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Purpose: Reducing the injected activity and/or the scanning time is a desirable goal to minimize radiation expo- 

sure and maximize patients’ comfort. To achieve this goal, we developed a deep neural network (DNN) model for 

synthesizing full-dose (FD) time-of-flight (TOF) bin sinograms from their corresponding fast/low-dose (LD) TOF 

bin sinograms. 

Methods: Clinical brain PET/CT raw data of 140 normal and abnormal patients were employed to create LD and 

FD TOF bin sinograms. The LD TOF sinograms were created through 5% undersampling of FD list-mode PET 

data. The TOF sinograms were split into seven time bins (0, ± 1, ± 2, ± 3). Residual network (ResNet) algorithms 

were trained separately to generate FD bins from LD bins. An extra ResNet model was trained to synthesize FD 

images from LD images to compare the performance of DNN in sinogram space (SS) vs implementation in image 

space (IS). Comprehensive quantitative and statistical analysis was performed to assess the performance of the 

proposed model using established quantitative metrics, including the peak signal-to-noise ratio (PSNR), structural 

similarity index metric (SSIM) region-wise standardized uptake value (SUV) bias and statistical analysis for 83 

brain regions. 

Results: SSIM and PSNR values of 0.97 ± 0.01, 0.98 ± 0.01 and 33.70 ± 0.32, 39.36 ± 0.21 were obtained for IS 

and SS, respectively, compared to 0.86 ± 0.02and 31.12 ± 0.22 for reference LD images. The absolute average 

SUV bias was 0.96 ± 0.95% and 1.40 ± 0.72% for SS and IS implementations, respectively. The joint histogram 

analysis revealed the lowest mean square error (MSE) and highest correlation (R 2 = 0.99, MSE = 0.019) was 

achieved by SS compared to IS (R 2 = 0.97, MSE = 0.028). The Bland & Altman analysis showed that the lowest 

SUV bias (-0.4%) and minimum variance (95% CI: -2.6%, + 1.9%) were achieved by SS images. The voxel-wise 

t -test analysis revealed the presence of voxels with statistically significantly lower values in LD, IS, and SS images 

compared to FD images respectively. 

Conclusion: The results demonstrated that images reconstructed from the predicted TOF FD sinograms using the 

SS approach led to higher image quality and lower bias compared to images predicted from LD images. 
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. Introduction 

Non-invasive functional imaging using positron emission tomogra-

hy (PET) is the ultimate technique for the visualization and quantifi-
PET, Positron Emission Tomography; DNN, Deep Neural Networks; LD, Low-dos

o-Noise Ratio; OP-OSEM, Poisson ordered subsets-expectation maximization; SSIM

tandardized Uptake Value; STD, standard deviation; IS, Image Space; SS, Sinogram 
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ation of events at the cellular and molecular levels. PET is widely used

or the assessment of neurodegenerative diseases and other neurolog-

cal disorders ( Zaidi et al., 2010 ). PET reconstruction algorithms gen-

rate a three-dimensional (3D) image representing the radiotracer dis-
e; FD, Full-dose; ResNet, Residual network; TOF, Time-of-Flight; SNR, Signal- 

, Structural Similarity Index Metric; RMSE, Root Mean Squared Error; SUV, 
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ribution within the body, providing useful information about biolog-

cal processes in vivo . PET is a relatively noisy imaging modality ow-

ng to the low statistics of the acquired events and the Poisson nature

f annihilation photons emission and detection processes. The techni-

al aspects, including PET scanner’s geometry, photodetection technol-

gy, reconstruction methodology, along with physiological considera-

ions, such as patient motion (particularly for patients suffering from

ementia that are more susceptible to involuntary motion) influence

he quality and quantitative accuracy of PET images. Furthermore, the

umber of collected true events, which has a direct relationship to the

canning/acquisition time and amount of injected radiotracer, impacts

ET image quality. Increasing the scanning time causes additional dis-

omfort to elderly and pediatric patients and decreases the scanner’s

hroughput. Conversely, increasing the amount of injected radiotracer

aces concerns with respect to potential radiation hazards, particularly

n children and patients undergoing multiple PET examinations at dif-

erent time intervals for follow-up or monitoring of treatment response

Arabi et al., 2021; Sanaat et al., 2021) . Reducing the injected activity or

canning time hampers image quality and decreases the signal-to-noise

atio (SNR), which might jeopardize clinical diagnosis and biased quan-

ification. Hence, techniques enabling to reduce the injected activity or

canning time while maintaining the clinical information of PET images

imilar to standard dose scans are highly desired. 

In recent years, a plethora of deep neural networks (DNN) were

roposed to address the issue of noise reduction and improvement of

mage quality in low-dose (LD) PET imaging while preserving clini-

al information ( Zaidi and El Naqa, 2021 ). Artificial intelligence algo-

ithms are black box techniques that can learn any type of nonlinear

ransformation for a large number of tasks, specifically in the image-

o-image translation domain. During the last decade, a number of DNN

odels were developed for image-to-image translation, demonstrating

easonable performance in direct PET image reconstruction mapping

he representations from multi-modal images, such as data from sino-

ram to image domains ( Häggström et al., 2019 ; Sanaat et al., 2020 ;

anaat and Zaidi, 2020 ), cross-modality multisequence MR to PET con-

ersion ( Wei et al., 2020 ), generation of synthetic CT from MR images

 Arabi et al., 2019 ; Han, 2017 ), internal radiation dosimetry where

T and PET images are fed into the model to predict the dose map

 Akhavanallaf et al., 2021 ), synthesizing PET/CT attenuation corrected

rom non-attenuated corrected images ( Arabi et al., 2020 ; Yang et al.,

019 ), and image denoising ( Chen et al., 2019 ; Kang et al., 2015 ;

aplan and Zhu, 2019 ; Ouyang et al., 2019 ; Schaefferkoetter et al.,

017 ; Wang et al., 2018 ; Xiang et al., 2017 ). 

Various PET image denoising techniques using DNNs in image space

ere reported. For instance, Chen et al. adopted a residual U-Net archi-

ecture for estimating the full-dose (FD) images from an LD with 200th

ose reduction ( Xu et al., 2017 ). Other groups explored the possibility

f using anatomical information from concurrent imaging modalities,

uch as CT or MRI in denoising process to enhance the synthesized FD

ET image quality. In this regard, Chen et al. used a U-Net model in-

orporating MR sequences (T1, T2-weighted, and T2-FLAIR) into the

earning process to estimate FD 

18 F-Florbetaben brain PET images from

D images to 1% of the corresponding acquisition time of FD images

 Chen et al., 2019 ). 

Most previous studies using deep learning-guided PET image de-

oising in the image domain. One of the disadvantages of using re-

onstructed images is that the models are trained for a specific clini-

al protocol, which limits the applicability of the model to the specific

econstruction protocol adopted (parameters, post-reconstruction filter-

ng, etc.). Hence, switching to a different clinical protocol entails retrain-

ng again the DNN model. Conversely, the prediction of FD sinograms in

he projection domain makes it possible to apply various image recon-

truction protocols. Such an approach was adopted in our recent work

here we developed two U-Net models: one conventional to synthe-

ize FD images from LD images and another to synthesize FD non-time-

f-flight (TOF) sinograms from LD non-TOF sinograms ( Sanaat et al.,
2 
020 ). The comparison of these two approaches proved that FD im-

ges reconstructed from the predicted sinograms effectively reduced the

oise level and exhibited superior performance in terms of image qual-

ty and quantitative accuracy. Hong et al. (2018 ) proposed a deep resid-

al sinogram super-resolution network to improve the quality of images

roduced by a PET scanner equipped with large pixelated crystals. They

rained their model using sinograms from a scanner with thin crystals,

o generate high-resolution sinograms. Furthermore, more recent work

eported on prior knowledge-driven DNN-based approach for sinogram

enoising ( Lu et al., 2020 ). 

TOF PET imaging provides higher signal-to-noise ratio and overall

mproved image quality compared to nonTOF PET, particularly for large

bjects ( Surti, 2015 ). This enables faster/lower dose PET imaging. In this

egard, denoising the TOF PET data in the sinogram domain is highly

esired to take full advantage of the potential of TOF PET imaging. 

One of the limitations of our above referenced previous work is that

OF was not considered, and as such, the technique was not exploited

o its full potential ( Sanaat et al., 2020 ). In this work, we set out to de-

elop a model consisting of seven Residual network (ResNet) architec-

ures to predict seven FD sinograms corresponding to various TOF bins

0, ± 1, ± 2, ± 3) from their corresponding LD TOF bin sinograms in an

nd-to-end fashion. Thereafter, the generated TOF sinograms could be

econstructed using any PET image reconstruction algorithm. We used

ifferent ResNet models for training the network in image space. The

ynthesized images derived using both methodologies (image space and

inogram space) were then compared. 

. Materials and methods 

.1. PET/CT data acquisition 

The current study was carried out using a database consisting of 140
8 F-FDG brain PET/CT studies collected between June 2017 and May

019 at Geneva University Hospital. The dataset covers a wide range

f patients with cognitive symptoms of possible neurodegenerative dis-

ases. The patients consisted of 66 males (73 ± 9 yrs) and 74 females

72 ± 11 yrs). The demographic information of patients is summarized

n Table 1 . The study protocol was accepted by the institution’s ethics

ommittee and all patients gave written informed content. List-mode

ata were acquired on a Biograph mCT scanner (Siemens Healthineers,

rlangen, Germany) about 35 min post-injection. A low-dose CT scan

120 kVp, 20 mAs) was performed for PET attenuation correction. A

tandard imaging protocol consisting of 20 min scanning time follow-

ng the injection of 205 ± 10 MBq of 18 F-FDG. PET list-mode data were

rst binned into sinograms and then reconstructed using the e7 tools

ffline reconstruction toolkit (Siemens Healthcare). An extension of this

oolkit, referred to as “decimate.js ”, enables to produce randomly un-

ersampled TOF sinograms corresponding to a predefined percentage of

he total number of collected events, thus allowing to generate low-dose

cans from full-dose scans. Each produced TOF sinogram has a matrix

ize of 400 × 168 × 621 × 13, with the fourth dimension representing

he number of time bins for the Biograph mCT having a TOF coincidence

ime resolution of ∼530 ps (0, ± 1, ± 2, ± 3, ± 4, ± 5, ± 6). Since the head

s always positioned in the center of the field-of-view and given that the

ize of the head, it is commonly contained within only 7 bins (0, ± 1,

 2, ± 3). Hence, we trained 7 models corresponding to these time bins.

 random subset containing 5% of the total events was extracted from

he list-mode data to produce a LD TOF sinogram. An ordinary Poisson

rdered subsets-expectation maximization (OP-OSEM) algorithm con-

idering TOF and point spread function modeling with 5 iterations and

1 subsets was used for reconstruction of both FD and LD PET images

ith a matrix size of 200 × 200 × 109 and 2.03 × 2.03 × 2.2 mm 

3 voxel

ize. Gaussian post-reconstruction filtering with 2 mm FWHM was ap-

lied. 
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Table 1 

Demographic information of patients included in this study. 

Training Test Validation 

Number 100 30 10 

Male/Female 45/55 15/15 4/6 

Age (Mean ± SD) 73 ± 8 71 ± 16 69 ± 7.5 

Indication/Diagnosis Cognitive symptoms of possible neurodegenerative an etiology 

Fig. 1. A schematic of the ResNet network used in this work. In seven separate steps low dose sinograms time bins ( − 3, − 2, − 1,0,1,2,3) were fed in 7 separate ResNet 

models as input and full dose sinograms belong to each time bin predicted. In image space training phase, we fed a ResNet model with TOF LD images to predict 

TOF FD images. 
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.2. ResNet architecture 

The core element to any ResNET is the residual block originally pro-

osed in ( He et al., 2016 ) along with its later variants. The residual con-

ection circumvents the many issues faced while increasing the num-

er of layers of neural networks and efficiently facilitates training very

eep networks. This has revolutionized the deep learning practice across

any disciplines, including the application targeted in this work, i.e.,

mage-to-image translation. 

A general description of a residual connection is depicted in Fig. 1 .

et 𝑓 [ 𝑙] 
𝜃
( ⋅) the 𝑙 th module of a DNN, where 𝑙 = 1 , ⋯ , 𝐿 and 𝜃 symboliz-

ng the set of all learnable parameters of the neural network, which are

pdated during training. This usually consists of a couple of convolu-

ional layers with ReLU non-linearities in between. Let 𝐱 [ 𝑙−1 ] denote the

nput to this convolutional module, where 𝐱 [0] = 𝐱 is the input image.

he residual block produces the output as follows: 

 

[ 𝑙 ] = 𝐱 [ 𝑙−1 ] + 𝑓 
[ 𝑙 ] 
𝜃

(
𝐱 [ 𝑙−1 ] 

)
(1)

hich is then fed to the next block. This has many benefits, including

he fact that the network will have the possibility to circumvent a mod-

le if it slows down the optimization, e.g., due to exploding or vanishing

radient issues ( Xie et al., 2017 ). Moreover, from the perspective of con-

olution, it provides a diverse set of effective receptive fields. 

This basic idea is then applied in various ways using modern net-

orks. U-Net proved to be a successful concept in image-to-image trans-

ation and is very popular in the medical image processing and analysis

omains ( Huang et al., 2017 ). Consider a simplified structure of a U-

et with 3 left modules 𝑓 [ 𝑙] ↓ ( ⋅) , as well as 3 right modules 𝑓 [ 𝑙] ↑ ( ⋅) . The

utput of any left module is downsampled and fed to the next left mod-

le, in addition to being directly fed into its corresponding right module,

hich also receives up-sampled signals from the previous right module.
3 
herefore, the final output is formed as: 

 

[ 𝐿 ] = 𝑓 
[ 𝐿 ] 
↑ 

(
𝑓 
[ 1 ] 
↓

(
𝐱 [ 0 ] 

)
+ 𝐱 [ 𝐿 −1 ] 

)
(2)

Hence the output image gets directly a signal from the first layer.

hile this is successful in many tasks (e.g. image segmentation), for

asks where the input-output image pairs are very similar like in auto-

ncoding, the network uses the easier direct pathway from the input to

he output. A trial and error exercise revealed that no matter how many

odules exist in the U-Net, in such cases, the signal does not propagate

hrough them and the output relies mostly on the first module. 

In our case, where the low-dose and full-dose images are somehow

imilar, we noticed this phenomenon by not achieving satisfactory re-

ults. This led us to chose more sequential ResNet variants. In particular,

e adopted the ResNet structure proposed in ( Ronneberger et al., 2015 )

epicted in Fig. 1 , also implemented in NiftyNet ( Gibson et al., 2018 ). 

This network has a relatively simple residual structure and avoids

own-sampling and up-sampling operations, which complicates the im-

lementation process ( Li et al., 2017 ). Instead, it makes extensive use of

ilated convolutions that increase effectively the receptive field of the

etwork, so that it learns longer range entities in the image. Another

ery well-known element in this network is batch-normalization whose

ombination with residual connections has become a standard and very

ffective recipe to speed-up the training of deep models. 

Each of the first 19 modules of the network exclusively uses convo-

utional kernels of size 3 × 3 × 3, along with batch-normalization and

eLU. In the first 7 modules, the network uses 16 of these kernels, the

ollowing 6 modules use 32 kernels, but with a dilation parameter of 2,

nd the next 6 modules use 64 kernels with dilation 4. The last layer

onsists of a convolutional kernel of size 1 × 1 × 1 to adjust the number

f output layers to those of the high-dose images. 
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Fig. 2. 18 F-FDG brain PET images of a 71-year-old female patient with cog- 

nitive symptoms of possible neurodegenerative etiology showing (a) the TOF 

full-dose image used as reference and (b) low-dose TOF PET image. (c) The 

predicted standard dose PET images in image space show significantly reduced 

noise compared with low-dose PET images, while the images generated from 

sinogram space (d) were superior in reflecting the anatomical features. The bias 

map for low dose and predicted images in image space and sinogram space with 

respect to FD images are illustrated in (e), (f), and (g), respectively. 

o  

c

 

p  

a  

S  

o  

c  

m  

t  

i

3

 

b  

t  

n  

m  

a  

v  

t  

g  
We used the simple squared l 2 loss function for training, i.e.,

( 𝐱 𝑖 , 𝐱 𝑜 ) = ||𝐱 𝑖 − 𝐱 𝑜 ) ||2 2 for both of the pixel and projection domains. If

ou use l 2 , you should deactivate softmax. The network was trained

nd tested using NVIDIA 2080Ti GPU with 11 GB random access mem-

ry running under windows 10. The training was performed for 300

pochs.The training and validation of the network was performed on

10 patients, while a separate unseen dataset of 30 patients served as

he test dataset. 

.3. Evaluation strategy 

.3.1. Quantitative analysis 

For estimation of the accuracy of our DNN models, three well-

stablished quantitative metrics, including peak signal-to-noise ratio

PSNR), structural similarity index metric (SSIM) and the root mean

quared error (RMSE) were used to compare IS and SS implementations

ith FD. Moreover, to have an insight about the level of SNR in LD im-

ges and figure out how much ResNet can increase SNR, these metrics

ere also calculated for the LD images. 

The standardized uptake values (SUVs) and their standard deviations

STDs) were estimated for 83 brain regions to evaluate the quantitative

ccuracy between reference FD, LD, and synthesized images (IS and SS)

mages. The region-wise analysis was performed using PMOD medical

mage analysis software (PMOD Technologies LLC, Switzerland) by con-

idering a brain atlas consisting of 15 males and 15 females with an

verage age of 31 years (Hammersmith atlas n30r83 ). 

A joint histogram analysis was carried out to assess voxel-wise the

orrelation between the activity concentration in ground truth FD and

D, and IS and SS images. In addition, Bland & Altman analysis and

olded empirical cumulative distribution plot or Mountain plot were

rawn to compare the distribution of regions’ SUVs for different regions

etween the reference and synthesized images. A mountain plot was

enerated by calculation of a percentile for LD, IS, SS images and ref-

rence FD images. In this plot, the variation between the two images is

epicted on the length of tails. To evaluate the RMSE, SSIM, and PSNR

etrics, statistical analysis using pairwise t -test was performed between

S vs SS, IS vs LD, and SS images. For all comparisons, the threshold of

tatistical significance was set at 5%. 

.3.2. Statistical analysis 

Original FD, LD, IS and SS images were pre-processed using FSL

FMRIB Software Library v6.0.1, Analysis Group, FMRIB, Oxford, UK).

irstly, the Hammersmith atlas was registered to an 18 F-FDG brain PET

emplate (in Montreal Neurological Institute standard space) using 12-

ffine transformation registration using FLIRT (FMRIB’s Linear Image

egistration Tool). Subsequently, non-brain regions of the atlas (cere-

ellum and brain stem) were excluded and binarized to create a Ham-

ersmith atlas-based brain mask. Then, all FD images were registered

o the 18 F-FDG PET template with 12-affine transformation registration

sing FLIRT. Afterwards, LD, IS, and SS images of each subject were reg-

stered to the template via FLIRT using the same transformation matrix

sed in FD image registration step for that subject. Finally, all FD, LD, IS,

nd SS images were masked using the brain mask to exclude non-brain

egions in all images. We applied a linear image registration method

hat do not change voxel’s values without smoothing to minimize effect

f pre-processing on the results. 

After pre-processing steps, a mass univariate methodology of Sta-

istical Parametric Mapping (SPM12; Welcome Centre for Human Neu-

oimaging, UCL, UK) was used to conduct a voxel-by-voxel two-sample

 -test comparing voxelwise FD images with the corresponding LD, IS,

nd SS images (FD vs LD, FD vs IS, and FD vs SS) ( Friston et al., 1994 ).

his analysis identifies voxels with significant difference with respect to

D images. Statistical significance was defined at a voxel-wise threshold

family-wise error corrected p < 0.05) and no extent threshold of contigu-

us voxels was defined. In addition, the number, percentage, and level
4 
f significance (T-value) of voxels with statistical significance were cal-

ulated in 83 brain regions based on Hammersmith atlas. 

To check sample homogeneity in each dataset, we used “check sam-

le homogeneity ” from the CAT12 toolbox (Departments of Psychiatry

nd Neurology, Jena University Hospital, Germany) embedded within

PM12. This tool uses a mean correlation of each image as a measure

f homogeneity to identify outlier images in a sample. Accordingly, the

orrelation is computed between all images across the sample and the

ean for every image is calculated. Afterwards, a violin plot was used

o visualize the frequency distribution of the mean correlation in each

maging group separately. 

. Results 

Overall, the achieved image quality using deep learning approaches

oth in image space and projection space was almost similar to ground

ruth FD images, definitely outperforming LD images. Transverse, coro-

al, and sagittal views of brain images and their corresponding bias

aps for FD, LD, IS, and SS of a patient with a large bias between LD

nd FD were depicted in Fig. 2 . The inspection of intensity profiles re-

ealed that the brain anatomy, especially gyrus structures and radioac-

ive uptake patterns, are sharper and are more observable and distin-

uishable on images reconstructed from predicted TOF sinograms (SS)
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Fig. 3. Joint histograms analysis of low-dose 

image (left) and predicted images in image 

space (middle) and predicted full-dose in sino- 

gram space (right) versus standard dose image 

serving as reference. 

Table 2 

Statistical analysis of image quality metrics for low dose images, 

test predicted images in sinogram and image space. SSIM struc- 

tural similarity index metrics, PSNR, peak signal to noise ratio, 

RMSE, root mean squared error. 

Test dataset SSIM PSNR RMSE 

Low-dose (LD) 0.86 ± 0.02 31.12 ± 0.22 0.35 ± 0.06 

Image Space (IS) 0.97 ± 0.01 33.70 ± 0.32 0.17 ± 0.03 

Sinogram Space (SS) 0.98 ± 0.01 39.36 ± 0.21 0.14 ± 0.09 

P-value (IS vs. SS) 0.041 0.046 0.038 

P-value (IS vs. LD) 0.023 0.032 0.022 

P-value (SS vs. LD) 0.016 0.028 0.019 

Table 3 

The percentage of average and absolute average of SUV bias and stan- 

dard deviation for LD, IS, SS for all regions. 

LD IS SS 

Average SUV bias 0.17 ± 1.96 0.98 ± 1.34 0.22 ± 1.77 

Absolute average for SUV bias 1.59 ± 1.03 1.40 ± 0.72 0.96 ± 0.95 
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Table 4 

The number of voxels with significant difference in LD, IS and 

SS compared with FD. The corresponding volume and mean t - 

test value are shown. 

Number of voxels Volume (mm 

3 ) Mean t-value 

FD - LD 240,845 1,926,760 10.470031 

FD - IS 184,448 1,475,584 7.590589 

FD - SS 17,322 138,576 5.888064 
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elative to those predicted in image space (IS). This vision inspection

as supported by quality metrics include PSNR, SSIM, and RMSE were

alculated between FD and LD, IS, and SS in Table 2 . The noise degrada-

ion and quality enhancement of the model were trained with sinogram

s significantly higher than the model was trained in images space. 

In terms of quantitative accuracy, the average and absolute average

UV bias in all regions for LD, IS and SS are shown in Table 3 . Our re-

ults show that the lowest absolute average SUV bias (0.96 ± 0.95%)

as achieved for SS across all the 83 regions while IS and LD showed

n absolute average SUV bias of 1.40 ± 0.72% and 1.59 ± 1.03%, re-

pectively. 

The pixel-wise linear regression analysis of 18 F-FDG tracer uptake

or LD, IS and SS with respect to FD images was illustrated in Fig. 3 .

he scatter of the data points decreases from LD to IS and then SS and

he correlation increased for IS (R 

2 = 0.97, MSE = 0.028) compared to

D (R 

2 = 0.94, MSE = 0.122). Yet, the highest correlation and lowest

catter were achieved by SS (R 

2 = 0.99, MSE = 0.019). 

The Mountain and Bland & Altman plots were shown in Fig. 4 , re-

ecting the bias and variance of LD and synthesized images in the 83

rain regions. Each orange circle represents a brain region. The Moun-

ain plots indicate that the tail length decreases significantly in FD – SS

lot compared with FD – LD plot. The Bland & Altman plots revealed that

he lowest SUV bias ( − 0.4%) and minimum variance (95% CI: − 2.6%,

 1.9%) was achieved by predicted SS images. Although LD images show

 lower SUV bias (0.1%), the variance is high (95% CI: − 3.9, + 4.1), re-

ecting poor image quality. The Bland & Altman and Mountain plots are

n good agreement with the joint histogram analysis results. 
5 
Fig. 5 shows the SUV bias and STD of 18 F-FDG uptake (The STD in-

ide each region) for 83 brain regions extracted from the Hammersmith

rain atlas for LD, IS, and SS. To reduce the number of brain regions,

e merged the symmetrical left/right sides and reported the results for

4 instead of 83 regions. The graph showed that the magnitude of SUV

ias is mostly below 3% for LD, IS, and SS, while LD showed a high STD

n each region compared to IS and SS, reflecting a higher noise level in

D images. Moreover, IS presented with a higher variance compared to

S. Although the low-dose images bear overall low SUV bias (owing to

ero-mean Poisson noise), the high noise level and local noise-induced

ias may impact clinical assessment. 

Fig. 6 and Table 4 depict voxel-wise t -test analysis for LD, IS and SS.

he results showed that there are voxels with significantly lower val-

es in LD, IS, and SS images compared to FD images. However, there

ere no voxels with significantly higher values in LD, IS, and SS im-

ges. In this work, the mean t -test was computed over all voxels in the

mage. The region-wise t -test analysis is shown in Supplemental Table 1.

ig. 7 shows a Violin plot depicting the frequency distribution of mean

orrelation between FD, LD, IS and SS images, separately. 

. Discussion 

We evaluated the performance of a deep learning model for syn-

hesizing diagnostic quality FD images from undersampled LD images

orresponding to 5% of the injected radiotracer. We trained seven

eep learning models separately to generate FD TOF sinogram bins

rom their corresponding LD TOF sinogram bins and compared the re-

ults with a model trained to synthesize FD images from LD images.

 well-optimized 2D ResNet DNN was used for image-to-image trans-

ation and for each TOF bin separately. We stopped the DNN model

t the lowest training loss. Our hypothesis was that if we split a re-

onstructed TOF image into seven TOF bin sinograms and train seven

ndependent DNN models for each, the final model would be more ac-

urate and robust than a simple model operating in image space. Im-

lementation in projection space involved the use of extended/detailed

ata (400 × 168 × 621 × 7 = 292 ′ 118’400) compared to image space

101 × 101 × 71 = 724 ′ 271).The model trained in projection space (SS)

enerated images with higher image quality and lower absolute tracer

ptake bias in brain regions compared with images synthesized in image
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Fig. 4. Mountain and Bland Altman plot of region-wise standardized uptake value comparing FD to LD, IS and SS images across all data sets for the 83 regions. The 

solid blue and dashed lines denote the mean and 95% confidence interval (CI) of the SUV differences, respectively. In the Mountain plot, the long tails reflect large 

differences between the methods. For models with lower bias, the mountain will be centered over zero. 
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pace (IS). This confirmed our hypothesis that training seven models for

ach TOF sinogram bin separately leads to a better performance com-

ared to a single model implementation in image space. We reduced the

omplexity of the problem by splitting the TOF sinograms into seven

eparate TOF bins followed by training a model for each bin. Moreover,

s different TOF bins contain different signal and noise distributions, in-

ependent implementations of denoising networks would lead to more

ccurate modeling of signal and noise in each TOF bin. In brain PET

maging, since the head is commonly positioned in the center of the FOV,

he central TOF bins contain stronger signals and are consequently char-

cterized by higher SNR. Conversely, off-center TOF bins would contain

ess counts/signal and consequently have lower SNR. In this light, imple-

entation of independent denoising networks for each TOF bin would

ore accurately model the noise distribution associated with each TOF

in. A model combining all TOF bins would lead to overestimation or

nderestimation of noise in certain TOF bins. 

Overall, by training several models for the different TOF bins, the ef-

ect of motion can be reduced, particularly in whole-body PET imaging.

raining separate models for each time bin limits the effect of motion

o only one time bin and prevents spreading it to all TOF bins (e.g. mo-

ion of part of patient’s body, such as one arm). This strategy helps to

ecrease motion blur compared to training a single model for all bins or

ven training of non-TOF sinograms. 

Comparison of the results presented in this work to previous studies

hould take into consideration some important factors, such as scan-

ing time, injected dose, the time between injection and scanning,

canner sensitivity and count-rate performance and data preparation.

uyang et al. (2019 ) proposed a DNN model for synthesizing FD im-

ges from LD images with 1% of the full-dose along with three MRI

equences. They reported a SSIM of 0.98 (compared with 0.97 and 0.98

or IS and SS, respectively) and RMSE of 0.14 (compared to 0.17 and

.14 for IS and SS, respectively). It is worth emphasizing that although

hey used LD images with five times lower dose percentage relative to

ur study, the sensitivity of their PET scanner (GE SIGNA PET/MRI) was

ubstantially higher (more than 2 times higher sensitivity than our Bi-

graph mCT). In addition, the amount of radiotracer injected to their
6 
atients was substantially higher (330 ± 30 MBq vs 205 ± 10 MBq)

nd they also incorporated co-registered MR images as support. Com-

ared to our previous work where we focused on non-TOF ( Sanaat et al.,

020 ), this work demonstrated that adding TOF information improves

he quality of LD and FD images, which can lead to faster convergence

f models trained either in the image or sinogram domain. Conversely,

raining several DNN models for each time bin can add extra error in

ach predicted bin that might cause error accumulation in the final TOF

inogram. Hence, the process of optimization and training of the net-

orks is critical and complex. 

Conventional PET image denoising techniques, such as non-local

ean and bilateral filtering, would inevitably cause signal loss

nd/or uptake bias within the noise suppression process ( Arabi and

aidi, 2018 ), particularly in the presence of the high noise levels

 Arabi and Zaidi, 2020 ). However, deep learning-based solutions en-

ble reliable noise suppression without introducing noticeable signal

oss and/or uptake bias, which renders them suitable for clinical adop-

ion ( Sanaat et al., 2020 , 2021 ). Comparison of various deep learning

rchitectures or algorithms is commended to achieve a reliable model

nabling effective noise suppression with minimal signal loss or image

rtifacts. This effort warrants a thorough investigation and falls beyond

he scope of this study. Nevertheless, implementation of deep learning

pproaches in the sinogram domain should be seriously considered since

hey enable data —driven selection of the most suitable reconstruction

lgorithm and/or settings ( Arabi and Zaidi, 2021 ). 

The generalizability and robustness of deep learning models is an

mportant factor that determines to what degree the model’s output are

rustable and robust when testing with new normal/abnormal unseen

atasets. We used a heterogeneous dataset consisting of both healthy

nd abnormal patients with various types of neurodegenerative disor-

ers. Voxel-wise analysis evaluated each voxel in all images (LD, IS,

nd SS) compared to FD images to determine whether there is a sta-

istically significant difference at the voxel level. This approach offers

n overall accuracy measure of the model for accurate prediction in-

ependent of subjects’ health condition. Therefore, models with less

ignificantly different voxels would be more similar to FD images and
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Fig. 5. The SUV bias relative to FD images and standard deviation for LD, IS, SS and FD. To make the plot more readable, we report the average of left and right 

regions (44 regions). 
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ice versa. This analysis revealed that the SS model is more accurate

han the IS model. However, the number of voxels with significant dif-

erence were lower in both IS and SS models than that in LD images.

ence, there is more similarity between the predicted models (IS and

S) and FD group than between LD group and FD group. Moreover,

oxel-wise statistical analysis enabled to quantify the number of vox-

ls with significant differences in various regions of the brain in the

redicted images (IS and SS) compared to FD images (supplementary

able 1). 

The Mountain and Bland-Altman analysis revealed that the model

rained in projection space led to lower bias and variance relative to im-

ge space. In the Mountain plot, the median of the differences is close to

ero for LD and then shift to left for IS and SS, reflecting the overestima-

ion of tracer uptake of both models. The shorter tails were observed for
7 
S, IS, and LD images, respectively, demonstrating the level of difference

ith reference FD images. 

One of the drawbacks of the present study was that the LD images

ere produced by random undersampling the list-mode data instead

f re-injecting the patient with 5% of the amount of radiotracer and

escanning. Another limitation of or work is the limited size of GPU’s

AM which prevented training the model using the whole TOF sino-

ram simultaneously. In addition, patient motion spatially for pediatric

nd elderly patients who suffer from dementia may lead to a mismatch

etween CT and PET images and cause the image quality degradation

or both LD and FD PET images. Training the model in 2D is another

imitation of this work. Extension of the same approach for whole body

maging would be time-consuming and if separate models are trained

or each sinogram bin. 
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Fig. 6. 3D-rendered views of voxel-wise analysis of LD 

(a), IS (b), and SS (c) images in comparison with origi- 

nal FD images. The images depict regional differences 

in three image groups (LD, ISS, and SS) compared with 

FD images. The red regions represent voxels with sig- 

nificant difference, while white regions indicate voxels 

without significant difference. 

Fig. 7. Violin plot of the mean correlation FD, LD (left panel), IS (middel panel), and SS (right panel). The violin plot depicts the frequency distribution of mean 

correlation in different images. The distribution pattern of the data is considered as the similarity measure in order to assess the level of difference between groups. 

In addition, it can be regarded as a measure to evaluate the accuracy of models’ prediction. According to this plot, the SS model offers a higher accuracy compared 

to IS model for predicting ground truth FD images correctly. 
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. Conclusion 

We demonstrated that training separate ResNet algorithms for map-

ing the LD TOF sinogram bins to their corresponding FD TOF sinogram

ins enables to generate high-quality 18 F-FDG brain PET images. The re-

ults revealed the superior performance of the TOF model implemented

n projection space compared to the implementation in image space. The

redicted images in projection space led to better noise characteristics

nd overall lower absolute tracer uptake bias. 
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