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Abstract.—Models of trait evolution form an important part of macroevolutionary biology. The Brownian motion model and
Ornstein–Uhlenbeck models have become classic (null) models of character evolution, in which species evolve independently.
Recently, models incorporating species interactions have been developed, particularly involving competition where abiotic
factors pull species toward an optimal trait value and competitive interactions drive the trait values apart. However, these
models assume a fitness function rather than derive it from population dynamics and they do not consider dynamics of
the trait variance. Here, we develop a general coherent trait evolution framework where the fitness function is based on a
model of population dynamics, and therefore it can, in principle, accommodate any type of species interaction. We illustrate
our framework with a model of abundance-dependent competitive interactions against a macroevolutionary background
encoded in a phylogenetic tree. We develop an inference tool based on Approximate Bayesian Computation and test it on
simulated data (of traits at the tips). We find that inference performs well when the diversity predicted by the parameters
equals the number of species in the phylogeny. We then fit the model to empirical data of baleen whale body lengths, using
three different summary statistics, and compare it to a model without population dynamics and a model where competition
depends on the total metabolic rate of the competitors. We show that the unweighted model performs best for the least
informative summary statistic, while the model with competition weighted by the total metabolic rate fits the data slightly
better than the other two models for the two more informative summary statistics. Regardless of the summary statistic
used, the three models substantially differ in their predictions of the abundance distribution. Therefore, data on abundance
distributions will allow us to better distinguish the models from one another, and infer the nature of species interactions.
Thus, our framework provides a conceptual approach to reveal species interactions underlying trait evolution and identifies
the data needed to do so in practice. [Approximate Bayesian computation; competition; phylogeny; population dynamics;
simulations; species interaction; trait evolution.]

While it is generally acknowledged that “nothing in
evolution or ecology makes sense except in the light
of the other.” (Pelletier et al. 2009), how exactly this
mutual interaction can be understood is an area of
active research (Schoener 2011). We are starting to
understand how ecology, that is, species interactions
and population dynamics, depends on evolutionary
history (Schoener 2011) and how evolutionary history,
such as morphological trait evolution and phylogenetic
information, explains ecological processes and patterns
(Ives and Godfray 2006; Rezende et al. 2007; Rafferty
and Ives 2013; Pigot and Etienne 2015; Clarke et al.
2017). However, the relative roles of biotic and abiotic
factors in driving evolution remain elusive. This is in part
because establishing a more explicit and mechanistic
connection between the processes of trait evolution and
community dynamics remains a difficult task (Narwani
et al. 2015). More specifically, we do not fully understand
how population dynamics influence trait evolution and
vice versa.

Species tend to evolve towards a phenotype that best
utilizes the most abundant resource (Darwin 1859), but
also tend to diverge, in order to avoid competition
with other species feeding on the same resources. The
balance between these opposing tendencies is governed
by two factors, niche width and population size, which
ultimately determine how many species coexist in a

given environment and how they partition the available
ecological niches among them. Larger populations exert
a larger impact on other species competing with them
in the same part of niche space. Conversely, how
much competition is experienced by a species ultimately
determines its population size and may lead to a shift in
niche space.

Classic methods attempting to infer the relative
roles of the forces shaping trait evolution from trait
distribution data use models that describe trait dynamics
with Brownian motion or Ornstein–Uhlenbeck processes
(Raup et al. 1973; Hansen and Martins 1996; Theodore
Garland et al. 2000), with the latter describing
evolution towards an optimum. These models assume
independent evolution for each species and thus
do not account for species interactions (Pennell
and Harmon 2013). Recently, several phylogenetic
comparative tools have been developed to study how
the abiotic environment imposing a trait optimum and
competition among species jointly drive trait dynamics.
Specifically, (Nuismer and Harmon, 2015) derived
an analytical likelihood formula based on Lande’s
work (Lande 1976) to investigate how phylogenetic
relationships influence trait evolution and rates of
interaction among species. This method was extended
to incorporate biogeographical factors (Drury et al.
2016), and generalized to other ecological interactions
(Manceau et al. 2017). However, none of these studies
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took into account population dynamics thereby ignoring
eco-evolutionary feedbacks of population size on trait
evolution. Moreover, to obtain a tractable expression for
the likelihood, they relied on a linear approximation
of the fitness gradient function that has the following
consequence: the more different species are, the more
they repel each other. This is unrealistic because
we expect that for species diverging more than
their niche width, the rate of trait divergence will
decrease.

Here, we present a general framework of trait
evolution that can accommodate, in principle, any
type of species interaction. We do this by defining
the fitness function (which determines the direction
in which traits will evolve) in terms of a population
dynamics model. Species interactions ranging from
predation and parasitism to mutualism can then be
accounted for in the population dynamics model.
We illustrate our framework with an application to
competitive interactions and show that we resolve the
above-mentioned drawbacks of pre-existing methods
(Nuismer and Harmon 2015; Drury et al. 2016, 2017).
Particularly, our model predicts an intermediate trait
distance between species where repulsion between them
is most intense, which reflects a nonlinear relationship
between competition and trait similarity. Furthermore,
our model allows trait evolution to depend on the
intraspecific variance in traits. And last but not least,
we allow for population size to affect trait evolution,
and we refer to this model as the abundance-weighted
competition (AWC) model. We assume that the traits
in our model do not drive population divergence
(speciation), but we let species evolve along a given
phylogenetic tree. The model is not amenable to
analytical treatment, so we use Approximate Bayesian
Computation to investigate parameter inference. We find
that our method is capable of recovering the generating
parameters from simulated data sets under certain
conditions; if these conditions are not satisfied, very
different parameter sets can yield very similar patterns,
so we expect that no method will be able to infer the
parameters under these conditions. We then illustrate
our approach using data on the evolution of total body
length in baleen whales (Mysticeti) and compare our
model with two variants: one that ignores the effect
of population dynamics on trait evolution, that is, a
model with unweighted competition (the UWC model)
and one that assumes that competition is weighted by
total metabolic rate (abundance multiplied by per capita
metabolic rate, which is a power function of body size
and hence of abundance) rather than just abundance
(i.e., a linear function of abundance), which we refer to
as the metabolic-rate-weighted competition (the MWC
model). We find that competition played an important
role in shaping trait distribution patterns in baleen
whales. We discuss how our model sets the stage for
a new generation of models that allow determining the
relative roles of various biotic and abiotic drivers of trait
evolution.

MODEL DESCRIPTION AND ANALYSIS

Trait Evolution and Population Dynamics on Trees
We consider n species competing for the same

spectrum of resources with a fixed and unimodal
distribution (Mahler et al. 2013).

We define fitness for an individual of species i with
trait zi,t at the generation t through the per capita growth
function

ω(zi,t)=
Ni,t+1

Ni,t

fi,t+1(zi,t)
fi,t(zi,t)

, (1)

where Ni,t denotes the population size at the tth
generation and fi,t and fi,t+1 are the densities of traits
of the two generations, respectively. After applying
simplifying assumptions such as weak selection, we can
derive a model on the species level that describes the
dynamics of the population size N, of the mean species
trait value � and of the intraspecific variance of each
species’ trait V in terms of the fitness function (see the
Supplementary material for the full derivation available
on Dryad at https://doi.org/10.5061/dryad.905qfttj4)
(Harmon et al. 2019):

Ni,t+1 =Ni,t ·ω(�i,t) (2)

�i,t+1 =�i,t +h2 ·Vi,t ·
ω′(�i,t)
ω(�i,t)

(3)

Vi,t+1 = (1− 1
2

h2)Vi,t + 1
2

h2 ·V2
i,t ·

ω′′(�i,t)
ω(�i,t)

+ 2Ni,t�Vm

1+4Ni,t�
·h2,

(4)

where Ni,t , �i,t, and Vi,t denote the population size,
trait mean, and trait variance of species i at the tth
generation. Our framework is amenable to all sorts of
species interactions through the fitness function ω(�i,t)
which can be a function of the traits and abundances of
other species as well as of the abiotic environment. In
the model, ω′(�i,t) and ω′′(�i,t) are the first and second
derivatives of the fitness function with respect to the trait
value, evaluated at the species mean of the trait �i,t. The
first derivative of the fitness function is proportional to
the rate at which the mean trait in the population evolves
uphill on the fitness landscape. The second derivative
of the fitness function determines whether selection is
stabilizing or disruptive, which influences the variance
of the trait and, thereby, the rate of evolution. Eq. 2, which
is essentially Lande’s formula (Eq. 7 in Lande 1976), links
the population size to a user-specified fitness function. In
the literature, the trait variance is usually assumed to be
constant (Lande 1976; Nuismer and Harmon 2015; Drury
et al. 2016, 2017), but this may be an oversimplification
(Barnett and Simpson 1955; Van Valen 1969). Therefore,
we allow variance dynamics (Eq. 4) in trait evolution
which consists of three components that capture a
reduction of variance due to sexual reproduction ((1−
1
2 h2)Vi,t), the effect of selection ( 1

2 h2 ·V2
i,t · ω′′(�i,t)

ω(�i,t)
), and
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an inflow of new variance (Kimura and Crow 1964) due
to segregation and mutation ( 2Ni,t�Vm

1+4Ni,t�
·h2) . Here, h2 is the

heritability of the trait, that is, the degree of phenotypic
resemblance between parents and offspring (Falconer
and Mackay 1996), � is the average rate of mutation of the
alleles existing in a diploid population. Vm represents the
maximum variance of the trait that can be supported by
mutation in an infinitely large population, in the absence
of selection on the trait. In the simulation study, we set
Vm equal to 1 and the environmental contribution to
phenotypic variance to 0, such that trait heritability h2

is equal to 1. In the empirical application, we estimate
Vm as a free parameter, and we consider two distinct
values of heritability h2.

We allow for stochastic evolutionary trait change due
to drift by adding a noise term �i,t to Eq. 3 (Lenormand
et al. 2009; Nuismer and Harmon 2015) that follows a
normal distribution with mean 0 and a variance that is
inversely proportional to the effective population size
(which we set equal to the actual population size Ni,t),
that is, �i,t ∼N(0, 1

2
Vi,t
Ni,t

). We incorporate demographic
stochasticity by drawing species abundances from
a zero-truncated Poisson distribution with a mean
determined by Eq. 2. Hence, we do not allow for
extinction due to demographic stochasticity, but species
can become extinct if the phylogeny tells us so (see
below).

We define the fitness of the mean phenotype �i,t at the
tth generation using a Ricker-type form of discrete-time
population dynamics (see the Supplementary material
available on Dryad):

ω(�i,t)=
Ni,t+1

Ni,t

:=R(�i,t)e
−�(−→� ,

−→
N )/�0 . (5)

Here, R(�i,t) is the growth factor that depends on the trait
value and the parameter � that represents the optimum
trait value favored by abiotic stabilizing selection as
follows:

R(�i,t)=R0e−�(�−�i,t)2
, (6)

where R0 is the optimal growth factor and � determines
the strength of stabilizing selection towards the
optimum. Furthermore, the function � in Eq. 5 quantifies
the intensity of competition. Assuming a Gaussian
competition kernel, we define � as

�(−→� ,
−→
N )=

n∑
j=1

(e−	(�i,t−�j,t)2
Nj,t). (7)

Equation 7 states that the strength of competition
between two species with trait means �i,t and �j,t
increases with similarity in these trait means, and
that the effect of competition on species i increases
with population size of species j. The competition
coefficient 	 scales the strength of the interaction and
determines the effective interaction length. Finally, the

parameter �0 in Eq. 5 has a similar interpretation as
an individual-scale carrying capacity of each species
(Abrams 2001), as it sets the scale at which competitive
interactions start to strongly impact the growth of the
population. Because Eq. 5 is an increasing function of
�0, the ecological equilibrium ω(�i,t)=1 is reached at a
carrying capacity set by the equilibrium condition �=
�0 ·lnR where environmental stabilizing selection and
competition balance each other.

Inserting our fitness function Eq. 5 in Eq. 2, 3, 4 and
adding stochasticity leads to

Ni,t+1

∼Pois

(
Ni,tR0e−�(�−�i,t)2 ·e−∑n

j=1(e−	(�i,t−�j,t)2 Nj,t)/�0

)

(8)

�i,t+1 =�i,t +h2 ·Vi,t
(
2�(�−�i,t)+


)+�i,t (9)

Vi,t+1 =
(

1− 1
2

h2
)

Vi,t

+ 2Ni,t�Vm

1+4Ni,t�
·h2 + 1

2
h2 ·V2

i,t

[
2�(−1+2��2) (10)

+ ∂


∂�i,t
−(2�(2�−�i,t)+


)·(2��i,t −

)]

,

where 
= 2	
�0

∑
j(�i,t −�j,t)e

−	(�i,t−�j,t)2
Nj,t and Pois(·)

denotes the zero-truncated Poisson distribution.
Equations 2–4 advances Nuismer and Harmon
(2015)’s model by relaxing the simplification of a
linear species interaction, as in Drury et al. (2017)’s
model. The nonlinear pairwise competitive repulsion,
	(�i,t −�j,t)e

−	(�i,t−�j,t)2
as a function of the trait

difference �i,t −�j,t, is illustrated in Figure 1 for several
values of 	. Moreover, in contrast to Drury’s models
(Drury et al. 2016, 2017) it takes into account the
abundance of competitors in the community as a weight
in the competition kernel, and includes the dynamics
of trait variance. Furthermore, the full derivation of our
model is based on a coherent definition of fitness. We
consider trait and population dynamics along given
phylogenetic trees. The phylogenetic trees can be either
reconstructed trees, containing only extant species, or
full trees, containing extinct species as well. We assume
that data may be available on the final trait distribution
and species abundances at the tips of the tree. We
used simulations to explore these distributions. We
initialized the simulations with two ancestral species
of identical trait means equal to 0 and variances equal
to 0.5. The initial population sizes were drawn from a
normal distribution with a mean of 500 individuals and
a variance of 100. Without loss of generality, we assumed
zero as the trait optimum set by the environment. To
be in line with the previous models of phenotype
evolution along a given phylogeny, we assumed that
at the branching points of the tree the two daughter
species inherit the trait value from their parent. The
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FIGURE 1. The nonlinear strength of competitive repulsion of two species with identical population size that follows from our model. When
the traits of two competitors are very similar, they experience intense competition but little directional repulsion. With increasing difference
in traits, the repulsion force increases. Eventually, with a further increase in trait difference, repulsion decreases again because competition is
avoided. Different 	 values cause different shapes of the strength of repulsion. A large	 implies strong repulsion when competitors are very
similar in traits but this competitive strength drops quickly, implying a small competitive interaction distance. In contrast, a small	 implies a
large competitive interaction distance but mild repulsion.

abundance of the mother lineage is divided over the
two daughter species following a binomial distribution
that is truncated at the bottom and the top, so that
the daughter species always have positive abundance.
When a species goes extinct according to the phylogeny,
we just remove the species from the simulation but keep
its trait means and variances and abundance stored for
the time they were extant.

Parameter inference using ABC-SMC
The complexity of our model precludes analytical

approaches to fit the model to data. Hence, we developed
an inference framework using Approximate Bayesian
Computation with Sequential Monte Carlo (ABC-SMC),
which is a genetic algorithm that has computational
advantages over Approximate Bayesian Computation
with Markov Chain Monte Carlo because it allows
parallellization, and it shows efficient convergence in
high dimensional parameter space (Sunnåker et al.
2013). In ABC-SMC, first introduced by Toni et al.
(2009), one starts with a large number of parameter sets
sampled from the prior (these are called particles in
the terminology of the field), which are then used to
simulate many data sets. We then evaluate the similarity

of the simulated data to the empirical data (measured
by one or more summary statistics). This similarity is
the goodness-of-fit (GOF). The GOFs for all these data
sets are used as weights to sample parameter sets in
the next iteration (generation in ABC-SMC jargon), with
some random noise added to it. After a few iterations,
the parameter sets will form the posterior distribution.
The details of the algorithm, including the computation
of the GOF, can be found in the Supplementary material
available on Dryad.

The choice of an efficient summary statistic is crucial to
evaluate the similarity between simulated and empirical
data. In the simulation study, we use the Euclidean
distance between simulated and observed trait values.
Because of the stochasticity of the trait change after
speciation, traits of a focal species can differ substantially
across replicate simulations. However, the difference
in trait values between species that are adjacent in
trait space regardless of species identities reflects the
true strength of environmental stabilizing selection and
competition. Therefore, we do not label the species in
our simulation and sort both the empirical traits and the
simulated traits in an increasing order before computing
the Euclidean distance of these two vectors. We refer to
this summary statistic as the sorted mean trait distance
(SMTD). We also compute the Euclidean distance of
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the variance vectors corresponding to the reordered
trait means. In principle, we can also add summary
statistics based on abundance data and intraspecific
trait variances (again using Euclidean distances between
simulated and observed values), but we do not do so
here because such data (for entire populations) is often
unavailable empirically (as in our empirical example of
baleen whales). This does not mean that abundances
have no effect: according to our model they affect trait
evolution and hence the species’ mean trait values.

Choosing the Euclidean distance of sorted traits may
not be the best way to fit our model to empirical
data, because we ignore information on the empirical
order of the trait values across the phylogenetic tree.
Therefore, in the empirical study (see below), we
considered phylogenetic independent contrasts (PICs)
(Felsenstein 1985) as an alternative set of summary
statistics. The PICs are designed to transform the original
n traits of species to n−1 independently and identically
distributed contrasts between pairs of related species
or estimated ancestral nodes (Garland 2005). Because
the PICs have one dimension less than the trait data,
we combined the PICs with the unsorted mean trait
distance (UMTD) to obtain a third set of summary
statistics, referred to as UMTD+PICs. We compared
results between the three sets of summary statistics.

Simulation Setup
To assess the behavior of our model, we first simulated

data for known parameter sets and explored whether
the parameter values can be correctly inferred. We
considered six different values (0,0.001,0.01,0.1,0.5,1)
for both the stabilizing selection coefficient � and
the competition coefficient 	 leading to a total of 36
parameter combinations for a given phylogenetic tree.
We set R0 =e (i.e., the mathematical constant 2.7183), �0 =
109 and the mutation rate �=10−11 for all simulations.
We focused on the inference of three parameters, namely
�,	, and �.

To study how the phylogenetic information influences
the evolution process, we generated several phylogenetic
trees, including extinct branches, under the diversity-
dependent diversification model (Etienne et al. 2011) for
various parameter settings of this macroevolutionary
model (see Table 1). In addition, to mimic the fact
that in practice complete trees with extinct species are
often not available, we reconstructed phylogenies of
only extant species by pruning the extinct species. This
means that we generated the trait data under the full
tree but estimated the parameters of our trait evolution
model using only the reconstructed tree. Comparing this
inference to inference using the complete tree informs us
to what extent the loss of information of extinct species
affects parameter estimation.

The ratio of the time scale of trait evolution and
population dynamics to the time scale set by the
phylogeny (i.e., the number of time-steps of trait and
population size dynamics in each unit of time of the

phylogeny, which can be interpreted as the number of
generations per unit of time in the phylogeny, usually
million years) is a crucial factor, as it determines whether
trait and population dynamics can reach equilibrium
before a new speciation (or extinction) event disrupts
it. We denote this ratio in our model by the time
scaling parameter s. For instance, given a phylogenetic
tree with a crown age of 15 million years, trait and
population dynamics involves 15×s time steps. The
value of s may influence our parameter estimates. So
to assess how not exactly knowing the true number of
time steps (i.e., the number of generations in a million
years) affects parameter inference, we generated data
under s=10,000 and then ran our inference algorithm
under s=10,000 and s=20,000 and compared their
performance in parameter estimation (see Table S1 of
the supplementary material available on Dryad).

In summary, we generated a total of 14 phylogenetic
trees and pruned these trees when extinction rates
were nonzero, resulting in 22 trees in total (see
Table S1 of the supplementary material available
on Dryad). We designed 30 scenarios to investigate
the influence of tree size, speciation rate, extinction
rate, removal of extinct species and number of time
steps (see Table 1). We simulated our model for
36 parameter combinations for each scenario. We
applied our inference algorithm on the simulated data
and examined if the generating parameters could be
recovered correctly. In the inference process, we set
30 iterations and 20 000 particles for each iteration.
For the analysis of a single scenario, we exploited
a cluster of 36 high performance computers with 32
threads running on each computer. Each parameter
combination for each scenario analysis took between 2
and 80 h, depending on the number of evolutionary
events and tree size of the specific scenario. All the code is
available on Github (https://github.com/xl0418/The_
trait_population_coevolution_model_code).

To contrast our model with a trait evolution model
where abundance does not affect trait evolution, we
defined a model in which the competition kernel does
not depend on species abundance; we call this model the
unweighted competition (UWC) model (see Eqs S30–S31
of the Supplementary Material available on Dryad).
The UWC model is similar to Drury et al.’s nonlinear
extension (Drury et al. 2017) of Nuismer and Harmon’s
model (Nuismer and Harmon 2015). However, it differs
in the competition kernel, that is, from the population
dynamics model it follows that pairwise competition
is described as (�i −�j)·e−	(�i−�j)2

instead of Drury et

al.’s choice of sign(�i −�j)·e−	(�i−�j)2
(Eq. 1 in Drury

et al. 2017 where sign(a−b)=1 when a>b while sign(a−
b)=−1 when a<b). We compared the simulated trait
trajectories under the two models in the simulation
study. We explored three values of the time scaling
parameter, that is, s=100,1000,10,000, to assess whether
the resulting trait patterns of the two models differ.
The choice of s=100 corresponding to 10,000 years
per generation may be absurd. However, we used this
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TABLE 1. The scenarios of the simulated phylogenies

Scenarios Trees � � K Pruned Time scales

1 1 0.4 0 10 No 10,000
2 2 0.4 0 30 No 10,000
3 3 0.4 0 100 No 10,000
4 4 0.4 0.2 10 No 10,000
5 5 0.4 0.2 30 No 10,000
6 6 0.4 0.2 100 No 10,000
7 7 0.8 0 10 No 10,000
8 8 0.8 0 30 No 10,000
9 9 0.8 0 100 No 10,000
10 10 0.8 0.2 10 No 10,000
11 11 0.8 0.2 30 No 10,000
12 12 0.8 0.2 100 No 10,000
13 13 0.8 0.4 100 No 10,000
14 14 0.8 0.6 100 No 10,000

15 4 0.4 0.2 10 Yes 10,000
16 5 0.4 0.2 30 Yes 10,000
17 6 0.4 0.2 100 Yes 10,000
18 10 0.8 0.2 10 Yes 10,000
19 11 0.8 0.2 30 Yes 10,000
20 12 0.8 0.2 100 Yes 10,000
21 13 0.8 0.4 100 Yes 10,000
22 14 0.8 0.6 100 Yes 10,000

23 9 0.8 0 100 No 10,000, 20,000
24 12 0.8 0.2 100 No 10,000, 20,000
25 13 0.8 0.4 100 No 10,000, 20,000
26 14 0.8 0.6 100 No 10,000, 20,000

27 9 0.8 0 100 No 20,000
28 12 0.8 0.2 100 No 20,000
29 13 0.8 0.4 100 No 20,000
30 14 0.8 0.6 100 No 20,000

The experimental setup for testing the influence of phylogenetic information. The first 14 scenarios are generated under various diversification
rates (speciation rate � and extinction rate �) and clade-specific carrying capacities K. Pruning these trees from extinct species results in the
Scenarios 15–22 (only for nonzero extinction rates). Scenarios 23–26 are designed for studying the effect of the rate of evolution. The observations
are generated under a time scaling parameter s of 10,000 (microevolutionary time steps per unit of macroevolutionary time) while the algorithm
uses s=20,000. For Scenarios 27–30, s=20,000 is used in both data generation and parameter inference.

value to examine how different values of s influence the
behavior of the model. We emphasize that the choice
of competition kernel in the UWC model (and in Drury
et al.’s model) does not follow from a coherent fitness
definition derived from population dynamics.

Applying the model to baleen whale body size evolution
Baleen whales represent the largest extant animal

species and are distributed globally. They are filter-
feeders on small fish and crustaceans. Body mass is an
ideal trait that responds both to the abiotic factors (Smith
et al. 2010) and biotic competitors but measurements of
body mass are rarely available. However, data on total
length are available. It has been shown that whale total
length scales with body mass raised to a power of 1

3
(Lockyer 1976). So we used the total length as a proxy
for body mass (Slater et al. 2017). We log-transformed
(base 10) the body length, because the log scale is a more
natural scale on which evolution takes place (Gingerich
2019). We fitted our model to mean trait data given a
reconstructed phylogeny with 15 extant species (Slater
et al. 2017). We did not use abundance or trait variance
data, as they were not available.

We designed eight scenarios to fully assess the
effects of environmental stabilizing selection and
competition: four values of the time scaling parameter
s (20,000, 40,000, 60,000, and 80,000) corresponding
to four reasonable generation times (50, 25, 16.7, 12.5
years/generation, respectively) and two heritability
values (h2 =0.5,1). In contrast to the simulation study,
we also estimated the variance due to mutation and
segregation, Vm, and the trait optimum, �. The remaining
parameter settings were identical to the simulation
study. In the ABC-SMC algorithm, we set 40,000 particles
for each iteration and in total 40 iterations for each
scenario (which are both more than in the simulation
study because we are estimating more parameters).

We developed one more model for comparison with
the AWC model and the UWC model. This new model,
which we call the metabolism weighted competition
(MWC) model, assumes that competition depends on
total metabolic rate, in which abundance is multiplied
by the per capita metabolic rate, which depends on
body length (see Eqs S32–S33 and S35–S37 of the
Supplementary Material available on Dryad). That is,
the pairwise competition is e−	(�i,t−�j,t)2

Bj,t instead of

e−	(�i,t−�j,t)2
Nj,t (as used in the AWC model), where
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Bj,t is the total metabolic rate of species j at the tth
generation. Because the logarithms of body length and
body mass of whales are strongly correlated with a
slope of 1

3 (Lockyer 1976) and per capita metabolic rate
has a scaling with body mass of 3

4 (Brody and Procter
1932; Brody 1945; Kleiber 1947; Etienne et al. 2006),
the total metabolic rate depends on body length and
abundance as follows: Bi =Ni ·B0 ·�9/4

i . Here, B0 is a
basal metabolic rate per kg (BMR/kg) that is assumed
to be constant across whale species, and therefore
drops out of our equations because only the relative
metabolic rate matters. Thus, large-bodied species have
more competitive power than small-bodied species. For
the two additional models (UWC and MWC models)
we again estimated five parameters (�,	,�,Vm,�), but
we considered only one scenario of heritability and
time scaling (h2 =1;s=20,000), because the analyses are
computationally demanding, and because we found that
the scenarios were similarly supported for the AWC
model (see Results section).

We used three alternative sets of summary statistics,
that is, the sorted mean trait distance (SMTD), the
PICs only, and the unsorted mean trait distance with
the phylogenetic independent contrasts (UMTD+PICs).
To compare the goodness-of-fit of the eight scenarios
(for the AWC model) among each other, we took the
simulations with the 5% highest GOF-values across all
scenarios and computed the percentage of simulations
represented by each scenario in these 5% best fitting
simulations as a measure of the support of that scenario
(Toni et al. 2009). We did this for each of the three sets
of summary statistics. For comparing the three models
we used the exact same procedure; support of a model is
thus measured by its representation among the 5% best
GOF-values across all three models. Lastly, because the
estimates converged well, for each model we used the
mean of the parameter estimates to generate 1000 data
sets to compare the predicted PICs with the empirical
observations.

RESULTS

Incorporating population dynamics in trait evolution
captures the gradual divergence in traits while trait
evolution without population dynamics leads to fast
branching in traits after speciation (see Figs. S2–S16 of the
Supplementary Material available on Dryad). This is due
to the fact that speciation splits the parent population
into two daughter populations that are less abundant.
As a consequence, the repulsion due to competition
between the two daughter species is not as strong as that
between two fully developed populations. This pattern
is especially significant when trait and population
dynamics are slow (e.g., due to a long generation time)
relative to macroevolutionary dynamics, for example,
s=100. Branching in traits under the UWC model is
observed substantially earlier than that under the AWC
model. With sufficiently large s the two models tend to

result in similar trait distribution at the tips, indicating
that equilibrium is reached.

The patterns of traits and abundances under the
AWC model strongly depend on the combination of the
stabilizing selection coefficient � and the competition
coefficient 	. When the competition coefficient 	 is
smaller than �, the plots show highly compressed traits
at the optimum trait value (�=0) (Fig. 2 and Figs. S17–S18
of the Supplementary Material available on Dryad). The
traits are most diverse when the competition coefficient
is moderate, due to the nonlinear nature of competition
(Fig. 1). This is more pronounced when environmental
stabilizing selection is weak. We also find that when
environmental stabilizing selection is absent (�=0),
the species at the edge of the trait spectrum have
larger population sizes than species with intermediate
traits (see Figs. S19–S21 of the Supplementary Material
available on Dryad). However, for all the nonzero values
of the stabilizing selection coefficient � we explored, the
species with intermediate trait values (i.e., closer to the
optimum) are more abundant than species with low or
high trait values (Figs. S19–S21 of the Supplementary
Material available on Dryad). Species with intermediate
trait values also had larger trait variance than those
with low or high trait values (Figs. S22–S24 f the
Supplementary Material available on Dryad).

We found that when 	 is larger than �, but not too
large, the traits are informative for parameter inference
because the traits are sufficiently separated, and we will
call these parameter values the informative parameter
domain and otherwise the uninformative parameter
domain. Looking more closely, we found that the most
accurate inference occurs when the quantity

√
	
� is equal

to the number of tips in the phylogeny. When this
criterion is met for the generating parameter values,

the ratios
√

	̂/�̂

Richness calculated using the estimates (	̂,�̂)
are also observed to be close to 1 and these ratios have
small variance (see Figs. S25–S27 of the Supplementary
Material available on Dryad). Therefore, we developed
a metric m to measure this quantity given by m=
|mean(

√
	̂/�̂

Richness )−1|+sd(
√

	̂/�̂

Richness ), where sd(·) stands for
the standard deviation. When m is close to 0, the
parameter inference is reliable (see Figs. S25–S27 of
the Supplementary Material available on Dryad). For
example, in Scenario 1 where the tree has 10 tips (see
Fig. 2), the estimates for � and 	 are expected to be most
accurate for generating parameter values of �=0.01 and
	=1, and indeed they are. In Scenario 4 where the tree
has 5 tips in Figure S28 of the Supplementary Material
available on Dryad the most accurate inference is found
when the generating parameter values are �=0.01 and
	=0.5.

Influence of phylogenetic information.—Tree size has a
large impact on the estimation of the competition
coefficient and mutation rate, but not on the estimation
of the stabilizing selection coefficient (Fig. 3 and
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FIGURE 2. Parameter inference for the 36 parameter combinations under Scenarios 1, 2, and 3 (Table 1) (the corresponding phylogenetic trees
are shown at the bottom left). The dashed lines in three colors denote three parameter values used to generate the data. Note that the scale of
mutation rate is 10−11. Box plots indicate the distribution of inferred parameter values, where the whiskers extend from the minimum to the
maximum value. Some plots show no estimates for part of the parameter combinations, because there is no complete simulation under these
parameter combinations after 10,000 attempts. The shared parameters used to generate the phylogenetic trees are � = 0.4, � = 0 with a crown
age of 15 myr. The clade-level carrying capacity is K = 10, 30, 100 for trees 1, 2, 3, respectively. Data are shown only for the informative parameter
domain (� � 	); when � > 	, the parameter estimation show major bias and substantial variance.

Figs. S28–S30 of the Supplementary Material available on
Dryad). In general, when comparing across the scenarios
with different carrying capacities K of the diversity-
dependent diversification model, large trees tend to
cause large variation in parameter estimates. For these
large trees, the variance becomes even larger when
environmental stabilizing selection becomes stronger.
For very small trees (e.g., Scenarios 1, 4, 7, 10 with
carrying capacity of 10), the variance of the estimates
first declines and then increases with increasing 	
while keeping � fixed (see Fig. 3 in the main text and
Figs. S28–S30 of the Supplementary Material available on
Dryad). The same pattern is also found when increasing
� and fixing 	. The estimates of � show a peculiar
pattern that depends on the tree size. For small trees
the estimates of � are a bit overestimated but with
a low variance. For large trees, the median of the
estimates is close to the true value but the variance
is large.

A high speciation rate tends to bias the estimation
of 	 and � and increases the variance of the estimates
for the scenarios with nonzero extinction while for the
pure birth scenarios it improves the estimation (see
Figs. S31–S33 of the Supplementary Material available
on Dryad for the scenarios with no extinction and
Figs. S34–S36 of the Supplementary Material available
on Dryad for the scenarios with extinction). For the
estimation of �, there is no substantial effect of the
speciation and extinction rates. However, the estimation
is likely affected by the range of the resulting traits, e.g. a
small range of the resulting traits leads to inferring large
�. The estimation of the competition coefficient and the
mutation rate is likely to be affected by large speciation
and extinction rate because the frequent speciation and
extinction prevent the trait evolution from reaching
equilibrium.

Generally, extinction may cause more variance in the
estimates of 	 but the median of the estimates resembles
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FIGURE 3. Parameter inference for the 36 parameter combinations under Scenarios 1, 2, and 3 (Table 1) (the corresponding phylogenetic trees
are shown at the bottom left). The dashed lines in three colors denote three parameter values used to generate the data. Note that the scale of
mutation rate is 10−11. Box plots indicate the distribution of inferred parameter values, where the whiskers extend from the minimum to the
maximum value. Some plots show no estimates for part of the parameter combinations, because there is no complete simulation under these
parameter combinations after 10,000 attempts. The shared parameters used to generate the phylogenetic trees are � = 0.4, � = 0 with a crown
age of 15 myr. The clade-level carrying capacity is K = 10, 30, 100 for trees 1, 2, 3, respectively. Data are shown only for the informative parameter
domain (� � 	); when � > 	, the parameter estimation show major bias and substantial variance.

the true values for the trees that are not too small (see
Figs. S37–S42 of the Supplementary Material available
on Dryad). For small trees, for example Scenarios 4 and
10 (see Fig. S34 of the Supplementary Material available
on Dryad), 	 is greatly underestimated when there is
no stabilizing selection and the generating competition
coefficient is large (	=1), while � is well estimated except
when stabilizing selection is weak and the competition
coefficient is large for the scenario with very large
extinction rate (�=0.6) (see Scenario 14 in Fig. S42 of the
Supplementary Material available on Dryad). Although
the estimates of � show an increasing variance when the

extinction rate increases, the true value is still recovered
on average. Interestingly, in the cases where � and 	 are
both large (�=0.5,	=1) a nonzero extinction rate greatly
improves the estimation of all parameters when using
the full tree (Scenarios 4-6 and 10-14).

Influence of reconstructing phylogenetic trees.—
Surprisingly, from the overall comparison among the
full-tree scenarios and the corresponding pruned-tree
scenarios, there is no substantial difference in parameter
estimates for most of the parameter combinations in
the informative parameter domain (see Figs. S43–S50
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of the Supplementary Material available on Dryad).
Only a slight underestimation of 	 is observed for
the pruned-tree scenarios compared to the full-tree
scenarios. The estimation of � is only substantially
biased for the scenarios using extremely large extinction
rate (Scenarios 14 and 22 with extinction rate �=0.6,
see Fig. S50 of the Supplementary Material available on
Dryad) and small stabilizing selection coefficient. There
seems to be no clear influence of pruning extinct species
on the estimate of �. The overall relative insensitivity of
the parameter estimates to phylogenetic reconstruction
for only extant species may be due to the fact that
species extinction will almost immediately lead to
another species occupying its niche.

Influence of the time scaling parameter.—Choosing a larger
value of the time scaling parameter (s=20000) in
estimation than the one used to generate the data
(s=10000) does not lead to substantial difference in
estimation for most of the parameter combinations (see
Figs. S51–S54 of the Supplementary Material available
on Dryad). The competition coefficient is only slightly
underestimated for the scenarios with large 	 except for
one special case when�=0 and	=1 in the pure birth tree
(Scenario 23, see Fig. S51 of the Supplementary Material
available on Dryad). The estimation of � is accurate in the
informative parameter domain. The estimates of � show
a somewhat larger variance but still match the true value
in most of the parameter combinations.

A larger value of the time scaling parameter used
both in generating the data and in the parameter
inference generally does not improve the performance of
parameter inference (Figs. S55–S58 of the Supplementary
Material available on Dryad). A significant improvement
only appears in the estimation of 	 when �=0 for
the scenarios with small or zero extinction rates. The
stabilizing selection coefficient � is normally equally
well estimated for the scenarios with small extinction
rates for both time scaling parameters. By contrast,
for the scenarios that have large extinction rates,
the parameter inference is worst when stabilizing
selection is weak. When stabilizing selection becomes
strong, parameter estimation for all three variables is
substantially improved.

Environmental stabilizing selection and competition in
baleen whales

In all scenarios, the estimates of � are much smaller
than the estimates of 	. The square root of the ratio
of 	 and � is close to the clade size of the baleen
whale phylogeny with the m values being around 1
(in the range of (1,1.4) for SMTD, (0.82,1.7) for PICs
and (1.02,1.6) for UMTD+PICs). By comparing with
scenario 2 which has similar tree size (see Fig. S26 of
the Supplementary Material available on Dryad), this
suggests that parameter inference is reliable. Heritability
tends to affect the inference of the environmental
stabilizing selection coefficient �, and the competition

coefficient 	 but not so much the mutation rate �, the
maximum variance by mutation Vm and the optimum
trait value � (see Fig. 4). With a larger heritability (h2 =1),
the estimates of � and 	 are smaller and less variable
than for h2 =0.5 across all three summary statistics.
Alternative sets of summary statistics lead to similar
results in the estimation of the parameters �, Vm and
�, but for � and 	, the inferences using PICs and
UMTD+PICs differ from those using SMTD particularly
when h2 =0.5 (see Fig. 4 for SMTD, Fig. S59 of the
Supplementary Material available on Dryad for PICs
and Fig. S60 of the Supplementary Material available
on Dryad for UMTD+PICs). The estimated � is smallest,
around 6, when using PICs. The value increases when
the summary statistics include absolute trait information
(SMTD and UMTD+PICs), reaching 9 for the algorithm
using SMTD only. In contrast, the estimations for 	
using SMTD are much smaller than using the other two
summary statistics. The mutation rate � is consistently
inferred to be 0.001 except when using PICs, in which
increasing s to 80,000 increases the estimate of � to 0.002.
We did not find substantial differences in the estimates
under different time scaling parameters, except that with
only PICs as the set of summary statistics, the predicted
	 decreases when increasing the time scaling parameter
and/or heritability. The estimation of � is estimated
to be around 3.05 across all three summary statistics,
although a larger time scaling parameter leads to a
larger variance when using only PICs. Results based
on the untransformed total length can be found in
Figures S61–S63 of the Supplementary Material available
on Dryad.

Comparing the support of the scenarios across h2 and
s (computed from the GOF-values) tells us that when
using SMTD as summary statistic h2 =0.5 better fits
the data than h2 =1 while all values of s are similarly
supported. Using PICs and UMTD+PICs as summary
statistics leads to equally good fits for different h2 and s
(see Fig. 5).

We note that the quantitative values of the estimates
for stabilizing selection and competition coefficients
are not comparable among the three models of trait
evolution (AWC, UWC and MWC) because these
models assume different factors affecting competition.
Nevertheless, the estimations all suggest a small
environmental stabilizing selection coefficient and a
large competition coefficient (see Figs. S67–S69 of the
Supplementary Material available on Dryad for the three
sets of summary statistics). When using the summary
statistics SMTD, the best fitted value of the optimum trait
� is close to the mean of the extant species traits (3.087)
for the AWC model and the UWC model, and around 2.9
for the MWC model. A similar pattern is also found in
the estimation using UMTD+PICs but a large variance
emerges for the MWC model. Using PICs (but not SMTD
and UMTD+PICs) leads to large variance in estimations
of � in all three models. The abundance distribution
substantially differs for the three models (Fig. S70 of the
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FIGURE 4. Parameter inference under eight parameter settings (i.e. all combinations of s = 20,000, 40,000, 60,000, 80,000 and h2= 0.5,1) to test
the influence of the number of time steps and heritability on parameter estimation using SMTD as the summary statistic (for the results using
PICs and UMTD+PICs, see Figs. S59 and S60 of the Supplementary Material available on Dryad). The three dashed lines in the violin plot are
25th percentile, median and 75th percentile quantile of the samples in the last iteration of the ABC algorithm that produce the 5% best fits to the
baleen whale data.

Supplementary Material available on Dryad) regardless
of the choice of summary statistics. The AWC model
generates a symmetric unimodal abundance distribution
around the optimum trait value. For the MWC model, the
abundance distribution shows a decrease of abundance
with increasing body length. The prediction of the
intraspecific variance also differs substantially among
the three models (see Fig. S71 of the Supplementary
Material available on Dryad). The AWC model produces
higher intraspecific variance than the UWC and MWC
models. Comparing the supports of the three models we
find that the UWC model is favored when using SMTD as
summary statistic while all three models show a similar

fit (with the MWC model slightly favored) when using
the other two (more informative) summary statistics
(Fig. 5 and see Figs. S72–S74 of the Supplementary
Material available on Dryad for the GOF distributions
of the three models for the three summary statistics).

Using the estimated parameters, we generated 1000
replicate trait data sets for the three models from the
posterior distributions and compared the predicted
phylogenetic independent contrasts to the empirical
data (see Fig. 6 for the results using UMTD+PICs and
Figs. S75–S76 of the Supplementary material available
on Dryad for the results using PICs and SMTD). We
observe a good fit for most of the contrasts but substantial
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a)

b)

FIGURE 5. Model comparison. a) Support of various h2 and s for the three summary statistics under the AWC model. The width of the bar
denotes the support of the corresponding parameter combination. b) Support across the three candidate models (AWC, UWC, and MWC) for
the three summary statistics. The height of the bar denotes the support of the corresponding model.

differences for some pairs of species and clades. For
example, the contrasts between the pairs of B.musculus
and its daughter clade, M.novaeangliae and B.physalus
are underestimated.

DISCUSSION

We have developed a novel, coherent, framework to
study how species interactions affect trait evolution. We
have illustrated it with a model of trait evolution and
population dynamics to explore how environmental
stabilizing selection and competition shape trait
patterns. We employed Approximate Bayesian
Computation with a Sequential Monte Carlo algorithm
to infer the parameters of interest and measure the
performance of our method for simulation data. Our
analysis reveals that the trait data at the present
is generally informative for parameter inference,
particularly when the number of species allowed by
the strength of stabilizing selection and competition
is similar to the number of species present in the
phylogeny. Otherwise, our inference approach is limited
due to an uninformative trait pattern that is highly
compressed to the optimum trait. Our empirical study
shows a small environmental stabilizing selection
coefficient and a relatively large competition coefficient,
suggesting a rapid repulsion among whale species.

Our model advances previous studies (Nuismer and
Harmon 2015; Drury et al. 2016, 2017; Manceau et al. 2017)
in three ways. First, our model is based on an explicit
definition of fitness based on population dynamics,
instead of chosen ad hoc. This property makes our
model more coherent. Second, we have relaxed the
assumption of a linear competition kernel, and thereby
capture a realistic mechanism in species interactions:
when two populations have very similar trait values,
the substantial overlap in their intraspecific trait
distributions neutralizes directional selection although
competition is very intense there. Consequently, the
traits are diverging very slowly. However, once stochastic
mutation produces imbalance, competition leads to
character displacement. Thus, the force of directional
selection dramatically increases at the onset of a division
in traits. When species interactions decrease due to
increasing dissimilarity, the force of directional selection
drops. This process continues until the two populations
evolve apart in traits to the extent that competition is
balanced by stabilizing attraction. The third advantage of
our model is that we have made population size a factor
in the force of competition (which seems more realistic),
and modeled the population dynamics.

Our simulation study reveals that phylogenetic
information, that is, tree size, branching times and
extinct branches, is informative for the inference
of stabilizing selection but carries little information
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FIGURE 6. Prediction of the phylogenetic independent contrasts (PICs) of baleen whale log-transformed body length, simulated using the
parameters estimated using UMTD+PICs. The time scaling parameter s is 20,000, corresponding to 50 years per generation and heritability
h2 = 1. The phylogeny is the reconstructed tree of the Mysticeti with the x-axis in units of million years (Slater et al. 2017). The box plots show the
distributions of PICs across 1000 simulations under the three models against the true data (the black dots) with the x-axis denoting the absolute
phylogenetic independence contrasts. The bars on the right show the untransformed body length of the species.

on species interactions in phylogenies with nonzero
extinction rate (Nuismer and Harmon 2015). Large trees
show more variance in estimations. On the one hand, this
is because large trees have more speciation events that
may result in species branching before they can evolve to
equilibrium. On the other hand, the potential mismatch
between the species carrying capacity K used to generate
phylogenetic trees and the number of coexisting species
that is allowed by the strength of environmental
stabilizing selection and competition could play a role
in the performance of the inference method. Large
environmental stabilizing selection results in a narrow
width of natural resources, which may sustain only a
few species. However, our simulation conditioning on
a prescribed individual carrying capacity and a given
phylogenetic tree forces more species to survive than
stabilizing selection would naturally allow. This conflict
may produce more variance in parameter estimation.
High speciation rate generally improves parameter
inference in phylogenies resulting from pure birth
process, because the community can reach the clade-
level carrying capacity faster, allowing more time to

form a specific pattern in traits. Conversely, extinction
prevents the community from reaching the carrying
capacity and generates more macroevolutionary events,
allowing less time for trait evolution. Thus, whether
parameter inference is accurate depends on the time
scaling parameter (s). Generally our study suggests
that if s is high, extinction rate has little influence on
the behavior of the parameter inference. If, conversely,
extinction rate is so high that the trait and population
dynamics are not fast enough to fill the trait niches left by
extinct species, considerable bias in parameter inference
is expected.

Reconstructing trees by pruning extinct species has a
similar effect on parameter inference as using full trees
if environmental stabilizing selection is present and the
number of time steps is large. One might expect that
extinction leaves gaps in the trait distribution suggesting
a wider effective competition zone corresponding to a
smaller competition coefficient 	, which is observed in
our results. However, any possible bias that extinction
may cause will disappear if given enough time steps
because extant species eventually take over empty niches
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FIGURE 7. Illustration of the effect of the environmental stabilizing selection coefficient � and the competition coefficient	 on the population
growth rate in baleen whales. The estimates are obtained from the scenario under the AWC model with s= 20,000, h2= 1. The two coefficients�
and	 are estimated as 4.84 and 99.3, respectively, with the optimum � being estimated as 3.05. The green curve corresponds to the term e−�(�−�)2

that refers to the breadth of the environmental resource with the optimum trait � . The red curve corresponds to the term e−e−	(�i−�)2
(see Eqs. 5,

6, and 7).

left by species that went extinct. Thus, if trait evolution
is fast enough, the trait pattern of extant species only
can still inform about species interactions. That is to
say, under these conditions phylogenetic information
is not necessarily needed for the inference of species
interactions. This conclusion is consistent with Nuismer
and Harmon’s finding for the phenotype differences
model (Nuismer and Harmon 2015). This result increases
the robustness of our inference approach when applied
to empirical data, where we often have only molecular
phylogenies and morphological trait data for extant
species.

Our ABC approach can be used in principle to estimate
all parameters, including s and h2. However, we did
not do so for the simulation study because we wanted
to focus on the ecological parameters, and we did not
do so for the baleen whales because of the small size
of the data set. Moreover, these parameters can often
be determined independently: for the baleen whales
we chose four different values of s that correspond to
plausible generation times, and two values of h2 that
span the range of plausible heritability values. We found
that none of the results depended much on the value of
s, and

√
	
� was hardly affected by the value of h2. For the

estimated parameters, we developed a simple metric m
to determine whether inference is reliable. This metric
can be easily computed from the posterior distribution
of the parameter values; the larger it is, the less reliable
the results are. We consider values of 1 as we found in
the baleen whales to be quite reliable.

In our example of baleen whales we find that
	>� suggesting strong competition, but we must

interpret this result with caution. A large value of the
competition coefficient 	 does not immediately imply
strong competition because of the shape of 
 (see Fig. 1)
where larger 	 not only increases the intensity of the
repulsion between two species with different traits, but
at the same time reduces the interaction distance, that
is, species with very similar trait values experience
stronger interaction, but species with dissimilar trait
values experience less interaction. How should we then
interpret the parameter values? As an example, for the fit
with the AWC model with s=20,000,h2 =1 and using the
STMD summary statistic, � is estimated as 3.05 (Fig. 7).
This means that the optimum body length for baleen
whales is 103.05 =1122 cm. The estimated value for � is
4.84. This means that the growth rate of species with a

body length differing by
√

1
� on a base-10 logarithmic

scale is a factor 1
e =0.36 of the optimum growth rate

obtained at �=3.05. This corresponds to body lengths
of 398 cm and 3162 cm. The estimated value for 	 is 99.3
which means that species body lengths being apart by√

1
2	

on a base-10 logarithmic scale from a competitor’s
mean body length experience the highest repulsion from
that competitor. For example, B. bonaerensis with trait
mean 102.97 =933 cm will be repelled most strongly by
species with trait means 792 cm and 1099 cm.

We developed a metric m that can be applied to
the ABC output to determine whether our parameter
estimation is reliable. We showed that when the
generating parameter values yield values of

√
	̂/�̂

Richness
close to 1, parameter estimations yielding an m-value
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close to 0 signal reliability of the inference, whereas
parameter values with m-values far from 0 should not
be trusted. It is possible that when the generating values

do not satisfy that
√

	̂/�̂

Richness is close to 1, estimates yield
m-values close to 0 as well, and hence one might falsely
conclude that the estimation is reliable. However, we
believe that such a scenario would not occur in practice
if the basic assumptions of the model are satisfied: the
richness observed in the phylogeny will have to be
similar to the richness dictated by the parameters 	
and �, otherwise the species will have gone extinct, or
the phylogeny does not reflect local diversification, thus
violating a key model assumption.

Arguably more important than the parameter
estimates is the model fit and comparison. Our
simulation study demonstrates the ability of our method
to recover the generating parameters when

√
	
� is close to

the number of species at the tips of the phylogeny, while
our empirical study among three models reveals that
different processes can produce similar patterns in traits
but result in substantial differences in population sizes.
Thus, the difference in the predictions of population
sizes for different trait values seems informative for
distinguishing between mechanisms. This underscores
the importance of implementing population dynamics in
trait evolution. Because the fitness function (Eq. 1) can be
altered to accommodate any type of species interactions,
using our approach for model selection allows one to
unravel underlying species interactions.

We find some differences between observed and
predicted contrasts (regardless of the set of summary
statistics used in ABC), showing a limitation in the
ability of our model to predict body lengths. That is,
some close relatives show larger contrasts than predicted
by our model. This suggests that (1) other traits than
body length also determine the strength of competitive
interactions, (2) there are multiple optimal body lengths
set by the abiotic environment, and/or (3) some of
the baleen whales explore different niche dimensions
(e.g., they utilize different types of resources), that is,
they evolve to adapt to different types of resources
to avoid competition rather than experience character
displacement to utilize a different part of the current
resource spectrum. Our model assumes only one type
of resource with only one optimum trait, so it cannot
capture these more complex scenarios. For example,
the largest underestimation of the contrasts is found
in the pair of B. musculus and its daughter clade and
the pair of B. physalus and its sister lineages which
seems to imply that the two largest species found
niches that favor gigantism (Slater et al. 2017). This
mismatch does not mean that competition has not
played a role in baleen whale trait evolution: competition
may have led to diversification in different niche
dimensions. Both explanations involve multiple traits,
and hence extending our model to incorporate evolution
of multiple traits presents an interesting avenue for
further research. There are also other reasons why our

model does not provide a perfect fit. For instance,
even though whales are widely distributed, they do
not co-occur everywhere and hence direct interactions,
as assumed in our model, may be absent. This can
be remedied by formulating a spatially explicit model
(see e.g. Drury et al. 2017; Manceau et al. 2017; Xu and
Etienne 2018). Furthermore, sexual dimorphism occurs
in baleen whales, but this difference is relatively small
compared to the length difference between species (5%,
Ralls and Mesnick 2009). On the data side, there is also
considerable uncertainty in phylogenetic reconstruction
and trait means, which may have affected our results.
Detailed analysis of the effect of such errors can be
performed in specific case studies.

With the three models we studied in this paper
we have introduced additional mechanisms in the
competition kernel. The formulation of the pairwise
competition can be written in the general form
e−	(�i,t−�j,t)2

F(Nj,t,�j,t), where F(Nj,t,�j,t) describes the
mechanism of interest. For example, the UWC model
assumes equal competitive power (F(Nj,t,�j,t)=1) to all
species while the AWC model assumes an abundance-
dependent competition (F(Nj,t,�j,t)=Nj,t) and the
MWC model sets a metabolism-dependent competition
(F(Nj,t,�j,t)=Bj,t). The AWC model agrees with the
intuition that the species that can utilize the most
available natural resource is the most abundant even
if competition is most intense there. The MWC model
captures the fact that the relationship between body
length and abundance is generally negative (Damuth
1981; Peters and Wassenberg 1983; Peters and Raelson
1984; Damuth 1987). Our general formulation (Eqs 2–
4) allows for other ways of weighing the effect of
competitive interactions on trait evolution.

Our model can be further extended in various
directions. For example, our model currently only
incorporates demographic stochasticity; the noise term
decreases rapidly with population size. One can easily
add environmental noise, which is independent of
population size. Other possible extensions would be to
replace the single optimum of a single trait by multiple
optima. Furthermore, the optimum trait value, �, may
be made time-dependent as the abiotic environment
(e.g., temperature, resource availability) has obviously
not been constant over macroevolutionary time scales. It
may even vary on much shorter time scales. For example,
Darwin finches on the Galápagos show different beak
sizes in different years due to the changing seed size
distribution (Lack 1947; Grant and Grant 2006). Another
extension of our model would be to model the effect
of trait evolution on diversification, along the lines
of Aristide and Morlon (2019) who integrated trait
evolution in a macroevolutionary model to study the
effect of competition on biodiversity and phenotypic
diversity (but without population dynamics). Insights
from adaptive dynamics on evolutionary branching may
be useful here (Geritz et al. 1998). Finally, our model
and the ABC-approach also allow for joint inference of
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macroevolutionary (speciation and extinction) dynamics
and microevolutionary (trait) dynamics.

In summary, we have presented a general framework
to model trait evolution subject to species interactions
and provided an inference tool to perform model
selection based on trait data with or without abundance
data. We have shown that the availability of abundance
data may be crucial to distinguish between different
models. The availability of data on intraspecific
trait variation may further aid model selection. Our
approach thus represents an important step in the eco-
evolutionary synthesis and testing this on empirical
data.

FUNDING

We thank the Netherlands Organization (NWO) for
financial support through a VICI grant awarded to RSE
and the China Scholarship Council for financial support
of LX.

ACKNOWLEDGMENTS

We thank Jonathen Drury, Luke Harmon, and Per
Palsbøll for discussions. Furthermore, we thank the
Center for Information Technology of the University of
Groningen for their support and for providing access to
the Peregrine high performance computing cluster.

REFERENCES

Abrams P.A. 2001. A world without competition. Nature 412:858—859.
Aristide L., Morlon H. 2019. Understanding the effect of competition

during evolutionary radiations: an integrated model of phenotypic
and species diversification. Ecol. Lett 22:2006—2017.

Barnett S.A., Simpson G.G. 1955. The major features of evolution,
Vol. 46. New York: Columbia University Press.

Brody S. 1945. Bioenergetics and growth, with special reference to the
efficiency complex in domestic animals. New York: Reinhold.

Brody S., Procter R. 1932. Relation between basal metabolism and
mature body weight in different species of mammals. Univ. Mo.
Agr. Exp. Sta. Res. Bull.

Clarke M., Thomas G.H., Freckleton R.P. 2017. Trait evolution
in adaptive radiations: modeling and measuring interspecific
competition on phylogenies. Am. Nat. 189:121–137.

Damuth J. 1981. Body size in mammals. Nature 290:699.
Damuth J. 1987. Interspecific allometry of population density in

mammals and other animals: the independence of body mass and
population energy-use. Biol. J. Linnean Soc. 31:193–246.

Darwin C.R. 1859. On the origin of species by means of natural
selection; or the preservation of favoured races in the struggle for
life, Vol. 5. London, UK: John Murray.

Drury J., Clavel J., Manceau M., Morlon H. 2016. Estimating the effect of
competition on trait evolution using maximum likelihood inference.
Syst. Biol. 33:700–710.

Drury J.P., Grether G.F., Garland T., Morlon H., Garland Jr. T., Morlon
H., Garland T., Morlon H., Garland Jr. T., Morlon H., Garland
T., Morlon H., Garland Jr. T., Morlon H. 2017. An assessment of
phylogenetic tools for analyzing the interplay between interspecific
interactions and phenotypic evolution. Syst. Biol. 67:413–427.

Etienne R.S., Apol M.E.F., Olff H. 2006. Demystifying the West, Brown
& Enquist model of the allometry of metabolism. Funct. Ecol. 20:394–
399.

Etienne R. S., Haegeman B., Stadler T., Aze T., Pearson P.N., Purvis
A., Phillimore A.B. 2011. Diversity-dependence brings molecular
phylogenies closer to agreement with the fossil record. Proc. R. Soc.
B 279:1300–1309.

Falconer D.S., Mackay T.F. 1996. Introduction to quantitative genetics.
4th ed. Pearson: Harlow Pearson, Prentice Hall.

Felsenstein J. 1985. Phylogenies and the comparative method. Am.
Nat. 125:1–15.

Garland T. 2005. Phylogenetic approaches in comparative physiology.
J. Exp. Biol. 208:3015–3035.

Geritz S., Kisdi E., Meszena G., Metz J. 1998. Evolutionary
singular strategies and the adaptive growth and branching of the
evolutionary tree. Evol. Ecol. 12:35–57.

Gingerich P.D. 2019. Rates of evolution: a quantitative synthesis.
Cambridge and New York:Cambridge University Press.

Grant P.R., Grant B.R. 2006. Evolution of character displacement in
Darwin’s finches. Science 313:224–226.

Hansen T.F., Martins E.P. 1996. Translating between microevolutionary
process and macroevolutionary patterns: the correlation structure
of interspecific data. Evolution 50:1404.

Harmon L.J., Andreazzi C.S., Débarre F., Drury J., Goldberg E.E.,
Martins A.B., Melián C.J., Narwani A., Nuismer S.L., Pennell M.W.,
Rudman S.M., Seehausen O., Silvestro D., Weber M., Matthews
B. 2019. Detecting the macroevolutionary signal of species
interactions. J. Evol. Biol. 32:769—782.

Ives A.R., Godfray H.C.J. 2006. Phylogenetic analysis of trophic
associations. Am. Nat. 168.

Kimura M., Crow J.F. 1964. The number of alleles that can be
maintained in a finite population. Genetics 49:725–738.

Kleiber M. 1947. Body size and metabolic rate. Physiol. Rev. 27:511–541.
Lack D. 1947. Darwin’s finches. Cambridge:Cambridge University

Press.
Lande R. 1976. Natural selection and random genetic drift in

phenotypic evolution. Source: Evolution 30:314–334.
Lenormand T., Roze D., Rousset F. 2009. Stochasticity in evolution.

Trends Ecol. Evol. 24:157–165:E1—E14.
Lockyer C. 1976. Body weights of some species of large whales. CES J.

Marine Sci. 36:259–273.
Mahler D.L., Ingram T., Revell L.J., Losos J.B. (2013). Exceptional

convergence on the macroevolutionary landscape in island lizard
radiations. Science 341:292–295.

Manceau M., Lambert A., Morlon H. 2017. A unifying comparative
phylogenetic framework including traits coevolving across
interacting lineages. Syst. Biol. 6:51–568.

Narwani A., Matthews B., Fox J., Venail P. 2015. Using phylogenetics in
community assembly and ecosystem functioning research. Funct.
Ecol. 29:589–591.

Nuismer S.L., Harmon L.J. 2015. Predicting rates of interspecific
interaction from phylogenetic trees. Ecol. Lett. 18:17–27.

Pelletier F., Garant D., Hendry A.P. 2009. Eco-evolutionary dynamics.
Philos. Trans. R. Soc. B 364:1483–1489.

Pennell M.W., Harmon L.J. 2013. An integrative view of phylogenetic
comparative methods: connections to population genetics,
community ecology, and paleobiology. Ann. N. Y. Acad.
Sci. 1289:90–105.

Peters R.H., Raelson J.V. 1984. Relations between individual size and
mammalian population density. Am. Nat. 124:498–517.

Peters R.H., Wassenberg K. 1983. The effect of body size on animal
abundance. Oecologia 60, 89–96.

Pigot A.L., Etienne R.S. 2015. A new dynamic null model for
phylogenetic community structure. Ecol. Lett. 18:153–163.

Rafferty N.E., Ives A.R. 2013. Phylogenetic trait-based analyses of
ecological networks. Ecology 94:2321–2333.

Ralls K., Mesnick, S. 2009. Sexual dimorphism. In: Perrin W., Würsig B.,
Thewissen J.G.M., editors. Encyclopedia of marine mammals. 2nd
ed. Amsterdam, Boston: Academic Press.

Raup D.M., Gould S.J., Schopf T.J.M., Simberloff D. 1973. Stochastic
models of phylogeny and the evolution of diversity. J. Geol. 81:525–
542.

Rezende E.L., Jordano P., Bascompte J. 2007. Effects of phenotypic
complementarity and phylogeny on the nested structure of
mutualistic networks. Oikos 116:1919–1929.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/70/3/463/5910004 by guest on 07 July 2021



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:17 7/4/2021 Sysbio-OP-SYSB200073.tex] Page: 479 463–479

2021 XU ET AL.—INFERRING THE EFFECT OF SPECIES INTERACTIONS 479

Schoener T.W. 2011. The newest synthesis: understanding the
interplay of evolutionary and ecological dynamics. Science
331:426–429.

Slater G.J., Goldbogen J.A., Pyenson N.D. 2017. Independent evolution
of baleen whale gigantism linked to Plio-Pleistocene ocean
dynamics. Proc. R. Soc. B 284:20170546.

Smith F.A., Boyer A.G., Brown J.H., Costa D.P., Dayan T.,
Ernest M., Evans A.R., Fortelius M., Gittleman J.L., Marcus
J., Harding L.E., Lintulaakso K., Lyons S.K., Mccain C., Okie
J.G., Saarinen J.J., Sibly R.M., Stephens P.R., Theodor J., Uhen
M.D. 2010. Supporting online material for the evolution of
maximum body size of terrestrial mammals. Science 1216:
1216–1220.

Sunnåker M., Busetto A.G., Numminen E., Corander J., Foll M.,
Dessimoz C. 2013. Approximate Bayesian computation. PLoS
Comput. Biol. 9(1):e1002803. doi:10.1371/journal.pcbi.1002803.

Theodore Garland J., Ives A.R. 2000. Using the past to predict
the present: confidence intervals for regression equations in
phylogenetic comparative methods. Am. Nat. 155:346.

Toni T., Welch D., Strelkowa N., Ipsen A., Stumpf M.P. 2009.
Approximate Bayesian computation scheme for parameter inference
and model selection in dynamical systems. J. R. Soc. Interface 6:187–
202.

Van Valen L. 1969. Variation genetics of extinct animals. Am.
Nat. 103:193–224.

Xu L., Etienne R.S. 2018. Detecting local diversity-dependence in
diversification. Evolution 72:1–12.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/70/3/463/5910004 by guest on 07 July 2021


	Inferring the Effect of Species Interactions on Trait Evolution

