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Neural Network-Based Adaptive Control
for Spacecraft Under Actuator Failures

and Input Saturations
Ning Zhou , Member, IEEE, Yu Kawano, Member, IEEE, and Ming Cao , Senior Member, IEEE

Abstract— In this article, we develop attitude tracking con-
trol methods for spacecraft as rigid bodies against model
uncertainties, external disturbances, subsystem faults/failures,
and limited resources. A new intelligent control algorithm is
proposed using approximations based on radial basis function
neural networks (RBFNNs) and adopting the tunable parameter-
based variable structure (TPVS) control techniques. By choosing
different adaptation parameters elaborately, a series of control
strategies are constructed to handle the challenging effects due to
actuator faults/failures and input saturations. With the help of the
Lyapunov theory, we show that our proposed methods guarantee
both finite-time convergence and fault-tolerance capability of
the closed-loop systems. Finally, benefits of the proposed control
methods are illustrated through five numerical examples.

Index Terms— Attitude tracking, fault-tolerant control (FTC),
finite-time control, input saturations, neural network (NN)
control.

I. INTRODUCTION

IN THE past decades, attitude control of spacecraft has
attracted intensive research attentions in order to accom-

plish the various advanced space missions. Typically, attitude
stabilization, attitude tracking, and attitude synchronization
have been the central topics. More specifically, for attitude
tracking, its objective is to design an effective control law such
that the motion of a spacecraft can track the desired attitude,
which can be applied in, for example, the high-speed attitude
reorientation of warning satellite in surveillance missions.
The performance requirements, such as rapid response, high
accuracy, and fault tolerance, are essential to satisfy various
attitude maneuvering commands under significant challenges
caused by model uncertainties, external disturbances, sub-
system failures, and limited resources (e.g., energy, memory
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space, and computing power) concurrently [1]. Moreover,
in actual operation, the harsh operating conditions (e.g., coro-
nal mass ejections from the sun) may increase the possibility
of malfunctions in spacecraft actuators and further lead to
significant performance degradation or even task paralysis,
and several failed aerospace missions occurred due to actu-
ator faults and failures, e.g., the Kepler and FUSE space
probes. Thus, research on fault-tolerance control of spacecraft
also catches considerable attention of space engineers and
scientists.

Promising results have been reported to address some of
these problems, such as adaptive robust control [2], sliding
mode control [3]–[5], intelligent control [3], [5]–[7], back-
stepping control [6], [8], hybrid control [9], active disturbance
rejection control [10], event-triggered control [11], and optimal
control [12]. However, it is still difficult to simultaneously
handle finite-time convergence, model uncertainties, external
disturbances, subsystem faults/failures, and input saturation at
the same time, due to various strong nonlinearity in spacecraft
dynamics, since spacecraft is a nonlinear system. For instance,
there are some finite-time algorithms for spacecraft attitude
control (e.g., [4], [12]–[16]), but [4] and [12]–[16] assume
that the actuators are fault-free and failure-free, respectively.
In order to address undesirable actuator faults/failures, fault-
tolerant control (FTC) strategies have been adopted, which
can be classified into active FTC and passive FTC [17]. The
former requires reconfigurations of a controller after a fault is
found by a fault detection and diagnosis (FDD) scheme, while
the latter tries to design a robust controller which addresses
all expected faults a priori. Thus, the passive FTC is suitable
for implementation in practice because it can avoid the time
delay caused by online FDD and controller reconfiguration in
contrast to active FTC. For such a reason, we follow a passive
FTC approach.

In summary, our objective is to develop a passive FTC
algorithm which guarantees finite-time convergence and fault-
tolerance for attitude tracking under model uncertainties,
external disturbances, and input saturations. The main idea
is to employ two tools, namely, radial basis function neural
networks (RBFNNs) approximations [18] and a tunable
parameter-based variable structure (TPVS). The first one is
to approximate unknown nonlinear functions of the spacecraft
and is already employed to design tracking controllers in [19]
and [20], but we further develop computationally efficient

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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methods. The latter technique is a novel extension of non-
singular fast terminal sliding mode (NFTSM) control [16] and
is employed to achieve finite-time convergence under actuator
failures and input saturation, where these two realistic problem
settings for actuators are not addressed by [16].

More detailed explanations for differences from exist-
ing finite-time fault-tolerant controllers and intelligent fault-
tolerant controllers are as follows.

Literature Review: There are existing results on passive
finite-time FTC and intelligent FTC. In comparison, the main
contributions of our algorithm are clarified as follows. First,
in order to deal with an unknown inertia matrix and the nonlin-
ear characteristic of system, some finite-time FTC approaches
are built upon linearization techniques, e.g., the linearized con-
straints associated with some scaled-up inequalities of system
models (see [14], [15], [21]–[25]) and the linear regression
(see [16], [26]). However, by applying these approaches, only
local problems around an equilibrium point can be studied.
Different from the linearization-based approaches, to handle
the unknown parameters and nonlinearity, the intelligent FTC
methods have been proposed, e.g., the NN FTC approach [6],
and the fuzzy FTC approach [27]. However, these approaches
lose the finite-time convergence property. In this article, we
further improve the NN FTC method. In [6], the whole ideal
weight matrix W∗ ∈ R

h×m (h × m parameters) of NN is
estimated, which requires intense computation. In order to
solve this problem, we propose algorithms that only require
an estimation of the supremum supt≥0 ‖W∗‖2, which signif-
icantly simplifies the design structure and reduces computa-
tional effort. Moreover, our approach guarantees finite-time
convergence. Second, some of the existing finite-time FTC
results and intelligent FTC results do not consider actuator
saturation constraints although every actuator of a spacecraft
has a saturation constraint in practice. For example, methods
not considering actuator saturation constraints are the finite-
time FTC approaches proposed in [14], [16], and [23]–[26]
and the intelligent FTC method developed in [27]. In contrast,
we also aim to design an algorithm that can handle actuator
saturation constraints.

Contribution: The main contributions are emphasized as
follows.

1) An RBFNN- and TPVS-based intelligent control algo-
rithm is implemented to construct FTC strategies, which
do not require prior information of the system para-
meters or faults/failures. In practice, both of them are
difficult to identify beforehand.

2) A series of FTC strategies are presented for attitude
tracking of spacecraft, which requires less computation
than conventional NN control approach. In addition,
different from the existing intelligent FTC approaches,
our method guarantees exponential or finite-time con-
vergence of the tracking errors for nonlinear models.

3) An adaptive NN-based finite-time FTC scheme is pro-
posed, and it accommodates undesirable actuator faults,
subsystem failures, and limited resources, which has not
been achieved for spacecraft attitude tracking by existing
methods.

Fig. 1. Visualization of a rotation represented by unit quaternion, where
e = [ei , e j , ek ]� is the unit Euler axis and ψ is the Euler angle.

A preliminary conference version is found in [28] in which a
controller taking into account actuation faults/failures, model-
ing uncertainties, and external disturbances is proposed. In this
article, we address, in addition, thrust limit for the actuator,
and consequently develop control schemes further.

The rest of this article is organized as follows: Section II
presents preliminaries and control problem formulations;
Section III elaborates the main results; Section IV provides
examples to illustrate the proposed methods; and finally,
Section V concludes this article.

Notation: The set of real numbers, positive real numbers,
and nonnegative real numbers are denoted by R, R>0, and
R≥0, respectively. For a vector or matrix, ‖ · ‖ denotes its
Euclidean norm. The n-dimensional vector whose elements
are all 1 is denoted by 1ln ∈ R

n .

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Spacecraft Attitude Dynamics and Kinematics

The orientations and rotations of rigid spacecraft in three
dimensions can be represented by Euler angles, Cayley–
Rodrigues parameters (CRPs), modified Rodrigues para-
meters (MRPs), or unit quaternion. Compared with other
methods, the unit quaternion has no inherent geometrical sin-
gularity as do Euler angles, no singularities in the kinematical
differential equations as do CRPs, and no requirement of
solving the continuity of the description when a switch occurs
from the set to the shadow set at the singular point as do
MRPs. As shown in Fig. 1, the unit quaternion defines the
spacecraft attitude as a Euler-axis rotation in a unit sphere
in the body reference frame B with respect to the inertial
reference frame I. The mathematical description of a unit
quaternion is

q := [cos(ψ/2), e� sin(ψ/2)]� = [q0, q�
v ]� ∈ S

3

where q0 : R≥0 → R
3 and qv : R≥0 → R

3 are the
scalar component and vector component of q , respectively, and
S

3 := {(q0, qv ) ∈ R×R
3 : q�q = q2

0 +qv�qv = 1}. Taking the
time derivative of each element of q , we get the kinematical
differential equations as follows:

2q̇0(t) = −ω1(t)qv1(t)− ω2(t)qv2(t)− ω3(t)qv3(t)

2q̇v1(t) = ω1(t)q0(t)− ω2(t)qv3(t)+ ω3(t)qv2(t)

2q̇v2(t) = ω1(t)qv3(t)+ ω2(t)q0(t)− ω3(t)qv1(t)

2q̇v3(t) = −ω1(t)qv2(t)+ ω2(t)qv1(t)+ ω3(t)q0(t)

where ω : R≥0 → R
3 with ω := [ω1, ω2, ω3]� denotes

the angular velocity with respect to the inertial frame I
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and expressed in the body frame B. The above-mentioned
kinematical equations can be rewritten as follows:

q̇0(t) = −1

2
q�
v (t)ω(t) (1)

q̇v (t) = 1

2
(q×
v (t)+ q0(t)I3)ω(t) (2)

where the operators q×
v : R≥0 → R

3×3 denote skew-
symmetric matrix acting on the vector qv , which is given by

q×
v :=

⎡
⎣ 0 −qv,3 qv,2

qv,3 0 −qv,1
−qv,2 qv,1 0

⎤
⎦.

Consider a spacecraft equipped with n > 3 actuators
rotating under the influence of body-fixed torquing devices.
The Euler equation of motion about the principal axes of
inertia is [29]

J (t)ω̇(t) = −ω×(t)J (t)ω(t) + Dτ (t) + d(t) (3)

where τ : R≥0 → R
n denotes the control torque produced by n

actuators. d : R≥0 → R
3 represents the external disturbances.

The matrix J : R≥0 → R
3×3 denotes the inertia matrix-valued

function expressed in B, which is symmetric and positive
definite, also see Remark 1 below, and D ∈ R

3×n denotes the
actuator distribution matrix. The operators ω× : R≥0 → R

3×3

denote skew-symmetric matrices acting on the vector ω, which
is given by

ω× :=
⎡
⎣ 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ .

Remark 1: According to [1], J depends on onboard pay-
load, solar arrays, and fuel consumption, and thus, can change
during an operation. Since it is difficult to identify J (t) under
each circumstance, this is assumed to be an unknown matrix-
valued function; note that it is positive definite and bounded
during the entire operation. In practice, it is reasonable to
assume the boundedness of J , which is formally stated as
Assumption 3.

B. Modeling Actuator Faults/Failures and Input Saturation

The control torque τ is generated by actuators, which can
be reaction wheels or thrusters. In general, actuators have
maximum allowable torques and may be burned out in the
middle of a mission. Therefore, a model of control torque
needs to consider saturations, faults, and failures. According
to the definitions of faults and failures in [21] and [30],
respectively, the control torque of each actuator is modeled
as follows:

τi (t) = ei (t)uc,i (t) + ūi (t), i = 1, . . . , n, n > 3 (4)

and its compact form is

τ (t) = E(t)uc(t)+ ū(t) (5)

where uc : R≥0 → R
n and ū : R≥0 → R

n denote the desired
torque signal of the i th actuator generated by the controller and
the uncertain faulty input entering the spacecraft in an additive

TABLE I

RELATIONS BETWEEN MODEL PARAMETERS
AND ACTUATOR FAULTS OR FAILURES

way, respectively; ei : R≥0 → [0, 1] denotes the effectiveness
factor of the i th actuator, and E := diag{e1, e2, . . . , en}.

According to [21] and [30], there are four main possibilities
of faults/failures, which are summarized in Table I. Note that
in the fault-free case, ei = 1 and ūi = 0, and thus, τi = uc,i ,
i = 1, 2, . . . , n.

In general, the input saturation can be described as follows:
|uc,i (·)| ≤ umax, i = 1, . . . , n, with the constant umax > 0
being the maximum allowable input of the i th actuator control
torque.

C. Attitude Tracking Error System

Our goal in this article is to solve an attitude tracking
problem to a reference denoted by (wd , qd

0 , qd
v ) : R≥0 →

R
3 ×S

3, where (qd
0 (·))2 +qd

v (·)�qd
v (·) = 1 with respect to the

internal frame I and expressed in the desired frame D. Now,
we define the attitude tracking error (q̃0, q̃v ) : R≥0 → S

3

as the relative orientation between the body frame B and the
desired frame D, which satisfies q̃2

0 (·)+ q̃v (·)�q̃v (·) = 1 and
can be calculated by the quaternion multiplication rule in [31]
as follows:

q̃v = qd
0 qv − q0qd

v + q×
v qd

v (6)

q̃0 = qd
0 q0 + (

qd
v

)�
qv . (7)

Assume that the desired angular velocity ωd is bounded as
‖ωd (·)‖ ≤ ω̄1 and ‖ω̇d (·)‖ ≤ ω̄2 by some unknown constants
ω̄1 ≥ 0 and ω̄2 ≥ 0. The corresponding rotation matrix-valued
function is a proper orthogonal matrix given by R = (q̃2

0 −
q̃�
v q̃v )I3 + 2q̃v q̃�

v − 2q̃0q̃×
v , and it satisfies ‖R(·)‖ = 1 and

Ṙ = −ω̃× R. The angular velocity error ω̃ : R≥0 → R
3 in B

with respect to D is represented as

ω̃ = ω − Rωd . (8)

From (3)–(8), the attitude tracking error dynamics and
kinematics can be derived as follows [29]:

J (t) ˙̃ω = −ω× J (t)ω + J (t)(ω̃× R(t)ωd − R(t)ω̇d )

+ DE(t)uc + DE(t)ū + d (9)

˙̃qv = 1

2

(
q̃×
v + q̃0 I

)
ω̃ (10)

˙̃q0 = −1

2
q̃�
v ω̃. (11)

In this article, we impose the following practically reason-
able assumptions for controller design.

Assumption 1 ([32]): There exists an unknown nonnegative
constant dmax such that the external disturbance d is bounded
by ‖d(·)‖ ≤ dmax.
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Assumption 2: There exists an unknown nonnegative con-
stant ūmax such that the additive fault ū in (5) is bounded by
‖ū(·)‖ ≤ ūmax.

Assumption 3: There exists positive constants Jmin, Jmax,
and Jd such that Jmin ≤ ‖J (·)‖ ≤ Jmax and 0 ≤
‖(d J (·)/dt)‖ ≤ Jd .

Assumption 4 ([21]): The number of totally failed actuators
is no more than n−3, i.e., the matrix DED� is positive definite,
and there exists a positive constant emin such that

emin ≤ λmin(DE(·)D�) (12)

where λmin(·) denotes the minimum eigenvalue of a matrix.
Remark 2: If Assumption 4 does not hold, then the matrix

DED� becomes singular, and the system is underactuated,
which is beyond the scope of our interest in this article.
Furthermore, we only assume the existence of emin, and its
value is not needed for controller design.

D. Tunable Parameter-Based Variable Structures

In this article, we design a sliding mode controller to stabi-
lize the tracking error in finite time under model uncertainties.
The main idea is to capture both error dynamics of ω̃ and q̃v
by a single variable S, and this idea is from the approach of
using a TPVS. This is possible because the dimensions of ω̃
and q̃v are the same.

To introduce a TPVS, we need to define several functions
by using ω̃ and q̃v . First, two functions, σ̄1 : R

3 × R
3 → R

3

and σ̄2 : R
3 × R

3 → R
3, are defined as

σ̄1,i (ω̃i , q̃v,i) := ω̃i + c1q̃v,i + c2q̃ [r]
v,i

σ̄2,i (ω̃i , q̃v,i) := ω̃i + c1q̃v,i + c2
(
l1q̃v,i + l2q̃ [2]

v,i

)
l1 := (2 − r)φq

r−1, l2 := (r − 1)φq
r−2

q̃ [s]
v,i := |q̃v,i |ssgn(q̃v,i), s > 0, i = 1, 2, 3

where c1, c2, φq > 0, r ∈ (1/2, 1), and sgn(·) is the sign
function that returns −1, 0, or 1. Next, by using these σ̄1,i
and σ̄2,i , define a switching function σ : R

3 × R
3 → R

3 as

σi (σ̄1,i , σ̄2,i )

:=
{
σ̄2,i (ω̃i , q̃v,i), if σ̄1,i (ω̃i , q̃v,i) 	= 0,

∣∣q̃v,i ∣∣ ≤ φq

σ̄1,i (ω̃i , q̃v,i), otherwise

i = 1, 2, 3. (13)

Now, we are ready to introduce a TPVS S : R
3 → R

3 as a
function of σ :

Si (σi ) := � (σi − ε̄sat(σi )) , i = 1, 2, 3 (14)

sat (σi ) :=
{

sgn(σi ), if |σi/ε̄| ≥ 1

σi/ε̄, if |σi/ε̄| < 1
(15)

where � > 0 and ε̄ ∈ (0, 1). Note that the constants
c1, c2, φq , � > 0, r ∈ (1/2, 1), and ε̄ ∈ (0, 1) are design
parameters.

One notices that Si (σi ) = 0 if and only if |σi/εi | ≤ 1.
Therefore, if one designs a control law such that Si (σi ) = 0,
then |σi | ≤ ε̄ is guaranteed, which implies that the tracking
errors ω̃i and q̃i,v are bounded from the definition of σi .

Moreover, according to Lemma 1, the boundedness of S
implies those of ω̃ and q̃v . These facts suggest to design a
controller which stabilizes S.

Lemma 1: Consider the TPVS S(t) defined by (14). For
any δ̄1 > 0, q̃v (0) ∈ R

3 with ‖q̃v (0)‖ ≤ 1, if ‖S(·)‖ ≤ δ̄1,
then there exists a settling time T∗(q̃v (0), δ̄1) > 0 such that

|q̃v,i(t)| ≤ max{δ̄2, φq} (16)

|ω̃i (t)| ≤ δ̄1/� + ε̄ + c1max{δ̄2, φq} + c2(max{δ̄2, φq })r
(17)

δ̄2 := min

{
δ̄1/�

c1 − c̄1
,

(
δ̄1/�

c2 − c̄2

)1/r
}

(18)

for all i = 1, 2, 3 and t ≥ T∗(q̃v (0), δ̄1), where c̄1 and c̄2 > 0
are selected to satisfy c1 > c̄1 and c2 > c̄2.

The proof is given in Appendix A. In Lemma 1 for smaller
c̄1 and c̄2 > 0, δ2 is smaller. However, as shown in its proof
in Appendix A, for smaller c̄1 and c̄2 > 0, the convergence of
|q̃v,i(t)| and |ω̃i (t)| are slower, but are still within finite time.

Now, we compute the dynamics of S. Since ω̃ and q̃v are
functions of the time, S(σ (ω̃(t), q̃v (t))) is also a function
of the time. By abusing notation, we use S(t) to describe
S(σ (ω̃(t), q̃v (t))). By taking its time derivative, we have

1

�
J (t)Ṡ = F(t, z)+ D(t)E(t)uc + D(t)ū + d − 1

2�
J̇ (t)S

(19)

F(t, z) := −ω× J (t)ω + J (t)(ω̃× R(t)ωd − R(t)ω̇d )

+ 1

2�
J̇(t)S + 1

2
J (t)c1(q̃

×
v + q̃0 I3)ω̃ + J (t)c2α̇

(20)

z := [ω� (ωd)� (ω̇d)� q�
v α� α̇� ]� (21)

for the region of (w̃, q̃v ) such that |σi/ε̄| > 1, i = 1, 2, 3,
where α : R

3 ×R
3 → R

3 is the following switching function:
αi (q̃v,i , σ̄1,i )

:=
{

l1q̃v,i + l2q̃ [2]
v,i , if σ̄1,i (ω̃i , q̃v,i ) 	= 0, |q̃v,i | ≤ φq

q̃ [r]
v,i , otherwise

i = 1, 2, 3

and this can be viewed as a function of the time like S. Note
that σ = ω̃ + c1q̃v + c2α and α = [α1, α2, α3]�.

Remark 3: The TPVS is a generalization of a NFTSM
proposed by [16]. The difference between the TPVS and the
NFTSM is that the TPVS has the parameter � and the bound-
ary layer term ε̄sat(σi ), which can increase the degrees of
freedom for robust controller design. When � = 1 and ε̄ = 0,
i.e., S(σ ) = σ , the TPVS reduces to the NFTSM. In function
σi , the coefficients l1 and l2 are selected to make dσi/dt ,
i = 1, 2, 3 as a continuous function of the time, see [33].

E. Neural Networks-Based Function Approximation

In this article, we use the dynamics of TPVS (19) for
controller design. However, as mentioned in Remark 1, J is
an unknown function of the time, and therefore, F in (20)
is unknown. The existence of these unknown parameters,
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especially F makes control design challenging, since F also
depends on other functions, such as w and qv , nonlinearly.
To overcome this design difficulty arising from the nonlinear-
ity and uncertainty, the universal approximation property of
RBFNNs [18] is adopted for controller design.

First, we review the universal approximation property of
RBFNN. Consider to represent a continuous nonlinear function
F̄ : R

l → R
m (that does not depend on t) by using a

matrix W̄∗ ∈ R
h×m and a basis function vector ϕ̄ : R

l →
R

h , where h is called the number of neurons, ϕ̄k(z) :=
exp[−(z − μ̄k)

�(z − μ̄k)/(2ψ̄2
k )] for k = 1, 2, . . . , h, μ̄k ∈ R

l

denotes the center of the receptive field, ψ̄k ∈ R denotes
the width of the Gaussian function, and 0 < ϕ̄k(z) ≤ 1.
According to the universal approximation property of RBFNN,
for any ε̄N > 0, there exist a prefixed compact set �z ⊂ R

l

that can be made as large as desired, a positive integer h,
a matrix W̄∗, and a basis function vector ϕ̄ such that

F̄(z) = (W̄∗)�ϕ̄(z)+ ε̄(z) ∀z ∈ �z (22)

where ‖ε̄(·)‖ ≤ ε̄N .
Now, by selecting l = 18 and m = 3, we consider to

approximate the function F in (20). Even though it depends on
t , by using the time-dependent matrix W∗ : R≥0 → R

h×3, for
any εN > 0, there exist a prefixed sufficiently large compact
set �z ⊂ R

18, a positive integer h, a time-varying matrix
W∗(t) ∈ R

h×3, and a basis function vector ϕ : R
18 → R

h

such that F can be described as

F(t, z) = (W∗(t))�ϕ(z)+ ε0(t, z) ∀t ∈ R≥0, z ∈ �z

(23)

where ‖ε0(·, ·)‖ ≤ εN . By substituting (23) into (19), we have

1

�
J (t)Ṡ = (W∗(t))�ϕ(z)+ ε0(t, z)

+D(t)E(t)uc + D(t)ū + d − 1

2�
J̇(t)S. (24)

In this article, we design a controller based on (24).
In particular, the dynamics of uc is designed to achieve the
aforementioned control objectives. We further suppose that
|σi/ε̄| > 1, i = 1, 2, 3, and z is in a prefixed sufficiently
large compact set �z ⊂ R

18 for all t ∈ R≥0. For the designed
controllers, we restrict our interest to solutions to the closed-
loop systems that satisfy the above-mentioned two properties
for σi and z. We use symbol S∗ with the asterisk ∗ to denote
S corresponding to such solutions. Throughout this article,
the asterisk ∗ stands for similar meanings for any variables.

Remark 4: In the conventional methods [19], [20], all the
elements of matrix W∗ are estimated for controller design.
However, we only estimate supt≥0 ‖W∗(t)‖, where this is
bounded from Assumption 3. Since we only estimate this
upper bound that is a constant instead of a matrix-valued
function of t , our methods simplify the controller design and
reduce computational burden.

F. Control Objectives

The overall control objective of this article is to design
effective fault-tolerant attitude tracking control algorithms,

such that the following requirements are achieved progres-
sively under actuation faults/failures, input saturation, model-
ing uncertainties, and external disturbances.

1) For any positive constant δ̄1 > 0 and for any initial value
(S∗(0), θ̂∗

1 (0)) ∈ R
3 ×R, the error ‖S∗(t)‖ converges to

a value less than δ̄1 exponentially as t → +∞, where
θ̂∗

1 (0) is the initial value of the adaptive design parameter
θ̂1 : R≥0 → R specified in (26). Note that as mentioned
earlier, if ‖Si (t)‖ = 0, then |σi | ≤ ε̄ is guaranteed for
given ε̄ ∈ (0, 1), which implies that the tracking errors
|ω̃i | and |q̃i,v | are within the allowed level.

2) For any positive constant δ̄1 > 0 and for any initial value
(S∗(0), θ̂∗(0), η̂∗(0)) ∈ R

3 ×R×R, there exists a finite
T∗(q̃v (0), δ̄1) > 0 such that (16) and (17) hold for any
t ≥ T∗(q̃v (0), δ̄1) > 0, where θ̂ , η̂ : R≥0 → R are the
adaptive design parameters specified in (28) and (29).
Therefore, the tracking errors |ω̃i | and |q̃i,v | are within
the allowed level in finite time.

3) The control objective 2) is achieved under the input sat-
urations |uc,i (·)| ≤ umax, i = 1, . . . , n, with umax > 0.

III. CONTROLLER DESIGN

We first take into account the situation in which there are
actuation faults/failures, modeling uncertainties, and external
disturbances, but there is no thrust limit for the actuators. Then,
we provide three controllers which achieve objectives 1)–3)
in Section II-F, respectively. In our conference version [28],
the controller in Section III-A is proposed, but the controllers
in Sections III-B and III-C are new. Especially, the controller
in Section III-C addresses the actuation limit.

A. NN-Based Controller for Exponential Convergence

To achieve the control objective 1) in Section II-F,
we employ the following dynamic controller:

uc = −
(

KS + θ̂1
‖�(z)‖

‖S‖
)

D�S (25)

˙̂
θ1 = γS‖S‖‖�(z)‖ − γθ θ̂1 (26)

where θ̂ : R≥0 → R, �(·) := [ϕ�(·), 1]�, and the positive
constants KS , γS , and γθ are design parameters.

For the closed-loop system, we have the following conver-
gence result of the TPVS S. The proof is given in Appendix B.

Theorem 1: Suppose that Assumptions 1–4 hold. Then,
one can design the parameters of a TPVS and controller
dynamics (25) and (26) such that the following holds: for any
positive constant δ̄1 > 0 and for any (S∗(0), θ̂∗

1 (0)) ∈ R
3 ×R,

the Euclidean norm of the solution to the closed loop system
consisting of (24)–(26), ‖S∗(t)‖ converges to δ̄1 exponentially.

The approach proposed in Theorem 1 only guarantees the
convergence of S, which does not guarantee the convergence
of the tracking errors ω̃ and q̃v . To pursue faster response
and higher control accuracy, we focus on developing finite-
time methods in Sections III-B and III-C, i.e., achieving the
control objective 2) in Section II-F.
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B. Adaptive NN-Based Finite-Time Control
Under Actuator Failure

To achieve the control objective 2), we employ the following
adaptive NN-based controller:

uc = −
(

Kφ‖S‖2 + KS + (Kρ + η̂)

‖S‖ + ‖ϕ(z)‖2

φθ
θ̂

)
D�S

(27)
˙̂θ = 1

φθ
γS‖ϕ(z)‖2‖S‖2 − γθ θ̂ (28)

˙̂η = 1

α
‖S‖ − γηη̂. (29)

where θ̂ , η̂ : R≥0 → R, and positive constants Kφ , KS , Kρ ,
φθ , γS , γθ , α, and γδ are design parameters.

Then, we have the following convergence result. The proof
is given in Appendix C.

Theorem 2: Suppose that Assumptions 1–4 hold. Then, one
can design a TPVS and controller dynamics (27)–(29) such
that the following holds: for any positive constant δ̄1 > 0,
there exists a finite T∗(q̃v (0), δ̄1) > 0 such that (16) and (17)
hold for any t ≥ T∗(q̃v (0), δ̄1) > 0.

C. Adaptive NN-Based Finite-Time Control Under Actuator
Failure and Input Saturation

Finally, we also address the actuation limit on each actuator,
i.e., the control requirement 3). As the actuator limit, we con-
sider the case |uc,i (·)| ≤ umax, i = 1, . . . , n, with umax > 0
mentioned in Section II-B. Therefore, we design control inputs
with saturations

uc := h̄(ūc)ūc (30)

where ūc : R≥0 → R
n is needed to be further designed. The

function h̄ is introduced to represent the saturation, where
h̄ := diag{h̄1, . . . , h̄n}, and h̄i : R → (0, 1], i = 1, . . . , n is
defined as

h̄i (ūc,i ) :=
⎧⎨
⎩

umax

ūc,i
sign(ūc,i ), if |ūc,i | > umax

1, if |ūc,i | ≤ umax.
(31)

From (30), the saturation of ūc, namely, uc are the actual
control inputs. To achieve the control objective 3), we design
ūc as follows:

ūc = −D�
(

Kφ‖S‖2 + KS + 1

φθ
θ̂‖ϕ(z)‖2

)
S

− D�ξ ζ̂ (Kρ + η̂)S

‖S‖ (32)

˙̂θ = 1

φθ
γS‖S‖2‖ϕ(z)‖2 − γθ θ̂ (33)

˙̂η = α−1‖S‖ − γηη̂ (34)

˙̂ζ :=
{

0, if ζ̂ = 1 and ζh̄ < 0

ζh̄, otherwise

ζh̄ := βξζ̂ 3((Kρ + η̂)‖S‖ − γζ ζ̂ ), ζ̂ (0) > 1 (35)

where θ̂ , η̂ : R>0 → R, ζ̂ : R>0 → R>0, and positive
constants Kφ , KS , φθ , Kρ , ξ > 1, γS , γθ , α, γη, β, and γζ
are design parameters.

Hereafter, we impose a reasonable assumption, which states
that the system remains full actuated as discussed in Remark 2.

Assumption 5: The number of totally failed actuators is no
more than n − 3, i.e., the matrix DEh̄ D� is positive definite,
and there exists a positive constant ēmin such that

ēmin ≤ λmin(DE(·)h̄(·)D�) (36)

where the i th element of h̄ : R → (0, 1]n×n is defined in (31).
From Assumption 5 and Lemma 5 in Appendix D, there

exists M > 0 such that −M ≤ ūc,i (·) ≤ M , i = 1, . . . , n.
Furthermore, there exists 0 < ζ ≤ 1 such that

ζ ≤ h̄i (ūc,i ) ∀ūc,i ∈ [−M,M] ∀i = 1, . . . , n. (37)

In (35), we introduce a new adaptation parameter ζ̂ .
This can be viewed as an estimation of 1/ζ ≥ 1, which is
designed to compensate the energy fading of ūc caused by
actuator faults and failures. Note that the adaptation law (35)
guarantees that ζ̂ ≥ 1 for ζ̂ (0) ≥ 1, which corresponds to
1/ζ ≥ 1. Note that the term −γζ ζ̂ in ζh̄ is used to prevent
the increase of adaptive gain ζ̂ .

Now, we are ready to propose the following result. The
proof is given in Appendix D.

Theorem 3: Suppose that Assumptions 1–3 and 5 hold.
Then, one can design a TPVS and controller dynam-
ics (30)–(35) such that the following holds: 1) for any positive
constant umax, the designed control input satisfies |uc,i (·)| ≤
umax, i = 1, . . . , n, and 2) for any positive constant δ̄1 > 0,
there exists a finite T∗(q̃v (0), δ̄1) > 0 such that (16) and (17)
hold for any t ≥ T∗(q̃v (0), δ̄1) > 0.

In Theorem 3, we have designed a controller that guarantees
finite-time convergence and fault-tolerance for attitude track-
ing under model uncertainties, external disturbances, and input
saturations. The proposed controller has the following futures
in comparison with the related existing controllers.

1) Different from the linearized-based FTC approaches, our
methods can handle the unknown parameters and nonlin-
earity. Moreover, finite-time convergence is guaranteed
in contrast to existing nonlinear methods.

2) In addition, less computational effort is required than
the NN-based FTC, which does not guarantee finite-
time convergence. The reason is that our method only
tunes the estimation of the supremum of the ideal weight
matrix W∗ ∈ R

h×m rather than the whole matrix W∗.
3) Compared with most of the existing finite-time FTC and

intelligent FTC results, the proposed algorithm handles
actuator saturation, which makes it more practical and
competitive than the related existing results.

Therefore, the proposed controller can handle more realistic
scenarios than existing ones.

Remark 5: Control laws (27) and (32) are discontin-
uous due to the functions D�(((Kρ + η̂)S)/(‖S‖)) and
D�ξ ζ̂ (((Kρ + η̂)S)/(‖S‖)), which may lead to undesir-
able control chattering. As discussed in [34], this prob-
lem can be alleviated by replacing the discontinuous terms
with the continuous terms D�(((Kρ + η̂)S)/(‖S‖ + εc)) and
D�ξ ζ̂ (((Kρ + η̂)S)/(‖S‖ + εc)), respectively, where εc is a
sufficiently small positive constant.

Authorized licensed use limited to: University of Groningen. Downloaded on September 03,2020 at 08:40:16 UTC from IEEE Xplore.  Restrictions apply. 



3702 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Remark 6: In our proposed algorithm, there are two phases
in the dynamics of the closed-loop systems, namely, the
reaching and sliding phases. The reaching phase corresponds
to the dynamics before getting close to the sliding surface.
The sliding phase corresponds to the dynamics on the sliding
surface. The convergence speed and precision of the tracking
errors in the reaching phase can be adjusted by tuning KS , Kρ ,
ξ , and �. When the other three parameters are fixed, the greater
KS (Kρ , ξ , and �) is, the faster the convergence speed and
the better the convergence precision are. In the sliding phase,
the convergence speed and precision of the tracking errors
can be adjusted by tuning c1, c2, and r . The greater c1 and
c2 are, the faster the convergence speed and the better the
convergence precision are; the smaller r is, the faster the
convergence speed and the better the convergence precision
are. Therefore, by tuning these parameters, one can adjust the
convergence speed and precision of the tracking errors as fast
and accurately as desired.

IV. SIMULATIONS

To evaluate the performance of the proposed algorithms in
Theorems 2 and 3, simulations on a vehicle with six thrusters
are conducted.

First, we give the simulation data of the system model. The
unknown and time varying inertia matrix is J (t) = J0 + Ju(t),
where J0 is given by

J0 =
⎡
⎣ 20 0 0.9

0 17 0
0.9 0 15

⎤
⎦ kg · m2

and Ju(t) is shown in Fig. 2(a). The thruster distribution matrix
D and the disturbance torque d are selected as in [1]

D =
⎡
⎣ 0.8 −0.8 0 0 0 0

0 0 0.7 −0.7 0 0
0 0 0 0 0.7 −0.7

⎤
⎦.

The health indicator E(t) is shown in Fig. 2(b). The additive
bias torque ū is chosen as in [16] and the maximum available
torque is considered to be umax = 2Nm. The time-varying
desired angular velocity is given by

ωd(t) = [0.1cos(0.1t),−0.1sin(0.1t), 0.1cos(0.1t)]� rad/s.

Second, the initial attitude qv (0) is selected as in [1].
The initial angular velocity is ω(0) = [0, 0, 0]�. The initial
value of the tracking errors q̃v (0) and ω̃(0) can be calculated
according to (6) and (8).

Third, we use six neurons for each NN, and the sigmoid
basis functions are applied with the center of the receptive
field μk = k − 3 and the width of the Gaussian function
ψk = √

2 for k = 1, 2, . . . , 6.
Five examples are simulated in this section: 1) thrusters

with actuator faults/failures, 2) healthy thrusters with lim-
ited thrusts, 3) thrusters with limited thrusts and actuator
faults/failures, 4) influence of design parameters on control
performance, and 5) comparison with other algorithms for
spacecraft attitude stabilization.

Fig. 2. (a) Uncertain moment of inertia Ju . (b) Health indicator E(t).

Fig. 3. Time response of tracking errors using controller uc in (27).
(a) ω̃. (b) q̃v .

A. Thrusters With Actuator Faults/Failures

This section represents a severe case of the thrusters to
demonstrate the effectiveness and performance of the control
scheme designed in Theorem 2.

We select the design parameters � = 40, ε̄ = 10−4, c1 = 1,
c2 = 0.2, φq = 0.01 and r = 0.66, which are used to calculate
S in (14). Then, we choose the design parameters Kφ = 0.01,
KS = 20, φθ = 0.1, Kρ = 0.01, εc = 0.007, which are
used to compute uc in (27). Next, we give the initial value of
the adaptive parameters θ̂ (0) = 0.1, η̂(0) = 0.001, and select
the design parameters γS = 0.1, γθ = 0.003, α = 10, and
γη = 0.06, which are used to calculate θ̂ and η̂ according
to (28) and (29).

As shown in Fig. 2(b), the health level of each thruster is
generated by the same function given as in [1]. The angular
velocity and attitude tracking errors are presented in Fig. 3.
It is obvious that the controller (27) can provide not only
high precision attitude tracking performance (|ω̃i | ≤ 5 ×
10−4 deg/s, |q̃v i | ≤ 5.4 × 10−4 deg, and i = 1, 2, 3, during
the period of 20∼50 s) but also fault tolerance capability.
Fig. 4(a) shows the driving torque of the spacecraft with the
control action beyond its maximum allowable limit 2 Nm.
The adaptive parameters θ̂ and η̂ are shown in Fig. 4(b). It is
observed that θ̂ and η̂ are bounded, and thus, the efficacy of
the proposed adaptation laws in (26)–(28) is verified.

B. Healthy Thrusters With Limited Thrusts

Applying the control scheme designed in Theorem 3,
we aim to demonstrate the effectiveness and performance
of the method with all thrusters functioning healthily. The
involved controller parameters, adaptation parameters, and
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Fig. 4. (a) Time response of controller uc in (27). (b) Design parameters
in (28) and (29).

Fig. 5. (a) Time response of tracking errors using controller uc in (30).
(a) ω̃. (b) q̃v .

Fig. 6. (a) Time response of controller uc in (30). (b) Time response of
adaptive parameters θ̂ , η̂, and ζ̂ in (33) and (34).

initial values are given, as Section IV-A. As shown in Fig. 5,
the angular velocity and attitude tracking errors converge
to |ω̃i | ≤ 3 × 10−5 deg/s and |q̃v i | ≤ 5.6 × 10−5 deg
during the period of 20∼50 s, respectively, for i = 1, 2, 3.
One can observe higher control precision and better tracking
process in Fig. 5 than in Fig. 3. This indicates that the
influence of actuator faults/failures is more significant on con-
trol precision than the influence of actuator input saturation.
The control torques uc produced by six thrusters and the
adaptive parameters θ̂ , η̂, and ζ̂ are shown in Fig. 6. One
can observe that the control torques in Fig. 6(a) and the
adaptive parameters θ̂ , η̂, and ζ̂ in Fig. 6(b) are all bounded,
which verified the efficacy of the proposed control scheme
in Theorem 3.

Fig. 7. Time response of tracking errors using controller uc in (30).
(a) ω̃. (b) q̃v .

Fig. 8. (a) Time response of controller uc in (30). (b) Time response of
adaptive parameters θ̂ , η̂, and ζ̂ in (33) and (34).

C. Thrusters With Limited Thrusts and Actuator
Faults/Failures

In this section, we aim to examine the effectiveness and
performance of the control scheme designed in Theorem 3
while considering the actuator failure and input saturation
simultaneously.

We select the design parameters � = 40, ε̄ = 10−4, c1 = 1,
c2 = 0.2, φq = 0.01, and r = 0.66, which are used to
calculate S in (14). Then, we choose the design parameters
Kφ = 0.01, KS = 40, φθ = 0.1, ξ = 1.1, Kρ = 0.01,
and εc = 0.007, which are used to compute ūc in (32). Next,
we give the initial value of the adaptive parameters θ̂ (0) = 0.1,
η̂(0) = 0.001, ζ̂ (0) = 1.1, and select the design parameters
γS = 0.1, γθ = 0.003, α = 10, γη = 0.06, β = 0.08, and
γζ = 0.08, which are used to calculate θ̂ , η̂, and ζ̂ according
to (33)–(35).

Fig. 7 shows the angular velocity and attitude tracking errors
which can converge to |ω̃i | ≤ 1.8 × 10−4 deg/s and |q̃v i | ≤
2.3 × 10−4 deg during the period of 20∼50 s, respectively,
for i = 1, 2, 3. The convergence precision of ω̃i and q̃v i in
this section is worse than that in Section IV-C due to the
adverse effect from actuator faults/failures. Fig. 8 shows the
control torques uc produced by six thrusters [Fig. 8(a)] and
the adaptive parameters θ̂ , η̂, and ζ̂ [Fig. 8(b)], which are
all bounded. Thus, the efficacy of the proposed method in
Theorem 3 is verified.
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TABLE II

RESPONSE OF THE THREE INDICES AT 200 S USING
DIFFERENCE PARAMETERS IN (14)

TABLE III

RESPONSE OF THE THREE INDICES AT 200 S USING

DIFFERENCE PARAMETERS IN (32)

Fig. 9. Time response of the three indices using controller uc in (32).

D. Influence of Design Parameters on Control Performance

To investigate effects of several key design parameters,
we use the following three control performance indices:

CPI1 = ‖q̃v‖, CPI2 = ‖ω̃‖, CPI3 = ‖uc‖.
From the simulation data in Tables II and III, we observe
that, when the other parameters are fixed, the greater �
(c1, c2, KS , ξ , and Kρ) is, the higher control precision we
get. Furthermore, the smaller ε̄ (Kφ) is, the better control
precision we obtain. These results are consistent with our
analysis in Remark 6.

E. Comparison With Other Algorithms for Spacecraft
Attitude Stabilization

In this section, we adopt the three indices to study the
control performance of the proposed algorithm comparing with
the two finite-time FTC algorithms given in [21] and [22],
which are built upon linearization technique for spacecraft
attitude stabilization. Since the algorithms in [21] and [22]
can only be applied to the problem of spacecraft attitude

Fig. 10. Time response of the three indices using controller [21, (42)].

Fig. 11. Time response of the three indices using controller [22, (17)].

TABLE IV

RUNNING TIME OF THREE ALGORITHMS

stabilization, we choose qd
v = [0, 0, 0]� and ωd = [0, 0, 0]�

in the proposed algorithm. Using the system model data in
this article, all the design parameters in this comparison are
selected the same as the original data in the corresponding
algorithms except the sliding mode control gains α = 1 and
β = 0.2 in [21]. Using the same computer and selecting the
same sampling period, the running time and the response of
the indices of the three algorithms are shown in Table IV
and Figs. 9–11, respectively. By observing and comparing the
simulation results, it concludes that the proposed approach
provides faster convergence and better control precision of the
indices than the algorithms in [21] and [22].

V. CONCLUSION

This article studied finite-time attitude tracking control
problems for rigid spacecraft under model uncertainty, fault
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tolerance, and thrust limits. A series of control strategies
were proposed by implementing the RBFNN- and TPVS-based
intelligent control algorithms. The proposed control schemes
were independent of any accurate model information. The con-
trol performances are analyzed based on the Lyapunov stability
theory. Numerical simulations on three severe actuation cases
have shown the effectiveness of the proposed approaches.

In this article, we developed a state-dependent
approach. To seek methods requiring only sensor output infor-
mation, one can design observers as Laplace �1 Huber-based
Kalman filter [35] and sliding mode observers [36], [37].
Currently, we are working on developing observer-based
algorithms.

APPENDIX A
LEMMAS

Some instrumental lemmas are introduced here.
Lemma 2: For any e ∈ R>0 and θ, θ̂ ∈ R, the following

inequality holds:

(θ − eθ̂ )θ̂ ≤ − 1

2e
(θ − eθ̂ )2 + 1

2e
θ2.

Proof: Define θ̃ := θ − eθ̂ . Then, compute

(θ − eθ̂ )θ̂ = θ̃ (θ − θ̃ )/e

= −θ̃2/e + θ̃ θ/e ≤ −θ̃2/e + |θ̃ ||θ |/e.
From Young’s inequality, |θ̃ ||θ | ≤ θ̃2/2 + θ2/2.

Therefore, we have (θ − eθ̂ )θ̂ ≤ −θ̃2/(2e)+ θ2/(2e).
By substituting θ̃ = θ − eθ̂ into the above-mentioned

inequality, we obtain the statement of the lemma.
Lemma 3 ([38]): Let x = 0 be an equilibrium point of

system ẋ = f (x), i.e., f (0) = 0, where x ∈ R
3, and

f : R
3 → R

3 is continuous. Let �x ⊂ R
3 be a domain

containing x = 0 in its interior. Let V : R≥0 ×�x → R be a
continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x) (38)
∂V

∂ t
+ ∂V

∂x

∂x

∂ t
≤ −μ1V − μ2V ν (39)

for all t ≥ 0 and x ∈ �x , where W1(x) and W2(x) are
continuous positive definite functions on �x , μ0, μ1, μ2 > 0,
and ν ∈ (0, 1). Then, x = 0 is finite-time stable. The settling
time can be calculated by

Treach ≤ [1/(μ1(1 − ν))] ln
(
μ1V 1−ν

0 /μ2 + 1
)

for (39)

where V0 := V (t0, x(t0)) and t0 is the initial time.
Finally, we prove Lemma 1 in Section II.

Proof of Lemma 1: For any δ̄1 > 0, if ‖S(·)‖ ≤ δ̄1, then
|Si (·)| ≤ δ̄1, |σi | ≤ δ̄0 hold with δ̄0 := δ̄1/� + ε̄. Three cases
are considered based on the definition of σi (σ̄1i , σ̄2i ) in (13).

Case 1: If σ̄1,i (·) = 0 for all i = 1, 2, 3, then there exists
a finite T01(q̃v (0), δ̄1) > 0 such that limt→T01 ω̃(t) = 0,
limt→T01 q̃v(t) = 0, see [13, Lemma 3.3].

Case 2: If σ̄1,i (·) 	= 0 and |q̃v,i | ≤ φq for some i , then,
it follows from |σi | ≤ δ̄0 and definition of σi in (13) that

|ω̃i + c1q̃v,i + c2(l1q̃v,i + l2q̃ [2]
v,i )| ≤ δ̄0

and consequently, from the definitions of l1 and l2 and
|q̃v,i | ≤ φq

|ω̃i | ≤ δ̄0 + c1|q̃v,i | + c2|l1q̃v,i | + c2|l2q̃ [2]
v,i |

≤ δ̄0 + c1φq + c2φ
r
q .

Case 3: If σ̄1,i (·) 	= 0 and |q̃v,i | > φq , then |ω̃i + c1q̃v,i +
c2q̃ [r]

v,i | ≤ δ̄0. Two cases should be discussed.

1) ω̃i +c1q̃v,i +c2q̃ [r]
v,i ≥ 0: First, we show that there exists a

positive constant δ̄2 such that |q̃v,i | ≤ δ̄2 if ω̃i +c1q̃v,i +
c2q̃ [r]

v,i = δ̄0. We rewrite this equality in the following
two forms:

ω̃i + (c1 − δ̄0/q̃v,i)q̃v,i + c2q̃ [r]
v,i = 0

ω̃i + c1q̃v,i + (c2 − δ̄0/q̃
[r]
v,i)q̃

[r]
v,i = 0.

For any given positive constants c̄1 < c1 and c̄2 < c2,
there exist ¯̄c1 ∈ [c̄1, c1) and ¯̄c2 ∈ [c̄2, c2) such that

ω̃i + ¯̄c1q̃v,i + c2q̃ [r]
v,i=0 if |q̃v,i(t)| ≥ δ̄0

c1 − c̄1
> 0

ω̃i + c1q̃v,i + ¯̄c1q̃ [r]
v,i=0 if |q̃v,i(t)| ≥ r

√
δ̄0

c2 − c̄2
> 0.

From [13, Lemma 3.3], for any |q̃v,i(0)| > 0, there exists
a finite time T02(q̃v i(0), δ̄1) > 0 such that

|q̃v,i(t)| ≤ min

{
δ̄0

c1 − c̄1
,

(
δ̄0

c2 − c̄2

)1/r
}

=: δ̄2

for all t ≥ T02(q̃v i(0), δ̄1). Even if δ̄a := |ω̃i + c1q̃v,i +
c2(l1q̃v,i + l2q̃ [2]

v,i )| < δ̄0. One can show that there exists
a finite time T0a(q̃v i (0), δ̄a) > 0 such that

|q̃v,i(t)| ≤ min

{
δ̄a

c1 − c̄1
,

(
δ̄a

c2 − c̄2

)1/r
}

≤ δ̄2

for all t ≥ T02(q̃v i (0), δ̄1). Next, from the definition of
σ1,i , we get

|ω̃i | ≤ δ̄1/� + ε̄ + c1δ̄2 + c2δ̄
r
2.

2) ω̃i + c1q̃v,i + c2q̃ [r]
v,i < 0: First, we show that if −ω̃i −

c1q̃v,i −c2q̃ [r]
v,i = δ̄0, then there exists a positive constant

δ̄2 such that |q̃v,i | ≤ δ̄2. We rewrite it in the following
two forms:

ω̃i + (c1 + δ̄0/q̃v,i)q̃v,i + c2q̃ [r]
v,i = 0

ω̃i + c1q̃v,i + (c2 + δ̄0/q̃
[r]
v,i)q̃

[r]
v,i = 0.

For any given positive constants c̄1 < c1 and c̄2 < c2,
there exist ¯̄c1 ∈ [c̄1, c1) and ¯̄c2 ∈ [c̄2, c2) such that

ω̃i + ¯̄c1q̃v,i + c2q̃ [r]
v,i = 0, if |q̃v,i(t)| ≥ δ̄0

c1 − c̄1
> 0

ω̃i + c1q̃v,i + ¯̄c2q̃ [r]
v,i = 0, if |q̃v,i(t)| ≥ r

√
δ̄0

c2 − c̄2
> 0.

which shows the same solution as case 1); thus, we omit the
same proof procedure.
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Combining the result in Cases 1–3, we have

|q̃v,i(·)| ≤ max{δ̄2, φq}
|ω̃i (·)| ≤ δ̄1/� + ε̄ + c1max{δ̄2, φq} + c2(max{δ̄2, φq})r .

for all i = 1, 2, 3 and t ≥ T∗(q̃v (0), δ̄1), where
T∗(q̃v (0), δ̄1) = max{T01(q̃v (0), δ̄1), T02(q̃v (0), δ̄1)}. That
completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Proof of Theorem 1: Consider the following Lyapunov
candidate:

V1(t, S, θ̂1) := VS(t, S)+ Vρ(θ̂1)

VS(t, S) := 1

2�
S� J (t)S

Vρ(θ̂1) := 1

2γSemin
(θ1 − eminθ̂1)

2 (40)

where emin > 0 is defined in Assumption 4, and

θ1 := sup
t≥0,z∈�z

‖[(W∗(t))�, ε0(t, z)+ D(t)ū(t)+ d(t)]‖
(41)

which is upper-bounded from Assumptions 1–3, Remark 4,
and ‖ε0(·, ·)‖ ≤ εN .

First, by taking the time derivative of VS along (24)
with (25), it follows from (41) and Assumption 4 that

V̇S = S�((W∗)�ϕ(z)+ ε0 + Dū + d)

−
(

KS + θ̂1
‖�‖
‖S‖

)
SDE D�S

≤ −emin KS‖S‖2 + (θ1 − eminθ̂1)‖S‖‖�‖. (42)

Next, by taking the time derivative of Vρ along the solution
to (26), it follows that

V̇ρ = −(θ1 − eminθ̂1)‖S‖‖�‖ + γθ

γS
(θ1 − eminθ̂1)θ̂1.

Then, by taking the time derivative of V1 it follows from
Lemma 2 that

V̇1 ≤ −emin KS‖S‖2 + γθ

γS
(θ1 − eminθ̂1)θ̂1

≤ −emin KS‖S‖2 − γθ

2γSemin
(θ1 − eminθ̂1)

2 + ω0

ω0 := γθ

2γSemin
θ2

1 . (43)

Denote λ1 = min{2�emin KS/Jmax, γθ } for Jmax in Assump-
tion 3. Then, from (40) and (43)

V̇1 ≤ −λ1V1 + ω0.

By taking the time integration, it follows that

V1(t) ≤ ω0/λ1 + (V1(0)− ω0/λ1) e−λ1t .

From the definition of V1

‖S(t)‖ ≤ (2�/Jmin)
1
2
(
ω0/λ1 + (V1(0)− ω0/λ1)e

−λ1t ) 1
2 .

(44)

Define a positive constant

δ̄1 := (2�/Jmin)
1
2 (ω0/λ1)

1
2 (45)

where δ̄1 can be made arbitrary small by making γS or
a pair of KS and γθ sufficiently large, see the definitions
of ω0 and λ1, respectively. Then, for any V1(0) ≥ 0,
limt→∞ ‖S∗(t)‖ = δ̄1. �

APPENDIX C
PROOF OF THEOREM 2

Theorem 2 is based on the following lemma.
Lemma 4: Suppose that Assumptions 1–4 hold. Then, one

can design the parameters of a TPVS and controller dynam-
ics (27)–(29) such that the following holds: For any positive
constant δ̄1 > 0 and (S∗(0), θ̂∗(0), η̂∗(0)) ∈ R

3 ×R×R, there
exists a finite T̄2 := T̄2(S∗(0), θ̂∗(0), η̂∗(0), δ̄1) > 0 such that
the solution S(t) to the closed loop system consisting of (24)
and (27)–(29) satisfies ‖S∗(·)‖ ≤ δ̄1 for all t ≥ T̄2.

Proof: Consider the following Lyapunov function
candidate:
V2(t, S, θ̂ , η̂) := VS(t, S)+ Vρ(θ̂ , η̂)

VS(t, S) := 1

2�
S� J (t)S

Vρ(θ̂, η̂) := 1

2γSemin
(θ − eminθ̂ )

2 + α

2emin
(η − eminη̂)

2

(46)

where emin > 0 is defined in Assumption 4, and

θ := sup
t≥0

‖(W∗(t))�‖2 (47)

η := sup
t≥0,z∈�z

‖ε0(t, z)+ D(t)ū(t)+ d(t)‖ (48)

which are upper-bounded from Assumptions 1 and 2,
Remark 4, and ‖ε0(·, ·)‖ ≤ εN .

First, by taking the time derivative of VS along the solution
to (24) with (27), gives

V̇S = S�((W∗)�ϕ(z)+ ε0 + Dū + d)

−
(

Kφ‖S‖2 + KS + (Kρ + η̂)

‖S‖ + ‖ϕ(z)‖2

φθ
θ̂

)
× S� DE D�S

≤ −emin Kφ‖S‖4 − emin KS‖S‖2 − emin Kρ‖S‖
+ (η − eminη̂)‖S‖ + √

θ‖ϕ(z)‖‖S‖
− eminθ̂

‖ϕ(z)‖2

φθ
‖S‖2.

Note that
√
θ‖S‖‖ϕ(z)‖ ≤ θ‖S‖2‖ϕ(z)‖2/φ0 + φ0 for any

φ0 > 0, and thus

V̇S ≤ −emin Kφ‖S‖4 − emin KS‖S‖2 − emin Kρ‖S‖ + φθ

+ 1

φθ
(θ − eminθ̂ )‖ϕ(z)‖2‖S‖2 + (η − eminη̂)‖S‖.

(49)
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Next, by taking the time derivative of Vρ along the solutions
to (28) and (29), it follows that

V̇ρ = − 1

γS
(θ − eminθ̂ )

(
1

φθ
γS‖ϕ(z)‖2‖S‖2 − γθ θ̂

)

−α(η − eminη̂)

(
1

α
‖S‖ − γηη̂

)
.

Then, the time derivative of V2 satisfies

V̇2 ≤ −emin Kφ‖S‖4 − emin KS‖S‖2 − emin Kρ‖S‖ + φθ

+ γθ

γS
(θ − eminθ̂ )θ̂ + αγη(η − eminη̂)η̂

≤ −emin KS‖S‖2 + φθ − γθ

2γSemin
(θ − eminθ̂ )

2

+ γθ

2γSemin
θ2 − αγη

2emin
(η − eminη̂)

2 + αγη

2emin
η2

where Lemma 2 is used. Let λ2 :=
min{2 emin(�KS/Jmax), γθ , γη} and λ3 := (γθ/2γSemin)θ

2 +
(αγη/2emin)δ

2 + φθ . Then, it follows that

V̇2 ≤ −λ2V2 + λ3

which implies that for any (S∗(0), θ̂∗(0), η̂∗(0)) ∈ R
3×R×R,

there exist positive constants ε0, ε1, and ε2 (depending on
(S∗(0), θ̂∗(0), η̂∗(0))) such that ‖S(·)‖ ≤ ε0, |θ − eminθ̂ (·)| ≤
ε1, and |η − eminη̂(·)| ≤ ε2.

To show the finite-time convergence of S, we again consider
inequality (49). From the definition of ϕ, we have ‖ϕ(·)‖ ≤ h.
From this inequality, it follows that

V̇S ≤ −emin Kφ‖S‖4 − emin KS‖S‖2 − emin Kρ‖S‖ + φθ

+ ε1h2

φθ
‖S‖2 + ε2‖S‖

≤ −emin Kφ‖S‖4 − emin KS‖S‖2 − emin Kρ‖S‖ + φθ

+ φ1

2φθ
‖S‖4 + φ2

2
‖S‖2 + ε2

1h4

2φθφ1
+ ε2

2

2φ2

where φ1, φ2 > 0, and the inequalities ε1h2‖S‖2 ≤
(φ1/2)‖S‖4+(ε2

1h4/2φ1) and ε2‖S‖ ≤ (φ2/2)‖S‖2+(ε2
2/2φ2)

are used. Choose Kφ ≥ (φ1/2φθemin) and KS > (φ2/2emin),
and denote KS1 := KS − (φ2/2emin). Then, we have

V̇S ≤ −emin KS1‖S‖2 − emin Kρ‖S‖ + φ̄θ

φ̄θ := φθ + ε2
1h4

2φθφ1
+ ε2

2

2φ2
.

Let 0 < λ4 < ((2emin�KS1)/Jmax) and λ5 :=
emin Kρ((2�/Jmax))

1/2. If

‖S‖ ≥ δ̄1,1 :=
√

2�

Jmin

φ̄θ

2�emin KS1/Jmax − λ4

then, we have

VS ≥ φ̄θ

2emin�KS1/Jmax − λ4
and V̇S + λ4VS + λ5V

1
2

S ≤ 0.

In addition, let λ6 := ((2�emin KS1)/Jmax) and 0 < λ7 <
emin Kρ(2�/Jmax)

1/2. If

‖S‖ ≥ δ̄1,2 :=
√

2�

Jmin

φ̄θ

emin Kρ
√

2�/Jmax − λ7

then, we have

V 1/2
S ≥ φ̄θ

emin Kρ
√

2�/Jmax − λ7
, V̇S + λ6VS + λ7V

1
2

S ≤ 0.

Define δ̄1 := min{δ̄1,1, δ̄1,2}. Note that this δ̄1 can be
made arbitrary small by making KS and Kρ sufficiently
large. According to Lemma 3, for any positive constants
δ̄1, ε1, and ε2, and any ‖S∗(0)‖, there exists T̄2 :=
T̄2(S∗(0), θ̂∗(0), η̂∗(0), δ̄1) > 0 such that ‖S∗(t)‖ ≤ δ̄1 for
all t ≥ T̄2.

Remark 7: One notices that the controller in Section III-A
given by (25) and (26) can achieve a finite-time convergence
of S∗(t) to a given bounded set. Indeed, for any ω0/λ1 > 0
in (45) and V1(0) ≥ 0, there exists a finite time T̄1 :=
T̄1(V1(0), ω0/λ1) > 0 such that

(V1(0)− ω0/λ1)e
−λ1t ≤ ω0/λ1 ∀T̄1 ≥ t .

From (44), ‖S(t)‖ ≤ 2δ1 for all T̄1 ≥ t . As mentioned in the
proof of Theorem 1, δ1 > 0 can be made arbitrary small. Note
that the convergence speed is upper-bounded on exponential.
However, the controller designed in this section guarantees a
faster convergence speed because of the finite-time stability
result of Lemma 3 in Appendix A.

Theorem 2 follows from Lemmas 1 and 4, and thus its proof
is omitted.

APPENDIX D
PROOF OF THEOREM 3

Theorem 3 is based on the following lemmas.
Lemma 5: Suppose that Assumptions 1–5 hold. Then, one

can design a TPVS and controller dynamics (30)–(35) such
that the following holds: for any (S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0)) ∈
R

3 ×R×R×R, there exist four positive constants θ̄ , η̄, ζ̄ , and
M such that |θ̂ (·)| ≤ θ̄ , |η̂(·)| ≤ η̄, |ζ̂ (·)| ≤ ζ̄ , and |ūc,i | ≤ M .

Proof: In a similar manner as the proof of Lemma 4, one
can show that there exists a positive constant δv such that

‖S(·)‖ ≤ (2�/Jmin)
1
2 δ

1
2
v

|θ − ēminθ̂ (·)| ≤ 2γSēminδ
1
2
v

|η − ēminξ η̂(·)| ≤ 2ēminξ

α
δ

1
2
v

where θ and η are defined by (47) and (48), respectively.
From the triangular inequality, we have |θ̂ (·)| ≤ θ̄ with θ̄ :=
2γSδ

(1/2)
v + (θ/ēmin) and |η̂(·)| ≤ η̄ with η̄ := (2/α)δ(1/2)v +

(η/ēminξ).
Next, we move on to find the upper bound of ζ̂ . Based

on (35), we consider the following two cases.
Case 1: If ζh̄ ≥ 0, then |ζ̂ (·)| ≤ (Kρ + η̄)

(2�/Jmax)
(1/2)δ

(1/2)
v /γζ .

Case 2: If ζh̄ < 0, then ˙̂
ζ ≤ 0, which means that

|ζ̂ (·)| ≤ ζ̂ (0). Then, |ζ̂ (·)| ≤ ζ̄ for ζ̄ := max{(Kρ + η̄)

(2�/Jmax)
(1/2)δ

(1/2)
v /γζ , ζ̂ (0)}.

From (32), it follows that ‖ūc‖ ≤ M , where M :=
‖D‖((2�δvKφ)/Jmin + KS + (θ̄h2/φθ ))(2�δv/Jmin)

(1/2) +
‖D‖ξ ζ̄ (Kρ + η̄). Therefore, we conclude from |ūc,i | ≤ ‖ūc‖
that |ūc,i | ≤ M .
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Lemma 6: Suppose that Assumptions 1–5 hold. Then, one
can design a TPVS and controller dynamics (30)–(35) such
that the following holds: 1) for any positive constant umax,
the designed control input satisfies |uc,i (·)| ≤ umax, i =
1, . . . , n and 2) for any positive constant δ̄1 > 0 and
(S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0)) ∈ R

3 × R × R × R, there exists
a finite T̄3 := T̄3(S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0), δ̄1) > 0 such that
the solution S(t) to the closed loop system consisting of (24)
and (32)–(35) satisfies ‖S∗(·)‖ ≤ δ̄1 for all t ≥ T̄3.

Proof: Consider the following Lyapunov function
candidate:

V3(t, S, θ̂ , η̂, ζ̂ ) := VS(t, S)+ Vρ(θ̂ )

VS(t, S) := 1

2�
S� J (t)S

Vρ(θ̂ , η̂, ζ̂ ) := 1

2γSeminζ
(θ − eminζ θ̂)

2

+ α

2eminζ ξ
(η − eminζξ η̂)

2

+ eminζ

2β
(ζ̂−1 − ζ̄−1)2 (50)

where emin > 0 is defined in Assumption 4, ξ > 1 is a
design parameter, ζ is given in (37), ζ̄ is the upper bound
of ζ̂ in Lemma 5, and θ and η are defined by (47) and (48),
respectively.

First, by taking the time derivative of VS along the solution
to (24) with (32), gives

V̇S ≤ S�((W∗)�ϕ(z)+ ε0 + Dū + d)− ζ
(

Kφ‖S‖2

+KS + ‖ϕ(z)‖2

φθ
θ̂ + ξ ζ̂

(Kρ + η̂)

‖S‖
)

S� DE D�S

≤ −eminζKφ‖S‖4 − eminζKS‖S‖2 − eminζξ ζ̂ (Kρ + η̂)

× ‖S‖+η‖S‖+√
θ‖ϕ(z)‖‖S‖ − eminζ θ̂

‖ϕ(z)‖2

φθ
‖S‖2.

Note that
√
θ‖S‖‖ϕ(z)‖ ≤ θ‖S‖2‖ϕ(z)‖2/φ0 + φ0 for any

φ0 > 0, and thus

V̇S ≤ −eminζKφ‖S‖4 − eminζKS‖S‖2 + η‖S‖ + φθ

− eminζξ ζ̂ (Kρ + η̂)‖S‖ + ‖ϕ(z)‖2

φθ
(θ − eminζ θ̂)‖S‖2.

(51)

Next, by taking the time derivative of Vρ along the solutions
to (33) and (34), it follows that

V̇ρ = −‖ϕ(z)‖2

φθ
(θ − eminζ θ̂)‖S‖2 + γθ

γS
(θ − eminζ θ̂)θ̂

− (η − eminζξ η̂)‖S‖ + αγη(η − eminζ ξ η̂)η̂

− eminζ

βζ̂ 2
(ζ̂−1 − ζ̄−1) ˙̂ζ. (52)

Then, two cases are discussed based on the adaptation
law (35).

Case 1: If ζ̂ > 1 or if ζ̂ = 1 and ζh̄ ≥ 0, then

˙̂
ζ = βξζ̂ 3[(Kρ + η̂)‖S‖ − γζ ζ̂ ].

Substituting it into (52) and combining (51) and (52), the time
derivative of V3 satisfies

V̇3 ≤ −eminζKφ‖S‖4 − eminζKS‖S‖2 + η‖S‖
− eminζ ξ ζ̂ (Kρ + η̂)‖S‖ + γθ

γS
(θ − eminζ θ̂)θ̂

−(η − eminζξ η̂)‖S‖ + αγη(η − eminζξ η̂)η̂ + φθ

− eminζ ξ ζ̂ (ζ̂
−1 − ζ̄−1)[(Kρ + η̂)‖S‖ − γζ ζ̂ ] (53)

and consequently, from the definition of ζ̄ in Lemma 5 in this
Appendix, (ζ̄−1 − 1) ≤ 0. Thus, we derive

−eminζξ ζ̂ (Kρ + η̂)‖S‖ − eminζξ ζ̂ (ζ̂
−1 − ζ̄−1)(Kρ + η̂)‖S‖

= (ζ̄−1 − 1)eminζξ ζ̂ (Kρ + η̂)‖S‖ − eminζ ξ(Kρ + η̂)‖S‖
≤ −eminζ ξ(Kρ + η̂)‖S‖. (54)

By combining η‖S‖ in (53) and −eminζ ξ η̂‖S‖ in (54), the time
derivative of V3 becomes

V̇3 ≤ −eminζKφ‖S‖4 − eminζKS‖S‖2 − eminζ ξKρ‖S‖
+ γθ

γS
(θ − eminζ θ̂)θ̂ + αγη(η − eminζ ξ η̂)η̂

+ eminζ ξ ζ̂ (ζ̂
−1 − ζ̄−1)γζ ζ̂ + φθ (55)

where the term (η − eminζξ η̂)‖S‖ is counteracted. From
Lemma 2, the following inequalities hold:

γθ

γS
(θ − eminζ θ̂)θ̂ ≤ −γθ(θ − eminζ θ̂)

2

2γSeminζ
+ γθθ

2

2γSeminζ

αγη(η − eminζξ η̂)η̂ ≤ −αγη(η − eminζξ η̂)
2

2eminζξ
+ αγηη

2

2eminζ ξ
.

(56)

Furthermore, the following equation is true:
eminζξ ζ̂ (ζ̂

−1 − ζ̄−1)γζ ζ̂

= −eminζξγζ ζ̄
−1

[(
ζ̂ − ζ̄

2

)2

− ζ̄ 2

4

]
. (57)

Note that −eminζξγζ ζ̄
−1(ζ̂ − (ζ̄ /2))2 ≤ 0. Then, by adding

and subtracting eminζ ξγζ (ζ̂
−1 − ζ̄−1)2, and substituting (56)

and (57) into (55), it follows that

V̇3 ≤ −eminζKS‖S‖2 − γθ

2γSeminζ
(θ − eminζ θ̂)

2 + φθ

− αγη

2eminζ ξ
(η − eminζξ η̂)

2 + αγη

2eminζ ξ
η2+ γθ

2γSeminζ
θ2

+ eminζ ξγζ

[
(ζ̂−1 − ζ̄−1)2 + ζ̄

4

]
− eminζ ξγζ (ζ̂

−1 − ζ̄−1)2.

Invoking the fact ζ̂−1 ≥ ζ̄−1 > 0 and ζ̂−1 ∈ (0, 1], it has

eminζ ξγζ [(ζ̂−1 − ζ̄−1)2 + ζ̄ /4] ≤ eminζξγζ (1 + ζ̄ /4).

Let λ8 = min{((2�eminζKS)/Jmax), γθ , γη, 2ξγζ β}, λ9 =
(γθ/(2γSeminζ ))θ

2+(αγη/(2eminζξ))η
2+eminζξγζ (1+ζ̄ /4)+

φθ . Then, it follows that

V̇3 ≤ −λ8V2 + λ9
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which implies that for any (S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0)) ∈
R

3 × R × R × R, there exist positive constants ε3, ε4, ε5,
and ε6 [depending on (S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0))] such that
‖S(·)‖ ≤ ε3, |θ − eminζ θ̂(·)| ≤ ε4, |η− eminζ ξ η̂(·)| ≤ ε5, and
|ζ̂−1(·)− ζ̄−1| ≤ ε6.

To show the finite-time convergence of S, we again consider
inequality (51). According to ζ̂ ≥ 1 in (35) and ‖ϕ(·)‖ ≤ h
and η̄ ≥ η̂ from Lemma 5, it follows that:

V̇S ≤ −eminζKφ‖S‖4 − eminζKS‖S‖2 − eminζξKρ‖S‖
+ 1

2φθφ3
(θ − eminζ θ̂)

2‖ϕ(z)‖4 + φ3

2φθ
‖S‖4

+ 1

2φ4
(η − eminζ ξ η̂)

2 + φ4

2
‖S‖2 + φ5

2
‖S‖2 + φθ

where φ3, φ4 > 0, and the following inequalities are used:
‖ϕ(z)‖2

φθ
(θ − eminζ θ̂)‖S‖2

≤ 1

2φθφ3
(θ − eminζ θ̂)

2‖ϕ(z)‖4 + φ3

2φθ
‖S‖4

× (η − eminζ ξ η̂)‖S‖ ≤ 1

2φ4
(η − eminζ ξ η̂)

2 + φ4

2
‖S‖2

− eminζξ ζ̂Kρ‖S‖ ≤ −eminζ ξKρ‖S‖
− eminζξ ζ̂ η̂‖S‖ ≤ −eminζξ η̂‖S‖.

Choose Kφ ≥ (φ3/(2φθζemin)), and KS > (φ4/(2ζemin)), and
denote KS2 > KS − (φ4/(2ζ emin)). Then, we have

V̇S ≤ −eminζKS2‖S‖2 − eminζ ξKρ‖S‖ + φ̄1

φ̄1 := φθ + ε2
4h4

2φθφ3
+ ε2

5

2φ4
.

Let 0 < λ8 < ((2�eminζKS2)/Jmax) and λ9 :=
eminζ ξKρ(2�/Jmax)

1/2. If

‖S‖ ≥ δ̄1,3 :=
√

2�

Jmin

φ̄1

2�eminζKS2/Jmax − λ8

Then, we have

VS ≥ φ̄1

2�eminζKS2/Jmax − λ8
, V̇S + λ8VS + λ9V

1
2

S ≤ 0.

In addition, let λ10 := ((2�eminζKS2)/Jmax) and
0 < λ11 < eminζξKρ(2�/Jmax)

1/2. If ‖S‖ ≥ δ̄1,4 :=
(2�/Jmin)

1/2(φ̄1/(eminζξKρ(2�/Jmax)
1/2 − λ11)), then,

we have

V 1/2
S ≥ φ̄θ

eminζξKρ
√

2�/Jmax − λ11

V̇S + λ10VS + λ11V
1
2

S ≤ 0.

Denote δ̄c1 := min{δ̄1,3, δ̄1,4}. Note that this δ̄c1 can be
made arbitrary small by making KS , Kρ sufficiently large.
According to Lemma 3, for any positive constants δ̄c1, ε4, and
ε5, and any (S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0)) ∈ R

3 × R × R × R,
there exist a T̄c1 := T̄c1(S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0), δ̄c1) > 0
such that ‖S∗(t)‖ ≤ δ̄c1 for all t ≥ T̄c1.

Case 2: If ζ̂ = 1 and ζh̄ < 0, then ˙̂ζ = 0 can be obtained
from the adaptation law (35). In this situation, the input
saturation does not exist and ζ̂ = 1. Substituting ζ̂ = 1
into (32), it has

uc = −D�(Kφ‖S‖2 + KS + 1

φ0
θ̂‖ϕ(z)‖2)S

− D�ξ
(Kρ + η̂)S

‖S‖
which is similar to the control law (27) except for the
constant gain ξ . Following the proof of Lemma 4, one
can also proof that for any positive constant δ̄c2 > 0
and (S∗(0), θ̂∗(0), η̂∗(0)) ∈ R

3 × R × R, there exists
a T̄c2 := T̄c2(S∗(0), θ̂∗(0), η̂∗(0), δ̄c2) > 0 such that
‖S∗(·)‖ ≤ δ̄c2 for all t ≥ T̄c2, where δ̄c2 := max{δ̄1,5, δ̄1,6},
δ̄1,5 := ((2�/Jmin)(φ̄

2/(2�emin KS1/Jmax − λ4)))
1/2, δ̄1,6 :=

(2�/Jmin)
1/2(φ̄2/(eminξKρ(2�/Jmax)

1/2 − λ12)), φ̄2 := φθ +
((ε2

1h4)/(2φθφ1)) + (ε2
7/2φ2), λ12 := eminξKρ(2�/Jmax)

1/2,
ε7 > 0 satisfied |η − eminξ η̂(·)| ≤ ε7.

Define δ̄1 := {δ̄c1, δ̄c2}, T̄3 := max{T̄c1(S∗(0), θ̂∗(0),
η̂∗(0), ζ̂ ∗(0), δ̄c1), T̄c2(S∗(0), θ̂∗(0), η̂∗(0), δ̄c2)} which is
related to the initial values S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0) and δ̄1.

Finally, summarizing the Cases 1 and 2, it can be
concluded that for any positive constant δ̄1 > 0 and
(S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0)) ∈ R

3 × R × R × R, there exists
a finite T̄3 := T̄3(S∗(0), θ̂∗(0), η̂∗(0), ζ̂ ∗(0), δ̄1) > 0 such that
the solution S(t) to the closed loop system consisting of (24)
and (32)–(35) satisfies ‖S∗(·)‖ ≤ δ̄1 for all t ≥ T̄3.

That completes the proof.
The proof of Theorem 3 follows from Lemmas 1 and 6 and

thus is omitted.
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