k ≤ m− 1) where (Σ1, . . . ,Σk) is the
LPAF state of φ1 = ⟨LP1

µ1
, . . . ,LPk

µk
, AF1

ω1
, . . . ,AFn

ωn ⟩
and (Σk+1, . . . ,Σm) is the LPAF state of φ2 =
⟨LPk+1

µk+1
, . . . ,LPm

µm , AF1
ω1

, . . . ,AFn
ωn ⟩.

Proposition 3.3 presents that a general LPAF has the mod-
ularity property; φ is partitioned into smaller φ1 and φ2, and
the introduction of new LPs to φ is done incrementally.

3.2 From LP to AF
We next introduce a framework that can use the result of
reasoning in LPs for arguing in AFs. In this subsection, we
assume that Body(LP)∩A = ∅, that is, no rule in LP has an
argument in its body.

Definition 3.7 (AF with support) Let AF = (A,R) and
M ⊆BLP. Then AF with support M is defined as AFM =
(A,R′) where R′ = R\{(x,a) | x ∈ A and a ∈ A∩M }.

By definition, AFM is an argumentation framework in
which every tuple attacking a ∈M is removed from R. As a
result, every argument included in M is accepted in AFM .

Definition 3.8 (ω extension supported by M ) Let AF =
(A,R) and M ⊆ 2BLP . Then an ω extension of AF sup-
ported by M is an ω extension of AFM for any M ∈M if
M ̸= ∅; otherwise, it is an ω extension of (A′,R′) where
A′ = A\BLP and R′ = R∩ (A′×A′).

Definition 3.9 (simple AFLP) A simple AFLP framework
is defined as a pair ⟨AFω , LPµ ⟩ where AFω is an argumen-
tation framework under the ω semantics and LPµ is a logic
program under the µ semantics.

3We consider the well-founded model as the set of true atoms
under the well-founded semantics.

Definition 3.10 (AFLP extension) Let ψ = ⟨AFω , LPµ ⟩ be
a simple AFLP framework. Suppose that LP has the set of
µ models M µ . Then an AFLP extension of ψ is defined as
an ω extension of AFω supported by M µ . The set of AFLP
extensions of ψ is denoted as Eψ .

By definition, an AFLP extension is defined as an ω ex-
tension of AFM

ω that takes into account support information
in a µ model M from the LP part. If the LP part has no µ
model (M µ = ∅), on the other hand, the LP part provides
no ground for arguments in A∩BLP. In this case, we do
not use those arguments that rely on LP. Then an AFLP ex-
tension is constructed using arguments that do not appear in
LP.

Example 3.4 Consider ψ1 = ⟨AFstb, LPstb ⟩ where
• AFstb = ({a,b},{(a,b),(b,a)});
• LPstb = {a← p, p← not q, q← not p}.
LPstb has two stable models M1 = {a, p} and M2 = {q}, then
AFM1

ω = ({a,b},{(a,b)}) and AFM2
ω = AFω . As a result, ψ1

has two AFLP extensions {a} and {b}. On the other hand,
if we use ω = grounded, then ⟨AFgrd , LPstb ⟩ has two AFLP
extensions {a} and ∅. Next, consider ψ2 = ⟨AFgrd , LPstb ⟩
where
• AFgrd = ({a,b,c},{(a,b),(b,c)});
• LPstb = {a← p, p← not p}.
As LPstb has no stable model, ψ2 has the AFLP extension
{b} as the grounded extension of ({b,c},{(b,c)}).
Proposition 3.4 Let ψ1 = ⟨ AFω , LP1

µ1
⟩ and ψ2 =

⟨AFω , LP2
µ2
⟩ be two AFLPs such that M µ1

LP1 ̸= ∅. If
M µ1

LP1 ⊆M µ2
LP2 , then Eψ1 ⊆ Eψ2 .

Proof: When M µ1
LP1 ̸= ∅, an AFLP extension E of ψ1 is an

ω extension of AFM
ω for any M ∈M µ1

LP1 . By M µ1
LP1 ⊆M µ2

LP2 ,
M ∈M µ2

LP2 . Then E is also an AFLP extension of ψ2. 2

Baumann (2014) introduces equivalence relations of AFs
with respect to deletion of arguments and attacks. For two
AF1

ω = (A1,R1) and AF2
ω = (A2,R2),

• AF1
ω and AF2

ω are normal deletion equivalent (denoted
AF1

ω ≡nd AF2
ω ) if for any set A of arguments (A′1,R1 ∩

(A′1×A′1)) and (A′2,R2 ∩ (A′2×A′2)) have the same set of
ω extensions where A′1 = A1 \A and A′2 = A2 \A.

• AF1
ω and AF2

ω are local deletion equivalent (denoted
AF1

ω ≡ld AF2
ω ) if for any set R of attacks (A1,R1 \R) and

(A2,R2 \R) have the same set of ω extensions.
By definition, we have the next result.

Proposition 3.5 Let ψ1 = ⟨AF1
ω , LPµ ⟩ and ψ2 =

⟨AF2
ω , LPµ ⟩ be two AFLPs. Then

• When M µ = ∅, Eψ1 = Eψ2 if AF1
ω ≡nd AF2

ω .
• When M µ ̸= ∅, Eψ1 = Eψ2 if AF1

ω ≡ld AF2
ω .

Baumann (2014) shows that AF1
ω ≡ld AF2

ω if and only if
AF1

ω = AF2
ω for any ω = {com,stb,prf ,grd}. On the other

hand, necessary or sufficient conditions for AF1
ω ≡nd AF2

ω
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are given by the structure of argumentation graphs and they
differ from the chosen semantics in general.

A simple AFLP framework ψ = ⟨AFω , LPµ ⟩ is consistent
if ψ has an AFLP extension. By definition, a simple AFLP
framework ψ = ⟨AFω , LPµ ⟩ is consistent if ω is universal.

A simple AFLP consists of a single AF and an LP, which
is generalized to a framework that consists of multiple AFs
and LPs.

Definition 3.11 (general AFLP) A general AFLP frame-
work is defined as a tuple

⟨AF1
ω1

, . . . ,AFn
ωn , LP1

µ1
, . . . ,LPm

µm ⟩

where each AF j
ω j (1≤ j≤ n) is an argumentation framework

AF j under the ω j semantics and each LPi
µi

(1 ≤ i ≤ m) is a
logic program LPi under the µi semantics.

A general AFLP framework is used in a situation such that
argumentative dialogues consult LPs as information sources.
The semantics of a general AFLP is defined as an extension
of a simple AFLP framework.

Definition 3.12 (AFLP state) Let ψ =
⟨AF1

ω1
, . . . ,AFn

ωn , LP1
µ1

, . . . ,LPm
µm ⟩ be a general AFLP

framework. Then an AFLP state of ψ is defined as a tuple
(Γ1, . . . ,Γn) where Γ j = (E j

1, . . . ,E
j
m) (1 ≤ j ≤ n) and E j

i
(1≤ i≤ m) is the set of AFLP extensions of ⟨AF j

ω j , LPi
µi
⟩.

By definition, an AFLP state consists of a collection of
AFLP extensions such that each extension is obtained by
combining AF j

ω j and LPi
µi

.

Example 3.5 Consider ψ = ⟨AFgrd , LP1
stb, LP2

stb ⟩ where
• AFgrd = ({a,b},{(a,b)});
• LP1

stb = {a← p, p←};
• LP2

stb = {b← q, q←}.
Then, ⟨AFgrd ,LP1

stb ⟩ has the AFLP extension {a}, while
⟨AFgrd ,LP2

stb ⟩ has the AFLP extension {a,b}. Then the
AFLP state of ψ is (({a},{a,b})).

A general AFLP has the modularity property.

Proposition 3.6 Let ψ = ⟨AF1
ω1

, . . . ,AFn
ωn , LP1

µ1
, . . . ,LPm

µm ⟩
be a general AFLP framework. Then the AFLP state
(Γ1, . . . ,Γn) of ψ is obtained by (Γ1, . . . ,Γk)⊕(Γk+1, . . . ,Γn)
(1≤ k≤ n−1) where (Γ1, . . . ,Γk) is the AFLP state of ψ1 =
⟨AF1

ω1
, . . . ,AFk

ωk
, LP1

µ1
, . . . ,LPm

µm ⟩ and (Γk+1, . . . ,Γn) is the
AFLP state of ψ2 = ⟨AFk+1

ωk+1
, . . . ,AFn

ωn , LP1
µ1

, . . . ,LPm
µm ⟩.

3.3 Bidirectional Framework
In Sections 3.1 and 3.2 we provided frameworks in which
given LPs and AFs one refers the other in one direction. This
subsection provides a framework such that LPs and AFs in-
teract with each other. Such a situation happens in social
media, for instance, where a person posts his/her opinion
to an Internet forum, which arises public discussion on the
topic, then the person revises his/her belief by the result of
discussion. In this subsection, we assume that any rule in LP
could contain arguments in its head or body.

Definition 3.13 (simple bidirectional LPAF)
A simple bidirectional LPAF framework is defined as a pair
⟨⟨LPµ , AFω ⟩⟩.
Definition 3.14 (BDLPAF model) Let ζ = ⟨⟨LPµ , AFω ⟩⟩
be a simple bidirectional LPAF framework. Suppose that
a simple AFLP framework ψ = ⟨AFω , LPµ ⟩ has the set of
AFLP extensions Eψ . Then a BDLPAF model of ζ is de-
fined as a µ model of LPµ extended by Eψ .

BDLPAF models reduce to LPAF models if Eψ coincides
with E ω

AF . In the bidirectional framework, an LP can refer
arguments in AF and AF can get a support from the LP.

Example 3.6 Consider ζ = ⟨⟨LPstb, AFstb ⟩⟩ where
• LPstb = {a← not p, q← c};
• AFstb = ({a,b,c},{(a,b),(b,a),(b,c)}).
First, the simple AFLP framework ⟨AFstb,LPstb ⟩ has the sin-
gle AFLP extension E = {a,c}. Then, the BDLPAF model
of ζ becomes {a,c,q}.

Similarly, we can make a simple AFLP bidirectional.

Definition 3.15 (simple bidirectional AFLP)
A simple bidirectional AFLP framework is defined as a pair
⟨⟨AFω , LPµ ⟩⟩.
Definition 3.16 (BDAFLP extension) Let η =
⟨⟨AFω , LPµ ⟩⟩ be a simple bidirectional AFLP framework.
Suppose that a simple LPAF framework φ = ⟨LPµ , AFω ⟩
has the set of LPAF models Mφ . Then a BDAFLP extension
of η is defined as an ω extension of AFω supported by Mφ .

Example 3.7 Consider η = ⟨⟨AFgrd , LPstb ⟩⟩ where
• AFgrd = ({a,b},{(a,b),(b,a)});
• LPstb = { p← a, q← not a, b← q}.
First, the simple LPAF framework ⟨LPstb,AFgrd ⟩ has the sin-
gle LPAF model M = {b,q}. Then, the BDAFLP extension
of η becomes {b}.

Given AFω and LPµ , a series of BDLPAF models or
BDAFLP extensions can be build by repeatedly referring
with each other. Starting with the AFLP extensions E0

ψ , the
BDLPAF models M1

φ extended by E0
ψ are produced, then

the BDAFLP extensions E1
ψ supported by M1

φ are produced,
which in turn produce the BDLPAF models M2

φ extended
by E1

ψ , and so on. Likewise, starting with the LPAF models
M0

φ , the sets E1
ψ , M1

φ , E2
ψ , . . ., are produced. We write the

sequences of BDLPAF models and BDAFLP extensions as
[M1

φ ,M2
φ , . . .] and [E1

ψ ,E2
ψ , . . .], respectively.

Proposition 3.7 Let [M1
φ ,M2

φ , . . .] and [E1
ψ ,E2

ψ , . . .] be se-

quences defined as above. Then, Mi
φ = Mi+1

φ and E j
ψ =

E j+1
ψ for some i, j ≥ 1.

Proof: If Mi
φ = ∅ for every i or E j

ψ = ∅ for every j,
the results hold by definition. Suppose that Ei

ψ ̸= ∅ and
Mi

φ ̸= ∅ for some i. If a BDAFLP extension E i ∈ Ei
ψ is

supported by Mi ∈ Mi
φ , then Mi ∩ A ⊆ E i. A BDLPAF

model Mi+1 ∈ Mi+1
φ is then constructed as a µ model of
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LPµ ∪{a←| a ∈ E i ∩LPµ |A}. Since (E i ∩LPµ |A) ⊆Mi+1,
it holds that Mi ∩ A ⊆ Mi+1 ∩ A. As such, arguments in
BDLPAF models increase monotonically. Since A is finite,
Mk ∩A = Mk+1 ∩A for some k (≥ 1). Then, arguments im-
ported from AF do not change, and any BDLPAF model
Mk ∈Mk

φ is also a BDLPAF model Mk+1 ∈Mk+1
φ . Hence,

Mk
φ = Mk+1

φ . The result E j
ψ = E j+1

ψ is shown in a similar
way. 2

4 Applications
This section provides applications of LPAF/AFLP to several
KR frameworks.

4.1 Abduction
Abductive logic programming (ALP) (Kakas, et al. 1992) is
a framework for realizing abduction in LP. An abductive
logic program is a pair ⟨P,A⟩ where P is a logic program
and A is a set of hypotheses called abducibles. In ALP ab-
ducibles are usually given as a set of ground atoms or also
given as a set of rules (Inoue 2014). An LPAF framework
⟨LPµ , AFω ⟩ is considered as an extension of ALP in which
potential consistent combinations of abductive hypotheses
are given by argumentation frameworks.

Definition 4.1 (abductive LPAF) Let φ = ⟨LPµ , AFω ⟩ be
a simple LPAF framework. Given a ground atom o as an
observation, o is explained in φ if φ has an LPAF model
M such that o ∈ M. In this case, the set M ∩A is called a
(credulous) explanation of o in φ where AFω = (A,R).

Scientific theories have been built through argumentation
over hypotheses. An LPAF framework is used for charac-
terizing the process by representing background knowledge
LPµ and scientific debates AFω .

Example 4.1 Suppose an LPAF φ = ⟨LPstb, AFstb ⟩ in
which AFstb represents a debate between Geocentrism
(Earth-centered) versus Heliocentrism (Sun-centered). It is
represented by AFstb = ({g,h},{(g,h),(h,g)}) in its most
condensed form where g represents Geocentrism and h rep-
resents Heliocentrism. Scientists believe that Venus shows
phases like Moon only if it goes around the Sun. The knowl-
edge is represented in LPstb as

v← h

where v represents “Venus shows phases”. In the 17th Cen-
tury, Galileo Galilei found that Venus went through phases
and concluded that Venus must travel around the Sun. The
observation is represented as o = v and φ has the LPAF
model {v,h} in which o is true. As a result, the observation
is explained by the hypothesis Heliocentrism.

Abduction in LPAF is extended to general LPAF when
there are multiple reasoners and multiple sources of hy-
potheses.

4.2 Deductive Argumentation
A structured argumentation is a framework such that there
is an internal structure to an argument. In structured ar-
gumentation, knowledge is represented using a formal lan-

guage and each argument is constructed from that knowl-
edge. Given a logical language L and a consequence re-
lation ⊢ in L , a deductive argument (Besnard and Hunter
2014) is defined as a pair ⟨F ,c⟩ where F is a set of for-
mulas in L and c is a (ground) atom such that F ⊢ c. F
is called the support of the argument and c is the claim. A
counterargument is an argument that attacks another argu-
ment. It is defined in terms of logical contradiction between
the claim of a counterargument and the premises of the claim
of an attacked argument.

An AFLP framework is captured as a kind of deductive
arguments in the sense that LP can support an argument a
appearing in AF . There is an important difference, however.
In an AFLP, argumentative reasoning in AF and deductive
reasoning in LP are separated. The AF part is kept at the ab-
stract level and the LP part represents reasons for supporting
particular arguments. In this sense, an AFLP provides a mid-
dle ground between abstract argumentation and structured
argumentation. Such a separation keeps the whole struc-
ture compact and makes it easy to update AF or LP with-
out changing the other part. Thus, AFLP/LPAF supports an
elaboration tolerant development of knowledge bases.

With such a difference in mind, we characterize deductive
argumentation in AFLP.
Definition 4.2 (support/rebut/undercut) Let ψ =
⟨AF1

ω1
, . . . ,AFn

ωn , LP1
µ1

, . . . ,LPm
µm ⟩ be a general AFLP

framework such that AF i
ωi

= (Ai,Ri) (1≤ i≤ n).

• An argument a∈ Ai is supported in LP j
µ j for some 1≤ j≤

m (written (LP j
µ j ,a)) if LP j

µ j |= a.

• (LP j
µ j ,a) and (LPk

µk
,b) rebut each other if

{(a,b), (b,a)} ⊆ Ri for some i.
• (LP j

µ j ,a) undercuts (LPk
µk

,b) if LPk
µk
∪{a} ̸|= b.

Example 4.2 (Besnard and Hunter 2014) (a) There is an ar-
gument that the government should cut spending because of
a budget deficit. On the other hand, there is a counterargu-
ment that the government should not cut spending because
the economy is weak. These arguments are respectively rep-
resented using deductive arguments as

A1 = ⟨{deficit, deficit→ cut}, cut ⟩,
A2 = ⟨{weak, weak→¬cut}, ¬cut ⟩

where A1 and A2 rebut each other. The situation is repre-
sented using the AFLP ⟨AFstb, LP1

stb, LP2
stb ⟩ such that

• AFstb = ({cut,no-cut}, {(cut,no-cut), (no-cut,cut)});
• LP1

stb = {cut← deficit, deficit←};
• LP2

stb = {no-cut← weak, weak←}.
Then (LP1

stb,cut) and (LP2
stb,no-cut) rebut each other.

(b) There is an argument that the metro is an efficient form
of transport, so one can use it. On the other hand, there is
a counterargument that the metro is inefficient because of a
strike. These arguments are respectively represented using
deductive arguments as

A1 = ⟨{efficient, efficient→ use}, use⟩,
A2 = ⟨{strike, strike→¬efficient}, ¬efficient ⟩
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where A2 undercuts A1.
The situation is represented using an AFLP

⟨AFstb, LP1
stb, LP2

stb ⟩ such that

• AFstb = ({efficient, inefficient},
{(efficient, inefficient),(inefficient,efficient)});

• LP1
stb = {use← efficient, efficient← not inefficient};

• LP2
stb = { inefficient← strike, strike←}.

Then (LP2
stb, inefficient) undercuts (LP1

stb, use).

4.3 Answer Set Programming
Answer set programming (ASP) (Brewka et al. 2007) is a
paradigm of declarative problem solving under the stable
model semantics of logic programs. In principle, problem
solving in ASP consists of two steps: firstly generate po-
tential solutions then check whether they are in fact solu-
tions. The first step requires combinatorial computation that
is generally exponential, while the second step is usually
polynomial. Then it is natural to seek the possibility of
rewriting an ASP program into two components, the gen-
eration part and the verification part, and separating compu-
tational processes. Here we provide an example of realizing
this using LPAF.

Example 4.3 The 3-coloring of a graph is a labelling of its
vertexes with at most 3 colors such that no two vertexes shar-
ing the same edge have the same color. This is a combinato-
rial search problem and it is represented in ASP as follows.

color(V,1)∨ color(V,2)∨ color(V,3)← vertex(V )

← color(V,C),color(V,D),C ̸= D
← color(V,C),color(W,C),edge(V,W )

together with a set of facts of vertex and edge. The first rule
is the generation part and the second and the third rules are
the verification part. The number of possible combinations
exponentially grows by the increase of vertexes. For sim-
plicity, we assume that there are 4 vertexes

vertex(a) vertex(b) vertex(c) vertex(d)

and 5 edges

edge(a,b) edge(b,c) edge(c,d) edge(d,a) edge(b,d).

In this case, one of the solutions is given as:

color(a,1) color(b,2) color(c,1) color(d,3).

The generation part is represented as the AFstb = (A,R) such
that

A = {ai, bi, ci, di | i = 1,2,3},
R = {ai↔ a j, bi↔ b j, ci↔ c j, di↔ d j |

1≤ i, j ≤ 3 (i ̸= j)}
where ai, bi, ci, di represent color(a, i), color(b, i),
color(c, i), color(d, i), respectively. Then the 3-coloring
problem is represented in LPAF as (LPstb,AFstb) where

LPstb = {← xi,yi,edge(xi,yi) | x,y ∈ {a,b,c,d} and x ̸= y}.

Generally, if a disjunctive logic program is head-cycle-
free4 it is transformed to a semantically equivalent normal
logic program (Ben-Eliyahu and Dechter 1994). Then we
can use existing techniques of encoding a normal logic pro-
gram under the stable model semantics into an argumenta-
tion framework under the stable extension semantics (Dung
1995; Caminada, et al. 2015). Given a head-cycle-free dis-
junctive logic program LP, it is split into LP = P∪Q where

P = {r | head(r) ̸= ∅} and Q = {r | head(r) = ∅}.
P is then transformed to a semantically equivalent normal
logic program n(P). Let AFn(P)

stb be an AF encoding of n(P)
under the stable model/extension semantics.

Proposition 4.1 Let LP = P∪Q be a head-cycle-free dis-
junctive logic program. Then S is an answer set of LP iff S is
an LPAF model of the LPAF framework φ = (Qstb, AFn(P)

stb ).

4.4 Argument Aggregation
Argument aggregation or collective argumentation (Bo-
danza, et al. 2017) considers a situation in which multiple
agents may have different arguments and/or opinions. The
problems are then what and how to aggregate arguments.
In abstract argumentation, the problem is formulated as fol-
lows. Given several AFs having different arguments and
attacks, find acceptable arguments among those AFs. In
the argument-wise aggregation individually supported argu-
ments are aggregated by some voting mechanism.

Example 4.4 (Bodanza, et al. 2017) Suppose three agents
deciding which among three arguments a, b, and c, are col-
lectively acceptable. Each agent has a subjective evaluation
of the interaction among those arguments, leading to three
different individual AFs:

AF1 = ({a,b,c}, {(a,b),(b,c)}),
AF2 = ({a,b,c}, {(a,b)}),
AF3 = ({a,b,c}, {(b,c)}).

Three AFs have the grounded extensions {a,c}, {a,c}, and
{a,b}, respectively. By majority voting, {a,c} is obtained
as the collective extension.

In this example, however, how an agent performs a sub-
jective evaluation is left as a blackbox. The situation is rep-
resented using a general AFLP as follows. Consider a gen-
eral AFLP ψ = ⟨AFgrd , LP1

stb, LP2
stb, LP3

stb ⟩ with

AFgrd = ({a,b,c}, {(a,b),(b,c)}),
LP1

stb = { p← not q},
LP2

stb = {c← p, p←},
LP3

stb = {b← not q}.
Then (AFgrd ,LP1

stb) has the AFLP extension {a,c};
(AFgrd ,LP2

stb) has the AFLP extension {a,c}; (AFgrd ,LP3
stb)

4A disjunctive logic program LP is head-cycle-free if the (pos-
itive) dependency graph of LP contains no directed cycle that goes
through two different atoms in the head of the same disjunctive rule
in LP.
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has the AFLP extension {a,b}. In this case, the AFLP state
of ψ is (Γ) where Γ = ({{a,c}}, {{a,c}}, {{a,b}}). As
such, three agents evaluate the common AF based on their
private knowledge base, which results in three individual
sets of extensions in the AFLP state. Observe that in this
case, the private knowledge of the agents are related to p
and q, and only the third agent is influenced by his private
knowledge base in drawing the conclusions.

When multiple agents argue on the common AF,
argument-wise aggregation is characterized using AFLP as
follows. Suppose Γ = (T1, . . . ,Tk) with Ti ⊆ 2A where A is
the set of arguments of AF. For any E ⊆ A, let FΓ(E) = h
where h is the number of occurrences of E in T1, . . . ,Tk. De-
fine maxFΓ = {E |FΓ(E) is maximal}.
Definition 4.3 (collective extension) Let ψ =
⟨AFω , LP1

µ1
, . . . , LPm

µm ⟩ be a general AFLP that has
the AFLP state (Γ) with Γ = (T1, . . . ,Tm). Then the
collective extension by majority voting is any extension in
maxFΓ.

Applying it to the above example, maxFΓ = {{a,c}}. In
Definition 4.3, if there is E ⊆ A such that FΓ(E) = m, then
E is included in every Ti (1≤ i≤m). In this case, all agents
agree on E.

4.5 Multi-Context System
Heterogeneous non-monotonic multi-context system (MCS)
has been introduced as a general formalism for integrat-
ing heterogeneous knowledge bases (Brewka and Eiter
2007). An MCS M = (C1, . . . ,Cn) consists of contexts
Ci = (Li,kbi,bri) (1 ≤ i ≤ n), where Li = (KBi,BSi,ACCi)
is a logic, kbi ∈ KBi is a knowledge base of Li, BSi is the
set of possible belief sets, ACCi : KBi 7→ 2BSi is a semantic
function of Li, and bri is a set of Li-bridge rules of the form:

s← (c1:p1), . . . ,(c j:p j), not (c j+1:p j+1), . . . , not (cm:pm)

where, for each 1 ≤ k ≤ m, we have that: 1 ≤ ck ≤ n, pk is
an element of some belief set of Lck , and kbi ∪{s} ∈ KBi.
Intuitively, a bridge rule allows us to add s to a context,
depending on the beliefs in the other contexts. Given a
rule r of the above form, we denote head(r) = s. The se-
mantics of MCS is described by the notion of belief states.
Let M = (C1, . . . ,Cn) be an MCS. A belief state is a tuple
S = (S1, . . . ,Sn) where each Si is an element of BSi.

Given a belief state S = (S1, . . . ,Sn) and a bridge rule r
of the above form, we say that r is applicable in S if pl ∈
Scl for each 1 ≤ l ≤ j and pk ̸∈ Sck for each j + 1 ≤ k ≤
m. By app(B,S) we denote the set of the bridge rules r ∈
B that are applicable in S. A belief state S = (S1, . . . ,Sn)
of M is an equilibrium if, for all 1 ≤ i ≤ n, we have that
Si ∈ ACCi(kbi∪{head(r) | r ∈ app(bri,S)}).

Given an LPAF framework φ = ⟨LPµ , AFω ⟩, the corre-
sponding MCS of φ is defined by φmcs = (C1,C2) where

• C1 = (L1,LPµ ,br1) where L1 is the logic of LP under the
µ semantics and br1 = {a← (c2 : a) | a ∈ LP|A}.

• C2 = (L2,AFω ,∅) where L2 is the logic of AF under the
ω semantics.

Intuitively, the bridge rules transfer the acceptability of ar-
guments in AFω to LPµ .

Proposition 4.2 Let φ = ⟨LPµ ,AFω ⟩ be an LPAF frame-
work and φmcs the corresponding MCS of φ . If AFω is con-
sistent then (S1,S2) is an equilibrium of φmcs iff S1 is an
LPAF model of φ and S2 is an ω extension of AFω .

Let ψ = ⟨AFω , LPµ ⟩ be an AFLP framework with AFω =
(A,R). The corresponding MCS of ψ is defined by ψmcs =
(C1,C2) where

• C1 = (L1,AFω ,br1) where L1 is the logic of AF under the
ω semantics, and br1 = {(y,x)← (c2 : a) | ∃a∃x [a ∈ A∩
BLP and (x,a) ∈ R]} where y is a new argument.

• C2 = (L2,LPµ ,∅) where L2 is the logic of LP under the µ
semantics.

As with LPAF, the bridge rules transfer the acceptability
of arguments from LPµ to AFω . We assume that new ar-
guments and attacks introduced by the bridge rules br1 are
respectively added to the set of arguments and attacks of AF .

Proposition 4.3 Let ψ = ⟨AFω ,LPµ ⟩ be an AFLP frame-
work and ψmcs the corresponding MCS of ψ . If LPµ is con-
sistent then (S1,S2) is an equilibrium of ψmcs iff S1 \Y is an
AFLP extension of ψ and S2 is a µ model of LPµ , where Y
is the set of new arguments introduced by br1.

A general LPAF φ = ⟨LP1
µ1

, . . . ,LPm
µm , AF1

ω1
, . . . ,AFn

ωn ⟩
can be viewed as a collection of MCS. Let C j

i be the cor-
responding MCS of ⟨LPi

µi
,AF j

ω j ⟩. It is easy to see that due
to Proposition 4.2, (C1

i , . . . ,Cn
i ) can be used to characterize

the i-th element Σi of the LPAF state (Σ1, . . . ,Σm) of φ . A
similar characterization of an AFLP state using MCS could
be derived due to Proposition 4.3.

A simple LPAF/AFLP is captured as an MCS with a re-
striction of two systems (Propositions 4.2 and 4.3). How-
ever, φmcs (resp. ψmcs) is well-defined only if its submodule
AFω (resp. LPµ ) is consistent. This is because an MCS as-
sumes that each context is consistent. Moreover, a general
LPAF/AFLP can handle LPs and AFs with different seman-
tics in a single framework. As such, LPAF/AFLP shares a
view similar to MCS while it is different from MCS.

4.6 Constrained Argumentation Frameworks
Constrained argumentation frameworks (CAF), proposed in
(Coste-Marquis, et al. 2006), could be viewed as another at-
tempt to extend AF with a logical component. A CAF is of
the form ⟨A,R,C ⟩ where (A,R) is an AF and C is a propo-
sitional formula over A. A set of arguments S satisfies C
if S∪ {¬a | a ∈ A \ S} |= C. For a semantics ω , an ω C-
extension of ⟨A,R,C ⟩ is an ω extension of (A,R) that satis-
fies C, i.e., the constraint C is used to eliminate undesirable
extensions. Therefore, a CAF can be viewed as an LPAF
(LPµ ,AFω) where AFω is the original argumentation frame-
work of the CAF and LPµ is used to verify the condition C.

Consider a CAF δ = ⟨A,R,C ⟩. For simplicity of the pre-
sentation, assume that C is in DNF. For a ∈ A, let na be a
unique new atom associated with a, denoting that a is not
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acceptable. Let ⊤ be a special atom denoting true. Then,
define the logic program LP(C) as follows:

LP(C) = {⊤← l′1, . . . , l
′
n | a conjunct l1∧·· ·∧ ln is in C

and l′i = a if li = a, and l′i = not a if li = ¬a}
∪ {na← not a, ← a,na | a ∈ A}
∪ {← not⊤}.

We can easily verify that a set of arguments S satisfies C
iff S∪{na | a ∈ A\S}∪{⊤} is a stable model of LP(C).

Proposition 4.4 Let δ = ⟨A,R,C ⟩ be a CAF. Then,
(LP(C)stb,AFω) has an LPAF model M iff M \ ({na | a ∈
A}∪{⊤}) is an ω C-extension of δ .

This highlights the flexibility of LPAF in that it can also be
used to express preferences among extensions of AF.

5 Discussion
There is a number of studies that interrelates logic pro-
gramming and argumentation frameworks. Caminada et al.
(2015) introduce two different connections. First, given a
logic program LP its associated argumentation framework
AFLP is defined. In AFLP each rule is viewed as an argument
A that has the conclusion in its head, and subarguments (as
positive literals) and vulnerabilities (as negative literals) in
its body. They show connections between a logic program-
ming semantics of LP and a set of conclusions appearing in
arguments of AFLP. For instance, given the program LP:

p← not q, q← r, not p, r← s, s←
its associated AFLP is defined as

A1 : s← A2 : r← (A1)

A3 : q← (A2), not p A4 : p← not q

where A1−A4 are arguments, and A3 and A4 mutually attack
each other. AFLP has two stable extensions: {A1,A2,A3}
and {A1,A2,A4} where the sets of conclusions {q,s,r} and
{p,s,r} are the stable models of P. On the other hand, AFLP
has the grounded extension {A1,A2} where the set of con-
clusions {s,r} is the well-founded model of LP.

Second, an argumentation framework is transformed to a
logic program. Given an argumentation framework AF =
(A,R), its associated LP is defined as:

LPAF = {A← not B1, . . . ,not Bm | A,B1, . . . ,Bm ∈ A
and {Bi | (Bi,A) ∈ R}= {B1, . . . ,Bm }}.

Then there are 1-1 correspondence between ar-
gumentation semantics of AF and logic program-
ming semantics of LPAF . For instance, given
AF = ({a,b,c},{(a,b),(b,a),(c,b),(c,c)}), LPAF be-
comes {a← not b, b← not a, not c, c← not c}. Then
the stable extensions of AF are equivalent to the stable
semantics of LPAF , and the grounded extension of AF is
equivalent to the well-founded semantics of LPAF , etc.

AFLP is similar to deductive argument discussed in Sec-
tion 4.2. As argued there, however, the AFLP framework
introduced in this paper separates argumentation and rules.
Thus, it is different from AFLP in which rules are parts of

arguments. On the other hand, LPAF translates AF into
a program LP. Given a simple LPAF framework φ =
⟨LPµ , AFω ⟩, AFω is translated into a logic program LPAFω .
Then two programs are combined as Π = LPµ ∪ LPAFω .
However, two programs have different semantics in general,
and in this case we cannot handle Π as a single program.
For instance, if µ = ω = stable then the stable model se-
mantics of Π is well-defined. However, if µ = stable and
ω = grounded then the corresponding semantics of LPAFω is
the well-founded semantics, so we cannot combine two pro-
grams having different semantics. As such, an LPAF frame-
work cannot straightforwardly be encoded in a single LP in
general. It is often possible to convert a semantics to an-
other semantics in the syntax level. For instance, supported
models are encoded as answer sets using nested expressions
(Lifschitz, et al. 1999), and partial stable models can be cap-
tured with standard stable models (Janhunen, et al. 2006).
However, it requires an extra step to convert semantics from
one to the other using program transformation. Moreover, it
is unclear whether such conversion among different seman-
tics is always possible for every LP or AF semantics. The
proposed framework is much simpler because there is no
need to merge two frameworks into one, and LP or AF can
employ its own semantics independently with each other.

The complexity of LPAF/AFLP depends on the complex-
ities of LP and AF. Let us consider the model existence
problem of simple LPAF/AFLP frameworks, denoted with
ExistsM , which is defined by “given an LPAF/AFLP frame-
work λ , determine whether λ has a model?” For a sim-
ple LPAF framework φ = ⟨LPµ , AFω ⟩, the existence of an
LPAF model of φ depends on µ and ω . For example, if
µ = well-founded and ω = grounded then φ has a unique
LPAF model which can be computed in polynomial time (if
LP is a normal logic program); on the other hand, µ = stable
and ω = stable then the existence of an LPAF model of φ is
not guaranteed.

Let Cµ and Cω be the complexity classes of LPµ and AFω
in the polynomial hierarchy, respectively, and max(Cµ ,Cω)
the higher complexity class among Cµ and Cω . It is easy
to see that the model existence problem of a simple LPAF
belongs to the complexity class max(Cµ ,Cω). Intuitively,
this follows from the observation that we can guess a pair
(X ,Y ) and check whether Y is an ω extension of AFω and X
is a µ model of LPµ ∪{a←| a ∈ Y ∩LP|A}. A similar argu-
ment is done for a simple AFLP framework. As an example,
the existence of a stable model of a propositional disjunctive
LP is in ΣP

2 (Eiter, et al. 1998) while the existence of ex-
tensions in AF is generally in NP or trivial, then ExistsM

for LPAF/AFLP involving µ = stable is in ΣP
2 where ω is

one of the semantics of AF considered in this paper. Other
semantics of AF (e.g. semi-stable, ideal, etc.) or LP (e.g.
supported, possible models, etc.) can be easily adapted.

The model existence problem of simple LPAF/AFLP can
be generalized to the state existence problem of general
LPAF/AFLP frameworks, and it can be shown that it is the
highest complexity class among all complexity classes in-
volved in the general framework. Similar arguments can be
used to determine the complexity class of credulous or skep-
tical reasoning in LPAF/AFLP. For example, the credulous
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entailment in LPAF, i.e., checking whether an atom a be-
longs to an LPAF model of φ = ⟨LPstb,AFω ⟩ is also ΣP

2 . We
omit the discussion for space limitation.

In the current frameworks, LP imports ω extensions from
AF in LPAF, while AF imports µ models from LP in AFLP.
We can also consider frameworks such that LP (resp. AF)
imports skeptical/credulous consequences from AFω (resp.
LPµ ). Such frameworks are realized by importing the inter-
section/union of ω extensions of AF to LP, or importing the
intersection/union of µ models of LP to AF. In this paper we
considered extension based semantics of AF. If we consider
the labelling based semantics of AF, on the other hand, each
argument has three different justification states, in, out, or
undecided. In this case, selecting a 3-valued semantics of
logic programs, LPAF/AFLP is defined in a similar manner.

6 Conclusion
We introduced several frameworks for interlinking LP and
AF. LPAF and AFLP enable to combine different reasoning
tasks while keeping independence of each knowledge repre-
sentation. The potential of the proposed framework is shown
by several applications to existing KR frameworks. LPAF or
AFLP are realized by linking solvers of LP and AF.

LP and AF are two declarative KR frameworks and sev-
eral studies have attempted to integrate them–translating
from LP to AF and vice-versa, or incorporating rule bases
into an AF in the context of structured argumentation. An
approach taken in this paper is completely different from
those approaches. We do not merge LP and AF while inter-
linking two components in different manners. Separation of
two frameworks has an advantage of flexibility in dynamic
environments, and several LPs and AFs are freely combined
in general LPAF/AFLP frameworks. In addition, it supports
an elaboration tolerant use of various knowledge representa-
tion frameworks.

The current framework can be further extended and ap-
plied in several ways. For instance, we can extend it to al-
low a single LP/AF to refer multiple AFs/LPs. If AFω is
coupled with a probabilistic logic program LPµ , an AFLP
(AFω ,LPµ) could be used for computing probabilities of ar-
guments in LPµ and realizing probabilistic argumentation in
AFω (Hunter 2013). As such, the proposed framework has
potential for rich applications in AI.
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