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A Unifying Framework for Strong Structural Controllability
Jiajia Jia , Henk J. van Waarde , Harry L. Trentelman , Fellow, IEEE,

and M. Kanat Camlibel , Member, IEEE

Abstract—This article deals with strong structural controlla-
bility of linear systems. In contrast to the existing work, the
structured systems studied in this article have a so-called
zero/nonzero/arbitrary structure, which means that some of the
entries are equal to zero, some of the entries are arbitrary but
nonzero, and the remaining entries are arbitrary (zero or nonzero).
We formalize this in terms of pattern matrices, whose entries are
either fixed zero, arbitrary nonzero, or arbitrary. We establish nec-
essary and sufficient algebraic conditions for strong structural
controllability in terms of full rank tests of certain pattern matrices.
We also give a necessary and sufficient graph-theoretic condition
for the full rank property of a given pattern matrix. This graph-
theoretic condition makes use of a new color change rule that
is introduced in this article. Based on these two results, we then
establish a necessary and sufficient graph-theoretic condition for
strong structural controllability. Moreover, we relate our results
to those that exist in the literature and explain how our results
generalize previous work.

Index Terms—Network controllability, pattern matrices, strong
structural controllability, structured system.

I. INTRODUCTION

Controllability is a fundamental concept in systems and control. For
linear time-invariant systems of the form

ẋ(t) = Ax(t) +Bu(t) (1)

controllability can be verified using the Kalman rank test or the Hautus
test [1]. Often, the exact values of the entries in the matrices A and B
are not known, but the underlying interconnection structure between
the input and state variables is known exactly.

In order to formalize this, Mayeda and Yamada have introduced a
framework, in which, instead of a fixed pair of real matrices, only the
zero/nonzero structure of A and B is given [2]. This means that each
entry of these matrices is known to be either a fixed zero or an arbitrary
nonzero real number. Given this zero/nonzero structure, they then study
controllability of the family of systems, for which the state and input
matrices have this zero/nonzero structure. In this setup, this family of
systems is called strongly structurally controllable if all members of
the family are controllable in the classical sense [2].

Most of the existing literature up to now has considered strong
structural controllability under the above rather restrictive assumption
that for each of the entries of the system matrices, there are only

Manuscript received September 2, 2019; revised January 13, 2020;
accepted February 29, 2020. Date of publication March 17, 2020; date
of current version December 24, 2020. The work of Jiajia Jia was
supported by the China Scholarship Council. The work of Henk J. van
Waarde was supported by the Data Science and Systems Complexity
Center at the Univrsity of Groningen. Recommended by Associate Edi-
tor Z. Gao. (Corresponding author: M. Kanat Camlibel.)

The authors are with the Bernoulli Institute for Mathematics, Com-
puter Science and Artificial Intelligence, University of Groningen 9747
AG, Groningen, The Netherlands (e-mail: j.jia@rug.nl; h.j.van.waarde@
rug.nl; h.l.trentelman@rug.nl; m.k.camlibel@rug.nl).

Digital Object Identifier 10.1109/TAC.2020.2981425

Fig. 1. Example of electrical circuit.

two possibilities: it is either a fixed zero, or an arbitrary nonzero
value [2]–[9]. There are, however, many scenarios, in which, in addition
to these two possibilities, there is a third possibility, namely, that a given
entry is not a fixed zero or nonzero, but can take any real value. In such a
scenario, it is not possible to represent the system using a zero/nonzero
structure, but a third possibility needs to be taken into account. To
illustrate this, consider the following example.

Example 1: The electrical circuit in Fig. 1 consists of a resistor, two
capacitors, an inductor, an independent voltage source, an independent
current source, and a current-controlled voltage source. Assume that
the parameters R,C1, C2, and L are positive but not known exactly.
We denote the current through R, L, and C1 by IR, IL, and IC1

,
respectively, and the voltage across C1 and C2 by VC1

and VC2
,

respectively. The current-controlled voltage source is represented by
GIC1

with gain G assumed to be positive. Define the state vector as
x = [VC1

VC2
IL]

T and the input as u = [V I]T . By Kirchhoff’s current
and voltage laws, the circuit is represented by a linear time-invariant
system (1) with

A =

⎡
⎢⎣−

1
RC1

0 − 1
C1

0 0 − 1
C2

R−G
RL

1
L

−G
L

⎤
⎥⎦ , B =

⎡
⎢⎣

1
RC1

0

0 − 1
C2

G−R
RL

0

⎤
⎥⎦ . (2)

Recall that the parameters R,C1, C2, L > 0 are not known exactly.
This means that the matrices in (2) are not known exactly, but we do
know that they have the following structure. First, some entries are fixed
zeros. Second, some of the entries are always nonzero, for instance, the
entry with value − 1

RC1
. The third type of entries, those with value

R−G
RL

and G−R
RL

, can be either zero (if R = G) or nonzero. Since the
system matrices in this example do not have a zero/nonzero structure,
the existing tests for strong structural controllability [2]–[8] are not
applicable.

A similar problem as in Example 1 appears in the context of linear
networked systems. Strong structural controllability of such systems
has been well studied [7], [8], [10]–[12]. In the setup of these references,
the weights on the edges of the network graph are unknown, while
the network graph itself is known. Under the assumption that the
edge weights are arbitrary but nonzero, linear networked systems can,
thus, be regarded as systems with a given zero/nonzero structure. This
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zero/nonzero structure is determined by the network graph, in the sense
that nonzero entries in the system matrices correspond to edges in the
network graph. However, often even exact knowledge of the network
graph is not available, in the sense that it is unknown whether certain
edges in the graph exist or not. This issue of missing knowledge appears,
for example, in social networks [13], the world wide web [14], biolog-
ical networks [15], [16], and ecological systems [17]. Another cause
for uncertainty about the network graph might be malicious attacks
and unintentional failures. This issue is encountered in transportation
networks [18], sensor networks [19] and gas networks [20].

To conclude, both in the context of modeling physical systems and
in representing networked systems, capturing the system simply by
a zero/nonzero structure is not always possible, and a more general
concept of system structure is required. The papers [10], [11], [21]–[24]
study classes1 of zero/nonzero/arbitrary patterns in the context of strong
structural controllability. However, necessary and sufficient conditions
for strong structural controllability of general zero/nonzero/arbitrary
patterns have not yet been established.

The goal of this article is to provide such general necessary and
sufficient conditions. In particular, our main contributions are the
following.
1) We extend the notion of zero/nonzero structure to a more general

zero/nonzero/arbitrary structure and formalize this structure in
terms of suitable pattern matrices.

2) We establish necessary and sufficient conditions for strong
structural controllability for families of systems with a given
zero/nonzero/arbitrary structure. These conditions are of an al-
gebraic nature and can be verified by a rank test on two pattern
matrices.

3) We provide a graph-theoretic condition for a given pattern matrix
to have full row rank. This condition can be verified using a new
color change rule, that will be defined in this article.

4) We establish a graph-theoretic test for strong structural controlla-
bility for the new families of structured systems.

5) Finally, we relate our results to those existing in the literature
by showing how existing results can be recovered from those we
present in this article. We find that seemingly incomparable results
of [8] and [10] follow from our main results, which reveals an
overarching theory. For these reasons, our article can be seen as
a unifying approach to strong structural controllability of linear
time-invariant systems without parameter dependencies.

We conclude this section by giving a brief account of research lines
that are related to strong structural controllability but that will not
be pursued in this article. The concept of weak structural controlla-
bility was introduced by Lin [25] and has been studied extensively
(see [25]–[31]). Another, more recent, line of work focuses on structural
controllability of systems, for which there are dependencies among the
arbitrary entries of the system matrices [32], [33]. An important special
case of dependencies among parameters arises when the state matrix
is constrained to be symmetric, which was considered in [11], [34],
and [35]. The problem of minimal input selection for controllability
has also been well studied (see e.g., [36]–[39]). Strong structural
controllability was also studied for time-varying systems in [40], and
conditions for controllability were established for both discrete-time
and continuous-time systems. Finally, weak and strong structural tar-
geted controllability have been investigated in [41] and [22], [42],
respectively.

The outline of the rest of this article is as follows. In Section II,
we present some preliminaries. Next, in Section III, we formulate the
main problem treated in this article. Then, in Section IV, we state our
main results. Section V contains a comparison of our results with

1In [10], [11], and [21]–[23], a special structure where only the diagonal
entries of the state matrix are arbitrary entries (typically arising from a network
context) was studied. In [24], the authors call zero/nonzero/arbitrary structure a
“selective structure.”

previous work. In Section VI, we state proofs of the main results.
Finally, Section VII concludes this article.

II. PRELIMINARIES

Let R and C denote the fields of real and complex numbers, re-
spectively. The spaces of n-dimensional real and complex vectors are
denoted by Rn and Cn, respectively. Likewise, the space of n×m real
matrices is denoted by Rn×m.

Moreover, I and 0 will denote the identity and zero matrix of
appropriate dimensions, respectively.

In this article, we will use the so-called pattern matrices. By a pattern
matrix, we mean a matrix with entries in the set of symbols {0, ∗, ?}.
These symbols will be given a meaning in the following.

The set of all p× q pattern matrices will be denoted by {0, ∗, ?}p×q .
For a given p× q pattern matrix M, we define the pattern class of
M as

P(M) := {M ∈ Rp×q | Mij = 0 if Mij = 0,

Mij �= 0 if Mij = ∗}.
This means that for a matrix M ∈ P(M), the entry Mij is either:
1) zero if Mij = 0; 2) nonzero if Mij = ∗; or 3) arbitrary (zero or
nonzero) if Mij = ?.

III. PROBLEM FORMULATION

Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices.
Consider the linear dynamical system

ẋ(t) = Ax(t) +Bu(t) (3)

where the system matrix A is in P(A) and the input matrix B is in
P(B), and where x ∈ Rn is the state and u ∈ Rm is the input.

We will call the family of systems (3) a structured system. To simplify
the notation, we denote this structured system by the ordered pair of
pattern matrices (A,B).

Example 2: Consider the electrical circuit discussed in Example 1.
Recall that this was modeled as the state-space system (2), in which
the entries of the system matrix and input matrix were either fixed
zeros, strictly nonzero, or undetermined. This can be represented as a
structured system (A,B) with pattern matrices

A =

⎡
⎢⎣∗ 0 ∗
0 0 ∗
? ∗ ∗

⎤
⎥⎦ and B =

⎡
⎢⎣∗ 0

0 ∗
? 0

⎤
⎥⎦ . (4)

In this article, we will study structural controllability of structured
systems. In particular, we will focus on strong structural controllability,
which is defined as follows.

Definition 3: The system (A,B) is called strongly structurally
controllable if the pair (A,B) is controllable for all A ∈ P(A) and
B ∈ P(B).

The problem that we will investigate in this article is stated as follows.
Problem 4: Given two pattern matrices A ∈ {0, ∗, ?}n×n and B ∈

{0, ∗, ?}n×m, provide necessary and sufficient conditions, under which
(A,B) is strongly structurally controllable.

In the remainder of this article, we will simply call the structured
system (A,B) controllable if it is strongly structurally controllable.

Remark 5: In addition to strong structural controllability, weak
structural controllability has also been studied extensively. This con-
cept was introduced by Lin [25]. Instead of requiring all systems in
a family associated with a given structured system to be controllable,
weak structural controllability only asks for the existence of at least
one controllable member of that family (see [25]–[27]). In these refer-
ences, conditions were established for weak structural controllability
of structured systems, in which the pattern matrices only contain 0
or ? entries. The question then arises: Is it possible to generalize
the results from [25]–[27] to structured systems in the context of
our article, with more general pattern matrices A ∈ {0, ∗, ?}n×n and
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B ∈ {0, ∗, ?}n×m? Indeed, it turns out that the results in [25]–[27]
can immediately be applied to assess weak structural controllabil-
ity of our more general structured systems. To show this, for given
pattern matrices A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m, we define
two new pattern matrices A′ ∈ {0, ?}n×n and B′ ∈ {0, ?}n×m as fol-
lows: A′

ij = 0 ⇐⇒ Aij = 0 and B′
ij = 0 ⇐⇒ Bij = 0. The new

structured system (A,′ B′) is now a structured system of the form
studied in [25]–[27]. Using the fact that weak structural controllability
is a generic property [26], it can then be shown that weak structural
controllability of (A,′ B′) is equivalent to that of (A,B). In other words,
weak structural controllability of general (A,B) can be verified using
the conditions established in previous work [25]–[27].

IV. MAIN RESULTS

In this section, the main results of this article will be stated. First, we
will establish an algebraic condition for controllability of a given struc-
tured system. This condition states that controllability of a structured
system is equivalent to full rank conditions on two pattern matrices
associated with the system. Second, a graph-theoretic condition for a
given pattern matrix to have full row rank will be given in terms of a so-
called color change rule. Finally, based on the above algebraic condition
and the graph-theoretic condition, we will establish a graph-theoretic
necessary and sufficient condition for controllability of a structured
system.

Our first main result is a rank test for controllability of a structured
system. In the following, we say that a pattern matrix M has full row
rank if every matrix M ∈ P(M) has full row rank.

Theorem 6: The system (A,B) is controllable if and only if the
following two conditions hold.
1) The pattern matrix [A B] has full row rank.
2) The pattern matrix [Ā B] has full row rank, where Ā is the pattern

matrix obtained from A by modifying the diagonal entries of A as
follows:

Āii :=

{
∗ if Aii = 0

? otherwise.
(5)

We note here that the two rank conditions in Theorem 6 are in-
dependent, in the sense that one does not imply the other in gen-
eral. To show that the first rank condition does not imply the sec-
ond, consider the pattern matrices A, the corresponding Ā, and B
given by

A =

[
∗ ∗
0 0

]
, Ā =

[
? ∗
0 ∗

]
, and B =

[
∗
∗

]
.

It is evident that the pattern matrix [A B] has full row rank. However,
for the choice

Ā =

[
0 1

0 1

]
∈ P(Ā) and B =

[
1

1

]
∈ P(B)

the matrix [Ā B] does not have full row rank.
To show that the second condition does not imply the first one,

consider the pattern matrix A, the corresponding Ā, and B given by

A =

[
? 0

∗ 0

]
, Ā =

[
? 0

∗ ∗

]
, and B =

[
∗
∗

]
.

Obviously, the pattern matrix [Ā B] has full row rank. However, for
the choice

A =

[
1 0

1 0

]
∈ P(A) and B =

[
1

1

]
∈ P(B)

we see that [A B] does not have full row rank.
Next, we discuss a noteworthy special case, in which the first rank

condition in Theorem 6 is implied by the second one. Indeed, if none of

Fig. 2. Graph G(M) associated with M.

the diagonal entries ofA is zero, it follows from (5) thatP(A) ⊆ P(Ā).
Hence, we obtain the following corollary to Theorem 6.

Corollary 7: Suppose that none of the diagonal entries of A is zero.
Let Ā be as defined in (5). The system (A,B) is controllable if and only
if [Ā B] has full row rank.

Note that both [A B] and [Ā B] appearing in Theorem 6 are n×
(n+m) pattern matrices. Next, we will develop a graph-theoretic test
for checking whether a given pattern matrix has full rank. To do so, we
first need to introduce some terminology.

Let M ∈ {0, ∗, ?}p×q be a pattern matrix with p ≤ q. We associate
a directed graph G(M) = (V,E) with M as follows. Take as node
set V = {1, 2, . . . , q} and define the edge set E ⊆ V × V such that
(j, i) ∈ E if and only if Mij = ∗ or Mij = ?. If (i, j) ∈ E, then we
call j an out-neighbor of i. Also, in order to distinguish between ∗ and
? entries in M, we define two subsets E∗ and E? of the edge set E
as follows: (j, i) ∈ E∗ if and only if Mij = ∗ and (j, i) ∈ E? if and
only if Mij = ?. Then, obviously, E = E∗ ∪E? and E∗ ∩E? = ∅.
To visualize this, we use solid and dashed arrows to represent edges in
E∗ and E?, respectively.

Example 8: As an example, consider the pattern matrix M
given by

M =

⎡
⎢⎢⎢⎣
0 0 ∗ 0 0

0 ∗ ∗ ? ∗
∗ 0 ? 0 0

0 ∗ 0 0 ?

⎤
⎥⎥⎥⎦ .

The associated directed graph G(M) is then given in Fig. 2.
Next, we introduce the notion of colorability for G(M) given as

follows:
1) initially, color all nodes of G(M) white;
2) if a node i has exactly one white out-neighbor j and (i, j) ∈ E∗,

we change the color of j to black;
3) repeat step 2 until no more color changes are possible.

The graph G(M) is called colorable if the nodes 1, 2, . . . , p are
colored black following the procedure above. Note that the remaining
nodes p+ 1, . . . , q can never be colored black, since they have no
incoming edges.

We refer to step 2 in the above procedure as the color change rule.
Similar color change rules have appeared in the literature before (see
e.g., [8], [10], and [43]). Unlike some of these rules, node i in step 2
does not need to be black in order to change the color of a neighboring
node.

Example 9: Consider the pattern matrix M given by

M =

⎡
⎢⎢⎢⎣
∗ 0 0 0 ∗ 0

0 ? 0 ∗ 0 ∗
∗ 0 0 ∗ 0 0

0 ? ∗ ∗ 0 0

⎤
⎥⎥⎥⎦ .

The directed graph G(M) associated with M is depicted in Fig. 3(a).
By repeated application of the color change rule, as shown in

Authorized licensed use limited to: University of Groningen. Downloaded on February 09,2022 at 15:46:54 UTC from IEEE Xplore.  Restrictions apply. 



394 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 1, JANUARY 2021

Fig. 3. Example of a colorable graph. (a) Graph G(M). (b) Node 5
colors 1 and Node 6 colors 2. (c) Node 1 colors 3. (d) Node 3 colors 4.

Fig. 4. Graphs associated with the circuit in Example 1. (a) Graph
G([A B]). (b) Graph G([Ā B]).

Fig. 3(b)–(d), we obtain the derived setD = {1, 2, 3, 4}. Hence,G(M)
is colorable.

The following theorem now provides a necessary and sufficient
graph-theoretic condition for a given pattern matrix to have full row
rank.

Theorem 10: Let M ∈ {0, ∗, ?}p×q be a pattern matrix with p ≤ q.
Then, M has full row rank if and only if G(M) is colorable.

It is clear from the definition of the color change rule that colorability
of a given graph can be checked in polynomial time.

Finally, based on the rank test in Theorem 6 and the result in
Theorem 10, the following necessary and sufficient graph-theoretic
condition for controllability of a given structured system is obtained.

Theorem 11: Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pat-
tern matrices. Also, let Ā be obtained fromA by modifying the diagonal
entries of A as follows:

Āii :=

{
∗ if Aii = 0

? otherwise.
(6)

Then, the structured system (A,B) is controllable if and only if both
G([A B]) and G([Ā B]) are colorable.

As an example, we study controllability of the electrical circuit
discussed in Example 1.

Example 12: According to Example 2, the electrical circuit de-
picted in Fig. 1 can be modeled as a structured system of the form
(3). For this example, we have

A =

⎡
⎢⎣∗ 0 ∗
0 0 ∗
? ∗ ∗

⎤
⎥⎦ , B =

⎡
⎢⎣∗ 0

0 ∗
? 0

⎤
⎥⎦ , and Ā =

⎡
⎢⎣? 0 ∗
0 ∗ ∗
? ∗ ?

⎤
⎥⎦ .

TABLE I
GRAPH-THEORETIC CONDITIONS ARE ABBREVIATED BY “GTC” AND

ALGEBRAIC CONDITIONS BY “AC”

The graphs G([A B]) and G([Ā B]) are depicted in Fig. 4(a) and
(b), respectively. Both graphs are colorable. Indeed, node 5 colors 2,
node 2 colors 3, and finally node 3 colors 1 in both graphs. Therefore,
the system (A,B) is controllable by Theorem 11.

By applying Theorem 11 to the special case discussed in Corollary 7,
we obtain the following.

Corollary 13: Suppose that none of the diagonal entries ofA is zero.
Let Ā be defined as in (6). Then, the system (A,B) is controllable if
and only if G([Ā B]) is colorable.

To conclude this section, the results we have obtained for control-
lability lead to an interesting observation in the context of structural
stabilizability. We say that a structured system (A,B) is stabilizable if
the pair (A,B) is stabilizable for all A ∈ P(A) and B ∈ P(B).

Theorem 14: The system (A,B) is stabilizable if and only if it is
controllable.

V. DISCUSSION OF EXISTING RESULTS

In this section, we compare our results with those existing in the
literature. We focus on the most relevant related work [2]–[8], [10].
The structured systems studied in these references are all special cases
of those we study in this article. In Table I, we summarize the different
pattern matrices A and B studied in these references. We also include
the type of conditions that were developed, i.e., either graph-theoretic,
algebraic or both. Note that the papers [7], [8], and [10] study controlla-
bility in a network context, where the pattern matrix B has a particular
structure in the sense that each column has exactly one ∗-entry, and each
row has at most one ∗-entry. Additionally, the paper [10] considers a
particular class of systems where the diagonal entries of A are all ? and
none of the off-diagonal entries is ?. In the following two subsections,
we elaborate on the existing graph-theoretic conditions and algebraic
conditions, respectively. In both sections, we also compare these results
to the present work.

A. Graph-Theoretic Conditions

The graph-theoretic conditions provided in [2, Th. 1] for the single-
input case (m = 1) and extended to the multi-input case in [4, Satz 3]
are based on the graph G = (V,E) associated with a pattern matrix
[A B], where A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m. Note that V =
{1, 2, . . . , n+m} in this case. The graph-theoretic characterization
in [4, Satz 3] (or in [2, Th. 1] if m = 1) consists of three conditions.
The first one requires checking the so-called accessibility of each node
in {1, 2, . . . , n} from the nodes in {n+ 1, n+ 2, . . . , n+m}. The
remaining two conditions require checking certain relations for all
subsets of {1, 2, . . . , n}. As such, the computational complexity of
checking these conditions is at least exponential in n. Note that, in
contrast, the computational complexity of checking the colorability
conditions of our Theorem 11 is polynomial in n.

Paper [2] provides another set of graph-theoretic conditions, stated,
more specifically, in [2, Th. 2] (only for the case m = 1). As argued
in [2, p. 135], this theorem performs better than [2, Th. 1] for sparse
graphs. Essentially, the conditions given in [2, Th. 2] require checking
the existence of a unique serial buds cactus as well as nonexistence
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of certain cycles within the graph G. How these conditions can be
checked in an algorithmic manner is not clear, whereas the colorability
conditions given in Theorem 11 can be checked by a simple algorithm.

On top of the advantages of computational complexity, the conditions
provided in Theorem 11 are more attractive because of their conceptual
simplicity. Indeed, colorability is a simpler and more intuitive notion
than those appearing in the results of [2] and [4].

Yet another graph-theoretical characterization is provided in [6, Th.
5]. In order to verify the conditions of [6, Th. 5], one needs to check
whether a unique spanning cycle family with certain properties exists
in
(
n+m

n

)
directed graphs obtained from the pattern matrices A and B.

Needless to say, checking the conditions of Theorem 11 is much easier
than checking these conditions.

Also in the context of networked systems, graph-theoretic conditions
for strong structural controllability have been obtained (see e.g., [7],
[8], and [10]). To elaborate further on the relationship between the
work on networked systems and this article, we first need to explain the
framework of the papers [7], [8], and [10]. The starting point of these
papers is a directed graph H = (W,F ), where W = {1, 2, . . . , n}
denotes the node set and F the edge set. The graphs considered in [7]
and [8] are so-called loop graphs, which are graphs that are allowed
to contain self-loops, whereas graphs in [10] do not allow self-loops.
Apart from the graph H , these papers consider a subset of the node set
W , the so-called leader set, say WL = {w1, w2, . . . , wm}. Based on
the graph H and WL, papers [7], [8], and [10] introduce systems of the
form (3), where the pattern matrix B is defined by

Bij =

{
∗, if i = wj

0, otherwise
(7)

for i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}. In [7] and [8], the pattern
matrix A is defined by

Aij =

{
∗, if (j, i) ∈ F

0, otherwise
(8)

whereas in [10], the pattern matrix A is defined by

Aij =

⎧⎪⎨
⎪⎩
∗, if (j, i) ∈ F

?, if i = j

0, otherwise
(9)

for i, j ∈ {1, 2, . . . , n}.
In [7], the authors first define two bipartite graphs obtained from the

pattern matrices A and B. Then, they show in [7, Th. 5] that (A,B)
is strongly structurally controllable if and only if there exist so-called
constrained matchings with certain properties in these bipartite graphs.
Later, in [8, Th. 5.4], an equivalence between the existence of con-
strained matchings and so-called zero forcing sets for loop graphs was
established. To explain this in more detail, we need to introduce the
notion of zero forcing that was originally studied in the context of
minimal rank problems (see e.g., [43]).

Let H = (W,F ) be a directed loop graph and S ⊆ W . Color all
nodes in S black and the others white.

If a node i (of any color) has exactly one white out-neighbor j, we
change the color of j to black and write i → j. If all the nodes in
W can be colored black by repeated application of this color change
rule, we say that S is a loopy zero forcing set for H . Given a loopy zero
forcing set, we can list the color changes in the order in which they were
performed to color all nodes black. This list is called a chronological
list of color changes.

In order to quote [8, Th. 5.5], we need two more definitions. Define
Wloop ⊆ W to be the subset of all nodes with self-loops and let H∗ be
the graph obtained from H by placing a self-loop at every node.

Theorem 15 (see [8, Th. 5.5]): Let H be a directed loop graph and
WL be a leader set. Consider the pattern matrices defined in (7) and

(8). Then, the structured system (A,B) is controllable if and only if the
following conditions hold.
1) WL is a loopy zero forcing set for H .
2) WL is a loopy zero forcing set for H∗, for which there is a

chronological list of color changes that does not contain a color
change of the form i → i with i ∈ Wloop.

A result similar to this theorem was obtained in [10] for controlla-
bility of pattern matrices defined by (7) and (9) that are obtained from
a graph H without self-loops. However, in order to deal with this class
of pattern matrices, paper [10] introduces a slightly different notion of
zero forcing to be defined below.

LetH = (W,F ) be a directed graph without self-loops andS ⊆ W .
Color all nodes in S black and the others white. If a black node i has
exactly one white out-neighbor j, we change the color of j to black. If
all the nodes in W can be colored black by repeated application of this
color change rule, we say that S is a ordinary zero forcing set for H .

We now state the graph-theoretic characterization of controllability
established in [10].

Theorem 16 (see [10, Th. IV.4]): LetH be a directed graph without
self-loops and WL be a leader set. Consider the pattern matrices given
by (7) and (9). Then, the structured system (A,B) is controllable if and
only if WL is an ordinary zero forcing set for H .

Even though Theorems 15 and 16 present conditions that are similar
in nature, it is not possible to compare these results immediately as they
deal with two different and nonoverlapping system classes. Indeed, the
pattern matrices considered in [8] [given by (8)] do not contain any
? entries, whereas those studied in [10] [given by (9)] contain only ?
entries on their diagonals.

Next, we will show that the conditions of Theorem 11 are equivalent
to those of Theorems 15 and 16 if specialized to the corresponding
pattern matrices. This will shed light on the relationship between these
results based on the different zero forcing notions.

We start with Theorem 15. According to our color change rule, the
nodes belonging to WL will be colored black in both G([A B]) and
G([Ā B]) because B is a pattern matrix with structure defined by (7).
Since A does not contain ? entries, G([A B]) is colorable if and only
if WL is a loopy zero forcing set for G(A). By noting that H = G(A),
we see that the first condition in Theorem 11 is equivalent to that of
Theorem 15. Now, let the pattern matrix A∗ be such that H∗ = G(A∗).
Since Wloop =

{
i | Āii = ?

}
, we see that G([Ā B]) is colorable if

and only if the second condition of Theorem 15 holds. Thus, the second
condition of Theorem 11 is equivalent to that of Theorem 15.

Now, we turn attention to Theorem 16. It follows from (6) and (9)
that Ā = A, i.e., graphs G([Ā B]) and G([A B]) are the same. As
in the discussion above, the nodes belonging to WL will be colored
black in G([Ā B]) because B is a pattern matrix with the structure
defined by (7). According to our color change rule, a white node can
never color any other white node in G([Ā B]), since (i, i) ∈ E? for
every node i of G(Ā). This means that G([Ā B]) is colorable if and
only if WL is an ordinary zero forcing set for G(Ā). By noting that
H = G(A) = G(Ā), we see that the conditions in Theorem 11 are
equivalent to the single condition of Theorem 16.

B. Algebraic Conditions

In this subsection, we will compare our rank tests for strong structural
controllability with those provided in [5], [7], and [10]. More precisely,
we will show that the rank tests in Theorem 6 reduce to those in [5],
[7], and [10] for the corresponding special cases of pattern matrices.

An algebraic condition for controllability of (A,B) was provided
in [5, Th. 2] for A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m. Later, these
conditions were reformulated in [7, Th. 3]. These conditions rely on
a matrix property that will be defined next for pattern matrices that may
also contain ? entries.

Definition 17: Consider a pattern matrix M ∈ {0, ∗, ?}p×q with
p ≤ q. The matrix M is said to be of Form III if there exist two
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permutation matrices P1 and P2 such that

P1MP2 =

⎡
⎢⎢⎢⎢⎣
⊗ · · · ⊗ ∗ 0 · · · 0
...

...
. . .

. . .
. . .

...
⊗ · · · ⊗ · · · ⊗ ∗ 0

⊗ · · · ⊗ · · · ⊗ ⊗ ∗

⎤
⎥⎥⎥⎥⎦ (10)

where the symbol ⊗ indicates an entry that can be either 0, ∗ or ?.
The aforementioned algebraic conditions are stated next.
Theorem 18 (see [7, Th. 3]): Let A ∈ {0, ∗}n×n and B ∈

{0, ∗}n×m be two pattern matrices. Also, let A∗ be the pattern
matrix obtained from A by replacing all diagonal entries by ∗. The
system (A,B) is controllable if and only if the following two conditions
hold.
1) The matrix [A B] is of Form III.
2) The matrix [A∗ B] is of Form III with the additional property that ∗

entries appearing in (10) do not originate from diagonal elements
in A that are ∗ entries.

It can be shown that our algebraic conditions in Theorem 6 are
equivalent to those in Theorem 18 for the special case of pattern matrices
that only contain 0 and ∗ entries. Recall that it follows from Theorem 6
that (A,B) is controllable if and only if both [A B] and [Ā B] have
full row rank, where Ā is given in (6). To relate our algebraic conditions
with the ones in Theorem 18, we need the following lemma.

Lemma 19: Let M ∈ {0, ∗, ?}p×q with p ≤ q. Then, M has full
row rank if and only if M is of Form III.

From Lemma 19, it immediately follows that [A B] has full row
rank if and only if [A B] is of Form III. Hence, the first condition of
Theorem 6 is equivalent to that of Theorem 18. We will now also show
that [Ā B] has full row rank if and only if the second condition of
Theorem 18 holds. From Lemma 19, we have that [Ā B] has full
row rank if and only if [Ā B] is of Form III. By definition of Ā
and A∗, it follows that Āij = A∗

ij for all i �= j. If Aii = 0 then both
Āii = ∗ and A∗

ii = ∗. On the other hand, if Aii = ∗, then Āii = ? and
A∗

ii = ∗. To sum up, Āij �= A∗
ij if and only if i = j and Aii = ∗. In

other words, all entries of Ā and A∗ are the same, except for those that
correspond to the diagonal elements ofA that are ∗ entries. Hence, there
exist two permutation matrices P1 and P2 such that all entries of the
matricesP1[Ā B]P2 and P1[A∗ B]P2 are the same, except those that
originate from diagonal elements of A that are ∗ entries. This implies
that [Ā B] is of Form III if and only if [A∗ B] is of Form III with
the additional property that the ∗ entries in (10) do not originate from
diagonal elements in A that are ∗ entries. In other words, the second
conditions of Theorems 6 and 18 are equivalent. Since also the first
conditions in these theorems are equivalent, we conclude that the
algebraic conditions in Theorem 6 are equivalent to those in Theorem
18 for the special case, in which A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m.

A different algebraic condition was introduced in [10] for systems
defined on simple directed graphs. The pattern matrices of such systems
can be represented by A and B given by (9) and (7), respectively. The
algebraic condition referred to above is then stated as follows.

Theorem 20 (see [10, Lem. IV.1]): Consider the pattern matrices A
and B given by (9) and (7), respectively. Then, (A,B) is controllable
if and only if [A B] has full row rank.

In order to see that this theorem follows from Corollary 7, note that
A = Ā, since all diagonal entries of A are ?’s.

VI. PROOFS

A. Proof of Theorem 6

To prove the “only if” part, assume that (A,B) is controllable. By
the Hautus test [1, Th. 3.13] and the definition of strong structural
controllability, it follows that [A− λI B] has full row rank for all
(A,B) ∈ P(A)× P(B) and all λ ∈ C. By substitution of λ = 0, we
conclude that condition 1 is satisfied. To prove that condition 2 also
holds, suppose that xT [Ā B] = 0 for some pair (Ā,B) ∈ P(Ā)×

P(B) andx ∈ Rn. We want to prove thatx = 0. Letα ∈ R be a nonzero
real number such that α �∈ {Āii | i is such that Aii = ∗}. Then define
a nonsingular diagonal matrix X ∈ Rn×n as

Xii =

{
1, if Āii = ?

α/Āii, if Āii = ∗.

It is clear that ĀX ∈ P(Ā) and xT [ĀX B] = 0. Furthermore, by the
choice ofα andX , we obtain Â := ĀX − αI ∈ P(A). By assumption,
[Â+ αI B] has full row rank (by substitution of λ = −α). In other
words, [ĀX B] has full row rank and therefore x = 0. We conclude
that condition 2 is satisfied.

To prove the “if” part, assume that conditions 1 and 2 are satisfied.
Suppose that zH [A− λI B] = 0 for some (A,B) ∈ P(A)× P(B)
and (λ, z) ∈ C × Cn, and zH denotes the conjugate transpose of z.
We want to prove that z = 0. Note that if λ = 0, it readily follows that
z = 0 by condition 1. Therefore, it remains to be shown that z = 0 if
λ �= 0. To this end, write z = ξ + jη, where ξ, η ∈ Rn and j denotes
the imaginary unit. Next, let α ∈ R be a nonzero real number such that

α �∈
{
− ξi
ηi

| ηi �= 0

}
∪
{
− (ξTA)i
(ηTA)i

| (ηTA)i �= 0

}
.

We define x := ξ + αη. Now, we claim the following:
(a) xi = 0 if and only if zi = 0;
(b) xi = 0 if and only if (xTA)i = 0.

Note that (a) follows directly from the definition of x and the choice
of α. To prove the “only if” part of (b), suppose that xi = 0. By (a),
this implies that zi = 0. Since zHA = λzH , we see that (zHA)i = 0.
Equivalently, ((ξT − jηT )A)i = 0. Therefore, both (ξTA)i = 0 and
(ηTB)i = 0. We conclude that (xTA)i = ((ξT + αηT )A)i = 0.

To prove the “if” part of (b), suppose that (xTA)i = 0. This means
that ((ξT + αηT )A)i = 0. Equivalently, (ξTA)i + α(ηTA)i = 0. By
the choice of α, this implies that (ξTA)i = (ηTA)i = 0. We conclude
that (zHA)i = 0. Recall that zHA = λzH , where λ was assumed to be
nonzero. This implies that zi = 0. Again, using (a), we conclude that
xi = 0. This proves (b).

Next, we define the diagonal matrix X ′ ∈ Rn×n as

X ′
ii =

{
1, if xi = 0
(xTA)i

xi
, otherwise.

We know that X ′ is nonsingular by (b). By definition of X ′, we have
xTA = xTX ′. Furthermore, as zHB = 0, we obtain ξTB = ηTB =
0 and, therefore, xTB = 0. Hence, xT [A−X ′ B] = 0. Since X ′ is
nonsingular, it follows thatA−X ′ ∈ P(Ā). By condition 2, this means
that x = 0. Finally, we conclude that z = 0 using (a). �

B. Proof of Theorem 10

To prove Theorem 10, we need the following auxiliary result.
Lemma 21: Let M ∈ {0, ∗, ?}p×q be a pattern matrix with p ≤ q.

Consider the directed graph G(M). Suppose that each node is colored
white or black. Let D ∈ Rp×p be the diagonal matrix defined by

Dkk =

{
1, if node k is black
0, otherwise.

Suppose further that j ∈ {1, 2, . . . , p} is a node for which there exists
a node i ∈ {1, 2, . . . , p}, possibly identical to j, such that j is the only
white out-neighbor of i and (i, j) ∈ E∗. Then, for all M ∈ P(M), we
have that [M D] has full row rank if and only if [M D + eje

T
j ] has

full row rank, where ej denotes the jth column of I .
Proof: The “only if” part is trivial. To prove the “if” part, suppose

that M ∈ P(M) and [M D + eje
T
j ] has full row rank. Let z ∈ Rp

be such that zT [M D] = 0. Our aim is to show that zj = 0. Indeed,
if zj is zero, then zT [M D + eje

T
j ] = zT [M D] = 0, and hence,

z must be zero. This would prove that [M D] has full row rank. We
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will distinguish two cases: i = j and i �= j. Suppose first that i = j.
Let β, ω ⊆ {1, 2, . . . , p} be defined as the index sets β = {k | k �=
j and k is black} and ω = {� | � �= j and � is white}. In the following,
to simplify the notations, for a given vector z ∈ Rp and a given in-
dex setα ⊆ {1, 2, . . . , p}, we define zα := {x ∈ R|α| | xi = zα(i), i ∈
{1, 2, . . . , |α|}}, where |α| is the cardinality of α. From zTM = 0,
we get

zjMjj + zTβ Mβj + zTωMωj = 0. (11)

Since j is the only white out-neighbor of itself, we must have that Mjj

is nonzero and that Mωj is a zero vector. Moreover, it follows from
zTD = 0 that zβ must a zero vector. Therefore, (11) implies that zj
must be zero.

Next, suppose that i �= j. Let β, ω ⊆ {1, 2, . . . , p} be defined as the
index sets β = {k | k �= i, k �= j, and k is black} and ω = {� | � �=
i, � �= j, and � is white}. From zTM = 0, we now get

ziMii + zjMji + zTβ Mβi + zTωMωi = 0. (12)

Since j is the only white out-neighbor of i, we must have that
Mji is nonzero and that Mωi is a zero vector. Moreover, it fol-
lows from zTD = 0 that zβ must a zero vector. Therefore, (12)
implies that

ziMii + zjMji = 0. (13)

Now, we distinguish two cases: i is black and i is white. If i is black, then
we have that zi is zero because zTD = 0. Therefore, (13) implies that
zj = 0 as desired. Finally, if i is white, then we have that Mii = 0 for
otherwise i would have two white out-neighbors. Again, (13) implies
that zj is zero. This completes the proof. �

Now, we can give the proof of Theorem 10.
Proof of Theorem 10: To prove the “if” part, suppose that G(M)

is colorable. Let M ∈ P(M). By repeated application of Lemma 21,
it follows that M has full row rank if and only if [M I] has full row
rank, which is obviously true. Therefore, we conclude that M has full
row rank.

To prove the “only if” part, suppose that M has full row rank, but
G(M) is not colorable. Let C be the set of nodes that are colored black
by repeated application of the color change rule until no more color
changes are possible. Then, C is a strict subset of {1, 2, . . . , p}. Thus,
possibly after reordering the nodes, we can partition M as

M =

[
M1

M2

]

where the rows of the matrix M1 correspond to the nodes in C and that
of the matrix M2 correspond to the remaining white nodes. Note that
C = ∅ means that M2 = M and M1 is absent. Since no more color
changes are possible, there is no column of M2 that has exactly one ∗
entry, while all other entries are 0. Therefore, for any column of M2,
we have one of the following three cases.
a) All entries are 0.
b) There exists exactly one ? entry while all other entries are 0.
c) At least two entries belong to the set {∗, ?}.

Consequently, there exists a matrix M2 ∈ P(M2) such that its
column sums are zero, that is 1TM2 = 0, where 1 denotes the vector
of ones of appropriate size. Take any M1 ∈ P(M1). Then

M =

[
M1

M2

]
∈ P

([
M1

M2

])
= P(M)

satisfies
[
0T 1T

] [
M1
M2

]
= 0. Hence, M does not have full row rank

and we have reached a contradiction. �

C. Proof of Theorem 11

By Theorems 6 and 10, we have that [A B] is controllable if and
only if G([A B]) and G([Ā B]) are colorable. �

D. Proof of Theorem 14

The “if” part is evident. Therefore, it is enough to prove the “only
if” part. Suppose that the system (A,B) is stabilizable. Let (A,B) ∈
P(A)× P(B). Then, (A,B) is stabilizable. Note that −A ∈ P(A).
Therefore, both (A,B) and (−A,B) are stabilizable. It follows from
the Hautus test for stabilizability (see e.g., [1, Th. 3.32]) that (A,B) is
controllable. Consequently, the system (A,B) is controllable. �

E. Proof of Lemma 19

Since the “if” part is evident, it remains to prove the “only if” part.
Suppose that M has full row rank. From Theorem 10, it follows that
G(M) is colorable. In particular, there exist i ∈ {1, 2, . . . , q} and j ∈
{1, 2, . . . , p} such thatMji = ∗ andMki = 0 for allk �= j. Therefore,
we can find permutation matrices P ′

1 and P ′
2 such that

P ′
1MP ′

2 =

⎡
⎢⎢⎢⎣ M′

0
...
0

r ⊗ · · · ⊗ ∗

⎤
⎥⎥⎥⎦

where the symbol ⊗ indicates an entry that can be either 0, ∗ or ?. Note
that M has full row rank for all M ∈ P(M) if and only if M ′ has full
row rank for all M ∈ P(M′). Therefore, repeated application of the
argument above results in permutation matrices P1 and P2 such that
(10) holds. �

VII. CONCLUSION

In most of the existing literature on strong structural controllability
of structured systems, a zero/nonzero structure of the system matri-
ces is assumed to be given. However, in many physical systems or
linear networked systems, apart from fixed zero entries and nonzero
entries, we need to allow a third kind of entries, namely those that
can take arbitrary (zero or nonzero) values. To deal with this, we
have extended the notion of zero/nonzero structure to what we have
called zero/nonzero/arbitrary structure. We have formalized this more
general class of structured systems using pattern matrices containing
fixed zero, arbitrary nonzero, and arbitrary entries. In this setup, we
have established necessary and sufficient algebraic conditions for strong
structural controllability of these systems in terms of full rank tests on
two associated pattern matrices. Moreover, a necessary and sufficient
graph-theoretic condition for a given pattern matrix to have full row
rank has been given in terms of a new color change rule. We have then
established a graph-theoretic test for strong structural controllability
of the new class of structured systems. Finally, we have shown how
our results generalize previous work. We have also shown that some
existing results [8], [10] that are seemingly incomparable to ours can
be put in our framework, thus unveiling an overarching theory.

In addition to strong structural controllability, weak structural con-
trollability and strong structural stabilizability of structured systems
with zero/nonzero/arbitrary structures have been briefly analyzed. We
have shown that weak structural controllability of our structured sys-
tems can be checked using tests that already exist in the literature. We
have also shown that a structured system with a zero/nonzero/arbitrary
structure is strongly structurally stabilizable if and only if it is strongly
structurally controllable.

It would be interesting to adopt our new framework of structured
systems to other problem areas in systems and control, such as network
identification [44] or fault detection and isolation [45]. This is left as a
possibility for future research.
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